WO2010050196A1 - Fuel cell electrodes and fuel cells - Google Patents

Fuel cell electrodes and fuel cells Download PDF

Info

Publication number
WO2010050196A1
WO2010050196A1 PCT/JP2009/005692 JP2009005692W WO2010050196A1 WO 2010050196 A1 WO2010050196 A1 WO 2010050196A1 JP 2009005692 W JP2009005692 W JP 2009005692W WO 2010050196 A1 WO2010050196 A1 WO 2010050196A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
fuel cell
fuel
catalyst
electrode
Prior art date
Application number
PCT/JP2009/005692
Other languages
French (fr)
Japanese (ja)
Inventor
小野寺真一
甲田仁
市川勝美
高澤直之
上林信一
千草尚
藤澤晶子
橋本稔
北澤祐介
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2010050196A1 publication Critical patent/WO2010050196A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrode for a fuel cell and a fuel cell using the same.
  • a fuel cell is characterized in that it can generate electric power simply by supplying fuel and air, and can generate electric power continuously for a long time if fuel is replenished. For this reason, if the fuel cell can be reduced in size, it can be said that the system is extremely advantageous as a power source for portable electronic devices.
  • DMFC Direct Fuel Cell
  • DMFC Direct Fuel Cell
  • the DMFC includes a membrane electrode assembly (fuel cell) having a structure in which an electrolyte membrane is sandwiched between a fuel electrode and an air electrode.
  • the fuel electrode and the air electrode each have a gas diffusion layer and a catalyst layer.
  • the catalyst layer is in contact with the electrolyte membrane.
  • each catalyst layer of the fuel electrode and the air electrode is formed by integrating a catalyst in which noble metal particles such as Pt are supported on a porous carrier such as carbon particles and carbon fibers with a polymer binder having proton conductivity. It is formed by.
  • Water is generated as described above in the catalyst layer of the air electrode, but in order to prevent excessive drying of the catalyst layer and maintain good battery performance, the generated water is appropriately discharged to the outside, It is always necessary to ensure that a reasonable amount of water is included. That is, if water is discharged to the outside excessively, proton conductivity is lowered and output performance of the battery is lowered.
  • water in the catalyst layer of the air electrode may be used for an internal reforming reaction of methanol in the fuel electrode (water reaches the fuel electrode through the electrolyte membrane and is used for reaction with methanol. In this case, however, the reaction may not occur if the amount of water is insufficient. Conversely, when the amount of water remaining in the catalyst layer increases, the gas diffusibility decreases, and the battery performance decreases.
  • the present invention can always include an appropriate amount of water in a catalyst layer, and can prevent deterioration of cell performance due to excess or deficiency of moisture, and for such a fuel cell.
  • An object of the present invention is to provide a fuel cell having an electrode and excellent output characteristics and life characteristics.
  • An electrode for a fuel cell is a fuel cell including a catalyst layer including conductive fine particles supporting a catalyst and a fibrous material in which at least a part of the catalyst not supporting the catalyst is aggregated in a jade shape.
  • the main surface of the electrode has at least one fibrous substance aggregate exposed in a circular or elliptical shape, and the individual exposed area is 9 to 2000 ⁇ m 2. It is a feature.
  • a fuel cell according to an aspect of the present invention is characterized by including the fuel cell electrode.
  • the fuel cell electrode according to one aspect of the present invention can always include an appropriate amount of water in the catalyst layer, and can prevent deterioration in battery performance due to excessive or insufficient water content. Since the fuel cell according to one embodiment of the present invention includes such a fuel cell electrode, it can have excellent output performance and life characteristics.
  • FIG. 2 is a photograph (magnification: 1000) taken by a scanning electron microscope (SEM) of a fibrous material aggregate in a catalyst layer of a fuel cell electrode shown in FIG. 1.
  • FIG. 2 is a diagram schematically showing a part of the surface of a catalyst layer on the gas diffusion layer side in the fuel cell electrode shown in FIG. 1. It is sectional drawing which shows the structure of the membrane electrode assembly in the fuel cell using the electrode for fuel cells shown in FIG.
  • FIG. 1 is a view schematically showing a part of a cross section of a fuel cell electrode according to an embodiment of the present invention.
  • the fuel cell electrode of the present embodiment includes conductive fine particles 12 carrying a catalyst 11 and a fibrous substance 13 in which at least a part of the catalyst 11 does not carry a catalyst is aggregated in a jade shape.
  • the catalyst layer 21 has a gas diffusion layer 22 on its surface.
  • the catalyst layer 21 further includes a proton conductor (not shown) that functions as a proton conductive path between an electrolyte membrane and a catalyst described later.
  • reference numeral 15 denotes a fibrous material aggregate that is aggregated in a jade shape in the catalyst layer 21.
  • the fibrous substance aggregate 15 gathered in such a jade shape can be confirmed by, for example, a scanning electron microscope (SEM).
  • FIG. 2 shows an example thereof.
  • the fibrous substance aggregate 15a exposed in a circular or elliptical shape On the surface of the catalyst layer 21 on the gas diffusion layer 22 side, there is at least one fibrous substance aggregate 15a exposed in a circular or elliptical shape, and each exposed area is 9 to 2000 ⁇ m 2 .
  • the fibrous substance aggregate 15a exposed in a circular or elliptical shape is the maximum in balancing the amount of water generated in the catalyst layer 21 and the amount of water discharged from the catalyst layer 21 to the outside.
  • the length is preferably 3 to 55 ⁇ m.
  • both the exposed area and the maximum length of the fibrous material aggregate 15 can be obtained from an image captured by a scanning electron microscope (SEM), for example.
  • FIG. 3 is a diagram schematically showing a part of the surface of the catalyst layer 21 on the gas diffusion layer 22 side.
  • a fibrous substance aggregate 15 b with an irregularly exposed shape is formed on the surface of the catalyst layer 21 on the gas diffusion layer 22 side.
  • Reference numeral 17 denotes a groove formed in the catalyst layer 21 by stacking the gas diffusion layers 22.
  • Examples of the catalyst 11 supported on the conductive fine particles 12 include simple substances of platinum group elements such as Pt, Ru, Rh, Ir, Os, and Pd, and alloys containing these platinum group elements.
  • this electrode is used as a fuel electrode, it is preferable to use an alloy such as Pt—Ru or Pt—Mo having strong resistance to methanol, carbon monoxide and the like.
  • an alloy such as Pt or Pt—Ni, and it is particularly preferable to use Pt.
  • the catalyst 11 is not limited to these, and various substances having catalytic activity can be used.
  • the conductive fine particles 12 preferably have a particle size of 10 to 80 nm.
  • the fibrous substance 13 preferably has a bulk density of 0.04 to 0.27 g / cm 3 , and more preferably 0.04 to 0.16 g / cm 3 . If the bulk density is less than 0.04 g / cm 3 , the catalyst layer 21 becomes too dense, and it becomes difficult to discharge moisture generated inside the catalyst layer, the amount of moisture in the catalyst layer 21 increases, The diffusibility of the battery is lowered, and the battery performance is lowered. On the other hand, when the bulk density exceeds 0.27 g / cm 3 , the water generated inside the catalyst layer 21 is easily discharged to the outside, the amount of water in the catalyst layer 21 decreases, and the proton conductivity decreases. The output performance of the battery is reduced. Moreover, there is a possibility that the internal reforming reaction of methanol in the fuel electrode will not occur.
  • the bulk density of the fibrous substance can be measured according to JIS K 6720.
  • the fibrous substance 13 preferably has a bulkiness of 34 to 113 mm, and more preferably 30 to 50 mm. If the bulk is less than 34 mm, the catalyst layer 21 becomes too dense, and it becomes difficult to discharge the moisture generated inside the catalyst layer, the amount of moisture in the catalyst layer 21 increases, and the gas diffusibility decreases. Battery performance is reduced. On the other hand, if the bulk exceeds 113 mm, the water generated inside the catalyst layer 21 is easily discharged to the outside, the amount of water in the catalyst layer 21 decreases, proton conductivity decreases, and the output performance of the battery. Decreases. Moreover, there is a possibility that the internal reforming reaction of methanol in the fuel electrode will not occur.
  • the bulkiness of the fibrous substance can be determined by quantitative observation using a cylindrical container.
  • the fibrous substance 13 may be conductive or non-conductive.
  • the conductive fibrous material include carbon fibers, carbon nanofibers, carbon tubes, carbon nanotubes, and those obtained by pulverizing these.
  • cotton, glass fiber, etc. are mentioned as a nonelectroconductive fibrous substance.
  • a fibrous material 13 obtained by pulverizing cup-stacked carbon nanotubes so as to satisfy the above conditions.
  • the cup-stacked carbon nanotube include Carbere (trade name) manufactured by GSI Creos Co., Ltd. having a diameter (peak value) of 80 to 100 nm, a length of several to several tens of ⁇ m, and a density of about 2.0 g / cm 3. Illustrated.
  • Such a fibrous material is preferably subjected to a water-repellent treatment on the surface in advance in order to quickly drain the water generated inside the catalyst layer 21.
  • the method of water repellent treatment is not particularly limited, and a conventionally known method can be used. Specifically, a method of mixing the fibrous material with various silane coupling agents in the presence of ethanol, a method of reacting the fibrous material with fluorine at a high temperature, a fluororesin, a silicone resin, A method in which a solution obtained by dissolving a water-repellent substance such as a silane coupling agent in an organic solvent is appropriately or spray impregnated is used. Among these, the method of reacting the fibrous substance with fluorine at a high temperature is preferable from the viewpoint of uniform water repellent treatment.
  • Water repellent materials include polytetrafluoroethylene (PTFE), fluorinated ethylene polypropylene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), ethylene / tetrafluoroethylene copolymer (ETFE), polychloro Fluorine resins such as trifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), and trifluoroethylene chloride / ethylene copolymer (E-CTFE) are preferable, and PTFE having excellent water repellency is particularly preferable.
  • PTFE polytetrafluoroethylene
  • FEP fluorinated ethylene polypropylene copolymer
  • PFA perfluoroalkyl vinyl ether copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • PCTFE trifluoroethylene
  • PVDF polyvinylidene fluoride
  • the ratio of the water-repellent substance to the fibrous substance is preferably in the range of 5 to 60% by mass. If the ratio of the water-repellent substance to the fibrous substance is less than 5% by mass, water repellency is not sufficiently imparted. Conversely, if the ratio exceeds 60% by mass, the fibrous substances aggregate to form a fibrous substance. The effect of the present invention cannot be obtained sufficiently.
  • a more preferable range of the ratio of the water repellent material to the fibrous material is a range of 5 to 35% by mass, even more preferably a range of 5 to 20% by mass, and particularly preferably a range of 10 to 18% by mass.
  • the mass ratio in the catalyst layer 21 between the fibrous substance 13 and the conductive fine particles 12 carrying the catalyst 11 is preferably in the range of 10:90 to 30:70.
  • the ratio of the fibrous substance 13 is less than the above range, it becomes difficult to discharge the moisture generated inside the catalyst layer 21, the amount of moisture in the catalyst layer 21 increases, and the battery performance decreases.
  • the ratio of the fibrous substance 13 is larger than the above range, the moisture generated in the catalyst layer 21 is easily discharged to the outside, and the battery performance is affected by the effect that the moisture content in the catalyst layer 21 is reduced and dried. descend.
  • the mass ratio in the catalyst layer 21 between the fibrous substance 13 and the conductive fine particles 12 carrying the catalyst 11 is more preferably in the range of 25:75 to 30:70.
  • Proton conductors include (i) hydrocarbon-based proton conductors, that is, ions such as sulfonic acid groups, phosphonic acid groups, and carboxylic acid groups in order to impart proton conductivity to polymers whose main chain is composed of hydrocarbons.
  • An exchange group introduced (b) a fluorine-based proton conductor, a sulfonic acid group, a phosphonic acid group, a carboxylic acid for imparting proton conductivity to a polymer comprising a hydrocarbon whose main chain is substituted with fluorine (C) a sulfonic acid group or a phosphonic acid group for imparting proton conductivity to a polymer such as polysiloxane or polyphosphazene having substantially no carbon atom in the main chain.
  • an ion exchange group such as a group or a carboxylic acid group is introduced
  • a sulfonic acid group to impart proton conductivity to the copolymer units phosphonic acid groups, such as those obtained by introducing an ion exchange group such as a carboxylic acid group.
  • an ion exchange group introduced into a polymer or copolymer means “an ion exchange group introduced into the polymer or copolymer skeleton via a chemical bond”.
  • the main chain in (i) and (b) may be interrupted by a heteroatom such as an oxygen atom. From the viewpoint of chemical stability, among them, the fluorine-based proton conductor (b) is preferable, and from the viewpoint of heat resistance, those made of a polymer having an aromatic ring in the main chain are preferable.
  • hydrocarbon proton conductor examples include those whose main chain is made of an aliphatic hydrocarbon, such as polyvinyl sulfonic acid, polystyrene sulfonic acid, poly ( ⁇ -methylstyrene) sulfonic acid, and the like.
  • hydrocarbon proton conductor examples include those whose main chain is made of an aliphatic hydrocarbon, such as polyvinyl sulfonic acid, polystyrene sulfonic acid, poly ( ⁇ -methylstyrene) sulfonic acid, and the like.
  • aromatic ring in the main chain examples include, for example, polyether ether ketone, polysulfone, polyether sulfone, poly (arylene ether), polyimide, poly (4-phenoxybenzoyl-1,4-phenylene), polyphenylene sulfide.
  • Sulfonic acid groups introduced into homopolymers such as polyphenylquinoxalen, arylsulfonated polybenzimidazole, alkylsulfonated polybenzimidazole, alkylphosphonated polybenzimidazole, phosphonated poly (phenylene ether) ) And the like.
  • fluorine-based proton conductor examples include perfluorocarbon sulfonate, perfluoroalkyl polymer having a phosphonic acid group, polytrifluorostyrene sulfonic acid, polytrifluorostyrene phosphonic acid, and the like.
  • the copolymer in the proton conductor may be any of a random copolymer, an alternating copolymer and a block copolymer.
  • the random copolymer having an ion exchange group introduced include a sulfonated polyethersulfone-dihydroxybiphenyl copolymer.
  • the block copolymer in which an ion exchange group is introduced include those in which an ion exchange group is introduced into a styrene- (ethylene-butylene) -styrene triblock copolymer.
  • perfluorosulfonate is preferable from the viewpoint of proton conductivity and stability of the substance itself.
  • examples of commercially available products of perfluorosulfonate include Nafion (trade name, manufactured by DuPont), Flemion (trade name, manufactured by Asahi Glass), and the like.
  • the catalyst layer 21 has a component other than the conductive fine particles 12, the fibrous substance 13 and the proton conductor carrying the catalyst 11 as long as the effects of the present invention are not impaired, such as silicon oxide (for example, glass, Quartz powder, silica powder, diatomaceous earth, silica fume, natural silica, colloidal silica, etc., aluminum oxide (aluminum oxide, alumina), titanium oxide, mica, sericite, zeolite, sericite, kaolin clay, kaolin, calcined kaolin (metakaolin) ), Particles of asbestos, mica, talc, silicon carbide, silicon nitride, aluminum nitride, zirconia, carbon, and the like may be included.
  • silicon oxide for example, glass, Quartz powder, silica powder, diatomaceous earth, silica fume, natural silica, colloidal silica, etc.
  • aluminum oxide aluminum oxide, alumina
  • titanium oxide titanium oxide
  • the gas diffusion layer 22 laminated on the catalyst layer 21 has a function of uniformly supplying fuel to the catalyst layer 21 and efficiently transmits electrons generated in the catalyst layer 21 to the outside. It also has a function as a current collector.
  • this electrode when this electrode is used as an air electrode (oxidant electrode), it has a function of uniformly supplying an oxidant to the catalyst layer 21 and a current collector that efficiently transmits electrons supplied from the outside to the catalyst layer 21. It also has the function of In either case, the gas diffusion layer 22 is composed of a porous substrate formed of a conductive material.
  • porous substrate it is preferable to use a conductive fiber that has been processed into a sheet shape, such as carbon cloth or carbon paper formed of carbon fiber or the like. Carbon paper or carbon cloth made of carbon fibers of about 1 ⁇ m or more and having a porosity of 50% or more can be used.
  • the porous substrate may be a sintered body, and a sintered metal or metal oxide (tin oxide, titanium oxide, etc.) can be used.
  • the conductive fine particles 12 carrying the catalyst 11, the fibrous substance 13 and the proton conductor on the porous base material forming the gas diffusion layer 22, or A catalyst slurry prepared by dispersing these components and the above-described particles, which are optional components, in a solvent can be formed by being applied once or multiple times by a coater, spray or the like and dried.
  • a solvent water, alcohol such as isopropyl alcohol, a mixture thereof or the like can be used.
  • the electrode for a fuel cell of the present embodiment can be used as a fuel electrode or an air electrode (oxidant electrode), but it can be used at least as an air electrode (oxidant electrode) from the viewpoint of the effect obtained. preferable.
  • FIG. 4 shows an example of this, and is a cross-sectional view showing a fuel cell membrane electrode assembly (MEA) 34 using the fuel cell electrode as an air electrode (oxidant electrode).
  • the fuel cell includes an air electrode (oxidant electrode) 31, a fuel electrode 32, and a proton conductive material sandwiched between the air electrode (oxidant electrode) 31 and the fuel electrode 32. And an electrolyte membrane 33.
  • the air electrode (oxidant electrode) 31 is composed of an electrode having the catalyst layer 21 and the gas diffusion layer 22 described above, and the fuel electrode 32 is composed of an electrode having a known catalyst layer 23 and a gas diffusion layer 24. ing.
  • the electrolyte membrane 33 is composed of, for example, a hydrocarbon electrolyte membrane, that is, an electrolyte membrane made of a hydrocarbon proton conductor, a fluorine electrolyte membrane, that is, an electrolyte membrane made of a fluorine proton conductor, and the like.
  • the electrolyte membrane 33 may be an electrolyte membrane made of an inorganic material such as tungstic acid or phosphotungstic acid.
  • Nafion 112 (trade name, manufactured by DuPont) or the like, which is a membrane made of perfluorosulfonate, is used, but is not particularly limited thereto.
  • the membrane electrode assembly 34 includes an air electrode (oxidant electrode) 31 in which the catalyst layer 21 is formed on the gas diffusion layer 22, a fuel electrode 32 in which the catalyst layer 23 is formed on the gas diffusion layer 24, and an electrolyte membrane. 33 are stacked so that the catalyst layer 21 and the catalyst layer 23 are in contact with both surfaces of the electrolyte membrane 33 and heated and pressed.
  • the surface of the air electrode (oxidant electrode) 31 opposite to the catalyst layer 21 of the gas diffusion layer 22 and the surface of the fuel electrode 32 opposite to the catalyst layer 23 of the gas diffusion layer 24 are electrically conductive as necessary.
  • a layer may be formed.
  • these conductive layers for example, a mesh, a porous film, a thin film, or the like made of a conductive metal material such as Au is used.
  • the fuel is supplied to the fuel electrode 32, and an oxidizing gas such as air or oxygen is introduced into the air electrode (oxidant electrode) 31.
  • the fuel diffuses through the gas diffusion layer 24 and is supplied to the catalyst layer 23.
  • an internal reforming reaction of methanol shown in the following formula (1) occurs in the catalyst layer 23.
  • pure methanol is used as the methanol fuel
  • the water generated in the catalyst layer 21 of the air electrode (oxidant electrode) 31 or the water in the electrolyte membrane 33 is reacted with methanol to improve the internal modification of the equation (1).
  • the internal reforming reaction is caused by another reaction mechanism that does not require water.
  • the electrons (e ⁇ ) generated by this reaction are guided to the outside, and are operated as so-called electricity, and then are guided to the air electrode (oxidant electrode) 31 after operating a portable electronic device or the like. Further, protons (H + ) generated by the internal reforming reaction of the formula (1) are guided to the air electrode (oxidant electrode) 31 through the electrolyte membrane 33. Electrons (e ⁇ ) and protons (H + ) that have reached the air electrode (oxidant electrode) 31 react with oxygen in the catalyst layer 21 according to the following formula (2), and water is generated along with this reaction. 6e ⁇ + 6H + + (3/2) O 2 ⁇ 3H 2 O (2)
  • the fibrous material 13 at least a part of which is aggregated in the shape of a jade in the catalyst layer 21 of the air electrode (oxidant electrode) 31 together with the conductive fine particles 12 carrying the catalyst 11 is used as the catalyst.
  • the present invention can be widely applied to various solid polymer fuel cells having a polymer electrolyte membrane, but is generally applied to fuel cells using liquid fuel such as methanol fuel.
  • Fuel cells using liquid fuel can be broadly divided into active fuel cells and passive fuel cells depending on the fuel supply system, and any of them can be applied.
  • an active fuel cell forcibly supplies liquid fuel and air to the fuel electrode and air electrode (oxidant electrode) of the membrane electrode assembly by a pump or the like, and the passive fuel cell While vaporized liquid fuel is naturally supplied to the fuel electrode of the membrane electrode assembly, external air is naturally supplied to the air electrode (oxidant electrode).
  • the present invention can also be applied to a fuel cell of a type called a semi-passive that partially uses a pump or the like, such as fuel supply.
  • a fuel cell of a type called a semi-passive that partially uses a pump or the like, such as fuel supply.
  • the fuel supplied from the fuel storage part to the membrane electrode assembly is used for the power generation reaction, and is not circulated thereafter and returned to the fuel storage part.
  • the semi-passive type fuel cell is different from the conventional active method because it does not circulate the fuel, and does not impair the downsizing of the device.
  • a pump is used to supply fuel, which is different from a pure passive system such as a conventional internal vaporization type. For this reason, this fuel cell is called a semi-passive system as described above.
  • a fuel cutoff valve may be arranged in place of the pump as long as fuel is supplied from the fuel storage portion to the membrane electrode assembly.
  • the fuel cutoff valve is provided for controlling the supply of liquid fuel through the flow path.
  • liquid fuel examples include dimethyl ether.
  • liquid fuel corresponding to the fuel cell is used. It should be noted that the liquid fuel vapor supplied to the MEA may be all supplied as a liquid fuel vapor, but the present invention can be applied even when a part of the liquid fuel vapor is supplied in a liquid state.
  • the average particle diameter of the catalyst metal was measured using an X-ray diffractometer (XRD). Specifically, carbon particles carrying the catalyst metal (catalyst) were pulverized in a mortar to such an extent that the catalyst metal did not collapse, then filled in an aluminum sample plate, and measured using Rigaku-1200V manufactured by Rigaku Corporation. After that, analysis of the Schaller equation was performed with analysis software, and the average particle size was confirmed. The average particle size of the carbon particles was measured using a particle size distribution meter. Specifically, the carbon particles carrying the catalyst were measured using a SHIMAZU SALD-2200 particle size distribution meter manufactured by Shimadzu Corporation.
  • Preparation of catalyst slurry (Preparation Example 1) 45 mm in bulk and 0.09 g / bulk density obtained by pulverizing cup-stacked carbon nanotubes having a diameter (peak value) of 100 nm, a fiber length (peak value) of 3.5 ⁇ m, and a density of about 2.0 g / cm 3.
  • the cm 3 carbon fiber was subjected to a water repellent treatment by a conventional method to obtain a water repellent treated carbon fiber in which the ratio of the water repellent substance to the carbon fiber was 15 mass%.
  • PTFE was used as the water repellent material.
  • Obtained water repellent treated carbon fiber 0.5 g, carbon particles having a particle size of 10 to 80 nm (average particle size 2 nm) carrying Pt fine particles (average particle size 0.5 nm) (Pt content: 70 mass%) 1 0.5 g, 6 g of a perfluorosulfonate solution (containing 20% by weight of Nafion (trade name)), 5.2 g of ion-exchanged water, and 2.4 g of isopropyl alcohol were mixed with a stirring mixer to obtain a catalyst slurry for air electrode (A1 ) Was prepared.
  • Preparation Example 2 An air electrode catalyst slurry (A2) was prepared in the same manner as in Preparation Example 1 except that the ratio of the water-repellent substance to the carbon fibers was 27% by mass.
  • Preparation Example 3 An air electrode catalyst slurry (A3) was prepared in the same manner as in Preparation Example 1 except that the ratio of the water-repellent substance to the carbon fibers was 41% by mass.
  • Preparation Example 4 Prepared except that carbon fibers having a bulk height of 34 mm and a bulk density of 0.16 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as the carbon fibers. In the same manner as in Example 1, an air electrode catalyst slurry (A4) was prepared.
  • Preparation Example 5 Prepared except that carbon fibers having a bulk height of 34 mm and a bulk density of 0.16 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as the carbon fibers. In the same manner as in Example 2, an air electrode catalyst slurry (A5) was prepared.
  • Preparation Example 6 Prepared except that carbon fibers having a bulk height of 34 mm and a bulk density of 0.16 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as the carbon fibers. In the same manner as in Example 3, an air electrode catalyst slurry (A6) was prepared.
  • Preparation Example 7 An air electrode catalyst slurry (A7) was prepared in the same manner as in Preparation Example 2, except that the amounts of the water-repellent treated carbon fibers and Pt-supported carbon particles were changed to 0.6 g and 1.4 g, respectively.
  • Preparation Example 8 An air electrode catalyst slurry (A8) was prepared in the same manner as in Preparation Example 5, except that the amounts of the water-repellent treated carbon fibers and Pt-supported carbon particles were changed to 0.6 g and 1.4 g, respectively.
  • Preparation Example 9 An air electrode catalyst slurry (A9) was prepared in the same manner as in Preparation Example 1, except that the amounts of water-repellent treated carbon fibers and Pt-supported carbon particles were changed to 0.1 g and 1.9 g, respectively.
  • Preparation Example 10 An air electrode catalyst slurry (A10) was prepared in the same manner as in Preparation Example 1, except that the amounts of water-repellent treated carbon fibers and Pt-supported carbon particles were changed to 0.2 g and 1.8 g, respectively.
  • Preparation Example 12 Prepared except that carbon fibers having a bulk height of 113 mm and a bulk density of 0.048 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as the carbon fibers. In the same manner as in Example 1, an air electrode catalyst slurry (A12) was prepared.
  • Preparation Example 13 Prepared except that carbon fibers having a bulk height of 113 mm and a bulk density of 0.048 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as the carbon fibers.
  • a catalyst slurry (A13) was prepared in the same manner as in Example 2.
  • Example 1 The air electrode catalyst slurry (A1) is applied to one side of a porous substrate (thickness: 200 ⁇ m, area: 12 cm 2 , porosity: 70% by volume) made of water-repellent carbon paper, and dried to air having a thickness of 100 ⁇ m. An electrode catalyst layer was formed. Further, the fuel electrode catalyst slurry (B) was applied to one side of the same porous substrate and dried to form a fuel electrode catalyst layer having a thickness of 100 ⁇ m.
  • a porous substrate thickness: 200 ⁇ m, area: 12 cm 2 , porosity: 70% by volume
  • an electrolyte membrane made of perfluorosulfonate (trade name: Nafion, Inc.) was prepared by using the porous substrate on which the air electrode catalyst layer was formed and the porous substrate on which the fuel electrode catalyst layer was formed as an air electrode and a fuel electrode, respectively. 112), each catalyst layer is superimposed on the electrolyte membrane side, and heated and pressed at 150 ° C. and 4 MPa for 10 minutes to produce a membrane electrode assembly. Manufactured.
  • Example 2 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A2) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • Example 3 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A3) was used to form the air electrode catalyst layer, and a passive DMFC was produced using this. did.
  • Example 4 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A4) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • Example 5 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A5) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • Example 6 A membrane electrode assembly was prepared in the same manner as in Example 1 except that the air electrode catalyst slurry (A6) was used to form the air electrode catalyst layer, and a passive DMFC was manufactured using this. did.
  • Example 7 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A7) was used to form the air electrode catalyst layer, and a passive DMFC was produced using this membrane electrode assembly. did.
  • Example 8 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A8) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • Example 9 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A9) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • Example 10 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A10) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • Example 11 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A11) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • Example 12 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A12) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • Example 13 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A13) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • Example 1 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A14) was used for forming the air electrode catalyst layer, and a passive DMFC was produced using this membrane electrode assembly. did.
  • Example 2 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A15) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • Example 3 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A16) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • Example 4 A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A17) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
  • SYMBOLS 11 Catalyst, 12 ... Electroconductive fine particle, 13 ... Fibrous substance, 15 ... Fibrous substance aggregate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

The fuel cell electrodes are provided with a catalyst layer (21) that comprises conductive microparticles (12) loaded with a catalyst (11) and a fibrous substance (13) that is not carrying catalyst and at least a portion of which is aggregated into a cocoon shape. On the main surface of the catalyst layer (21), there is at least one fibrous substance aggregate (15) that is exposed in a circular or elliptical shape, and the individual exposed area is 9-2000 µm2. The fuel cells are provided with such fuel cell electrodes.

Description

燃料電池用電極および燃料電池Fuel cell electrode and fuel cell
 本発明は、燃料電池用電極、およびそれを用いた燃料電池に関する。 The present invention relates to an electrode for a fuel cell and a fuel cell using the same.
 近年、ノートパソコンや携帯電話等の各種携帯用電子機器を長時間充電なしで使用可能とするために、これら携帯用電子機器の電源に燃料電池を用いる試みがなされている。燃料電池は燃料と空気を供給するだけで発電することができ、燃料を補給すれば連続して長時間発電することが可能であるという特徴を有している。このため、燃料電池を小型化できれば、携帯用電子機器の電源として極めて有利なシステムといえる。なかでも、直接メタノール型燃料電池(DMFC:Direct Methanol Fuel Cell)は小型化が可能であり、さらに燃料の取り扱いも容易であるため、携帯用電子機器の電源として有望視されている。 In recent years, attempts have been made to use a fuel cell as a power source for portable electronic devices such as notebook computers and mobile phones so that they can be used without charging for a long time. A fuel cell is characterized in that it can generate electric power simply by supplying fuel and air, and can generate electric power continuously for a long time if fuel is replenished. For this reason, if the fuel cell can be reduced in size, it can be said that the system is extremely advantageous as a power source for portable electronic devices. Among these, a direct methanol fuel cell (DMFC: Direct Fuel Cell)) is promising as a power source for portable electronic devices because it can be downsized and the fuel can be easily handled.
 DMFCは、燃料極と空気極との間に電解質膜を挟持させた構造の膜電極接合体(燃料電池セル)を備えており、燃料極と空気極はそれぞれガス拡散層と触媒層とを有し、その触媒層で電解質膜に接している。また、燃料極および空気極の各触媒層は、例えばPt等の貴金属粒子をカーボン粒子、カーボン繊維等の多孔質の担体に担持させた触媒をプロトン伝導性を有する高分子バインダーにより一体化することにより形成されている。 The DMFC includes a membrane electrode assembly (fuel cell) having a structure in which an electrolyte membrane is sandwiched between a fuel electrode and an air electrode. The fuel electrode and the air electrode each have a gas diffusion layer and a catalyst layer. The catalyst layer is in contact with the electrolyte membrane. Also, each catalyst layer of the fuel electrode and the air electrode is formed by integrating a catalyst in which noble metal particles such as Pt are supported on a porous carrier such as carbon particles and carbon fibers with a polymer binder having proton conductivity. It is formed by.
 このようなDMFCでは、燃料極に燃料のメタノールを導入すると、メタノールはガス拡散層を介して触媒層に達し、その触媒作用によりプロトン、電子および二酸化炭素を生成する。プロトンはプロトン伝導性を有する高分子バインダーの作用により触媒層から電解質膜に移動し、さらに、空気極側の触媒層へと移動する。一方、空気極に空気を導入すると、空気はガス拡散層を介して触媒層に達する。そして、この触媒層で、空気中の酸素と燃料極側から移動してきたプロトンと燃料極から外部回路を通じて供給される電子とが反応して水を生成するとともに、外部回路を通る電子によって電力が供給される。 In such a DMFC, when fuel methanol is introduced into the fuel electrode, the methanol reaches the catalyst layer through the gas diffusion layer, and protons, electrons, and carbon dioxide are generated by the catalytic action. Protons move from the catalyst layer to the electrolyte membrane by the action of the polymer binder having proton conductivity, and further move to the catalyst layer on the air electrode side. On the other hand, when air is introduced into the air electrode, the air reaches the catalyst layer through the gas diffusion layer. In this catalyst layer, oxygen in the air, protons moving from the fuel electrode side, and electrons supplied from the fuel electrode through an external circuit react to generate water, and electric power is generated by electrons passing through the external circuit. Supplied.
 空気極の触媒層では上記のように水が生成されるが、触媒層の過度の乾燥を防ぎ、良好な電池性能を保つためには、生成した水を外部に適度に排出させ、触媒層内に常に適度な量の水が包含されているようにする必要がある。すなわち、水が外部に排出され過ぎると、プロトン伝導性が低下し、電池の出力性能が低下する。また、空気極の触媒層内の水は、燃料極におけるメタノールの内部改質反応に使用されることがある(水は、電解質膜を通って燃料極に達し、メタノールとの反応に供される)が、この場合、水の量が不足すると反応が生起されなくなるおそれがある。逆に、触媒層内に残留する水が多くなると、ガスの拡散性が低下し、電池性能が低下する。 Water is generated as described above in the catalyst layer of the air electrode, but in order to prevent excessive drying of the catalyst layer and maintain good battery performance, the generated water is appropriately discharged to the outside, It is always necessary to ensure that a reasonable amount of water is included. That is, if water is discharged to the outside excessively, proton conductivity is lowered and output performance of the battery is lowered. In addition, water in the catalyst layer of the air electrode may be used for an internal reforming reaction of methanol in the fuel electrode (water reaches the fuel electrode through the electrolyte membrane and is used for reaction with methanol. In this case, however, the reaction may not occur if the amount of water is insufficient. Conversely, when the amount of water remaining in the catalyst layer increases, the gas diffusibility decreases, and the battery performance decreases.
 しかし、従来の触媒層では、生成した水を適度に排出させることができず、良好な電池性能を維持することが困難であった。例えば、担体としてカーボン粒子とカーボン繊維を併用したり、予め撥水処理を施した担体を用いることにより、触媒層のガス拡散性や触媒機能等を高める技術が提案されているが、良好な電池性能を維持するうえで、これ等の技術はさらに改善する余地があった(例えば、特許文献1、2参照。)。 However, with the conventional catalyst layer, the generated water could not be discharged appropriately, and it was difficult to maintain good battery performance. For example, there has been proposed a technique for improving the gas diffusibility and catalytic function of the catalyst layer by using carbon particles and carbon fibers in combination as a carrier, or using a carrier that has been subjected to water repellent treatment in advance. These techniques have room for further improvement in maintaining performance (see, for example, Patent Documents 1 and 2).
特開2003-208905公報JP 2003-208905 A 特開2007-012325公報JP 2007-012325 A
 本発明は、触媒層内に常に適度な量の水を包含することができ、水分量の過不足による電池性能の低下を防止することができる燃料電池用電極、および、このような燃料電池用電極を具備した出力特性、寿命特性に優れる燃料電池を提供することを目的とする。 The present invention can always include an appropriate amount of water in a catalyst layer, and can prevent deterioration of cell performance due to excess or deficiency of moisture, and for such a fuel cell. An object of the present invention is to provide a fuel cell having an electrode and excellent output characteristics and life characteristics.
 本発明の一態様に係る燃料電池用電極は、触媒を担持した導電性微粒子と、触媒を担持しない少なくとも一部が繭玉状に集合している繊維状物質とを含む触媒層を備えた燃料電池用電極であって、この電極の主面には、円形ないし楕円形状に露出する少なくとも1つの前記繊維状物質集合体が存在しており、その個々の露出面積が9~2000μmであることを特徴としている。 An electrode for a fuel cell according to an aspect of the present invention is a fuel cell including a catalyst layer including conductive fine particles supporting a catalyst and a fibrous material in which at least a part of the catalyst not supporting the catalyst is aggregated in a jade shape. The main surface of the electrode has at least one fibrous substance aggregate exposed in a circular or elliptical shape, and the individual exposed area is 9 to 2000 μm 2. It is a feature.
 本発明の一態様に係る燃料電池は、上記燃料電池用電極を具備することを特徴としている。 A fuel cell according to an aspect of the present invention is characterized by including the fuel cell electrode.
 本発明の一態様に係る燃料電池用電極によれば、触媒層内に常に適度な量の水を包含することができ、水分量の過不足による電池性能の低下を防止することができる。本発明の一態様に係る燃料電池によれば、そのような燃料電池用電極を具備するため、優れた出力性能、寿命特性を有することができる。 The fuel cell electrode according to one aspect of the present invention can always include an appropriate amount of water in the catalyst layer, and can prevent deterioration in battery performance due to excessive or insufficient water content. Since the fuel cell according to one embodiment of the present invention includes such a fuel cell electrode, it can have excellent output performance and life characteristics.
本発明の一実施形態による燃料電池用電極の断面の一部を模式的に示す図である。It is a figure which shows typically a part of cross section of the electrode for fuel cells by one Embodiment of this invention. 図1に示す燃料電池用電極の触媒層中の繊維状物質集合体の走査型電子顕微鏡(SEM)による撮像写真(倍率:1000)である。2 is a photograph (magnification: 1000) taken by a scanning electron microscope (SEM) of a fibrous material aggregate in a catalyst layer of a fuel cell electrode shown in FIG. 1. 図1に示す燃料電池用電極における触媒層のガス拡散層側の表面の一部を模式的に示した図である。FIG. 2 is a diagram schematically showing a part of the surface of a catalyst layer on the gas diffusion layer side in the fuel cell electrode shown in FIG. 1. 図1に示す燃料電池用電極を用いた燃料電池における膜電極接合体の構成を示す断面図である。It is sectional drawing which shows the structure of the membrane electrode assembly in the fuel cell using the electrode for fuel cells shown in FIG.
 以下、本発明を実施するための形態について、図面を参照して説明する。なお、説明は図面に基づいて行うが、それらの図面は単に図解のために提供されるものであって、本発明はそれらの図面により何ら限定されるものではない。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. Although the description will be made based on the drawings, the drawings are provided for illustration only, and the present invention is not limited to the drawings.
 図1は本発明の一実施形態による燃料電池用電極の断面の一部を模式的に示した図である。図1に示すように、本実施形態の燃料電池用電極は、触媒11を担持した導電性微粒子12と、触媒を担持しない少なくとも一部が繭玉状に集合している繊維状物質13とを含む触媒層21であり、さらにその表面にガス拡散層22を有している。触媒層21には、さらに、後述する電解質膜と触媒の間のプロトン伝導性パスとして機能するプロトン伝導体(図示なし)が含まれている。 FIG. 1 is a view schematically showing a part of a cross section of a fuel cell electrode according to an embodiment of the present invention. As shown in FIG. 1, the fuel cell electrode of the present embodiment includes conductive fine particles 12 carrying a catalyst 11 and a fibrous substance 13 in which at least a part of the catalyst 11 does not carry a catalyst is aggregated in a jade shape. The catalyst layer 21 has a gas diffusion layer 22 on its surface. The catalyst layer 21 further includes a proton conductor (not shown) that functions as a proton conductive path between an electrolyte membrane and a catalyst described later.
 図1において、符号15は、触媒層21中の、繭玉状に集合した繊維状物質集合体を示している。このような繭玉状に集合した繊維状物質集合体15は、例えば、走査型電子顕微鏡(SEM)により確認することができる。図2は、その一例を示したものである。 In FIG. 1, reference numeral 15 denotes a fibrous material aggregate that is aggregated in a jade shape in the catalyst layer 21. The fibrous substance aggregate 15 gathered in such a jade shape can be confirmed by, for example, a scanning electron microscope (SEM). FIG. 2 shows an example thereof.
 触媒層21のガス拡散層22側の表面には、円形ないし楕円形状に露出する繊維状物質集合体15aが少なくとも1つ存在しており、その個々の露出面積は9~2000μmである。このような繊維状物質集合体15aが存在する触媒層21においては、触媒層21内で生成される水の量と触媒層21から外部に排出される水の量をバランスさせることができ、触媒層21内に常に適度な量の水が包含されるようにすることができる。本発明において、円形ないし楕円形状に露出する繊維状物質集合体15aは、触媒層21内で生成される水の量と触媒層21から外部に排出される水の量をバランスさせるうえで、最大長が3~55μmであることが好ましい。ここで、繊維状物質集合体15の露出面積および最大長は、いずれも、例えば、走査型電子顕微鏡(SEM)による撮像図から求めることができる。 On the surface of the catalyst layer 21 on the gas diffusion layer 22 side, there is at least one fibrous substance aggregate 15a exposed in a circular or elliptical shape, and each exposed area is 9 to 2000 μm 2 . In the catalyst layer 21 in which such a fibrous substance aggregate 15a exists, the amount of water generated in the catalyst layer 21 and the amount of water discharged to the outside from the catalyst layer 21 can be balanced, A moderate amount of water can always be included in the layer 21. In the present invention, the fibrous substance aggregate 15a exposed in a circular or elliptical shape is the maximum in balancing the amount of water generated in the catalyst layer 21 and the amount of water discharged from the catalyst layer 21 to the outside. The length is preferably 3 to 55 μm. Here, both the exposed area and the maximum length of the fibrous material aggregate 15 can be obtained from an image captured by a scanning electron microscope (SEM), for example.
 なお、図3は、触媒層21のガス拡散層22側の表面の一部を模式的に示した図である。図3から明らかなように、触媒層21のガス拡散層22側の表面には、円形ないし楕円形状に露出する繊維状物質集合体15a以外に、露出形状が異形の繊維状物質集合体15bが存在している。これらの異形の繊維状物質集合体15bは、ガス拡散層22を積層した際に繊維状物質集合体15が破壊された結果生じたものである。図3において、符号17は、ガス拡散層22の積層によって触媒層21に形成された溝である。 FIG. 3 is a diagram schematically showing a part of the surface of the catalyst layer 21 on the gas diffusion layer 22 side. As apparent from FIG. 3, on the surface of the catalyst layer 21 on the gas diffusion layer 22 side, in addition to the fibrous substance aggregate 15 a exposed in a circular or elliptical shape, a fibrous substance aggregate 15 b with an irregularly exposed shape is formed. Existing. These irregular shaped fibrous substance aggregates 15b are a result of the destruction of the fibrous substance aggregates 15 when the gas diffusion layers 22 are laminated. In FIG. 3, reference numeral 17 denotes a groove formed in the catalyst layer 21 by stacking the gas diffusion layers 22.
 導電性微粒子12に担持される触媒11としては、例えばPt、Ru、Rh、Ir、Os、Pd等の白金族元素の単体、これらの白金族元素を含有する合金等が挙げられる。この電極を燃料極として使用する場合、メタノールや一酸化炭素等に対して強い耐性を有するPt-RuやPt-Mo等の合金を用いることが好ましい。また、空気極(酸化剤極)として使用する場合は、PtやPt-Ni等の合金を用いることが好ましく、Ptを用いることが特に好ましい。但し、触媒11はこれらに限定されるものではなく、触媒活性を有する各種の物質を使用することができる。導電性微粒子12は、粒径が10~80nmであることが好ましい。 Examples of the catalyst 11 supported on the conductive fine particles 12 include simple substances of platinum group elements such as Pt, Ru, Rh, Ir, Os, and Pd, and alloys containing these platinum group elements. When this electrode is used as a fuel electrode, it is preferable to use an alloy such as Pt—Ru or Pt—Mo having strong resistance to methanol, carbon monoxide and the like. When used as an air electrode (oxidant electrode), it is preferable to use an alloy such as Pt or Pt—Ni, and it is particularly preferable to use Pt. However, the catalyst 11 is not limited to these, and various substances having catalytic activity can be used. The conductive fine particles 12 preferably have a particle size of 10 to 80 nm.
 繊維状物質13は、嵩密度が0.04~0.27g/cmであることが好ましく、0.04~0.16g/cmであることがより好ましい。嵩密度が0.04g/cm未満では、触媒層21が緻密になり過ぎて、触媒層内部で生成される水分の排出が困難になり、触媒層21内の水分量が増大して、ガスの拡散性が低下し、電池性能が低下する。また、嵩密度が0.27g/cmを超えると、触媒層21内部で生成される水分が外部へ排出されやすくなり、触媒層21内の水分量が減少して、プロトン伝導性が低下し、電池の出力性能が低下する。また、燃料極におけるメタノールの内部改質反応が生起されなくなるおそれがある。ここで、繊維状物質の嵩密度は、JIS K 6720に準拠して測定することができる。 The fibrous substance 13 preferably has a bulk density of 0.04 to 0.27 g / cm 3 , and more preferably 0.04 to 0.16 g / cm 3 . If the bulk density is less than 0.04 g / cm 3 , the catalyst layer 21 becomes too dense, and it becomes difficult to discharge moisture generated inside the catalyst layer, the amount of moisture in the catalyst layer 21 increases, The diffusibility of the battery is lowered, and the battery performance is lowered. On the other hand, when the bulk density exceeds 0.27 g / cm 3 , the water generated inside the catalyst layer 21 is easily discharged to the outside, the amount of water in the catalyst layer 21 decreases, and the proton conductivity decreases. The output performance of the battery is reduced. Moreover, there is a possibility that the internal reforming reaction of methanol in the fuel electrode will not occur. Here, the bulk density of the fibrous substance can be measured according to JIS K 6720.
 また、繊維状物質13は、嵩高さが34~113mmであることが好ましく、30~50mmであることがより好ましい。嵩高さが34mm未満では、触媒層21が緻密になり過ぎて、触媒層内部で生成される水分の排出が困難になり、触媒層21内の水分量が増大して、ガスの拡散性が低下し、電池性能が低下する。また、嵩高さが113mmを超えると、触媒層21内部で生成される水分が外部へ排出されやすくなり、触媒層21内の水分量が減少して、プロトン伝導性が低下し、電池の出力性能が低下する。また、燃料極におけるメタノールの内部改質反応が生起されなくなるおそれがある。ここで、繊維状物質の嵩高さは、円筒形状容器による定量観察により求めることができる。 Further, the fibrous substance 13 preferably has a bulkiness of 34 to 113 mm, and more preferably 30 to 50 mm. If the bulk is less than 34 mm, the catalyst layer 21 becomes too dense, and it becomes difficult to discharge the moisture generated inside the catalyst layer, the amount of moisture in the catalyst layer 21 increases, and the gas diffusibility decreases. Battery performance is reduced. On the other hand, if the bulk exceeds 113 mm, the water generated inside the catalyst layer 21 is easily discharged to the outside, the amount of water in the catalyst layer 21 decreases, proton conductivity decreases, and the output performance of the battery. Decreases. Moreover, there is a possibility that the internal reforming reaction of methanol in the fuel electrode will not occur. Here, the bulkiness of the fibrous substance can be determined by quantitative observation using a cylindrical container.
 繊維状物質13は、導電性であっても非導電性であってもよい。導電性の繊維状物質としては、カーボンファイバ、カーボンナノファイバ、カーボンチューブ、カーボンナノチューブ、これらを粉砕処理したもの等が挙げられる。また、非導電性の繊維状物質としては、綿花、グラスファイバー等が挙げられる。 The fibrous substance 13 may be conductive or non-conductive. Examples of the conductive fibrous material include carbon fibers, carbon nanofibers, carbon tubes, carbon nanotubes, and those obtained by pulverizing these. Moreover, cotton, glass fiber, etc. are mentioned as a nonelectroconductive fibrous substance.
 本発明の目的のためには、繊維状物質13として、カップ積層型カーボンナノチューブに上記条件を満足するように粉砕処理を施したものを使用することが好ましい。カップ積層型カーボンナノチューブとしては、例えば、直径(ピーク値)80~100nm、長さ数~十数μm、密度約2.0g/cmの(株)GSIクレオス製のCarbere(商品名)等が例示される。 For the purpose of the present invention, it is preferable to use a fibrous material 13 obtained by pulverizing cup-stacked carbon nanotubes so as to satisfy the above conditions. Examples of the cup-stacked carbon nanotube include Carbere (trade name) manufactured by GSI Creos Co., Ltd. having a diameter (peak value) of 80 to 100 nm, a length of several to several tens of μm, and a density of about 2.0 g / cm 3. Illustrated.
 このような繊維状物質は、触媒層21内部で生成される水分をより速やかに排出させるために、予め表面に撥水処理を施しておくことが好ましい。撥水処理の方法は特に限定されるものではなく、従来より知られる公知の方法を用いることができる。具体的には、繊維状物質をエタノールの存在下に各種シランカップリング剤と混合する方法、繊維状物質を高温でフッ素と反応させる方法、繊維状物質の水分散液にフッ素樹脂、シリコーン樹脂、シランカップリング剤等の撥水性物質を有機溶剤に溶解した溶液を適下乃至スプレー含浸させる方法等が使用される。これらのなかでも、繊維状物質を高温でフッ素と反応させる方法が均一な撥水処理を行う観点から好ましい。 Such a fibrous material is preferably subjected to a water-repellent treatment on the surface in advance in order to quickly drain the water generated inside the catalyst layer 21. The method of water repellent treatment is not particularly limited, and a conventionally known method can be used. Specifically, a method of mixing the fibrous material with various silane coupling agents in the presence of ethanol, a method of reacting the fibrous material with fluorine at a high temperature, a fluororesin, a silicone resin, A method in which a solution obtained by dissolving a water-repellent substance such as a silane coupling agent in an organic solvent is appropriately or spray impregnated is used. Among these, the method of reacting the fibrous substance with fluorine at a high temperature is preferable from the viewpoint of uniform water repellent treatment.
 また、撥水性物質としては、ポリテトラフルオロエチレン(PTFE)、フッ化エチレンポリプロピレンコポリマー(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテルコポリマー(PFA)、エチレン・テトラフルオロエチレンコポリマー(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、三フッ化塩化エチレン・エチレンコポリマー(E-CTFE)等のフッ素樹脂が好ましく、特に撥水性に優れるPTFEが好ましい。 Water repellent materials include polytetrafluoroethylene (PTFE), fluorinated ethylene polypropylene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), ethylene / tetrafluoroethylene copolymer (ETFE), polychloro Fluorine resins such as trifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), and trifluoroethylene chloride / ethylene copolymer (E-CTFE) are preferable, and PTFE having excellent water repellency is particularly preferable.
 繊維状物質に対する撥水性物質の割合は、5~60質量%の範囲が好ましい。繊維状物質に対する撥水性物質の割合が、5質量%未満では撥水性が十分に付与されず、逆に、60質量%を超えると、繊維状物質同士が集合して繊維状物質としての性質が低下し、本発明の効果が十分に得られなくなる。繊維状物質に対する撥水性物質の割合のより好ましい範囲は、5~35質量%の範囲であり、5~20質量%の範囲がより一層好ましく、10~18質量%の範囲が特に好ましい。 The ratio of the water-repellent substance to the fibrous substance is preferably in the range of 5 to 60% by mass. If the ratio of the water-repellent substance to the fibrous substance is less than 5% by mass, water repellency is not sufficiently imparted. Conversely, if the ratio exceeds 60% by mass, the fibrous substances aggregate to form a fibrous substance. The effect of the present invention cannot be obtained sufficiently. A more preferable range of the ratio of the water repellent material to the fibrous material is a range of 5 to 35% by mass, even more preferably a range of 5 to 20% by mass, and particularly preferably a range of 10 to 18% by mass.
 繊維状物質13と触媒11を担持した導電性微粒子12との触媒層21における質量比は、10:90~30:70の範囲が好ましい。繊維状物質13の割合が前記範囲より少ないと、触媒層21内部で生成される水分の排出が困難になり、触媒層21内の水分量が増大して電池性能が低下する。逆に、繊維状物質13の割合が前記範囲より多いと、触媒層21内部で生成される水分が外部へ排出されやすくなり、触媒層21内の水分量が減少し乾燥する影響で電池性能が低下する。繊維状物質13と触媒11を担持した導電性微粒子12との触媒層21における質量比は、25:75~30:70の範囲がより好ましい。 The mass ratio in the catalyst layer 21 between the fibrous substance 13 and the conductive fine particles 12 carrying the catalyst 11 is preferably in the range of 10:90 to 30:70. When the ratio of the fibrous substance 13 is less than the above range, it becomes difficult to discharge the moisture generated inside the catalyst layer 21, the amount of moisture in the catalyst layer 21 increases, and the battery performance decreases. On the contrary, when the ratio of the fibrous substance 13 is larger than the above range, the moisture generated in the catalyst layer 21 is easily discharged to the outside, and the battery performance is affected by the effect that the moisture content in the catalyst layer 21 is reduced and dried. descend. The mass ratio in the catalyst layer 21 between the fibrous substance 13 and the conductive fine particles 12 carrying the catalyst 11 is more preferably in the range of 25:75 to 30:70.
 プロトン伝導体としては、(イ)炭化水素系プロトン伝導体、すなわち、主鎖が炭化水素からなる高分子にプロトン伝導性を付与するためにスルホン酸基、ホスホン酸基、カルボン酸基等のイオン交換基を導入したもの、(ロ)フッ素系プロトン伝導体、主鎖が、フッ素で置換された炭化水素からなる高分子にプロトン伝導性を付与するためにスルホン酸基、ホスホン酸基、カルボン酸基等のイオン交換基を導入したもの、(ハ)主鎖に実質的に炭素原子を含まないポリシロキサン、ポリフォスファゼン等の高分子にプロトン伝導性を付与するためにスルホン酸基、ホスホン酸基、カルボン酸基等のイオン交換基を導入したもの、(ニ)(イ)~(ハ)のイオン交換基導入前の高分子を構成する繰り返し単位から選ばれる2種以上を繰り返し単位とする共重合体にプロトン伝導性を付与するためにスルホン酸基、ホスホン酸基、カルボン酸基等のイオン交換基を導入したもの等が挙げられる。ここで、「高分子もしくは共重合体にイオン交換基を導入した」とは、「高分子もしくは共重合体骨格にイオン交換基を化学結合を介して導入した」ことを意味する。また、(イ)および(ロ)における主鎖は酸素原子等のヘテロ原子で中断されていてもよい。化学的安定性の観点からは、なかでも、(ロ)のフッ素系プロトン伝導体が好ましく、耐熱性の観点からは、主鎖に芳香環を有する高分子からなるものが好ましい。 Proton conductors include (i) hydrocarbon-based proton conductors, that is, ions such as sulfonic acid groups, phosphonic acid groups, and carboxylic acid groups in order to impart proton conductivity to polymers whose main chain is composed of hydrocarbons. An exchange group introduced, (b) a fluorine-based proton conductor, a sulfonic acid group, a phosphonic acid group, a carboxylic acid for imparting proton conductivity to a polymer comprising a hydrocarbon whose main chain is substituted with fluorine (C) a sulfonic acid group or a phosphonic acid group for imparting proton conductivity to a polymer such as polysiloxane or polyphosphazene having substantially no carbon atom in the main chain. 2 or more selected from repeating units constituting the polymer before introduction of ion exchange groups (d) (i) to (c), in which an ion exchange group such as a group or a carboxylic acid group is introduced A sulfonic acid group to impart proton conductivity to the copolymer units, phosphonic acid groups, such as those obtained by introducing an ion exchange group such as a carboxylic acid group. Here, “an ion exchange group introduced into a polymer or copolymer” means “an ion exchange group introduced into the polymer or copolymer skeleton via a chemical bond”. In addition, the main chain in (i) and (b) may be interrupted by a heteroatom such as an oxygen atom. From the viewpoint of chemical stability, among them, the fluorine-based proton conductor (b) is preferable, and from the viewpoint of heat resistance, those made of a polymer having an aromatic ring in the main chain are preferable.
 (イ)炭化水素系プロトン伝導体の具体例としては、主鎖が脂肪族炭化水素からなるものとして、例えば、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリ(α-メチルスチレン)スルホン酸等が挙げられる。また、主鎖に芳香環を有するものとして、例えば、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリ(アリーレン・エーテル)、ポリイミド、ポリ(4-フェノキシベンゾイル-1,4-フェニレン)、ポリフェニレンスルフィド、ポリフェニルキノキサレン等の単独重合体のそれぞれにスルホン酸基が導入されたもの、アリールスルホン化ポリベンズイミダゾール、アルキルスルホン化ポリベンズイミダゾール、アルキルホスホン化ポリベンズイミダゾール、ホスホン化ポリ(フェニレンエーテル)等が挙げられる。 (A) Specific examples of the hydrocarbon proton conductor include those whose main chain is made of an aliphatic hydrocarbon, such as polyvinyl sulfonic acid, polystyrene sulfonic acid, poly (α-methylstyrene) sulfonic acid, and the like. . Examples of those having an aromatic ring in the main chain include, for example, polyether ether ketone, polysulfone, polyether sulfone, poly (arylene ether), polyimide, poly (4-phenoxybenzoyl-1,4-phenylene), polyphenylene sulfide. , Sulfonic acid groups introduced into homopolymers such as polyphenylquinoxalen, arylsulfonated polybenzimidazole, alkylsulfonated polybenzimidazole, alkylphosphonated polybenzimidazole, phosphonated poly (phenylene ether) ) And the like.
 (ロ)フッ素系プロトン伝導体の具体例としては、例えば、パーフルオロカーボンスルホン酸塩、ホスホン酸基を有するパーフルオロアルキルポリマー、ポリトリフルオロスチレンスルホン酸、ポリトリフルオロスチレンホスホン酸等が挙げられる。 (B) Specific examples of the fluorine-based proton conductor include perfluorocarbon sulfonate, perfluoroalkyl polymer having a phosphonic acid group, polytrifluorostyrene sulfonic acid, polytrifluorostyrene phosphonic acid, and the like.
 (ニ)のプロトン伝導体における共重合体は、ランダム共重合体、交互共重合体およびブロック共重合体のいずれであってもよい。ランダム共重合体にイオン交換基が導入されたものとしては、例えば、スルホン化ポリエーテルスルホン-ジヒドロキシビフェニル共重合体等が挙げられる。ブロック共重合体にイオン交換基が導入されたものとしては、例えば、スチレン-(エチレン-ブチレン)-スチレントリブロック共重合体にイオン交換基を導入したもの等が挙げられる。 (D) The copolymer in the proton conductor may be any of a random copolymer, an alternating copolymer and a block copolymer. Examples of the random copolymer having an ion exchange group introduced include a sulfonated polyethersulfone-dihydroxybiphenyl copolymer. Examples of the block copolymer in which an ion exchange group is introduced include those in which an ion exchange group is introduced into a styrene- (ethylene-butylene) -styrene triblock copolymer.
 プロトン伝導体としては、プロトン伝導性やそれ自身の物質安定性の観点から、なかでも、ペルフルオロスルホン酸塩が好ましい。ペルフルオロスルホン酸塩の市販品を例示すると、例えばナフィオン(デュポン社製 商品名)、フレミオン(旭硝子社製 商品名)等が挙げられる。 As the proton conductor, perfluorosulfonate is preferable from the viewpoint of proton conductivity and stability of the substance itself. Examples of commercially available products of perfluorosulfonate include Nafion (trade name, manufactured by DuPont), Flemion (trade name, manufactured by Asahi Glass), and the like.
 なお、触媒層21には、本発明の効果を阻害しない範囲で、上記の触媒11を担持した導電性微粒子12、繊維状物質13およびプロトン伝導体以外の成分、例えばケイ素酸化物(例えばガラス、石英粉、珪石粉、珪藻土、シリカフューム、天然シリカ、コロイダルシリカ等)、アルミニウム酸化物(酸化アルミニウム、アルミナ)、酸化チタン、雲母、絹雲母、ゼオライト、セリサイト、カオリンクレー、カオリン、焼成カオリン(メタカオリン)、石綿、マイカ、タルク、炭化ケイ素、窒化ケイ素、窒化アルミ、ジルコニア、カーボン等の粒子が含まれていてもよい。 The catalyst layer 21 has a component other than the conductive fine particles 12, the fibrous substance 13 and the proton conductor carrying the catalyst 11 as long as the effects of the present invention are not impaired, such as silicon oxide (for example, glass, Quartz powder, silica powder, diatomaceous earth, silica fume, natural silica, colloidal silica, etc., aluminum oxide (aluminum oxide, alumina), titanium oxide, mica, sericite, zeolite, sericite, kaolin clay, kaolin, calcined kaolin (metakaolin) ), Particles of asbestos, mica, talc, silicon carbide, silicon nitride, aluminum nitride, zirconia, carbon, and the like may be included.
 触媒層21に積層されるガス拡散層22は、この電極を燃料極として使用する場合、触媒層21に燃料を均一に供給する機能とともに、触媒層21で生成された電子を効率よく外部へ伝達する集電体としての機能を併せ有する。また、この電極を空気極(酸化剤極)として使用する場合、触媒層21に酸化剤を均一に供給する機能とともに、外部から供給される電子を効率よく触媒層21へ伝達する集電体としての機能を併せ有する。いずれの場合も、ガス拡散層22は導電性材料で形成された多孔質基材で構成される。 When this electrode is used as a fuel electrode, the gas diffusion layer 22 laminated on the catalyst layer 21 has a function of uniformly supplying fuel to the catalyst layer 21 and efficiently transmits electrons generated in the catalyst layer 21 to the outside. It also has a function as a current collector. In addition, when this electrode is used as an air electrode (oxidant electrode), it has a function of uniformly supplying an oxidant to the catalyst layer 21 and a current collector that efficiently transmits electrons supplied from the outside to the catalyst layer 21. It also has the function of In either case, the gas diffusion layer 22 is composed of a porous substrate formed of a conductive material.
 多孔質基材としては、例えばカーボンファイバ等で形成されるカーボンクロスやカーボンペーパ等のように、導電性繊維をシート状に加工したものを使用することが好ましく、具体的には、例えば繊維径1μm程度以上のカーボンファイバで作られた気孔率50%以上のカーボンペーパあるいはカーボンクロスを使用することができる。多孔質基材は、焼結体であってもよく、金属あるいは金属酸化物(スズ酸化物、チタン酸化物等)を焼結したものを使用することができる。 As the porous substrate, it is preferable to use a conductive fiber that has been processed into a sheet shape, such as carbon cloth or carbon paper formed of carbon fiber or the like. Carbon paper or carbon cloth made of carbon fibers of about 1 μm or more and having a porosity of 50% or more can be used. The porous substrate may be a sintered body, and a sintered metal or metal oxide (tin oxide, titanium oxide, etc.) can be used.
 ガス拡散層22上に触媒層21を形成する際には、ガス拡散層22を形成する多孔質基材に、触媒11を担持した導電性微粒子12、繊維状物質13およびプロトン伝導体、あるいは、これらの成分と任意成分である上記粒子等とを溶媒に分散させて調製した触媒スラリーを、コーターやスプレー等により1回ないし複数回に分けて塗付し乾燥させることにより形成することができる。溶媒としては、水、イソプロピルアルコールなどのアルコール、これらの混合物等を用いることができる。 When forming the catalyst layer 21 on the gas diffusion layer 22, the conductive fine particles 12 carrying the catalyst 11, the fibrous substance 13 and the proton conductor on the porous base material forming the gas diffusion layer 22, or A catalyst slurry prepared by dispersing these components and the above-described particles, which are optional components, in a solvent can be formed by being applied once or multiple times by a coater, spray or the like and dried. As the solvent, water, alcohol such as isopropyl alcohol, a mixture thereof or the like can be used.
 本実施形態の燃料電池用電極は、燃料極としても空気極(酸化剤極)としても使用することができるが、得られる効果の点から、少なくとも空気極(酸化剤極)として使用することが好ましい。 The electrode for a fuel cell of the present embodiment can be used as a fuel electrode or an air electrode (oxidant electrode), but it can be used at least as an air electrode (oxidant electrode) from the viewpoint of the effect obtained. preferable.
 図4は、その一例を示したもので、上記燃料電池用電極を空気極(酸化剤極)として用いた燃料電池の膜電極接合体(MEA:Membrane Electrode Assembly)34を示す断面図である。図4に示すように、この燃料電池は、空気極(酸化剤極)31と、燃料極32と、これらの空気極(酸化剤極)31と燃料極32とで挟持されたプロトン伝導性の電解質膜33とから構成される。 FIG. 4 shows an example of this, and is a cross-sectional view showing a fuel cell membrane electrode assembly (MEA) 34 using the fuel cell electrode as an air electrode (oxidant electrode). As shown in FIG. 4, the fuel cell includes an air electrode (oxidant electrode) 31, a fuel electrode 32, and a proton conductive material sandwiched between the air electrode (oxidant electrode) 31 and the fuel electrode 32. And an electrolyte membrane 33.
 空気極(酸化剤極)31は、前述した触媒層21とガス拡散層22とを有する電極で構成され、燃料極32は、公知の触媒層23とガス拡散層24とを有する電極で構成されている。 The air electrode (oxidant electrode) 31 is composed of an electrode having the catalyst layer 21 and the gas diffusion layer 22 described above, and the fuel electrode 32 is composed of an electrode having a known catalyst layer 23 and a gas diffusion layer 24. ing.
 また、電解質膜33は、例えば、炭化水素系電解質膜、すなわち、炭化水素系のプロトン伝導体からなる電解質膜、フッ素系電解質膜、すなわち、フッ素系のプロトン伝導体からなる電解質膜等で構成される。電解質膜33は、タングステン酸やリンタングステン酸等の無機材料からなる電解質膜であってもよい。一般的には、ペルフルオロスルホン酸塩からなる膜のナフィオン112(デュポン社製 商品名)等が使用されるが、特にこれに限定されるものではない。 The electrolyte membrane 33 is composed of, for example, a hydrocarbon electrolyte membrane, that is, an electrolyte membrane made of a hydrocarbon proton conductor, a fluorine electrolyte membrane, that is, an electrolyte membrane made of a fluorine proton conductor, and the like. The The electrolyte membrane 33 may be an electrolyte membrane made of an inorganic material such as tungstic acid or phosphotungstic acid. In general, Nafion 112 (trade name, manufactured by DuPont) or the like, which is a membrane made of perfluorosulfonate, is used, but is not particularly limited thereto.
 膜電極接合体34は、ガス拡散層22上に触媒層21が形成された空気極(酸化剤極)31と、ガス拡散層24上に触媒層23が形成された燃料極32と、電解質膜33とを、電解質膜33の両面に触媒層21と触媒層23が接するように重ね合わせ、加熱プレスすることにより、形成される。空気極(酸化剤極)31のガス拡散層22の触媒層21と反対側の面、および燃料極32のガス拡散層24の触媒層23と反対側の面には、それぞれ必要に応じて導電層を形成してもよい。これらの導電層としては、例えばAu等の導電性金属材料からなるメッシュ、多孔質膜、薄膜等が用いられる。 The membrane electrode assembly 34 includes an air electrode (oxidant electrode) 31 in which the catalyst layer 21 is formed on the gas diffusion layer 22, a fuel electrode 32 in which the catalyst layer 23 is formed on the gas diffusion layer 24, and an electrolyte membrane. 33 are stacked so that the catalyst layer 21 and the catalyst layer 23 are in contact with both surfaces of the electrolyte membrane 33 and heated and pressed. The surface of the air electrode (oxidant electrode) 31 opposite to the catalyst layer 21 of the gas diffusion layer 22 and the surface of the fuel electrode 32 opposite to the catalyst layer 23 of the gas diffusion layer 24 are electrically conductive as necessary. A layer may be formed. As these conductive layers, for example, a mesh, a porous film, a thin film, or the like made of a conductive metal material such as Au is used.
 このように構成される膜電極接合体34を備えた燃料電池においては、燃料が燃料極32に供給される一方、空気極(酸化剤極)31に空気、酸素等の酸化性ガスが導入される。燃料はガス拡散層24を拡散して触媒層23に供給される。燃料としてメタノール燃料を用いた場合、触媒層23で下記(1)式に示すメタノールの内部改質反応が生じる。なお、メタノール燃料として純メタノールを使用した場合には、空気極(酸化剤極)31の触媒層21で生成した水や電解質膜33中の水をメタノールと反応させて(1)式の内部改質反応を生起させる。あるいは、水を必要としない他の反応機構により内部改質反応を生じさせる。
  CHOH+HO → CO+6H+6e …(1)
In the fuel cell including the membrane electrode assembly 34 configured as described above, the fuel is supplied to the fuel electrode 32, and an oxidizing gas such as air or oxygen is introduced into the air electrode (oxidant electrode) 31. The The fuel diffuses through the gas diffusion layer 24 and is supplied to the catalyst layer 23. When methanol fuel is used as the fuel, an internal reforming reaction of methanol shown in the following formula (1) occurs in the catalyst layer 23. When pure methanol is used as the methanol fuel, the water generated in the catalyst layer 21 of the air electrode (oxidant electrode) 31 or the water in the electrolyte membrane 33 is reacted with methanol to improve the internal modification of the equation (1). Causes a quality reaction. Alternatively, the internal reforming reaction is caused by another reaction mechanism that does not require water.
CH 3 OH + H 2 O → CO 2 + 6H + + 6e (1)
 この反応で生成した電子(e)は外部に導かれ、いわゆる電気として携帯用電子機器等を動作させた後、空気極(酸化剤極)31に導かれる。また、(1)式の内部改質反応で生成したプロトン(H)は電解質膜33を経て空気極(酸化剤極)31に導かれる。空気極(酸化剤極)31に到達した電子(e)とプロトン(H)は、触媒層21で酸素と下記(2)式にしたがって反応し、この反応に伴って水が生成する。
  6e+6H+(3/2)O → 3HO …(2)
The electrons (e ) generated by this reaction are guided to the outside, and are operated as so-called electricity, and then are guided to the air electrode (oxidant electrode) 31 after operating a portable electronic device or the like. Further, protons (H + ) generated by the internal reforming reaction of the formula (1) are guided to the air electrode (oxidant electrode) 31 through the electrolyte membrane 33. Electrons (e ) and protons (H + ) that have reached the air electrode (oxidant electrode) 31 react with oxygen in the catalyst layer 21 according to the following formula (2), and water is generated along with this reaction.
6e + 6H + + (3/2) O 2 → 3H 2 O (2)
 上述した燃料電池において、良好な電池性能が長期間に亘って維持されるためには、空気極(酸化剤極)31で生成された水が外部に適度にかつ速やかに排出され、触媒層21内に常に適度な量の水が包含されているようにすることが重要である。水が外部に排出され過ぎると、空気極(酸化剤極)31におけるプロトン伝導性が低下し、電池の出力性能が低下する。また、空気極(酸化剤極)31の触媒層21内の水が、燃料極32におけるメタノールの内部改質反応との反応に使用される場合、反応が十分に生起されず、その結果、電池の出力性能が低下する。一方、触媒層21内に残留する水が多くなると、ガスの拡散性が低下し、やはり電池性能が低下する。 In the above-described fuel cell, in order to maintain good cell performance over a long period of time, water generated at the air electrode (oxidant electrode) 31 is discharged to the outside appropriately and quickly, and the catalyst layer 21. It is important to ensure that a reasonable amount of water is always contained within. If water is excessively discharged to the outside, proton conductivity in the air electrode (oxidant electrode) 31 decreases, and the output performance of the battery decreases. In addition, when the water in the catalyst layer 21 of the air electrode (oxidant electrode) 31 is used for the reaction with the internal reforming reaction of methanol in the fuel electrode 32, the reaction does not occur sufficiently, and as a result, the battery The output performance of On the other hand, when the amount of water remaining in the catalyst layer 21 increases, the gas diffusibility decreases, and the battery performance also decreases.
 上記燃料電池においては、空気極(酸化剤極)31の触媒層21内に、触媒11を担持した導電性微粒子12とともに、少なくとも一部が繭玉状に集合している繊維状物質13を、触媒層のガス拡散層22側の表面に、円形ないし楕円形状に露出する少なくとも1つの前記繊維状物質集合体が存在し、その個々の露出面積が9~2000μmとなうように含有させているので、触媒層21内に生成される水を、適度な速度で外部に排出させることができる。この結果、触媒層21内に常に適度な量の水が包含されることになり、上記したような触媒層21内の水の過不足による電池性能の低下を抑制することができる。 In the fuel cell described above, the fibrous material 13 at least a part of which is aggregated in the shape of a jade in the catalyst layer 21 of the air electrode (oxidant electrode) 31 together with the conductive fine particles 12 carrying the catalyst 11 is used as the catalyst. There is at least one fibrous substance aggregate exposed in a circular or elliptical shape on the surface of the gas diffusion layer 22 side of the layer, and each of the fibrous material aggregates is contained so as to have an exposed area of 9 to 2000 μm 2 . Therefore, the water produced | generated in the catalyst layer 21 can be discharged | emitted outside at a moderate speed. As a result, an appropriate amount of water is always included in the catalyst layer 21, and a decrease in battery performance due to excessive or insufficient water in the catalyst layer 21 as described above can be suppressed.
 本発明は、高分子電解質膜を備えた各種の固体高分子型燃料電池に広く適用することができるが、一般には、メタノール燃料等の液体燃料を用いる燃料電池に適用される。液体燃料を用いる燃料電池は、燃料の供給方式から、アクティブ型燃料電池とパッシブ型燃料電池に大きく分けられるが、そのいずれにも適用可能である。ちなみに、アクティブ型燃料電池は、液体燃料および空気等を膜電極接合体の燃料極および空気極(酸化剤極)にそれぞれポンプ等により強制的に供給するものであり、また、パッシブ型燃料電池は気化した液体燃料を膜電極接合体の燃料極に自然供給する一方、空気極(酸化剤極)に外部の空気を自然供給するものである。さらには燃料供給等、一部にポンプ等を用いたセミパッシブと称される型の燃料電池に対しても本発明を適用することができる。セミパッシブ型の燃料電池は、燃料収容部から膜電極接合体に供給された燃料は発電反応に使用され、その後に循環して燃料収容部に戻されることはない。セミパッシブ型の燃料電池は、燃料を循環しないことから、従来のアクティブ方式とは異なるものであり、装置の小型化等を損なうものではない。また、燃料の供給にポンプを使用しており、従来の内部気化型のような純パッシブ方式とも異なる。このため、この燃料電池は、上述したようにセミパッシブ方式と呼称される。なお、このセミパッシブ型の燃料電池では、燃料収容部から膜電極接合体への燃料供給が行われる構成であればポンプに代えて燃料遮断バルブを配置する構成とすることも可能である。この場合には、燃料遮断バルブは、流路による液体燃料の供給を制御するために設けられるものである The present invention can be widely applied to various solid polymer fuel cells having a polymer electrolyte membrane, but is generally applied to fuel cells using liquid fuel such as methanol fuel. Fuel cells using liquid fuel can be broadly divided into active fuel cells and passive fuel cells depending on the fuel supply system, and any of them can be applied. By the way, an active fuel cell forcibly supplies liquid fuel and air to the fuel electrode and air electrode (oxidant electrode) of the membrane electrode assembly by a pump or the like, and the passive fuel cell While vaporized liquid fuel is naturally supplied to the fuel electrode of the membrane electrode assembly, external air is naturally supplied to the air electrode (oxidant electrode). Furthermore, the present invention can also be applied to a fuel cell of a type called a semi-passive that partially uses a pump or the like, such as fuel supply. In the semi-passive type fuel cell, the fuel supplied from the fuel storage part to the membrane electrode assembly is used for the power generation reaction, and is not circulated thereafter and returned to the fuel storage part. The semi-passive type fuel cell is different from the conventional active method because it does not circulate the fuel, and does not impair the downsizing of the device. Moreover, a pump is used to supply fuel, which is different from a pure passive system such as a conventional internal vaporization type. For this reason, this fuel cell is called a semi-passive system as described above. In this semi-passive type fuel cell, a fuel cutoff valve may be arranged in place of the pump as long as fuel is supplied from the fuel storage portion to the membrane electrode assembly. In this case, the fuel cutoff valve is provided for controlling the supply of liquid fuel through the flow path.
 上記液体燃料としては、メタノール水溶液、純メタノール等のメタノール燃料の他、エタノール水溶液、純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノール等のプロパノール燃料、グリコール水溶液や純グリコール等のグリコール燃料、蟻酸、ジメチルエーテル等が挙げられる。いずれにしても、燃料電池に応じた液体燃料が使用される。なお、MEAへ供給される液体燃料の蒸気においても、全て液体燃料の蒸気を供給してもよいが、一部が液体状態で供給される場合であっても本発明を適用することができる。 As the liquid fuel, methanol fuel such as methanol aqueous solution, pure methanol, ethanol aqueous solution, ethanol fuel such as pure ethanol, propanol fuel such as propanol aqueous solution and pure propanol, glycol fuel such as glycol aqueous solution and pure glycol, formic acid, Examples include dimethyl ether. In any case, liquid fuel corresponding to the fuel cell is used. It should be noted that the liquid fuel vapor supplied to the MEA may be all supplied as a liquid fuel vapor, but the present invention can be applied even when a part of the liquid fuel vapor is supplied in a liquid state.
 以上、添付図面を参照しながら本発明の実施形態について説明したが、本発明はかかる例に限定されるものでないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範囲内で各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are of course within the technical scope of the present invention. Is done.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、実施例および比較例中の各種物性値等は下記に示す方法で測定した。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, the various physical-property values in an Example and a comparative example were measured by the method shown below.
 [触媒金属およびカーボン粒子の平均粒径]
触媒金属の平均粒径は、X線回折装置(XRD)を用いて測定した。具体的には、触媒金属が担持されたカーボン粒子(触媒)を乳鉢で触媒金属が崩れない程度に粉砕した後、アルミ試料板に充填し、(株)リガク製のRigaku-1200Vを用いて測定後、解析ソフトでシャラーの式解析を行い、平均粒径を確認した。また、カーボン粒子の平均粒径は、粒度分布計を用いて測定した。具体的には、触媒が担持されたカーボン粒子を(株)島津製作所製のSHIMAZU SALD-2200粒度分布計を用いて測定した。
[Average particle diameter of catalyst metal and carbon particles]
The average particle diameter of the catalyst metal was measured using an X-ray diffractometer (XRD). Specifically, carbon particles carrying the catalyst metal (catalyst) were pulverized in a mortar to such an extent that the catalyst metal did not collapse, then filled in an aluminum sample plate, and measured using Rigaku-1200V manufactured by Rigaku Corporation. After that, analysis of the Schaller equation was performed with analysis software, and the average particle size was confirmed. The average particle size of the carbon particles was measured using a particle size distribution meter. Specifically, the carbon particles carrying the catalyst were measured using a SHIMAZU SALD-2200 particle size distribution meter manufactured by Shimadzu Corporation.
 [触媒の担持量]
ICP発光分光法により測定した。
[Catalyst loading]
It was measured by ICP emission spectroscopy.
 [カーボン繊維集合体の露出面積]
空気極から多孔質基材を剥離して露出させた触媒層の中央部から8mm×8mmの試料を切り出し、その表面(多孔質基材側表面)を(株)ニコン製の走査型電子顕微鏡(SEM)NIKON ESEM-2700Lで観察し、円形ないし楕円形状に露出している繊維状物質集合体の面積および最大長を測定した(n=4)。測定は試料1枚につき少なくとも50個の繊維状物質集合体について行った。
 走査型電子顕微鏡(SEM)の計測条件は次の通りである。
   加速電圧:20kV
   フィラメント:Wフィラメント2.3~2.4A
   真空モード:高真空モード
   試料位置:WD=1.5、TILT=〇
   視野範囲:180mm×230mm
   探索時の倍率:1.0kV
   計測時の倍率:2.0~2.5kV
[Exposed area of carbon fiber aggregate]
An 8 mm × 8 mm sample was cut out from the center of the catalyst layer exposed by peeling the porous substrate from the air electrode, and the surface (porous substrate side surface) was scanned by a scanning electron microscope (manufactured by Nikon Corporation). SEM) Observed with NIKON ESEM-2700L, the area and maximum length of the fibrous material aggregate exposed in a circular or elliptical shape were measured (n = 4). Measurements were made on at least 50 fibrous material aggregates per sample.
The measurement conditions of the scanning electron microscope (SEM) are as follows.
Acceleration voltage: 20 kV
Filament: W filament 2.3-2.4A
Vacuum mode: High vacuum mode Sample position: WD = 1.5, TILT = 〇 Field of view range: 180 mm x 230 mm
Magnification during search: 1.0 kV
Magnification during measurement: 2.0 to 2.5 kV
 [カーボン繊維の嵩密度]
カーボン繊維120cmを嵩密度測定装置のダンパーを差し込んだ漏斗に入れた後、速やかにダンパーを引き抜き、カーボン繊維を受器に落とした。受器から盛り上がったカーボン繊維をガラス棒ですり落とした後、カーボン繊維の入った受器の質量を測定し、次式により算出した。
 S=(C-A)/B
   S:嵩密度(g/cm
   A:受器の質量(g)
   B:受器の内容積(cm
   C:カーボン繊維の入った受器の質量(g)
[Bulk density of carbon fiber]
120 cm 3 of carbon fiber was put into a funnel into which a damper of a bulk density measuring device was inserted, and then the damper was quickly pulled out to drop the carbon fiber into a receiver. After carbon fiber that had risen from the receiver was scraped off with a glass rod, the mass of the receiver containing carbon fiber was measured and calculated according to the following formula.
S = (CA) / B
S: Bulk density (g / cm 3 )
A: Mass of the receiver (g)
B: Internal volume of receiver (cm 3 )
C: Mass of the receiver containing carbon fiber (g)
 [カーボン繊維の嵩高さ]
カーボン繊維3gを秤量し、円筒形状容器(メスシリンダー:容量200ml、内径28mm)に上部より負荷を加えない状態で静かに投入した。投入後1時間を経過した後、その高さを測定し、嵩高さとした。
[Bulkness of carbon fiber]
3 g of carbon fibers were weighed and gently put into a cylindrical container (measuring cylinder: capacity 200 ml, inner diameter 28 mm) without applying a load from the top. After 1 hour had elapsed since the addition, the height was measured and made bulky.
 [触媒スラリーの調製]
(調製例1)
直径(ピーク値)100nm、繊維長(ピーク値)3.5μm、密度約2.0g/cmのカップ積層型カーボンナノチューブに粉砕処理を施して得られた嵩高さ45mm、嵩密度0.09g/cmのカーボン繊維に、常法により撥水処理を施し、カーボン繊維に対する撥水性物質の割合が15質量%の撥水処理済みカーボン繊維を得た。撥水性物質にはPTFEを用いた。得られた撥水処理済みカーボン繊維0.5g、Pt微粒子(平均粒径0.5nm)を担持した粒径10~80nm(平均粒径2nm)のカーボン粒子(Pt含有量:70質量%)1.5g、ペルフルオロスルホン酸塩溶液(ナフィオン(商品名)20重量%含有)6g、イオン交換水5.2g、およびイソプロピルアルコール2.4gを攪拌混合機により混合して、空気極用触媒スラリー(A1)を調製した。
[Preparation of catalyst slurry]
(Preparation Example 1)
45 mm in bulk and 0.09 g / bulk density obtained by pulverizing cup-stacked carbon nanotubes having a diameter (peak value) of 100 nm, a fiber length (peak value) of 3.5 μm, and a density of about 2.0 g / cm 3. The cm 3 carbon fiber was subjected to a water repellent treatment by a conventional method to obtain a water repellent treated carbon fiber in which the ratio of the water repellent substance to the carbon fiber was 15 mass%. PTFE was used as the water repellent material. Obtained water repellent treated carbon fiber 0.5 g, carbon particles having a particle size of 10 to 80 nm (average particle size 2 nm) carrying Pt fine particles (average particle size 0.5 nm) (Pt content: 70 mass%) 1 0.5 g, 6 g of a perfluorosulfonate solution (containing 20% by weight of Nafion (trade name)), 5.2 g of ion-exchanged water, and 2.4 g of isopropyl alcohol were mixed with a stirring mixer to obtain a catalyst slurry for air electrode (A1 ) Was prepared.
 (調製例2)
カーボン繊維に対する撥水性物質の割合が27質量%となるようにした以外は、調製例1の場合と同様にして空気極用触媒スラリー(A2)を調製した。
(Preparation Example 2)
An air electrode catalyst slurry (A2) was prepared in the same manner as in Preparation Example 1 except that the ratio of the water-repellent substance to the carbon fibers was 27% by mass.
 (調製例3)
カーボン繊維に対する撥水性物質の割合が41質量%となるようにした以外は、調製例1の場合と同様にして空気極用触媒スラリー(A3)を調製した。
(Preparation Example 3)
An air electrode catalyst slurry (A3) was prepared in the same manner as in Preparation Example 1 except that the ratio of the water-repellent substance to the carbon fibers was 41% by mass.
 (調製例4)
カーボン繊維として、調製例1で用いたものと同様のカップ積層型カーボンナノチューブに粉砕処理を施して得られた嵩高さ34mm、嵩密度0.16g/cmのカーボン繊維を用いた以外は、調製例1の場合と同様にして空気極用触媒スラリー(A4)を調製した。
(Preparation Example 4)
Prepared except that carbon fibers having a bulk height of 34 mm and a bulk density of 0.16 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as the carbon fibers. In the same manner as in Example 1, an air electrode catalyst slurry (A4) was prepared.
 (調製例5)
カーボン繊維として、調製例1で用いたものと同様のカップ積層型カーボンナノチューブに粉砕処理を施して得られた嵩高さ34mm、嵩密度0.16g/cmのカーボン繊維を用いた以外は、調製例2の場合と同様にして空気極用触媒スラリー(A5)を調製した。
(Preparation Example 5)
Prepared except that carbon fibers having a bulk height of 34 mm and a bulk density of 0.16 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as the carbon fibers. In the same manner as in Example 2, an air electrode catalyst slurry (A5) was prepared.
 (調製例6)
カーボン繊維として、調製例1で用いたものと同様のカップ積層型カーボンナノチューブに粉砕処理を施して得られた嵩高さ34mm、嵩密度0.16g/cmのカーボン繊維を用いた以外は、調製例3の場合と同様にして空気極用触媒スラリー(A6)を調製した。
(Preparation Example 6)
Prepared except that carbon fibers having a bulk height of 34 mm and a bulk density of 0.16 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as the carbon fibers. In the same manner as in Example 3, an air electrode catalyst slurry (A6) was prepared.
 (調製例7)
撥水処理済みカーボン繊維およびPt担持カーボン粒子の使用量をそれぞれ0.6gおよび1.4gに変更した以外は、調製例2の場合と同様にして空気極用触媒スラリー(A7)を調製した。
(Preparation Example 7)
An air electrode catalyst slurry (A7) was prepared in the same manner as in Preparation Example 2, except that the amounts of the water-repellent treated carbon fibers and Pt-supported carbon particles were changed to 0.6 g and 1.4 g, respectively.
 (調製例8)
撥水処理済みカーボン繊維およびPt担持カーボン粒子の使用量をそれぞれ0.6gおよび1.4gに変更した以外は、調製例5の場合と同様にして空気極用触媒スラリー(A8)を調製した。
(Preparation Example 8)
An air electrode catalyst slurry (A8) was prepared in the same manner as in Preparation Example 5, except that the amounts of the water-repellent treated carbon fibers and Pt-supported carbon particles were changed to 0.6 g and 1.4 g, respectively.
 (調製例9)
撥水処理済みカーボン繊維およびPt担持カーボン粒子の使用量をそれぞれ0.1gおよび1.9gに変更した以外は、調製例1の場合と同様にして空気極用触媒スラリー(A9)を調製した。
(Preparation Example 9)
An air electrode catalyst slurry (A9) was prepared in the same manner as in Preparation Example 1, except that the amounts of water-repellent treated carbon fibers and Pt-supported carbon particles were changed to 0.1 g and 1.9 g, respectively.
 (調製例10)
撥水処理済みカーボン繊維およびPt担持カーボン粒子の使用量をそれぞれ0.2gおよび1.8gに変更した以外は、調製例1の場合と同様にして空気極用触媒スラリー(A10)を調製した。
(Preparation Example 10)
An air electrode catalyst slurry (A10) was prepared in the same manner as in Preparation Example 1, except that the amounts of water-repellent treated carbon fibers and Pt-supported carbon particles were changed to 0.2 g and 1.8 g, respectively.
 (調製例11)
撥水処理済みカーボン繊維およびPt担持カーボン粒子の使用量をそれぞれ0.8gおよび1.2に変更した以外は、調製例1の場合と同様にして空気極用触媒スラリー(A11)を調製した。
(Preparation Example 11)
An air electrode catalyst slurry (A11) was prepared in the same manner as in Preparation Example 1, except that the amounts of water-repellent treated carbon fibers and Pt-supported carbon particles were changed to 0.8 g and 1.2 g , respectively. .
 (調製例12)
カーボン繊維として、調製例1で用いたものと同様のカップ積層型カーボンナノチューブに粉砕処理を施して得られた嵩高さ113mm、嵩密度0.048g/cmのカーボン繊維を用いた以外は、調製例1の場合と同様にして空気極用触媒スラリー(A12)を調製した。
(Preparation Example 12)
Prepared except that carbon fibers having a bulk height of 113 mm and a bulk density of 0.048 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as the carbon fibers. In the same manner as in Example 1, an air electrode catalyst slurry (A12) was prepared.
 (調製例13)
カーボン繊維として、調製例1で用いたものと同様のカップ積層型カーボンナノチューブに粉砕処理を施して得られた嵩高さ113mm、嵩密度0.048g/cmのカーボン繊維を用いた以外は、調製例2の場合と同様にして触媒スラリー(A13)を調製した。
(Preparation Example 13)
Prepared except that carbon fibers having a bulk height of 113 mm and a bulk density of 0.048 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as the carbon fibers. A catalyst slurry (A13) was prepared in the same manner as in Example 2.
 (調整例14)
カーボン繊維として、調製例1で用いたものと同様のカップ積層型カーボンナノチューブに粉砕処理を施して得られた嵩高さ20mm、嵩密度0.048g/cmのカーボン繊維を用いた以外は、調製例1の場合と同様にして触媒スラリー(A14)を調製した。
(Adjustment Example 14)
Prepared except that carbon fibers having a bulk height of 20 mm and a bulk density of 0.048 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as carbon fibers. A catalyst slurry (A14) was prepared in the same manner as in Example 1.
 (調整例15)
カーボン繊維として、調製例1で用いたものと同様のカップ積層型カーボンナノチューブに粉砕処理を施して得られた嵩高さ125mm、嵩密度0.055g/cmのカーボン繊維を用いた以外は、調製例1の場合と同様にして触媒スラリー(A15)を調製した。
(Adjustment Example 15)
Prepared except that carbon fibers having a bulk height of 125 mm and a bulk density of 0.055 g / cm 3 obtained by pulverizing the same cup-stacked carbon nanotubes as those used in Preparation Example 1 were used as carbon fibers. A catalyst slurry (A15) was prepared in the same manner as in Example 1.
 (調製例16)
Pt微粒子(平均粒径0.5nm)を担持した粒径1~4nm(平均粒径2nm)のカーボン粒子(Pt-Ru含有量:70質量%)1g、ペルフルオロスルホン酸塩溶液(ナフィオン(商品名)20重量%含有)1.44g、イオン交換水2.42g、およびイソプロピルアルコール3.86gを攪拌混合機により混合して、空気極用触媒スラリー(A16)を調製した。
(Preparation Example 16)
1 g of carbon particles (Pt—Ru content: 70 mass%) having a particle size of 1 to 4 nm (average particle size 2 nm) carrying Pt fine particles (average particle size 0.5 nm), perfluorosulfonate solution (Nafion (trade name) ) 20 wt% contained) 1.44 g, 2.42 g of ion-exchanged water, and 3.86 g of isopropyl alcohol were mixed with a stirring mixer to prepare an air electrode catalyst slurry (A16).
 (調製例17)
実施例1と同様にしてカーボン繊維に対する撥水性物質の割合が15質量%の撥水処理済みカーボン繊維を得、このカーボン繊維にPt微粒子(平均粒径0.5nm)を担持させて、Pt微粒子担持カーボン繊維(Pt含有量:70質量%)を得た。得られたPt微粒子担持カーボン繊維1.5g、粒径10~80nm(平均粒径2nm)のカーボン粒子0.5g、ペルフルオロスルホン酸塩溶液(ナフィオン(商品名)20重量%含有)6g、イオン交換水5.2g、およびイソプロピルアルコール2.4gを攪拌混合機により混合して、空気極用触媒スラリー(A17)を調製した。
(Preparation Example 17)
In the same manner as in Example 1, a water-repellent treated carbon fiber having a water repellent ratio of 15% by mass to the carbon fiber was obtained, and Pt fine particles (average particle size 0.5 nm) were supported on the carbon fiber to obtain Pt fine particles A supported carbon fiber (Pt content: 70% by mass) was obtained. 1.5 g of Pt fine particle-supported carbon fibers obtained, 0.5 g of carbon particles having a particle size of 10 to 80 nm (average particle size of 2 nm), 6 g of a perfluorosulfonate solution (containing 20% by weight of Nafion (trade name)), ion exchange 5.2 g of water and 2.4 g of isopropyl alcohol were mixed with a stirring mixer to prepare an air electrode catalyst slurry (A17).
 (調製例18)
Pt-Ru微粒子(平均粒径2~3nm)を担持した粒径4~6nm(平均粒径5nm)のカーボン粒子(Pt-Ru含有量:54質量%)1g、ペルフルオロスルホン酸塩溶液(ナフィオン(商品名)20重量%含有)8.65g、イオン交換水2.42g、およびイソプロピルアルコール2.28gを攪拌混合機により混合して、燃料極用触媒スラリー(B)を調製した。
(Preparation Example 18)
1 g of carbon particles (Pt—Ru content: 54 mass%) having a particle size of 4 to 6 nm (average particle size of 5 nm) carrying Pt—Ru fine particles (average particle size of 2 to 3 nm), perfluorosulfonate solution (Nafion ( (Product name) 20 wt% contained) 8.65 g of ion-exchanged water, 2.42 g of ion-exchanged water, and 2.28 g of isopropyl alcohol were mixed with a stirring mixer to prepare a catalyst slurry for fuel electrode (B).
 [燃料電池用膜電極接合体および燃料電池の製造]
(実施例1)
撥水処理したカーボンペーパからなる多孔質基材(厚み200μm、面積12cm、気孔率70体積%)の片面に、上記空気極用触媒スラリー(A1)を塗布し乾燥させて厚さ100μmの空気極用触媒層を形成した。また、同様の多孔質基材の片面に、上記燃料極用触媒スラリー(B)を塗布し乾燥させて厚さ100μmの燃料極用触媒層を形成した。
[Manufacture of membrane electrode assemblies for fuel cells and fuel cells]
Example 1
The air electrode catalyst slurry (A1) is applied to one side of a porous substrate (thickness: 200 μm, area: 12 cm 2 , porosity: 70% by volume) made of water-repellent carbon paper, and dried to air having a thickness of 100 μm. An electrode catalyst layer was formed. Further, the fuel electrode catalyst slurry (B) was applied to one side of the same porous substrate and dried to form a fuel electrode catalyst layer having a thickness of 100 μm.
 次いで、上記空気極用触媒層を形成した多孔質基材および上記燃料極用触媒層を形成した多孔質基材をそれぞれ空気極および燃料極として、ペルフルオロスルホン酸塩からなる電解質膜(商品名 ナフィオン112)の両面に、各触媒層を電解質膜側に向けて重ね合わせ、150℃、4MPaで10分間、加熱プレスして膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。 Next, an electrolyte membrane made of perfluorosulfonate (trade name: Nafion, Inc.) was prepared by using the porous substrate on which the air electrode catalyst layer was formed and the porous substrate on which the fuel electrode catalyst layer was formed as an air electrode and a fuel electrode, respectively. 112), each catalyst layer is superimposed on the electrolyte membrane side, and heated and pressed at 150 ° C. and 4 MPa for 10 minutes to produce a membrane electrode assembly. Manufactured.
 (実施例2)
空気極用触媒層の形成に、空気極用触媒スラリー(A2)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Example 2)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A2) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 (実施例3)
空気極用触媒層の形成に、空気極用触媒スラリー(A3)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Example 3)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A3) was used to form the air electrode catalyst layer, and a passive DMFC was produced using this. did.
 (実施例4)
空気極用触媒層の形成に、空気極用触媒スラリー(A4)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
Example 4
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A4) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 (実施例5)
空気極用触媒層の形成に、空気極用触媒スラリー(A5)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Example 5)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A5) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 (実施例6)
空気極用触媒層の形成に、空気極用触媒スラリー(A6)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Example 6)
A membrane electrode assembly was prepared in the same manner as in Example 1 except that the air electrode catalyst slurry (A6) was used to form the air electrode catalyst layer, and a passive DMFC was manufactured using this. did.
 (実施例7)
空気極用触媒層の形成に、空気極用触媒スラリー(A7)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Example 7)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A7) was used to form the air electrode catalyst layer, and a passive DMFC was produced using this membrane electrode assembly. did.
 (実施例8)
空気極用触媒層の形成に、空気極用触媒スラリー(A8)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Example 8)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A8) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 (実施例9)
空気極用触媒層の形成に、空気極用触媒スラリー(A9)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
Example 9
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A9) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 (実施例10)
空気極用触媒層の形成に、空気極用触媒スラリー(A10)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Example 10)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A10) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 (実施例11)
空気極用触媒層の形成に、空気極用触媒スラリー(A11)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
Example 11
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A11) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 (実施例12)
空気極用触媒層の形成に、空気極用触媒スラリー(A12)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Example 12)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A12) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 (実施例13)
空気極用触媒層の形成に、空気極用触媒スラリー(A13)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Example 13)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A13) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 (比較例1)
空気極用触媒層の形成に、空気極用触媒スラリー(A14)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Comparative Example 1)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A14) was used for forming the air electrode catalyst layer, and a passive DMFC was produced using this membrane electrode assembly. did.
 (比較例2)
空気極用触媒層の形成に、空気極用触媒スラリー(A15)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Comparative Example 2)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A15) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 (比較例3)
空気極用触媒層の形成に、空気極用触媒スラリー(A16)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Comparative Example 3)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A16) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 (比較例4)
空気極用触媒層の形成に、空気極用触媒スラリー(A17)を用いた以外は実施例1と同様にして、膜電極接合体を作製し、さらに、これを用いてパッシブ型のDMFCを製造した。
(Comparative Example 4)
A membrane electrode assembly was produced in the same manner as in Example 1 except that the air electrode catalyst slurry (A17) was used to form the air electrode catalyst layer, and a passive DMFC was produced using the membrane electrode assembly. did.
 上記各実施例および各比較例で作製されたパッシブ型のDMFCの液体燃料タンクに純メタノールを注入し、温度25℃、相対湿度50%の環境下、電流値を変化させて電流・電圧曲線を測定し、単位面積当たりの最大出力を求めた(初期最大出力)。その後、0.4Vの定電圧を500時間運転させ、再度、電流・電圧曲線を測定し、次式より、出力の維持率を算出した。
 維持率(%)=(500時間運転後の最大出力/初期最大出力)×100
これらの結果を、表1に、空気極の触媒層に用いたカーボン繊維の嵩高さ、嵩密度等とともに併せ示す。
Pure methanol was injected into the liquid fuel tank of the passive type DMFC prepared in each of the above Examples and Comparative Examples, and the current / voltage curve was changed by changing the current value in an environment of a temperature of 25 ° C. and a relative humidity of 50%. The maximum output per unit area was measured (initial maximum output). Thereafter, a constant voltage of 0.4 V was operated for 500 hours, a current-voltage curve was measured again, and an output maintenance ratio was calculated from the following equation.
Maintenance rate (%) = (maximum output after 500 hours of operation / initial maximum output) × 100
These results are shown together in Table 1 together with the bulkiness, bulk density, etc. of the carbon fibers used in the air electrode catalyst layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例では、初期出力および出力維持率ともに特に良好な結果が得られた。 As is apparent from Table 1, in the examples, particularly good results were obtained for both the initial output and the output maintenance rate.
 11…触媒、12…導電性微粒子、13…繊維状物質、15…繊維状物質集合体、15a…円形ないし楕円形状に露出する繊維状物質集合体、21…触媒層、22…ガス拡散層、31…空気極(酸化剤極)、32…燃料極、33…電解質膜、34…膜電極接合体。 DESCRIPTION OF SYMBOLS 11 ... Catalyst, 12 ... Electroconductive fine particle, 13 ... Fibrous substance, 15 ... Fibrous substance aggregate | assembly, 15a ... Fibrous substance aggregate | assembly exposed circularly or ellipse-shaped, 21 ... Catalyst layer, 22 ... Gas diffusion layer, 31 ... Air electrode (oxidant electrode), 32 ... fuel electrode, 33 ... electrolyte membrane, 34 ... membrane electrode assembly.

Claims (9)

  1.  触媒を担持した導電性微粒子と、触媒を担持しない少なくとも一部が繭玉状に集合している繊維状物質とを含む触媒層を備えた燃料電池用電極であって、
     前記触媒層の主面には、円形ないし楕円形状に露出する少なくとも1つの前記繊維状物質集合体が存在しており、その個々の露出面積が9~2000μmであることを特徴とする燃料電池用電極。
    An electrode for a fuel cell, comprising a catalyst layer comprising conductive fine particles carrying a catalyst and a fibrous material in which at least a part of the catalyst does not carry a catalyst is aggregated in a jade shape,
    The main surface of the catalyst layer has at least one fibrous substance aggregate exposed in a circular or elliptical shape, and an exposed area of each of the fibrous material aggregates is 9 to 2000 μm 2. Electrode.
  2.  前記各繊維状物質集合体は、最大長が3~55μmであることを特徴とする請求項1記載の燃料電池用電極。 2. The fuel cell electrode according to claim 1, wherein each fibrous substance aggregate has a maximum length of 3 to 55 μm.
  3.  前記繊維状物質は、嵩密度が0.04~0.27g/cmであることを特徴とする請求項1または2記載の燃料電池用電極。 3. The fuel cell electrode according to claim 1, wherein the fibrous substance has a bulk density of 0.04 to 0.27 g / cm 3 .
  4.  前記繊維状物質は、嵩高さが34~113mmであることを特徴とする請求項1乃至3のいずれか1項記載の燃料電池用電極。 The fuel cell electrode according to any one of claims 1 to 3, wherein the fibrous substance has a bulkiness of 34 to 113 mm.
  5.  前記導電性微粒子は、粒径が10~80nmであることを特徴とする請求項1乃至4のいずれか1項記載の燃料電池用電極。 5. The fuel cell electrode according to claim 1, wherein the conductive fine particles have a particle size of 10 to 80 nm.
  6.  前記繊維状物質と前記触媒を担持した導電性微粒子の質量比が、10:90~30:70であることを特徴とする請求項1乃至5のいずれか1項記載の燃料電池用電極。 The fuel cell electrode according to any one of claims 1 to 5, wherein a mass ratio between the fibrous substance and the conductive fine particles supporting the catalyst is 10:90 to 30:70.
  7.  繊維状物質は、撥水処理が施されていることを特徴とする請求項1乃至6のいずれか1項記載の燃料電池用電極。 The fuel cell electrode according to any one of claims 1 to 6, wherein the fibrous material is subjected to a water repellent treatment.
  8.  繊維状物質は、スプレー含浸による撥水処理が施されていることを特徴とする請求項7記載の燃料電池用電極。 The fuel cell electrode according to claim 7, wherein the fibrous material is subjected to a water repellent treatment by spray impregnation.
  9.  請求項1乃至8のいずれか1項記載の燃料電池用電極を具備することを特徴とする燃料電池。 A fuel cell comprising the fuel cell electrode according to any one of claims 1 to 8.
PCT/JP2009/005692 2008-10-30 2009-10-28 Fuel cell electrodes and fuel cells WO2010050196A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008280400 2008-10-30
JP2008-280400 2008-10-30
JP2009238256A JP2010135307A (en) 2008-10-30 2009-10-15 Electrode for fuel cell and fuel cell
JP2009-238256 2009-10-15

Publications (1)

Publication Number Publication Date
WO2010050196A1 true WO2010050196A1 (en) 2010-05-06

Family

ID=42128567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005692 WO2010050196A1 (en) 2008-10-30 2009-10-28 Fuel cell electrodes and fuel cells

Country Status (3)

Country Link
JP (1) JP2010135307A (en)
TW (1) TW201034278A (en)
WO (1) WO2010050196A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228354A (en) * 2018-10-09 2021-08-06 凸版印刷株式会社 Membrane electrode assembly for fuel cell and solid polymer fuel cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792058B (en) * 2016-09-09 2022-03-08 松下知识产权经营株式会社 Catalyst layer for fuel cell, membrane electrode assembly, and fuel cell
JP7108387B2 (en) * 2017-09-21 2022-07-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Ionomers and catalyst layers for fuel cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115302A (en) * 2001-01-16 2003-04-18 Showa Denko Kk Catalyst composition for cell, gas diffusion layer and fuel cell provided with these
JP2006134630A (en) * 2004-11-04 2006-05-25 Honda Motor Co Ltd Electrode structure of polymer electrolyte fuel cell
JP2007012325A (en) * 2005-06-28 2007-01-18 Nissan Motor Co Ltd Electrode for solid polymer fuel cell, and solid polymer fuel cell using this
JP2008077974A (en) * 2006-09-21 2008-04-03 Nissan Motor Co Ltd Electrode
JP2008251179A (en) * 2007-03-29 2008-10-16 Dainippon Printing Co Ltd Electrode for solid polymer fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115302A (en) * 2001-01-16 2003-04-18 Showa Denko Kk Catalyst composition for cell, gas diffusion layer and fuel cell provided with these
JP2006134630A (en) * 2004-11-04 2006-05-25 Honda Motor Co Ltd Electrode structure of polymer electrolyte fuel cell
JP2007012325A (en) * 2005-06-28 2007-01-18 Nissan Motor Co Ltd Electrode for solid polymer fuel cell, and solid polymer fuel cell using this
JP2008077974A (en) * 2006-09-21 2008-04-03 Nissan Motor Co Ltd Electrode
JP2008251179A (en) * 2007-03-29 2008-10-16 Dainippon Printing Co Ltd Electrode for solid polymer fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228354A (en) * 2018-10-09 2021-08-06 凸版印刷株式会社 Membrane electrode assembly for fuel cell and solid polymer fuel cell

Also Published As

Publication number Publication date
TW201034278A (en) 2010-09-16
JP2010135307A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
KR101181836B1 (en) Seperater for fuel cell, method of preparing same, and fuel cell system comprising same
JP4390558B2 (en) Electrocatalyst layer for fuel cells
JP4772741B2 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell including the same, and fuel cell system including the same
KR20080042551A (en) Electrode for fuel cell, membrane-electrode assembly comprising same and fuel cell system comprising same
KR20090039462A (en) Carrier for fuel cell, and catalyst, membrane-electrode assembly, and fuel cell system including same
EP3817113A1 (en) Manufacturing method of membrane electrode assembly, membrane electrode assembly manufactured thereby, and fuel cell comprising membrane electrode assembly
JP6328889B2 (en) Fuel cell carrier, fuel cell electrode including the same, fuel cell membrane-electrode assembly, and fuel cell system
JP2009021226A (en) Membrane electrode assembly for fuel cell and fuel cell
JP2019531582A (en) Electrode manufacturing method, electrode manufactured thereby, membrane-electrode assembly including the electrode, and fuel cell including the membrane-electrode assembly
KR20100012057A (en) Method of producing fuel cell catalyst layer
KR20130118582A (en) Electrode for fuel cell, method of preparing same, membrane-electrode assembly and fuel cell system including same
KR20180076907A (en) Method for manufacturing electrode, electrode manufactured by using the same, membrane-electrode assembly comprising the electrode, and fuel cell comprising the membrane-electrode assembly
JP2007335407A (en) Fuel cell membrane-electrode assembly and fuel cell system containing the same
JP5669432B2 (en) Membrane electrode assembly, fuel cell, and fuel cell activation method
KR100766960B1 (en) Electrode for fuel cell, membrane-electrode assembly comprising the same, fuel cell system comprising the same, and method for preparing the same
US9160007B2 (en) Electrode for fuel cell, method of fabricating the same, and membrane-electrode assembly for fuel cell and fuel cell system including the same
WO2010050196A1 (en) Fuel cell electrodes and fuel cells
JP5094069B2 (en) Polymer electrolyte fuel cell and electronic device using the same
JP2006164574A (en) Water-repellent electrode catalyst layer for solid polymer fuel cell
KR100959117B1 (en) Electrode for fuel cell and fuel cell system including same
JP2011233483A (en) Electrode for fuel cell and fuel cell
KR101351392B1 (en) Electrode for fuel cell, and membrane-electrode assembly and fuel cell system including the same
JP2005317467A (en) Electrode for fuel cell and mea for fuel cell using the same
JP4882225B2 (en) Water-repellent electrode catalyst layer, catalyst layer transfer sheet and catalyst layer-electrolyte assembly for polymer electrolyte fuel cell
JP2008276990A (en) Electrode for fuel cell, and fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823309

Country of ref document: EP

Kind code of ref document: A1