WO2010050733A2 - 플라즈마를 이용한 밸러스트수 처리 장치 및 방법 - Google Patents

플라즈마를 이용한 밸러스트수 처리 장치 및 방법 Download PDF

Info

Publication number
WO2010050733A2
WO2010050733A2 PCT/KR2009/006237 KR2009006237W WO2010050733A2 WO 2010050733 A2 WO2010050733 A2 WO 2010050733A2 KR 2009006237 W KR2009006237 W KR 2009006237W WO 2010050733 A2 WO2010050733 A2 WO 2010050733A2
Authority
WO
WIPO (PCT)
Prior art keywords
ballast water
water treatment
electrode
capacitor
unit
Prior art date
Application number
PCT/KR2009/006237
Other languages
English (en)
French (fr)
Other versions
WO2010050733A3 (ko
Inventor
류한성
하연철
서동혁
정효석
이재도
Original Assignee
주식회사 21세기 조선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 21세기 조선 filed Critical 주식회사 21세기 조선
Publication of WO2010050733A2 publication Critical patent/WO2010050733A2/ko
Publication of WO2010050733A3 publication Critical patent/WO2010050733A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water

Definitions

  • the present invention relates to a ballast water treatment apparatus and method, and more particularly, ballast water for removing copper, phytoplankton and microorganisms that are various environmental pollution sources contained in the ballast water by transferring the impact energy of the plasma to the ballast water.
  • a processing apparatus and method is provided.
  • ballast tanks At the bottom of the ship to ensure the stability and balance of the ship.
  • These ballast tanks take in a certain amount of seawater in the absence of cargo so that the ship can be balanced.
  • the amount of seawater (ballast water) introduced is set based on the size of the ship, that is, the amount of drainage. In the case of large vessels, more than 10,000 tons of seawater is frequently introduced.
  • the seawater flowing into the ballast tank in this process includes fine marine organisms, and when the vessel inflows seawater from the country and region to which it is docked and then moves to other countries and regions to release seawater, it is mixed during the seawater inflow process.
  • Micro marine organisms (dong, phytoplankton, etc.) have a problem that is spread to other regions. The movement of marine organisms rarely occurs in the natural world, causing serious ecosystem disturbances such as fluctuations in representative species and red tide.
  • the International Maritime Organization has proposed international standards for the treatment of ballast water and mandated the installation of ballast water treatment devices on all ships. Therefore, the ballast water contained in the ballast water prior to discharge of the ballast water. There is a need for an apparatus and method for removing micro marine life.
  • the present invention is to solve the above problems, an object of the present invention to provide a ballast water treatment apparatus and method for killing copper, phytoplankton and microorganisms contained in the ballast water by using the impact energy by the plasma. It is to.
  • Ballast water treatment apparatus for achieving the above object, DC power supply for supplying a DC power; A capacitor connected to an output terminal of the power protection circuit and storing electrical energy supplied from the DC power supply unit; And a ballast water treatment unit connected to both terminals of the capacitor, generating a plasma from energy stored in the capacitor, and transferring the impact energy generated by the plasma to the ballast water.
  • the output terminal of the DC power supply unit and the capacitor is preferably connected to, further comprising a power protection circuit for preventing damage to the DC power supply unit due to reverse current.
  • the capacitor is connected between the ballast water treatment unit, and may be configured to further include a switch for connecting or disconnecting the current applied to the ballast water treatment unit, the switch is a gap switch (Gap Switch) or an electronic switch ( SCR, IGBT, etc.) is preferable.
  • Gap Switch Gap Switch
  • SCR, IGBT, etc. an electronic switch
  • the ballast water treatment unit the housing for storing the ballast water therein;
  • a first electrode disposed on an upper side or a side of the housing and connected to one end of the capacitor;
  • An air injector configured to inject air around the first electrode to form an air layer between the first electrode and the ballast water;
  • a second fluid connected to the other end of the capacitor and electrically connected to the ballast water stored in the housing; It consists of two electrodes.
  • the first electrode is spaced apart from the predetermined distance is formed on the top or side of the inside of the housing, it may be configured to further include a guide for confining the air layer injected from the air injection unit around the first electrode.
  • the first electrode may be formed to have a sharp tip portion facing the ballast water, or may have a flat portion facing the ballast water.
  • the air injection unit it is preferable to inject air around the first electrode so that the distance between the first electrode and the water surface of the ballast water is kept constant.
  • the air injection unit may be formed to penetrate the inside of the first electrode, or may be formed to penetrate the upper or side surface of the housing at a predetermined distance from the first electrode.
  • the ballast water treatment method performed in the ballast water treatment apparatus (a) storing the electrical energy supplied from the DC power supply unit provided in the ballast water treatment device in a capacitor connected to the DC power supply unit; (b) in the ballast water treatment unit connected to both terminals of the capacitor, generating a plasma from energy stored in the capacitor, and transferring impact energy from the plasma to the ballast water.
  • the step (b) comprises the steps of: forming an air layer between the first electrode and the ballast water by injecting air around the first electrode of the housing in which the ballast water is stored; Generating a plasma in the formed air layer; Preferably, the impact energy generated by the generated plasma is transferred to the ballast water to destroy microorganisms in the ballast water.
  • the present invention by transmitting the impact energy according to the plasma generation to the ballast water, there is an advantage that can be processed in real time the micro-marine life contained in the ballast water.
  • FIG. 1 is an overall configuration diagram of a ballast water treatment apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an overall configuration diagram of a ballast water treatment apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a vertical sectional view of the ballast water treatment unit according to the present invention.
  • FIGS. 4 to 9 are detailed configuration diagrams of the first electrode, the air injection unit, and the guide unit of the ballast water treatment unit according to the present invention.
  • 10 to 12 is a view showing a ballast water treatment method using a ballast water treatment apparatus according to the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another.
  • ballast water treatment apparatus according to the present invention will be described in detail with reference to the accompanying drawings, in the following description with reference to the accompanying drawings, the same or corresponding components are given the same reference numerals and duplicated thereto. The description will be omitted.
  • FIG. 1 is an overall configuration diagram of a ballast water treatment apparatus according to a first embodiment of the present invention.
  • the ballast water treatment apparatus includes a DC power supply unit 10, a capacitor 20, and a ballast water treatment unit 100.
  • the DC power supply unit 10 supplies DC power to the capacitor 20.
  • the capacitor 20 is connected in parallel with the output terminal of the DC power supply unit 10, and stores the electrical energy supplied from the DC power supply unit 10.
  • the ballast water treatment unit 100 is connected to both terminals of the capacitor 20, generates a plasma from the energy stored in the capacitor 20, and transfers the impact energy of the generated plasma to the ballast water by the ballast Removes copper, phytoplankton and microorganisms from water.
  • the ballast water treatment device is connected between the output terminal of the DC power supply unit 10 and the capacitor 20, the power protection circuit 30 for preventing damage to the DC power supply unit 10 by a reverse current It may be configured to include more.
  • FIG. 2 is an overall configuration diagram of a ballast water treatment apparatus according to a second embodiment of the present invention.
  • the ballast water treatment apparatus includes all of the components in the first embodiment described with reference to FIG. 1 and further includes a switch 40.
  • the switch 40 is connected between the capacitor 20 and the ballast water treatment unit 100, and connects or blocks a current applied to the ballast water treatment unit 100.
  • the switch 40 may be configured as a gap switch or an electrical switch such as an SCR or an IGBT.
  • the switch 40 is normally maintained in an open state, and when a charge of a predetermined capacity or more is accumulated in the capacitor 20. Closed and accumulated electrical energy is applied to the ballast water treatment unit 100.
  • ballast water treatment unit 100 performs a switching function itself, it is not necessary to attach a separate switch in principle, but if necessary, a separate switch is provided as shown in FIG. It can also be configured.
  • FIG 3 is a vertical cross-sectional view of the ballast water treatment unit 100 of the ballast water treatment apparatus according to the present invention.
  • the ballast water treatment unit 100 As shown, the ballast water treatment unit 100 according to the present invention, the housing 110, the first electrode 120, the air injection unit 130, the second electrode 140, the ballast water inlet 150 , Ballast water outlet 160 and the guide portion 170.
  • the housing 110 is a portion for storing the ballast water for the plasma treatment therein.
  • the first electrode 120 is disposed on the upper or side surface of the housing 110 to be electrically connected to one end of the capacitor 20, and the second electrode 140 is connected to the other of the capacitor 20. It is connected to the stage, it is electrically connected to the ballast water stored in the housing 110.
  • the air injector 130 is connected to an external air injector (not shown) to inject air around the first electrode 120 to form an air layer between the first electrode 120 and the ballast water. To form.
  • the ballast water inlet 150 supplies the ballast water before the plasma treatment to the housing 110, and the ballast water outlet 160 sends the ballast water after the treatment to the outside.
  • the guide unit 170 is spaced apart from the first electrode 120 by a predetermined distance and is formed on the top or side surface of the inside of the housing 110.
  • the air layer injected from the air injector 130 is formed on the first electrode 120. It serves as a confinement around the electrode 120.
  • Opposing electrodes are required for plasma generation, where the anode generally represents the ground terminal and the cathode represents the power supply terminal, respectively.
  • the first electrode 120 acts as a cathode
  • the second electrode 140 acts as an anode
  • the second electrode 140 has a number of ballasts in the housing 110. Because they are electrically connected, the entire sea level becomes the ground plane.
  • the plasma is generated in an air layer (void) formed between the first electrode 120 and the grounded ballast water, and the impact energy is transmitted to the ballast water by transmitting the impact energy formed by the plasma generated in the air layer. This kills copper, phytoplankton and microorganisms.
  • the discharge method using the air layer has an advantage that the discharge can be performed under a much lower power condition than the discharge method of the plasma in the ballast water itself.
  • seawater constituting ballast water is a material with strong conductivity, which shows strong resistance unlike capacitor type, which is a model of general plasma generation. Therefore, in such a case, discharge is generated through rapid high potential application in a short time through induction of resistance breakdown, and in this case, an applied voltage of several tens of kV and a power supply device of several hundred amperes or more are required.
  • the present invention can effectively remove microorganisms under much lower voltage and current conditions by using a method of transferring impact energy discharged from air gaps to seawater rather than directly discharging plasma to seawater.
  • the distance between the first electrode 120 and the water surface of the ballast water is closely related to the plasma generation conditions. That is, when the distance is closer, the amount of charge of the capacitor 20 required for plasma generation is reduced and the energy of the plasma generated accordingly is also reduced. On the contrary, when the distance increases, the amount of charge of the capacitor 20 required for plasma generation increases, and the energy of the generated plasma also increases. Therefore, if the distance between the first electrode 120 and the surface is irregularly formed because the surface is not uniform, the discharge condition varies depending on the distance, thereby causing a problem of irregular plasma.
  • air around the first electrode 120 is maintained in the air injection unit 130 so that the distance between the first electrode 120 and the surface of the ballast water is kept constant. By injecting so that the plasma discharge in the air layer can occur constantly.
  • the air layer also serves as a gap switch. In other words, the air layer is normally kept open, but when the capacitor accumulates a predetermined capacity or more, the air layer is closed and causes plasma discharge. After the discharge, the air layer is returned to the open state. The process can be performed. It is apparent that the discharge period is also determined according to the distance of the air layer.
  • FIG 4 and 5 are detailed configuration diagrams of the first electrode 120, the air injection unit 130, and the guide unit 170 of the ballast water treatment unit 100 according to the present invention.
  • FIG. 4 illustrates a case where the air injection unit 130 is formed through the inside of the first electrode 120.
  • the first electrode 120 may have a sharp tip portion facing the ballast water, and the tip portion may be flattened as shown in FIG. 5. It may be.
  • the pointed tip is easy to wear with continuous plasma discharge, there is a problem that the discharge conditions vary depending on the wear of the tip.
  • the end is formed flat, there is a strong advantage to wear, but the voltage for discharge is higher than the pointed tip. Therefore, in the present invention, the shape of the first electrode 120 can be properly configured as necessary.
  • the guide unit 170 in the present invention is to trap the air injected from the air injection unit 130 around the first electrode 120, as seen in Figure 6 as seen from the top When the first electrode 120 has a circular shape as a center.
  • FIG. 5 illustrates a case in which the air injection unit 130 is formed to penetrate the upper or side surface of the housing 110 by being spaced apart from the first electrode 120 by a predetermined distance.
  • one or more air injection units 130 may be formed between the first electrode 120 and the guide unit 170, as shown in FIG. 9.
  • 10 to 12 is a view showing a ballast water treatment method using a ballast water treatment apparatus according to the present invention.
  • an air layer is formed between the first electrode 120 and the ballast water through the air injection unit 130.
  • the impact energy generated by the plasma is transferred to the ballast water (FIG. 12), and thus copper, phytoplankton, and fine particles present in the ballast water. Killing creatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Public Health (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)

Abstract

플라즈마를 이용한 밸러스트수 처리 장치 및 방법이 개시된다. 상기 밸러스트수 처리 장치는, 직류 전원을 공급하는 직류 전원부; 상기 직류 전원부의 출력단과 연결되며, 상기 직류 전원부에서 공급되는 전기 에너지를 저장하는 커패시터; 상기 커패시터의 양 단자와 연결되며, 상기 커패시터에 저장된 에너지로부터 플라즈마를 발생시키고, 발생된 상기 플라즈마에 의한 충격 에너지를 밸러스트수로 전달하는 밸러스트수 처리부; 를 포함하여 구성되며, 상기 실시예에 따르면, 플라즈마 발생에 따른 충격 에너지를 밸러스트수로 전달함으로써 밸러스트수에 포함된 미세 해양 생물을 실시간으로 처리할 수 있는 장점이 있다.

Description

플라즈마를 이용한 밸러스트수 처리 장치 및 방법
본 발명은 밸러스트수 처리 장치 및 방법에 관한 것으로, 보다 상세하게는 플라즈마에 의한 충격 에너지를 밸러스트수로 전달함으로써 상기 밸러스트수에 포함된 동, 식물성 플랑크톤 및 각종 환경오염원인 미생물을 제거하기 위한 밸러스트수 처리 장치 및 방법에 관한 것이다.
일반적으로 유조선 및 대부분의 대형 선박의 경우, 선박의 안정성 및 균형의 확보를 위하여 배의 하부에 밸러스트 탱크가 구비되어 있다. 이러한 밸러스트 탱크는 화물이 없는 상황에서 일정량의 해수를 취수하여 배의 균형이 유지될 수 있도록 한다. 이때 유입되는 해수(밸러스트수)의 양은 배의 크기, 즉 배수량을 기준으로 설정되는데 대형 선박의 경우 1만 톤 이상의 해수를 유입하는 경우도 빈번하게 나타난다.
한편, 이 과정에서 밸러스트 탱크 안으로 유입되는 해수에는 미세 해양 생물이 포함되는데, 선박이 접안한 국가 및 지역의 해수를 유입한 후 타 국가 및 지역으로 이동하여 해수를 방출하는 경우, 해수 유입과정에서 혼입된 미세 해양생물(동, 식물성 플랑크톤 등)이 타지역으로 전파되는 문제점을 지니고 있다. 이러한 해상생물의 이동은 자연계에서는 거의 발생하지 않는 현상으로서 대표 생물종의 변동, 적조발생 등 심각한 생태계 교란현상을 야기하여 세계적인 해양 환경 오염 요인으로 대두되고 있다.
이에 국제 해사기구(IMO, International Maritime Organization)에서는 밸러스트수의 처리에 대한 국제기준을 제시하고 모든 선박에 밸러스트수 처리 장치의 장착을 의무화하고 있으며, 따라서 상기 밸러스트수를 배출하기 전 밸러스트수에 포함된 미세 해양생물을 제거하기 위한 장치 및 방법이 필요하게 되었다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 플라즈마에 의한 충격 에너지를 이용하여 밸러스트수에 포함된 동, 식물성 플랑크톤 및 미세생물을 사멸시키기 위한 밸러스트수 처리 장치 및 방법을 제공하기 위한 것이다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 밸러스트수 처리 장치는,직류 전원을 공급하는 직류 전원부; 상기 전원 보호회로 출력단과 연결되며, 상기 직류 전원부에서 공급되는 전기 에너지를 저장하는 커패시터; 상기 커패시터의 양 단자와 연결되며, 상기 커패시터에 저장된 에너지로부터 플라즈마를 발생시키고, 발생된 상기 플라즈마에 의한 충격 에너지를 밸러스트수로 전달하는 밸러스트수 처리부를 포함한다.
이때, 상기 직류 전원부의 출력단과 상기 커패시터의 사이에 연결되며, 역전류에 의한 상기 직류 전원부의 손상을 방지하는 전원 보호 회로를 더 포함하는 것이 바람직하다.
또한, 상기 커패시터와 상기 밸러스트수 처리부 사이에 연결되며, 상기 밸러스트수 처리부로 인가되는 전류를 연결 또는 차단하는 스위치를 더 포함하여 구성될 수 있으며, 상기 스위치는 갭 스위치(Gap Switch) 또는 전자 스위치(SCR, IGBT등)인 것이 바람직하다.
한편, 상기 밸러스트수 처리부는, 내부에 밸러스트수를 저장하는 하우징; 상기 하우징 내부의 상단 또는 측면에 배치되며, 상기 커패시터의 일단과 연결되는 제1전극; 상기 제1전극의 주위에 공기를 주입하여 상기 제1전극과 상기 밸러스트수 사이에 공기층을 형성하는 공기 주입부;상기 커패시터의 타단과 연결되며, 상기 하우징 내부에 저장된 밸러스트수와 전기적으로 연결되는 제2전극을 포함하여 구성된다.
이때, 상기 제1전극과 일정 거리 이격되어 상기 하우징 내부의 상단 또는 측면에 형성되며, 상기 공기 주입부로부터 주입된 공기층을 상기 제1전극의 주위에 가두기 위한 가이드부를 더 포함하여 구성될 수 있다.
그리고 상기 제1전극은 상기 밸러스트수와 대향하는 팁(Tip) 부분이 뾰족하게 형성되거나, 상기 밸러스트수와 대향하는 팁(Tip) 부분이 편평하게 형성될 수 있다.
또한 상기 공기 주입부는, 상기 제1전극과 상기 밸러스트수의 수면과의 거리가 일정하게 유지되도록 상기 제1전극의 주위에 공기를 주입하는 것이 바람직하다.
이때, 상기 공기 주입부는, 상기 제1전극의 내부를 관통하여 형성되거나, 상기 제1전극과 일정 거리 이격되어 상기 하우징의 상단 또는 측면을 관통하도록 형성될 수 있다.
한편, 본 발명에 따른 밸러스트수 처리 장치에서 수행되는 밸러스트수 처리 방법은, (a) 상기 밸러스트수 처리 장치에 구비된 직류 전원부로부터 공급된 전기 에너지를 상기 직류 전원부와 연결된 커패시터에 저장하는 단계; (b) 상기 커패시터의 양 단자와 연결된 밸러스트수 처리부에서, 상기 커패시터에 저장된 에너지로부터 플라즈마를 발생시켜, 상기 플라즈마에 의한 충격 에너지를 상기 밸러스트수로 전달하는 단계를 포함하여 구성된다.
이때, 상기 (b) 단계는, 밸러스트수가 저장된 하우징의 제1전극의 주위에 공기를 주입하여 상기 제1전극과 상기 밸러스트수 사이에 공기층을 형성하는 단계; 상기 형성된 공기층에 플라즈마를 발생시키는 단계; 상기 발생된 플라즈마에 의한 충격 에너지를 상기 밸러스트수에 전달하여 상기 밸러스트수 내의 미생물을 파괴하는 단계를 포함하는 것이 바람직하다.
본 발명의 실시예에 따르면, 플라즈마 발생에 따른 충격 에너지를 밸러스트수로 전달함으로써 밸러스트수에 포함된 미세 해양 생물을 실시간으로 처리할 수 있는 장점이 있다. 또한 본 발명에 따를 경우 상기 해양 생물의 세포막까지 파괴가 가능하며, 제작 당시 밸러스트수 처리 장치가 장착되어 있지 않은 구형 선박에도 장착이 간편하고, 그 구조가 단순하여 유지비용이 적게 드는 장점이 있다.
도 1은 본 발명의 제1실시예에 따른 밸러스트수 처리 장치의 전체 구성도이다.
도 2는 본 발명의 제2실시예에 따른 밸러스트수 처리 장치의 전체 구성도이다.
도 3은 본 발명에 따른 밸러스트수 처리부의 수직 단면도이다.
도 4 내지 도 9는 본 발명에 따른 밸러스트수 처리부의 제1전극, 공기 주입부, 및 가이드부의 상세 구성도이다.
도 10 내지 도 12는 본 발명에 따른 밸러스트수 처리장치를 이용한 밸러스트수 처리 방법을 나타낸 도면이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명에 따른 밸러스트수 처리 장치의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 제1실시예에 따른 밸러스트수 처리 장치의 전체 구성도이다.
도시된 바와 같이, 상기 밸러스트수 처리 장치는 직류 전원부(10), 커패시터(20) 및 밸러스트수 처리부(100)를 포함하여 구성된다.
상기 직류 전원부(10)는 상기 커패시터(20)에 직류 전원을 공급한다. 본 발명에서는 직류 전원을 이용하여 커패시터(20)에 에너지를 충전하고, 충전된 에너지를 밸러스트수 처리부(100)로 일시에 유도함으로써 플라즈마를 발생시키는 방식을 사용하며, 이는 직류 펄스(DC pulse) 파형의 전원을 사용하는 방식에 비해 제작 비용을 월등히 낮출 수 있는 효과가 있고 효율 면에서도 우수하다.
상기 커패시터(20)는 상기 직류 전원부(10)의 출력단과 병렬 연결되며, 상기 직류 전원부(10)에서 공급되는 전기 에너지를 저장한다.
상기 밸러스트수 처리부(100)는 상기 커패시터(20)의 양 단자와 연결되며, 상기 커패시터(20)에 저장된 에너지로부터 플라즈마를 발생시키고, 발생된 상기 플라즈마에 의한 충격 에너지를 밸러스트수로 전달함으로써 상기 밸러스트수에 포함된 동, 식물성 플랑크톤 및 미세생물을 제거한다.
한편, 상기 밸러스트수 처리 장치는 상기 직류 전원부(10)의 출력단과 상기 커패시터(20)의 사이에 연결되며, 역전류에 의한 상기 직류 전원부(10)의 손상을 방지하는 전원 보호 회로(30)를 더 포함하여 구성될 수 있다.
도 2는 본 발명의 제2실시예에 따른 밸러스트수 처리 장치의 전체 구성도이다.
도시된 바와 같이, 상기 제2실시예에 따른 밸러스트수 처리 장치는 상기 도 1을 참조하여 설명하였던 제1실시예에서의 구성요소를 모두 포함하고 있으며, 추가로 스위치(40)를 더 포함한다. 상기 스위치(40)는 상기 커패시터(20)와 상기 밸러스트수 처리부(100) 사이에 연결되며, 상기 밸러스트수 처리부(100)로 인가되는 전류를 연결 또는 차단한다. 상기 스위치(40)는 갭 스위치(Gap Switch) 또는 SCR, IGBT 등의 전기 스위치로 구성될 수 있으며, 평소에는 오픈(open) 상태를 유지하다가, 상기 커패시터(20)에 일정 용량 이상의 전하가 축적되면 클로즈(close)되어 축적된 전기 에너지가 상기 밸러스트수 처리부(100)로 인가되도록 한다.
본 발명은 이하에서 상세히 설명할 바와 같이, 상기 밸러스트수 처리부(100) 자체에서 스위칭 기능을 수행하므로 원칙적으로 별도의 스위치를 부착할 필요가 없으나, 필요에 따라 상기 도 2와 같이 별도의 스위치를 구비하여 구성할 수도 있다.
한편, 도 1을 참조하여 설명하였던 본 발명의 제1실시예에서의 구성요소와 대응되는 구성요소는, 제1실시예에서 설명한 바와 동일 또는 유사한 기능을 수행하므로, 이에 대한 보다 구체적인 설명은 생략하도록 한다.
도 3은 본 발명에 따른 밸러스트수 처리 장치의 밸러스트수 처리부(100)의 수직 단면도이다.
도시된 바와 같이, 본 발명에 따른 밸러스트수 처리부(100)는, 하우징(110), 제1전극(120), 공기 주입부(130), 제2전극(140), 밸러스트수 유입부(150), 밸러스트수 유출부(160) 및 가이드부(170)를 포함한다.
상기 하우징(110)은 그 내부에 플라즈마 처리를 위한 밸러스트수를 저장하는 부분이다.
상기 제1전극(120)은, 상기 하우징(110) 내부의 상단 또는 측면에 배치되어 상기 커패시터(20)의 일단과 전기적으로 연결되며, 상기 제2전극(140)은 상기 커패시터(20)의 타단과 연결되며, 상기 하우징(110) 내부에 저장된 밸러스트수와 전기적으로 연결된다.
그리고 상기 공기 주입부(130)는, 외부의 공기 주입 수단(미도시)와 연결되어 상기 제1전극(120)의 주위에 공기를 주입하여 상기 제1전극(120)과 상기 밸러스트수 사이에 공기층을 형성한다.
한편, 상기 밸러스트수 유입부(150)는 플라즈마 처리 전의 밸러스트수를 상기 하우징(110)으로 공급하며, 상기 밸러스트수 유출부(160)는 처리 후의 밸러스트수를 외부로 내보낸다.
그리고 상기 가이드부(170)는, 상기 제1전극(120)과 일정 거리 이격되어 상기 하우징(110) 내부의 상단 또는 측면에 형성되며, 상기 공기 주입부(130)로부터 주입된 공기층을 상기 제1전극(120)의 주위에 가두기 두는 역할을 수행한다.
여기서 본 발명에 따른 밸러스트수 처리부(100)에서의 플라즈마 발생 원리를 설명한다.
플라즈마 발생을 위해서는 대향 전극이 필요하며, 여기서 애노드는 일반적으로 접지단을, 캐소드는 전원 인가단을 각각 나타낸다. 본 발명의 실시예에서는 제1전극(120)이 캐소드의 역할을 하고 제2전극(140)이 애노드의 역할을 수행하며, 상기 제2전극(140)은 상기 하우징(110) 내부의 밸러스트수와 전기적으로 연결되므로 결국 해수면 전체가 접지면이 된다. 상기 실시예에서 플라즈마는 제1전극(120)과 접지된 밸러스트수 사이에 형성된 공기층(공극)에서 발생되며, 상기 공기층에서 발생된 플라즈마에 의해 형성되는 충격 에너지를 상기 밸러스트수에 전달함으로써 상기 충격 에너지에 의해 동, 식물성 플랑크톤 및 미세생물을 사멸시키게 된다.
이와 같은 공기층을 이용한 방전 방식은 밸러스트수 자체에서 플라즈마를 방전시키는 방식에 비해 훨씬 낮은 전원조건 하에서 방전이 가능한 장점이 있다. 비전도체인 일반 증류수와 담수와는 달리, 밸러스트수를 구성하는 해수는 강한 전도성을 가진 물질로서 일반적인 플라즈마 발생의 모델인 커패시터 형태와는 다르게 저항의 특성이 강하게 나타난다. 따라서 이러한 경우에는 저항 파괴 유도를 통한 단시간에 급격한 고전위 인가를 통한 방전 발생이 필요하며 이 경우 수십 kV의 인가 전압과 수 백 암페어 이상의 전원 장치가 필요하다. 그러나 본 발명은 해수에 직접 플라즈마를 방전하는 방식이 아닌 공극(공기층)에서 방전된 충격 에너지를 해수로 전달하는 방식을 사용함으로써 이보다 훨씬 낮은 전압 및 전류 조건에서도 효과적으로 미생물을 제거할 수 있다.
상기와 같은 공기층(공극)을 이용한 플라즈마 발생에 있어서, 제1전극(120)과 밸러스트수의 수면 사이의 거리는 플라즈마 발생 조건과 밀접한 관련이 있다. 즉, 상기 거리가 가까워질 경우 플라즈마 발생을 위하여 필요한 커패시터(20)의 전하량이 감소하고 그에 따라 발생된 플라즈마의 에너지 또한 작아지게 된다. 이와 반대로 상기 거리가 멀어질 경우에는 플라즈마 발생을 위하여 필요한 커패시터(20)의 전하량이 증가하게 되며 이에 따라 발생된 플라즈마의 에너지 또한 커지게 된다. 따라서 만약 상기 수면이 균일하지 못하여 상기 제1전극(120)과 수면 사이의 거리가 불규칙하게 형성될 경우에는 방전 조건이 상기 거리에 따라 달라지게 되므로 플라즈마가 불규칙하게 발생되는 문제가 발생한다.
본 발명에서는 이와 같은 문제점을 해결하기 위하여 상기 공기 주입부(130)에서 상기 제1전극(120)과 상기 밸러스트수의 수면과의 거리가 일정하게 유지되도록 상기 제1전극(120)의 주위에 공기를 주입함으로써 상기 공기층에서의 플라즈마 방전이 일정하게 발생할 수 있도록 한다.
또한 상기 공기 주입부(130)에서의 공기 주입량을 조절하여 상기 제1전극(120)과 상기 밸러스트수와의 거리를 조절함으로써 플라즈마의 세기를 조절할 수 있으며, 상기 거리에 따라 커패시터(20)에 일정 용량 이상의 전하가 축적될 경우에만 플라즈마 방전이 발생하므로 상기 공기층은 갭 스위치의 역할 또한 수행하게 된다. 즉 상기 공기층은 평소에는 오픈 상태를 유지하다가 상기 커패시터에 일정 용량 이상의 전하가 축적되면 클로즈 되어 플라즈마 방전을 일으키며, 방전 이후에는 다시 공기층은 오픈 상태로 되돌아가므로 상기 과정을 반복하면서 주기적으로 밸러스트수 처리과정을 수행할 수 있다. 상기 방전 주기 또한 상기 공기층의 거리에 따라 정해짐은 자명하다.
도 4 및 도 5는 본 발명에 따른 밸러스트수 처리부(100)의 제1전극(120), 공기 주입부(130), 및 가이드부(170)의 상세 구성도이다.
먼저 도 4는 공기 주입부(130)가 제1전극(120)의 내부를 관통하여 형성된 경우를 나타낸다. 이때, 상기 제1전극(120)은 도 4에 도시된 바와 같이 상기 밸러스트수와 대향하는 팁(Tip) 부분이 뾰족하게 형성될 수도 있으며, 도5에 도시된 바와 같이 팁 부분이 편평하게 형성될 수도 있다. 플라즈마 방전 팁에 있어 방전 유도를 용이하게 하기 위해서는 끝 부분이 뾰족한 것이 유리하지만, 뾰족한 팁은 계속적인 플라즈마 방전에 따라 마모되기가 쉬우므로 팁의 마모에 따라 방전 조건이 달라지게 되는 문제가 있다. 또한 끝이 편평하게 형성된 경우에는 마모에 강한 장점이 있으나 방전을 위한 전압이 뾰족한 팁에 비해 높아지게 된다. 따라서 본 발명에서는 상기 제1전극(120)의 형태를 필요에 따라 적절하게 구성할 수 있도록 하였다.
한편, 본 발명에서의 가이드부(170)는 상기 공기 주입부(130)에서 주입된 공기를 상기 제1전극(120)의 주위에 가두어 두기 위한 것으로서, 도 6에서 알 수 있는 바와 같이 상면에서 볼 때 상기 제1전극(120)을 중심으로 하는 원형의 형태를 가진다.
다음으로, 도 5는 공기 주입부(130)가 상기 제1전극(120)과 일정 거리 이격되어 상기 하우징(110)의 상단 또는 측면을 관통하도록 형성된 경우를 나타낸다. 도 7 및 도 8에서 알 수 있는 바와 같이, 상기 공기 주입부(130)는 상기 제1전극(120)과 상기 가이드부(170)의 사이에 하나 이상 형성될 수 있으며, 도9에 도시된 바와 같이 공기층의 균일한 공급을 위해 상기 제1전극(120)을 중심으로 대칭형을 구성되는 것이 바람직하다.
한편, 상기 제1전극(120)의 팁 형상 및 가이드부(170)에 대해서는 상기 도 4 내지 도6을 참조하여 설명한 바와 동일하므로 여기서는 상세한 설명을 생략하기로 한다.
도 10 내지 도 12는 본 발명에 따른 밸러스트수 처리장치를 이용한 밸러스트수 처리 방법을 나타낸 도면이다.
먼저, 도 10에 도시된 바와 같이, 상기 공기 주입부(130)를 통하여 상기 제1전극(120)과 밸러스트수 사이에 공기층을 형성한다. 이후 도 11에 도시된 바와 같이, 상기 형성된 공기층에 플라즈마를 발생시키면, 상기 플라즈마에 의해 발생된 충격 에너지가 상기 밸러스트수에 전달 됨으로써(도12), 상기 밸러스트수에 존재하는 동, 식물성 플랑크톤 및 미세생물을 사멸시키게 된다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
전술한 실시예 외의 많은 실시예들이 본 발명의 특허청구범위 내에 존재한다.

Claims (14)

  1. 직류 전원을 공급하는 직류 전원부;
    상기 직류 전원부의 출력단과 연결되며, 상기 직류 전원부에서 공급되는 전기 에너지를 저장하는 커패시터;
    상기 커패시터의 양 단자와 연결되며, 상기 커패시터에 저장된 에너지로부터 플라즈마를 발생시키고, 발생된 상기 플라즈마에 의한 충격 에너지를 밸러스트수로 전달하는 밸러스트수 처리부;
    를 포함하여 구성되는 밸러스트수 처리 장치.
  2. 제1항에 있어서,
    상기 직류 전원부의 출력단과 상기 커패시터의 사이에 연결되며, 역전류에 의한 상기 직류 전원부의 손상을 방지하는 전원 보호 회로를 더 포함하는 것을 특징으로 하는 밸러스트수 처리 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 커패시터의 일 단자와 상기 밸러스트수 처리부 사이에 직렬 연결되며, 상기 밸러스트수 처리부로 인가되는 전류를 연결 또는 차단하는 스위치를 더 포함하는 것을 특징으로 하는 밸러스트수 처리 장치.
  4. 제3항에 있어서,
    상기 스위치는 갭 스위치 또는 전기 스위치인 것을 특징으로 하는 밸러스트수 처리 장치.
  5. 제1항에 있어서,
    상기 밸러스트수 처리부는,
    내부에 밸러스트수를 저장하는 하우징;
    상기 하우징 내부의 상단 또는 측면에 배치되며, 상기 커패시터의 일단과 연결되는 제1전극;
    상기 제1전극의 주위에 공기를 주입하여 상기 제1전극과 상기 밸러스트수 사이에 공기층을 형성하는 공기 주입부;
    상기 커패시터의 타단과 연결되며, 상기 하우징 내부에 저장된 밸러스트수와 전기적으로 연결되는 제2전극;
    을 포함하여 구성되는 밸러스트수 처리 장치.
  6. 내부에 밸러스트수를 저장하는 하우징;
    상기 하우징 내부의 상단 또는 측면에 배치되며, 상기 커패시터의 일단과 연결되는 제1전극;
    상기 제1전극의 주위에 공기를 주입하여 상기 제1전극과 상기 밸러스트수 사이에 공기층을 형성하는 공기 주입부;
    상기 커패시터의 타단과 연결되며, 상기 하우징 내부에 저장된 밸러스트수와 전기적으로 연결되는 제2전극;
    을 포함하여 구성되는 밸러스트수 처리 장치의 밸러스트수 처리부.
  7. 제6항에 있어서,
    상기 제1전극과 일정 거리 이격되어 상기 하우징 내부의 상단 또는 측면에 형성되며, 상기 공기 주입부로부터 주입된 공기층을 상기 제1전극의 주위에 가두기 위한 가이드부를 더 포함하는 것을 특징으로 하는 밸러스트수 처리 장치의 밸러스트수 처리부.
  8. 제6항 또는 제7항에 있어서,
    상기 제1전극은 상기 밸러스트수와 대향하는 팁(Tip) 부분이 뾰족하게 형성된 것을 특징으로 하는 밸러스트수 처리 장치의 밸러스트수 처리부.
  9. 제6항 또는 제7항에 있어서,
    상기 제1전극은 상기 밸러스트수와 대향하는 팁(Tip) 부분이 편평하게 형성된 것을 특징으로 하는 밸러스트수 처리 장치의 밸러스트수 처리부.
  10. 제6항에 있어서,
    상기 공기 주입부는, 상기 제1전극과 상기 밸러스트수의 수면과의 거리가 일정하게 유지되도록 상기 제1전극의 주위에 공기를 주입하는 것을 특징으로 하는 밸러스트수 처리 장치의 밸러스트수 처리부.
  11. 제6항 또는 제10항에 있어서,
    상기 공기 주입부는, 상기 제1전극의 내부를 관통하여 형성되는 것을 특징으로 하는 밸러스트수 처리 장치의 밸러스트 처리부.
  12. 제6항 또는 제10항에 있어서,
    상기 공기 주입부는, 상기 제1전극과 일정 거리 이격되어 상기 하우징의 상단 또는 측면을 관통하도록 형성되는 것을 특징으로 하는 밸러스트수 처리 장치의 밸러스트수 처리부.
  13. 밸러스트수 처리 장치에서 수행되는 밸러스트수 처리 방법으로서,
    (a) 상기 밸러스트수 처리 장치에 구비된 직류 전원부로부터 공급된 전기 에너지를 상기 직류 전원부와 연결된 커패시터에 저장하는 단계;
    (b) 상기 커패시터의 양 단자와 연결된 밸러스트수 처리부에서, 상기 커패시터에 저장된 에너지로부터 플라즈마를 발생시켜, 상기 플라즈마에 의한 충격 에너지를 상기 밸러스트수로 전달하는 단계;
    를 포함하여 구성되는 밸러스트수 처리 방법.
  14. 제13항에 있어서,
    상기 (b) 단계는,
    밸러스트수가 저장된 하우징의 상단에 배치된 제1전극의 주위에 공기를 주입하여 상기 제1전극과 상기 밸러스트수 사이에 공기층을 형성하는 단계;
    상기 형성된 공기층에 플라즈마를 발생시키는 단계;
    상기 발생된 플라즈마에 의한 충격 에너지를 상기 밸러스트수에 전달하여 상기 밸러스트수 내의 미생물을 파괴하는 단계;
    를 포함하여 구성되는 밸러스트수 처리 방법.
PCT/KR2009/006237 2008-10-29 2009-10-27 플라즈마를 이용한 밸러스트수 처리 장치 및 방법 WO2010050733A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0106519 2008-10-29
KR1020080106519A KR20100047568A (ko) 2008-10-29 2008-10-29 플라즈마를 이용한 밸러스트수 처리 장치 및 방법

Publications (2)

Publication Number Publication Date
WO2010050733A2 true WO2010050733A2 (ko) 2010-05-06
WO2010050733A3 WO2010050733A3 (ko) 2010-07-29

Family

ID=42129452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006237 WO2010050733A2 (ko) 2008-10-29 2009-10-27 플라즈마를 이용한 밸러스트수 처리 장치 및 방법

Country Status (2)

Country Link
KR (1) KR20100047568A (ko)
WO (1) WO2010050733A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492563B (en) * 2011-07-05 2018-08-15 Asta Solutions Ltd A liquid treatment apparatus
KR101851465B1 (ko) * 2016-11-21 2018-06-04 김성민 선박 외부 평형수 전용처리 시스템
KR101887852B1 (ko) * 2018-04-06 2018-08-10 안건표 선박 평형수 관리시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050189278A1 (en) * 2004-02-03 2005-09-01 Takanori Iijima Apparatus for decomposing organic matter with radical treatment method using electric discharge
KR100708618B1 (ko) * 2005-12-28 2007-04-18 제주대학교 산학협력단 수면 전기방전을 이용한 염색폐수 처리장치
KR20080066828A (ko) * 2005-10-28 2008-07-16 리소스 밸러스트 테크놀로지스 (프로프라이어터리) 리미티드 수중 유기체들을 제거하기 위한 수처리를 위한 방법 및장치
KR20080092292A (ko) * 2007-04-10 2008-10-15 주식회사 21세기 조선 수중 펄스 플라즈마 처리 장치 및 그를 이용한 선박밸러스트 워터 처리 시스템 및 그 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050189278A1 (en) * 2004-02-03 2005-09-01 Takanori Iijima Apparatus for decomposing organic matter with radical treatment method using electric discharge
KR20080066828A (ko) * 2005-10-28 2008-07-16 리소스 밸러스트 테크놀로지스 (프로프라이어터리) 리미티드 수중 유기체들을 제거하기 위한 수처리를 위한 방법 및장치
KR100708618B1 (ko) * 2005-12-28 2007-04-18 제주대학교 산학협력단 수면 전기방전을 이용한 염색폐수 처리장치
KR20080092292A (ko) * 2007-04-10 2008-10-15 주식회사 21세기 조선 수중 펄스 플라즈마 처리 장치 및 그를 이용한 선박밸러스트 워터 처리 시스템 및 그 방법

Also Published As

Publication number Publication date
KR20100047568A (ko) 2010-05-10
WO2010050733A3 (ko) 2010-07-29

Similar Documents

Publication Publication Date Title
WO2010050733A2 (ko) 플라즈마를 이용한 밸러스트수 처리 장치 및 방법
CN101702901A (zh) 水下等离子体处理设备和利用其处理船只压舱水的系统和方法
CA2171061A1 (en) Method, apparatus and system for continuously treating water body
WO2013077496A1 (ko) 선박용 밸러스트수 처리장치 및 처리방법
WO2016080783A1 (ko) 담수, 해수 살균처리가 가능한 비전수통과방식 전기분해 선박평형수 처리방법 및 장치
WO2013028004A2 (ko) 자동 산화-흡수제 생성장치를 구비한 스크러버 시스템
ES2006640A6 (es) Metodo y aparato para retirar hidrocarburos aromaticos policiclicos de los gases de escape de un incinerador de residuos municipales.
WO2015030351A1 (ko) 블랙카본 및 황산화물 제거를 위한 고효율 스크러버 장치
KR101307166B1 (ko) 전기분해 방식의 고효율 밸러스트 수 처리 시스템
WO2014109554A1 (ko) 화석 연료를 대체할 수 있는 산소-수소 혼합가스를 발생시키는, 자동차를 포함한 기계 장치용 산소-수소 혼합가스 발생장치 및 발생시스템
WO2012077958A2 (ko) 전기분해 유닛과 이러한 전기분해 유닛을 이용한 선박의 발라스트 수 처리장치 및 처리방법
CN213924148U (zh) 一种基于高压等离子体放电的废水处理装置
CN209428191U (zh) 一种垃圾渗滤液的电极结垢及填料板结自动清除装置
WO2014109431A2 (ko) 침수 감전방지 터미널 단자 시스템
WO2015072651A1 (ko) 악취제거용 전자발생장치
EP0669625A3 (en) Apparatus and method for decontamination of radioactive metallic waste by electrolysis
CN107473328A (zh) 一种海水处理系统及海水处理控制方法
CN210620500U (zh) 一种油墨废水电化学处理系统
CN213060306U (zh) 一种电化学处理设备的电源控制装置
CN209576153U (zh) 一种废轮胎橡胶热解尾气治理的除尘装置
WO2018092951A1 (ko) 엘이디 소자의 잔광 생성 및 파손을 방지하는 장치
WO2024019223A1 (ko) 모듈타입의 조립체를 구비한 선박용 플라즈마 밸러스트수 처리장치
KR20010048041A (ko) 전기부상을 이용한 적조 및 녹조 제거방법과 이를 위한 장치
WO2022050470A1 (ko) 해수전지를 이용한 잠수함정용 전력공급 시스템 및 전력공급 방법
US20230099450A1 (en) Device for treating algae in waters of interest using high-voltage micro pulse discharge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823813

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823813

Country of ref document: EP

Kind code of ref document: A2