WO2010053279A2 - High strength steel material and method for manufacturing same - Google Patents

High strength steel material and method for manufacturing same Download PDF

Info

Publication number
WO2010053279A2
WO2010053279A2 PCT/KR2009/006401 KR2009006401W WO2010053279A2 WO 2010053279 A2 WO2010053279 A2 WO 2010053279A2 KR 2009006401 W KR2009006401 W KR 2009006401W WO 2010053279 A2 WO2010053279 A2 WO 2010053279A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
steel
nitrogen
solid solution
base material
Prior art date
Application number
PCT/KR2009/006401
Other languages
French (fr)
Korean (ko)
Other versions
WO2010053279A3 (en
Inventor
김동삼
김성철
정희원
Original Assignee
일진경금속(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진경금속(주) filed Critical 일진경금속(주)
Publication of WO2010053279A2 publication Critical patent/WO2010053279A2/en
Publication of WO2010053279A3 publication Critical patent/WO2010053279A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding
    • C23C8/56Carbo-nitriding of ferrous surfaces

Definitions

  • the present invention relates to a steel material and a method for manufacturing the same, and more particularly, to a high strength steel material and a method for manufacturing the same further improved strength.
  • a representative method for improving the strength of the steel is to use a high carbon steel with a high content of carbon contained in the steel.
  • high strength steel having a tensile strength of 400 MPa or more includes DP (Dual Phase) steel, CP (Complex Phase) steel, TRIP (TRansformation Induced Plasticity) steel, and TWIP (TWinning Induced Plasticity) steel.
  • this method reduces the amount of nitrogen consumed to form a compound with iron on the surface of the steel and diffuses into the steel, thereby improving the hardness, strength and corrosion resistance of the surface, but the overall strength of the steel is sufficient. There is a limit that cannot be improved.
  • the steel thus formed is used for tools, engine parts, and the like, and has limitations for use in exterior parts of automobiles.
  • the present invention is to solve the above problems, and an object thereof is to provide a steel that can improve the strength.
  • the first layer made of ultra-low carbon steel; And a solid solution disposed in contact with the first layer and having a first surface on the side opposite to the first layer, in which nitrogen is dissolved in the ultra-low carbon steel, the structure being substantially the same as that of the first layer. It provides a steel comprising a; second layer having.
  • At least a region adjacent to the first surface of the second layer does not contain a compound of iron and nitrogen.
  • the method further includes a third layer formed on the second layer and having a second surface in contact with the first surface and provided to prevent corrosion of the first surface.
  • the method further includes a fourth layer formed on the second layer and having a third surface in contact with the first surface and provided with a compound of iron and nitrogen.
  • At least a region adjacent to the first surface of the second layer comprises a compound of iron and nitrogen.
  • the ultra low carbon steel is a steel having a carbon content of 0.01% by weight or less (not including 0% by weight).
  • the present invention also provides a base material having a surface and provided with a steel having a carbon content of 0.01% by weight or less (not including 0% by weight) to achieve the above object; And a solid solution layer provided on the inside of the base material from the surface and having a solid solution of nitrogen in an invasive position of the base material and having a structure substantially the same as that of the base material.
  • At least the region adjacent to the surface of the solid solution layer does not contain compounds of iron and nitrogen.
  • the solid solution layer further comprises a first film formed in contact with the surface to prevent corrosion of the solid solution layer.
  • it further comprises a second coating layer formed on the solid solution layer in contact with the surface and provided with a compound of iron and nitrogen.
  • a compound of iron and nitrogen is formed in at least a region adjacent to the surface of the solid solution layer.
  • the present invention also provides a step of forming a base material having a surface and provided with ultra-low carbon steel; Forming a solid solution layer on the inside of the base material from the surface, in which nitrogen is dissolved in the invasive site of the base material and having a structure substantially the same as that of the base material; Covering the surface and forming an oxide film formed of iron oxide; And removing the oxide film.
  • the formation of the solid solution layer and the oxide film proceeds simultaneously.
  • the step of forming the solid solution layer and the oxide film at least one salt selected from the group consisting of KNO 3 , KNO 2 , Ca (NO 3 ) 2 , NaNO 3 and NaNO 2 .
  • Preparing a molten salt Heating the molten salt; Immersing the base material in the molten salt; And quenching the base material from the molten salt.
  • the base material is steel having a carbon content of 0.01% by weight or less (not including 0% by weight).
  • the strength can be further improved by forming a nitrogen solid solution layer having a sufficient depth inside the steel. Accordingly, there is an effect that can be applied to various fields, such as lightweight high-strength automobile parts and various structural materials.
  • the structure of the second layer in which nitrogen is diffused is the same as that of the first layer, the same physical properties can be obtained due to the uniform structure, whereby cracks and fractures can be prevented.
  • the iron-nitrogen compound is not formed on the surface, a larger amount of nitrogen can diffuse into the steel, thereby forming a thicker layer of nitrogen-solubilized layer in the steel.
  • the surface of the second layer can be prevented from being corroded, and when the fourth layer is formed, wear resistance can be increased.
  • nitrogen By employing noncyanide salts in the river, nitrogen can be used to solve environmental problems and reduce treatment costs.
  • the content of carbon may be included in an amount of 0.01% by weight or less to further increase the thickness of the second layer formed.
  • FIG. 3 is a cross-sectional photograph of the first layer of FIG.
  • FIG. 4 is a cross-sectional photograph of the second layer of FIG.
  • FIG. 5 is a photograph showing a cross section of a second layer when the base material immersed in molten salt is annealed according to a preferred embodiment of the present invention
  • FIG. 6 is a graph showing the difference in tensile strength between the case of quenching and quenching the base material immersed in the molten salt according to an embodiment of the present invention
  • FIG. 9 is a cross-sectional view of a steel according to another preferred embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a cross section of a steel according to an embodiment of the present invention.
  • a steel according to a preferred embodiment of the present invention includes a first layer 1 and a second layer 2 positioned adjacent to the first layer 1.
  • the first layer 1 is a portion in which a base metal made of steel is kept as it is. It is preferable that this 1st layer 1 does not contain an iron-nitrogen compound.
  • the first layer 1 may be one in which a very small amount of nitrogen is added as an alloying element for a special use.
  • the first layer 1 As the first layer 1 as described above, it is preferable to use ultra low carbon steel having a carbon content of 0.01% by weight or less (not including 0). This is because the first layer 1 serves as a base material for the formation of the second layer 2, which will be described later, so that the second layer 2 can be formed more easily as described later.
  • the second layer 2 is a portion provided with a solid solution layer in which nitrogen is dissolved in an interstitial site of iron, which is a main element of the base steel.
  • the second layer 2 has a first surface 21 on the opposite side to the first layer 1, and Fe 2 N, Fe 3 on the inside and the first surface 21 of the second layer 2.
  • the second layer 2 does not contain an iron-nitrogen compound, nitrogen can diffuse from the first surface 21 to a sufficient depth, so that the thickness t1 of the second layer 2 is sufficiently thick.
  • the tensile strength can be greatly improved.
  • the thickness t1 of the second layer 2 may be appropriately adjusted according to the desired tensile strength. In other words, when a relatively high tensile strength is required, the thickness t1 of the second layer 2 is thick, and when a relatively low tensile strength is required, the thickness t1 of the second layer 2 is thinly formed. You can do
  • the second layer 2 as described above is a solid solution layer in which nitrogen diffuses from the surface of the base material and is dissolved in an iron intrusion site.
  • the second layer 2 is also preferably made of ultra low carbon steel having a carbon content of 0.01% by weight or less (not including 0). This is because the second layer 2 is a solid solution layer formed by diffusion of nitrogen from the surface of the base material as described above. When the carbon content exceeds 0.01% by weight, the thickness t1 of the second layer 2 is increased. It is because it is not possible to obtain a sufficiently thick, and thus it is difficult to improve the tensile strength of the steel.
  • Figure 2 shows the tensile strength increase rate of the steel according to the carbon content of the base material.
  • the tensile strength increase rate represents the increase rate of the tensile strength before forming the second layer (2) and after forming the second layer (2).
  • steels having a carbon content of 0.002 wt%, 0.008 wt%, 0.01 wt%, 0.015 wt%, 0.05 wt%, and 0.1 wt%, respectively, were immersed in NaNO 3 molten salt at 650 ° C. for 12 hours as described below. After quenching with cooling water, the oxide film on the surface was removed, and then subjected to tensile test.
  • the tensile strength increase rate of the steel is more than 100%, that is, the tensile strength of more than twice the tensile strength of the base material, but the carbon content is 0.01% by weight If exceeded, the increase in tensile strength is shown, but less than 100%, and the profit for forming the second layer 2 for the increase in the tensile strength falls.
  • the said 1st layer 1 and the 2nd layer 2 are provided so that it may have substantially the same structure.
  • the fact that the tissues of the first layer 1 and the second layer 2 are substantially the same means that the tissue of the first layer 1 and the tissue of the second layer 2 have the same morphology without discontinuity.
  • FIGS. 3 and 4 are optical micrographs of the first layer 1 and the second layer 2, and as shown in FIGS. 3 and 4, it can be seen that they have the same structure.
  • the steel material has a homogeneous structure over the first layer 1 and the second layer 2, and thus, may have the same physical properties and prevent cracking or fracture.
  • the molten salt is a non-cyanide molten salt, more specifically NaNO 3 , NaNO 2 , KNO 3 , KNO 2 , which is not a conventional cyanide (CN), that is, molten salt such as KCN, NaCN containing cyan-based, And at least one salt selected from the group consisting of Ca (NO 3 ) 2 .
  • CN conventional cyanide
  • This salt bath is maintained at a constant temperature in the range of 400 ° C to 800 ° C.
  • the salts in the salt bath is subjected to the nitrogen production reaction as follows.
  • Formula 1 below shows the nitrogen formation reaction of the molten salt bath of NaNO 3 , NaNO 2 .
  • Formula 2 below shows the nitrogen formation reaction of the molten salt bath of KNO 3 , KNO 2 .
  • Formula 3 below shows the nitrogen formation reaction of a molten salt bath of Ca (NO 3 ) 2 .
  • NO and NO 2 are generated in the molten salt bath. As described below, NO and NO 2 generate activated nitrogen N in accordance with the reaction with iron to cause nitrogen diffusion into the base metal.
  • the base metal made of steel having a carbon content of 0.01% by weight or less as described above is immersed in the salt bath for a predetermined time, for example, 1 minute to 24 hours.
  • the base material is preferably molded into a shape desired by the user. That is, since the base material is an ultra low carbon steel having a carbon content of 0.01% by weight or less, the tensile strength is small, the ductility is high, and the workability is very excellent. It is very easy to mold to the desired shape using such ultra-low carbon steel. In addition, the life of the mold of the molding apparatus can be long.
  • Equations 1 to 6 below calculate the Gibbs free energy of Formulas 4 to 9, respectively. Calculation of the Gibbs free energy is shown in R.C. Weast (Ed.), Handbook Chemistry and Physics, 49th ed., The Chemical Rubber co., 1968, P.D-22.
  • NO and NO 2 reacted with Fe form a compound of Fe-O, that is, iron oxide, on the surface of the base material according to the above formulas 4 to 9, and generate the generator N to interstitial site inside the iron (Interstitial site)
  • the N is diffused to strengthen the solid solution.
  • nitrogen (N 2 ) and oxygen (O 2 ) are further present in the molten salt bath, and the nitrogen and oxygen react with iron as shown in Chemical Formulas 10 to 13, respectively.
  • the Gibbs free energy ( ⁇ G °) of the above formulas 10 to 13 may be obtained by ⁇ H ° -T ⁇ S °, which may be obtained by Equations 7 to 10, respectively.
  • the calculation of the Gibbs-free energy below is from the Thermodynamics of Materials, David V. Ragone.
  • Equations 7 to 10 are all within a temperature range of the present invention ⁇ G 7 ° has a positive value of 20,000 or more, ⁇ G 8 ° to ⁇ G 10 ° all have a negative value of -200,000 or less. Therefore, Formula 10 in Formulas 10 to 13 is an involuntary reaction, and Formulas 11 to 13 are spontaneous. Accordingly, the iron-nitrogen compound to be produced according to Formula 10 is not generated in the second layer, which is the solid solution layer of nitrogen, according to the present invention, unless specially treated as described above.
  • FIG. 5 is an optical micrograph showing the structure of the second layer 2 when the base material treated in the molten salt bath is left to cool at room temperature and gradually cooled.
  • the tissue of the second layer which is a solid solution layer, appears needle-like structure unlike the second layer (1). In this case, therefore, it is difficult to obtain crack and fracture prevention effects due to the homogeneous tissue as described above.
  • the tensile strength of the steel is also significantly different depending on the cooling conditions of the base material treated in the molten salt bath.
  • 6 is a result of tensile test after removing two IF steels with a carbon content of 0.002% by weight in molten NaNO 3 at 650 ° C. for 5 hours and removing the scale after quenching (I) and slow cooling (II), respectively. It is shown.
  • the condition of quenching (I) means cooling with general cooling water
  • the condition of cooling (II) means leaving it to stand at room temperature.
  • IF steel, which is the base material has a tensile strength of 300 MPa.
  • the quenched steel is formed with a second layer 2, which is a layer in which nitrogen is dissolved, is formed on the first layer 1, and the upper surface of the first surface 21 of the second layer 2 is formed.
  • a second layer 2 which is a layer in which nitrogen is dissolved
  • the base metal has a nitrogen solid solution layer in which nitrogen is dissolved in preference to the iron-nitrogen compound.
  • the layer 2 is formed, and the oxide film 22 is formed on the surface.
  • the oxide film 22, which is a Fe-O compound formed on the surface of the base material may be similarly decomposed, or may be decomposed even when the Fe-N compound is formed. At this time, decomposition takes place as in the following formulas (14) and (15).
  • the decomposition energy at this time can be obtained by the following Equations 11 and 12, respectively.
  • the calculation of Gibbs-free energy at the time of decomposition is as follows. Metallurgical Thermo-chemistry 5th ed. -O. According to Kubaschewski and C.B.Alcock.
  • Equations 11 and 12 in the temperature range of the present invention ⁇ G 11 ° has a negative value, ⁇ G 12 ° has a positive value. Therefore, Chemical Formula 14 is a spontaneous reaction, and Chemical Formula 15 is an involuntary reaction. According to Formula 15, the Fe-O compound does not spontaneously decompose and forms a Fe-O compound, that is, an oxide film 22. Since the Fe-N compound spontaneously decomposes according to Formula 14, a trace amount of the Fe-O compound spontaneously decomposes. Even if the Fe-N compound is formed, it is spontaneously decomposed.
  • the iron-nitrogen compound does not exist at least in the vicinity of the surface of the second layer 2 and the oxide film 22, and even if present, the amount is extremely small.
  • the formation of the second layer 2 and the oxide film 22 as described above occurs simultaneously.
  • the formation of the oxide film 22 is essentially accompanied, and the formation of the oxide film 22 causes the second layer 2 to be formed.
  • the degree of formation can be estimated.
  • the oxide film 22 is removed through a surface descaling operation to complete the steel as shown in FIG. 1.
  • the thickness t1 of the second layer 2 can be made thicker than the conventional method of forming the iron-nitrogen compound layer on the surface. Since the thickness t1 of the second layer 2 is somewhat proportional to the temperature of the molten salt bath and the treatment time, when the thickness of the second layer 2 is to be formed thickly, the allowable temperature range of the temperature of the molten salt bath is increased. It is desirable to increase the maximum to and increase the treatment time.
  • the nitrogen diffused to the surface of the base material is a generator N generated according to the above formulas (4) to (9), the amount of nitrogen to be diffused into the steel increases when the N is more increased.
  • the amount of N is related to the amount of NO and NO 2 reacted with Fe.
  • hot air may be blown into the molten salt bath during the above treatment to allow nitrogen and oxygen in the air to form NO and NO 2 to participate in the reaction as in Chemical Formulas 4 to 9 above.
  • a separate gas containing NO and NO 2 may be blown into the molten salt bath.
  • the steel since the first surface 21 is exposed to the outside, the steel may be vulnerable to corrosion.
  • a second surface 31 is provided on the second layer 2 in contact with the first surface 21 and is provided to prevent corrosion of the first surface 21.
  • the third layer 3 can be further formed.
  • the third layer 3 prevents corrosion of the second layer 2, and a phosphate coating may be used, but is not limited thereto.
  • the third layer 3 may be formed on the first surface 21 of the second layer 2. Any material capable of preventing corrosion of the second layer 2 while excellent in adhesive force may be applied, such as plating and painting.
  • the fourth layer 4 formed of the iron-nitrogen compound 4 to cover the first surface 21 of the second layer 2 after forming the second layer 2 ) can be further formed.
  • the fourth layer 4 has a third surface 41 on the second layer 2 in contact with the first surface 21 and is provided to prevent corrosion of the first surface 21.
  • the fourth layer 4 may be formed on the first surface 21 of the second layer 2 by gas nitriding.
  • the fourth layer 4 may be one in which at least one layer of Fe 2 N and Fe 3 N in the ⁇ phase or Fe 4 N in the ⁇ phase is present.
  • An iron-nitrogen compound may be formed near the first surface 21 of the second layer 2 adjacent to the fourth layer 4.
  • the fourth layer 4 which is a nitride layer, is formed on the first surface 21 of the second layer 2, the surface hardness of the steel may be further increased, and the wear resistance and the corrosion resistance may be increased.
  • the present invention can be easily formed into a desired shape using ultra low carbon steel, and then, by increasing the tensile strength by the treatment as described above, it is possible to further maximize the mass production of steel parts.

Abstract

The present invention relates to a steel material that enables the enhancement of tensile strength, comprising a first layer consisting of ultra low carbon steel, and a second layer that is located to be in contact with said first layer, has a first surface on the side opposite to said first layer, consists of a solid solution wherein nitrogen is dissolved in said ultra low carbon steel, and has practically the same structure as that of said first layer.

Description

고강도 강재 및 그 제조방법High strength steel and its manufacturing method
본 발명은 강재 및 그 제조방법에 관한 것으로, 더욱 상세하게는 강도를 더욱 향상시킨 고강도 강재 및 그 제조방법에 관한 것이다.The present invention relates to a steel material and a method for manufacturing the same, and more particularly, to a high strength steel material and a method for manufacturing the same further improved strength.
자동차 분야, 공구 및 각종 구조물 등에 사용되는 강재는 다양한 합금 기술 및 열처리 기술을 통해 사용 분야에 맞게 처리되고 있다.Steel materials used in the automotive field, tools, and various structures are processed according to the use field through various alloy technologies and heat treatment technologies.
강재의 강도를 향상시키기 위한 대표적인 방법은 강재에 포함되는 탄소의 함량을 높인 고탄소강을 사용하는 것이다. 그리고, 이 외에도 인장강도 400MPa 이상의 고강도강으로는 DP(Dual Phase)강, CP(Complex Phase)강, TRIP(TRansformation Induced Plasticity)강, TWIP(TWinning Induced Plasticity)강 등이 있다.A representative method for improving the strength of the steel is to use a high carbon steel with a high content of carbon contained in the steel. In addition, high strength steel having a tensile strength of 400 MPa or more includes DP (Dual Phase) steel, CP (Complex Phase) steel, TRIP (TRansformation Induced Plasticity) steel, and TWIP (TWinning Induced Plasticity) steel.
그런데, 이러한 고탄소강 및 고강도강을 이용하여 원하는 부품의 형상으로 가공하기 위해서는 해당 강재의 강도에 맞는 특수 가공방법을 선택해야 한다. 뿐만 아니라, 강재의 강도에 맞도록 이를 가공하는 성형장치의 금형 등도 더 높은 강도로 이루어져 있어야 한다. 따라서, 이러한 고탄소강 및 고강도강은 이를 사용하는 부품이나 구조물의 생산성을 저하시키고 원가를 상승시키는 문제가 있다.By the way, in order to process the shape of the desired parts using the high-carbon steel and high-strength steel, it is necessary to select a special processing method suitable for the strength of the steel. In addition, the mold of the molding apparatus for processing it to match the strength of the steel should also be made of a higher strength. Therefore, such high carbon steels and high strength steels have a problem of lowering the productivity and cost of parts or structures using the same.
종래에 강재에 대하여 경도를 향상시키고, 내식성 및 내마모성을 향상시키기 위한 또 다른 방법으로서, 강재 내부로 질소를 확산시키고, 동시에 강재 표면에 철-질소 화합물을 형성하는 방법이 사용되어 왔다. Conventionally, as another method for improving hardness and improving corrosion resistance and abrasion resistance to steel, a method of diffusing nitrogen into steel and simultaneously forming iron-nitrogen compounds on the surface of steel has been used.
그런데, 이러한 방법은 질소가 강재의 표면에서 철과 화합물을 형성하기 위해 소모되어 강재의 내부로 확산되는 양이 적어지며, 이에 따라 표면의 경도, 강도 및 내식성 등은 향상되지만 강재의 전체적인 강도는 충분히 향상되지 못하는 한계가 있다. 그래서 이렇게 형성된 강재는 공구나 엔진 부품 등에 사용되며, 자동차의 외장 부품 등에 사용하기에는 한계가 있다.However, this method reduces the amount of nitrogen consumed to form a compound with iron on the surface of the steel and diffuses into the steel, thereby improving the hardness, strength and corrosion resistance of the surface, but the overall strength of the steel is sufficient. There is a limit that cannot be improved. Thus, the steel thus formed is used for tools, engine parts, and the like, and has limitations for use in exterior parts of automobiles.
본 발명은 상기의 문제점을 해결하기 위한 것으로, 강도를 향상시킬 수 있는 강재를 제공하는 데 그 목적이 있다.The present invention is to solve the above problems, and an object thereof is to provide a steel that can improve the strength.
상기한 목적을 달성하기 위하여, 본 발명은, 극저탄소강으로 이루어진 제1층; 및 상기 제1층에 접하여 위치하고, 상기 제1층에 반대되는 측에 제1표면을 가지며, 상기 극저탄소강에 질소가 고용된 고용체로 이루어진 것으로, 상기 제1층의 조직과 실질적으로 동일한 조직을 갖는 제2층;을 포함하는 강재를 제공한다.In order to achieve the above object, the present invention, the first layer made of ultra-low carbon steel; And a solid solution disposed in contact with the first layer and having a first surface on the side opposite to the first layer, in which nitrogen is dissolved in the ultra-low carbon steel, the structure being substantially the same as that of the first layer. It provides a steel comprising a; second layer having.
본 발명의 다른 특징에 의하면, 상기 제2층의 적어도 상기 제1표면에 인접한 영역에는 철과 질소의 화합물을 포함하지 않는다.According to another feature of the invention, at least a region adjacent to the first surface of the second layer does not contain a compound of iron and nitrogen.
본 발명의 또 다른 특징에 의하면, 상기 제2층 상에 형성되고 상기 제1표면에 접하는 제2표면을 가지며 상기 제1표면의 부식을 방지하도록 구비된 제3층을 더 포함한다.According to still another feature of the present invention, the method further includes a third layer formed on the second layer and having a second surface in contact with the first surface and provided to prevent corrosion of the first surface.
본 발명의 또 다른 특징에 의하면, 상기 제2층 상에 형성되고 상기 제1표면에 접하는 제3표면을 가지며 철과 질소의 화합물로 구비된 제4층을 더 포함한다.According to still another feature of the present invention, the method further includes a fourth layer formed on the second layer and having a third surface in contact with the first surface and provided with a compound of iron and nitrogen.
본 발명의 또 다른 특징에 의하면, 상기 제2층의 적어도 상기 제1표면에 인접한 영역에는 철과 질소의 화합물이 포함된다.According to another feature of the invention, at least a region adjacent to the first surface of the second layer comprises a compound of iron and nitrogen.
본 발명의 또 다른 특징에 의하면, 상기 극저탄소강은 탄소 함량이 0.01 중량% 이하(0중량%를 포함하지 않음)인 강이다.According to another feature of the invention, the ultra low carbon steel is a steel having a carbon content of 0.01% by weight or less (not including 0% by weight).
본 발명은 또한 전술한 목적을 달성하기 위하여, 탄소 함량이 0.01 중량% 이하(0중량%를 포함하지 않음)인 강으로 구비되고 표면을 갖는 모재; 및 상기 표면으로부터 상기 모재의 내측에 구비된 것으로, 상기 모재의 침입형 자리에 질소가 고용되고, 상기 모재의 조직과 실질적으로 동일한 조직을 갖는 고용체층;을 포함하는 강재를 제공한다.The present invention also provides a base material having a surface and provided with a steel having a carbon content of 0.01% by weight or less (not including 0% by weight) to achieve the above object; And a solid solution layer provided on the inside of the base material from the surface and having a solid solution of nitrogen in an invasive position of the base material and having a structure substantially the same as that of the base material.
본 발명의 다른 특징에 의하면, 상기 고용체층의 적어도 상기 표면에 인접한 영역에는 철과 질소의 화합물을 포함하지 않는다.According to another feature of the invention, at least the region adjacent to the surface of the solid solution layer does not contain compounds of iron and nitrogen.
본 발명의 또 다른 특징에 의하면, 상기 고용체층 상에 상기 표면과 접하여 형성되고 상기 고용체층의 부식을 방지하는 제1피막을 더 포함한다.According to another feature of the present invention, the solid solution layer further comprises a first film formed in contact with the surface to prevent corrosion of the solid solution layer.
본 발명의 또 다른 특징에 의하면, 상기 고용체층 상에 상기 표면에 접하여 형성되고 철과 질소의 화합물로 구비된 제2피막층을 더 포함한다.According to still another feature of the present invention, it further comprises a second coating layer formed on the solid solution layer in contact with the surface and provided with a compound of iron and nitrogen.
본 발명의 또 다른 특징에 의하면, 상기 고용체층의 적어도 상기 표면에 인접한 영역에는 철과 질소의 화합물이 형성된다.According to another feature of the invention, a compound of iron and nitrogen is formed in at least a region adjacent to the surface of the solid solution layer.
전술한 목적을 달성하기 위하여, 본 발명은 또한, 극저탄소강으로 구비되고 표면을 갖는 모재를 성형하는 단계; 상기 표면으로부터 상기 모재의 내측에, 상기 모재의 침입형 자리에 질소가 고용되고 상기 모재의 조직과 실질적으로 동일한 조직을 갖는 고용체층을 형성하는 단계; 상기 표면을 덮고, 철산화물로 구비된 산화피막을 형성하는 단계; 및 상기 산화피막을 제거하는 단계;를 포함하는 강재의 제조방법을 제공한다.In order to achieve the above object, the present invention also provides a step of forming a base material having a surface and provided with ultra-low carbon steel; Forming a solid solution layer on the inside of the base material from the surface, in which nitrogen is dissolved in the invasive site of the base material and having a structure substantially the same as that of the base material; Covering the surface and forming an oxide film formed of iron oxide; And removing the oxide film.
본 발명의 다른 특징에 의하면, 상기 고용체층과 산화피막의 형성은 동시에 진행된다.According to another feature of the invention, the formation of the solid solution layer and the oxide film proceeds simultaneously.
본 발명의 또 다른 특징에 의하면, 상기 고용체층 및 산화피막을 형성하는 단계는, KNO3, KNO2, Ca(NO3)2, NaNO3 및 NaNO2 로 이루어진 군에서 선택된 적어도 하나의 염을 포함하는 용융염을 준비하는 단계; 상기 용융염을 가열하는 단계; 상기 용융염에 상기 모재를 침지하는 단계; 및 상기 모재를 상기 용융염으로부터 취출하여 급냉하는 단계;를 포함한다.According to another feature of the invention, the step of forming the solid solution layer and the oxide film, at least one salt selected from the group consisting of KNO 3 , KNO 2 , Ca (NO 3 ) 2 , NaNO 3 and NaNO 2 . Preparing a molten salt; Heating the molten salt; Immersing the base material in the molten salt; And quenching the base material from the molten salt.
본 발명의 또 다른 특징에 의하면, 상기 산화피막을 제거한 후에, 상기 고용체층 상에 상기 표면과 접하여 형성되고 상기 고용체층의 부식을 방지하는 제1피막을 형성하는 단계를 더 포함한다.According to another feature of the invention, after removing the oxide film, further comprising the step of forming a first film formed on the solid solution layer in contact with the surface and prevents corrosion of the solid solution layer.
본 발명의 또 다른 특징에 의하면, 상기 산화피막을 제거한 후에, 상기 고용체층 상에 상기 표면에 접하여 형성되고 철과 질소의 화합물로 구비된 제2피막층을 형성하는 단계를 더 포함한다.According to another feature of the invention, after removing the oxide film, further comprising the step of forming a second coating layer formed on the solid solution layer in contact with the surface and provided with a compound of iron and nitrogen.
본 발명의 또 다른 특징에 의하면, 상기 모재는 탄소 함량이 0.01 중량% 이하(0중량%를 포함하지 않음)인 강이다.According to another feature of the invention, the base material is steel having a carbon content of 0.01% by weight or less (not including 0% by weight).
상기와 같은 본 발명에 따르면, 강재 내부로 충분한 깊이의 질소 고용층을 형성함으로써 강도를 더욱 향상시킬 수 있다. 이에 따라 경량 고강도 자동차 부품 및 각종 구조재 등 여러 분야에 적용 가능한 효과가 있다.According to the present invention as described above, the strength can be further improved by forming a nitrogen solid solution layer having a sufficient depth inside the steel. Accordingly, there is an effect that can be applied to various fields, such as lightweight high-strength automobile parts and various structural materials.
또, 질소가 확산된 제2층의 조직이 제1층의 조직과 동일하기 때문에 균일한 조직으로 인해 동일한 물리적 성질을 얻을 수 있고, 이에 따라 크랙이나 파단을 방지할 수 있다.In addition, since the structure of the second layer in which nitrogen is diffused is the same as that of the first layer, the same physical properties can be obtained due to the uniform structure, whereby cracks and fractures can be prevented.
그리고 표면에 철-질소 화합물을 형성하지 않으므로 더욱 많은 양의 질소가 강 중으로 확산될 수 있고 이에 따라 강중에 질소가 고용된 층의 두께를 더욱 두껍게 형성할 수 있다.In addition, since the iron-nitrogen compound is not formed on the surface, a larger amount of nitrogen can diffuse into the steel, thereby forming a thicker layer of nitrogen-solubilized layer in the steel.
표면에 제3층 또는 제4층을 형성함으로써 제2층의 표면이 부식되는 것을 방지할 수 있고, 제4층을 형성할 경우 내마모성을 증대시킬 수 있다.By forming the third layer or the fourth layer on the surface, the surface of the second layer can be prevented from being corroded, and when the fourth layer is formed, wear resistance can be increased.
비시안계 염을 이용해 질소를 강중에 고용시킴으로써 환경 오염문제를 해결하고 처리 비용을 줄일 수 있는 효과가 있다.By employing noncyanide salts in the river, nitrogen can be used to solve environmental problems and reduce treatment costs.
또한, 극저탄소강을 이용하여 먼저 성형한 후에 강도를 높이기 때문에 부품의 성형성, 생산성 등을 향상시킬 수 있다.In addition, since the strength is increased after the first molding using the ultra low carbon steel, the formability, productivity, and the like of the part can be improved.
탄소의 함량이 0.01중량% 이하로 포함되어 형성되는 제2층의 두께를 더욱 두껍게 할 수 있다.The content of carbon may be included in an amount of 0.01% by weight or less to further increase the thickness of the second layer formed.
도 1은 본 발명의 바람직한 일 실시예에 따른 강재의 단면도, 1 is a cross-sectional view of a steel according to an embodiment of the present invention,
도 2는 모재의 탄소 함량에 따른 강재의 인장강도 증가율을 나타낸 그래프,2 is a graph showing the tensile strength increase rate of the steel according to the carbon content of the base material,
도 3은 도 1의 제1층의 단면 사진,3 is a cross-sectional photograph of the first layer of FIG.
도 4는 도 1의 제2층의 단면 사진,4 is a cross-sectional photograph of the second layer of FIG.
도 5는 본 발명의 바람직한 일 실시예에 따라 용융염에 침지된 모재를 서랭시켰을 때의 제2층의 단면을 나타내는 사진,5 is a photograph showing a cross section of a second layer when the base material immersed in molten salt is annealed according to a preferred embodiment of the present invention;
도 6은 본 발명의 바람직한 일 실시예에 따라 용융염에 침지된 모재를 급랭한 경우와 서랭한 경우의 인장강도 차이를 나타내는 그래프,6 is a graph showing the difference in tensile strength between the case of quenching and quenching the base material immersed in the molten salt according to an embodiment of the present invention,
도 7은 본 발명의 제조방법에 따라 제조된 강재의 단면도,7 is a cross-sectional view of the steel produced according to the production method of the present invention,
도 8은 본 발명의 바람직한 다른 일 실시예에 따른 강재의 단면도, 8 is a cross-sectional view of a steel according to another preferred embodiment of the present invention,
도 9는 본 발명의 바람직한 또 다른 일 실시예에 따른 강재의 단면도.9 is a cross-sectional view of a steel according to another preferred embodiment of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
이하 첨부된 도면을 참조로 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 바람직한 일 실시예에 따른 강재의 단면을 도시한 단면도이다.1 is a cross-sectional view showing a cross section of a steel according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 바람직한 일 실시예에 따른 강재는 제1층(1), 상기 제1층(1)에 인접하여 위치하는 제2층(2)을 포함한다.Referring to FIG. 1, a steel according to a preferred embodiment of the present invention includes a first layer 1 and a second layer 2 positioned adjacent to the first layer 1.
상기 제1층(1)은 강으로 이루어진 모재가 그대로 유지되어 있는 부분이다. 이 제1층(1)은 철-질소 화합물을 포함하지 않는 것이 바람직하다. 제1층(1)에는 특수 용도를 위해 합금원소로서 질소가 극미량 첨가된 것일 수 있다.The first layer 1 is a portion in which a base metal made of steel is kept as it is. It is preferable that this 1st layer 1 does not contain an iron-nitrogen compound. The first layer 1 may be one in which a very small amount of nitrogen is added as an alloying element for a special use.
상기와 같은 제1층(1)은 탄소 함량이 0.01중량%이하(0을 포함하지 않음)로 이루어진 극저탄소강을 사용하는 것이 바람직하다. 이는 제1층(1)이 후술하는 제2층(2)의 형성을 위한 모재가 되는 것이기 때문에 후술하는 바와 같이 제2층(2)이 보다 용이하게 두껍게 형성되도록 하기 위한 것이다. As the first layer 1 as described above, it is preferable to use ultra low carbon steel having a carbon content of 0.01% by weight or less (not including 0). This is because the first layer 1 serves as a base material for the formation of the second layer 2, which will be described later, so that the second layer 2 can be formed more easily as described later.
상기 제2층(2)은 모재인 강재의 주원소인 철의 침입형 자리(Interstitial site)에 질소가 고용된 고용체층(solid solution layer)으로 구비된 부분이다. 이러한 제2층(2)은 제1층(1)에 대해 반대측에 제1표면(21)을 구비하며, 제2층(2)의 내부 및 제1표면(21)에는 Fe2N, Fe3N, Fe4N과 같은 철-질소 화합물이 존재하지 않는다. The second layer 2 is a portion provided with a solid solution layer in which nitrogen is dissolved in an interstitial site of iron, which is a main element of the base steel. The second layer 2 has a first surface 21 on the opposite side to the first layer 1, and Fe 2 N, Fe 3 on the inside and the first surface 21 of the second layer 2. There is no iron-nitrogen compound such as N, Fe 4 N.
이 제2층(2)이 철-질소 화합물을 포함하지 않으므로 질소는 제1표면(21)으로부터 충분한 깊이까지 확산될 수 있고, 이에 따라 제2층(2)의 두께(t1)가 충분히 두껍게 형성되어 인장강도가 크게 향상될 수 있다.Since the second layer 2 does not contain an iron-nitrogen compound, nitrogen can diffuse from the first surface 21 to a sufficient depth, so that the thickness t1 of the second layer 2 is sufficiently thick. The tensile strength can be greatly improved.
상기 제2층(2)의 두께(t1)는 원하는 인장강도에 따라 적정하게 조절될 수 있다. 즉, 비교적 높은 인장강도를 요하는 경우에는 제2층(2)의 두께(t1)가 두껍게 되도록 하고, 비교적 낮은 인장강도를 요하는 경우에는 제2층(2)의 두께(t1)를 얇게 형성하면 된다.The thickness t1 of the second layer 2 may be appropriately adjusted according to the desired tensile strength. In other words, when a relatively high tensile strength is required, the thickness t1 of the second layer 2 is thick, and when a relatively low tensile strength is required, the thickness t1 of the second layer 2 is thinly formed. You can do
상기와 같은 제2층(2)은 상기 모재의 표면으로부터 질소가 확산되어 철의 침입형 자리에 고용되어 있는 고용체층이다. The second layer 2 as described above is a solid solution layer in which nitrogen diffuses from the surface of the base material and is dissolved in an iron intrusion site.
상기 제2층(2)도 상기 제1층(1)과 마찬가지로 탄소의 함량이 0.01중량%이하(0을 포함하지 않음)로 이루어진 극저탄소강을 사용하는 것이 바람직하다. 이는 전술한 바와 같이 상기 제2층(2)이 모재의 표면으로부터 질소가 확산되어 형성된 고용체층이기 때문으로, 탄소의 함량이 0.01중량%를 초과하게 되면 제2층(2)의 두께(t1)를 충분히 두껍게 얻을 수 없고, 이에 따라 강재의 인장강도도 향상시키기 어렵기 때문이다. Like the first layer 1, the second layer 2 is also preferably made of ultra low carbon steel having a carbon content of 0.01% by weight or less (not including 0). This is because the second layer 2 is a solid solution layer formed by diffusion of nitrogen from the surface of the base material as described above. When the carbon content exceeds 0.01% by weight, the thickness t1 of the second layer 2 is increased. It is because it is not possible to obtain a sufficiently thick, and thus it is difficult to improve the tensile strength of the steel.
도 2는 모재의 탄소 함량에 따른 강재의 인장강도 증가율을 나타낸 것이다. 이 때, 인장강도 증가율이란 제2층(2)을 형성하기 전과 제2층(2)을 형성한 후의 인장강도의 증가율을 나타낸다. 도 2에서는 각각 탄소 함량이 0.002중량%, 0.008중량%, 0.01중량%, 0.015중량%, 0.05중량%, 0.1중량%인 강재들을 후술하는 바와 같이 650℃의 NaNO3 용융염에 12시간동안 침지시킨 후 냉각수로 급랭시킨 다음 표면의 산화피막을 제거한 후, 인장시험을 한 것이다.Figure 2 shows the tensile strength increase rate of the steel according to the carbon content of the base material. At this time, the tensile strength increase rate represents the increase rate of the tensile strength before forming the second layer (2) and after forming the second layer (2). In FIG. 2, steels having a carbon content of 0.002 wt%, 0.008 wt%, 0.01 wt%, 0.015 wt%, 0.05 wt%, and 0.1 wt%, respectively, were immersed in NaNO 3 molten salt at 650 ° C. for 12 hours as described below. After quenching with cooling water, the oxide film on the surface was removed, and then subjected to tensile test.
도 2에서 볼 수 있듯이, 탄소의 함량이 0.01중량%이하에서는 강재의 인장강도 증가율이 100% 이상, 즉, 모재의 인장강도 대비 2배 이상의 인장강도를 나타내고 있으나, 탄소의 함량이 0.01중량%를 초과한 경우에는 인장강도 증가가 나타나긴 하나 100% 미만이어서 인장강도의 증가를 위해 제2층(2)을 형성할 실익이 떨어지게 된다.As can be seen in Figure 2, when the carbon content is less than 0.01% by weight, the tensile strength increase rate of the steel is more than 100%, that is, the tensile strength of more than twice the tensile strength of the base material, but the carbon content is 0.01% by weight If exceeded, the increase in tensile strength is shown, but less than 100%, and the profit for forming the second layer 2 for the increase in the tensile strength falls.
이러한 현상이 나타나는 이유는 탄소가 철 내부에 고용되는 위치가 질소가 철 내부에 고용되는 위치와 비슷하고, 탄소와 질소의 원자크기도 비슷하기 때문에 철 내부에 탄소가 이미 어느 정도 고용되어 있는 경우에는 그 탄소의 양 만큼 질소가 고용되기 어려워지기 때문인 것으로 보여진다. 그러나, 반드시 이러한 이유에 기인하는 것으로 한정되지는 않으며, 그 외의 복합적인, 그리고 밝혀지지 않은 다른 이유에 의해서도 위와 같은 제2층(2)의 두께(t1) 저하 및 강재의 인장강도 향상율의 저하가 나타날 수 있을 것이다.This phenomenon occurs because the position where carbon is employed in iron is similar to the position where nitrogen is employed in iron, and the atomic size of carbon and nitrogen is similar, This is because nitrogen is less likely to be dissolved by the amount of carbon. However, the present invention is not necessarily limited to those reasons, and the thickness t1 of the second layer 2 is lowered and the tensile strength improvement rate of the steel is also reduced for other complex and unknown reasons. May appear.
이러한 본 발명에 있어, 상기 제1층(1)과 제2층(2)은 실질적으로 동일한 조직을 갖도록 구비되는 것이 바람직하다. 본 명세서에서 제1층(1)과 제2층(2)의 조직이 실질적으로 동일하다는 것은 제1층(1)의 조직과 제2층(2)의 조직이 비연속성이 없이 동일한 모폴로지(morphology)를 갖는다는 것을 의미한다.In this invention, it is preferable that the said 1st layer 1 and the 2nd layer 2 are provided so that it may have substantially the same structure. In this specification, the fact that the tissues of the first layer 1 and the second layer 2 are substantially the same means that the tissue of the first layer 1 and the tissue of the second layer 2 have the same morphology without discontinuity. Means
도 3 및 도 4는 제1층(1)과 제2층(2)의 광학 현미경 사진으로, 도 3 및 도 4에서 볼 수 있듯이, 서로 동일한 조직을 가짐을 알 수 있다. 이에 따라 강재는 제1층(1)과 제2층(2)에 걸쳐 균질한 조직을 갖게 되고, 이로 인해 동일한 물리적 성질을 가질 수 있고, 크랙이나 파단을 방지할 수 있다.3 and 4 are optical micrographs of the first layer 1 and the second layer 2, and as shown in FIGS. 3 and 4, it can be seen that they have the same structure. As a result, the steel material has a homogeneous structure over the first layer 1 and the second layer 2, and thus, may have the same physical properties and prevent cracking or fracture.
다음으로 상기 제2층(2)의 형성 방법의 일 예를 설명한다.Next, an example of the formation method of the said 2nd layer 2 is demonstrated.
먼저, 용융염을 준비한다. 상기 용융염은 종래의 시아나이드(Cyanide,CN) 즉, 시안계가 함유된 KCN, NaCN 등의 용융염이 아닌, 비시안계 용융염, 더욱 상세하게는 NaNO3, NaNO2, KNO3, KNO2, 및 Ca(NO3)2 로 이루어진 군으로부터 선택된 적어도 하나의 염을 포함한다.First, molten salt is prepared. The molten salt is a non-cyanide molten salt, more specifically NaNO 3 , NaNO 2 , KNO 3 , KNO 2 , which is not a conventional cyanide (CN), that is, molten salt such as KCN, NaCN containing cyan-based, And at least one salt selected from the group consisting of Ca (NO 3 ) 2 .
이러한 염욕을 400℃ 내지 800℃범위 내의 일정한 온도로 유지시킨다. This salt bath is maintained at a constant temperature in the range of 400 ° C to 800 ° C.
그러면 상기 염욕 내에서 상기 염들은 하기와 같은 질소생성반응을 하게 된다.Then, the salts in the salt bath is subjected to the nitrogen production reaction as follows.
아래의 화학식1은 NaNO3, NaNO2의 용융 염욕의 질소 생성반응을 나타낸 것이다. Formula 1 below shows the nitrogen formation reaction of the molten salt bath of NaNO 3 , NaNO 2 .
화학식 1
Figure PCTKR2009006401-appb-C000001
Formula 1
Figure PCTKR2009006401-appb-C000001
Figure PCTKR2009006401-appb-I000001
Figure PCTKR2009006401-appb-I000001
Figure PCTKR2009006401-appb-I000002
Figure PCTKR2009006401-appb-I000002
아래의 화학식2는 KNO3, KNO2의 용융염욕의 질소 생성반응을 나타낸 것이다. Formula 2 below shows the nitrogen formation reaction of the molten salt bath of KNO 3 , KNO 2 .
화학식 2
Figure PCTKR2009006401-appb-C000002
Formula 2
Figure PCTKR2009006401-appb-C000002
Figure PCTKR2009006401-appb-I000003
Figure PCTKR2009006401-appb-I000003
Figure PCTKR2009006401-appb-I000004
Figure PCTKR2009006401-appb-I000004
아래의 화학식3은 Ca(NO3)2의 용융염욕의 질소 생성반응을 나타낸 것이다. Formula 3 below shows the nitrogen formation reaction of a molten salt bath of Ca (NO 3 ) 2 .
화학식 3
Figure PCTKR2009006401-appb-C000003
Formula 3
Figure PCTKR2009006401-appb-C000003
Figure PCTKR2009006401-appb-I000005
Figure PCTKR2009006401-appb-I000005
이처럼, 상기 용융염욕 내에서 NO와 NO2가 발생하게 되며, 이 NO와 NO2가 후술하는 바와 같이 철과의 반응에 따라 활성화 질소 N을 생성시켜 모재로 질소 확산을 일으키게 된다. As described above, NO and NO 2 are generated in the molten salt bath. As described below, NO and NO 2 generate activated nitrogen N in accordance with the reaction with iron to cause nitrogen diffusion into the base metal.
이후, 상기 염욕 내에 전술한 바와 같이 탄소 함량이 0.01중량% 이하인 강으로 이루어진 모재를 일정 시간 예를 들어, 1분 내지 24시간 동안 침지시킨다.Thereafter, the base metal made of steel having a carbon content of 0.01% by weight or less as described above is immersed in the salt bath for a predetermined time, for example, 1 minute to 24 hours.
이 때, 상기 모재는 사용자가 원하는 형상으로 성형되어 있는 것이 바람직하다. 즉, 상기 모재는 탄소 함량이 0.01중량% 이하인 극저탄소강이기 때문에 인장강도가 작고 연성이 높아 가공성이 매우 우수하다. 이러한 극저탄소강을 이용해 원하는 형상으로 성형하는 것은 매우 용이하게 된다. 또한, 성형장치의 금형의 수명도 길어질 수 있다.At this time, the base material is preferably molded into a shape desired by the user. That is, since the base material is an ultra low carbon steel having a carbon content of 0.01% by weight or less, the tensile strength is small, the ductility is high, and the workability is very excellent. It is very easy to mold to the desired shape using such ultra-low carbon steel. In addition, the life of the mold of the molding apparatus can be long.
이렇게 간단하게 성형된 모재를 염욕 내에 침지하면, 염욕 내에 발생된 NO와 NO2가 모재의 표면에서 Fe와 아래 화학식 4 내지 9와 같이 반응하게 된다.When the simply formed base material is immersed in the salt bath, NO and NO 2 generated in the salt bath react with Fe on the surface of the base material as shown in Chemical Formulas 4 to 9 below.
화학식 4
Figure PCTKR2009006401-appb-C000004
Formula 4
Figure PCTKR2009006401-appb-C000004
화학식 5
Figure PCTKR2009006401-appb-C000005
Formula 5
Figure PCTKR2009006401-appb-C000005
화학식 6
Figure PCTKR2009006401-appb-C000006
Formula 6
Figure PCTKR2009006401-appb-C000006
화학식 7
Figure PCTKR2009006401-appb-C000007
Formula 7
Figure PCTKR2009006401-appb-C000007
화학식 8
Figure PCTKR2009006401-appb-C000008
Formula 8
Figure PCTKR2009006401-appb-C000008
화학식 9
Figure PCTKR2009006401-appb-C000009
Formula 9
Figure PCTKR2009006401-appb-C000009
아래 수학식 1 내지 6은 각각 위 화학식 4 내지 9의 깁스 프리 에너지(Gibbs free energy)를 계산한 것이다. 하기 깁스 프리 에너지의 계산은 R.C. Weast (Ed.), Handbook Chemistry and Physics, 49th ed., The Chemical Rubber co., 1968, P.D-22에 따른 것이다. Equations 1 to 6 below calculate the Gibbs free energy of Formulas 4 to 9, respectively. Calculation of the Gibbs free energy is shown in R.C. Weast (Ed.), Handbook Chemistry and Physics, 49th ed., The Chemical Rubber co., 1968, P.D-22.
수학식 1
Figure PCTKR2009006401-appb-M000001
Equation 1
Figure PCTKR2009006401-appb-M000001
수학식 2
Figure PCTKR2009006401-appb-M000002
Equation 2
Figure PCTKR2009006401-appb-M000002
수학식 3
Figure PCTKR2009006401-appb-M000003
Equation 3
Figure PCTKR2009006401-appb-M000003
수학식 4
Figure PCTKR2009006401-appb-M000004
Equation 4
Figure PCTKR2009006401-appb-M000004
수학식 5
Figure PCTKR2009006401-appb-M000005
Equation 5
Figure PCTKR2009006401-appb-M000005
수학식 6 Equation 6
위의 수학식 1 내지 6을 참조하면, 온도가 400℃ 내지 800℃범위 (절대온도 673.25K 내지 1073.25K) 내에서 모든 깁스 프리 에너지 값(ΔG°)이 음의 값을 갖는다. 따라서 각 수학식들에 대응되는 화학식 4 내지 9는 위 온도 범위 내에서 자발적인 반응이라는 것을 알 수 있다.Referring to Equations 1 to 6 above, all Gibbs-free energy values (ΔG °) have a negative value within a temperature range of 400 ° C to 800 ° C (absolute temperature 673.25K to 1073.25K). Therefore, it can be seen that Formulas 4 to 9 corresponding to the equations are spontaneous reactions within the above temperature range.
그러므로 결국, Fe와 반응한 NO, NO2 는 위 화학식 4 내지 9에 따라 모재 표면에서 Fe-O의 화합물, 즉, 철산화물을 형성하며 발생기 N을 생성하여 철 내부의 침입형 자리(Interstitial site)로 상기 N을 확산시켜 고용강화시키게 된다.Therefore, in the end, NO and NO 2 reacted with Fe form a compound of Fe-O, that is, iron oxide, on the surface of the base material according to the above formulas 4 to 9, and generate the generator N to interstitial site inside the iron (Interstitial site) The N is diffused to strengthen the solid solution.
한편, 상기 용융 염욕 내에는 질소(N2)와, 산소(O2)가 더 존재하게 되어 이 질소 및 산소는 각각 철과 하기 화학식 10 내지 13과 같이 반응하게 된다.Meanwhile, nitrogen (N 2 ) and oxygen (O 2 ) are further present in the molten salt bath, and the nitrogen and oxygen react with iron as shown in Chemical Formulas 10 to 13, respectively.
화학식 10
Figure PCTKR2009006401-appb-C000010
Formula 10
Figure PCTKR2009006401-appb-C000010
화학식 11
Figure PCTKR2009006401-appb-C000011
Formula 11
Figure PCTKR2009006401-appb-C000011
화학식 12
Figure PCTKR2009006401-appb-C000012
Formula 12
Figure PCTKR2009006401-appb-C000012
화학식 13
Figure PCTKR2009006401-appb-C000013
Formula 13
Figure PCTKR2009006401-appb-C000013
위 화학식 10 내지 13의 깁스 프리 에너지(ΔG°)는 ΔH˚-TΔS˚로 구해질 수 있는 데, 각각 하기 수학식 7 내지 10으로 구해질 수 있다. 하기 깁스 프리 에너지의 계산은 Thermodynamics of Materials(재료열역학), David V. Ragone에 따른 것이다.The Gibbs free energy (ΔG °) of the above formulas 10 to 13 may be obtained by ΔH ° -TΔS °, which may be obtained by Equations 7 to 10, respectively. The calculation of the Gibbs-free energy below is from the Thermodynamics of Materials, David V. Ragone.
수학식 7
Figure PCTKR2009006401-appb-M000007
Equation 7
Figure PCTKR2009006401-appb-M000007
수학식 8
Figure PCTKR2009006401-appb-M000008
Equation 8
Figure PCTKR2009006401-appb-M000008
수학식 9
Figure PCTKR2009006401-appb-M000009
Equation 9
Figure PCTKR2009006401-appb-M000009
수학식 10
Figure PCTKR2009006401-appb-M000010
Equation 10
Figure PCTKR2009006401-appb-M000010
위 수학식 7 내지 10은 본 발명의 온도 범위 내에서 ΔG7°은 모두 20,000 이상의 양의 값을 가지나, ΔG8°내지 ΔG10°은 모두 -200,000 이하의 음의 값을 갖는다. 따라서, 위 화학식 10 내지 13 중 화학식 10은 비자발적 반응이 되고, 화학식 11 내지 13은 자발적 반응이 된다. 이에 따라 화학식 10에 따라 생성될 철-질소 화합물은 전술한 바와 같이 외부에서 특수한 처리를 해 주지 않는 한 본 발명에 따른 질소 고용체층인 제2층에는 발생되지 않게 된다.Equations 7 to 10 are all within a temperature range of the present invention ΔG 7 ° has a positive value of 20,000 or more, ΔG 8 ° to ΔG 10 ° all have a negative value of -200,000 or less. Therefore, Formula 10 in Formulas 10 to 13 is an involuntary reaction, and Formulas 11 to 13 are spontaneous. Accordingly, the iron-nitrogen compound to be produced according to Formula 10 is not generated in the second layer, which is the solid solution layer of nitrogen, according to the present invention, unless specially treated as described above.
상기와 같이 모재를 400℃ 내지 800℃범위의 염욕 내에서 처리한 후에는 물이나 오일 등으로 급속히 냉각시킨다.After treating the base material in a salt bath in the range of 400 ℃ to 800 ℃ as described above is rapidly cooled with water or oil.
이렇게 용융 염욕 내에서 처리되던 모재를 급냉시키게 되면 전술한 바와 같이 질소 고용체층인 제2층(2)의 조직을 도 4와 같이 얻을 수 있어 모재의 조직(도 3 참조)과 동일하게 되도록 할 수 있다. 도 5는 용융 염욕 내에서 처리되던 모재를 상온 중에 방치시켜 서서히 냉각시킨 경우의 제2층(2)의 조직을 나타내는 광학 현미경 사진이다. 도 5에서 볼 수 있듯이, 용융 염욕 내에서 처리되던 모재를 서서히 냉각시킬 경우 고용체층인 제2층의 조직은 제2층(1)과는 다르게 침상 조직이 나타난다. 따라서, 이 경우에는 전술한 바와 같은 균질한 조직으로 인한 크랙 및 파단 방지 효과를 얻기가 어렵다.When the base material treated in the molten salt bath is quenched, the structure of the second layer 2, which is the nitrogen solid solution layer, can be obtained as shown in FIG. 4, so as to be the same as the structure of the base material (see FIG. 3). have. FIG. 5 is an optical micrograph showing the structure of the second layer 2 when the base material treated in the molten salt bath is left to cool at room temperature and gradually cooled. As can be seen in Figure 5, when slowly cooling the base material treated in the molten salt bath, the tissue of the second layer, which is a solid solution layer, appears needle-like structure unlike the second layer (1). In this case, therefore, it is difficult to obtain crack and fracture prevention effects due to the homogeneous tissue as described above.
또한, 용융 염욕 내에서 처리된 모재의 냉각 조건에 따라 강재의 인장강도도 현저히 차이가 난다. 도 6은 탄소함량이 0.002 중량%인 IF강 2개를 650℃의 용융 NaNO3에 5시간 동안 침지시킨 후 꺼내어 각각 급랭(I) 및 서냉(Ⅱ)시킨 후 스케일을 제거한 후 인장시험한 결과를 나타낸 것이다. 이 때, 급랭(I)의 조건은 일반적인 냉각수로 냉각시킨 것을 말하고, 서랭(Ⅱ)의 조건은 상온에서 방치시켜 둔 것을 말한다. 모재인 IF강이 300MPa급의 인장강도를 갖는 것인 데, 급랭시킨 경우(I)에는 750MPa까지 인장강도가 올라갔으나, 서랭시킨 경우(Ⅱ)에는 540MPa로 급랭시킨 경우(I)에 비해 인장강도가 현격히 떨어짐을 알 수 있다.In addition, the tensile strength of the steel is also significantly different depending on the cooling conditions of the base material treated in the molten salt bath. 6 is a result of tensile test after removing two IF steels with a carbon content of 0.002% by weight in molten NaNO 3 at 650 ° C. for 5 hours and removing the scale after quenching (I) and slow cooling (II), respectively. It is shown. At this time, the condition of quenching (I) means cooling with general cooling water, and the condition of cooling (II) means leaving it to stand at room temperature. IF steel, which is the base material, has a tensile strength of 300 MPa. In the case of quenching (I), the tensile strength increased to 750 MPa, but in the case of quenching (II), the tensile strength of the base steel IF steel was 540 MPa (I). It can be seen that the falls significantly.
이렇게 급랭된 강재는 도 7에서 볼 수 있듯이, 제1층(1)의 상부에 질소가 고용된 층인 제2층(2)이 형성되고, 제2층(2)의 제1표면(21) 상부로 철산화물로 구비된 산화피막(22)이 형성된 구조가 된다. 이러한 산화피막(22)의 형성은 전술한 바와 같이 자발적 반응이고, 철-질소 화합물의 형성은 비자발적 반응이 되므로, 모재에는 철-질소 화합물에 우선하여 질소가 고용된 질소 고용체층, 즉, 제2층(2)이 형성되고, 표면에 산화피막(22)이 형성되는 것이다.As shown in FIG. 7, the quenched steel is formed with a second layer 2, which is a layer in which nitrogen is dissolved, is formed on the first layer 1, and the upper surface of the first surface 21 of the second layer 2 is formed. As a result, an oxide film 22 formed of iron oxide is formed. Since the formation of the oxide film 22 is a spontaneous reaction as described above, and the formation of the iron-nitrogen compound is an involuntary reaction, the base metal has a nitrogen solid solution layer in which nitrogen is dissolved in preference to the iron-nitrogen compound. The layer 2 is formed, and the oxide film 22 is formed on the surface.
한편, 모재의 표면에서 형성된 Fe-O 화합물인 산화피막(22)은 마찬가지로 분해될 수 있으며, 혹여 Fe-N 화합물이 형성될 경우에도 분해될 여지가 있다. 이 때, 분해는 하기 화학식 14 및 15와 같이 일어난다. On the other hand, the oxide film 22, which is a Fe-O compound formed on the surface of the base material, may be similarly decomposed, or may be decomposed even when the Fe-N compound is formed. At this time, decomposition takes place as in the following formulas (14) and (15).
화학식 14
Figure PCTKR2009006401-appb-C000014
Formula 14
Figure PCTKR2009006401-appb-C000014
화학식 15
Figure PCTKR2009006401-appb-C000015
Formula 15
Figure PCTKR2009006401-appb-C000015
그리고, 이 때의 분해에너지는 각각 하기 수학식 11 및 12로 구해질 수 있다. 하기 분해 시의 깁스 프리 에너지의 계산은 Metallurgical Thermo-chemistry 5th ed. -O. Kubaschewski and C.B.Alcock에 따른 것이다.The decomposition energy at this time can be obtained by the following Equations 11 and 12, respectively. The calculation of Gibbs-free energy at the time of decomposition is as follows. Metallurgical Thermo-chemistry 5th ed. -O. According to Kubaschewski and C.B.Alcock.
수학식 11
Figure PCTKR2009006401-appb-M000011
Equation 11
Figure PCTKR2009006401-appb-M000011
수학식 12
Figure PCTKR2009006401-appb-M000012
Equation 12
Figure PCTKR2009006401-appb-M000012
위 수학식 11 및 12는 본 발명의 온도 범위 내에서 ΔG11°은 음의 값을 가지고, ΔG12°는 양의 값을 갖는다. 따라서 위 화학식 14는 자발적 반응이 되고, 화학식 15는 비자발적 반응이 된다. 화학식 15에 따라 Fe-O 화합물은 자발적으로 분해가 되지 않고 Fe-O 화합물, 즉, 산화피막(22)을 형성하고 있으며, 화학식 14에 따라 Fe-N 화합물은 자발적으로 분해가 되므로, 모재에 미량의 Fe-N 화합물이 형성되더라도 자발적으로 분해가 된다. Equations 11 and 12 in the temperature range of the present invention ΔG 11 ° has a negative value, ΔG 12 ° has a positive value. Therefore, Chemical Formula 14 is a spontaneous reaction, and Chemical Formula 15 is an involuntary reaction. According to Formula 15, the Fe-O compound does not spontaneously decompose and forms a Fe-O compound, that is, an oxide film 22. Since the Fe-N compound spontaneously decomposes according to Formula 14, a trace amount of the Fe-O compound spontaneously decomposes. Even if the Fe-N compound is formed, it is spontaneously decomposed.
이처럼 상기 제2층(2)의 적어도 표면 부근 및 산화피막(22)에는 철-질소 화합물은 존재하지 않게 되고, 설혹 존재한다 하더라도 그 양은 극히 미미하게 된다. 상기와 같은 제2층(2)과 산화피막(22)의 형성은 동시에 일어나게 된다.As such, the iron-nitrogen compound does not exist at least in the vicinity of the surface of the second layer 2 and the oxide film 22, and even if present, the amount is extremely small. The formation of the second layer 2 and the oxide film 22 as described above occurs simultaneously.
이처럼 전술한 본 발명의 바람직한 일 실시예에 따른 제2층(2) 형성 공정에 있어 산화피막(22)의 형성은 필수적으로 수반하게 되며, 산화피막(22)의 형성으로 제2층(2)의 형성 정도를 가늠할 수도 있다.As described above, in the process of forming the second layer 2 according to the preferred embodiment of the present invention, the formation of the oxide film 22 is essentially accompanied, and the formation of the oxide film 22 causes the second layer 2 to be formed. The degree of formation can be estimated.
다음으로, 표면 스케일 제거 작업을 통해 상기 산화피막(22)을 제거해 도 1과 같은 강재를 완성한다.Next, the oxide film 22 is removed through a surface descaling operation to complete the steel as shown in FIG. 1.
이처럼 상기와 같은 방법에 따르면, 강의 표면에서 질소가 철과 반응하여 화합물을 형성하지 않게 되므로, 더욱 많은 양의 질소가 철의 침입형 자리로 확산될 수 있게 되고, 이에 따라 질소의 확산 깊이도 깊게 할 수 있어 제2층(2)의 두께(t1)를 표면에 철-질소화합물층을 형성시키는 종래의 방법에 비해 더욱 두껍게 형성할 수 있게 된다. 상기 제2층(2)의 두께(t1)는 용융 염욕의 온도 및 처리 시간과 어느 정도 비례 관계에 있으므로, 제2층(2)을 두껍게 형성하고자 할 경우에는 용융염욕의 온도를 위 허용 온도 범위에서 최대로 높이고, 처리 시간도 길게 하는 것이 바람직하다. As described above, since nitrogen does not react with iron to form a compound on the surface of the steel, a larger amount of nitrogen can diffuse into the iron infiltration site, thereby deepening the diffusion depth of nitrogen. The thickness t1 of the second layer 2 can be made thicker than the conventional method of forming the iron-nitrogen compound layer on the surface. Since the thickness t1 of the second layer 2 is somewhat proportional to the temperature of the molten salt bath and the treatment time, when the thickness of the second layer 2 is to be formed thickly, the allowable temperature range of the temperature of the molten salt bath is increased. It is desirable to increase the maximum to and increase the treatment time.
한편, 상기 모재 표면으로 확산되는 질소는 상기 화학식 4 내지 9에 따라 생성된 발생기 N이며, 이 N이 더욱 많아져야 강 중으로 확산되는 질소의 양도 많아지게 된다. 그런데, 결국 위 화학식 4 내지 9에서 N의 양은 Fe와 반응하는 NO 및 NO2의 양과 관련이 있다.On the other hand, the nitrogen diffused to the surface of the base material is a generator N generated according to the above formulas (4) to (9), the amount of nitrogen to be diffused into the steel increases when the N is more increased. However, in the above Chemical Formulas 4 to 9, the amount of N is related to the amount of NO and NO 2 reacted with Fe.
따라서, 위와 같은 처리 동안에 고온의 에어를 상기 용융염욕에 취입하여 공기 중의 질소와 산소가 NO 및 NO2를 형성해 위 화학식 4 내지 9와 같이 반응에 참여하도록 할 수 있다. 이 외에도 NO 및 NO2를 포함하는 별도의 가스를 용융염욕에 취입할 수도 있다.Therefore, hot air may be blown into the molten salt bath during the above treatment to allow nitrogen and oxygen in the air to form NO and NO 2 to participate in the reaction as in Chemical Formulas 4 to 9 above. In addition, a separate gas containing NO and NO 2 may be blown into the molten salt bath.
이상 제2층(2)의 형성 방법의 일 예를 설명하였으나, 전술한 제2층은 위 방법 외에도 다른 방법에 의해서도 형성될 수 있을 것이다.An example of a method of forming the second layer 2 has been described above, but the above-described second layer may be formed by other methods in addition to the above method.
상기와 같은 제2층(2)의 경우 제1표면(21)이 외부로 노출되기 때문에 강재가 부식에 취약할 수 있다.In the case of the second layer 2 as described above, since the first surface 21 is exposed to the outside, the steel may be vulnerable to corrosion.
따라서, 도 8에서 볼 수 있듯이, 상기 제2층(2) 상에 상기 제1표면(21)에 접하는 제2표면(31)을 가지며 상기 제1표면(21)의 부식을 방지하도록 구비된 제3층(3)을 더 형성할 수 있다.Thus, as can be seen in FIG. 8, a second surface 31 is provided on the second layer 2 in contact with the first surface 21 and is provided to prevent corrosion of the first surface 21. The third layer 3 can be further formed.
상기 제3층(3)은 제2층(2)의 부식을 방지하는 것으로, 인산염 피막이 사용될 수 있는 데, 반드시 이에 한정되는 것은 아니며, 제2층(2)의 제1표면(21)에 대한 접착력이 우수하면서 제2층(2)이 부식되는 것을 방지할 수 있는 어떠한 물질, 예컨대 도금 및 도장 등도 적용 가능하다.The third layer 3 prevents corrosion of the second layer 2, and a phosphate coating may be used, but is not limited thereto. The third layer 3 may be formed on the first surface 21 of the second layer 2. Any material capable of preventing corrosion of the second layer 2 while excellent in adhesive force may be applied, such as plating and painting.
도 9는 본 발명의 또 다른 실시예를 도시한 것이다. 9 illustrates another embodiment of the present invention.
전술한 바와 같이 제2층(2)의 제1표면(21)이 외부로 노출될 경우 부식에 취약하다. 이를 방지하고, 표면의 내마모성을 더욱 높여주기 위해 상기 제2층(2)을 형성한 후 제2층(2)의 제1표면(21)을 덮도록 철-질소 화합물로 이루어진 제4층(4)을 더 형성할 수 있다. 따라서, 상기 제4층(4)은 제2층(2) 상에 제1표면(21)에 접하는 제3표면(41)을 가지며 제1표면(21)의 부식을 방지하도록 구비된 것이다.As described above, when the first surface 21 of the second layer 2 is exposed to the outside, it is vulnerable to corrosion. In order to prevent this, and to further increase the wear resistance of the surface, the fourth layer 4 formed of the iron-nitrogen compound 4 to cover the first surface 21 of the second layer 2 after forming the second layer 2 ) Can be further formed. Thus, the fourth layer 4 has a third surface 41 on the second layer 2 in contact with the first surface 21 and is provided to prevent corrosion of the first surface 21.
이러한 제4층(4)은 제2층(2)의 제1표면(21)에 가스질화의 방법으로 형성할 수 있다. 상기 제4층(4)은 ε상의 Fe2N, Fe3N이나, γ상의 Fe4N이 적어도 하나 이상의 층으로 존재하는 것일 수 있다.The fourth layer 4 may be formed on the first surface 21 of the second layer 2 by gas nitriding. The fourth layer 4 may be one in which at least one layer of Fe 2 N and Fe 3 N in the ε phase or Fe 4 N in the γ phase is present.
그리고, 상기 제4층(4)에 인접한 제2층(2)의 제1표면(21) 부근에는 철-질소 화합물이 형성될 수 있다.An iron-nitrogen compound may be formed near the first surface 21 of the second layer 2 adjacent to the fourth layer 4.
이렇게 질화층인 제4층(4)을 제2층(2)의 제1표면(21) 상에 형성할 경우에는 강재의 표면 경도가 더욱 높아질 수 있고, 내마모성 및 내부식성이 증대될 수 있다.When the fourth layer 4, which is a nitride layer, is formed on the first surface 21 of the second layer 2, the surface hardness of the steel may be further increased, and the wear resistance and the corrosion resistance may be increased.
이처럼 본 발명은 극저탄소강을 이용해 손쉽게 원하는 형상으로 형성한 후, 전술한 바와 같은 처리에 의해 인장강도를 증대시킴으로써, 강재 부품의 양산성을 더욱 극대화할 수 있게 된다.As described above, the present invention can be easily formed into a desired shape using ultra low carbon steel, and then, by increasing the tensile strength by the treatment as described above, it is possible to further maximize the mass production of steel parts.

Claims (17)

  1. 극저탄소강으로 이루어진 제1층; 및A first layer made of ultra low carbon steel; And
    상기 제1층에 접하여 위치하고, 상기 제1층에 반대되는 측에 제1표면을 가지며, 상기 극저탄소강에 질소가 고용된 고용체로 이루어진 것으로, 상기 제1층의 조직과 실질적으로 동일한 조직을 갖는 제2층;을 포함하는 강재.It is located in contact with the first layer, has a first surface on the side opposite to the first layer, made of a solid solution of nitrogen dissolved in the ultra-low carbon steel, having a structure substantially the same as that of the first layer Steel material comprising a second layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 제2층의 적어도 상기 제1표면에 접한 영역에는 철과 질소의 화합물을 포함하지 않는 것을 특징으로 하는 강재.The steel material characterized in that it does not contain the compound of iron and nitrogen in the area | region which contact | connects at least the said 1st surface of the said 2nd layer.
  3. 제2항에 있어서,The method of claim 2,
    상기 제2층 상에 형성되고 상기 제1표면에 접하는 제2표면을 가지며 상기 제1표면의 부식을 방지하도록 구비된 제3층을 더 포함하는 것을 특징으로 하는 강재.And a third layer formed on the second layer and having a second surface in contact with the first surface and provided to prevent corrosion of the first surface.
  4. 제1항에 있어서,The method of claim 1,
    상기 제2층 상에 형성되고 상기 제1표면에 접하는 제3표면을 가지며 철과 질소의 화합물로 구비된 제4층을 더 포함하는 것을 특징으로 하는 강재.And a fourth layer formed on the second layer and having a third surface in contact with the first surface and provided with a compound of iron and nitrogen.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제2층의 적어도 상기 제1표면에 접한 영역에는 철과 질소의 화합물이 포함된 것을 특징으로 하는 강재.At least a region of the second layer in contact with the first surface includes a compound of iron and nitrogen.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    상기 극저탄소강은 탄소 함량이 0.01 중량% 이하(0중량%를 포함하지 않음)인 강인 것을 특징으로 하는 강재.The ultra low carbon steel is a steel, characterized in that the carbon content of 0.01% by weight or less (not including 0% by weight).
  7. 탄소 함량이 0.01 중량% 이하(0중량%를 포함하지 않음)인 강으로 구비되고 표면을 갖는 모재; 및A base material provided with steel having a carbon content of 0.01% by weight or less (not including 0% by weight) and having a surface; And
    상기 표면으로부터 상기 모재의 내측에 구비된 것으로, 상기 모재의 침입형 자리에 질소가 고용되고, 상기 모재의 조직과 실질적으로 동일한 조직을 갖는 고용체층;을 포함하는 강재.And a solid solution layer provided on the inner side of the base material from the surface, in which nitrogen is dissolved in an invasive portion of the base material and has a structure substantially the same as that of the base material.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 고용체층의 적어도 상기 표면에 접한 영역에는 철과 질소의 화합물을 포함하지 않는 것을 특징으로 하는 강재.At least an area of the solid solution layer in contact with the surface does not contain a compound of iron and nitrogen.
  9. 제8항에 있어서,The method of claim 8,
    상기 고용체층 상에 상기 표면과 접하여 형성되고 상기 고용체층의 부식을 방지하는 제1피막을 더 포함하는 것을 특징으로 하는 강재.And a first film formed on the solid solution layer in contact with the surface and preventing corrosion of the solid solution layer.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 고용체층 상에 상기 표면에 접하여 형성되고 철과 질소의 화합물로 구비된 제2피막층을 더 포함하는 것을 특징으로 하는 강재.Steel is characterized in that it further comprises a second coating layer formed on the solid solution layer in contact with the surface and provided with a compound of iron and nitrogen.
  11. 제10항에 있어서,The method of claim 10,
    상기 고용체층의 적어도 상기 표면에 접한 영역에는 철과 질소의 화합물이 형성된 것을 특징으로 하는 강재.Steel is characterized in that a compound of iron and nitrogen is formed in at least the region of the solid solution layer in contact with the surface.
  12. 극저탄소강으로 구비되고 표면을 갖는 모재를 성형하는 단계;Molding a base material provided with ultra low carbon steel and having a surface;
    상기 표면으로부터 상기 모재의 내측에, 상기 모재의 침입형 자리에 질소가 고용되고 상기 모재의 조직과 실질적으로 동일한 조직을 갖는 고용체층을 형성하는 단계;Forming a solid solution layer on the inside of the base material from the surface, in which nitrogen is dissolved in the invasive site of the base material and having a structure substantially the same as that of the base material;
    상기 표면을 덮고, 철산화물로 구비된 산화피막을 형성하는 단계; 및Covering the surface and forming an oxide film formed of iron oxide; And
    상기 산화피막을 제거하는 단계;를 포함하는 강재의 제조방법.Removing the oxide film; manufacturing method of a steel comprising a.
  13. 제12항에 있어서,The method of claim 12,
    상기 고용체층과 산화피막의 형성은 동시에 진행되는 것을 특징으로 하는 강재의 제조방법.Formation of the solid solution layer and the oxide film is characterized in that proceeding at the same time.
  14. 제13항에 있어서,The method of claim 13,
    상기 고용체층 및 산화피막을 형성하는 단계는,Forming the solid solution layer and the oxide film,
    KNO3, KNO2, Ca(NO3)2, NaNO3 및 NaNO2 로 이루어진 군에서 선택된 적어도 하나의 염을 포함하는 용융염을 준비하는 단계;Preparing a molten salt comprising at least one salt selected from the group consisting of KNO 3 , KNO 2 , Ca (NO 3 ) 2 , NaNO 3 and NaNO 2 ;
    상기 용융염을 가열하는 단계;Heating the molten salt;
    상기 용융염에 상기 모재를 침지하는 단계; 및Immersing the base material in the molten salt; And
    상기 모재를 상기 용융염으로부터 취출하여 급냉하는 단계;를 포함하는 것을 특징으로 하는 강재의 제조방법.Removing the base material from the molten salt and quenching the steel material.
  15. 제12항 내지 제14항 중 어느 한 항에 있어서,The method according to any one of claims 12 to 14,
    상기 산화피막을 제거한 후에, 상기 고용체층 상에 상기 표면과 접하여 형성되고 상기 고용체층의 부식을 방지하는 제1피막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 강재의 제조방법.After removing the oxide film, forming a first film formed on the solid solution layer in contact with the surface and preventing corrosion of the solid solution layer.
  16. 제12항 내지 제14항 중 어느 한 항에 있어서,The method according to any one of claims 12 to 14,
    상기 산화피막을 제거한 후에, 상기 고용체층 상에 상기 표면에 접하여 형성되고 철과 질소의 화합물로 구비된 제2피막층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 강재의 제조방법.After removing the oxide film, forming a second film layer formed on the solid solution layer in contact with the surface and provided with a compound of iron and nitrogen.
  17. 제12항 내지 제14항 중 어느 한 항에 있어서,The method according to any one of claims 12 to 14,
    상기 모재는 탄소 함량이 0.01 중량% 이하(0중량%를 포함하지 않음)인 강인 것을 특징으로 하는 강재의 제조방법.The base material is a method for producing steel, characterized in that the carbon content of 0.01% by weight or less (not including 0% by weight).
PCT/KR2009/006401 2008-11-07 2009-11-03 High strength steel material and method for manufacturing same WO2010053279A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080110498A KR100922619B1 (en) 2008-11-07 2008-11-07 Steel having high strength and methode for manufacturing the same
KR10-2008-0110498 2008-11-07

Publications (2)

Publication Number Publication Date
WO2010053279A2 true WO2010053279A2 (en) 2010-05-14
WO2010053279A3 WO2010053279A3 (en) 2010-07-29

Family

ID=41562131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006401 WO2010053279A2 (en) 2008-11-07 2009-11-03 High strength steel material and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR100922619B1 (en)
WO (1) WO2010053279A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919363B1 (en) 2018-01-18 2018-11-16 임재학 Method and apparatus for manufacturing PC steel rods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960003156B1 (en) * 1992-03-10 1996-03-05 쌍트르 스테파느와 드 르쉑슈 메까니끄 이드로메까니끄 에 프로뜨망 Process for phosphating steel parts to improve corrosion and wear resistance
KR100727226B1 (en) * 2002-09-04 2007-06-13 파커 네쓰쇼리 고교 가부시키카이샤 Method for nitriding metal member with enhanced corrosion resistance by salt bath nitriding
KR100812971B1 (en) * 2006-02-23 2008-03-13 일진경금속 주식회사 Method for nitriding steel in salt bath and steel manufactured by its method
KR20080088554A (en) * 2006-02-23 2008-10-02 일진경금속 주식회사 Metal nitride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960003156B1 (en) * 1992-03-10 1996-03-05 쌍트르 스테파느와 드 르쉑슈 메까니끄 이드로메까니끄 에 프로뜨망 Process for phosphating steel parts to improve corrosion and wear resistance
KR100727226B1 (en) * 2002-09-04 2007-06-13 파커 네쓰쇼리 고교 가부시키카이샤 Method for nitriding metal member with enhanced corrosion resistance by salt bath nitriding
KR100812971B1 (en) * 2006-02-23 2008-03-13 일진경금속 주식회사 Method for nitriding steel in salt bath and steel manufactured by its method
KR20080088554A (en) * 2006-02-23 2008-10-02 일진경금속 주식회사 Metal nitride

Also Published As

Publication number Publication date
KR100922619B1 (en) 2009-10-21
WO2010053279A3 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
WO2010074435A2 (en) Steel sheet annealing device, device for producing plated steel sheet comprising the same, and production method for plated steel sheet using the same
WO2015099399A1 (en) Steel sheet for hot press forming with excellent corrosion resistance and weldability, forming member, and manufacturing method therefor
WO2017111431A1 (en) Hot press molded product having excellent corrosion resistance and method for preparing same
WO2010053279A2 (en) High strength steel material and method for manufacturing same
KR102196477B1 (en) Method of thermal nitriding of workpiece surface
WO2019125020A1 (en) Hot-dip galvanized steel sheet having excellent low-temperature adhesion and workability, and manufacturing method therefor
US5228929A (en) Thermochemical treatment of machinery components for improved corrosion resistance
KR100760152B1 (en) Manufacturing method of high strength automobile parts by zinc galvanization steel sheet using hot stamping
WO2015099214A1 (en) Quenched steel sheet having excellent strength and ductility and method for manufacturing same
WO2017074161A1 (en) Low temperature carburizing method and carburizing apparatus
KR100862217B1 (en) Method for manufacturing high corrosion-resistant and high wear- resistant steel materials by 2 step gas nitriding or gas nitrocarburizing
WO2020111884A1 (en) Aluminum-based plated steel plate for hot press having excellent resistance against hydrogen delayed fracture and spot weldability, and method for manufacturing same
KR100522919B1 (en) Low distortion treatment method of high speed tool steel with corrosion-resistance and abrasion-resistance
WO2023075033A1 (en) Hot stamping part
WO2023075035A1 (en) Hot stamping part
WO2022131848A1 (en) Plated steel for hot press forming, and method for manufacturing same
JPH06184728A (en) Surface treatment of steel products
KR20110074356A (en) Nitriding methode for a steel
WO2023239206A1 (en) High-strength hot-dip galvanized steel sheet having excellent plating quality, plating steel sheet, and manufacturing methods therefor
JP2003105505A (en) High fatigue strength and high rigidity steel, and production method therefor
WO2022124812A1 (en) High-strength galvannealed steel sheet having excellent powdering resistance and manufacturing method therefor
WO2022131635A1 (en) Plated steel sheet having excellent strength, formability and surface property and method for manufacturing same
WO2023043216A1 (en) High-strength steel sheet having excellent surface quality and manufacturing method therefor
WO2023277291A1 (en) Hot-stamped component and method for manufacturing same
WO2023058827A1 (en) Steel sheet for hot pressing and hot stamping part manufactured by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824962

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824962

Country of ref document: EP

Kind code of ref document: A2