WO2010052645A1 - Metodo y sistema para la medición de la concentración de distintos compuestos presentes en material particulado - Google Patents

Metodo y sistema para la medición de la concentración de distintos compuestos presentes en material particulado Download PDF

Info

Publication number
WO2010052645A1
WO2010052645A1 PCT/IB2009/054885 IB2009054885W WO2010052645A1 WO 2010052645 A1 WO2010052645 A1 WO 2010052645A1 IB 2009054885 W IB2009054885 W IB 2009054885W WO 2010052645 A1 WO2010052645 A1 WO 2010052645A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
granulated material
flow
particulate material
fine particulate
Prior art date
Application number
PCT/IB2009/054885
Other languages
English (en)
French (fr)
Inventor
Mario Manuel DURÁN TORO
Ronald Romeo Guzman Venegas
Original Assignee
Ingenieros Matematicos Consultores Asociados S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingenieros Matematicos Consultores Asociados S.A. filed Critical Ingenieros Matematicos Consultores Asociados S.A.
Priority to US13/127,660 priority Critical patent/US8536536B2/en
Priority to EP09824479.1A priority patent/EP2348306A4/en
Publication of WO2010052645A1 publication Critical patent/WO2010052645A1/es
Priority to CL2010000963A priority patent/CL2010000963A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/005Testing the nature of borehole walls or the formation by using drilling mud or cutting data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the present invention is related to the geological, mining, particulate production, construction and quality control industry, among others, and consists of a method and a system for measuring the concentration of different compounds present in particulate material Its applications include the measurement of the concentration of valuable minerals present in excavation well dusts.
  • the methods commonly used in the prior art consider the analysis of dust samples generated in the drilling of wells made in a land whose exploitation viability is to be determined.
  • the analysis of the dusts or debris produced in the drilling of wells is carried out, after the selection of samples, at the drilling site or in laboratories.
  • the methods known in the prior art for the analysis of the concentration of valuable materials use different properties of the materials of interest to determine their presence and to what extent they are present.
  • Patent WO2006 / 138632 (A2), entitled 'Elemental spectroscopic analysis in line of particles conducted by a gas flow' is known from the prior art.
  • This document proposes an apparatus through which a gas flow is circulated that contains the particles to be analyzed.
  • a laser beam converts a small portion of the particles into plasma, which emit radiation when atomized.
  • This radiation is captured and transmitted by an optical fiber to decompose into different wavelengths and generate a spectrum measurement.
  • This technique is known as laser-induced plasma spectroscopy and analyzes the radiation emitted by particles atomized by a laser beam.
  • the application of this technique requires the use of high power laser devices capable of converting in plasma a portion of the particles whose composition is to be measured.
  • High power laser equipment imposes high energy consumption, increases the associated electronics and requires careful handling to avoid accidents and deterioration of other parts of the device to which they belong.
  • the document Tmproved Process Control Through Real-Time Measurement of Mineral Content proposes the use of X-ray radiation to induce the phenomenon of fluorescence in the particles to be analyzed.
  • fluorescence spectroscopy short wavelengths, ie very energetic photons, are used to alter the energy levels of the electrons of the atoms that will then radiate by fluorescence.
  • the wavelengths of the X-rays are in the range between 0.1 nm and 10 nm.
  • X-rays require safe designs that make implementation, certification and use more expensive, because they are harmful to living tissues. Additionally, its high level of penetration in standard materials and its ionizing capacity oblige complex electronic designs in the stage of measurement of the spectrum radiated by fluorescence.
  • Fluorescence spectroscopy techniques require radiation of short-wavelength energy photons. X-rays, with photons more energetic than those of visible or infrared radiation, facilitate fluorescence but impose design restrictions due to their ability to ionize and their high degree of penetration into standard materials. These same characteristics make them harmful to living tissues. These characteristics imply high development, production, certification and implementation costs. Similar thing occurs with other lengths commonly used in fluorescent spectroscopy such as gamma and UV rays.
  • the present invention consists of a method and a collection and analysis system for the in situ determination of concentrations of minerals in granulated material from a well being excavated, continuously, non-intrusively and in real time.
  • the collection of granulated material passes to a granulated material collector and then it is entered into a reading module that determines the concentration of different minerals by means of spectroscopic methods.
  • the collection of granulated material comes from the drilling dust that rises through an auger of an excavating drill.
  • the information on the concentration of different minerals in the granulated material that is being analyzed at that time can be processed and transmitted to establish and / or correct logistic and operational procedures such as in an excavation or a global process in which it is framed.
  • the system and method of the present invention measures only the electromagnetic absorption of a mixture of powders at certain wavelengths in the visible and infrared spectrum, and then relates these data to concentrations by means of calibrations performed by comparison with measurements produced by traditional methods. It is less expensive, less expensive and especially faster to obtain results than the methods, devices and systems of the prior art. This speed and ease, for example, allows the method and system of the present invention to decide whether to stop an excavation if it is estimated that the well is sterile.
  • the present invention allows to continuously analyze the dusts dug from a well and generate a continuous profile of the concentration of a certain mineral as a function of the depth of the well.
  • FIG. 1 shows the results of a study conducted by Dr. Marcos Alfaro and displayed in the document Introduction to mining sampling 'conducted for the Institute of Mining Engineers of Chile Institute of Mining Engineers of Chile; Santiago, Chile, 2002.
  • Figure 1 shows the relationship between the size of the particles extracted in the excavation of a well and the copper content of these for a sample.
  • the present invention includes a system and a method that prevents the loss of fine particulate material from a granulated material so that more accurate values are delivered on the concentrations of minerals present in the wells being excavated.
  • Figure 1 shows the experimental results of the measurement of the amount of copper contained in particles of different sizes obtained from the excavation of a drilling well.
  • FIG. 1 schematically illustrates the system and method of the present invention.
  • the collection and analysis system for the in situ determination of concentrations of granulated material minerals from a well (12) being excavated, continuously, non-intrusively and in real time comprising :
  • a Collection Module (100) of granulated material comprises coupling means
  • a Conditioning Module (200) of the granulated material comprising grinding means (210) to obtain a fine particulate material smaller than 6 mm in size, the output of said grinding means is connected to a chamber of drying (220) with drying means, said air flow displaces the fine particulate material to said drying chamber (220) and said drying means comprise heating means for heating the air flow transporting the fine particulate material at a temperature below 100 0 C, said drying means comprise vapor permeable means for removing the condensate from said heated air flow and leave the fine particulate material with a moisture content below 6%, said drying means comprising a cooling chamber where said flow of heated and dried air is cooled by passing through heat exchangers to a temperature below 60 ° C; said cooling chamber of the Conditioning Module is tightly connected to an Absorption Spectrum Acquisition Module (300);
  • an Absorption Spectrum Acquisition Module (300) connects said cooling chamber of the Conditioning Module (300) tightly to a reading chamber (310) through which said air flow circulating conveying said fine particulate material
  • said reading chamber (310) comprises a plurality of photo emitters (320) as electromagnetic radiation means with wavelength between 0.2 and 20 ⁇ m; with a power between 0.1 mW to 800W per photo-emitter and reading means (330) of said radiation arranged opposite and on the opposite side to the photo-emitters (320) in said reading chamber (310) to obtain a spectroscopy of the fine particulate material circulating through the reading chamber (310);
  • said reading chamber (310) is connected to an outlet duct (340) that releases the particulate material out of the system;
  • a Data Analysis and Transmission Module comprising analog-digital converters (410), computational media (420) and media (430), wherein said digital analog converters (410) are connected to the reading means (330) and convert the readings of said reading means (330) to digital values for storage in said computational medium (420) and analysis according to statistical comparison with samples of calibration material; said communication means (430) allow the stored digital values and their analysis to be transmitted to a remote computing medium for decision-making in relation to the mineral concentration of said granulated material.
  • a collection and analysis process is provided for the in situ determination of mineral concentrations in granulated material from a well (12) being excavated, continuously, non-intrusively and in real time that includes the stages of:
  • a means of transport such as a sleeve, a pipe or hose;
  • readings such as an arrangement of up to 70,000 discrete sensors such as avalanche photo diodes and photo-transistors, or a coupled charging device (sensor CCD) of up to 70,000 dots (pixels);
  • the method of the present invention comprises the step of analyzing said digital values by appropriate mathematical processes and statistical comparison with calibration powder samples whose concentration of a compound of interest is previously known to obtain the mineral concentration of a valuable compound in the flow of fine particulate material.
  • the method of the present invention comprises the step of transmitting said digital values to a remote computing medium or the mineral concentration for decision-making in relation to the mineral concentration of said granulated material. How to carry out the invention
  • said collection and analysis system additionally comprises a Mechanism Control Module (500) that performs the coordination and electronic control of said vacuum pump, air compressor or fan (130 ), said grinding means (210), said drying chamber (220), said reading chamber (310) with said photo emitters (320) and said reading means (330); comprising a PXI or Compact RIO chassis, with a protocol often used in industrial applications such as RS-485, FieldBus, or Ethernet.
  • This Mechanism Control Module (500) makes control loops to control the flow of the fine particulate material, preferably laminar, the temperature of said fine particulate material and the intensity of the electromagnetic radiation used in the Absorption Spectrum Acquisition Module (300).
  • said coupling means (110) of the Collection Module (100) can be for example a hermetic coupling, clamp, sleeve or a bell duct opening in order to capture the all the powders, including the finest of the granulated material.
  • the means of transport of granulated material can be for example a sleeve, a duct or a hose, preserving all the collected powders, including the finest powders of the granulated material.
  • said sleeve reaches the mouth of the well (12) and has a coupling to a part to the auger (11) of a drilling rig (10) protruding from the well (12).
  • a plurality of inlet ducts is located with its openings covering most of the pit of the well without touching the auger (11) through which said air flow is aspirated or driven and the outlet of said ducts is connected to the Conditioning Module (200).
  • said grinding means (210) may consist, for example, of a jaw crusher, an impact crusher, a cone crusher, a vertical shaft crusher according to the origin of granulated material
  • said drying means consist of a first coil duct inside a hot chamber, inside said air flow that heats up to 100 0 C passes, then said first coil duct leaves the hot chamber and enters a condensation chamber with said vapor permeable means such as woven polypropylene membranes to extract the condensed steam from said air flow, then said condensation chamber is connected with a cold chamber, within said cold chamber the air flow circulates to through heat exchangers to reduce the temperature of the air flow below 60 0 C, said heat exchangers can be plate, or a second duct coiled inside said air flow flows into said cold chamber.
  • Said heating means may consist of a convection by hot combustion gases or superheated steam or a radiation of an electrical resistance within said hot chamber.
  • Said cooling means may be an air convection with forced ventilation, liquid nitrogen or circulating
  • Said reading means (330) may consist of an array of photo detectors such as up to 70,000 discrete sensors such as avalanche photo diodes and photo transistors; or a coupled charging device (CCD sensors) of up to 70,000 dots (pixels).
  • photo detectors such as up to 70,000 discrete sensors such as avalanche photo diodes and photo transistors; or a coupled charging device (CCD sensors) of up to 70,000 dots (pixels).
  • Said data transmission means (430) are for example a digital transmission network, by means of optical fiber, coaxial cable, MODEM with telephone or wireless cable, radio-frequency transmitters, satellite communication, etc.
  • the invention has particular, although not exclusive, application in drilling wells for the determination of mining law, in geological exploration, in drilling in concrete; Especially useful in the mining industry, and the geological industry in general.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Soil Sciences (AREA)
  • Biomedical Technology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

La presente invención consiste en un método y un sistema de recolección y análisis para la determinación in situ de concentraciones de minerales en material granulado proveniente de un pozo siendo excavado, de forma continua, no intrusiva y en tiempo real. De acuerdo a la presente invención, la recolección de material granulado pasa a un captador de material granulado para luego ser ingresado en un módulo de lectura que determina la concentración de distintos minerales por medio de métodos espectroscópicos. La recolección de material granulado proviene del polvo de perforación que sube por una barrena de un taladro excavando. La información de la concentración de distintos minerales en el material granulado que está siendo analizado en ese momento puede procesarse y transmitirse para establecer y/o corregir procedimientos logísticos y operativos como por ejemplo en una excavación o de un proceso global en el que esté enmarcado.

Description

Descripción
Title of Invention: MÉTODO Y SISTEMA PARA LA MEDICIÓN
DE LA CONCENTRACIÓN DE DISTINTOS COMPUESTOS
PRESENTES EN MATERIAL PARTICULADO
Sector técnico
[1] La presente invención está relacionada con la industria geológica, minera, de producción de particulados, de la construcción y del control de calidad entre otras, y consiste en un método y un sistema para la medición de la concentración de distintos compuestos presentes en material particulado. Entre sus aplicaciones destaca la medición de la concentración de minerales valiosos presentes en polvos de pozos de excavación. Técnica anterior
[2] Para la determinación de la concentración de minerales valiosos, los métodos utilizados comúnmente en el arte previo consideran el análisis de muestras de polvo generado en la perforación de pozos realizados en un terreno cuya viabilidad de explotación quiera determinarse. El análisis de los polvos o detrito producidos en la perforación de pozos se realiza, tras la selección de muestras, en el sitio de la perforación o en laboratorios. Los métodos conocidos del arte previo para el análisis de la concentración de materiales valiosos utilizan distintas propiedades de los materiales de interés para determinar su presencia y en qué medida se hallan presentes.
[3] Generalmente los polvos generados en la excavación de un pozo son extraídos de forma manual o mecánica, con frecuencia de manera intrusiva, y llevados a laboratorios en los que se analizan utilizando pruebas químicas u otras similares para determinar la ley.
[4] Se conoce del arte previo la solicitud de patente internacional WO2008/017.107, intitulada 'Caracterización de Materiales Geológicos mediante Respuesta Térmica Inducida'; que propone un método y un dispositivo para identificar compuestos en rocas. El método consiste en radiar la roca electro-magnéticamente, preferiblemente con microondas, para inducir una respuesta que se manifiesta en cambios de temperatura en la roca, la que luego es medida utilizando una cámara infrarroja. Los datos de la imagen infrarroja se analizan e interpretan en función de una base de datos. Se menciona como posible aplicación la introducción de este dispositivo en pozos cavados para identificar la composición de las paredes de este. Sin embargo, la aplicación de este método supondría primero cavar un pozo y la medición se haría a distintas profundidades que deberían ser elegidas con anterioridad.
[5] Otro documento del arte previo relacionado es la solicitud de patente internacional WO95/09.962, intitulada 'Sistema de Muestreo Continuo de Suelos'; que divulga un sistema de captura de muestras del material excavado de un pozo. Se divulga un recipiente que puede ser bajado por el pozo colgado de un cable y que captura muestras una vez en su interior. Tras la captura pueden subirse las muestras para ser analizadas. Como es usual en el arte previo, las muestras deben manipularse y transportarse a un laboratorio para ser analizadas y determinar el grado de concentración de mineral.
[6] También se conoce la publicación intitulada 'Mejorando el Control de Ley a través de
Geofísica de Pozos Excavados: Caso de Estudio desde la Compañía de Mineral de Hierro de Canadá', (Tmproving grade control through Borehole Geophysics: Case study from Iron Ore Company of Canadá', Robert L. Gordon, Tim Leriche, Susanne MacMahon; publicado año 2000, disponible en Internet, URL: ' http://www.quantecgeoscience.com/News/ArticlesPublications.php'). Este documento describe el tipo de información que puede obtenerse del suelo a explotar, en la profundidad y extensión del terreno, utilizando una sonda que baja por pozos ya excavados. Esta sonda está equipada con varios medidores que determinan la susceptibilidad magnética, densidad y conductividad eléctrica entre otras propiedades. Se menciona la relación entre la presencia de minerales valiosos y las variables medidas, obtenida por comparación con mediciones realizadas con métodos tradicionales. El sistema descrito en este documento comprende realizar primero una excavación para obtener un pozo y luego introducir una sonda por dicho pozo, por lo que se pierde tiempo, energía y recursos en excavaciones de pozos que podrían ser detectados tempranamente como estériles.
[7] Se conoce del arte previo la patente WO2006/138632(A2), intitulada 'Análisis espec- troscópico elemental en línea de partículas conducidas por un flujo gaseoso'. Este documento propone un aparato por el que se hace circular un flujo gaseoso que contiene las partículas que se desean analizar. Dentro de este aparato un haz de láser convierte en plasma una pequeña porción de las partículas, las que emiten radiación al ser atomizadas. Esta radiación es captada y transmitida por una fibra óptica para descomponerse en distintas longitudes de onda y generar una medición del espectro. Esta técnica se conoce como espectroscopia de plasma inducido por láser y analiza la radiación emitida por las partículas atomizadas por un haz de láser. La aplicación de esta técnica requiere la utilización de dispositivos láser de alta potencia capaces de convertir en plasma una porción de las partículas cuya composición se desea medir. Los equipos láser de alta potencia imponen altos consumos de energía, encarecen la electrónica asociada y requieren de un manejo cuidadoso para evitar accidentes y deterioro de otras partes del dispositivo al que pertenecen.
[8] La misma patente WO2006/138632(A2), así como el artículo ' Improved Process
Control Through Real-Time Measurement of Mineral Content'; de D. Turler, M. Karaca, W.B. Davis, R. Giauque y D. Hopkins, publicado en 2 de noviembre 2001, disponible en Internet http://www.osti.gov/bridge ; proponen como alternativa a la espectroscopia de plasma inducido por láser analizar el flujo de partículas por espectroscopia fluorescente. En este tipo de espectroscopia los átomos de las partículas iluminadas absorberán la energía recibida en una longitud de onda que permita a estos volver a emitir radiación en otra longitud de onda; este fenómeno se conoce como fluorescencia. Esta segunda longitud de onda dependerá de cada átomo y el análisis de las longitudes de onda radiadas por fluorescencia permitiría identificar los constituyentes del flujo de partículas. El documento Tmproved Process Control Through Real-Time Measurement of Mineral Content' propone la utilización de radiación de rayos X para inducir el fenómeno de fluorescencia en las partículas que se desean analizar. En espectroscopia por fluorescencia se utilizan longitudes de onda cortas, es decir fotones muy energéticos, para alterar los niveles energéticos de los electrones de los átomos que luego radiarán por fluorescencia. Las longitudes de onda de los rayos X se encuentran en el rango comprendido entre 0,1 nm y 10 nm. Los rayos X requieren de diseños seguros que encarecen la implementación, la certificación y el uso, debido que son dañinos para tejidos vivos. Adicionalmente, su alto nivel de penetración en materiales estándar y su capacidad ionizante obliga a diseños electrónicos complejos en la etapa de medición del espectro radiado por fluorescencia.
[9] Tanto la patente WO2006/138632(A2), como el método propuesto en el artículo '
Improved Process Control Through Real-Time Measurement of Mineral Content' suponen tomar una porción del material excavado del pozo de perforación, lo que puede inducir a errores de muestreo si se considera que, por ejemplo en el caso de la minería del cobre, las partículas más pequeñas y volátiles, y por ende más susceptibles de perderse, contienen mayores concentraciones de mineral valioso.
[10] Los métodos y dispositivos descritos del arte previo implican una serie de errores y algunas ineficiencias, como por ejemplo:
[11] La exposición del polvo extraído y la manipulación de este altera su composición al existir la pérdida de material particulado valioso. Por ejemplo, las partículas más pequeñas, y por ende generalmente más volátiles, son las que contienen ley más alta en la minería del cobre; por otra parte, en yacimientos en el desierto las muestras pueden contaminarse por el polvo que viaja en el viento.
[12] La elección de muestras de distintos grupos de detritos extraídos de distintos pozos introduce un sesgo en el conjunto de muestras seleccionadas cuando no se pueden analizar todos los pozos, situación común en muchos tipos de análisis debido al tiempo que requieren.
[13] En los métodos de laboratorios, cuando se toman muestras de los detritos producidos en la excavación de un pozo y se le asigna un valor de ley a este se produce un sesgo al no considerar la distribución de la distinta presencia de minerales valiosos a distintas profundidades dentro de un mismo pozo.
[14] El análisis de muestras en laboratorios usualmente restringe el número de muestras analizables y entrega resultados después de un tiempo determinado, en el cual no puede tomarse una decisión informada sobre la calidad mineral del suelo. A esta incer- tidumbre se le asocia una pérdida de tiempo o una pérdida de recursos cuando, como ocurre en la práctica, se decide realizar operaciones de voladura de rocas antes de contar con los resultados de los análisis de leyes.
[15] La utilización de un haz láser de alta energía para realizar espectroscopia por emisión de plasma inducido impone altos consumos de energía y diseños que deben considerar el posible efecto destructor indeseado del haz láser sobre partes del dispositivo en el que se genera; asimismo deben considerarse en el diseño factores de seguridad. Las anteriores imposiciones encaren el diseño y construcción.
[16] Las técnicas de espectroscopia por fluorescencia requieren de radiaciones de fotones energéticos de corta longitud de onda. Los rayos X, con fotones más energéticos que los de la radiación visible o infrarroja, facilita la fluorescencia pero impone restricciones al diseño debido a su capacidad de ionizar y a su alto grado de penetración en materiales estándar. Estas mismas características los hacen nocivos a los tejidos vivos. Estas características implican elevados costos de desarrollo, producción, certificación e implementación. Cosa similar ocurre con otras longitudes utilizadas comúnmente en espectroscopia fluorescente como por ejemplo los rayos gamma y UV.
[17] Los inconvenientes mencionados resultantes de la aplicación de métodos tradicionales para la determinación de la calidad mineral de un suelo explotable implican pérdidas por el uso no eficiente de tiempo y recursos, y por estimaciones erradas producidas por sesgos en la determinación de un perfil de ley en profundidad y en distribución en el campo que se ha explorado por medio de perforaciones. Problema técnico
[18] En numerosos procesos productivos, es fundamental conocer de manera rápida y precisa la concentración de distintos compuestos en productos asociados a procesos de extracción de materias primas. En el caso particular de la minería es necesario conocer la concentración de minerales valiosos en las porciones de terreno susceptibles de ser procesadas para decidir la viabilidad comercial de la extracción y para optimizar la explotación. Por lo que existe la necesidad de disminuir las ineficiencias existentes, los errores provocados por la toma sesgada de muestras, la incapacidad de tomar en un tiempo razonable muestras de todos los pozos a todas las profundidades y la alteración de las muestras asociadas a la pérdida de material particulado valioso o la contaminación con partículas en suspensión en el ambiente en la determinación de la con- centración de minerales de interés de pozos de perforación para suelos prospectados. Solution to Problem
[19] Para resolver los problemas técnicos mencionados anteriormente, se ha diseñado una tecnología que integra la recolección eficiente y el análisis del polvo producido en una perforación en el sitio de la excavación, en tiempo real, de forma no intrusiva y en forma continua.
[20] La presente invención consiste en un método y un sistema de recolección y análisis para la determinación in situ de concentraciones de minerales en material granulado proveniente de un pozo siendo excavado, de forma continua, no intrusiva y en tiempo real. De acuerdo a la presente invención, la recolección de material granulado pasa a un captador de material granulado para luego ser ingresado en un módulo de lectura que determina la concentración de distintos minerales por medio de métodos espec- troscópicos. La recolección de material granulado proviene del polvo de perforación que sube por una barrena de un taladro excavando. La información de la concentración de distintos minerales en el material granulado que está siendo analizado en ese momento puede procesarse y transmitirse para establecer y/o corregir procedimientos logísticos y operativos como por ejemplo en una excavación o de un proceso global en el que esté enmarcado. Advantageous Effects of Invention
[21] El sistema y método de la presente invención mide únicamente la absorción electromagnética de una mezcla de polvos a determinadas longitudes de onda en el espectro visible e infrarrojo, para luego relacionar estos datos con concentraciones por medio de calibraciones realizadas por comparación con mediciones producidas por métodos tradicionales. Es menos aparatoso, menos costoso y sobre todo más rápido para obtener resultados que los métodos, aparatos y sistemas del arte previo. Esta rapidez y facilidad, por ejemplo, permite con el método y sistema de la presente invención decidir si detener una excavación si se estima que el pozo es estéril.
[22] Junto con medir la concentración instantánea se puede registrar la profundidad de una excavación de un pozo que se desea analizar, para asociar una concentración a cada profundidad. Por lo cual, la presente invención permite analizar continuamente los polvos excavados de un pozo y generar un perfil continuo de la concentración de un determinado mineral en función de la profundidad del pozo.
[23] Este perfil continuo de concentración de mineral es más preciso puesto que se evita la contaminación y manipulación de los polvos extraídos de los pozos; por lo que se obtiene información más exacta asociada exactamente al lugar de perforación, se ahorra tiempo en el análisis y se obtiene valiosa información con respecto al perfil obtenido en profundidad sobre la concentración de todo tipo de mineral; por lo que la importante, costosa e irreversible toma de decisión sobre voladuras de roca es más acertada.
[24] En el arte previo parte importante del material excavado escapa a los procesos de análisis por ser más volátil. En la minería del cobre, por ejemplo, en donde se desea estimar el porcentaje de cobre presente en el suelo, las partículas que contienen más elevada concentración de dicho mineral son las más pequeñas y por ende más susceptibles de perderse en la manipulación o elección de una parte de la nube de polvo generada en la excavación de un pozo. La figura 1 muestra los resultados de un estudio realizado el Dr. Marcos Alfaro y exhibido en el documento Introducción al muestreo minero' realizado para el Instituto de Ingenieros de Minas de Chile Instituto de Ingenieros de Minas de Chile; Santiago de Chile, 2002 . En la figura 1 se muestra la relación entre el tamaño de las partículas extraídas en la excavación de un pozo y el contenido de cobre de estas para una muestra. La presente invención incluye un sistema y un procedimiento que evita la pérdida del material particulado fino de un material granulado de manera que se entregan valores más exactos sobre las concentraciones de minerales presentes en los pozos siendo excavados.
Descripción breve de las figuras
[25] La figura 1 muestra los resultados experimentales de la medición de la cantidad de cobre contenida en partículas de distinto tamaño obtenidas de la excavación de un pozo de perforación.
[26] La figura 2 ilustra esquemáticamente el sistema y método de la presente invención.
Mejor manera de realizar la invención
[27] De acuerdo a la presente invención, el sistema de recolección y análisis para la determinación in situ de concentraciones de minerales de material granulado proveniente de un pozo (12) siendo excavado, de forma continua, no intrusiva y en tiempo real que comprende:
[28] un Módulo de Recolección (100) de material granulado comprende medios de acople
(110) para conectarse operativamente y capturando las partículas finas, o polvo, del material granulado a la barrena (11) de una perforadora (10) excavando dicho pozo (12), medios de transporte (120) del material granulado que se conecta a un Módulo de Acondicionamiento (200) de material granulado a través de tamices para dejar pasar partículas de tamaño inferior a 10 mm, por dicho medio de transporte (120) circula un flujo de aire de velocidad entre 1 m/s y 30 m/s generado por una bomba aspiradora, por un compresor de aire o ventilador (130) que permite desplazar el material granulado;
[29] un Módulo de Acondicionamiento (200) del material granulado que comprende medios de molienda (210) para obtener un material particulado fino con tamaño inferior a 6 mm, la salida de dichos medios de molienda se conecta a una cámara de secado (220) con medios de secado, dicho flujo de aire desplaza el material particulado fino a dicha cámara de secado (220) y dichos medios de secado comprenden medios de calentamiento para calentar el flujo de aire que transporta el material particulado fino a una temperatura inferior a 100 0C, dichos medios de secado comprenden medios permeables al vapor para extraer el vapor condensado de dicho flujo de aire calentado y dejar el material particulado fino con una humedad inferior al 6%, dichos medios de secado comprenden una cámara de enfriamiento por donde dicho flujo de aire calentado y secado se enfría al pasar por intercambiadores de calor hasta una temperatura inferior a 60° C; dicha cámara de enfriamiento del Módulo de Acondicionamiento se conecta herméticamente un Módulo de Adquisición de Espectro de Absorción (300);
[30] un Módulo de Adquisición de Espectro de Absorción (300) conecta dicha cámara de enfriamiento del Módulo de Acondicionamiento (300) herméticamente a una cámara de lectura (310) por donde circula dicho flujo de aire que transporta dicho material particulado fino, dicha cámara de lectura (310) comprende una pluralidad de foto- emisores (320) como medios de radiación electromagnética con longitud de onda entre 0,2 y 20 μm; con una potencia entre 0,1 mW a 800W por foto-emisor y medios de lectura (330) de dicha radiación dispuestos enfrentados y en el lado opuesto a los foto- emisores (320) en dicha cámara de lectura (310) para obtener un espectroscopia del material particulado fino circulando por la cámara de lectura (310); dicha cámara de lectura (310) se conecta a un ducto de salida (340) que libera el material particulado fuera del sistema;
[31] un Módulo de Análisis y Transmisión de Datos (400) que comprende conversores análogos-digitales (410), medios computacionales (420) y medios de comunicación (430), en donde dichos conversores análogos digitales (410) están conectados a los medios de lectura (330) y convierten las lecturas de dichos medios de lectura (330) a valores digitales para su almacenamiento en dicho medio computacional (420) y análisis según comparación estadística con muestras de material de calibración; dichos medios de comunicación (430) permiten transmitir los valores digitales almacenados y su análisis a un medio computacional remoto para una toma de decisión en relación con la concentración de mineral de dicho material granulado.
[32] De acuerdo a aún otro ensamble de la presente invención, se provee un proceso de recolección y análisis para la determinación in situ de concentraciones de minerales en material granulado proveniente de un pozo (12) siendo excavado, de forma continua, no intrusiva y en tiempo real que comprende las etapas de:
[33] a) acoplar medios de acople (110) a la barrena (11) de una perforadora (10) excavando dicho pozo a un Módulo de Recolección (100) para capturar la totalidad del material granulado, incluidos los polvos más finos; [34] b) recolectar un flujo de material granulado a través de dichos medios de acople
(110) mediante una bomba de aspiración, compresor de aire o ventilador (130) con un flujo de aire entre 1 m/s y 30 m/s y tamizar dicho flujo de material granulado a partículas para un tamaño inferior a 10 mm;
[35] c) transportar dicho flujo de material granulado a un Módulo de Acondicionamiento
(200) a través de un medio de transporte (120) como por ejemplo una manga, un ducto o manguera;
[36] d) triturar dicho material granulado en un material particulado fino con tamaño inferior a 6 mm mediante medios de molienda (210) en dicho Módulo de Acondicionamiento (200); como por ejemplo una trituradora de mandíbula, una trituradora de impacto, una trituradora de cono, una trituradora de eje vertical según origen del material granulado;
[37] e) secar dicho material particulado fino en una cámara de secado (220) calentando dicho flujo de material particulado fino a una temperatura inferior a 1000C, extrayendo el vapor de dicho flujo de material particulado fino hasta una humedad inferior a 6% y transportar dicho flujo de material particulado fino a una cámara de enfriamiento;
[38] f) enfriar dicho flujo de material particulado fino en dicha cámara de enfriamiento a una temperatura inferior a 6O0C mediante intercambiadores de calor;
[39] g) transportar dicho flujo de material particulado fino mediante dicho flujo de aire a una cámara de lectura (310) en un Módulo de Adquisición de Espectro de Absorción (300);
[40] h) irradiar dicho flujo de material particulado fino en dicha cámara de lectura (310) con radiación de longitud de onda entre 0,2 a 20 μm mediante un arreglo de foto- emisores (320), con una potencia entre 0,1 mW a 800W por foto-emisor; y captar la radiación emitida que ha atravesado dicho flujo de material particulado fino mediante medios de lecturas (330) como por ejemplo un arreglo de hasta 70.000 sensores discretos como foto-diodos de avalancha y foto-transistores, o un dispositivo de carga acoplada (sensor CCD) de hasta 70.000 puntos (píxeles);
[41] i) en un Módulo de Análisis y Transmisión de Datos (400), convertir a valores digitales la lectura captada de dicho arreglo de foto-detectores mediante un conversor análogo-digital (410) para su almacenamiento en un medio computacional (420), generar un valor de concentración instantánea de minerales presentes, y registrar simultáneamente la profundidad de la perforadora (10) en el pozo (12) siendo excavado de donde proviene el material granulado generando un perfil espectroscópico continuo del material granulado recolectado en función de la profundidad registrada;
[42] j) evacuar dicho flujo de material particulado fino a un ducto de salida (310) para su posterior almacenamiento, confinamiento o posterior utilización en otra aplicación.
[43] Adicionalmente, el método de la presente invención comprende la etapa de analizar dichos valores digitales mediante procesos matemáticos apropiados y comparación estadística con muestras de polvo de calibración cuya concentración de un compuesto de interés es previamente conocida para obtener la concentración de mineral de un compuesto valioso en el flujo de material particulado fino.
[44] Adicionalmente, el método de la presente invención comprende la etapa de transmitir a un medio computacional remoto dichos valores digitales o la concentración de mineral para una toma de decisión en relación con la concentración de mineral de dicho material granulado. Modo de realizar la invención
[45] De acuerdo a otro aspecto de la presente invención, dicho sistema de recolección y análisis comprende adicionalmente un Módulo de Control de Mecanismos (500) que realiza la coordinación y el control electrónico de dicha bomba aspiradora, compresor de aire o ventilador (130) , dichos medios de molienda (210), dicha cámara de secado (220), dicha cámara de lectura (310) con dichos foto-emisores (320) y dichos medios de lectura (330); que comprende un chasis PXI o Compact RIO, con un protocolo de uso frecuente en aplicaciones industriales como por ejemplo, RS-485, FieldBus, o Ethernet. Este Módulo de Control de Mecanismos (500) realiza lazos de control para controlar el flujo del material particulado fino, de preferencia laminar, la temperatura de dicho material particulado fino y la intensidad de la radiación electromagnética utilizada en el Módulo de Adquisición de Espectro de Absorción (300).
[46] De acuerdo a otro ensamble de la presente invención, dichos medios de acople (110) del Módulo de Recolección (100) pueden ser por ejemplo un acople hermético, abrazadera, manga o una abertura de ducto en campana de forma de capturar la totalidad de los polvos, incluidos los más finos del material granulado. Por su parte los medios de transporte de material granulado pueden ser por ejemplo una manga, un ducto o una manguera, preservando la totalidad de los polvos captados, incluidos los polvos más finos del material granulado. Por ejemplo, en un análisis de concentración de mineral de material granulado proveniente de un pozo (12) de excavación, dicha manga llega hasta la boca del pozo (12) y tiene un acople a una parte a la barrena (11) de una perforadora (10) que sobresale del pozo (12). De acuerdo a otro ensamble de la presente invención, una pluralidad de ductos de entrada es ubicada con sus aberturas cubriendo la mayoría de la boca del pozo sin tocar la barrena (11) por donde se aspira o impulsa dicho flujo de aire y la salida de dichos ductos se conecta al Módulo de Acondicionamiento (200).
[47] De acuerdo a otros ensambles de la invención, dichos medios de molienda (210) pueden consistir en por ejemplo una trituradora de mandíbula, una trituradora de impacto, una trituradora de cono, una trituradora de eje vertical según el origen de material granulado, dichos medios de secado consisten en un primer ducto en serpentín dentro de un cámara caliente, por dentro pasa dicho flujo de aire que se calienta hasta 1000C, luego dicho primer ducto en serpentín sale de la cámara caliente e ingresa a una cámara de condensación con dichos medios permeables al vapor como por ejemplo membranas tejidas de polipropileno para extraer el vapor condensado de dicho flujo de aire, luego se conecta dicha cámara de condensación con una cámara fría, dentro de dicha cámara fría el flujo de aire circula a través de intercambiadores de calor para disminuir la temperatura del flujo de aire a menos de 60 0C, dichos intercambiadores de calor pueden ser de placa, o un segundo ducto en serpentín por dentro circula dicho flujo de aire dentro de dicha cámara fría. Dichos medios de calentamiento pueden consistir en una convección por gases caliente de combustión o de vapor sobrecalentado o una radiación de una resistencia eléctrica dentro de dicha cámara caliente. Dichos medios de enfriamiento pueden ser una convección por aire con ventilación forzada, nitrógeno líquido o agua fría circulante.
[48] Dichos medios de lectura (330) pueden consistir en un arreglo de foto-detectores como por ejemplo hasta 70.000 sensores discretos como foto-diodos de avalancha y foto-transistores; o un dispositivo de carga acoplada (sensores CCD) de hasta 70.000 puntos (píxeles).
[49] Dichos medios Transmisión de Datos (430) son por ejemplo una red de transmisión digital, mediante fibra óptica, cable coaxial, MODEM con cable telefónicos o inalámbrica, emisores de radio-frecuencia, comunicación satelital, etc.
Aplicabilidad industrial
[50] La invención tiene particular, aunque no exclusiva, aplicación en pozos de perforación para la determinación de ley en minería, en exploración geológica, en perforaciones en concreto; especialmente útil en la industria de la minería, y la industria geológica en general.

Claims

Reivindicaciones
[Claim 1] Sistema de recolección y análisis para la determinación in situ de concentraciones de minerales de material granulado proveniente de un pozo siendo excavado, de forma continua, no intrusiva y en tiempo real, CARACTERIZADO porque comprende: a) un Módulo de Recolección de material granulado que comprende medios de acople para conectarse operativamente y capturando las partículas finas, o polvo, del material granulado a la barrena de una perforadora excavando dicho pozo, medios de transporte de material granulado que se conectan a un módulo de acondicionamiento de material granulado a través de tamices para dejar pasar partículas de tamaño inferior a 10 mm, por dichos medios de transporte circula un flujo de aire generado por una bomba aspiradora, compresor de aire o ventilador que permite desplazar el material granulado; b) un Módulo de Acondicionamiento del material granulado que comprende medios de molienda, la salida de dichos medios de molienda está conectada a una cámara de secado con medios de secado, en donde dichos medios de secado comprenden medios de calentamiento para calentar el flujo de aire que transporta el material particulado fino, medios permeables al vapor para extraer el vapor condensado de dicho flujo de aire calentado y una cámara de enfriamiento con intercambiadores de calor por donde dicho flujo de aire calentado y secado se enfría al pasar; dicha cámara de enfriamiento del Módulo de Acondicionamiento se conecta herméticamente a un Módulo de Adquisición de Espectro de Absorción; c) un Módulo de Adquisición de Espectro de Absorción conecta dicha cámara de enfriamiento del Módulo de Acondicionamiento herméticamente a una cámara de lectura por donde circula dicho flujo de aire que transporta dicho material particulado fino, dicha cámara de lectura comprende una pluralidad de foto-emisores como medios de radiación electromagnética y medios de lectura de dicha radiación dispuestos enfrentados y en el lado opuesto a los medios de radiación electromagnética en dicha cámara de lectura; dicha cámara de lectura se conecta a un ducto de salida que libera el material particulado fino fuera del sistema; y d) un Módulo de Análisis y Transmisión de Datos que comprende conversores análogos-digitales, medios computacionales y medios de comunicación digital, en donde dichos conversores análogos digitales están conectados a los medios de lectura.
[Claim 2] El sistema de la reivindicación 1, CARACTERIZADO porque por dicho flujo de aire tiene una velocidad entre 1 m/s y 30 m/s.
[Claim 3] El sistema de la reivindicación 1, CARACTERIZADO porque dichos medios de molienda pueden consistir una trituradora de mandíbula, una trituradora de impacto, una trituradora de cono o una trituradora de eje vertical.
[Claim 4] El sistema de la reivindicación 1, CARACTERIZADO porque dichos medios de secado consiste en un primer ducto en serpentín dentro de un cámara caliente, por dentro pasa dicho flujo de aire, luego dicho primer ducto en serpentín sale de la cámara caliente e ingresa a una cámara de condensación con dichos medios impermeables para extraer el vapor condensado de dicho flujo de aire, luego se conecta dicha cámara de condensación con dicha cámara fría.
[Claim 5] El sistema de la reivindicación 1, CARACTERIZADO porque dichos medios de calentamiento consisten en una convección por gases caliente de combustión o de vapor sobrecalentado o una radiación de una resistencia eléctrica dentro de dicha cámara caliente.
[Claim 6] El sistema de la reivindicación 1, CARACTERIZADO porque dichos medios permeables al vapor son membranas tejidas de polipropileno.
[Claim 7] El sistema de la reivindicación 1, CARACTERIZADO porque dichos intercambiadores de calores pueden ser de placa, o un segundo ducto en serpentín por dentro circula dicho flujo de aire dentro de dicha cámara fría.
[Claim 8] El sistema de la reivindicación 1, CARACTERIZADO porque dicha cámara fría comprende medios de enfriamiento que pueden ser una convección por aire con ventilación forzada, nitrógeno líquido o agua fría circulante.
[Claim 9] El sistema de la reivindicación 1, CARACTERIZADO porque dicha pluralidad de foto-emisores emite con longitud de onda entre 0,2 y 20 μm y con una potencia entre 0,1 mW a 800W por foto-emisor.
[Claim 10] El sistema de la reivindicación 1, CARACTERIZADO porque comprende adicionalmente un Módulo de Control de Mecanismos que realiza la coordinación y el control electrónico de dicha bomba aspiradora, dicho compresor de aire o dicho ventilador, dichos medios de molienda, dichos medios de secado, dichos medios de impulsos, dichos medios de radiación electromagnético, y dichos medios de lectura.
[Claim l l] El sistema de la reivindicación 1, CARACTERIZADO porque dichos medios de acople pueden ser un acople hermético o una abertura de ducto en campana y dichos medios de transporte de material granulado consisten en una manga, un ducto y/o una manguera.
[Claim 12] El sistema de la reivindicación 1, CARACTERIZADO porque dichos medios de lectura consisten en un arreglo de foto-detectores de hasta 70.000 sensores discretos como foto-diodos de avalancha o foto- transistores, o un dispositivo de carga acoplada (sensor CCD) de hasta 70.000 puntos (píxeles).
[Claim 13] Proceso de recolección y análisis para la determinación in situ de concentraciones de minerales en material granulado proveniente de un pozo siendo excavado, de forma continua, no intrusiva y en tiempo real, CARACTERIZADO porque comprende las etapas de: a) acoplar medios de acople operativamente y capturando las partículas finas, o polvo, del material granulado a la barrena de una perforadora excavando dicho pozo a un Módulo de Recolección; b) recolectar un flujo de material granulado a través de dichos medios de acople mediante una bomba de aspiración, compresor de aire o ventilador con un flujo de aire entre 1 m/s y 30 m/s y tamizar dicho flujo de material granulado a partículas para un tamaño inferior a 10 mm; c) transportar dicho flujo de material granulado a un Módulo de Acondicionamiento a través de medios de transporte; d) triturar dicho material granulado en un material particulado fino con tamaño inferior a 6 mm mediante medios de molienda en dicho Módulo de Acondicionamiento; e) secar dicho material particulado fino en una cámara de secado calentando dicho flujo de material particulado fino a una temperatura inferior a 1000C, extrayendo el vapor de dicho flujo de material particulado fino hasta una humedad inferior a 6% y transportar dicho flujo de material particulado fino a una cámara de enfriamiento; f) enfriar dicho flujo de material particulado fino en dicha cámara de enfriamiento a una temperatura inferior a 6O0C mediante intercambiadores de calor; g) transportar dicho flujo de material particulado fino mediante dicho flujo de aire a una cámara de lectura; h) irradiar dicho flujo de material particulado fino en dicha cámara de lectura con radiación de longitud de onda entre 0,2 a 20 μm mediante un arreglo de foto-emisores; y captar la radiación emitida que ha atravesado dicho flujo de material particulado fino sin ser absorbida mediante un arreglo de foto-detectores; i) convertir a valores digitales la lectura captada de dicho arreglo de foto-detectores para su almacenamiento en un medio compu- tacional de un Módulo de Análisis y Transmisión de Datos, generar un valor instantáneo de concentración de minerales presentes, y registrar simultáneamente la profundidad de la perforadora en el pozo de excavación de donde proviene el material granulado generando un perfil espectroscópico continuo del material granulado recolectado en función de la profundidad registrada; y j) evacuar dicho flujo de material particulado fino a un ducto de salida para su posterior almacenamiento, confinamiento o utilización posterior en otra aplicación.
[Claim 14] Proceso de acuerdo a la reivindicación 13, CARACTERIZADO porque comprende adicionalmente la etapa de transmitir a un medio compu- tacional remoto dichos valores digitales, dicho valor instantáneo de concentraciones de minerales y/o dicho perfil espectroscópico continuo para una toma de decisión en relación con la concentración de mineral de dicho material granulado.
[Claim 15] Proceso de acuerdo a la reivindicación 13, CARACTERIZADO porque en la etapa a) dichos medios de acople pueden ser un acople hermético o una abertura de ducto en campana.
[Claim 16] Proceso de acuerdo a la reivindicación 13, CARACTERIZADO porque en la etapa c) dichos medios de transporte de material granulado consisten en una manga, un ducto y/o una manguera.
PCT/IB2009/054885 2008-11-04 2009-11-03 Metodo y sistema para la medición de la concentración de distintos compuestos presentes en material particulado WO2010052645A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/127,660 US8536536B2 (en) 2008-11-04 2009-11-03 Method and system for measuring the concentration of different compounds present in particulate material
EP09824479.1A EP2348306A4 (en) 2008-11-04 2009-11-03 METHOD AND SYSTEM FOR MEASURING THE CONCENTRATION OF DIFFERENT CONNECTIONS IN A PARTICLE MATERIAL
CL2010000963A CL2010000963A1 (es) 2008-11-04 2010-09-08 Sistema para entregar una solucion lixiviadora a una pila de mena en el proceso de lixiviacion por percolacion que comprende conducto principal para la entrega de solucion lixiviadora, sistema de entrega de solucion a la superficie, sistema de entrega bajo superficie; y metodo para aplicar dicha solucion lixiviadora a una pila.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11118608P 2008-11-04 2008-11-04
US61/111,186 2008-11-04

Publications (1)

Publication Number Publication Date
WO2010052645A1 true WO2010052645A1 (es) 2010-05-14

Family

ID=42152546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/054885 WO2010052645A1 (es) 2008-11-04 2009-11-03 Metodo y sistema para la medición de la concentración de distintos compuestos presentes en material particulado

Country Status (4)

Country Link
US (1) US8536536B2 (es)
EP (1) EP2348306A4 (es)
CL (2) CL2010000963A1 (es)
WO (1) WO2010052645A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394786B2 (en) 2013-09-06 2016-07-19 Ingenieros Matematicos Consultores Asociados S.A. Method and system for in situ, continuous and real-time analysis of mineral content in drilling debris

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123445A1 (en) * 2017-12-21 2019-06-27 Croptimal Ltd Integrated sampling and measurement apparatus
WO2019189262A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 粉率測定装置、粉率測定システムおよび高炉操業方法
CN110954671B (zh) * 2018-09-27 2024-01-26 中国矿业大学(北京) 一种基于应力发光材料的综放开采模拟实验装置及方法
CN113128102B (zh) * 2021-03-25 2023-10-03 北京交通大学 铁路道床道砟侵入物多尺度分析模型快速构建的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351686A (en) * 1990-10-06 1994-10-04 In-Line Diagnostics Corporation Disposable extracorporeal conduit for blood constituent monitoring
WO1995009962A1 (en) 1993-10-01 1995-04-13 Gold Star Manufacturing, Inc. Continuous soil sampling system and method
US5741707A (en) * 1992-12-31 1998-04-21 Schlumberger Technology Corporation Method for quantitative analysis of earth samples
US5780848A (en) * 1996-11-29 1998-07-14 Motorola, Inc. System and method for indicating an angular position of an object using a level detection device
WO2006138632A2 (en) 2005-06-16 2006-12-28 Thermo Gamma-Metrics Llc In-stream spectroscopic elemental analysis of particles being conducted within a gaseous stream
WO2008017107A1 (en) 2006-08-09 2008-02-14 The University Of Queensland Characterisation of geological materials by thermally induced response

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968845A (en) * 1973-01-15 1976-07-13 Chaffin John D Apparatus and method for geological drilling and coring
GB2237305B (en) * 1989-10-28 1993-03-31 Schlumberger Prospection Analysis of drilling solids samples
US6178383B1 (en) * 1998-04-15 2001-01-23 Cargill, Incorporated On-line sampling and image analyzer for determining solid content in a fluid media

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351686A (en) * 1990-10-06 1994-10-04 In-Line Diagnostics Corporation Disposable extracorporeal conduit for blood constituent monitoring
US5741707A (en) * 1992-12-31 1998-04-21 Schlumberger Technology Corporation Method for quantitative analysis of earth samples
WO1995009962A1 (en) 1993-10-01 1995-04-13 Gold Star Manufacturing, Inc. Continuous soil sampling system and method
US5780848A (en) * 1996-11-29 1998-07-14 Motorola, Inc. System and method for indicating an angular position of an object using a level detection device
WO2006138632A2 (en) 2005-06-16 2006-12-28 Thermo Gamma-Metrics Llc In-stream spectroscopic elemental analysis of particles being conducted within a gaseous stream
WO2008017107A1 (en) 2006-08-09 2008-02-14 The University Of Queensland Characterisation of geological materials by thermally induced response

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D. TURLER, M. KARACA, W.B. DAVIS, R. GIAUQUE: "Improved process control through real-time measurement of mineral content", D. HOPKINS, 2 November 2001 (2001-11-02), Retrieved from the Internet <URL:http://www.osti.gov/bridge>
ROBERT L. GORDON, TIM LERICHE: "Enhancing the grade control through borehole geophysics: A case study from the Iron Ore Company of Canada", SUSANNE MACMAHON, 2000, Retrieved from the Internet <URL:http://www.quantecgeoscience.com/News/ ArticlesPublications.php>
See also references of EP2348306A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394786B2 (en) 2013-09-06 2016-07-19 Ingenieros Matematicos Consultores Asociados S.A. Method and system for in situ, continuous and real-time analysis of mineral content in drilling debris

Also Published As

Publication number Publication date
CL2011000987A1 (es) 2011-08-05
EP2348306A1 (en) 2011-07-27
EP2348306A4 (en) 2016-06-29
US20110260073A1 (en) 2011-10-27
CL2010000963A1 (es) 2011-04-01
US8536536B2 (en) 2013-09-17

Similar Documents

Publication Publication Date Title
Mandal et al. Heavy metals in soils around the cement factory in Rockfort, Kingston, Jamaica
US9394786B2 (en) Method and system for in situ, continuous and real-time analysis of mineral content in drilling debris
Ribeiro et al. Portable X-ray fluorescence (pXRF) applications in tropical Soil Science
WO2010052645A1 (es) Metodo y sistema para la medición de la concentración de distintos compuestos presentes en material particulado
RU2013119424A (ru) Спектральная идентификация проппанта в зонах разрывов подземных пластов
EP3221555B1 (en) Cement evaluation with x-ray tomography
Baik et al. Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS
ULMANU et al. Rapid determination of some heavy metals in soil using an X-ray fluorescence portable instrument.
WO2013155075A1 (en) Heap monitoring
Lemière et al. XRF and LIBS for Field Geology
Radomirović et al. Spatial distribution, radiological risk assessment and positive matrix factorization of gamma-emitting radionuclides in the sediment of the Boka Kotorska Bay
Uvarova et al. Representative, high-spatial resolution geochemistry from diamond drill fines (powders): An example from Brukunga, Adelaide, South Australia
US20210372947A1 (en) Methods and means for identifying fluid type inside a conduit
US20050232392A1 (en) Nanostructure field emission x-ray analysis
Malmqvist et al. Geogas prospecting–an ideal industrial application of PIXE
Modena et al. Gamma-ray spectrometry for distinguishing acid and basic rocks of the Serra Geral Formation, in the Serra Gaúcha wine region, Brazil
McDonald et al. A cone penetrometer x-ray fluorescence tool for the analysis of subsurface heavy metal contamination
Parker et al. Examining the residual radiological footprint of a former colliery: An industrial nuclear archaeology investigation
Meisner et al. CsI (Tl) with photodiodes for identifying subsurface radionuclide contamination
ABDEL-RAZEK et al. Effect of some physical properties of the black sands on the radiation exposures at Mastarouh, North Nile Delta, Egypt
Jolie et al. Diffuse degassing measurements as a geochemical exploration tool: a case study from the Brady’s geothermal system (Nevada, USA)
CN205352974U (zh) 用于测量元素含量的设备
da Cunha Kemerich et al. Determination of Metals in a Soil Occupied by Necropolis in Southern Brazil: The Use of X-Ray Fluorescence Technique (XRF)
ULMANU et al. Rapid and Low-Cost Determination of Heavy Metals in Soil using an X-Ray Portable Instrument
Diwa et al. In situ ground radiometric survey and risk assessments of allanite-bearing beach sands in Erawan, Palawan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009824479

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13127660

Country of ref document: US