WO2010049564A2 - Optimized-cost method for computer-assisted calculation of the aerodynamic forces in an aircraft - Google Patents

Optimized-cost method for computer-assisted calculation of the aerodynamic forces in an aircraft Download PDF

Info

Publication number
WO2010049564A2
WO2010049564A2 PCT/ES2009/070464 ES2009070464W WO2010049564A2 WO 2010049564 A2 WO2010049564 A2 WO 2010049564A2 ES 2009070464 W ES2009070464 W ES 2009070464W WO 2010049564 A2 WO2010049564 A2 WO 2010049564A2
Authority
WO
WIPO (PCT)
Prior art keywords
points
aircraft
computer
cfd
values
Prior art date
Application number
PCT/ES2009/070464
Other languages
Spanish (es)
French (fr)
Other versions
WO2010049564A3 (en
Inventor
Angel Gerardo VELÁZQUEZ LÓPEZ
Diego ALONSO FERNÁNDEZ
José Manuel VEGA DE PRADA
Luis Santiago Lorente Manzanares
Original Assignee
Airbus Operations, S.L.
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations, S.L., Universidad Politécnica de Madrid filed Critical Airbus Operations, S.L.
Priority to RU2011121577/08A priority Critical patent/RU2510969C2/en
Priority to BRPI0921804A priority patent/BRPI0921804A2/en
Priority to CA2741655A priority patent/CA2741655C/en
Priority to ES09774682.0T priority patent/ES2595979T3/en
Priority to EP09774682.0A priority patent/EP2360606B1/en
Publication of WO2010049564A2 publication Critical patent/WO2010049564A2/en
Publication of WO2010049564A3 publication Critical patent/WO2010049564A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the present invention relates to methods of assistance for the design of aircraft by making optimized calculations of the aerodynamic forces experienced by the entire aircraft or by a component of the aircraft.
  • the aerodynamic sizing forces are not known a priori and how the overall magnitude of the forces can depend on many different flight parameters such as angle of attack, angle of sliding, Mach number, deflection angle of the control surface, it has been necessary to carry out long and expensive calculations to properly calculate the maximum aerodynamic forces experienced by the different components of an aircraft or by the entire aircraft.
  • ROM Reduced Order Model
  • SVD Decomposition in Singular Values
  • POD onwards Orthogonal Decomposition of Covariance
  • the present invention is oriented to the solution of this drawback.
  • said one or more dimensional variables include one or more of the following: aerodynamic forces, the values in the skin and the distribution of values around the entire aircraft or a component of
  • said set of parameters includes one or more of the following: angle of attack and Mach number; and said aircraft component is one of the following: a wing, a horizontal tail stabilizer, a vertical tail stabilizer.
  • said entire aircraft or aircraft component is divided into blocks and said CFD and ROM models are applied block by block.
  • said ROM model is a POD model.
  • CFD is used to calculate the distribution of pressure at a set of points in the parametric space, appropriately selected, which are used to obtain approximate values, via POD and ad-hoc interpolation, of the dimensional variables at any other point in the parametric space.
  • the method minimizes the required number of CFD calculations (to minimize the computational cost, which basically depends on that number) for a given level of error. This is done using POD and interpolation with previously calculated points. New points are selected iteratively either one by one or in groups. A method is thus obtained to provide the values of one or more dimensional variables of an entire aircraft or of a component of the aircraft, dependent on a predefined set of parameters, optimizing computational costs.
  • Figure 1 shows views of the suction side, the pressure side, the leading edge and the tip of a wing of an aircraft divided into blocks.
  • Figure 2 shows a graphical representation of a local sub-mesh of the mesh of the parametric space to select new points to add to the group of points that is used to obtain the POD model according to this invention.
  • Step 1 Division of the wing into several blocks according to the geometry of the object.
  • CFD tools usually divide the 3D computational domain into blocks as illustrated in Figure 1, which shows the wing divided into 16 main blocks. This is a convenient, but not essential part of the method, which can be applied using a single block.
  • Step 3 Initiation of the process for an initial group of points in the parametric space selected by the user such as the following:
  • Step 4 Application block by block of POD to the initial group of points. A block-dependent set of modes is obtained for each block:
  • Step 5 Classification of modes: S The first classification that is made (in each block) in two parts is the following: (a) those modes that give an RMSE less than a preset value E 1 (dependent on ⁇ 0 after some calibration) are neglected; (b) the nor modes that are retained are called principal modes.
  • the main modes are classified into these two groups: n primary modes and n x -n secondary modes, obtaining n after some calibration, such as
  • RMSE mean square error
  • Step 6 POD reconstruction of the pressure distribution for each of the already calculated groups of points using the primary (n) modes in each block. Then, an additional approximation is carried out for each point using the neighboring points via least squares.
  • Step 7 Comparison between the pressure profiles resulting from the CFD calculation and the POD + interpolation and estimation of the RMSE in each block at each of the points already calculated.
  • the RMSE for the initial nine point group mentioned above is as follows:
  • Step 8 Select the point with the highest RMSE. As shown in the table above in the first iteration that point is P9.
  • Step 9 Definition, as illustrated in Figure 2, of a local sub-mesh of the entire parametric space mesh in the area near point 21 of maximum error.
  • This local sub-mesh has three levels at distances d ⁇ (first level), 2 - d ⁇ (second level) and 4 - d ⁇ (third level).
  • Step 10 Selection of the level at which the new point will be introduced. If there is any point between two levels (see below) it is considered that they belong to the lower level.
  • the new point is introduced in the first level with an exception that implies the introduction of a sub-level in the local mesh. This occurs when (a) there are at least five points in the first level, and (b) at least four of those points show the highest RMSE among all points in the three levels. In this case, the distances in the local sub-mesh are divided by two and step 9 is repeated again with the new sub-mesh resulting. It should be noted that this step means that each point will generally have a set of minimum distances d different.
  • the new point P10 is introduced in the third level because none of the initial group points is present in the local sub-mesh in the environment of P9.
  • Step 11 Once the target level has been chosen, the point of greatest space covering is selected as follows. The minimum distance, D, of each possible candidate to the remaining points of the group already selected is calculated. The candidate with the highest value of D is selected. D is the distance in the parametric space. In this example, the distance between two points of the parametric space (labeled 1 and 2) is defined as follows:
  • Step 12 If more than one point is entered in each iteration, then the process is repeated from step 8 excluding the points already selected.
  • Mode set update Once the new point (or group of points) has been calculated, the set of modes for each block is updated.
  • Step 13 Application of POD to the group of points, ignoring those modes that have an RMSE less than E 1 .
  • Step 14 Calculation of some pseudo-points, defined block by block, that form two groups:
  • Steps 13 and 14 can be recast in one step.
  • the pseudo-points are defined by adding together the main modes of the points already calculated, multiplied by their respective singular values, and the new points.
  • the division in the mentioned steps 13 and 14 is done to filter numerical errors of the process which is a well known advantage of the POD method.
  • Step 15 POD application to the set of all pseudo-points, block by block.
  • Step 16 Repeat the process from step 5.
  • the RMSE for the group of 10 points in the second iteration is as follows:
  • the point with the maximum error is still P9 and the new point P11 is introduced in the second level because there is no point in the group at levels 1 and 2 and there is a point at level 3 (P10 introduced in the first iteration).
  • the distance between the second level points and the nearest point belonging to the group is shown in the following table:
  • Step 17 The process is terminated when the RMSE, calculated in Step 7 using POD and linear and least squares interpolation is less, in both cases than ⁇ 0 .
  • An evaluation of the model obtained according to the method of this invention can be made by comparing the results obtained in 16 points using said model in several iterations and using the CFD model shown in the following table:
  • Tp1 0.800 2.25 0.1965 0.1922 0.1966 0.1965 0.1971 0.1966
  • Tp2 0.800 1.25 0.1045 0.1061 0.1082 0.1075 0.1054 0.1058
  • Tp4 0.800 -2.25 -0.1920 -0.1871 -0.1925 -0.1927 -0.1928 -0.1936
  • Tp5 0.775 2.25 0.1895 0.1899 0.1899 0.1903 0.1910 0.1900
  • Tp1 0.800 2.25 +0.2062 0.1979 0.2054 0.2054 0.2068 0.2061
  • Tp2 0.800 1.25 +0.1109 0.1124 0.1181 0.1174 0.1128 0.1127
  • Tp2 0.800 1.25 -0.0345 -0.0377 -0.0392 -0.0387 -0.0361 -0.0363
  • Tp3 0.800 -1.25 +0.1270 0.1278 0.1279 0.1266 0.1273 0.1278
  • Tp4 0.800 -2.25 +0.1914 0.1877 0.1921 0.1921 0.1923 0.1928
  • Tp5 0.775 2.25 -0.1036 -0.1036 -0.1038 -0.1044 -0.1054 -0.1043

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

Optimized-cost method for computer-assisted calculation of the aerodynamic forces in an aircraft, so as to provide values of dimensional variables, dependent on a predefined set of parameters, for the entire aircraft or aircraft component, which comprises the following steps: a) defining a mesh in the parametric space; b) obtaining a suitable reduced order model (ROM), in particular a POD model, for calculating said variables for any point in the parametric space by means of a repetitive process. CFD is used to calculate said variables at a set of suitably selected points in the parametric space, which are used to obtain approximate values, via ROM and ad-hoc interpolation, of the dimensional variables at any other point of the parametric space. The method minimizes the required number of CFD calculations (so as to minimize the computational cost which depends basically on this number) for a given error level.

Description

MÉTODO DE CÁLCULO ASISTIDO POR ORDENADOR DE LAS FUERZAS AERODINÁMICAS EN UNA AERONAVE OPTIMIZADO EN COSTES METHOD OF CALCULATION ASSISTED BY COMPUTER OF AERODYNAMIC FORCES IN A COST OPTIMIZED AIRCRAFT
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se refiere a métodos de ayuda para el diseño de aeronaves haciendo cálculos optimizados en costes de las fuerzas aerodinámicas experimentadas por Ia aeronave entera o por un componente de Ia aeronave.The present invention relates to methods of assistance for the design of aircraft by making optimized calculations of the aerodynamic forces experienced by the entire aircraft or by a component of the aircraft.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Una situación habitual en aplicaciones prácticas industriales relacionadas con el desarrollo de productos es Ia necesidad de llevar a cabo análisis rápidos en un espacio de parámetros de estado. En el caso específico de Ia industria aeronáutica, el cálculo de las fuerzas aerodinámicas experimentadas por una aeronave es un elemento importante de cara a un diseño óptimo de sus componentes estructurales de manera que el peso de Ia estructura sea el mínimo posible, siendo capaz al mismo de tiempo de resistir las fuerzas aerodinámicas esperadas.A common situation in industrial practical applications related to product development is the need to carry out rapid analyzes in a state parameter space. In the specific case of the aeronautical industry, the calculation of the aerodynamic forces experienced by an aircraft is an important element for the optimal design of its structural components so that the weight of the structure is the minimum possible, being able to the same of time to resist the expected aerodynamic forces.
Gracias al incremento del uso de Ia Simulación de Fluidos en Ordenador Ia determinación de las fuerzas aerodinámicas en una aeronave se hace habitualmente hoy en día resolviendo numéricamente las ecuaciones promediadas de Reynolds de Navier-Stokes (ecuaciones RANS en adelante) que modelizan el movimiento del flujo alrededor de Ia aeronave, usando modelos de elementos finitos discretos o de volúmenes finitos. Con Ia demanda de exactitud requerida en Ia industria aeronáutica, cada uno de esos cálculos requiere importantes recursos computacionales.Thanks to the increase in the use of Computer Fluid Simulation, the determination of aerodynamic forces in an aircraft is usually done today by numerically solving the average Reynolds equations of Navier-Stokes (RANS equations onwards) that model the movement of the flow around the aircraft, using discrete finite element models or finite volume models. With the demand for accuracy required in the aeronautical industry, each of these calculations requires significant computational resources.
Las fuerzas aerodinámicas de dimensionamiento no son conocidas a priori y como Ia magnitud global de las fuerzas puede depender de muchos parámetros de vuelo diferentes como ángulo de ataque, ángulo de deslizamiento, número Mach, ángulo de deflexión de Ia superficie de control, ha sido necesario llevar a cabo largos y costosos cálculos para calcular apropiadamente las fuerzas aerodinámicas máximas experimentadas por los diferentes componentes de una aeronave o por Ia aeronave entera. De cara a reducir el número global de estos largos cálculos se han desarrollado en el pasado técnicas de modelizaciones matemáticas aproximadas para obtener un Modelo de Orden Reducido (ROM) tales como Ia Descomposición en Valores Singulares (SVD) como un medio para llevar a cabo interpolaciones inteligentes, o Ia más exacta Descomposición Ortogonal de Ia Covarianza (POD en adelante) que tiene en cuenta Ia física del problema mediante el uso de una proyección de Galerkin de las ecuaciones de Navier- Sto kes.The aerodynamic sizing forces are not known a priori and how the overall magnitude of the forces can depend on many different flight parameters such as angle of attack, angle of sliding, Mach number, deflection angle of the control surface, it has been necessary to carry out long and expensive calculations to properly calculate the maximum aerodynamic forces experienced by the different components of an aircraft or by the entire aircraft. In order to reduce the global number of these long calculations, approximate mathematical modeling techniques have been developed in the past to obtain a Reduced Order Model (ROM) such as the Decomposition in Singular Values (SVD) as a means to carry out interpolations intelligent, or the most exact Orthogonal Decomposition of Covariance (POD onwards) that takes into account the physics of the problem by using a Galerkin projection of the Navier-Sto kes equations.
La idea de estas técnicas es definir Ia nueva solución analítica como una combinación de Ia información obtenida anteriormente. POD define varios modos que incluyen Ia solución obtenida por Dinámica de Fluidos Computacional (CFD) y usa seguidamente esos modos para reproducir soluciones no obtenidas mediante CFD. La aplicación de estas técnicas puede requerir muchos cálculos CFD Io que supone un gran coste computacional.The idea of these techniques is to define the new analytical solution as a combination of the information obtained previously. POD defines several modes that include the solution obtained by Computational Fluid Dynamics (CFD) and then uses those modes to reproduce solutions not obtained by CFD. The application of these techniques may require many CFD calculations, which entails a large computational cost.
La presente invención está orientada a Ia solución de este inconveniente.The present invention is oriented to the solution of this drawback.
SUMARIO DE LA INVENCIÓNSUMMARY OF THE INVENTION
Es un objeto de Ia presente invención proporcionar métodos para hacer cálculos analíticos de las fuerzas aerodinámicas experimentadas por una aeronave entera o por un componente de Ia aeronave, siendo dichas fuerzas dependientes de un número significativo de parámetros, minimizando el coste computacional.It is an object of the present invention to provide methods for making analytical calculations of the aerodynamic forces experienced by an entire aircraft or by a component of the aircraft, said forces being dependent on a significant number of parameters, minimizing the computational cost.
Es otro objeto de Ia presente invención proporcionar métodos para hacer cálculos analíticos de las fuerzas aerodinámicas experimentadas por una aeronave entera o por un componente de Ia aeronave, siendo dichas fuerzas dependientes de un número significativo de parámetros, minimizando el número de cálculos CFD.It is another object of the present invention to provide methods for making analytical calculations of the aerodynamic forces experienced by an entire aircraft or by a component of the aircraft, said forces being dependent on a significant number of parameters, minimizing the number of CFD calculations.
Esos y otros objetos se consiguen mediante un método asistido por ordenador apropiado para servir de ayuda en el diseño de una aeronave proporcionando los valores de una o más variables dimensionales, tales comoThese and other objects are achieved by an appropriate computer-assisted method to assist in the design of an aircraft by providing the values of one or more dimensional variables, such as
Ia distribución de presión en Ia superficie de un ala, para Ia aeronave entera o para un componente de Ia aeronave, siendo dichas una o más variables dimensionales dependientes de un conjunto predefinido de parámetros, tal como un conjunto que incluya el ángulo de ataque y el número Mach, que comprende los siguientes pasos:The pressure distribution on the surface of a wing, for the entire aircraft or for a component of the aircraft, said one or more dimensional variables being dependent on a predefined set of parameters, such as a set that includes the angle of attack and Mach number, which includes the following steps:
- Definir una malla en el espacio paramétrico estableciendo distancias predeterminadas entre sus valores.- Define a mesh in the parametric space by establishing predetermined distances between their values.
- Obtener un modelo apropiado para calcular dichas una o más variables dimensionales para cualquier punto del espacio paramétrico a través de un proceso iterativo respecto un grupo reducido de puntos, de numero creciente de miembros en cada iteración, comprendiendo los siguientes sub-pasos:- Obtain an appropriate model to calculate said one or more dimensional variables for any point of the parametric space through an iterative process with respect to a small group of points, of increasing number of members in each iteration, comprising the following sub-steps:
• Calcular los valores de dicha una o más variables dimensionales para un grupo inicial de puntos usando un modelo CFD.• Calculate the values of said one or more dimensional variables for an initial group of points using a CFD model.
• Obtener un modelo ROM a partir de dichos cálculos CFD y calcular los valores de dichas una o más variables dimensionales para dicho grupo inicial de puntos usando el modelo ROM inicial.• Obtain a ROM model from said CFD calculations and calculate the values of said one or more dimensional variables for said initial group of points using the initial ROM model.
• Seleccionar el punto-e del grupo con Ia máxima desviación ε entre los resultados proporcionados por los modelos CFD y ROM y terminar el proceso iterativo si ε es menor que un valor predefinido ε0.• Select the e-point of the group with the maximum deviation ε between the results provided by the CFD and ROM models and finish the iterative process if ε is less than a predefined value ε 0 .
• Seleccionar como nuevos puntos en el espacio paramétrico a ser añadidos al grupo de puntos aquellos puntos colocados a una distancia predeterminada de dicho punto-e en Ia malla del espacio paramétrico. - A -• Select as new points in the parametric space to be added to the group of points those points placed at a predetermined distance from said e-point in the mesh of the parametric space. - TO -
• Calcular los valores de dichas una o más variables dimensionales para los nuevos puntos usando los modelos CFD y ROM y repetir el proceso desde el tercer sub-paso.• Calculate the values of said one or more dimensional variables for the new points using the CFD and ROM models and repeat the process from the third sub-step.
En particular, dichas una o más variables dimensionales incluyen una o más de las siguientes: fuerzas aerodinámicas, los valores en Ia piel y Ia distribución de valores alrededor de Ia aeronave entera o de un componente deIn particular, said one or more dimensional variables include one or more of the following: aerodynamic forces, the values in the skin and the distribution of values around the entire aircraft or a component of
Ia aeronave; dicho conjunto de parámetros incluye uno o más de los siguientes: ángulo de ataque y número Mach; y dicho componente de Ia aeronave es uno de los siguientes: un ala, un estabilizador horizontal de cola, un estabilizador vertical de cola.The aircraft; said set of parameters includes one or more of the following: angle of attack and Mach number; and said aircraft component is one of the following: a wing, a horizontal tail stabilizer, a vertical tail stabilizer.
En una realización preferente, dicha aeronave entera o componente de aeronave está dividida en bloques y dichos modelos CFD y ROM se aplican bloque a bloque. Se obtiene con ello un método muy exacto para proporcionar los valores de una o más variables dimensionales de una aeronave entera o de un componente de Ia aeronave.In a preferred embodiment, said entire aircraft or aircraft component is divided into blocks and said CFD and ROM models are applied block by block. With this, a very exact method is obtained to provide the values of one or more dimensional variables of an entire aircraft or of a component of the aircraft.
En otra realización preferente dicho modelo ROM es un modelo POD. Se usa CFD para calcular Ia distribución de presión en un conjunto de puntos en el espacio paramétrico, apropiadamente seleccionados, que se usan para obtener valores aproximados, vía POD e interpolación ad-hoc, de las variables dimensionales en cualquier otro punto del espacio paramétrico. Adicionalmente, el método minimiza el número requerido de cálculos CFD (para minimizar el coste computacional, que depende básicamente de ese número) para un determinado nivel de error. Esto se hace usando POD e interpolación con los puntos calculados previamente. Se seleccionan nuevos puntos iterativamente bien uno a uno ó en grupos. Se obtiene con ello un método para proporcionar los valores de una o más variables dimensionales de una aeronave entera o de un componente de Ia aeronave, dependientes de un conjunto predefinido de parámetros, optimizando los costes computacionales.In another preferred embodiment said ROM model is a POD model. CFD is used to calculate the distribution of pressure at a set of points in the parametric space, appropriately selected, which are used to obtain approximate values, via POD and ad-hoc interpolation, of the dimensional variables at any other point in the parametric space. Additionally, the method minimizes the required number of CFD calculations (to minimize the computational cost, which basically depends on that number) for a given level of error. This is done using POD and interpolation with previously calculated points. New points are selected iteratively either one by one or in groups. A method is thus obtained to provide the values of one or more dimensional variables of an entire aircraft or of a component of the aircraft, dependent on a predefined set of parameters, optimizing computational costs.
Otras características y ventajas de Ia presente invención se harán evidentes de Ia siguiente descripción detallada de las realizaciones, ilustrativas de su objeto, junto con las figuras adjuntas. DESCRIPCIÓN DE LAS FIGURASOther features and advantages of the present invention will become apparent from the following detailed description of the embodiments, illustrative of its object, together with the attached figures. DESCRIPTION OF THE FIGURES
La Figura 1 muestra vistas del lado de succión, el lado de presión, el borde de ataque y Ia punta de un ala de una aeronave dividida en bloques.Figure 1 shows views of the suction side, the pressure side, the leading edge and the tip of a wing of an aircraft divided into blocks.
La Figura 2 muestra una representación gráfica de una sub-malla local de Ia malla del espacio paramétrico para seleccionar nuevos puntos para añadir al grupo de puntos que se usa para obtener el modelo POD de acuerdo con esta invención.Figure 2 shows a graphical representation of a local sub-mesh of the mesh of the parametric space to select new points to add to the group of points that is used to obtain the POD model according to this invention.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
Describiremos ahora un método según Ia presente invención para obtener un modelo POD que permite calcular Ia distribución de presión estacionaria sobre Ia superficie del ala de una aeronave, siendo dicha distribución de presión dependiente de dos parámetros libres: ángulo de ataque (α) y número Mach (M). Pasos iniciales:We will now describe a method according to the present invention to obtain a POD model that allows to calculate the distribution of stationary pressure on the surface of the wing of an aircraft, said pressure distribution being dependent on two free parameters: angle of attack (α) and Mach number (M). Initial Steps:
Paso 1 : División del ala en varios bloques de acuerdo con Ia geometría del objeto. Las herramientas CFD dividen habitualmente el dominio computacional 3D en bloques como se ilustra en Ia Figura 1 que muestra el ala dividida en 16 bloques principales. Esta es una parte conveniente, pero no esencial del método, que puede ser aplicado utilizando un solo bloque.Step 1: Division of the wing into several blocks according to the geometry of the object. CFD tools usually divide the 3D computational domain into blocks as illustrated in Figure 1, which shows the wing divided into 16 main blocks. This is a convenient, but not essential part of the method, which can be applied using a single block.
Paso 2: Se lleva a cabo una definición de Ia malla del espacio paramétrico estableciendo un valor inicial de Ia mínima distancia para cada parámetro en el espacio paramétrico di, I = 1 , ..., parámetro# en base a una primera conjetura de Ia mínima distancia entre puntos en el espacio paramétrico y que puede necesitar cierta calibración en pasos subsiguientes. Esa distancia será reducida, si es necesario, por el método durante Ia iteración. En ese caso se define una malla equiespaciada en el espacio paramétrico basada en esas distancias. Esa malla evolucionará durante el proceso y puede llegar ser no equiespaciada.Step 2: A definition of the mesh of the parametric space is carried out by establishing an initial value of the minimum distance for each parameter in the parametric space di, I = 1, ..., parameter # based on a first conjecture of the Ia minimum distance between points in the parametric space and that may need some calibration in subsequent steps. That distance will be reduced, if necessary, by the method during the iteration. In that case an equiespaced mesh is defined in the parametric space based on those distances That mesh will evolve during the process and may become unquiespaced.
Por ejemplo, si los parámetros considerados son ángulo de ataque (α), en el rango -3o a +3°, y número Mach (M), en el rango 0.40 a 0.80, se puede definir Ia malla del espacio paramétrico estableciendo las distancias dα=0,5 y dM=0,05.For example, if the parameters considered are angle of attack (α), in the range -3 or + 3 °, and Mach number (M), in the range 0.40 to 0.80, the mesh of the parametric space can be defined by establishing the distances d α = 0.5 and d M = 0.05.
Paso 3: Iniciación del proceso para un grupo inicial de puntos en el espacio paramétrico seleccionados por el usuario tal como el siguiente:Step 3: Initiation of the process for an initial group of points in the parametric space selected by the user such as the following:
GrupoGroup
Inicial Mach AlfaInitial Mach Alfa
P1 0.400 -3.00P1 0.400 -3.00
P2 0.600 -3.00P2 0.600 -3.00
P3 0.800 -3.00P3 0.800 -3.00
P4 0.400 0.00P4 0.400 0.00
P5 0.600 0.00P5 0.600 0.00
P6 0.800 0.00P6 0.800 0.00
P7 0.400 3.00P7 0.400 3.00
P8 0.600 3.00P8 0.600 3.00
P9 0.800 3.00P9 0.800 3.00
Introducción de un nuevo grupo de puntosIntroduction of a new group of points
Paso 4: Aplicación bloque por bloque de POD al grupo inicial de puntos. Se obtiene un conjunto de modos dependiente del bloque para cada bloque:
Figure imgf000008_0001
Step 4: Application block by block of POD to the initial group of points. A block-dependent set of modes is obtained for each block:
Figure imgf000008_0001
P donde P es Ia distribución de presión, X1 son las coordenadas espaciales, oc es el ángulo de ataque, M es el número Mach, Ap son las amplitudes de los modos, y las columnas de Ia matriz φ^ son los modos POD. Cada modo tiene un valor singular asociado que resulta de Ia aplicación de POD. Paso 5: Clasificación de modos: S La primera clasificación que se hace (en cada bloque) en dos partes es Ia siguiente: (a) aquellos modos que dan un RMSE menor que un valor preestablecido E1 (dependiente de ε0 después de alguna calibración) se desprecian; (b) los n-i modos que se retienen se llaman modos principales.P where P is the pressure distribution, X 1 is the spatial coordinates, oc is the angle of attack, M is the Mach number, A p are the amplitudes of the modes, and the columns of the matrix φ ^ are the POD modes . Each mode has an associated singular value that results from the application of POD. Step 5: Classification of modes: S The first classification that is made (in each block) in two parts is the following: (a) those modes that give an RMSE less than a preset value E 1 (dependent on ε 0 after some calibration) are neglected; (b) the nor modes that are retained are called principal modes.
/ A su vez, los modos principales se clasifican en estos dos grupos: n modos primarios y nx -n modos secundarios, obteniéndose n después de alguna calibración, tal como/ In turn, the main modes are classified into these two groups: n primary modes and n x -n secondary modes, obtaining n after some calibration, such as
4 n = -nγ .4 n = -n γ .
El error cuadrático medio (RMSE), se define como:The mean square error (RMSE) is defined as:
Figure imgf000009_0001
donde Np es el número total de puntos de Ia malla que define el ala, y erro^ es Ia diferencia entre Ia presión de Ia aproximación y Ia presión de Ia solución CFD en el punto / de Ia malla. Paso 6: Reconstrucción POD de Ia distribución de presión para cada uno de los ya calculados grupos de puntos usando los (n ) modos primarios en cada bloque. Después, se lleva a cabo una aproximación adicional para cada punto usando los puntos vecinos vía mínimos cuadrados.
Figure imgf000009_0001
where N p is the total number of points of the mesh that defines the wing, and er ^ is the difference between the pressure of the approach and the pressure of the CFD solution at the point / of the mesh. Step 6: POD reconstruction of the pressure distribution for each of the already calculated groups of points using the primary (n) modes in each block. Then, an additional approximation is carried out for each point using the neighboring points via least squares.
Paso 7: Comparación entre los perfiles de presión resultantes del cálculo CFD y de Ia aproximación POD+interpolación y estimación del RMSE en cada bloque en cada uno de puntos ya calculados.Step 7: Comparison between the pressure profiles resulting from the CFD calculation and the POD + interpolation and estimation of the RMSE in each block at each of the points already calculated.
El RMSE para el grupo inicial de nueve puntos mencionado más arriba es el siguiente:The RMSE for the initial nine point group mentioned above is as follows:
RMSERMSE
P1 0.0371P1 0.0371
P2 0.0298P2 0.0298
P3 0.0887 P4 0.0273P3 0.0887 P4 0.0273
P5 0.0190P5 0.0190
P6 0.0756P6 0.0756
P7 0.0605P7 0.0605
P8 0.0930P8 0.0930
P9 0.1758P9 0.1758
Paso 8: Selección del punto con el mayor RMSE. Como se muestra en Ia tabla de arriba en Ia primera iteración ese punto es P9.Step 8: Select the point with the highest RMSE. As shown in the table above in the first iteration that point is P9.
Paso 9: Definición, como se ilustra en Ia Figura 2, de una sub-malla local de Ia malla del espacio paramétrico completo en Ia zona cercana al punto 21 de máximo error. Esa sub-malla local tiene tres niveles a las distancias d¡ (primer nivel), 2 - d¡ (segundo nivel) y 4 - d¡ (tercer nivel).Step 9: Definition, as illustrated in Figure 2, of a local sub-mesh of the entire parametric space mesh in the area near point 21 of maximum error. This local sub-mesh has three levels at distances d ¡ (first level), 2 - d ¡ (second level) and 4 - d ¡ (third level).
Paso 10: Selección del nivel en el que se introducirá el nuevo punto. Si hay algún punto entre dos niveles (ver más abajo) se considera que pertenecen al nivel inferior.Step 10: Selection of the level at which the new point will be introduced. If there is any point between two levels (see below) it is considered that they belong to the lower level.
• Si no hay ningún punto presente en Ia sub-malla completa, se introduce el nuevo punto en el tercer nivel.• If there is no point present in the entire sub-mesh, the new point is introduced in the third level.
• Si solo hay puntos en el tercer nivel, entonces el nuevo punto se introduce en el segundo nivel. • Si no hay puntos en el primer nivel y solo hay un punto en el segundo nivel, el nuevo punto se introduce en el segundo nivel.• If there are only points in the third level, then the new point is introduced in the second level. • If there are no points in the first level and there is only one point in the second level, the new point is introduced in the second level.
• Si no hay puntos en el primer nivel y hay al menos dos puntos en el segundo nivel, el nuevo punto se introduce en el primer nivel.• If there are no points in the first level and there are at least two points in the second level, the new point is introduced in the first level.
• Si hay al menos un punto en el primer nivel, entonces el nuevo punto se introduce en el primer nivel con una excepción que implica Ia introducción de un sub-nivel en Ia malla local. Esto ocurre cuando (a) al menos hay cinco puntos en el primer nivel, y (b) al menos cuatro de esos puntos muestran el mayor RMSE entre todos los puntos en los tres niveles. En este caso, las distancias en Ia sub-malla local se dividen por dos y se repite el paso 9 otra vez con Ia nueva sub-malla resultante. Hay que advertir que este paso implica que cada punto tendrá generalmente un conjunto de mínimas distancias d¡ diferente.• If there is at least one point in the first level, then the new point is introduced in the first level with an exception that implies the introduction of a sub-level in the local mesh. This occurs when (a) there are at least five points in the first level, and (b) at least four of those points show the highest RMSE among all points in the three levels. In this case, the distances in the local sub-mesh are divided by two and step 9 is repeated again with the new sub-mesh resulting. It should be noted that this step means that each point will generally have a set of minimum distances d different.
En el ejemplo que estamos considerando, se introduce el nuevo punto P10 en el tercer nivel porque ninguno de los puntos de grupo inicial está presente en Ia sub-malla local en el entorno de P9.In the example we are considering, the new point P10 is introduced in the third level because none of the initial group points is present in the local sub-mesh in the environment of P9.
Paso 11 : Una vez que se ha elegido el nivel objetivo, se selecciona el punto de mayor recubrimiento de espacio como sigue. Se calcula Ia mínima distancia, D, de cada posible candidato a los restantes puntos del grupo ya seleccionados. Se selecciona el candidato con el mayor valor de D. D es Ia distancia en el espacio paramétrico. In este ejemplo Ia distancia entre dos puntos del espacio paramétrico (etiquetados 1 y 2) se define como sigue:
Figure imgf000011_0001
Step 11: Once the target level has been chosen, the point of greatest space covering is selected as follows. The minimum distance, D, of each possible candidate to the remaining points of the group already selected is calculated. The candidate with the highest value of D is selected. D is the distance in the parametric space. In this example, the distance between two points of the parametric space (labeled 1 and 2) is defined as follows:
Figure imgf000011_0001
donde OC19 = — y M19 = — son las distancias en los parámetros ocwhere OC 19 = - and M 19 = - are the distances in the oc parameters
12 Aa u AM y M , y Δα y AM los rangos totales correspondientes de esos parámetros. En el ejemplo que estamos considerando Ia distancia entre puntos del tercer nivel y el punto más cercano perteneciente al grupo se muestra en Ia siguiente tabla. 12 Aa or AM and M, and Δα and AM the corresponding total ranges of those parameters. In the example we are considering the distance between points of the third level and the closest point belonging to the group is shown in the following table.
Puntos de tercer Punto más cercano nivel del grupo DistanciaThird point closest point group level Distance
Mach Alfa Mach AlfaMach Alfa Mach Alfa
0.650 3.00 0.600 3.00 0.12500.650 3.00 0.600 3.00 0.1250
0.650 2.50 0.600 3.00 0.15020.650 2.50 0.600 3.00 0.1502
0.650 2.00 0.600 3.00 0.20830.650 2.00 0.600 3.00 0.2083
0.650 1.50 0.600 0.0 0.27950.650 1.50 0.600 0.0 0.2795
0.700 1.50 0.600 0.0 0.35360.700 1.50 0.600 0.0 0.3536
0.750 1.50 0.800 0.0 0.27950.750 1.50 0.800 0.0 0.2795
0.800 1.50 0.800 0.0 0.2500 Por tanto, el nuevo punto que se introduce es P10: Mach = 0,700, Alfa = 1 ,50.0.800 1.50 0.800 0.0 0.2500 Therefore, the new point that is introduced is P10: Mach = 0.700, Alpha = 1.50.
Paso 12: Si se introduce más de un punto en cada iteración, entonces se repite el proceso desde el paso 8 excluyendo los puntos ya seleccionados. Actualización del conjunto de modos: Una vez que el nuevo punto (o grupo de puntos) ha sido calculado se actualiza el conjunto de modos para cada bloque.Step 12: If more than one point is entered in each iteration, then the process is repeated from step 8 excluding the points already selected. Mode set update: Once the new point (or group of points) has been calculated, the set of modes for each block is updated.
Paso 13: Aplicación de POD al grupo de puntos, ignorando aquellos modos que tienen un RMSE menor que E1. Paso 14: Cálculo de algunos pseudo-puntos, definidos bloque a bloque, que forman dos grupos:Step 13: Application of POD to the group of points, ignoring those modes that have an RMSE less than E 1 . Step 14: Calculation of some pseudo-points, defined block by block, that form two groups:
• Los nx modos principales de cada bloque multiplicados por sus respectivos valores singulares.• The n x main modes of each block multiplied by their respective singular values.
• Los modos POD obtenidos mediante Ia aplicación de POD a los nuevos puntos resultantes de Ia última iteración, multiplicados por sus respectivos valores singulares.• The POD modes obtained by applying POD to the new points resulting from the last iteration, multiplied by their respective singular values.
Los pasos 13 y 14 pueden ser refundidos en un solo paso. En este caso, los pseudo-puntos se definen añadiendo conjuntamente los modos principales de los puntos ya calculados, multiplicados por sus respectivos valores singulares, y los nuevos puntos. La división en los pasos 13 y 14 mencionados se hace para filtrar errores numéricos del proceso Io que es una ventaja bien conocida del método POD.Steps 13 and 14 can be recast in one step. In this case, the pseudo-points are defined by adding together the main modes of the points already calculated, multiplied by their respective singular values, and the new points. The division in the mentioned steps 13 and 14 is done to filter numerical errors of the process which is a well known advantage of the POD method.
Paso 15: Aplicación de POD al conjunto de todos los pseudo-puntos, bloque por bloque. Paso 16: Repetición del proceso desde el paso 5.Step 15: POD application to the set of all pseudo-points, block by block. Step 16: Repeat the process from step 5.
Para ilustrar este proceso iterativo sigue una breve descripción de Ia segunda iteración en el ejemplo que estamos considerando:To illustrate this iterative process, a brief description of the second iteration follows in the example we are considering:
El RMSE para el grupo de 10 puntos en Ia segunda iteración es el siguiente:The RMSE for the group of 10 points in the second iteration is as follows:
RMSERMSE
P1 0.0313P1 0.0313
P2 0.0242P2 0.0242
P3 0.0723P3 0.0723
P4 0.0275P4 0.0275
P5 0.0167P5 0.0167
P6 0.0569P6 0.0569
P7 0.0853P7 0.0853
P8 0.0458P8 0.0458
P9 0.1421 P10 0.0260P9 0.1421 P10 0.0260
El punto con el máximo error sigue siendo P9 y el nuevo punto P11 se introduce en el segundo nivel porque no hay ningún punto del grupo en los niveles 1 y 2 y hay un punto en el nivel 3 (P10 introducido en Ia primera iteración). La distancia entre los puntos de segundo nivel y el punto más cercano perteneciente al grupo se muestra en Ia siguiente tabla:The point with the maximum error is still P9 and the new point P11 is introduced in the second level because there is no point in the group at levels 1 and 2 and there is a point at level 3 (P10 introduced in the first iteration). The distance between the second level points and the nearest point belonging to the group is shown in the following table:
Puntos de segundo Punto más cercano nivel del grupo DistanciaSecond points Nearest point group level Distance
Mach Alfa Mach AlfaMach Alfa Mach Alfa
0.700 3.00 0.800 3.00 0.25000.700 3.00 0.800 3.00 0.2500
0.700 2.50 0.700 1.50 0.16670.700 2.50 0.700 1.50 0.1667
0.700 2.00 0.700 1.50 0.08330.700 2.00 0.700 1.50 0.0833
0.750 2.00 0.700 1.50 0.15020.750 2.00 0.700 1.50 0.1502
0.750 2.00 0.800 3.00 0.16620.750 2.00 0.800 3.00 0.1662
Por tanto el nuevo punto que se introduce es P11 : Mach = 0,700, Alfa = 2,50. Criterio de parada:Therefore the new point that is introduced is P11: Mach = 0.700, Alpha = 2.50. Stop Criteria:
Paso 17: El proceso se da por terminado cuando el RMSE, calculado en el Paso 7 usando POD e interpolación lineal y de mínimos cuadrados es menor, en ambos casos que ε0.Step 17: The process is terminated when the RMSE, calculated in Step 7 using POD and linear and least squares interpolation is less, in both cases than ε 0 .
ResultadosResults
En Ia ejecución del método en el ejemplo que estamos considerando el grupo inicial de puntos fue, como ya se ha dicho, el siguiente:In the execution of the method in the example we are considering the initial set of points was, as already said, the following:
Mach AlfaMach Alfa
P1 0.400 -3.00P1 0.400 -3.00
P2 0.600 -3.00P2 0.600 -3.00
P3 0.800 -3.00P3 0.800 -3.00
P4 0.400 0.00P4 0.400 0.00
P5 0.600 0.00P5 0.600 0.00
P6 0.800 0.00P6 0.800 0.00
P7 0.400 3.00 P8 0.600 3.00 P9 0.800 3.00P7 0.400 3.00 P8 0.600 3.00 P9 0.800 3.00
A Io largo del proceso iterativo se añadieron los siguientes puntos al grupo:Throughout the iterative process the following points were added to the group:
P10 0.700 1.50P10 0.700 1.50
P11 0.700 2.50P11 0.700 2.50
P12 0.800 2.00P12 0.800 2.00
P13 0.500 1.50P13 0.500 1.50
P14 0.750 2.50P14 0.750 2.50
P15 0.400 2.00P15 0.400 2.00
P16 0.700 -1.00P16 0.700 -1.00
P17 0.750 1.50P17 0.750 1.50
P18 0.750 3.00P18 0.750 3.00
P19 0.800 -1.50P19 0.800 -1.50
P20 0.500 2.50P20 0.500 2.50
P21 0.800 2.50P21 0.800 2.50
P22 0.800 1.50P22 0.800 1.50
P23 0.700 0.50P23 0.700 0.50
P24 0.750 1.00P24 0.750 1.00
P25 0.700 3.00P25 0.700 3.00
P26 0.750 2.00P26 0.750 2.00
P27 0.450 2.50P27 0.450 2.50
P28 0.800 1.00P28 0.800 1.00
P29 0.450 3.00P29 0.450 3.00
P30 0.750 -0.50P30 0.750 -0.50
Se puede hacer una evaluación del modelo obtenido según el método de esta invención comparando los resultados obtenidos en 16 puntos muestra utilizando dicho modelo en varias iteraciones y utilizando el modelo CFD que se muestran en Ia siguiente tabla:An evaluation of the model obtained according to the method of this invention can be made by comparing the results obtained in 16 points using said model in several iterations and using the CFD model shown in the following table:
Coeficiente de Resultados del Modelo de Ia Invención sustentación PFDResults Coefficient of the Model of the Invention PFD support
Puntos .« . 10 15 20 25 30 .« . Mach Alfa Muestra Puntos Puntos Puntos Puntos PuntosPoints . « . 10 15 20 25 30. « . Mach Alfa Shows Points Points Points Points Points
Tp1 0.800 2.25 0.1965 0.1922 0.1966 0.1965 0.1971 0.1966Tp1 0.800 2.25 0.1965 0.1922 0.1966 0.1965 0.1971 0.1966
Tp2 0.800 1.25 0.1045 0.1061 0.1082 0.1075 0.1054 0.1058Tp2 0.800 1.25 0.1045 0.1061 0.1082 0.1075 0.1054 0.1058
Tp3 0.800 -1.25 -0.1077 -0.1089 -0.1085 -0.1073 -0.1082 -0.1088Tp3 0.800 -1.25 -0.1077 -0.1089 -0.1085 -0.1073 -0.1082 -0.1088
Tp4 0.800 -2.25 -0.1920 -0.1871 -0.1925 -0.1927 -0.1928 -0.1936 Tp5 0.775 2.25 0.1895 0.1899 0.1899 0.1903 0.1910 0.1900Tp4 0.800 -2.25 -0.1920 -0.1871 -0.1925 -0.1927 -0.1928 -0.1936 Tp5 0.775 2.25 0.1895 0.1899 0.1899 0.1903 0.1910 0.1900
Tp6 0.775 1.25 0.1012 0.1036 0.1051 0.1031 0.1023 0.1018Tp6 0.775 1.25 0.1012 0.1036 0.1051 0.1031 0.1023 0.1018
Tp7 0.775 -1.25 -0.1048 -0.1018 -0.1121 -0.1057 -0.1066 -0.1068Tp7 0.775 -1.25 -0.1048 -0.1018 -0.1121 -0.1057 -0.1066 -0.1068
Tp8 0.775 -2.25 -0.1867 -0.1853 -0.1884 -0.1908 -0.1912 -0.1916Tp8 0.775 -2.25 -0.1867 -0.1853 -0.1884 -0.1908 -0.1912 -0.1916
Tp9 0.725 2.25 0.1773 0.1849 0.1778 0.1788 0.1777 0.1774Tp9 0.725 2.25 0.1773 0.1849 0.1778 0.1788 0.1777 0.1774
Tp10 0.725 1.25 0.0966 0.0971 0.0980 0.0965 0.0970 0.0970Tp10 0.725 1.25 0.0966 0.0971 0.0980 0.0965 0.0970 0.0970
Tp11 0.725 -1.25 -0.1002 -0.0962 -0.1078 -0.1022 -0.1029 -0.1022Tp11 0.725 -1.25 -0.1002 -0.0962 -0.1078 -0.1022 -0.1029 -0.1022
Tp12 0.725 -2.25 -0.1785 -0.1812 -0.1816 -0.1829 -0.1867 -0.1864Tp12 0.725 -2.25 -0.1785 -0.1812 -0.1816 -0.1829 -0.1867 -0.1864
Tp13 0.525 2.25 0.1577 0.1565 0.1267 0.1563 0.1561 0.1585Tp13 0.525 2.25 0.1577 0.1565 0.1267 0.1563 0.1561 0.1585
Tp14 0.525 1.25 0.0868 0.0722 0.0845 0.0847 0.0873 0.0854Tp14 0.525 1.25 0.0868 0.0722 0.0845 0.0847 0.0873 0.0854
Tp15 0.525 -1.25 -0.0897 -0.0749 -0.0960 -0.0786 -0.0964 -0.1084TP15 0.525 -1.25 -0.0897 -0.0749 -0.0960 -0.0786 -0.0964 -0.1084
Tp16 0.525 -2.25 -0.1600 -0.1580 -0.1598 -0.1196 -0.1199 -0.1197TP16 0.525 -2.25 -0.1600 -0.1580 -0.1598 -0.1196 -0.1199 -0.1197
Coeficiente Momento X Resultados del Modelo de Ia InvenciónMoment X Coefficient Results of the Model of the Invention
Puntos CFDCFD points
Mach Alfa 10 15 20 25 30 Muestra Puntos Puntos Puntos Puntos PuntosMach Alfa 10 15 20 25 30 Sample Points Points Points Points Points
Tp1 0.800 2.25 +0.2062 0.1979 0.2054 0.2054 0.2068 0.2061Tp1 0.800 2.25 +0.2062 0.1979 0.2054 0.2054 0.2068 0.2061
Tp2 0.800 1.25 +0.1109 0.1124 0.1181 0.1174 0.1128 0.1127Tp2 0.800 1.25 +0.1109 0.1124 0.1181 0.1174 0.1128 0.1127
Tp3 0.800 -1.25 -0.1018 -0.1023 -0.1024 -0.1010 -0.1016 -0.1022Tp3 0.800 -1.25 -0.1018 -0.1023 -0.1024 -0.1010 -0.1016 -0.1022
Tp4 0.800 -2.25 -0.1866 -0.1810 -0.1867 -0.1866 -0.1866 -0.1870Tp4 0.800 -2.25 -0.1866 -0.1810 -0.1867 -0.1866 -0.1866 -0.1870
Tp5 0.775 2.25 +0.1991 0.1957 0.1984 0.1992 0.2010 0.1995Tp5 0.775 2.25 +0.1991 0.1957 0.1984 0.1992 0.2010 0.1995
Tp6 0.775 1.25 +0.1078 0.1102 0.1140 0.1117 0.1090 0.1085Tp6 0.775 1.25 +0.1078 0.1102 0.1140 0.1117 0.1090 0.1085
Tp7 0.775 -1.25 -0.0987 -0.0953 -0.1067 -0.0993 -0.0999 -0.1000Tp7 0.775 -1.25 -0.0987 -0.0953 -0.1067 -0.0993 -0.0999 -0.1000
Tp8 0.775 -2.25 -0.1812 -0.1790 -0.1824 -0.1846 -0.1848 -0.1850Tp8 0.775 -2.25 -0.1812 -0.1790 -0.1824 -0.1846 -0.1848 -0.1850
Tp9 0.725 2.25 +0.1849 0.1910 0.1858 0.1875 0.1853 0.1849Tp9 0.725 2.25 +0.1849 0.1910 0.1858 0.1875 0.1853 0.1849
Tp10 0.725 1.25 +0.1036 0.1041 0.1060 0.1029 0.1036 0.1037Tp10 0.725 1.25 +0.1036 0.1041 0.1060 0.1029 0.1036 0.1037
Tp11 0.725 -1.25 -0.0939 -0.0894 -0.1018 -0.0955 -0.0959 -0.0954Tp11 0.725 -1.25 -0.0939 -0.0894 -0.1018 -0.0955 -0.0959 -0.0954
Tp12 0.725 -2.25 -0.1728 -0.1746 -0.1749 -0.1760 -0.1798 -0.1796Tp12 0.725 -2.25 -0.1728 -0.1746 -0.1749 -0.1760 -0.1798 -0.1796
Tp13 0.525 2.25 +0.1654 0.1644 0.1279 0.1637 0.1637 0.1658Tp13 0.525 2.25 +0.1654 0.1644 0.1279 0.1637 0.1637 0.1658
Tp14 0.525 1.25 +0.0943 0.0809 0.0926 0.0928 0.0953 0.0933Tp14 0.525 1.25 +0.0943 0.0809 0.0926 0.0928 0.0953 0.0933
Tp15 0.525 -1.25 -0.0827 -0.0668 -0.0879 -0.0704 -0.0879 -0.1001TP15 0.525 -1.25 -0.0827 -0.0668 -0.0879 -0.0704 -0.0879 -0.1001
Tp16 0.525 -2.25 -0.1534 -0.1499 -0.1514 -0.1100 -0.1100 -0.1096Tp16 0.525 -2.25 -0.1534 -0.1499 -0.1514 -0.1100 -0.1100 -0.1096
Coeficiente Momento Y Resultados del Modelo de Ia InvenciónCoefficient Moment and Results of the Model of the Invention
Puntos CFDCFD points
Mach Alfa 10 15 20 25 30 Muestra Puntos Puntos Puntos Puntos PuntosMach Alfa 10 15 20 25 30 Sample Points Points Points Points Points
Tp1 0.800 2.25 -0.1068 -0.1044 -0.1076 -0.1074 -0.1081 -0.1076Tp1 0.800 2.25 -0.1068 -0.1044 -0.1076 -0.1074 -0.1081 -0.1076
Tp2 0.800 1.25 -0.0345 -0.0377 -0.0392 -0.0387 -0.0361 -0.0363Tp2 0.800 1.25 -0.0345 -0.0377 -0.0392 -0.0387 -0.0361 -0.0363
Tp3 0.800 -1.25 +0.1270 0.1278 0.1279 0.1266 0.1273 0.1278Tp3 0.800 -1.25 +0.1270 0.1278 0.1279 0.1266 0.1273 0.1278
Tp4 0.800 -2.25 +0.1914 0.1877 0.1921 0.1921 0.1923 0.1928 Tp5 0.775 2.25 -0.1036 -0.1036 -0.1038 -0.1044 -0.1054 -0.1043Tp4 0.800 -2.25 +0.1914 0.1877 0.1921 0.1921 0.1923 0.1928 Tp5 0.775 2.25 -0.1036 -0.1036 -0.1038 -0.1044 -0.1054 -0.1043
Tp6 0.775 1.25 -0.0340 -0.0374 -0.0384 -0.0367 -0.0351 -0.0347Tp6 0.775 1.25 -0.0340 -0.0374 -0.0384 -0.0367 -0.0351 -0.0347
Tp7 0.775 -1.25 +0.1232 0.1215 0.1295 0.1241 0.1247 0.1248Tp7 0.775 -1.25 +0.1232 0.1215 0.1295 0.1241 0.1247 0.1248
Tp8 0.775 -2.25 +0.1858 0.1853 0.1878 0.1892 0.1896 0.1898Tp8 0.775 -2.25 +0.1858 0.1853 0.1878 0.1892 0.1896 0.1898
Tp9 0.725 2.25 -0.0960 -0.1017 -0.0970 -0.0982 -0.0967 -0.0965Tp9 0.725 2.25 -0.0960 -0.1017 -0.0970 -0.0982 -0.0967 -0.0965
Tp10 0.725 1.25 -0.0335 -0.0344 -0.0356 -0.0337 -0.0338 -0.0338Tp10 0.725 1.25 -0.0335 -0.0344 -0.0356 -0.0337 -0.0338 -0.0338
Tp11 0.725 -1.25 +0.1171 0.1151 0.1241 0.1188 0.1193 0.1188Tp11 0.725 -1.25 +0.1171 0.1151 0.1241 0.1188 0.1193 0.1188
Tp12 0.725 -2.25 +0.1770 0.1800 0.1805 0.1807 0.1833 0.1831Tp12 0.725 -2.25 +0.1770 0.1800 0.1805 0.1807 0.1833 0.1831
Tp13 0.525 2.25 -0.0868 -0.0877 -0.0618 -0.0849 -0.0847 -0.0867TP13 0.525 2.25 -0.0868 -0.0877 -0.0618 -0.0849 -0.0847 -0.0867
Tp14 0.525 1.25 -0.0321 -0.0233 -0.0302 -0.0302 -0.0321 -0.0307TP14 0.525 1.25 -0.0321 -0.0233 -0.0302 -0.0302 -0.0321 -0.0307
Tp15 0.525 -1.25 +0.1029 0.0911 0.1067 0.0924 0.1078 0.1172Tp15 0.525 -1.25 +0.1029 0.0911 0.1067 0.0924 0.1078 0.1172
Tp16 0.525 -2.25 +0.1564 0.1542 0.1548 0.1219 0.1221 0.1218Tp16 0.525 -2.25 +0.1564 0.1542 0.1548 0.1219 0.1221 0.1218
Se pueden introducir en Ia realización preferida que hemos descrito aquellas modificaciones que estén comprendidas en el ámbito de las reivindicaciones siguientes. The modifications that fall within the scope of the following claims can be introduced in the preferred embodiment that we have described.

Claims

REIVINDICACIONES
1.- Un método asistido por ordenador apropiado para servir de ayuda en el diseño de una aeronave proporcionando los valores de una o más variables dimensionales para Ia aeronave entera o para un componente de Ia aeronave, siendo dichas una o más variables dimensionales dependientes de un conjunto predefinido de parámetros, caracterizado porque comprende los siguientes pasos: a) Definir una malla en el espacio paramétrico estableciendo distancias predeterminadas entre sus valores; b) Obtener un modelo apropiado para calcular dichas una o más variables dimensionales para cualquier punto del espacio paramétrico a través de un proceso iterativo respecto un grupo reducido de puntos, de numero creciente de miembros en cada iteración, comprendiendo los siguientes sub- pasos: b1 ) Calcular los valores de dicha una o más variables dimensionales para un grupo inicial de puntos usando un modelo CFD; b2) Obtener un modelo ROM a partir de dichos cálculos CFD y calcular los valores de dichas una o más variables dimensionales para dicho grupo inicial de puntos usando el modelo ROM inicial; b3) Seleccionar el punto-e del grupo con Ia máxima desviación ε entre los resultados proporcionados por los modelos CFD y ROM y terminar el proceso iterativo si ε es menos que un valor predefinido ε0, b4) Seleccionar como nuevos puntos en el espacio paramétrico a ser añadidos al grupo de puntos aquellos puntos colocados a una predeterminada distancia de dicho punto-e en Ia malla del espacio paramétrico; b5) Calcular los valores de dichas una o más variables dimensionales para los nuevos puntos usando los modelos CFD y ROM y repetir el proceso desde el sub-paso b3). 1.- An appropriate computer-assisted method to assist in the design of an aircraft by providing the values of one or more dimensional variables for the entire aircraft or for a component of the aircraft, said one or more dimensional variables being dependent on a predefined set of parameters, characterized in that it comprises the following steps: a) Define a mesh in the parametric space by establishing predetermined distances between its values; b) Obtain an appropriate model to calculate said one or more dimensional variables for any point of the parametric space through an iterative process with respect to a small group of points, of increasing number of members in each iteration, comprising the following sub-steps: b1 ) Calculate the values of said one or more dimensional variables for an initial group of points using a CFD model; b2) Obtain a ROM model from said CFD calculations and calculate the values of said one or more dimensional variables for said initial group of points using the initial ROM model; b3) Select the e-point of the group with the maximum deviation ε between the results provided by the CFD and ROM models and finish the iterative process if ε is less than a predefined value ε 0 , b4) Select as new points in the parametric space to be added to the group of points those points placed at a predetermined distance from said e-point in the mesh of the parametric space; b5) Calculate the values of said one or more dimensional variables for the new points using the CFD and ROM models and repeat the process from sub-step b3).
2.- Un método asistido por ordenador según Ia reivindicación 1 , caracterizado porque dicha aeronave entera o componente de aeronave está dividida en bloques y dichos modelos CFD y ROM se aplican bloque a bloque.2. A computer-assisted method according to claim 1, characterized in that said entire aircraft or aircraft component is divided into blocks and said CFD and ROM models are applied block by block.
3.- Un método asistido por ordenador según cualquiera de las reivindicaciones 1 -2, caracterizado porque dichas una o más variables dimensionales incluyen una o más de las siguientes: fuerzas aerodinámicas, valores en Ia piel, distribución de valores alrededor de Ia aeronave entera o de un componente de Ia aeronave.3. A computer-assisted method according to any of claims 1-2, characterized in that said one or more dimensional variables include one or more of the following: aerodynamic forces, values in the skin, distribution of values around the entire aircraft or of a component of the aircraft.
4.- Un método asistido por ordenador según cualquiera de las reivindicaciones 1 -3, caracterizado porque dicho conjunto de parámetros incluye uno o más de los siguientes: ángulo de ataque, número Mach.4. A computer-assisted method according to any of claims 1 -3, characterized in that said set of parameters includes one or more of the following: angle of attack, Mach number.
5.- Un método asistido por ordenador según cualquiera de las reivindicaciones 1 -4, caracterizado porque dicho componente de Ia aeronave es uno de los siguientes: un ala, un estabilizador horizontal de cola, un estabilizador vertical de cola.5. A computer-assisted method according to any of claims 1 -4, characterized in that said component of the aircraft is one of the following: a wing, a horizontal tail stabilizer, a vertical tail stabilizer.
6.- Un método asistido por ordenador según cualquiera de las reivindicaciones 1 -5, caracterizado porque dicho modelo ROM es un modelo POD.6. A computer-assisted method according to any one of claims 1-5, characterized in that said ROM model is a POD model.
7.- Un método asistido por ordenador según Ia reivindicación 6, caracterizado porque Ia desviación ε entre los resultados proporcionados por los modelos CFD y POD se obtiene como el error medio cuadrático entre dichos resultados. 7. A computer-assisted method according to claim 6, characterized in that the deviation ε between the results provided by the CFD and POD models is obtained as the mean square error between said results.
8.- Un método asistido por ordenador según cualquiera de las reivindicaciones 6-7, caracterizado porque el modelo POD se obtiene eliminando los modos menos relevantes del grupo de puntos. 8. A computer-assisted method according to any of claims 6-7, characterized in that the POD model is obtained by eliminating the less relevant modes from the group of points.
PCT/ES2009/070464 2008-10-28 2009-10-28 Optimized-cost method for computer-assisted calculation of the aerodynamic forces in an aircraft WO2010049564A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2011121577/08A RU2510969C2 (en) 2008-10-28 2009-10-28 Computer-aided method for cost-optimised calculation of aerodynamic forces on aircraft
BRPI0921804A BRPI0921804A2 (en) 2008-10-28 2009-10-28 appropriate computer-assisted method to assist in the design of an aircraft
CA2741655A CA2741655C (en) 2008-10-28 2009-10-28 Computer-aided method for a cost-optimized calculation of aerodynamic forces on an aircraft
ES09774682.0T ES2595979T3 (en) 2008-10-28 2009-10-28 Computer-aided calculation method of aerodynamic forces in a cost-optimized aircraft
EP09774682.0A EP2360606B1 (en) 2008-10-28 2009-10-28 Optimized-cost method for computer-assisted calculation of the aerodynamic forces in an aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200803062 2008-10-28
ESP200803062 2008-10-28

Publications (2)

Publication Number Publication Date
WO2010049564A2 true WO2010049564A2 (en) 2010-05-06
WO2010049564A3 WO2010049564A3 (en) 2010-09-16

Family

ID=42118340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070464 WO2010049564A2 (en) 2008-10-28 2009-10-28 Optimized-cost method for computer-assisted calculation of the aerodynamic forces in an aircraft

Country Status (7)

Country Link
US (1) US8041547B2 (en)
EP (1) EP2360606B1 (en)
BR (1) BRPI0921804A2 (en)
CA (1) CA2741655C (en)
ES (1) ES2595979T3 (en)
RU (1) RU2510969C2 (en)
WO (1) WO2010049564A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890734A (en) * 2012-09-18 2013-01-23 天津空中代码工程应用软件开发有限公司 Method for building flight icing reduced-order model in flight simulator
CN102915402A (en) * 2012-09-18 2013-02-06 天津空中代码工程应用软件开发有限公司 Method for establishing flight icing state space in flight icing simulator
CN103902782A (en) * 2014-04-11 2014-07-02 北京理工大学 POD (proper orthogonal decomposition) and surrogate model based order reduction method for hypersonic aerodynamic thermal models
US9977848B1 (en) 2014-07-10 2018-05-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and system for predicting rocket nozzle deformation during engine start-up and shut-down transients
FR3033909A1 (en) * 2015-03-18 2016-09-23 Airbus Operations Sas METHOD AND SYSTEM FOR PREDICTING PHENOMENES DEPENDING ON TIME BY COMBINING EXPERIMENTAL AND DIGITAL DATA.
CN104992046A (en) * 2015-06-04 2015-10-21 黄克基 Computing system and method of fluid mechanics
CN107967388A (en) * 2017-11-28 2018-04-27 大族激光科技产业集团股份有限公司 The design method of pipe cutting machine clamping force
CN108153998B (en) * 2018-01-25 2021-09-03 哈尔滨工业大学 Full three-dimensional pneumatic optimization design method for centrifugal blower impeller
CN109614739A (en) * 2018-12-24 2019-04-12 成都安世亚太科技有限公司 A kind of novel nonlinear contact processing method for shrouded blade
CN112084589B (en) * 2020-08-31 2021-12-17 西安理工大学 Axial through flow turbine runner blade optimization method based on axial surface flow velocity control
CN112541305B (en) * 2020-12-10 2024-01-02 中国航空工业集团公司沈阳飞机设计研究所 Aerodynamics analysis method based on global variable derivation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2176810C2 (en) * 2000-03-09 2001-12-10 Санкт-Петербургский государственный университет аэрокосмического приборостроения Method and device for determining degree and direction of center-of-mass shift of flying vehicle
US20030063096A1 (en) * 2001-08-15 2003-04-03 Burke Gregory Michael System and method for efficiently creating a surface map
RU2184680C1 (en) * 2001-09-14 2002-07-10 Молчанов Сергей Анатольевич Aircraft wing
US7009608B2 (en) * 2002-06-06 2006-03-07 Nvidia Corporation System and method of using multiple representations per object in computer graphics
RU2285633C2 (en) * 2004-12-03 2006-10-20 Юрий Евгеньевич Устюгин Method of forming thrust in mobile media and device for realization of this method
US20080162090A1 (en) * 2006-12-27 2008-07-03 Ernest Clay Perry System, methods, and computer readable media, for product design using t-spline deformation
US20080275677A1 (en) * 2007-03-19 2008-11-06 Optimal Solutions Software, Llc System, methods, and computer readable media, for product design using coupled computer aided engineering models

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
RU2510969C2 (en) 2014-04-10
US20100106471A1 (en) 2010-04-29
RU2011121577A (en) 2012-12-10
CA2741655C (en) 2016-04-05
CA2741655A1 (en) 2010-05-06
US8041547B2 (en) 2011-10-18
EP2360606B1 (en) 2016-07-06
EP2360606A2 (en) 2011-08-24
WO2010049564A3 (en) 2010-09-16
ES2595979T3 (en) 2017-01-04
BRPI0921804A2 (en) 2016-06-21

Similar Documents

Publication Publication Date Title
WO2010049564A2 (en) Optimized-cost method for computer-assisted calculation of the aerodynamic forces in an aircraft
Yokoi A practical numerical framework for free surface flows based on CLSVOF method, multi-moment methods and density-scaled CSF model: Numerical simulations of droplet splashing
Sozer et al. Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered CFD solvers
ES2356788B1 (en) METHOD AND SYSTEM FOR A QUICK CALCULATION OF AERODYNAMIC FORCES IN AN AIRCRAFT.
CN107038296B (en) Method and device for determining finite element point load distribution in airplane airfoil
Bouchon et al. A second-order cut-cell method for the numerical simulation of 2D flows past obstacles
WO2010128187A1 (en) Method and system for quickly calculating the aerodynamic forces on an aircraft in transonic conditions
WO2008104613A2 (en) Method for designing part made from composite material and having a curved surface
Tzou et al. Simple second-order finite differences for elliptic PDEs with discontinuous coefficients and interfaces
Schwarz The overlapping grid technique for the time accurate simulation of rotorcraft flows
EP2442246A1 (en) Method of solving the non-uniformly discretized Poisson equation
Rodríguez et al. Real-time simulation of hydraulic components for interactive control of soft robots
Williams et al. An accelerated iterative linear solver with GPUs for CFD calculations of unstructured grids
Lappano et al. A greedy sampling approach for the projection basis construction in parametric model order reduction for structural dynamics models
Zhou et al. Projection continuation for minimal coordinate set dynamics of constrained systems
McIntyre et al. The immersed boundary method for water entry simulation
Aquelet et al. Initialisation of volume fraction in fluid/structure interaction problem
Lee et al. New fully automated procedure for the prediction of store trajectory
Johansson Implementation of a standard level set method for incompressible two-phase flow simulations
Mbaye et al. Numerical procedure with analytic derivative for unsteady fluid–structure interaction
Roos Generation of flexible aircraft LFT models for robustness analysis
Kling et al. A hybrid subspace analysis procedure for non-linear postbuckling calculation
Vassilevski et al. Hessian-based anisotropic mesh adaptation in domains with discrete boundaries
Rhee et al. A development of meshless point generation technique for analysis of the unsteady flow around the multibody
Wang Detached-eddy simulation of flow non-linearity of fluid-structural interactions using high order schemes and parallel computation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2741655

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009774682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009774682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011121577

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0921804

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110427