WO2010053095A1 - 移動局及び移動通信方法 - Google Patents

移動局及び移動通信方法 Download PDF

Info

Publication number
WO2010053095A1
WO2010053095A1 PCT/JP2009/068836 JP2009068836W WO2010053095A1 WO 2010053095 A1 WO2010053095 A1 WO 2010053095A1 JP 2009068836 W JP2009068836 W JP 2009068836W WO 2010053095 A1 WO2010053095 A1 WO 2010053095A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
state
link failure
mobile station
determination unit
Prior art date
Application number
PCT/JP2009/068836
Other languages
English (en)
French (fr)
Inventor
啓之 石井
幹生 岩村
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to US13/127,646 priority Critical patent/US8644815B2/en
Priority to EP09824794.3A priority patent/EP2352340B1/en
Priority to JP2010536775A priority patent/JP5427788B2/ja
Publication of WO2010053095A1 publication Critical patent/WO2010053095A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present invention relates to a mobile station and a mobile communication method.
  • a mobile communication system is configured to monitor a synchronization state between a radio base station and a mobile station.
  • a synchronization state between a radio base station and a mobile station.
  • the following two indices are defined in order to determine the downlink synchronization state in the physical layer.
  • DPCCH dedicated Physical Control Channel
  • CRC Cyclic Redundancy Check
  • the determination section for determining the downlink synchronization state in the above physical layer is, for example, 160 ms. Further, as will be described later, the determination as to whether or not the radio link failure (RLF) is in the RRC layer is made based on the determination result of the downlink synchronization state every 10 ms.
  • RLF radio link failure
  • the determination as to whether or not the radio link has failed in the RRC layer based on the downlink synchronization state reported from the physical layer and the movement in the radio link failure state The operation of the station UE is defined.
  • step S102 when the mobile station UE receives N313 consecutive “Out-of-sync”, that is, “synchronization state: NG” reports from the physical layer (S102: YES), the timer T313 is started. (S104). Note that steps S102 and S104 may be performed only when the timer T313 is not activated.
  • step S106 when the mobile station UE receives N315 consecutive “In-sync” reports, that is, “synchronization state: OK” reports from the physical layer (S106: YES), the mobile station UE stops the timer T313. (S108). Note that steps S106 and S108 may be performed only when the timer T313 is activated.
  • step S110 YES
  • this operation proceeds to step S112. If T313 does not expire (step S110: NO), the operation returns to step S102. Note that step S110 may be performed both when T313 is activated and when T313 is not activated.
  • steps S102 to S110 may be performed constantly while the radio base station eNB and the mobile station UE are in a connected state.
  • the processes of steps S102 to S110 may be performed every 10 ms while the radio base station eNB and the mobile station UE are in a connected state.
  • 10 ms refers to one radio frame.
  • the connection state may be an RRC_Connected state.
  • step S112 the mobile station UE considers that the communication state between the radio base station eNB and the mobile station UE is a radio link failure state.
  • the radio link failure state may be referred to as an RLF (Radio Link Failure) state, and refers to a state in which communication quality between the radio base station eNB and the mobile station UE is significantly deteriorated and communication is impossible. .
  • RLF Radio Link Failure
  • step S114 the mobile station UE clears the configuration (configuration) of communication with the radio base station eNB.
  • step S116 the mobile station UE performs reconnection processing.
  • the reconnection process may be referred to as a “Cell Update process”. Note that the mobile station UE performs the reconnection process described above when there is no ongoing process or when the operation during the radio link failure state is not defined in the ongoing process. May be.
  • the mobile station UE when the mobile station UE has an ongoing process and the operation in the ongoing process is defined in a radio link failure state, the mobile station UE performs the radio in the ongoing process. Performs operations when link failure occurs.
  • the parameters such as T313, T315, and N313 described above are parameters corresponding to hysteresis and the number of protection stages, and are parameters for determining a radio link failure state with high accuracy and at an appropriate timing.
  • discontinuous reception (DRX) control is applied to reduce power consumption in the mobile station UE, that is, for battery saving.
  • intermittent reception control in an LTE (Long Term Evolution) mobile communication system is the data to be communicated when the radio base station eNB and the mobile station UE are connected.
  • PDCCH Physical Downlink Control Channel
  • the mobile station UE only needs to receive a downlink control signal transmitted via the physical downlink control channel PDCCH intermittently, not at all timings, so that it is possible to reduce battery power consumption. It becomes.
  • the mobile station UE performs physical downlink only in a reception interval (5 ms in the example of FIG. 15) set for each DRX cycle (1280 ms in the example of FIG. 15).
  • a downlink control signal transmitted via the link control channel PDCCH is received, and the other transceivers are turned off.
  • the reception interval may be referred to as On-duration.
  • the determination is performed with high accuracy and at an appropriate timing based on the parameters corresponding to the hysteresis and the number of protection stages.
  • intermittent reception control is applied when the radio base station eNB and the mobile station UE are connected. That is, as the state of each mobile station UE, there are two types of states, an intermittent reception state and a non-discontinuous reception state, depending on the presence or absence of data to be communicated.
  • the mobile station UE in the intermittent reception state is generally configured to determine the downlink synchronization state described above only in the reception period in the intermittent reception control. Has been.
  • the downlink synchronization state is notified from the physical layer to the RRC layer at a high frequency, for example, every 10 ms, whereas in the intermittent reception state, the intermittent reception control is performed. This means that the downlink synchronization state is notified only in the reception section in FIG.
  • the notification from the physical layer is infrequent, and therefore, the determination using the parameters corresponding to the hysteresis and the number of protection stages in the RRC layer should be appropriately performed. There is a problem that cannot be done.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a mobile station and a mobile communication method that can appropriately determine a radio link failure state in an intermittent reception state. To do.
  • a first feature of the present invention is a mobile station that communicates with a radio base station, and is configured to determine a downlink synchronization state based on a radio quality of a serving cell in the mobile station.
  • a radio link failure state determination unit configured to determine whether or not a radio link failure state is determined based on the determination result, and the radio link failure state determination unit, the radio link failure state
  • a connection restructuring unit configured to reestablish a connection with the radio base station, the synchronization state of the downlink is an asynchronous state from the synchronization state determination unit (1)
  • the radio link failure state determination unit 2 is configured to stop the timer and determine that the radio link is in a failed state.
  • the radio link failure state determination unit is configured to stop the second timer, and (3) when the first timer is not activated, the radio link failure state determination unit
  • the gist is that the first timer is configured to start.
  • the synchronization state determination unit when the synchronization state determination unit notifies that the downlink synchronization state is a synchronization state, (1) when the second timer has expired, The radio link failure state determination unit is configured to stop the first timer, and (2) when the first timer is activated and the second timer is not activated, The link failure state determination unit may be configured to start the second timer.
  • the first timer and the second timer may be set separately for each of the intermittent reception state and the non-intermittent reception state.
  • the synchronization state determination unit when in the intermittent reception state, is configured to determine the downlink synchronization state in the ON interval of the intermittent reception state, The wireless link failure state determination unit may be configured to determine that the wireless link failure state is in the intermittent reception ON section that is closest to the timing when the first timer expires.
  • the synchronization state determination unit when in the intermittent reception state, is configured to determine the downlink synchronization state in the ON interval of the intermittent reception state,
  • the radio link failure state determination unit may be configured to stop the first timer in the ON intermittent reception period immediately after the second timer expires.
  • a second feature of the present invention is a mobile communication method for communicating between a radio base station and a mobile station, wherein the mobile station determines a downlink synchronization state based on a radio quality of a serving cell in the mobile station. Determining step A, determining whether the mobile station is in a radio link failure state based on the downlink synchronization state, and determining that the mobile station is in the radio link failure state If it is determined, it has a step C for reestablishing a connection with the radio base station, and in the step B, it is determined in the step A that the downlink synchronization state is an asynchronous state When the first timer has expired and the second timer is activated, the mobile station stops the second timer and determines that the radio link has failed. The first If the timer is activated and the second timer is activated, the mobile station stops the second timer and moves the mobile station when the first timer is not activated. The gist of the station is to start the first timer.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the mobile station according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining how the synchronization state is determined by the synchronization state determination unit of the mobile station according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining how a radio link failure is determined by the radio link failure state determination unit of the mobile station according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a state of radio link failure determination by the radio link failure state determination unit of the mobile station according to the first embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the mobile station according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining how the synchronization state is determined by the synchronization state determination unit of the
  • FIG. 6 is a diagram for explaining a state of radio link failure determination by the radio link failure state determination unit of the mobile station according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of intermittent reception parameters and non-intermittent reception parameters used in the mobile station according to the first embodiment of the present invention.
  • FIG. 8 is a functional block diagram of the radio base station according to the first embodiment of the present invention.
  • FIG. 9 is a flowchart showing the operation of the mobile station according to the first embodiment of the present invention.
  • FIG. 10 is a diagram for explaining how a radio link failure is determined by the radio link failure state determination unit of the mobile station according to the first modification of the present invention.
  • FIG. 10 is a diagram for explaining how a radio link failure is determined by the radio link failure state determination unit of the mobile station according to the first modification of the present invention.
  • FIG. 11 is a diagram for explaining how a radio link failure is determined by the radio link failure state determination unit of the mobile station according to the first modification of the present invention.
  • FIG. 12 is a diagram for explaining a state of radio link failure determination by the radio link failure state determination unit of the mobile station according to the second modification of the present invention.
  • FIG. 13 is a diagram for explaining how a radio link failure is determined by the radio link failure state determination unit of the mobile station according to the second modification of the present invention.
  • FIG. 14 is a flowchart showing the operation of a general mobile station.
  • FIG. 15 is a diagram for explaining intermittent reception in a general mobile station.
  • FIG. 16 is a diagram for explaining a state of radio link failure determination by the radio link failure state determination unit of the mobile station according to the first embodiment of the present invention.
  • FIG. 17 is a flowchart showing the operation of the mobile station according to the first embodiment of the present invention.
  • FIG. 18 is a flowchart showing the operation of the mobile station according to the first embodiment of the present invention.
  • FIG. 19 is a flowchart showing the operation of the mobile station according to the first embodiment of the present invention.
  • the mobile communication system is an LTE mobile communication system.
  • an “OFDM (Orthogonal Frequency Division Multiplexing) scheme” is applied to the downlink
  • an “SC-FDMA (Single-Carrier Division Multiple Access) scheme” is applied to the uplink. Is being considered.
  • the OFDM scheme is a scheme in which a specific frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is transmitted on each frequency band. According to the OFDM scheme, high-speed transmission can be realized and frequency utilization efficiency can be improved by arranging subcarriers closely without interfering with each other while partially overlapping on the frequency axis.
  • the SC-FDMA scheme can reduce interference between a plurality of mobile stations UE by dividing a specific frequency band and transmitting using a different frequency band between the plurality of mobile stations UE. Transmission method. According to the SC-FDMA scheme, since the variation in transmission power is small, it is possible to realize low power consumption and wide coverage of the mobile station UE.
  • the radio base station eNB transmits a downlink control signal via the physical downlink control channel PDCCH and downlink data via the physical downlink shared data channel PDSCH (Physical Downlink Shared Channel). It is configured to transmit a signal.
  • PDCCH Physical Downlink control channel
  • PDSCH Physical Downlink Shared Channel
  • the mobile station UE is configured to transmit an uplink data signal via a physical uplink shared data channel PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the mobile station UE includes a state management unit 11, a parameter acquisition unit 12, a synchronization state determination unit 13, a radio link failure state determination unit 14, and a reconnection processing unit 15. Yes.
  • the state management unit 11 is configured to manage whether or not the mobile station UE is in an intermittent reception state.
  • the state management unit 11 determines whether or not the mobile station UE is in an intermittent reception state with respect to the synchronization state determination unit 13 and the radio link failure state determination unit 14, that is, in an intermittent reception state or a non-discontinuous reception state. Notify if it is.
  • the mobile station UE being in the non-discontinuous reception state may mean that the mobile station UE is in the Active state.
  • the Active state is defined in 3GPP TS36.321, V8.2.0, 5.7.
  • the state that is not in the Active state corresponds to the intermittent reception state.
  • the parameter acquisition unit 12 is configured to acquire the intermittent reception state parameter and the non-discontinuous reception state parameter from the radio base station eNB.
  • the parameter acquisition unit 12 notifies the radio link failure state determination unit 14 of the intermittent reception state parameter and the non-discontinuous reception state parameter.
  • the discontinuous reception state parameter and the non-discontinuous reception state parameter may be notified as part of broadcast information, or information of information in RRC Signaling individually notified to each mobile station UE in the cell. You may be notified as a part.
  • the synchronization state determination unit 13 is configured to measure the radio quality of the serving cell in the mobile station UE and determine the downlink synchronization state based on the radio quality.
  • the radio quality of the serving cell in the mobile station UE is the quality of the downlink radio link between the radio base station eNB and the mobile station UE.
  • the synchronization state determination unit 13 measures the SIR of a signal from the serving cell of the mobile station UE (for example, a reference signal (RS: Reference Signal)) as the radio quality of the serving cell in the mobile station UE, and based on the SIR Thus, the downlink synchronization state may be determined.
  • a reference signal for example, a reference signal (RS: Reference Signal)
  • the synchronization state determination unit 13 determines that the downlink synchronization state is OK, that is, In-sync, and the SIR is a predetermined threshold. In the following cases, it may be determined that the downlink synchronization state is NG, that is, Out-of-sync.
  • the synchronization state determination unit 13 may set two threshold values of Qout and Qin, and determine the downlink synchronization state based on the above-described SIR, Qout, and Qin. .
  • Qout ⁇ Qin and the difference between Qin and Qout, that is, “Qin ⁇ Qout” corresponds to hysteresis.
  • the synchronization state determination unit 13 determines that the SIR is greater than Qout when T ⁇ A, and thus determines that it is In-sync.
  • the synchronous state determination part 13 may use the value which averaged instantaneous SIR in the predetermined average area as said SIR value.
  • the predetermined averaging period may be, for example, 160 ms, 200 ms, 20 ms, or other values.
  • the value of the SIR may be a value averaged over the entire system band in the frequency direction, or may be a value averaged over a part of the system band.
  • the partial band in the system band may be a band having a predetermined bandwidth located at the center of the system band, for example.
  • the partial band in the system band may be, for example, a band in which a synchronization signal or a physical broadcast channel is transmitted.
  • the synchronization state determination unit 13 determines the downlink synchronization state using the SIR averaged over the 160 ms averaging period, and the mobile station UE In the intermittent reception state, the downlink synchronization state may be determined using SIR in the on-duration (ON period) of the intermittent reception control.
  • the SIR in the on-duration of the intermittent reception control may be an instantaneous SIR in the on-duration, an average SIR in the on-duration, or the SIR in a plurality of on-durations. It may be an averaged value.
  • the synchronization state determination unit 13 notifies the radio link failure state determination unit 14 of the downlink synchronization state determination result (In-sync / Out-of-sync) described above.
  • the synchronization state determination unit 13 may notify the determination result (In-sync / Out-of-sync) of the downlink synchronization state to the radio link failure state determination unit 14 every 10 ms.
  • the above 10 ms is merely an example, and may be a value other than 10 ms.
  • the synchronization state determination unit 13 sends the above-described downlink synchronization state determination result (In-sync / Out-of-sync) to the radio link failure state determination unit 14 for each radio link frame (Radio Link Frame). May be notified.
  • the synchronization state determination unit 13 notifies the determination result of the downlink synchronization state to the radio link failure state determination unit 14 every 10 ms, and the mobile station UE In the intermittent reception state, the downlink link synchronization state determination result may be notified to the radio link failure state determination unit 14 for each DRX cycle.
  • notify the determination result of the downlink synchronization state for each DRX cycle means, for example, “notifies the determination result of the downlink synchronization state at the timing of On-duration that exists for each DRX cycle”. May mean.
  • the synchronization state determination unit 13 acquires information about whether or not the mobile station UE is in an intermittent reception state from the state management unit 11.
  • the synchronization state determination unit 13 uses the SIR of the reference signal (Reference Signal) as the radio quality of the serving cell. Instead, the received power of the reference signal (Reference Signal Received Power (RSRP)). Alternatively, Reference Signal Received Quality (RSRQ) or CQI may be used.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • CQI CQI
  • the synchronization state determination unit 13 uses a PDCCH error rate, a PCFICH error rate, a PCFICH SIR, a PDSCH error rate, a DL RS symbol error rate, etc., instead of the reference signal SIR. Also good.
  • the synchronization state determination unit 13 may be configured such that the SIR of the reference signal (Reference Signal), the received power of the reference signal, the RSRQ, the CQI, the error rate of the PDCCH, the error rate of the PCFICH, At least one of the PCFICH SIR, the PDSCH error rate, and the DL RS symbol error rate may be used.
  • the SIR of the reference signal Reference Signal
  • the received power of the reference signal the RSRQ, the CQI
  • the error rate of the PDCCH the error rate of the PCFICH
  • At least one of the PCFICH SIR, the PDSCH error rate, and the DL RS symbol error rate may be used.
  • the RSRQ Reference Signal Received Quality Power
  • RSSI Received Signal Strength Indicator
  • RSSI is a total reception level observed in a mobile station, and includes a reception level including all of thermal noise, interference power from other cells, power of a desired signal from its own cell, and the like.
  • CQI Channel Quality Indicator
  • CQI Channel Quality Indicator
  • the radio link failure state determination unit 14 is based on the determination result of the downlink synchronization state in the above-described synchronization state determination unit 13 and the intermittent reception state parameter and the non-discontinuous reception state parameter specified by the parameter acquisition unit 12. Thus, it is configured to determine whether or not the radio link is in a failed state.
  • the radio link failure state determination unit 14 starts a timer when Out-of-sync is reported N313 times continuously from the synchronization state determination unit 13, and when the timer expires, You may determine with a link failure state.
  • a notification indicating Out-of-sync is received as the link synchronization state.
  • the timer T313 corresponds to a first timer.
  • the notification of In-sync is received N315 times continuously as the downlink synchronization state.
  • N313 and N315 are threshold values regarding the number of times Out-of-sync or In-sync is continuously notified, but instead, Out-of-sync or In-sync is continuous. It may be a threshold regarding the time notified. That is, N313 and N315 may be treated as timers similarly to T313.
  • the radio link failure state determination unit 14 may stop the timer N313 when In-sync is notified in a state where the timer N313 is being activated.
  • N315 corresponds to the second timer.
  • the radio link failure state determination unit 14 may stop the second timer N315 when the Out-of-sync is notified in a state where the second timer N315 is being activated.
  • N313 and N315 described above may be the number of times that the synchronization state is notified from the synchronization state determination unit 13 as a unit, or instead, the time when the synchronization state is notified from the synchronization state determination unit 13. There may be.
  • N313”, “T313”, and “N315” are defined to determine whether or not the radio link is in a failed state. At least one of “N313”, “T313”, and “N315” may be used as a parameter for determining whether or not the radio link has failed.
  • the radio link failure state determination unit 14 notifies the reconnection processing unit 15 of the determination result when it is determined that the state is a radio link failure state.
  • the determination of Out-of-sync / In-sync in the synchronization state determination unit 13 and the radio link failure state using the timers T313, N313, and N315 in the wireless link failure state determination unit 14 The time relationship with the determination of whether or not.
  • N313 and N315 are defined as timers similar to T313, not as a threshold regarding the number of times Out-of-sync or In-sync is continuously notified. Assume.
  • N313 0 in FIG. 16 below. That is, when the Out-of-sync is notified from the synchronization state determination unit 13, the radio link failure state determination unit 14 starts (starts) the first timer T313.
  • the synchronization state determination unit 13 determines Out-of-sync / In-sync at the on-duration timing of the intermittent reception state
  • the radio link failure state determination unit 14 May be determined to be a radio link failure state in the ON-duration (d in FIG. 16) of the most recent intermittent reception state from the timing when the first timer T313 expires (c in FIG. 16) (FIG. 16). 16 RFL detection).
  • the radio link failure state determination unit 14 receives the notification Out-of-sync from the synchronization state determination unit 13 at the timing d in FIG. 16, and at that time, T313 is the first timer. (C in FIG. 16), it may be determined that the radio link has failed (RFL detection in FIG. 16).
  • the synchronization state determination unit 13 performs Out-of-sync / In-sync determination at the on-duration timing of the intermittent reception state, and the radio link failure state determination unit 14 may stop T313 as the first timer in the ON-duration (d in FIG. 16) in the intermittent reception state immediately after the timing (b in FIG. 16) when N315 as the second timer expires.
  • the radio link failure state determination unit 14 receives a notification “In-sync” from the synchronization state determination unit 13 at the timing d in FIG. 16, and N315 that is the second timer expires at that time. (B in FIG. 16), T313, which is the first timer, may be stopped.
  • the radio link is appropriately maintained while maintaining the battery saving effect by intermittent reception. It becomes possible to determine the failure state.
  • the intermittent reception state parameter and the non-discontinuous reception state parameter include “N313” which is the number of consecutive Out-of-syncs for starting the above-described timer T313, and the above-described radio link failure state. “T313” which is a timer value for determining the existence of the timer, “N315” which is the number of consecutive In-syncs for stopping the timer, and the like are included.
  • FIG. 7 shows an example of the intermittent reception state parameters (“N313”, “T313”, and “N315”) and the non-discontinuous reception state parameters (“N313”, “T313”, and “N315”).
  • the mobile communication system according to the present embodiment may be configured such that the value of the intermittent reception state parameter and the value of the non-discontinuous reception state parameter are different.
  • the value (N313) of the first parameter in the parameter for the intermittent reception state may be configured to be smaller than the value (N313) of the first parameter in the parameter for the non-discontinuous reception state.
  • the determination frequency for determining the downlink synchronization state is less than in the non-discontinuous reception state, and as a result, the interval between each determination is increased.
  • the appropriate length is, for example, a reflection time necessary for determining that the wireless failure state has occurred, and is preferably as short as possible if it can be accurately determined.
  • the value (N313) of the first parameter in the parameter for the intermittent reception state may be configured to be larger than the value (N313) of the first parameter in the parameter for the non-discontinuous reception state.
  • the value (N313) of the first parameter in the parameter for the intermittent reception state may be 10
  • the value (N313) of the first parameter in the parameter for the non-discontinuous reception state may be 2.
  • the number of samples is, for example, the number of samples necessary for accurately determining that the wireless failure state has occurred.
  • the wireless failure state can be appropriately set in the intermittent reception state. It can be determined that
  • the wireless failure state can be appropriately set in the intermittent reception state. It is possible to determine whether or not.
  • the radio link failure state determination unit 14 determines the downlink synchronization state determined by the synchronization state determination unit 13 and the intermittent acquisition acquired by the parameter acquisition unit 12. Based on the reception status parameter, it is configured to determine whether or not the radio link is in a failed state.
  • the radio link failure state determination unit 14 determines the downlink synchronization state determined by the synchronization state determination unit 13 and the non-intermittent acquired by the parameter acquisition unit 12. Based on the reception status parameter, it is configured to determine whether or not the radio link is in a failed state.
  • the reconnection processing unit 15 performs reconnection processing when the wireless link failure state determination unit 14 is notified of the determination result that the wireless link failure state is present. Further, the reconnection processing unit 15 may clear a communication configuration (Configuration) between the mobile station UE and the radio base station eNB before performing the reconnection process.
  • Cell Update process means, for example, cell search, measurement of the wireless quality of the searched cell, etc., and when there is a communicable cell, connection establishment is performed again for the cell. Point to.
  • Cell Update process may be referred to as a “Connection Re-establishment process”.
  • the mobile station performs the reconnection process described above when there is no ongoing process, or when the operation during the radio link failure state is not specified in the ongoing process. Also good. In this case, if there is a process in progress and the operation in the process of radio link failure is specified in the process in progress, the radio link failed in the process in progress May be performed.
  • the radio base station eNB includes a parameter notification unit 21 and a reconnection processing unit 22.
  • the parameter notification unit 21 is configured to notify the mobile station UE of the above-described intermittent reception state parameter and non-discontinuous reception state parameter.
  • the parameter notification unit 21 is configured to notify the mobile station UE of the above-described intermittent reception state parameter and non-discontinuous reception state parameter to the mobile station UE via the physical downlink shared channel PDSCH. .
  • the intermittent reception state parameter and the non-discontinuous reception state parameter described above may be notified to the mobile station UE as a part of broadcast information, or a part of information in an individual control signal or RRC Message. May be notified to the mobile station UE.
  • the reconnection processing unit 22 performs the reconnection process when the mobile station UE performs the reconnection process described above and notifies the signaling for reconnection. That is, processing for reestablishing a connection (connection) with the mobile station UE is performed.
  • N313 and N315 are defined as timers similar to T313, not as a threshold regarding the number of times Out-of-sync or In-sync is continuously notified. Assume.
  • N313 0 in FIG. 16 below. That is, when the Out-of-sync is notified from the synchronization state determination unit 13, the radio link failure state determination unit 14 starts (starts) the first timer T313.
  • step S301 the radio link failure state determination unit 14 determines whether or not Out-of-sync is notified from the synchronization state determination unit 13, and when Out-of-sync is notified (step S301: YES), the process proceeds to the process of FIG. 18, and if Out-of-sync is not notified (step S301: NO), the process proceeds to step S302.
  • step S302 the radio link failure state determination unit 14 determines whether or not In-sync is notified from the synchronization state determination unit 13, and when In-sync is notified (step S302: YES), FIG. Proceeding to step 19, if In-sync is not notified (step S302: NO), the process proceeds to step S303.
  • step S303 the radio link failure state determination unit 14 determines whether or not the RA (Random Access) procedure fails or whether or not the maximum retransmission excess occurs in the RLC Layer. If the RA procedure fails or the maximum retransmission is exceeded in RLC Layer (step S303: YES), the process proceeds to step S304, and otherwise (step S303: NO), the process ends. .
  • RA Random Access
  • step S401 the radio link failure state determination unit 14 determines whether or not the first timer T313 has expired. That is, when the first timer T313 has expired (step S401: YES), the radio link failure state determination unit 14 proceeds to the process of step S402, and otherwise (step S401: NO), step S404. Proceed to
  • step S402 the radio link failure state determination unit 14 stops N315 that is the second timer. If N315 is not activated, this process is not performed. That is, the radio link failure state determination unit 14 stops N315 when the second timer N315 is activated.
  • step S403 the radio link failure state determination unit 14 determines that the state is a radio link failure state.
  • step S404 the radio link failure state determination unit 14 determines whether or not the first timer T313 is being activated. That is, the radio link failure state determination unit 14 proceeds to the process of step S405 when the first timer T313 is being activated (step S404: YES), and otherwise (step S404: NO), step S406. Proceed to
  • step S405 the radio link failure state determination unit 14 stops N315 that is the second timer. If N315 is not activated, this process is not performed. That is, the radio link failure state determination unit 14 stops N315 when the second timer N315 is activated.
  • step S406 the radio link failure state determination unit 14 starts the first timer T313.
  • step S406 if the first timer T313 is already started, that is, if the determination in step S404 is YES and this process is performed via step S405, the first timer T313 already started is started. It may mean that the activation of one timer T313 is continued.
  • step S501 the radio link failure state determination unit 14 determines whether or not the second timer N315 has expired. That is, when the second timer N315 has expired (step S501: YES), the radio link failure state determination unit 14 proceeds to the process of step S502, and otherwise (step S501: NO), step S503 Proceed to
  • step S502 the radio link failure state determination unit 14 stops T313 that is the first timer. At this time, the radio link failure state determination unit may consider that the radio link state has been restored.
  • step S503 the radio link failure state determination unit 14 determines whether or not the first timer T313 is activated and whether or not the second timer N315 is activated. That is, the radio link failure state determination unit 14 proceeds to the process of step S504 when the first timer T313 is activated and the N315 that is the second timer is not activated (step S503: YES), In other cases (step S503: NO), the process ends.
  • step S504 the radio link failure state determination unit 14 activates (starts) N315 that is the second timer.
  • the synchronization state determination unit 13 performs an Out-of-sync / In-sync determination in the on-duration in the intermittent reception state.
  • the radio link failure state determination unit 14 determines whether the first timer T313 or the second timer N315 has expired or is starting at the timing when the Out-of-sync / In-sync is received from the synchronization state determination unit 13. The above-described processing is performed based on whether it is in a state where it is not activated.
  • the timing at which the first timer T313 or the second timer N315 expires may be different from the on-duration.
  • the above-described processes of FIGS. 17, 18 and 19 may be performed in the nearest on-duration from the timing.
  • step S201 the mobile station UE determines whether or not it is in an intermittent reception state (DRX state). If it is not the intermittent reception state (DRX state), this operation proceeds to step S202. If it is the intermittent reception state (DRX state), this operation proceeds to step S207.
  • DRX state the intermittent reception state
  • step S202 the mobile station UE reports N313Non DRX (first parameter in the non-discontinuous reception state parameter) times “Out-of-sync”, that is, “synchronization state: NG” continuously from the physical layer.
  • N313Non DRX first parameter in the non-discontinuous reception state parameter
  • the timer T313Non DRX is started (S203). Note that steps S202 and S204 may be performed only when the timer T313Non DRX (second parameter in the non-discontinuous reception state parameter) is not activated.
  • step S204 the mobile station UE reports N315Non DRX (third parameter in the non-discontinuous reception state parameter) times “In-sync”, that is, “synchronization state: OK” continuously from the physical layer. If received (S204: YES), the timer T313Non DRX is stopped (S205). Note that steps S204 and S205 may be performed only when the timer T313Non DRX is activated.
  • step S206 If T313Non DRX has expired (step S206: YES), the operation proceeds to step S212. In addition, when T313Non DRX does not expire (step S206: NO), this operation returns to step S201. Note that step S206 may be performed both when T313Non DRX is activated and when T313Non DRX is not activated.
  • step S207 the mobile station UE reports N313DRX (first parameter in the discontinuous reception state parameter) times “Out-of-sync”, that is, “synchronization state: NG” continuously from the physical layer. If received (S207: YES), the timer T313DRX is activated (S208). Note that steps S207 and S208 may be performed only when the timer T313DRX (second parameter in the intermittent reception state parameter) is not started.
  • step S209 the mobile station UE continuously receives N315DRX (third parameter in the intermittent reception state parameter) times of “In-sync”, that is, a report of “synchronization state: OK” from the physical layer.
  • N315DRX third parameter in the intermittent reception state parameter
  • the timer T313DRX is stopped (S210). Note that steps S209 and S210 may be performed only when the timer T313DRX is activated.
  • step S211 YES
  • step S211: NO the operation returns to step S201. Note that step S211 may be performed both when T313DRX is activated and when T313DRX is not activated.
  • step S212 the mobile station UE considers that the communication state between the radio base station eNB and the mobile station UE is a radio link failure state.
  • step S213 the mobile station UE clears the configuration (configuration) of communication with the radio base station eNB.
  • step S214 the mobile station UE performs reconnection processing.
  • the values of the intermittent reception state parameter and the non-discontinuous reception state parameter can be changed according to whether or not the DRX state is present. It is possible to determine that the mobile station UE is in a radio link failure state at an appropriate timing and with an appropriate accuracy, stable communication quality, rapid reconfiguration of communication, and user convenience. Can be improved.
  • the second parameter “T313” in the intermittent reception state parameter may be the same as the second parameter “T313” in the non-intermittent reception state parameter, or the second parameter “T313” in the intermittent reception state parameter may be The second parameter “T313” in the non-discontinuous reception state parameter may be different.
  • N315 is defined not by the number of times but by time.
  • first and second parameters “T313” and “N315” in the parameter for the intermittent reception state and the first and second parameters “T313” and “N315” in the parameter for the non-discontinuous reception state are set to be the same.
  • first and second parameters “T313” and “N315” in the parameter for the intermittent reception state and the first and second parameters “T313” and “N315” in the parameter for the non-discontinuous reception state may be separately provided. It is good.
  • N313 since there is no “N313”, it has a simpler structure and is controlled by time, so that it is determined to be a radio link failure state between the intermittent reception state and the non-intermittent reception state. Appropriate control is possible if the time is considered the same.
  • N315 is defined not by the number of times but by time. In this third modification, “N315” may be defined by the number of times instead.
  • an intermittent reception state there are two types of states, an intermittent reception state and a non-discontinuous reception state. Instead, a long intermittent reception state, a short intermittent reception state, and a non-intermittent reception state are provided. Even when three types of states exist, the mobile station, the radio base station, and the mobile communication method according to the present invention can be applied.
  • the long intermittent reception state parameter and the short intermittent state are used as the first parameter and the second parameter described above.
  • Three types of parameters, a reception state parameter and a non-discontinuous reception state parameter, may be defined, and each parameter may be applied in each state.
  • a long intermittent reception state when there are three types of states, a long intermittent reception state, a short intermittent reception state, and a non-discontinuous reception state, two types of parameters, an intermittent reception state parameter and a non-discontinuous reception state parameter, are defined and long intermittent reception is performed.
  • the intermittent reception state parameter In the state and the short discontinuous reception state, the intermittent reception state parameter may be applied, and in the non-discontinuous reception state, the non-discontinuous reception parameter may be applied.
  • a long intermittent reception state when there are three types of states, a long intermittent reception state, a short intermittent reception state, and a non-discontinuous reception state, two types of parameters, a long intermittent reception state parameter and a non-long intermittent reception state parameter, are defined and long
  • the long intermittent reception state parameter may be applied, and in the short intermittent reception state and the non-discontinuous reception state, the non-long intermittent reception parameter may be applied.
  • radio base station eNB and the mobile station UE described above may be implemented by hardware, may be implemented by a software module executed by a processor, or may be implemented by a combination of both. .
  • Software modules include RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable, Removable ROM, and Hard Disk). Alternatively, it may be provided in a storage medium of an arbitrary format such as a CD-ROM.
  • the storage medium is connected to the processor so that the processor can read and write information from and to the storage medium. Further, such a storage medium may be integrated in the processor. Further, such a storage medium and a processor may be provided in the ASIC. Such an ASIC may be provided in the radio base station eNB or the mobile station UE. Further, the storage medium and the processor may be provided as a discrete component in the radio base station eNB or the mobile station UE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本発明に係る移動局UEでは、同期状態判定部より、下りリンクの同期状態が非同期状態であることを通知された場合、(1)第1タイマーが満了している場合で、かつ、第2タイマーが起動中である場合に、無線リンク失敗状態判定部は、第2タイマーを停止し、かつ、無線リンク失敗状態であると判定するように構成されており、(2)第1タイマーが起動中である場合で、かつ、第2タイマーが起動中である場合に、無線リンク失敗状態判定部は、第2タイマーを停止するように構成されており、(3)第1タイマーが起動中でない場合に、無線リンク失敗状態判定部は、第1タイマーを開始するように構成されている。

Description

移動局及び移動通信方法
 本発明は、移動局及び移動通信方法に関する。
 一般に、移動通信システムでは、無線基地局と移動局との間の同期状態が監視されるように構成されている。例えば、WCDMA方式の移動通信システムにおいては、物理レイヤにおける下りリンクの同期状態を判定するために、以下の2つの指標が定義されている。
・ 個別物理制御チャネルにおける受信品質(DPCCH(Dedicated Physical Control Channel) quality)
・ 巡回冗長検査(CRC(Cyclic Redundancy Check) check)結果
 ここで、DPCCH qualityは、パイロットシンボル(Pilot symbols)や送信電力制御(TPC: transmission power control)ビットの受信品質、例えば、SIR(signal‐to‐interference power ratio)や受信レベルに相当し、CRC check結果は、ブロックエラーレート(Block error rate)に相当する。
 上述の物理レイヤにおける下りリンクの同期状態の判定のための判定区間は、例えば、160msである。また、後述するように、RRCレイヤにおける無線リンク失敗(RLF:Radio Link Failure)状態であるか否かについての判定は、10ms毎の下りリンクの同期状態の判定結果に基づいて行われる。
 すなわち、WCDMA方式の移動通信システムにおいては、上述の物理レイヤから報告される下りリンクの同期状態に基づくRRCレイヤにおける無線リンク失敗であるか否かについての判定及び無線リンク失敗状態である場合の移動局UEの動作が定義されている。
 図14を参照して、上述したRRCレイヤにおける無線リンク失敗状態であるか否かについての判定及び無線リンク失敗状態における移動局UEの動作について説明する。
 ステップS102において、移動局UEは、物理レイヤより連続してN313回の「Out‐of‐sync」、すなわち、「同期状態:NG」の報告を受信した場合(S102:YES)、タイマーT313を起動する(S104)。なお、ステップS102及びS104は、タイマーT313が起動していない場合にのみ行われてもよい。
 一方、ステップS106において、移動局UEは、物理レイヤより連続してN315回の「In‐sync」、すなわち、「同期状態:OK」の報告を受信した場合(S106:YES)、タイマーT313を停止する(S108)。なお、ステップS106及びS108は、タイマーT313が起動している場合にのみ行われてもよい。
 そして、T313が満了した場合(ステップS110:YES)、本動作は、ステップS112に進む。なお、T313が満了しない場合(ステップS110:NO)、本動作は、ステップS102に戻る。なお、ステップS110は、T313が起動している場合及びT313が起動していない場合の両方で行われてもよい。
 ステップS102乃至S110の処理は、無線基地局eNB及び移動局UEが接続状態である間、常に行われてよい。或いは、ステップS102乃至S110の処理は、無線基地局eNB及び移動局UEが接続状態である間で、かつ、10ms毎に行われてもよい。ここで、10msとは、1無線フレーム(Radio Frame)のことを指す。また、接続状態とは、RRC_Connected状態のことであってもよい。
 ステップS112において、移動局UEは、無線基地局eNBと移動局UEとの間の通信状態が無線リンク失敗状態であると看做す。
 無線リンク失敗状態とは、RLF(Radio Link Failure)状態と呼ばれてもよく、無線基地局eNBと移動局UEとの間の通信品質が著しく劣化し、通信不可能である状態のことを指す。
 ステップS114において、移動局UEは、無線基地局eNBとの間の通信の設定(Configuration)をクリアする。
 ステップS116において、移動局UEは、再接続の処理を行う。ここで、再接続の処理は、「Cell Update処理」と呼ばれてもよい。なお、移動局UEは、進行中の処理が存在しない場合や、或いは、進行中の処理の中で、無線リンク失敗状態時の動作が規定されていない場合に、上述の再接続の処理を行ってもよい。
 かかる場合、移動局UEは、進行中の処理が存在し、かつ、進行中の処理の中で、無線リンク失敗状態時の動作が規定されている場合に、前記進行中の処理の中の無線リンク失敗状態時の動作を行う。
 ここで、上述したT313やT315やN313といったパラメータは、ヒステリシスや保護段数に相当するパラメータであり、精度良く、かつ、適切なタイミングで、無線リンク失敗状態を判定するためのパラメータである。
 ところで、移動通信システムにおいては、移動局UEにおける消費電力の低減のため、すなわち、バッテリーセービングのために、間欠受信(DRX:Discontinuous Reception)制御が適用される。
 例えば、WCDMA方式の後継となる通信方式であるLTE(Long Term Evolution)方式の移動通信システムにおける間欠受信制御は、無線基地局eNBと移動局UEとが接続中であり、かつ、通信すべきデータが存在しない場合に適用され、間欠受信状態にある移動局UEは、周期的に、すなわち、間欠的に、物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)を介して送信される下り制御信号を受信するように構成されている。
 かかる場合、移動局UEは、全てのタイミングではなく、間欠的に、物理下りリンク制御チャネルPDCCHを介して送信される下り制御信号を受信すればよいため、バッテリーの消費電力を低減することが可能となる。
 より具体的には、移動局UEは、図15に示すように、DRX周期(図15の例では、1280ms)毎に設定される受信区間(図15の例では、5ms)においてのみ、物理下りリンク制御チャネルPDCCHを介して送信される下り制御信号を受信し、それ以外の送受信機をOFFとするように構成されている。その結果、移動局UEにおいて、バッテリーの消費電力を低減することが可能となる。前記受信区間は、On‐durationと呼ばれてもよい。
 上述したように、RRCレイヤにおける無線リンク失敗状態についての判定においては、ヒステリシスや保護段数に相当するパラメータにより、精度良く、かつ、適切なタイミングで判定が行われている。
 一方、上述したように、移動通信システムにおいては、無線基地局eNBと移動局UEとが接続中である場合に、間欠受信制御が適用される。すなわち、各移動局UEの状態として、通信すべきデータの有無に応じて、間欠受信状態及び非間欠受信状態の2種類の状態が存在する。
 ここで、間欠受信状態である移動局UEは、間欠受信制御によるバッテリーセービング効果を維持するため、一般に、間欠受信制御における受信区間においてのみ、上述した下りリンクの同期状態の判定を行うように構成されている。
 これは、非間欠受信状態においては、物理レイヤからRRCレイヤに対して、高頻度に、例えば、10ms毎に下りリンクの同期状態が通知されるのに対し、間欠受信状態においては、間欠受信制御における受信区間においてのみ、下りリンクの同期状態が通知されることを意味する。
 上述したように、移動局UEが間欠受信状態にある場合、物理レイヤからの通知が、低頻度となるため、RRCレイヤにおける、ヒステリシスや保護段数に相当するパラメータを用いた判定を適切に行うことができないという問題が存在する。
 そこで、本発明は、上述の課題に鑑みてなされたものであり、間欠受信状態において、無線リンク失敗状態を適切に判定することを可能とする移動局及び移動通信方法を提供することを目的とする。
 本発明の第1の特徴は、無線基地局と通信する移動局であって、前記移動局におけるサービングセルの無線品質に基づいて、下りリンクの同期状態を判定するように構成されている同期状態判定部と、前記判定結果に基づいて、無線リンク失敗状態であるか否かについて判定するように構成されている無線リンク失敗状態判定部と、前記無線リンク失敗状態判定部によって、前記無線リンク失敗状態であると判定された場合、前記無線基地局との接続を再構築するように構成されている接続再構築部とを具備し、前記同期状態判定部より、前記下りリンクの同期状態が非同期状態であることを通知された場合、(1)第1タイマーが満了している場合で、かつ、第2タイマーが起動中である場合に、前記無線リンク失敗状態判定部は、前記第2タイマーを停止し、かつ、無線リンク失敗状態であると判定するように構成されており、(2)前記第1タイマーが起動中である場合で、かつ、前記第2タイマーが起動中である場合に、前記無線リンク失敗状態判定部は、前記第2タイマーを停止するように構成されており、(3)前記第1タイマーが起動中でない場合に、前記無線リンク失敗状態判定部は、前記第1タイマーを開始するように構成されていることを要旨とする。
 本発明の第1の特徴において、前記同期状態判定部より、前記下りリンクの同期状態が同期状態であることを通知された場合、(1)前記第2タイマーが満了している場合に、前記無線リンク失敗状態判定部は、前記第1タイマーを停止するように構成されており、(2)前記第1タイマーが起動中であり、かつ、前記第2タイマーが起動中でない場合に、前記無線リンク失敗状態判定部は、前記第2タイマーを開始するように構成されていてもよい。
 本発明の第1の特徴において、前記第1タイマー及び前記第2タイマーは、間欠受信状態及び非間欠受信状態のそれぞれに関して、別々に設定されていてもよい。
 本発明の第1の特徴において、間欠受信状態である場合に、前記同期状態判定部は、前記間欠受信状態のON区間において、前記下りリンクの同期状態を判定するように構成されており、前記無線リンク失敗状態判定部は、前記第1タイマーが満了したタイミングから直近の前記間欠受信のON区間において、無線リンク失敗状態であると判定するように構成されていてもよい。
 本発明の第1の特徴において、間欠受信状態である場合に、前記同期状態判定部は、前記間欠受信状態のON区間において、前記下りリンクの同期状態を判定するように構成されており、前記無線リンク失敗状態判定部は、前記第2タイマーが満了したタイミングから直近の前記間欠受信のON区間において、前記第1タイマーを停止するように構成されていてもよい。
 本発明の第2の特徴は、無線基地局と移動局との間で通信する移動通信方法であって、前記移動局が、該移動局におけるサービングセルの無線品質に基づき、下りリンクの同期状態を判定する工程Aと、前記移動局が、前記下りリンクの同期状態に基づいて、無線リンク失敗状態であるか否かについて判定する工程Bと、前記移動局が、前記無線リンク失敗状態であると判定された場合、前記無線基地局との接続を再構築する工程Cとを有し、前記工程Bにおいて、前記行程Aにおいて、前記下りリンクの同期状態が非同期状態であることを判定された場合、第1タイマーが満了している場合で、かつ、第2タイマーが起動中である場合には、前記移動局は、前記第2タイマーを停止し、かつ、無線リンク失敗状態であると判定し、前記第1タイマーが起動中である場合で、かつ、前記第2タイマーが起動中である場合には、前記移動局は、前記第2タイマーを停止し、前記第1タイマーが起動中でない場合に、前記移動局は、前記第1タイマーを開始することを要旨とする。
 以上説明したように、本発明によれば、間欠受信状態において、無線リンク失敗状態を適切に判定することを可能とする移動局及び移動通信方法を提供することができる。
図1は、本発明の第1の実施形態に係る移動通信システムの全体構成図である。 図2は、本発明の第1の実施形態に係る移動局の機能ブロック図である。 図3は、本発明の第1の実施形態に係る移動局の同期状態判定部による同期状態の判定の様子について説明するための図である。 図4は、本発明の第1の実施形態に係る移動局の無線リンク失敗状態判定部による無線リンク失敗の判定の様子について説明するための図である。 図5は、本発明の第1の実施形態に係る移動局の無線リンク失敗状態判定部による無線リンク失敗の判定の様子について説明するための図である。 図6は、本発明の第1の実施形態に係る移動局の無線リンク失敗状態判定部による無線リンク失敗の判定の様子について説明するための図である。 図7は、本発明の第1の実施形態に係る移動局において用いられる間欠受信用パラメータ及び非間欠受信用パラメータの一例を示す図である。 図8は、本発明の第1の実施形態に係る無線基地局の機能ブロック図である。 図9は、本発明の第1の実施形態に係る移動局の動作を示すフローチャートである。 図10は、本発明の変更例1に係る移動局の無線リンク失敗状態判定部による無線リンク失敗の判定の様子について説明するための図である。 図11は、本発明の変更例1に係る移動局の無線リンク失敗状態判定部による無線リンク失敗の判定の様子について説明するための図である。 図12は、本発明の変更例2に係る移動局の無線リンク失敗状態判定部による無線リンク失敗の判定の様子について説明するための図である。 図13は、本発明の変更例2に係る移動局の無線リンク失敗状態判定部による無線リンク失敗の判定の様子について説明するための図である。 図14は、一般的な移動局の動作を示すフローチャートである。 図15は、一般的な移動局における間欠受信について説明するための図である。 図16は、本発明の第1の実施形態に係る移動局の無線リンク失敗状態判定部による無線リンク失敗の判定の様子について説明するための図である。 図17は、本発明の第1の実施形態に係る移動局の動作を示すフローチャートである。 図18は、本発明の第1の実施形態に係る移動局の動作を示すフローチャートである。 図19は、本発明の第1の実施形態に係る移動局の動作を示すフローチャートである。
(本発明の第1の実施形態に係る移動通信システムの構成)
 図1乃至図7を参照して、本発明の第1の実施形態に係る移動通信システムの構成について説明する。
 図1に示すように、本実施形態に係る移動通信システムは、LTE方式の移動通信システムである。かかる移動通信システムでは、無線アクセス方式として、下りリンクについては「OFDM(Orthogonal Frequency Division Multiplexing)方式」が適用され、上りリンクについては「SC‐FDMA(Single‐Carrier Frequency Division Multiple Access)方式」が適用されることが検討されている。
 OFDM方式は、特定の周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各周波数帯域上にデータを載せて伝送を行う方式である。かかるOFDM方式によれば、サブキャリアを周波数軸上で一部重なりあいながらも互いに干渉することなく密に並べることで、高速伝送を実現し、周波数の利用効率を上げることができる。
 また、SC‐FDMA方式は、特定の周波数帯域を分割し、複数の移動局UEの間で異なる周波数帯域を用いて伝送することで、複数の移動局UEの間における干渉を低減することができる伝送方式である。SC‐FDMA方式によれば、送信電力の変動が小さくなる特徴を有することから、移動局UEの低消費電力化及び広いカバレッジを実現することができる。
 また、本実施形態に係る移動通信システムでは、無線基地局eNBが、物理下り制御チャネルPDCCHを介して下り制御信号を送信し、物理下り共有データチャネルPDSCH(Physical Downlink Shared Channel)を介して下りデータ信号を送信するように構成されている。
 一方、本実施形態に係る移動通信システムでは、移動局UEは、物理上り共有データチャネルPUSCH(Physical Uplink Shared Channel)を介して上りデータ信号を送信するように構成されている。
 図2に示すように、移動局UEは、状態管理部11と、パラメータ取得部12と、同期状態判定部13と、無線リンク失敗状態判定部14と、再接続処理部15とを具備している。
 状態管理部11は、移動局UEが間欠受信状態であるか否かについて管理するように構成されている。状態管理部11は、同期状態判定部13と無線リンク失敗状態判定部14とに対して、移動局UEが間欠受信状態であるか否か、すなわち、間欠受信状態であるか又は非間欠受信状態であるかについて通知する。
 なお、移動局UEが非間欠受信状態であるとは、すなわち、移動局UEがActive状態であるという意味であってよい。例えば、Active状態は、3GPP TS36.321,V8.2.0,5.7章に定義されている。また、この場合、Active状態でない状態が、間欠受信状態に相当する。
 パラメータ取得部12は、無線基地局eNBから、間欠受信状態用パラメータ及び非間欠受信状態用パラメータを取得するように構成されている。パラメータ取得部12は、かかる間欠受信状態用パラメータ及び非間欠受信状態用パラメータを、無線リンク失敗状態判定部14に通知する。
 なお、間欠受信状態用パラメータ及び非間欠受信状態用パラメータは、報知情報の一部として通知されてもよいし、セル内の各移動局UEに対して個別に通知されるRRC Signaling内の情報の一部として通知されてもよい。
 同期状態判定部13は、移動局UEにおけるサービングセルの無線品質を測定し、かかる無線品質に基づいて、下りリンクの同期状態を判定するように構成されている。ここで、移動局UEにおけるサービングセルの無線品質とは、無線基地局eNBと移動局UEとの間の下りリンクの無線リンクの品質である。
 例えば、同期状態判定部13は、移動局UEにおけるサービングセルの無線品質として、移動局UEのサービングセルからの信号(例えば、参照信号(RS:Reference Signal)等)のSIRを測定し、かかるSIRに基づいて、下りリンクの同期状態を判定してもよい。
 より具体的には、同期状態判定部13は、かかるSIRが所定閾値よりも大きい場合に、下りリンクの同期状態がOKである、すなわち、In‐syncであると判定し、かかるSIRが所定閾値以下の場合に、下りリンクの同期状態がNGである、すなわち、Out‐of‐syncであると判定してもよい。
 或いは、同期状態判定部13は、図3に示すように、Qout及びQinの2つの閾値を設定し、上述のSIRとQoutとQinとに基づいて、下りリンクの同期状態を判定してもよい。
 ここで、Qout<Qinであり、QinとQoutと差、すなわち、「Qin‐Qout」がヒステリシスに相当する。すなわち、図3の例においては、同期状態判定部13は、T<Aにおいては、SIRがQoutよりも大きいため、In‐syncであると判定し、時刻T=Aにおいて、SIRがQout以下となったことに基づき、Out‐of‐syncであると判定する。
 そして、同期状態判定部13は、時刻T=Bにおいて、SIRがQinより大きくなったことに基づき、In‐syncであると判定し、その後、時刻T=Cにおいて、SIRがQout以下となったことに基づき、Out‐of‐syncであると判定する。
 このように、2つの閾値を設定することにより、すなわち、「Qin‐Qout」というヒステリシスを設定することにより、In‐syncとOut‐of‐syncとの判定におけるばたつきを低減することが可能となる。
 なお、同期状態判定部13は、上述のSIRの値として、瞬時のSIRを所定平均化区間で平均化した値を用いてもよい。ここで、所定平均化区間としては、例えば、160msであってもよいし、200msであってもよいし、20msであってもよいし、それ以外の値であってもよい。
 また、前記SIRの値は、周波数方向に関して、システム帯域全体で平均した値であってもよいし、システム帯域内の一部の帯域で平均した値であってもよい。前記システム帯域内の一部の帯域とは、例えば、システム帯域の中心に位置する、所定の帯域幅を有する帯域であってもよい。あるいは、前記システム帯域内の一部の帯域とは、例えば、同期信号または物理報知チャネルが送信される帯域であってもよい。
 或いは、同期状態判定部13は、移動局UEが非間欠受信状態である場合には、160msの平均化区間で平均化したSIRを用いて、下りリンクの同期状態を判定し、移動局UEが間欠受信状態である場合には、間欠受信制御のOn‐duration(ON区間)におけるSIRを用いて、下りリンクの同期状態を判定してもよい。
 なお、前記間欠受信制御のOn‐durationにおけるSIRは、On‐durationにおける瞬時のSIRであってもよいし、On‐durationにおける平均のSIRであってもよいし、複数のOn‐durationにおけるSIRを平均化した値であってもよい。
 同期状態判定部13は、上述した下りリンクの同期状態の判定結果(In‐sync/Out‐of‐sync)を無線リンク失敗状態判定部14に通知する。
 なお、同期状態判定部13は、上述の下りリンクの同期状態の判定結果(In‐sync/Out‐of‐sync)を、10ms毎に、無線リンク失敗状態判定部14に通知してもよい。ここで、上述の10msは、あくまでも一例であり、10ms以外の値であってもよい。
 また、同期状態判定部13は、上述の下りリンクの同期状態の判定結果(In‐sync/Out‐of‐sync)を、無線リンクフレーム(Radio Link Frame)毎に、無線リンク失敗状態判定部14に通知してもよい。
 或いは、同期状態判定部13は、移動局UEが非間欠受信状態である場合には、10ms毎に下りリンクの同期状態の判定結果を無線リンク失敗状態判定部14に通知し、移動局UEが間欠受信状態である場合には、DRX周期毎に下りリンクの同期状態の判定結果を無線リンク失敗状態判定部14に通知してもよい。
 ここで、「DRX周期毎に下りリンクの同期状態の判定結果を通知する」とは、例えば、「DRX周期毎に存在するOn‐durationのタイミングで、下りリンクの同期状態の判定結果を通知する」という意味であってよい。
 なお、同期状態判定部13は、前記移動局UEが間欠受信状態であるか否かについての情報は、状態管理部11より取得する。
 また、同期状態判定部13は、上述した例において、サービングセルの無線品質として、リファレンス信号(Reference Signal)のSIRを用いたが、代わりに、リファレンス信号の受信電力(Reference Signal Received Power(RSRP))やReference Signal Received Quality(RSRQ)、CQIを用いてもよい。
 或いは、同期状態判定部13は、リファレンス信号のSIRの代わりに、PDCCHの誤り率や、PCFICHの誤り率や、PCFICHにおけるSIRや、PDSCHの誤り率や、DL RSのシンボル誤り率等を用いてもよい。
 或いは、同期状態判定部13は、サービングセルの無線品質として、リファレンス信号(Reference Signal)のSIRや、リファレンス信号の受信電力や、RSRQや、CQIや、PDCCHの誤り率や、PCFICHの誤り率や、PCFICHのSIRや、PDSCHの誤り率や、DL RSのシンボル誤り率の内の少なくとも1つを用いてもよい。
 尚、RSRQ(Reference Signal Received QualityPower)とは、下りリンクの参照信号の受信電力を、下りリンクのRSSI(Received Signal Strength Indicator)で割った値である。ここで、RSSIとは、移動局において観測されるトータルの受信レベルであり、熱雑音や他セルからの干渉電力や、自セルからの希望信号の電力等の全てを含んだ受信レベルのことである(RSRQの定義については、3GPP TS36.214、V8.3.0参照)。また、CQI(Channel Quality Indicator)とは、下りリンクの無線品質情報である(CQIの定義については、3GPP TS36.213、V8.3.0参照)。
 無線リンク失敗状態判定部14は、上述の同期状態判定部13における下りリンクの同期状態の判定結果と、パラメータ取得部12より指定される間欠受信状態用パラメータ及び非間欠受信状態用パラメータとに基づいて、無線リンク失敗状態であるか否かについて判定するように構成されている。
 例えば、無線リンク失敗状態判定部14は、同期状態判定部13より、N313回連続して、Out‐of‐syncが報告された場合に、タイマーを起動し、かかるタイマーが満了した場合に、無線リンク失敗状態であると判定してもよい。
 より具体的には、無線リンク失敗状態判定部14は、図4に示すように、時刻T=Aから時刻T=Bまでの間に、同期状態判定部13から、連続してN313回、下りリンクの同期状態として、Out‐of‐syncを示す通知を受信する。
 かかる場合、時刻T=Bにおいて、無線リンク失敗状態判定部14は、タイマーT313を起動する。そして、無線リンク失敗状態判定部14は、タイマーT313が満了した場合に(時刻T=C)、無線リンク失敗状態であると判定する。前記タイマーT313は、第1タイマーに相当する。
 ここで、図5に示すように、無線リンク失敗状態判定部14は、タイマーT313を起動している状態において、同期状態判定部13より、時刻T=Cから時刻T=Dまでの間に、連続してN315回、下りリンクの同期状態として、In‐syncという通知を受信する。
 かかる場合、時刻T=Dにおいて、無線リンク失敗状態判定部14は、タイマーT313を停止する。この場合、タイマーT313が満了する前に停止されたため、無線リンク失敗状態判定部14は、無線リンク失敗状態であるとは判定しない。
 なお、上述した例において、N313やN315は、Out‐of‐sync又はIn‐syncが連続して通知される回数に関する閾値であったが、代わりに、Out‐of‐sync又はIn‐syncが連続して通知される時間に関する閾値であってもよい。すなわち、N313やN315は、T313と同様にタイマーとして扱われてもよい。
 例えば、図6に示すように、時刻T=AからT=Bまでの時間(B-A)が「N313」に相当し、「N313」で定義される時間の間、Out‐of‐syncが連続して通知された場合に、すなわち、Out‐of‐syncのみが通知された場合に、無線リンク失敗状態判定部14は、時刻T=Bにおいて、タイマーT313を起動するという処理を行ってもよい。
 すなわち、図6において、無線リンク失敗状態判定部14は、同期状態判定部13より、下りリンクの同期状態として、Out‐of‐syncという通知を受信したタイミングである時刻T=Aにおいて、タイマーN313を起動し、前記タイマーN313が満了するまでの間、すなわち、タイマーN313が起動中である間(時刻T=AからT=Bまでの時間(B-A))、Out‐of‐syncが連続して通知された場合に、すなわち、Out‐of‐syncのみが通知された場合に、無線リンク失敗状態判定部14は、時刻T=Bにおいて、タイマーT313を起動(開始)するという処理を行ってもよい。
 また、無線リンク失敗状態判定部14は、前記タイマーN313が起動中である状態において、In‐syncが通知された場合に、タイマーN313を停止してもよい。
 或いは、例えば、図6において、時刻T=CからT=Dまでの時間(D-C)が「N315」に相当し、「N315」で定義される時間の間、In‐syncが連続して通知された場合に、すなわち、In‐syncのみが通知された場合に、無線リンク失敗状態判定部14は、時刻T=Dにおいて、タイマーT313を停止するという処理を行ってもよい。この場合、N315は、第2タイマーに相当する。
 すなわち、図6において、無線リンク失敗状態判定部14は、同期状態判定部13より、下りリンクの同期状態として、In‐syncという通知を受信したタイミングである時刻T=Cにおいて、第2タイマーN315を起動し、第2タイマーN315が満了するまでの間、すなわち、前記第2タイマーN315が起動中である間(時刻T=CからT=Dまでの時間(D-C))、In‐syncが連続して通知された場合に、すなわち、In‐syncのみが通知された場合に、無線リンク失敗状態判定部14は、時刻T=Dにおいて、タイマーT313を停止するという処理を行ってもよい。
 また、無線リンク失敗状態判定部14は、第2タイマーであるN315が起動中である状態において、Out‐of‐syncが通知された場合に、第2タイマーN315を停止してもよい。
 すなわち、上述したN313やN315は、その単位として、同期状態判定部13より同期状態を通知される回数であってもよいし、代わりに、同期状態判定部13より同期状態を通知される時間であってもよい。
 また、上述した例においては、無線リンク失敗状態であるか否かを判定するために、3つのパラメータ「N313」、「T313」、「N315」が定義されたが、代わりに、3つのパラメータ、「N313」、「T313」、「N315」の内の少なくとも1つが、無線リンク失敗状態であるか否かを判定するためのパラメータとして用いられてもよい。
 無線リンク失敗状態判定部14は、無線リンク失敗状態であると判定した場合に、かかる判定結果を、再接続処理部15に通知する。
 ここで、間欠受信状態における、同期状態判定部13におけるOut‐of‐sync/In‐syncの判定と、無線リンク失敗状態判定部14におけるタイマーT313やN313やN315を用いた無線リンク失敗状態であるか否かの判定との時間関係を示す。
 尚、以下の説明では、N313及びN315は、上述したように、Out‐of‐sync又はIn‐syncが連続して通知される回数に関する閾値ではなく、T313と同様のタイマーとして定義されていると仮定する。
 また、便宜上、以下の図16では、N313=0とする。すなわち、同期状態判定部13より、Out‐of‐syncが通知された時点で、無線リンク失敗状態判定部14は、第1タイマーT313を起動(開始)するとする。
 例えば、図16のCase1に示すように、同期状態判定部13は、間欠受信状態のOn‐durationのタイミングにおいて、Out‐of‐sync/In‐syncの判定を行い、無線リンク失敗状態判定部14は、第1タイマーであるT313が満了したタイミング(図16におけるc)から直近の間欠受信状態のON‐duration(図16におけるd)において、無線リンク失敗状態であると判定してもよい(図16におけるRFL detection)。
 言い換えれば、無線リンク失敗状態判定部14は、図16におけるdのタイミングにおいて、同期状態判定部13より、Out‐of‐syncという通知を受信し、かつ、その時点で、第1タイマーであるT313が満了していた(図16におけるc)ために、無線リンク失敗状態であると判定してもよい(図16におけるRFL detection)。
 或いは例えば、図16のCase2に示すように、同期状態判定部13は、間欠受信状態のOn‐durationのタイミングにおいて、Out‐of‐sync/In‐syncの判定を行い、無線リンク失敗状態判定部14は、第2タイマーであるN315が満了したタイミング(図16におけるb)から直近の間欠受信状態のON‐duration(図16におけるd)において、第1タイマーであるT313を停止してもよい。
 言い換えれば、無線リンク失敗状態判定部14は、図16におけるdのタイミングにおいて、同期状態判定部13より、In‐syncという通知を受信し、かつ、その時点で、第2タイマーであるN315が満了していた(図16におけるb)ために、第1タイマーであるT313を停止してもよい。
 このように、第1タイマーが満了した後の直近のOn‐durationにおいて、無線リンク失敗状態であるか否かを判定することにより、間欠受信によるバッテリーセービング効果を維持しつつ、適切に、無線リンク失敗状態の判定を行うことが可能となる。
 なお、かかる間欠受信状態用パラメータ及び非間欠受信状態用パラメータには、上述のタイマーT313を起動するための連続するOut‐of‐syncの数である「N313」や、上述の無線リンク失敗状態であることを判定するためのタイマー値である「T313」や、上述のタイマーを停止するための連続するIn‐syncの数である「N315」等が含まれている。
 ここで、図7に、間欠受信状態用パラメータ(「N313」や「T313」や「N315」)及び非間欠受信状態用パラメータ(「N313」や「T313」や「N315」)の一例を示す。
 かかる例からも分かるように、本実施形態に係る移動通信システムでは、間欠受信状態用パラメータの値及び非間欠受信状態用パラメータの値が異なるように構成されていてもよい。
 例えば、間欠受信状態用パラメータにおける第1パラメータの値(N313)は、非間欠受信状態用パラメータにおける第1パラメータの値(N313)よりも小さくなるように構成されていてもよい。
 以下に、間欠受信状態用パラメータにおける第1パラメータの値(N313=5)を、非間欠受信状態用パラメータにおける第1パラメータの値(N313=20)よりも小さくすることの効果を記載する。
 間欠受信状態においては、非間欠受信状態に比べて、下りリンク同期状態を判定する判定頻度が少ないため、結果として、それぞれの判定と判定との間の間隔が大きくなる。
 この場合、判定に要する時間をある程度適切な長さにするためには、間欠受信状態用パラメータにおける第1パラメータの値(N313=5)は、非間欠受信状態用パラメータにおける第1パラメータの値(N313=20)よりも小さくする必要がある。
 ここで、適切な長さとは、例えば、無線失敗状態であることを判定するために必要な反映時間であり、精度良く判定できるのであれば、できる限り短い値が望ましい。
 すなわち、上述したように、間欠受信状態用パラメータにおける第1パラメータの値(N313=5)を、非間欠受信状態用パラメータにおける第1パラメータの値(N313=20)よりも小さくすることにより、間欠受信状態において、適切に無線失敗状態であることの判定を行うことが可能となる。
 なお、逆に、間欠受信状態用パラメータにおける第1パラメータの値(N313)は、非間欠受信状態用パラメータにおける第1パラメータの値(N313)よりも大きくなるように構成されていてもよい。
 例えば、間欠受信状態用パラメータにおける第1パラメータの値(N313)を10とし、非間欠受信状態用パラメータにおける第1パラメータの値(N313)を2としてもよい。
 以下に、間欠受信状態用パラメータにおける第1パラメータの値(N313=10)を、非間欠受信状態用パラメータにおける第1パラメータの値(N313=2)よりも大きくすることの効果を記載する。
 間欠受信状態においては、非間欠受信状態に比べて、下りリンク同期状態を判定する判定頻度が少ないため、サンプル数を大きくする必要がある。ここで、かかるサンプル数とは、例えば、正確に無線失敗状態であることを判定するために必要なサンプル数である。
 よって、上述したように、間欠受信状態用パラメータにおける第1パラメータの値(N313=10)を、非間欠受信状態用パラメータにおける第1パラメータの値(N313=2)よりも大きくすることにより、間欠受信状態において、適切に無線失敗状態であることの判定を行うことが可能となる。
 同様に、間欠受信状態用パラメータにおける第2パラメータの値(T313=3)を、非間欠受信状態用パラメータにおける第2パラメータの値(T313=5)よりも小さくすることにより、間欠受信状態において、無線失敗状態であることの判定を行う時間を短くすることが可能となる。
 また、間欠受信状態用パラメータにおける第2パラメータの値(T313)を、非間欠受信状態用パラメータにおける第2パラメータの値(T313)よりも大きくすることにより、間欠受信状態において、適切に無線失敗状態であることの判定を行うことが可能となる。
 同様に、間欠受信状態用パラメータにおける第3パラメータの値(N315=1)を、非間欠受信状態用パラメータにおける第3パラメータの値(N315=2)よりも小さくすることにより、間欠受信状態において、無線失敗状態であるか否かの判定を行う時間を短くすることが可能となる。
 また、間欠受信状態用パラメータにおける第3パラメータの値(N315)を、非間欠受信状態用パラメータにおける第3パラメータの値(N315)よりも大きくすることにより、間欠受信状態において、適切に無線失敗状態であるか否かの判定を行うことが可能となる。
 すなわち、移動局UEが、間欠受信状態である場合に、無線リンク失敗状態判定部14は、同期状態判定部13によって判定された下りリンクの同期状態、及び、パラメータ取得部12によって取得された間欠受信状態用パラメータに基づいて、無線リンク失敗状態であるか否かについて判定するように構成されている。
 一方、移動局UEが、間欠受信状態でない場合に、無線リンク失敗状態判定部14は、同期状態判定部13によって判定された下りリンクの同期状態、及び、パラメータ取得部12によって取得された非間欠受信状態用パラメータに基づいて、無線リンク失敗状態であるか否かについて判定するように構成されている。
 再接続処理部15は、無線リンク失敗状態判定部14から、無線リンク失敗状態であるという判定結果を通知された場合に、再接続の処理を行う。また、再接続処理部15は、前記再接続の処理を行う前に、移動局UEと無線基地局eNBとの間の通信の設定(Configuration)をクリアしてもよい。
 なお、再接続の処理とは、例えば、「Cell Update処理」と呼ばれてもよい。また、「Cell Update処理」とは、例えば、セルサーチ、サーチしたセルの無線品質のメジャメント等を行い、通信可能なセルが存在する場合に、当該セルに対して接続の構築を再度行うことを指す。なお、「Cell Update処理」は、「Connection Re‐establishment処理」と呼ばれてもよい。
 また、移動局は、進行中の処理が存在しない場合や、或いは、進行中の処理の中で、無線リンク失敗状態時の動作が規定されていない場合に、上述の再接続の処理を行ってもよい。この場合、進行中の処理が存在し、かつ、進行中の処理の中で、無線リンク失敗状態時の動作が規定されている場合には、前記進行中の処理の中の無線リンク失敗状態時の動作を行ってもよい。
 図8に示すように、無線基地局eNBは、パラメータ通知部21と、再接続処理部22とを具備している。
 パラメータ通知部21は、移動局UEに対して、上述の間欠受信状態用パラメータ及び非間欠受信状態用パラメータを通知するように構成されている。
 具体的には、パラメータ通知部21は、物理下り共有チャネルPDSCHを介して、移動局UEに対して、上述の間欠受信状態用パラメータ及び非間欠受信状態用パラメータを通知するように構成されている。
 なお、上述の間欠受信状態用パラメータ及び非間欠受信状態用パラメータは、報知情報の一部として移動局UEに対して通知されてもよいし、個別の制御信号、RRC Message内の情報の一部として、移動局UEに対して通知されてもよい。
 再接続処理部22は、移動局UEが、上述した再接続の処理を行い、再接続のためのSignalingを通知してきた場合に、再接続の処理を行う。すなわち、移動局UEとのコネクション(接続)を再構築するための処理を行う。
(本発明の第1の実施形態に係る移動通信システムの動作)
 図17乃至図19を参照して、本発明の第1の実施形態に係る移動通信システムの動作について説明する。尚、以下の説明では、N313及びN315は、上述したように、Out‐of‐sync又はIn‐syncが連続して通知される回数に関する閾値ではなく、T313と同様のタイマーとして定義されていると仮定する。
 また、便宜上、以下の図16では、N313=0とする。すなわち、同期状態判定部13より、Out‐of‐syncが通知された時点で、無線リンク失敗状態判定部14は、第1タイマーT313を起動(開始)するとする。
 ステップS301において、無線リンク失敗状態判定部14は、同期状態判定部13よりOut‐of‐syncが通知されるか否かを判定し、Out‐of‐syncが通知される場合に(ステップS301:YES)、図18の処理に進み、Out‐of‐syncが通知されない場合に(ステップS301:NO)、ステップS302に進む。
 ステップS302において、無線リンク失敗状態判定部14は、同期状態判定部13よりIn‐syncが通知されるか否かを判定し、In‐syncが通知される場合に(ステップS302:YES)、図19の処理に進み、In‐syncが通知されない場合に(ステップS302:NO)、ステップS303に進む。
 ステップS303において、無線リンク失敗状態判定部14は、RA(Random Access)手順が失敗するか否か、又は、RLC Layerにおいて、最大再送超過が発生するか否かを判定する。RA手順が失敗する、又は、RLC Layerにおいて、最大再送超過が発生した場合に(ステップS303:YES)、ステップS304の処理に進み、それ以外の場合に(ステップS303:NO)、処理を終了する。
 次に、図18を参照して、同期状態判定部13よりOut‐of‐syncが通知された場合の動作を説明する。
 ステップS401において、無線リンク失敗状態判定部14は、第1タイマーT313が満了しているか否かを判定する。すなわち、無線リンク失敗状態判定部14は、第1タイマーT313が満了している場合に(ステップS401:YES)、ステップS402の処理に進み、それ以外の場合に(ステップS401:NO)、ステップS404に進む。
 ステップS402において、無線リンク失敗状態判定部14は、第2タイマーであるN315を停止する。尚、N315が起動中でない場合には、本処理は行われない。すなわち、無線リンク失敗状態判定部14は、第2タイマーであるN315が起動中である場合には、N315を停止する。
 ステップS403において、無線リンク失敗状態判定部14は、無線リンク失敗状態であると判定する。
 ステップS404において、無線リンク失敗状態判定部14は、第1タイマーT313が起動中であるか否かを判定する。すなわち、無線リンク失敗状態判定部14は、第1タイマーT313が起動中である場合に(ステップS404:YES)、ステップS405の処理に進み、それ以外の場合に(ステップS404:NO)、ステップS406に進む。
 ステップS405において、無線リンク失敗状態判定部14は、第2タイマーであるN315を停止する。尚、N315が起動中でない場合には、本処理は行われない。すなわち、無線リンク失敗状態判定部14は、第2タイマーであるN315が起動中である場合には、N315を停止する。
 ステップS406において、無線リンク失敗状態判定部14は、第1タイマーT313を起動する。なお、ステップS406において、すでに第1タイマーT313が起動されている場合、すなわち、ステップS404の判定がYESであり、ステップS405を経由して本処理が行われる場合には、すでに起動されている第1タイマーT313の起動を継続するという意味であってもよい。
 次に、図19を参照して、同期状態判定部13よりIn‐syncが通知された場合の動作を説明する。
 ステップS501において、無線リンク失敗状態判定部14は、第2タイマーN315が満了しているか否かを判定する。すなわち、無線リンク失敗状態判定部14は、第2タイマーN315が満了している場合に(ステップS501:YES)、ステップS502の処理に進み、それ以外の場合に(ステップS501:NO)、ステップS503に進む。
 ステップS502において、無線リンク失敗状態判定部14は、第1タイマーであるT313を停止する。なお、この時、無線リンク失敗状態判定部は、無線リンク状態が復活したとみなしてもよい。
 ステップS503において、無線リンク失敗状態判定部14は、第1タイマーT313が起動中であるか否か、また、第2タイマーN315が起動していないか否かを判定する。すなわち、無線リンク失敗状態判定部14は、第1タイマーT313が起動中であり、かつ、第2タイマーであるN315が起動していない場合に(ステップS503:YES)、ステップS504の処理に進み、それ以外の場合に(ステップS503:NO)、処理を終了する。
 ステップS504において、無線リンク失敗状態判定部14は、第2タイマーであるN315を起動(開始)する。
 尚、上述の図17、図18及び図19で示した処理は、間欠受信状態においても、非間欠受信状態においても適用される。
 より具体的には、図16で説明を行った間欠受信状態における処理においては、同期状態判定部13は、間欠受信状態におけるOn‐durationにおいて、Out‐of‐sync/In‐syncの判定を行い、無線リンク失敗状態判定部14は、同期状態判定部13から、Out‐of‐sync/In‐syncを受信したタイミングにおいて、第1タイマーT313や第2タイマーN315が、満了しているか、起動中であるか、起動していない状態であるかに基づいて、上述した処理を行う。
 この場合、例えば、第1タイマーT313や第2タイマーN315が満了するタイミングは、前記On‐durationとは異なっていてもよい。言い換えれば、第1タイマーT313や第2タイマーN315が満了した場合、そのタイミングから直近のOn‐durationにおいて、上述した図17、図18及び図19の処理が行われてもよい。
 図9を参照して、本発明の第1の実施形態に係る移動通信システムの動作について説明する。本動作においては、上述したように、N313やT313、N315といったパラメータとして、間欠受信状態用のパラメータと非間欠受信状態用のパラメータの2種類が定義されている場合の動作を示す。
 ステップS201において、移動局UEは、間欠受信状態(DRX状態)であるか否かについて判定する。間欠受信状態(DRX状態)でない場合、本動作は、ステップS202に進み、間欠受信状態(DRX状態)である場合、本動作は、ステップS207に進む。
 ステップS202において、移動局UEは、物理レイヤより連続してN313Non DRX(非間欠受信状態用パラメータにおける第1パラメータ)回の「Out‐of‐sync」、すなわち、「同期状態:NG」の報告を受信した場合(S202:YES)、タイマーT313Non DRXを起動する(S203)。なお、ステップS202及びS204は、タイマーT313Non DRX(非間欠受信状態用パラメータにおける第2パラメータ)が起動していない場合にのみ行われてもよい。
 一方、ステップS204において、移動局UEは、物理レイヤより連続してN315Non DRX(非間欠受信状態用パラメータにおける第3パラメータ)回の「In‐sync」、すなわち、「同期状態:OK」の報告を受信した場合(S204:YES)、タイマーT313Non DRXを停止する(S205)。なお、ステップS204及びS205は、タイマーT313Non DRXが起動している場合にのみ行われてもよい。
 そして、T313Non DRXが満了した場合(ステップS206:YES)、本動作は、ステップS212に進む。なお、T313Non DRXが満了しない場合(ステップS206:NO)、本動作は、ステップS201に戻る。なお、ステップS206は、T313Non DRXが起動している場合及びT313Non DRXが起動していない場合の両方で行われてもよい。
 一方、ステップS207において、移動局UEは、物理レイヤより連続してN313DRX(間欠受信状態用パラメータにおける第1パラメータ)回の「Out‐of‐sync」、すなわち、「同期状態:NG」の報告を受信した場合(S207:YES)、タイマーT313DRXを起動する(S208)。なお、ステップS207及びS208は、タイマーT313DRX(間欠受信状態用パラメータにおける第2パラメータ)が起動していない場合にのみ行われてもよい。
 一方、ステップS209において、移動局UEは、物理レイヤより連続してN315DRX(間欠受信状態用パラメータにおける第3パラメータ)回の「In‐sync」、すなわち、「同期状態:OK」の報告を受信した場合(S209:YES)、タイマーT313DRXを停止する(S210)。なお、ステップS209及びS210は、タイマーT313DRXが起動している場合にのみ行われてもよい。
 そして、T313DRXが満了した場合(ステップS211:YES)、本動作は、ステップS212に進む。なお、T313DRXが満了しない場合(ステップS211:NO)、本動作は、ステップS201に戻る。なお、ステップS211は、T313DRXが起動している場合及びT313DRXが起動していない場合の両方で行われてもよい。
 ステップS212において、移動局UEは、無線基地局eNBと移動局UEとの間の通信状態が無線リンク失敗状態であると看做す。
 ステップS213において、移動局UEは、無線基地局eNBとの間の通信の設定(Configuration)をクリアする。
 ステップS214において、移動局UEは、再接続の処理を行う。
(本発明の第1の実施形態に係る移動通信システムの作用・効果)
 本発明の第1の実施形態に係る移動通信システムによれば、DRX状態であるか否かに応じて、間欠受信状態用パラメータ及び非間欠受信状態用パラメータの値を変更することができるため、移動局UEが、適切なタイミングで、かつ、適切な正確性で無線リンク失敗状態であることを判定することができ、通信品質の安定や、通信の再構築の迅速性、更にはユーザ利便性を向上することができる。
(変更例1)
 本発明の変更例1では、図10及び図11に示すように、上述した例(図4及び図5)において、「N313=1」及び「N315=1」とされている。
 ここで、間欠受信状態用パラメータにおける第2パラメータ「T313」と非間欠受信状態用パラメータにおける第2パラメータ「T313」とを同一としてもよいし、間欠受信状態用パラメータにおける第2パラメータ「T313」と非間欠受信状態用パラメータにおける第2パラメータ「T313」とを別々としてもよい。
 前者によれば、「N313」及び「N315」がないため、よりシンプルな構造になっており、時間で制御するため、間欠受信状態と非間欠受信状態とで、無線リンク失敗状態であることを判定するための時間が同じであると考える場合、適切に制御が可能である。
 後者によれば、「N313」及び「N315」がないため、よりシンプルな構造になっており、かつ、「間欠受信状態の場合、通信すべきデータがないため、多少時間がかかっても、正確に無線リンク失敗状態であることを判定するべきであり、非間欠受信状態の場合、通信すべきデータがあるため、多少精度が悪くても、早めに無線リンク失敗状態であることを判定し、再接続の処理を行うべきである」という考え方に基づいて、「T313」に関しても、間欠受信状態と非間欠受信状態とで別々に値を設定することができる。
(変更例2)
 本発明の変更例2では、図12及び図13に示すように、上述した例(図4及び図5)において、「N313=1」とされている。
 ここで、本変更例2では、「N315」が、回数ではなく、時間によって規定されている。
 ここで、間欠受信状態用パラメータにおける第1及び第2パラメータ「T313」及び「N315」と非間欠受信状態用パラメータにおける第1及び第2パラメータ「T313」及び「N315」とを、それぞれ、同一としてもよいし、間欠受信状態用パラメータにおける第1及び第2パラメータ「T313」及び「N315」と非間欠受信状態用パラメータにおける第1及び第2パラメータ「T313」及び「N315」とを、それぞれ、別々としてもよい。
 前者によれば、「N313」がないため、よりシンプルな構造になっており、時間で制御するため、間欠受信状態と非間欠受信状態とで、無線リンク失敗状態であることを判定するための時間が同じであると考える場合、適切に制御が可能である。
 後者によれば、「N313」がないため、よりシンプルな構造になっており、かつ、「間欠受信状態の場合、通信すべきデータがないため、多少時間がかかっても、正確に無線リンク失敗状態であることを判定するべきであり、非間欠受信状態の場合、通信すべきデータがあるため、多少精度が悪くても、早めに無線リンク失敗状態であることを判定し、再接続の処理を行うべきである」という考え方に基づいて、「T313」及び「N315」に関しても、間欠受信状態と非間欠受信状態とで別々に値を設定することができる。
(変更例3)
 なお、上述の変更例2において、「N315」は、回数ではなく、時間によって規定されていたが、本変更例3では、「N315」は、その代わりに、回数によって規定されていてもよい。
 なお、上述した、第1の実施形態においては、間欠受信状態と非間欠受信状態の2種類の状態が存在したが、代わりに、長間欠受信状態と短間欠受信状態と非間欠受信状態との3種類の状態が存在する場合にも、本発明に係る移動局、無線基地局及び移動通信方法は適用されることができる。
 例えば、長間欠受信状態と短間欠受信状態と非間欠受信状態との3種類の状態が存在する場合には、上述の第1パラメータ及び第2パラメータとして、長間欠受信状態用パラメータと、短間欠受信状態用パラメータと、非間欠受信状態用パラメータとの3種類が定義され、それぞれの状態において、それぞれのパラメータが適用されてもよい。
 或いは、長間欠受信状態と短間欠受信状態と非間欠受信状態との3種類の状態が存在する場合に、間欠受信状態用パラメータ及び非間欠受信状態用パラメータの2種類が定義され、長間欠受信状態及び短間欠受信状態においては、間欠受信状態用パラメータが適用され、非間欠受信状態においては、非間欠受信用パラメータが適用されてもよい。
 或いは、長間欠受信状態と短間欠受信状態と非間欠受信状態との3種類の状態が存在する場合に、長間欠受信状態用パラメータ及び非長間欠受信状態用パラメータの2種類が定義され、長間欠受信状態においては、長間欠受信状態用パラメータが適用され、短間欠受信状態及び非間欠受信状態においては、非長間欠受信用パラメータが適用されてもよい。
 なお、上述の無線基地局eNBや移動局UEの動作は、ハードウェアによって実施されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実施されてもよいし、両者の組み合わせによって実施されてもよい。
 ソフトウェアモジュールは、RAM(Random Access Memory)や、フラッシュメモリや、ROM(Read Only Memory)や、EPROM(Erasable Programmable ROM)や、EEPROM(Electronically Erasable and Programmable ROM)や、レジスタや、ハードディスクや、リムーバブルディスクや、CD‐ROMといった任意形式の記憶媒体内に設けられていてもよい。
 かかる記憶媒体は、プロセッサが当該記憶媒体に情報を読み書きできるように、当該プロセッサに接続されている。また、かかる記憶媒体は、プロセッサに集積されていてもよい。また、かかる記憶媒体及びプロセッサは、ASIC内に設けられていてもよい。かかるASICは、無線基地局eNBや移動局UE内に設けられていてもよい。また、かかる記憶媒体及びプロセッサは、ディスクリートコンポーネントとして無線基地局eNBや移動局UE内に設けられていてもよい。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。

Claims (6)

  1.  無線基地局と通信する移動局であって、
     前記移動局におけるサービングセルの無線品質に基づいて、下りリンクの同期状態を判定するように構成されている同期状態判定部と、
     前記判定結果に基づいて、無線リンク失敗状態であるか否かについて判定するように構成されている無線リンク失敗状態判定部と、
     前記無線リンク失敗状態判定部によって、前記無線リンク失敗状態であると判定された場合、前記無線基地局との接続を再構築するように構成されている接続再構築部とを具備し、
     前記同期状態判定部より、前記下りリンクの同期状態が非同期状態であることを通知された場合、
     第1タイマーが満了している場合で、かつ、第2タイマーが起動中である場合に、前記無線リンク失敗状態判定部は、前記第2タイマーを停止し、かつ、無線リンク失敗状態であると判定するように構成されており、
     前記第1タイマーが起動中である場合で、かつ、前記第2タイマーが起動中である場合に、前記無線リンク失敗状態判定部は、前記第2タイマーを停止するように構成されており、
     前記第1タイマーが起動中でない場合に、前記無線リンク失敗状態判定部は、前記第1タイマーを開始するように構成されていることを特徴とする移動局。
  2.  前記同期状態判定部より、前記下りリンクの同期状態が同期状態であることを通知された場合、
     前記第2タイマーが満了している場合に、前記無線リンク失敗状態判定部は、前記第1タイマーを停止するように構成されており、
     前記第1タイマーが起動中であり、かつ、前記第2タイマーが起動中でない場合に、前記無線リンク失敗状態判定部は、前記第2タイマーを開始するように構成されていることを特徴とする請求項1に記載の移動局。
  3.  前記第1タイマー及び前記第2タイマーは、間欠受信状態及び非間欠受信状態のそれぞれに関して、別々に設定されることを特徴とする請求項1に記載の移動局。
  4.  間欠受信状態である場合に、
     前記同期状態判定部は、前記間欠受信状態のON区間において、前記下りリンクの同期状態を判定するように構成されており、
     前記無線リンク失敗状態判定部は、前記第1タイマーが満了したタイミングから直近の前記間欠受信のON区間において、無線リンク失敗状態であると判定するように構成されていることを特徴とする請求項1に記載の移動局。
  5.  間欠受信状態である場合に、
     前記同期状態判定部は、前記間欠受信状態のON区間において、前記下りリンクの同期状態を判定するように構成されており、
     前記無線リンク失敗状態判定部は、前記第2タイマーが満了したタイミングから直近の前記間欠受信のON区間において、前記第1タイマーを停止するように構成されていることを特徴とする請求項2に記載の移動局。
  6.  無線基地局と移動局との間で通信する移動通信方法であって、
     前記移動局が、該移動局におけるサービングセルの無線品質に基づき、下りリンクの同期状態を判定する工程Aと、
     前記移動局が、前記下りリンクの同期状態に基づいて、無線リンク失敗状態であるか否かについて判定する工程Bと、
     前記移動局が、前記無線リンク失敗状態であると判定された場合、前記無線基地局との接続を再構築する工程Cとを有し、
     前記工程Bにおいて、前記行程Aにおいて、前記下りリンクの同期状態が非同期状態であることを判定された場合、
     第1タイマーが満了している場合で、かつ、第2タイマーが起動中である場合には、前記移動局は、前記第2タイマーを停止し、かつ、無線リンク失敗状態であると判定し、
     前記第1タイマーが起動中である場合で、かつ、前記第2タイマーが起動中である場合には、前記移動局は、前記第2タイマーを停止し、
     前記第1タイマーが起動中でない場合に、前記移動局は、前記第1タイマーを開始することを特徴とする移動通信方法。
PCT/JP2009/068836 2008-11-04 2009-11-04 移動局及び移動通信方法 WO2010053095A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/127,646 US8644815B2 (en) 2008-11-04 2009-11-04 Mobile station and mobile communication method for determining radio link failure
EP09824794.3A EP2352340B1 (en) 2008-11-04 2009-11-04 Mobile station and mobile communication method
JP2010536775A JP5427788B2 (ja) 2008-11-04 2009-11-04 移動局及び移動通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008283782 2008-11-04
JP2008-283782 2008-11-04

Publications (1)

Publication Number Publication Date
WO2010053095A1 true WO2010053095A1 (ja) 2010-05-14

Family

ID=42152903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068836 WO2010053095A1 (ja) 2008-11-04 2009-11-04 移動局及び移動通信方法

Country Status (4)

Country Link
US (1) US8644815B2 (ja)
EP (1) EP2352340B1 (ja)
JP (1) JP5427788B2 (ja)
WO (1) WO2010053095A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015581A (ja) * 2010-06-29 2012-01-19 Mitsubishi Electric Corp Ofdm通信システム
JP2012507942A (ja) * 2008-11-03 2012-03-29 フリースケール セミコンダクター インコーポレイテッド 無線通信システムにおける無線リンクの問題及び回復を検知するための技術
WO2014069382A1 (ja) * 2012-11-02 2014-05-08 株式会社Nttドコモ 無線通信システム、ユーザ端末、及び無線通信方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048746B2 (ja) 2009-12-09 2012-10-17 シャープ株式会社 通信システム、移動局装置、無線リンク状態管理方法及び集積回路
JP5357209B2 (ja) * 2011-05-19 2013-12-04 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法
CN106385714B (zh) 2011-09-30 2020-09-08 华为技术有限公司 无线连接重建方法、用户设备和基站
US9288720B2 (en) * 2012-10-08 2016-03-15 Apple Inc. Dynamic network cell reselection after a failed handover
EP2941082A4 (en) * 2012-12-31 2016-08-17 Fujitsu Ltd METHOD, DEVICE AND SYSTEM FOR REMEDYING CONNECTION FAILURE
WO2014107847A1 (en) * 2013-01-09 2014-07-17 Alcatel Lucent Method and apparatus for radio link monitoring
US9160515B2 (en) 2013-04-04 2015-10-13 Intel IP Corporation User equipment and methods for handover enhancement using scaled time-to-trigger and time-of-stay
US9173241B2 (en) 2013-11-07 2015-10-27 Google Technology Holdings LLC Radio-link establishment for multi-state cells
US9591599B2 (en) * 2013-12-30 2017-03-07 Mediatek Inc. Apparatuses and methods for physical broadcast channel (PBCH) assisted synchronization during a discontinuous reception (DRX) operation
US10492159B2 (en) 2013-12-30 2019-11-26 Mediatek Inc. Broadcast information-assisted communication methods and apparatuses using the same
CN104374354B (zh) * 2014-11-24 2017-02-01 四川成发航空科技股份有限公司 用于发动机反推力装置模拟装配测量装置
US11122507B2 (en) * 2015-11-05 2021-09-14 Ntt Docomo, Inc. User device for detecting radio link failure in enhanced coverage mode
US11405877B2 (en) * 2016-09-02 2022-08-02 Sony Group Corporation Downlink synchronization signals
WO2020003469A1 (ja) * 2018-06-28 2020-01-02 株式会社Nttドコモ ユーザ端末
WO2020003468A1 (ja) * 2018-06-28 2020-01-02 株式会社Nttドコモ ユーザ端末
WO2020105224A1 (ja) 2018-11-20 2020-05-28 株式会社島津製作所 X線位相イメージング装置
US11910458B2 (en) * 2021-04-01 2024-02-20 Qualcomm Incorporated Non-terrestrial network user equipment behavior in case of failures in location tracking

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129180A2 (en) * 2006-05-05 2007-11-15 Nokia Corporation Enhanced ue out-of-sync behavior with gated uplink dpcch or gated downlink f-dpch or dpcch transmission

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7983173B2 (en) * 2004-05-10 2011-07-19 Cisco Technology, Inc. System and method for detecting link failures
RU2408170C2 (ru) * 2004-06-21 2010-12-27 Нокиа Корпорейшн Способ восстановления потерянного соединения сигнализации при использовании высокоскоростного пакетного доступа по нисходящему каналу/частичного выделенного физического канала
KR100754612B1 (ko) * 2006-01-26 2007-09-05 삼성전자주식회사 서로 다른 이동 통신 방식 간에 패킷 호 재접속 지연시간을 최소화하기 위한 핸드오버 방법 및 이를 위한멀티모드 단말기
RU2425452C2 (ru) * 2006-05-05 2011-07-27 Интердиджитал Текнолоджи Корпорейшн Процедуры детектирования отказа радиоканала в восходящей и нисходящей линиях систем долгосрочной эволюции и устройство для них
US20080074994A1 (en) * 2006-09-21 2008-03-27 Innovative Sonic Limited Method for detecting radio link failure in wireless communications system and related apparatus
US9060316B2 (en) * 2007-01-10 2015-06-16 Qualcomm Incorporated Radio resource connection (RCC) establishment for wireless systems
US8280375B2 (en) * 2008-01-25 2012-10-02 Texas Instruments Incorporated System and method for managing radio link failures
EP2341741A4 (en) * 2008-09-22 2016-05-25 Ntt Docomo Inc MOBILE STATION, RADIO BASE STATION, AND MOBILE COMMUNICATION METHOD

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129180A2 (en) * 2006-05-05 2007-11-15 Nokia Corporation Enhanced ue out-of-sync behavior with gated uplink dpcch or gated downlink f-dpch or dpcch transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Radio Resource Control (RRC); Protocol Specification (Release 8)", 3GPP TS 25.331 V8.4.0, September 2008 (2008-09-01), XP008139882 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507942A (ja) * 2008-11-03 2012-03-29 フリースケール セミコンダクター インコーポレイテッド 無線通信システムにおける無線リンクの問題及び回復を検知するための技術
JP2012015581A (ja) * 2010-06-29 2012-01-19 Mitsubishi Electric Corp Ofdm通信システム
WO2014069382A1 (ja) * 2012-11-02 2014-05-08 株式会社Nttドコモ 無線通信システム、ユーザ端末、及び無線通信方法

Also Published As

Publication number Publication date
JPWO2010053095A1 (ja) 2012-04-05
EP2352340A1 (en) 2011-08-03
EP2352340A4 (en) 2012-05-30
JP5427788B2 (ja) 2014-02-26
US20110263245A1 (en) 2011-10-27
EP2352340B1 (en) 2013-05-29
US8644815B2 (en) 2014-02-04

Similar Documents

Publication Publication Date Title
JP5427788B2 (ja) 移動局及び移動通信方法
JP5406841B2 (ja) 移動局、無線基地局及び移動通信方法
US9832811B2 (en) Adaptive physical layer warm-up for LTE TDD C-DRX power optimization
CN111316752B (zh) 无线电网络节点、无线设备以及其中执行的方法
JP4879054B2 (ja) 移動通信システムで使用されるユーザ装置、基地局装置及び方法
JP4597242B2 (ja) 試験方法及び試験装置
WO2011040516A1 (ja) 無線通信システム、無線端末、無線基地局、無線通信方法、及びプログラム
WO2011145511A1 (ja) 移動局、無線基地局及び通信制御方法
CN111183667B (zh) 无线电网络节点、无线装置以及其中执行的方法
US10200953B2 (en) Radio terminal, base station, and processor
JP2011015433A (ja) 試験方法及び試験装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010536775

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009824794

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13127646

Country of ref document: US