WO2010048889A1 - 变速工具 - Google Patents

变速工具 Download PDF

Info

Publication number
WO2010048889A1
WO2010048889A1 PCT/CN2009/074677 CN2009074677W WO2010048889A1 WO 2010048889 A1 WO2010048889 A1 WO 2010048889A1 CN 2009074677 W CN2009074677 W CN 2009074677W WO 2010048889 A1 WO2010048889 A1 WO 2010048889A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
shifting tool
speed
gear
transmission mechanism
Prior art date
Application number
PCT/CN2009/074677
Other languages
English (en)
French (fr)
Inventor
王家达
陈成忠
张士松
钟红风
刘芳世
鲍瑞那图·强尼
布朗·沃伦
安德罗·保罗
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2010048889A1 publication Critical patent/WO2010048889A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B45/00Hand-held or like portable drilling machines, e.g. drill guns; Equipment therefor
    • B23B45/008Gear boxes, clutches, bearings, feeding mechanisms or like equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/008Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with automatic change-over from high speed-low torque mode to low speed-high torque mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D16/003Clutches specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2035Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with two engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor

Definitions

  • This invention relates to a shifting tool, and more particularly to a motor-driven variable speed transmission that can output different speeds of tools such as electric drills, screwdrivers, and hammer drills.
  • a variable speed tool such as an electric drill, screwdriver and hammer drill, with a variable speed drive that can output different speeds to accommodate different load torques.
  • the shifting mechanism of the shifting tool typically includes a gearing mechanism and a control system that connect the motor to the output shaft.
  • the control system changes the gear ratio by changing the meshing relationship with the gearing mechanism such that the output shaft outputs different speeds.
  • U.S. Patent No. 6,431,289 it is described in U.S. Patent No. 6,431,289, that the two internal spurs in the planetary gear mechanism are respectively axially movable forward and backward, and the position of each internal gingival is switched by an operating member from outside the casing.
  • this manual operation method requires the operator to constantly pay attention to the working state of the tool, the load change, and determine when the control system should be adjusted.
  • This manual operation is not friendly to the operator.
  • the operator controls the operating member to axially move the internal gums to realize the engagement between the carrier and the rotation preventing device of the outer casing it is easy to cause the toothing between the inner tooth and the outer casing rotation preventing device, which is not only easy to cause
  • the shifting fails and the life of the shifting mechanism is shortened, which affects the life of the entire tool.
  • Another example is the automatic shifting mechanism disclosed in U.S. Patent No. 6,842,491.
  • the control system can automatically adjust the meshing relationship with the gear transmission mechanism to realize the output of different speeds according to the change of the load torque.
  • the control system uses the push ring rotation with the cam surface to push and slide.
  • the axial movement of the ring, in turn, the axial movement of the internal spurs in the drive gearing mechanism is engaged with the anti-rotation device provided on the housing.
  • An automatic shifting mechanism is also disclosed in European Patent Application Publication No. EP 078 793 1 A1.
  • the above-mentioned automatic shifting mechanisms realize automatic shifting by changing the positional relationship between the mechanical structures corresponding to the change of the output torque.
  • This mechanical shifting mechanism not only makes the mechanical structure inside the gear transmission more complicated, but also because of the internal gears While the axial movement is also rotating, and the outer casing is relatively fixed, when the shifting mechanism is shifting, the teeth of the rotating inner tooth and the teeth of the rotation preventing device on the outer casing collide with each other, which is difficult Engagement, so the purpose of automatic shifting and industrial implementation cannot be realized.
  • the technical problem to be solved by the present invention is: to provide a shifting tool that passes an electromechanical knot
  • the technical solution of the present invention is:
  • a shifting tool characterized in that: the tool comprises
  • a motor disposed in the casing, and outputting rotational power
  • Gear transmission mechanism disposed between the motor and the output shaft and transmitting the rotational output of the motor to the output shaft by one of a plurality of gear reduction ratios including at least a first gear reduction ratio and a second gear reduction ratio
  • Gear transmission mechanism includes
  • At least one set of gear trains At least one set of gear trains, and
  • a moving member variably mating with the gear train, and the moving member is movable between a first position corresponding to a first gear reduction ratio and a second position corresponding to a second gear reduction ratio;
  • a control system includes drive means for driving the moving member to move from the first position to the second position, and for driving the moving member to move from the second position to the first position.
  • the present invention drives the linear motion of the internal gum by applying a current to the driving device through the electronic control unit, thereby changing the reduction ratio of the gear transmission mechanism, thereby realizing the automatic shifting. purpose.
  • Figure 1 is a partial cross-sectional view of a shifting tool of the present invention.
  • Figure 2 is a partially enlarged schematic view of the driving device of Figure 1.
  • Figure 3a is a cross-sectional view of the gear transmission mechanism when the shifting tool of the present invention is in the high speed gear position.
  • Figure 3b is a cross-sectional view of the gear train of the shifting tool of the present invention in a low gear position.
  • Figure 4a is a partial cross-sectional view showing another embodiment of the driving device of the shifting tool of the present invention.
  • Fig. 4b is a partially enlarged schematic view of the driving device of Fig. 4a.
  • FIG. 5 is a block diagram showing the principle of the control system of the shifting tool of the present invention.
  • Figure 6 is a schematic block diagram of a first embodiment of a control unit in the shifting tool control system of the present invention.
  • Figure 7 is a schematic block diagram of a second embodiment of a control unit in the shifting tool control system of the present invention.
  • Figure 8 is a schematic block diagram of a third embodiment of the control unit in the shifting tool control system of the present invention.
  • Figure 9 is a graph showing the efficiency of the shifting tool of the present invention at high speed and low speed to illustrate The speed of the shifting tool is switched.
  • Figure 10 is a side elevational view of another embodiment of the shifting tool of the present invention with portions of the casing removed to reveal the structure of the drive unit, at which time the drive unit is in a high speed position.
  • Figure 1 1 is similar to Figure 10, in which case the drive is in the high speed position.
  • Figure 12 is a cross-sectional view taken along line A-A of Figure 11.
  • Figure 13 is a cross-sectional view taken along line B-B of Figure 11.
  • Figure 14 is a cross-sectional view showing the electromagnet device of the shifting tool shown in Figures 9 and 10.
  • Figure 15 is a side elevational view of another embodiment of the shifting tool of the present invention showing the signal generating means.
  • Figure 16 is a top plan view of the shifting tool of Figure 15, further showing the side handles and speed mode switches of the three modes of high speed, low speed, and automatic.
  • Fig. 17a is a cross-sectional view taken along line C-C of Fig. 15, which discloses a form of a trigger switch.
  • Figure 17b is similar to Figure 17a in which another form of trigger switch is disclosed.
  • Figure 18 is similar to Figure 16, but the speed mode switch only has two positions, high speed and low speed.
  • Figure 19 is similar to Figure 18, but it does not have a speed mode switch and only has LED lights for displaying high speed and low speed conditions.
  • Figure 20 is a perspective view of the internal circuit of the shifting tool shown in Figure 16.
  • Figure 21 is a flow chart showing the operation of the processor of Figure 20 for performing automatic speed switching.
  • Figure 22 is a flow chart showing the operation of the processor of Figure 20 for performing manual instant speed switching.
  • Figures 23a and 23b are plan views of another embodiment of the shifting tool of the present invention, wherein the shifting tool is in a high speed state and a low speed state, respectively.
  • Figure 24 is a cross-sectional view taken along line D-D of Figure 23a.
  • Figure 25 is a partial perspective view of the shifting tool of the present invention, showing another embodiment of the drive unit.
  • Figure 26 is an exploded perspective view of the driving device of Figure 25.
  • a shifting tool 9 includes a motor 2, a motor power supply 1, a main switch 13 for starting/stopping the motor, an output shaft 6, and a gear transmission mechanism 4.
  • the gear transmission mechanism 4 includes a first planetary gear set composed of a first planet gear 40 and a first planet carrier, a second planetary gear 42 and a A second planetary gear set consisting of two planet carriers 43, a rotation preventing device 44 fixed to the tool housing and an axially movable moving member 45.
  • the driving device 5 is disposed on the gear transmission mechanism 4, and includes a driving member 52 and a transmission member 5 1 .
  • the driving member of the embodiment adopts an electromagnet device, and includes two permanent magnets 521 spaced apart by a certain distance and disposed in the middle of the permanent magnet.
  • the transmission member is a curved push rod 5 12 and a wire sleeve 5 13 that is coupled to the curved push rod 5 12 .
  • the push rod 5 12 has a mating portion disposed in the recess 524.
  • the moving member 45 is a speed regulating ring 45 having an inner tooth 45 1 and an end tooth 452 , and an annular groove 453 for accommodating the wire sleeve 5 13 is disposed thereon.
  • the turns core 523 When the electromagnet is energized, the turns core 523 will be magnetically attracted to one of the two permanent magnets 521. If the current of the electromagnet is reversely turned on, the iron core 523 will attract the other permanent magnet iron 52 1 , thereby driving the push rod 5 12 , the wire sleeve 5 13 and the speed control ring 45 to move. As shown in FIG. 3a, the iron core 523 is attracted by one of the permanent magnets 521, and correspondingly, the internal teeth 45 1 of the speed regulating ring 45 simultaneously mesh with the first carrier 41 and the second planetary gear 42. At this time, the output rotation speed of the gear transmission mechanism 4 is high; as shown in the low speed state shown in FIG.
  • the iron core 523 is attracted by the other permanent magnet 52 1 at this time, and correspondingly, the inner teeth 45 1 of the speed control ring 45 are
  • the second wheel 42 is engaged while its end teeth 452 are engaged with the anti-rotation device 44 on the tool housing, at which time the output speed of the gear transmission 4 is low.
  • FIG. 4a and 4b there is shown a block diagram of a second embodiment of a driving apparatus for a shifting tool control system of the present invention.
  • the electromagnet device employed in the first embodiment of the driving device described above is intended to drive the speed regulating ring 45 to move between the high and low speed positions by controlling the direction of the current of the electromagnet to change the polarity.
  • a servo motor 525 is used as the driving member, and a screw 5 15 , an internally threaded push rod 5 12 and a wire sleeve 5 13 are used as the transmission member 5 1 , and the servo motor 525 is positive.
  • the reverse rotation drives the movement of the push rod 5 12 on the screw 5 15 to drive the speed control ring 45 to move, thereby achieving the engagement of the high and low speed positions.
  • FIG. 5 is a schematic block diagram of the control system of the shifting tool of the present invention.
  • the control system 8 comprises a processing unit 3 and a drive unit 5.
  • the processing unit 3 includes a processor 30 and associated input/output circuits.
  • a signal generator 35 is coupled to the processor, and a function switch 36 is disposed between the power tool main circuit power supply 1 and the processor 30.
  • the drive unit 5 is controlled by a control signal output from the processor 30 to perform an automatic shifting operation while the drive unit feeds back the gear position signal to the processor 30.
  • the operator can choose to close the function switch 36, thereby starting the self-control system 8.
  • the shift control function in other words, the function switch 36 provides a switching function between the manual mode and the automatic mode of the shifting tool 9. If only one of the gear functions is required for the operation, the function switch 36 can be turned off, and the shifting tool can be shifted in the manual mode.
  • the processor 30 of the control system 8 detects a change in the physical parameter of the shifting tool, compares it with the preset value, and determines whether it is necessary to start the automatic shifting.
  • the physical parameters described here may be electrical parameters such as motor current, voltage, or other parameters such as motor or output shaft speed, mechanical component stress, torque, and the like.
  • the operator may wish to be able to determine the timing of the shift in the automatic mode, or manually input a control signal through the signal generator 35 to enable the control system to automatically shift automatically.
  • the control unit 3 sends a control signal to the driving device 5, and the driving member 52 in the driving device 5 drives the transmission member 5 1 to move, thereby moving the moving member 45 in the gear transmission mechanism 4 from the high speed gear position to Low speed gear.
  • the motor 2 is still transmitting torque to the gear transmission 4, that is, the moving member 45 still has a certain rotational speed, and after the movement needs to engage with the stationary anti-rotation device 44 (refer to FIG. 3b), the moving member is caused.
  • the teeth 45 are not in smooth meshing with the rotation preventing device 44.
  • the present invention proposes three solutions to solve this problem, which are separately described below.
  • the processing unit 3 includes a processor 30, a speed modulation circuit 3 1 , a load detection circuit 32, a drive device control circuit 33, and a gear position feedback circuit 34.
  • an electrical switch 10 (such as a field effect transistor, a thyristor or a relay) is further disposed between the power source and the motor, and the electrical switch 10 is controlled by the speed modulation circuit 31.
  • the processor 30 controls the electrical switch 10 to lag for a period of time (such as 0.1 s) and then conducts again.
  • a period of time such as 0.1 s
  • the first command is given to the driving device control circuit 33 to energize the electromagnet in reverse. , reset the drive unit 5 to the high speed gear state.
  • Power supply 1 then powers motor 2 up and running at high speed.
  • the output shaft 6 drives the working head (not shown) to start drilling.
  • the load detection circuit 32 collects the load current of the motor at a specific frequency, and the processor 30 compares the motor load value collected by the load detection circuit 32 with a preset current value.
  • the processor 30 first sends a command to the speed modulation circuit 3 1 , and the control electrical switch 10 turns off the power to stop the motor, and the motor current becomes zero. Speed of the speed control ring at this time It will also be reduced to zero speed.
  • the processor issues an instruction to the driving device control circuit 33 to reversely energize the electromagnet of the driving device 5, and the iron core 523 drives the speed regulating ring 45 to move, thereby realizing the conversion of the high speed gear position to the low speed gear position. Because the speed of the speed regulating ring 45 has been zero before the shifting, the end teeth 452 and the inner teeth 44 1 of the rotation preventing device 44 are in a stationary state during the shifting of the gear position to the low speed, so that the operation can be smooth. Enter the meshing position and avoid the occurrence of toothing problems.
  • the gear position signal feedback circuit 34 in the control unit 3 detects that the iron core 523 of the electromagnet is in contact with the other permanent magnet 521 (the person skilled in the art can also design to detect the meshing positional relationship between the speed control ring and the gear assembly). ), it means that the speed control ring 45 has successfully moved to the low speed gear position, the processor sends a command to the speed modulation circuit 3 1 , the electrical switch 10 is turned on, the power source 1 is restored to the motor 2, and the motor enters the low speed and high torque output work. status.
  • the program of the processor can be set. Solved, the shift control is only started when the motor current collected by the load detection circuit exceeds the preset value for a certain period of time (for example, the design time is 0.5 s).
  • the function switch 36 can be directly cut off to directly select the manual mode, so as to avoid the mis-starting of the shifting action when the automatic shift is not desired.
  • the preset current value is determined according to the tool's high-speed limit operating current value. In this embodiment, 30 amps is used as a preset value.
  • a control signal can be input through the signal generator 35 on the processor 30, so that the automatic execution is started immediately. Shift action.
  • the processor can also be designed to have a learning function, i.e., record the motor load current when the operator inputs a control signal through the signal generator as a reference for setting the system preset value.
  • control unit 3 controlling the electrical switch 10 to allow the motor 2 to be shut down for a short time before the automatic shift is just one of the embodiments. Under normal circumstances, if the rotational speed of the motor 2 is reduced to a small extent, the engagement of the speed regulating ring 45 and the rotation preventing device 44 during the shifting process is also the same as that of the toothing.
  • FIG 7 there is shown a second embodiment of the control unit of the shifting tool control system of the present invention. In the main circuit of the shifting tool 9, the electrical switch 10 between the power source and the motor is replaced by the FET 1, and the speed modulation circuit 31 is provided by controlling the FET 1 1 when automatic shifting is required.
  • the corresponding operating voltage of the motor is used to reduce the motor speed, so that the speed of the speed regulating ring 45 and the rotation preventing device 44 are matched to each other to prevent the occurrence of toothing.
  • the matching speeds referred to herein mean that the relative speed of the speed regulating ring 45 and the rotation preventing device 44 reaches a range that allows the two to smoothly enter the meshing position. Wai.
  • FIG. 8 is a third embodiment of the control unit of the shifting tool control system of the present invention.
  • a clutch 12 is disposed between the motor 2 and the gear transmission mechanism 4.
  • the speed modulation circuit 31 controls the clutch 12 to reduce the torque transmitted by the motor 2 to the gear transmission mechanism 4.
  • the speed modulation can also be achieved, that is, in the speed regulation ring 45. Before moving to a position where the rotation preventing device 44 is engaged, the rotation speed of the speed regulating ring 45 is lowered to prevent the occurrence of the toothing problem during the meshing.
  • the spirit of the present invention mainly lies in: the control unit 3 performs the moving member 45 and the gear assembly through the speed modulation circuit 31 when detecting that the motor 2 load exceeds a preset value for a long time.
  • Speed modulation when the relative speeds of the two match each other, then enter the next gear engagement state, or the control unit first adjusts the torque transmitted by the motor to the gear transmission mechanism, and then controls the drive device to realize automatic shifting, thereby effectively avoiding The problem of toothing during automatic shifting.
  • the power supply 1 resumes supplying power to the motor 2.
  • the motor 2 instantaneously enters the low-speed high-torque output state from a very low speed or even a zero-speed state, which will cause a very large operation to the operator. Large starting torque, if the operator does not hold it tightly, can even cause the tool to come loose from the operator's hand and cause danger.
  • the soft start of motor 2 can be achieved by controlling FET 1 1 (see Figure 7). Specifically, after the automatic shifting is completed, when the motor 2 is powered back, the control unit 3 controls the FET by a fixed frequency adjustment or a fixed width frequency modulation for a set period of time (for example, 0.6 s). , gradually increase the load voltage of the motor 2, and slowly restore the motor 2 to the operating voltage, thereby avoiding the impact feeling that the motor is instantaneously activated after the shifting.
  • the shift control method of the shifting tool of the present invention provides a shifting tool including a power source 1, a motor 2, an output shaft 6, a gear transmission mechanism 4 that connects the motor and the output shaft, and a control system 8,
  • the gear transmission mechanism 4 includes at least one gear assembly and a moving member, and the different engagement modes of the moving member and the gear assembly can provide different output gear positions of the output shaft;
  • the control system 8 is composed of the control unit 3 and the driving device 5, which
  • the shift control method includes:
  • Load torque detecting step The control system detects physical parameters of the shifting tool, such as detecting the load current, voltage or output shaft speed of the motor 2, and determining the working state of the shifting tool;
  • the load torque detection and the automatic shifting step further include a speed modulation step of adjusting the torque transmitted by the motor to the gear transmission mechanism when the load torque of the output shaft changes to a predetermined value, so that the moving member
  • the rotational speed of the gear assembly is matched to each other, that is, the relative speed of the speed regulating ring 45 and the rotation preventing device 44 reaches a range in which the two can smoothly enter the meshing position.
  • the torque of the transmission is a speed modulation step of adjusting the torque transmitted by the motor to the gear transmission mechanism when the load torque of the output shaft changes to a predetermined value, so that the moving member
  • the rotational speed of the gear assembly is matched to each other, that is, the relative speed of the speed regulating ring 45 and the rotation preventing device 44 reaches a range in which the two can smoothly enter the meshing position.
  • a moving part gear detecting step is further included to confirm that the moving member has moved to another gear.
  • a motor soft start step is further included, and the control system gradually increases the input voltage of the motor for a predetermined time range to restore the torque output of the motor.
  • FIG. Figure 9 shows the output efficiency ⁇ of the shifting tool as a function of the output shaft load torque ⁇ .
  • the output efficiency ⁇ of the whole machine is the ratio of the output power of the output shaft to the output power of the motor.
  • the ⁇ ⁇ curve is the output efficiency curve of the whole machine during high-speed operation, and the T (L curve is the output efficiency of the whole machine at low speed operation.
  • the control system detects a change in current through the motor for characterizing the load button moment of the output shaft.
  • the current value of the monitoring motor is used to reflect the load of the output shaft.
  • the load of the output shaft can be reflected by detecting other physical parameters.
  • the torque of the output shaft, the rotational speed of the output shaft, the rotational speed of the motor, the rotational speed or torque of the gear in the gear transmission system, or when the DC power supply is used, the voltage change of the battery terminal can also be detected to characterize the load of the output shaft.
  • the electromagnet device employs a bidirectionally held electromagnet. The so-called two-way holding electromagnet can hold the iron core at the beginning and the end of the stroke without being energized.
  • the electromagnet device 53 includes a vertically long metal case 53 1 , two turns 532 disposed in the metal case in the longitudinal direction, and a permanent magnet 533 disposed between the two turns. a core 534 disposed in a region surrounded by the turns and linearly movable in the longitudinal direction, and a push rod 535 fixedly disposed with respect to the core and extending longitudinally beyond the metal casing 53 1 .
  • the push rod 535 protrudes from the front end portion of the metal casing 53 1 and is provided with a recess 536. It will be readily apparent to one of ordinary skill in the art that the push rod 53 1 and the core 534 can also be integrally provided.
  • a carrier 54 is disposed between the wire sleeve 513 and the push rod 535, including a semi-circular bracket 541 extending around the gear box 47, and from the bottom of the bracket. A pair of side walls 542 extending downwardly and spaced apart. The two ends of the bracket 541 are fixedly connected to the two ends of the casing of the steel sleeve 513 radially protruding from the reduction box 47, and the electromagnet device 53 is accommodated in the interval between the side walls 542.
  • a guiding mechanism is provided between the transmission frame 54 and the casing 21.
  • a pair of side walls 542 of the transmission frame 54 extend laterally from a guiding post 543.
  • a pair of ribs 544 are protruded from the inner wall of each side of the casing 21, and guiding grooves 545 are formed therebetween for correspondingly receiving and guiding.
  • Each guide post 543 is provided between the transmission frame 54 and the casing 21.
  • the push rod 535 in the electromagnet device 53 shown in Fig. 10 is in the advanced position, i.e., the push rod extends a long distance outside the metal housing and is held in this position due to the attraction of the permanent magnet.
  • the gear transmission mechanism has a relatively low deceleration, and the motor transmits the output shaft to a higher speed after passing through the gear box, that is, the internal gear 45 (or the speed control ring, that is, the moving member in the present embodiment)
  • the teeth simultaneously mesh with the external teeth of the planet gears 42 and the external teeth of the adjacent planet carrier 41 to ensure relative fixation (shown with reference to Figure 3a) so as to rotate with the planet carrier and the planet gears. Referring to FIG.
  • the push rod 535 drives the drive frame 54, the wire sleeve 51 and the inner ring 45 to move a distance d, and reaches the position shown in FIG. Referring to Figure 3b, during this process, the internal spurs 45 are moved axially out of engagement with the planet carrier 41, but remain engaged with the planet gears 42.
  • the internal gum 45 meshes with the rotation preventing device 44 to remain relatively fixed to the casing.
  • the reduction ratio of the gear transmission mechanism 4 is increased by one step, so that the motor is transmitted to the gear box and then transmitted to The output shaft has a lower speed.
  • the reverse current flows through the coil 532, the coil turns into a reverse magnetic field, and thus, the push rod 535 returns to the retracted position as shown in Fig. 10, whereby the gear transmission mechanism 4 returns to the output state of the high reduction ratio.
  • the function switch can be referred to as a speed mode switch.
  • the switch includes a dial 361 that is exposed outside the casing 21, and a conductive terminal that is disposed in the casing and connected to other electronic components.
  • the dial 361 can be slid in the circumferential direction at three positions on the casing 2, corresponding to the automatic mode (A), the high speed mode (H), and the low speed mode (L).
  • the conductive terminals include first, second, and third signal terminals 362 corresponding to the three modes, and a ground terminal 363.
  • the circuit connections and workflows of the switches and other electronic components in the control system are described in detail later.
  • the device includes a speed change switch disposed in the casing 21, and when the switch is triggered, the control system changes the flow of current supplied to the electromagnet device to realize automatic shifting, that is, The driving of the electromagnet realizes the switching of the gear transmission between the high reduction ratio and the low reduction ratio.
  • the device 35 includes two speed switching switches symmetrically disposed on two sides of the casing 21, and pressing any one of the switches can trigger the speed switching, so that, for the left, Right-handed users can easily operate.
  • Figure 17a and Figure 17b show the specific form of the switch. The switch in Fig.
  • a push button switch 35 1 which is electrically connected to the electronic components in the control system via wires 35 12 (described further below).
  • the casing is provided with a resilient pressing piece 353.
  • the button 35 1 1 is also pressed, and the contact (not shown) in the switch is turned on, so that the speed switching function is triggered.
  • the spring switch 352 is used.
  • the elastic piece 3521 is connected to the contact 3523. At this time, an electric signal is generated and transmitted to the control system, thereby controlling the system to execute the speed switching procedure (following Will be described in detail).
  • the speed mode switch 36 and the signal generating device 35 can be used in combination.
  • the dial of the speed mode switch 36 is in the gear position A, that is, in the automatic mode
  • the speed switching function is blocked, that is, pressing the speed switching switch does not trigger the speed switching function; and when the speed mode switch is pressed
  • the gear position H or L that is, in the high speed or low speed mode
  • the automatic speed switching function is blocked.
  • pressing the speed switching switch can trigger the speed switching function, so that the high speed mode will switch to the low speed mode accordingly.
  • the low speed mode will switch to the high speed mode accordingly.
  • the casing 2 1 is further provided with a side handle 22, and the side handle is axially
  • the position of the switch button of the distance signal generating means 35 has a specific distance h which allows the user's hand holding the handle to simultaneously operate the switch button.
  • the switch button can also be disposed close to the main handle 23 (shown in FIG. 10) to form a specific distance from the main handle, so that the user can also use the hand holding the main handle. To perform the speed switching operation at the same time.
  • FIG. 18 illustrate two other implementations of the signal generating device 35 application.
  • the speed mode switch 36 shown in Figure 18 does not include the automatic mode gear, so that as soon as the speed switch is pressed, the speed switching function is instantaneously activated, that is, from the current high speed or low speed gear to the low speed or high speed gear.
  • the embodiment disclosed in FIG. 19 does not include a speed mode switch.
  • the shifting tool operates in the automatic mode, and the casing 21 is provided with an LED lamp indicating the current running speed state of the tool, such as the current tool is running at a high speed. Then the "H" LED 371 is always on, otherwise, the "L” LED 372 is always on.
  • the tool is operated in the automatic mode by default after the tool is turned on.
  • the control system 8 interrupts the automatic operation mode, and at the same time, the control system 8 controls the electromagnet device 53 to switch the deceleration of the gear transmission mechanism 4.
  • Ratio that is, switching the current speed running state, such as switching from high speed to low speed. If the signal generating device 35 is triggered again, the current speed operating state is switched again, such as switching from low speed to high speed again. Therefore, in the present embodiment, once the automatic mode of the speed switching is interrupted, the manual speed switching mode controlled by the signal generating means is entered.
  • the above-described signal generating device and the specific speed switching method can be applied to a reduction ratio switching having two or more stages, such as a gear transmission system having high, medium and low three speeds.
  • FIG 20 is a circuit diagram of a cylinder in a specific embodiment of the shifting tool of the present invention.
  • the shifting tool is powered by an external DC power source 1, which is a battery pack composed of a number of batteries.
  • the battery pack may be a lithium ion battery pack.
  • the lithium ion battery referred to herein is a general term for a rechargeable battery in which the negative electrode material is lithium. According to the positive electrode material, it can constitute many systems, such as "lithium manganese," battery, "lithium iron” battery.
  • the lithium ion battery pack includes a battery pack that is connected in series from a five-cell 3.6 V (volt) lithium ion battery to a rated voltage of 18 V.
  • a battery pack such as a four-cell 3.6V (volt) lithium-ion battery in series with a battery pack rated at 14.4V, or six 3.6V (volts) series
  • the lithium ion battery is a battery pack with a rated voltage of 21.6 V.
  • the battery pack An identification resistor 386 representing the voltage of the battery pack is also provided therein for identification by the power tool to determine the corresponding battery pack over-discharge protection mode.
  • the shifting system of the shifting tool includes a processor 30, a speed modulation circuit 31, a motor load detecting circuit 32, a driving device control circuit 33, and a gear position signal.
  • the processor 30 can be an MCU, a PLC, or a CPU.
  • the processor 30 is a microcomputer control system (MCU), and those skilled in the art can easily conceive that the MCU usually includes a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM). ), digital I analog conversion unit (A/D converter), timer (timer), input / output port (I / O p 0 rt ) P 1 - P 28, etc., because these units or function modules work Those skilled in the art are familiar with, so the applicant will not repeat them here.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • A/D converter digital I analog conversion unit
  • timer timer
  • I / O p 0 rt input / output port
  • the main switch 13 is connected in series between the battery pack 1 and the main circuit, and can be used to control the on and off of the main circuit.
  • the button 131 on the main handle 23 (shown in FIG. 10) is depressed by the operator, the main circuit is turned on, and the voltage of the battery pack 1 is converted into a lower voltage by the DC power conversion module (DC/DC) 381.
  • the constant voltage, 5V in the present embodiment, is used to power the processor 30 and the electronic circuitry.
  • the port P20 of the processor is connected to the DC power conversion module 381, the port P19 is grounded, and the port P1 is connected to the DC power conversion module 381 through the resistor R5, so that after the main switch 13 is closed, the DC power conversion module 381 is connected.
  • the converted current is input to the processor through port P 20, and the processor receives a reset signal from port P 1 to perform an initialization action.
  • the main switch 13 can be used not only for controlling the on and off of the circuit, but also for controlling the rotational speed of the motor.
  • the main switch 13 includes a potentiometer for measuring the distance the button moves under the action of the operator's pressing and generating an electrical signal proportional to the moving distance, such as a voltage value signal.
  • the electrical signal is transmitted to the processor 30 via port P2, and the digital/analog conversion unit of the post processor converts the electrical signal into a digital signal and processes it to generate a corresponding control signal.
  • the control signal is a Pulse Width Modulation (P WM) signal for controlling the voltage applied to the motor 22, which is output to the speed modulation circuit 31 through the port P12 of the processor 30.
  • the speed modulation circuit 31 is composed of a resistor R19 and a power switch driver.
  • the power switch driver has a plurality of triodes for adjusting the duty ratio of the MOSFET, that is, the power switch driver increases or decreases the continuous output time of the voltage signal in a single cycle according to the received PWM signal, thereby passing the power.
  • the switching element 10 i.e., an electrical switch
  • the power switching element 10 can be a semiconductor switch, In the present embodiment, it is a metal oxide semiconductor field effect transistor (MOSFET).
  • the port P3 of the processor 30 can be connected to the battery pack 1 to collect the operating voltage of the battery pack, so as to monitor the discharge condition of the battery pack, and take corresponding measures to remind the user or cut off the power supplied to the motor when the voltage is too low.
  • the ports P 18, P 17, P 16, P 15 of the processor 30 are connected to the light-emitting diodes D2, D3, D4, D5 via resistors R22, R23, R29, R30. These LEDs can be placed on the casing to indicate the remaining capacity of the battery pack 1, where D2, D3, and D4 emit green light, and D5 emits red light.
  • D2, D3, D4 are always on, D5 is off; when the power is medium, D3 and D4 are always on, D2 and D5 are off; when the battery is low, D4 is always on, D3, D2, D5 are both
  • D2, D3, and D4 are not lit, and D5 is always on; when the power is seriously insufficient, D2, D3, and D4 are not lit, and D5 is blinking.
  • the port P 12 of the processor is blocked from supplying power to the motor.
  • the processor To monitor the operating state of the motor 22, the processor detects the operating current through the motor in real time. As shown in FIG. 20, a sense resistor 383 is connected in series with the switch 10 and the motor 22. An amplifier 382 is used to amplify the voltage drop signal generated on the sense resistor 383 and input it to the processor 30 through the port P4 for the processor 30 to detect. The current through the motor 22.
  • the circuit further includes an overcurrent protection circuit 37, which includes a comparator 384 that collects the voltage drop signal on R6 through resistor R18 and compares it with the input reference voltage signal Vref.
  • the comparator 384 converts the initial high state to a low state, and outputs a low level signal to the port P21 of the processor 30 through the resistor R24.
  • the temperature of the motor can be detected by utilizing the characteristic that the resistance of the thermistor 385 changes linearly with temperature.
  • the thermistor 385 and the resistor R10 are connected in series to form a voltage dividing circuit.
  • the port P5 of the processor 30 is connected between the 385 and the resistor R10 through a wire to detect a voltage change on the thermistor 385, thereby facilitating the processor 30 to monitor the motor 22 in real time.
  • the control system also includes an identification circuit for identifying the voltage of the battery pack 1.
  • the identification circuit is connected by the identification resistor 386 and the resistor R13 after the battery pack 1 is connected to the shifting tool. And a voltage divider circuit composed of R21.
  • the processor port P7 is connected between the resistor R13 and the identification resistor 386 via a resistor R21 for sensing the voltage drop across the identification resistor 386, thereby determining the voltage of the battery pack 1, and performing a corresponding over-discharge protection procedure.
  • the driving device control circuit 33 is an H-bridge circuit
  • the processor 30 is respectively connected to the four input ports A, B, C, and D of the H-bridge circuit through ports P11, P9, P10, and P6.
  • the input ports are connected to the power switching elements Q4, Q1, Q2, Q3 via resistors R4, R1, R2, R3, respectively, and the electromagnet device 5 is connected to the connection point H of the power switching elements Q1 and Q2 and the connection of the power switching elements Q3 and Q4.
  • the power switch is a semiconductor switch, and is preferably a MOSFET.
  • the processor controls the electromagnet device 53 by switching on four input ports A, B, C, D. For example, when the input ports A, B are turned on and the input ports C, D are turned off, the power switching elements Q1 and Q4 are turned on, at which time the current flows from the connection point H to the connection point L, and accordingly, the electromagnet
  • the push rod 535 of the device 53 causes the internal gum 45 to move from the high speed position shown in Fig. 10 to the low speed position shown in Fig. 11.
  • the push rod 535 of the electromagnet device 53 causes the internal ring gear 45 to move from the low speed position to the high speed position.
  • the gear position feedback circuit 34 includes a switch 387, and resistors R25, R26, R27, R28.
  • switch 387 is a single pole, two position switch comprising contact HI and contact L1, wherein contact L1 is coupled to port 13 of the processor and contact HI is coupled to port 14 of the processor.
  • the contact HI and the contact L1 may be reeds disposed at both ends of the carriage of the carriage on the casing, and the transmission frame is provided with a metal piece, such as When the copper plate is moved to the high speed position, the metal piece contacts the corresponding reed to turn on the contact HI; otherwise, the contact L1 is turned on.
  • the contact HI is opened and the contact L1 is turned on.
  • the port 13 detects a low level signal and the port 14 detects a high level.
  • the level signal so that the processor 30 judges that the gear transmission mechanism is working at a high reduction ratio; on the contrary, when the carriage returns to the high speed position, the port 14 detects a low level signal, and the port 13 detects a high power.
  • Flat signal it will be readily apparent to one of ordinary skill in the art that the metal sheet and the reed may be correspondingly disposed on the inner gum and the gear case, or on the push rod and housing of the electromagnet device.
  • the function switch 36 adopts a speed mode switch that can switch three speed modes as shown in FIG. 16, that is, switches between the high speed mode, the low speed mode, and the automatic mode.
  • the speed mode switch 36 is a single pole three position switch having three contacts L2, H2. A, connected to the ports P26, P25, and P24 of the processor through resistors R14, R15, and R16, respectively.
  • the processor 30 detects that the port P24 is at the level signal, and Ports P25 and P26 are high level signals, so the processor will call and run the automatic shifting program (this will be described in detail later).
  • the processor 30 does not call and run the automatic shifting program.
  • the two switches S2, S3 of the signal generating device 35 are connected in parallel and connected to the port P23 of the processor 30 via a resistor R17. When either of the switches S2, S3 is depressed, an electrical signal is generated and input to the processor 30 via port P23, such that the processor 30 will interrupt the currently running program and invoke the speed switching procedure (the following will be done) A detailed description).
  • the processor port P1 receives the reset signal, so that the processor performs an initialization action (step 712). Then, the processor collects the voltage signal of the battery pack through the port 3 (step 713), to determine whether the battery pack is in a normal application state, that is, whether the battery pack voltage is less than 12.5V, and if so, indicating that the battery pack has been over-discharged, It is not suitable for discharging again, so that the port P12 can be blocked from outputting the PWM signal; if not, it indicates that the battery pack can be used normally, and then, the mode currently selected by the speed mode switch 36 is detected (step 714).
  • step 715 If the speed mode switch 36 selects the automatic mode, it is further determined whether the electromagnet device 53 is in the high speed position (step 715), and if so, proceeds to the next step; if not, the processor turns on the input ports C, D And the input ports A, B are disconnected, thereby causing the electromagnet device 53 to pass a reverse current to drive the push rod to the high speed position (step 718). If the speed mode switch 36 selects the high speed mode, it is further determined whether the electromagnet device is in the high speed position (step 716), and if so, proceeds to the next step; if not, the electromagnet device is driven to cause the push rod to move to High speed position (step 719).
  • step 717 If the speed mode switch 36 selects the low speed mode, it is further determined whether the electromagnet device is in the low speed position (step 717), and if so, proceeds to the next step; if not, the processor disconnects the input ports C, D, And turn on the input port A,
  • step 720 thereby causing the electromagnet device to pass a forward current to drive the push rod to move to the low speed position.
  • the remaining power of the battery pack is displayed by the LED lamps D2-D5 (step 721), and the power supplied to the motor is cut off when the power is seriously insufficient; the voltage of the battery pack is detected in real time (step 722), and when the battery pack is over-discharged Cut off the power supplied to the motor; detect the depth of pressing of the trigger switch (step 723); outputting a corresponding PWM signal according to the pressing depth of the trigger switch (step 724); detecting the motor current (step 725).
  • step 726 Determining the speed mode (step 726), if the control system is currently operating in the high speed mode or the low speed mode, determining whether the motor current lasts for 500 ms (milliseconds) is greater than 90 A (amps) (steps 727, 729), and if so, indicating that the motor is likely to occur An abnormal situation such as a stalling causes an excessive current, and therefore, to protect the motor, the current supplied to the motor is turned off (steps 728, 730); if not, the process returns to step 721.
  • step 73 1 If the control is running in the automatic mode, it is judged whether the motor current lasts for 300ms (milliseconds) is greater than 90A (amperes) (step 73 1), and if so, indicating that the motor may have stalled, the automatic shifting step is performed; if not , then continue to determine whether the motor current lasts for 500ms (milliseconds) is greater than 30A (amperes) (step 732), and if so, indicating that the efficiency of the tool's high-speed output is about to be lower than the efficiency of the low-speed output, thus performing the automatic shifting step; , then returns to step 721.
  • the automatic shifting step includes steps 733-736.
  • power to the motor is temporarily stopped (step 733), that is, the processor temporarily blocks the output signal of the port P12, thereby lowering the rotational speed of the motor and the internal gum.
  • the processor controls the H-bridge circuit to pass a forward current to the electromagnet device, that is, the processor turns on the input ports A, B, and disconnects the input ports C, D, so that the electromagnet device drives the push rod to move from the high-speed position to The low speed position (step 734), and when moving to the low speed position, triggers switch S5 to turn contact L1 on.
  • the soft start motor i.e., the PWM signal output by the processor through port P12
  • the processor sets the low speed flag based on the low level signal received by port 13 (step 736), and then returns to step 721.
  • the electromagnet device may be driven by the processor first, and then the motor is suspended. A step of.
  • the processor stops the currently running program and calls the speed switching procedure (step 75 1).
  • the processor first detects whether the motor current is too large through port 2 1 (step 752), such as greater than 100 A (amperes), and if so, indicating that the motor has stalled, then stopping supplying current to the motor (step 753); if not, detecting Which mode the speed mode switch is currently in (step 754). If it is in automatic mode, the interrupt returns, that is, the processor continues to execute the original program (step 767); if it is high speed mode or low speed Mode, you need to determine if the motor is empty.
  • step 755 determine if the motor current lasts for 500ms (milliseconds) greater than 30A (amperes) (step 755), if yes, indicating a load, then stop supplying power to the motor and delay 0.5 S (step 756); if not, then The power supplied to the motor is stopped and delayed by 2 s (step 757).
  • step 76 1 determines if the motor current lasts for 500ms (milliseconds) greater than 30A (amperes) (step 76 1), if yes, indicating a load, then stop supplying power to the motor and delay 0.5 S (step 762); if not, Then, the power supplied to the motor is stopped and delayed by 2S (step 763).
  • the processor drives the electromagnet device to perform a switch from high speed to low speed or from low speed to high speed (steps 758, 764), then starts the motor (steps 759, 765) and sets the low speed flag or high speed accordingly. Marking (steps 760, 766) and then returning to the original program (step 767).
  • Figures 23a, 23b, and 24 disclose another embodiment of the shifting tool of the present invention.
  • the driving device includes a small motor 55, and a transmission mechanism for transmitting the rotation output of the small motor.
  • the transmission mechanism includes a pinion transmission mechanism 56 having an output shaft 561, and is fixedly disposed at A gear 57 on the output shaft 561 and a circular sleeve 58 rotatably disposed outside the gear box 47.
  • the small motor 55 and the pinion gear mechanism 56 are relative to conventional motors and gear transmissions, such as The motor 2 and the gear transmission 4 are greatly reduced in size to provide a motor and gear transmission mechanism designed for special applications.
  • the circular sleeve 58 has a relative design a pair of guiding grooves on the circumferential wall thereof for receiving and guiding the opposite ends of the wire sleeve 5 13.
  • the circular sleeve 58 further has external teeth 584 disposed on the outer surface of the circumferential wall thereof for Gears 57 cooperate.
  • Each of the guide slots includes first and second segments 58 1 , 583 substantially perpendicular to an axis (shown in phantom in Figures 23a and 23b), and in the first and second segments 58 1 , 583 A third segment 582 extends obliquely along the axis.
  • Figures 23a and 23b show the shifting tool in the high speed and low speed states, respectively, in the present embodiment.
  • the gear 57 fixedly disposed with respect to the output shaft 561 obtains a rotational speed
  • the sleeve 58 is rotated by the cooperation with the external teeth 584 of the circular sleeve 58.
  • the wire sleeve 5 13 is disposed in the gear case 47 in such a manner as to be movable only in the axial direction.
  • the small motor can be connected in an H-bridge circuit and controlled by the processor by changing the current applied to the H-bridge circuit.
  • the direction of rotation of the motor is constantly changed to achieve switching between high speed and low speed.
  • the drive member 25 and 26 show another embodiment of the driving device of the electric power tool of the present invention. Similar to the previous embodiment, the drive member still uses a small motor 55, but the transmission mechanism is different. As shown in FIG. 25, in the present embodiment, the transmission mechanism includes a screw 565 that is rotationally driven by the small motor 55, a bracket 575 that is disposed between the screw 565 and the wire sleeve 5 1 3 and can be linearly moved by the screw 565. And a guide 586 for guiding the bracket 575. As shown in Fig.
  • the screw 565 is axially extended, one end of which is sleeved on the output shaft (not shown) of the small motor 55, and the other end is rotatably disposed on the guide seat 586 via a connecting sleeve 566.
  • a continuous spiral 565 1 is projected from the rod between the ends of the screw 565.
  • a guide seat 586 is fixedly disposed at the bottom of the gear case 47, and is formed with an axially extending guide rail 587.
  • the bracket 575 includes a base 576 and a pair of side arms 577 extending upward from both sides of the base 576. The top of each side of the arm is recessed with a slot 5771 for receiving the end of the wire sleeve 513.
  • the top of the base 576 of the bracket 575 is formed with a guide groove 5761 which is slidable in the axial direction in cooperation with the guide rail 587 of the lead frame 586.
  • the bottom of the base 576 is recessed to define an axially extending recess 5762, and the inner wall of the recess 5762 is further recessed to define a helical groove 5763 that cooperates with the spiral relief 565 1 of the screw 565.
  • the small motor 55 After the small motor 55 is started, the screw 565 is rotationally driven, and then the bracket 575 is driven by the screw 565. Due to the guidance of the guide 586 guide rail 587, the bracket 575 linearly moves in the axial direction, further driving the wire sleeve 5 13 along the linear line. mobile. Thus, the switching of the tool between high speed and low speed can be achieved by the rotation of the small motor 55.
  • the small motor can be connected in an H-bridge circuit and controlled by the processor to change the direction of rotation of the motor by changing the direction of the current applied to the H-bridge circuit, thereby achieving a high speed and a low speed. Switching.
  • the gear transmission mechanism and the moving member thereof in the present invention are not limited to the structure disclosed in the embodiment, and are not limited to the gear meshing relationship in the high speed gear and the low speed gear in the embodiment, and the gear transmission mechanism in the prior art.
  • a variety of gear transmission mechanisms are disclosed in various types, such as U.S. Patent Publication No. 679,692, which has different meshing relationships at high speed and low speed, but will be readily apparent to those of ordinary skill in the art in view of the inventive concept.
  • Various gear transmission mechanisms are used in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drilling And Boring (AREA)
  • Structure Of Transmissions (AREA)

Description

变速工具 技术领域
本发明涉及一种变速工具,尤其是一种由马达驱动的带变速传动机构可 输出不同转速的工具, 如电钻、 螺丝批和锤钻等。
背景技术
一种变速工具, 如电钻、 螺丝批和锤钻等, 带有变速传动机构可输出不 同的转速以适应不同的负载扭矩。 变速工具的变速传动机构通常都包括连接 马达和输出轴的齿轮传动机构和控制系统, 该控制系统通过改变与齿轮传动 机构的啮合关系从而改变传动比, 使得输出轴输出不同的速度。 在现有技术 中, 美国专利 643 1289号中介绍到, 将行星齿轮机构内的两个内齿圏分别沿 轴向可前后移动地设置, 从壳体外部用操作部件切换各内齿圏的位置, 借此, 通过将行星齿轮与行星架一体旋转及单独旋转组合在一起, 可选择三种输出 轴的旋转速度。 但是这种人工操作方法使得操作者不得不时刻关注工具的工 作状态、 负载变化情况并判断什么时刻应该调节控制系统。 这种人工操作对 操作者并不友善。 并且当操作者控制操作部件轴向移动内齿圏进而来实现行 星架与外壳的止转装置卡接的时候, 很容易造成内齿圏与外壳止转装置之间 的打齿, 这样不仅容易造成换档失效, 而且会导致变速机构的寿命缩短, 影 响整个工具的使用寿命。
又如美国专利公告第 6824491 号揭示的自动变速机构, 其控制系统可根 据负载扭矩变化自动调整与齿轮传动机构的啮合关系实现不同速度的输出, 该控制系统利用带凸轮面的推环旋转推动滑环轴向移动, 进而驱动齿轮传动 机构中的内齿圏轴向移动与设置在外壳上的止转装置卡接。 欧洲专利申请公 开第 EP078793 1 A 1也公开了一种自动变速机构。上述这些自动变速机构均以 机械结构之间的位置关系变化对应输出扭力的变化来实现自动换档, 这种机 械式变速机构不仅使得齿轮传动机构内部的机械构造更为复杂, 而且由于内 齿圏在轴向移动的同时也在转动, 而外壳是相对固定的, 所以当该变速机构 在变速的时候, 转动中的内齿圏的齿与外壳上的止转装置的齿会相互碰撞而 很难啮合, 因此无法真正实现自动换档及进行产业化实施的目的。
发明内容
本发明所要解决的技术问题是: 提供一种变速工具, 该工具通过机电结 合的手段来筒化结构, 并实现在不同的输出档位之间作自动切换的目 的。 本发明的技术方案是:
一种变速工具, 其特征在于: 该工具包括
机壳;
马达, 设置在机壳内, 并输出旋转动力;
输出轴;
齿轮传动机构, 设置在马达和输出轴之间, 并以至少包括第一齿轮减速 比和第二齿轮减速比的若干齿轮减速比中的一个来将马达的旋转输出 传递到输出轴上, 所述齿轮传动机构包括
至少一组齿轮系, 以及
移动件, 与所述齿轮系可变地配合, 且所述移动件可在与第一齿轮 减速比相应的第一位置和与第二齿轮减速比相应的第二位置间移 动;
控制系统, 其包括驱动装置, 用于驱动所述移动件从第一位置移动到第 二位置, 还用于驱动所述移动件从第二位置移动到第一位置。
与现有技术相比, 本发明的有益效果是: 本发明通过电子控制单元通过 对驱动装置施加电流, 来驱动内齿圏线性运动, 从而改变齿轮传动机构的减 速比, 进而实现自动换档的目的。
附图说明
下面以电钻中的变速机构为例结合附图对本发明做进一步说明。
图 1是本发明变速工具的局部剖视图。
图 2是图 1 中的驱动装置的局部放大示意图。
图 3 a是本发明变速工具处于高速档位时的齿轮传动机构剖视图。
图 3b是本发明变速工具处于低速档位时的齿轮传动机构剖视图。
图 4a是本发明变速工具的驱动装置另一实施例的局部剖视图。
图 4b是图 4a中的驱动装置的局部放大示意图。
图 5是本发明变速工具的控制系统原理方框图。
图 6是本发明变速工具控制系统中控制单元第一实施例的原理方框图。 图 7是本发明变速工具控制系统中控制单元第二实施例的原理方框图。 图 8是本发明变速工具控制系统中控制单元第三实施例的原理方框图。 图 9是本发明变速工具在高速运行和低速运行是的效率曲线图, 以说明 变速工具的速度切换时机。
图 10是本发明变速工具另一实施例的侧视图,其中部分机壳被移除以揭 示驱动装置的结构, 此时, 驱动装置处于高速位置。
图 1 1 与图 10相似, 此时, 驱动装置处于高速位置。
图 12是沿图 1 1 中 A-A线方向的剖视示意图。
图 13是沿图 1 1 中 B-B线方向的剖视示意图。
图 14是图 9和图 10中所示变速工具的电磁铁装置的剖视示意图。 图 15 是本发明变速工具另一实施例的侧视图, 其中显示了信号发生装 置。
图 16是图 15变速工具的俯视图, 其中还进一步显示出侧手柄以及可选 择高速、 低速、 和自动三种模式的速度模式开关。
图 17a是沿图 1 5 中 C-C线方向的剖视示意图, 其中揭示了一种触发开 关的形式。
图 17b与图 17a类似, 其中揭示了另一种触发开关的形式。
图 1 8与图 16类似, 但其中速度模式开关仅具有高速和低速两种档位。 图 19与图 1 8类似, 但其不具有速度模式开关, 仅具有用于显示高速和 低速状态的 LED灯。
图 20是图 16所示变速工具的内部电路的筒化图。
图 21是图 20中处理器执行自动速度切换的工作流程图。
图 22是图 20中处理器执行手动即时速度切换的工作流程图。
图 23 a 和图 23b是本发明变速工具另一实施方式中的平面示意图, 其中 变速工具分别处于高速状态和低速状态。
图 24是沿图 23 a中 D-D线方向的剖视示意图。
图 25是本发明变速工具的部分立体示意图,其中揭示了驱动装置的另一 实施方式。
图 26是图 25 中驱动装置的立体分解图。
具体实施方式
参照图 1 至图 3b所示,是本发明变速工具控制系统的驱动装置第一实施 例的结构示意图。 一种变速工具 9 , 包括马达 2、 马达供电电源 1 , 启动 /停 止马达的主开关 13、 输出轴 6 以及齿轮传动机构 4。 齿轮传动机构 4包括由 第一行星轮 40与第一行星架组成的第一行星齿轮组、 由第二行星轮 42及第 二行星架 43 组成的第二行星齿轮组, 固定设置于工具壳体上的止转装置 44 以及可轴向移动的移动件 45。 驱动装置 5设置于齿轮传动机构 4上, 包括驱 动件 52及传动件 5 1 , 本实施例的驱动件是采用一电磁铁装置, 包括两个间 隔一定距离的永磁铁 521、设置于永磁铁中间的铁芯 523及线圏 522 , 其中铁 芯 523上设有一凹槽 524。 传动件为一弧形推杆 5 12及与该弧形推杆 5 12配 接的钢丝套 5 13。 所述推杆 5 12具有设置于凹槽 524 内的配接部。 所述移动 件 45是一具有内齿 45 1 及端齿 452 的调速环 45 , 其上设置容纳钢丝套 5 13 的环形槽 453。
当电磁铁通电时, 线圏铁芯 523将产生磁性而与两个永磁铁 521 的其中 一个发生吸引。 如果电磁铁的电流反向接通时, 铁芯 523则会与另一个永磁 铁 52 1产生吸引, 从而带动推杆 5 12、 钢丝套 5 13及调速环 45—起移动。 如 图 3 a所示的高速档状态,此时铁芯 523被其中一个永磁铁 521吸引,相应的, 调速环 45的内齿 45 1 同时与第一行星架 41及第二行星轮 42啮合,此时齿轮 传动机构 4的输出转速较高; 如图 3b所示的低速档状态, 此时铁芯 523被另 一个永磁铁 52 1吸引, 相应的, 调速环 45的内齿 45 1 与第二轮 42啮合, 同 时其端齿 452与工具壳体上的止转装置 44啮合,此时齿轮传动机构 4的输出 转速较低。
参照图 4a及图 4b所示, 是本发明变速工具控制系统的驱动装置第二实 施例的结构示意图。在前面所述的驱动装置第一实施例中采用的电磁铁装置, 其目的是通过控制电磁铁的电流方向来改变极性,来驱动调速环 45在高低速 档位间移动。 而本实施例中, 改用一伺服马达 525来作为驱动件, 用一个螺 杆 5 1 5、 带内螺紋的推杆 5 12及钢丝套 5 13来作为传动件 5 1 , 通过伺服马达 525的正反转来驱动推杆 5 12在螺杆 5 15上的移动, 从而带动调速环 45—起 移动, 实现高低速档位的啮合。
请进一步参照图 5 , 是本发明变速工具的控制系统原理方框图。 所述控 制系统 8 包括一处理单元 3及驱动装置 5。 其中处理单元 3 包括处理器 30及 相关输入 /输出电路。 一信号发生器 35 与处理器相连接, 而于变速工具主电 路电源 1 与处理器 30之间设置有功能开关 36。 驱动装置 5 由处理器 30输出 的控制信号所控制, 以便执行自动换档动作, 同时, 驱动装置会将档位信号 反馈给处理器 30。 在变速工具操作过程中, 根据操作者的习惯或者应用场合 的实际需要, 操作者可以选择将功能开关 36闭合, 从而启动控制系统 8的自 动换档控制功能, 换言之, 该功能开关 36提供了变速工具 9手动模式与 自动 模式之间的切换功能。 如果操作仅需要其中某一个档位功能时, 则可断开功 能开关 36 , 用手动模式对变速工具进行换档操作。
当变速工具 9处于自动模式时,控制系统 8的处理器 30检测变速工具的 物理参数的变化, 与预设值进行比较, 判断是否需要开始执行自动换档。 本 领域技术人员也可用处理器外接运放电路来代替处理器 30进行比较运算。这 里所述的物理参数, 可以是电气参数, 比如马达电流、 电压, 也可以是其他 参数, 比如马达或输出轴转速、 机械零件的应力、 扭矩等。 在某些使用场合, 操作者或许希望能够在自动模式下仍然可以自行决定换档的时间点, 也可通 过信号发生器 35手动输入一个控制信号, 使控制系统即时实现自动换档。
在自动换档过程中, 控制单元 3发出控制信号给驱动装置 5 , 驱动装置 5 中的驱动件 52 带动传动件 5 1 移动, 进而将齿轮传动机构 4 中的移动件 45 从高速档位移动至低速档位。 此过程中, 如果马达 2仍在给齿轮传动机构 4 传递扭矩, 即移动件 45仍具有一定的转速, 而移动之后需要与静止的止转装 置 44啮合(参图 3b ) , 就会造成移动件 45与止转装置 44之间发生打齿而无 法顺利啮合的问题。 本发明为解决这个问题提出了三种解决方案, 以下分别 进行说明。
参照图 6 , 是本发明变速工具控制系统的控制单元第一实施例原理方框 图。 其中处理单元 3 包括处理器 30、 速度调制电路 3 1、 负载检测电路 32、 驱动装置控制电路 33及档位信号反馈电路 34。 在变速工具 9 的主电路中, 电源与马达之间进一步设置一电器开关 10 (比如场效应管、 可控硅或继电器 等), 该电器开关 1 0由速度调制电路 3 1控制通断状态。
当变速工具开机时, 处理器 30控制电器开关 1 0滞后一段时间 (如 0. 1 s ) 再导通, 在此段时间内, 首先发出指令给驱动装置控制电路 33 , 给电磁铁反 向通电, 将驱动装置 5复位至高速档位状态。 然后电源 1供电让马达 2启动 并处于高速档正常运行。 此时输出轴 6带动工作头 (未图示) 开始进行钻孔 加工。 负载检测电路 32以特定频率采集马达的负载电流, 处理器 30则将负 载检测电路 32所采集到的马达负载值与预设电流值进行比较。如果马达负载 电流出现长时间超出预设电流值的情况, 则说明工作头负载大, 工具需要换 至低速档大扭矩输出状态。 此时处理器 30先发送指令给速度调制电路 3 1 , 控制电器开关 1 0切断电源令马达停转, 马达电流变为零。 此时调速环的速度 也会降低至零转速。
之后, 处理器发出指令给驱动装置控制电路 33 , 使驱动装置 5的电磁铁 反向通电, 铁芯 523带动调速环 45发生移动, 从而实现高速档位向低速档位 的转换。 因为在换档之前, 调速环 45的转速已经为零, 在其档位转换至低速 档过程中, 其端齿 452与止转装置 44的内齿 44 1均为静止状态, 因此可以很 顺利的进入啮合位置, 而避免打齿问题的发生。
控制单元 3中的档位信号反馈电路 34在检测到电磁铁的铁芯 523与另一 个永磁铁 521接触时 (本领域技术人员也可以设计成检测调速环与齿轮组件 之间的啮合位置关系 ), 则代表调速环 45 已经成功移动至低速档位, 处理器 则发出指令给速度调制电路 3 1 , 使电器开关 10导通, 电源 1 恢复给马达 2 供电, 马达进入低速大扭矩输出工作状态。
需要说明的是, 变速工具在高速正常运行过程中, 往往因某些特殊情况 出现马达负载电流短时大负载值出现, 为了防止换档动作误启动的情况, 可 以通过设定处理器的程序来解决, 只有当负载检测电路所采集到的马达电流 超出预设值一定的时间 (比如设计时间为 0.5 s ) 时, 才开始执行换档控制。 当然, 也可直接将功能开关 36切断来直接选择手动模式, 避免不希望自动换 档时误启动换档动作。 而预设的电流值则根据工具的高速档极限工作电流值 来决定, 在本实施例中以 30安培为预设值。 另外, 如果操作者希望在某个时 刻启动自动换档, 即便是马达负载电流还没有超出预设值, 也可通过处理器 30上的信号发生器 35 来输入一个控制信号, 从而即时开始执行自动换档动 作。 进一步的, 处理器也可以设计成具有学习功能, 即, 记录操作者每次通 过信号发生器输入控制信号时的马达负载电流,作为设定系统预设值的参考。
上述在自动换档之前控制单元 3控制电器开关 10让马达 2短时停机只是 其中一种实施方式。 在通常情况下, 马达 2的转速如果降低至很小的程度时, 换档过程中调速环 45与止转装置 44的啮合同样不会出现打齿的问题。 参照 图 7所示, 是本发明变速工具控制系统的控制单元第二实施例。 在变速工具 9 的主电路中, 电源与马达之间的电器开关 1 0用场效应管 1 1 来代替, 在需 要进行自动换档时, 速度调制电路 3 1通过控制场效应管 1 1来提供马达相应 的工作电压, 以达到降低马达转速的目的, 从而使调速环 45 与止转装置 44 的速度相互匹配, 防止打齿现象的发生。 这里所指的速度相互匹配是指调速 环 45与止转装置 44的相对速度达到一个可以使二者顺利进入啮合位置的范 围。
同样, 如图 8所示, 是本发明变速工具控制系统的控制单元第三实施例。 在马达 2与齿轮传动机构 4之间设置一离合器 12 , 速度调制电路 3 1控制该 离合器 12降低马达 2传递至齿轮传动机构 4的扭矩,也可以实现速度调制的 目 的, 即在调速环 45移动至与止转装置 44啮合的位置之前, 降低调速环 45 的转速, 以防止啮合过程中出现打齿的问题。
综合上述几种速度调制的实施例, 可以看出本发明精神主要在于: 控制 单元 3在检测到马达 2 负载长时间超出预设值时,通过速度调制电路 3 1对移 动件 45与齿轮组件进行速度调制, 在二者的相对速度相互匹配时, 再进入下 一档位啮合状态, 或者说, 控制单元先调整马达传递给齿轮传动机构的扭矩, 再控制驱动装置实现自动换档, 从而有效避免自动换档过程中的打齿问题。
另外值得一提的是, 在自动换档动作结束后, 电源 1恢复给马达 2供电, 马达 2从极低转速甚至是零转速状态瞬时进入低转速大扭矩输出状态, 会给 操作者造成一个很大的启动扭矩, 如果操作者握持不紧, 甚至会导致工具从 操作者手中松脱而造成危险。 为解决此问题, 可以通过控制场效应管 1 1 (参 图 7 ) 来实现马达 2 的软启动。 具体而言, 在自动换档结束后, 恢复马达 2 供电时, 控制单元 3在一个设定的时间段内 (比如 0.6s ) , 通过定频调宽或定 宽调频等方式来控制场效应管, 来逐渐增加马达 2的负载电压, 緩慢恢复马 达 2至工作电压, 从而避免换档后瞬间启动马达给操作者带来的冲击感觉。
应用以上所揭示的结构, 本发明的变速工具的变速控制方法是, 提供一 种变速工具包括电源 1、 马达 2、 输出轴 6、 连接马达和输出轴的齿轮传动机 构 4 ,以及控制系统 8 ,其中齿轮传动机构 4 包括至少一齿轮组件及一移动件, 所述移动件与齿轮组件不同的啮合方式可提供输出轴不同的输出档位; 控制 系统 8 由控制单元 3及驱动装置 5组成, 这种变速控制方法包括:
1 ) 负载扭矩检测步骤: 所述控制系统检测变速工具物理参数, 比如检测 马达 2 负载电流、 电压或输出轴转速, 判断变速工具的工作状态;
2 ) 自动换档步骤: 控制齿轮传动机构的移动件移动至另一档位。
所述负载扭矩检测与 自动换档步骤之间进一步包括一速度调制步骤, 当 所述输出轴的负载扭矩变化到预定值时, 所述控制单元调整马达传递给齿轮 传动机构的扭矩, 使移动件与齿轮组件的转速相互匹配, 即调速环 45与止转 装置 44的相对速度达到一个可以使二者顺利进入啮合位置的范围。 传动机构的扭矩。
在自动换档步骤之后, 进一步包括移动件档位检测步骤, 以确认移动件 已经移动至另一挡位。
在速度调制步骤之后, 还包括一马达软启动步骤, 控制系统在预设的时 间范围内逐步加大马达的输入电压, 使马达恢复扭矩输出。
以下结合图 9对本发明变速工具的自动速度切换的时机进行说明。 图 9 所示的是变速工具的整机输出效率 η 随输出轴负载扭矩 Τ的变化曲线图。 其 中整机的输出效率 η 为输出轴的输出功率与马达的输出功率的比值, η Η 曲 线为整机在高速运转时的输出效率曲线, T(L曲线为整机在低速运转时的输出 效率曲线。 由图中可以看出, 当整机在高速运转时, 随着负载的增加, 输出 效率开始迅速增大, 当达到最高的输出效率点后随即迅速降低; 当整机在低 速运转时, 随着负载的增加, 输出效率开始緩慢增大, 而当达到最高的输出 效率点后即緩慢降低。 在负载扭矩值等于 Tc时, 高速效率曲线 η Η和低速效 率曲线 T( L在此交会, 其交点为 T( c。 而在此之前, 整机在高速运转时的输出 效率要高于在低速运转时的输出效率; 在此之后, 则随着负载的继续增加, 整机在高速运转时的输出效率要低于在低速运转时的输出效率, 所以, 当负 载扭矩值达到 Tc时, 将整机的运行速度从高速切换到低速, 可以确保变速能 够一直保持较高的输出效率。 本发明变速工具希望通过确定负载扭矩值达到
Tc的时间点, 然后执行高速到低速的切换。
如图 9所示, 在本实施方式中, 控制系统会检测通过马达的电流的变化, 用来表征输出轴的负载钮矩。 其中 IH为输出轴在高速运转时的电流曲线。 起 初, 输出轴工作在高转速, 当负载扭矩值达到 Tc时, 此时, 检测到马达的电 流值为 Ic , 在本实施方式中, Ic=30A (安培), 然后, 控制系统控制驱动装 置执行从高速到低速的切换。 需要说明的是, 由于不同类型的马达的特性各 不相同, 如采用不同的马达, 则输出效率的曲线也会有不同, 如此对应的 Ic 值也有可能不同。 此外, 本实施方式中采用监测马达的电流值来反映输出轴 的负载, 在其他实施方式中, 可以通过检测其他物理参数来反映输出轴的负 载。 如输出轴的扭矩、 输出轴的转速、 马达的转速、 齿轮传动系统中齿轮的 转速或扭矩等, 或者在采用直流电源供电时, 也可以检测电池端子的电压变 化等方式来表征输出轴的负载。 图 10-图 14所示的是本发明变速工具的另一种实施方式, 在本实施方式 中, 电磁铁装置采用双向保持式电磁铁。 所谓双向保持式电磁铁即在不通电 的情况下也可以将铁芯保持在行程的始端和终端两个位置。 如图 14所示, 电 磁铁装置 53 包括纵长设置的金属壳体 53 1、设置在金属壳体内沿纵长方向分 布的两个线圏 532、设置在两个线圏之间的永磁体 533、设置在被线圏围绕的 区域内并可沿纵长方向线性移动的铁芯 534 , 以及相对于铁芯固定设置并纵 长延伸出金属壳体 53 1 外的推杆 535。 其中, 推杆 535 凸伸出金属壳体 53 1 的前端部分设有凹槽 536。 对于本领域普通技术人员可轻易想到的是, 推杆 53 1和铁芯 534也可一体设置。 图 14中所示的是推杆 535处于后退位置, 并 由于永磁体 533的吸引而可以在不通电的情况下保持在该位置。 配合参照图 1 0和图 12所示, 一传动架 54设置在钢丝套 5 1 3和推杆 535之间, 其包括环 绕齿轮箱 47延伸的半圆形托架 541、 以及自托架底部向下延伸出并间隔设置 的一对侧壁 542。 其中托架 541 的两端与钢丝套 5 13的径向凸伸出减速箱 47 壳体的两端分别相固定连接, 侧壁 542的间隔区域内收容有电磁铁装置 53 , 侧壁轴向向后延伸并嵌合在推杆 535的凹槽 536中而与推杆保持相对固定。 如图 12所示, 传动架 54和机壳 21之间设有导引机构。 其中传动架 54的一 对侧壁 542各侧向延伸出一导引柱 543 , 机壳 21 的每侧内壁上凸设有一对肋 板 544 , 其间形成有导引槽 545以相应收容并导引每一导引柱 543。
图 10中所示的电磁铁装置 53 中的推杆 535处于前进位置, 即推杆延伸 出金属壳体外较长距离, 并由于永磁体的吸引而保持在该位置。 此时, 齿轮 传动机构的减速比较低, 马达通过齿轮箱后传递给输出轴转速较高, 也就是 说, 内齿圏 45 (或称调速环, 即本实施方式中的移动件) 的内齿与行星轮 42 的外齿以及邻近的行星架 41 的外齿同时啮合而确保相对固定 (配合参照图 3 a所示), 从而可随行星架和行星轮一起旋转。 配合参照图 14 , 当电磁铁装 置 53的线圏 532 内通正向电流后,线圏 532产生的磁场在金属壳体 53 1 的纵 长两端产生不同的磁极, 从而驱动铁芯 534和推杆 535移动到后退位置。 如 图 10所示, 推杆 535带动传动架 54、 钢丝套 5 1 3和内齿圏 45—起移动距离 d , 到达了如图 1 1 所示的位置。 配合参照图 3b 所示, 在此过程中, 内齿圏 45沿轴向移动而与行星架 41脱离啮合, 但与行星轮 42仍保持啮合。 当推杆 53移动到后退位置时,内齿圏 45与止转装置 44啮合而与机壳保持相对固定。 此时, 齿轮传动机构 4的减速比增加了一级, 从而马达通过齿轮箱后传递给 输出轴的转速较低。 当线圏 532 内通反向电流后, 线圏形成反向的磁场, 如 此, 推杆 535回到如图 1 0所示的后退位置, 从而齿轮传动机构 4回复到高减 速比的输出状态。
图 13所示的是功能开关 36的一种实施方式。 在本实施方式中, 该功能 开关可称之为速度模式开关。 配合参照图 16 中的速度模式开关 36 , 该开关 包括凸露在机壳 21外的拨钮 361 , 以及设置在机壳内与其他电子组件连接的 导电端子。 拨钮 361可在机壳 2 1上沿圆周方向在三个位置滑移, 分别对应自 动模式 ( A )、 高速模式 ( H )、 低速模式 ( L )。 导电端子包括与该三种模式分 别对应的第一、 第二、 第三信号端子 362 , 以及接地端子 363。 关于速度模式 开关与控制系统中其他电子组件的电路连接以及工作流程将会在后续详细描 述到。
图 15所示的是信号发生装置 35的一种实施方式。 在本实施方式中, 该 装置包括设置在机壳 2 1 内的速度切换开关, 当该开关被按下触发后, 控制系 统即改变供给电磁铁装置的电流的流向而实现自动换档, 即通过电磁铁的驱 动实现齿轮传动机构在高减速比和低减速比之间的切换。 如图 16所示, 作为 优选的实施方式, 该装置 35 包括两个该速度切换开关, 对称设置于机壳 21 的两侧, 按下任何一个开关都可以触发速度的切换, 这样, 对于左、 右手使 用者都可以方便地进行操作。 图 17a和图 1 7b所示的是开关的具体形式。 图 17a中的开关为按钮开关 35 1 , 其通过导线 35 12与控制系统中的电子元件电 性连接 (后续将作进一步描述)。 机壳上设置有弹性的按压片 353 , 按下按压 片, 按钮 35 1 1也被按下, 开关内的触点 (未图示)接通, 从而速度切换功能 被触发。 图 17b 中采用弹片式开关 352 , 同样, 按下按压片 353 , 弹片 3521 与触点 3523接通, 此时, 一电信号将被生成并传递给控制系统, 从而控制系 统执行速度切换程序 (后续将作具体描述)。 返回图 16 , 本实施方式中, 速 度模式开关 36和信号发生装置 35可结合使用。速度模式开关 36的拨钮位于 档位 A时, 即处于自动模式时, 速度切换功能被屏蔽, 也就是说, 按下速度 切换开关并不会触发速度切换功能; 而当速度模式开关的拨钮位于档位 H或 L 时, 即处于高速或低速模式时, 自动速度切换的功能被屏蔽, 这时, 按下 速度切换开关就可以触发速度切换功能, 从而高速模式会相应切换到低速模 式, 而低速模式则会相应切换到高速模式。
在本实施方式中, 机壳 2 1 上还设置有一侧手柄 22 , 在轴向上该侧手柄 22距离信号发生装置 35的开关按钮的位置具有一特定距离 h ,该距离可容许 使用者的握持恻手柄的手可同时操作开关按钮。 例如, 当使用者在进行操作 时想要切换速度, 其可以用握持恻手柄的手的大拇指按压开关按钮, 从而获 得其想要的速度。 当然, 对于本领域普通技术人员可轻易想到的是, 上述开 关按钮也可以靠近主手柄 23 ( 图 10所示)设置而与主手柄间形成特定距离, 从而使用者也可以用握持主手柄的手来同时执行速度切换的操作。
图 18 和图 19揭示的是信号发生装置 35 应用的其他两种实现方式。 图 18 所示的速度模式开关 36 不包括自动模式挡位, 这样, 只要按下速度切换 开关, 速度切换功能就会被瞬时启动, 即从目前高速或低速档位相应切换到 低速或高速档位。 图 19所揭示的实施方式不包括速度模式开关, 该实施方式 中, 变速工具运行在自动模式下, 并且机壳 21上设有表示工具目前运行速度 状态的 LED灯, 如目前工具处于高速运行, 则" H"LED灯 371常亮, 反之, 则" L"LED 灯 372 常亮。 本实施方式中, 工具开机运行后默认在自动模式下 运行,一旦信号发生装置 35被触发,则控制系统 8中断自动运行模式, 同时, 控制系统 8控制电磁铁装置 53切换齿轮传动机构 4的减速比,即切换目前的 速度运行状态, 如由高速切换到低速。 如信号发生装置 35再被触发, 则目前 的速度运行状态再次被切换, 如又从低速切换到高速。 所以, 在本实施方式 中, 一旦速度切换的自动模式被中断, 则进入了由信号发生装置控制的手动 速度切换模式。 当然对于本领域普通技术人员可轻易想到的是, 上述信号发 生装置及具体的速度切换方式可应用于具有两级以上的减速比切换, 如具有 高、 中、 低三速的齿轮传动系统。
图 20所示的是本发明变速工具一具体实施方式中的筒化的电路图。该实 施方式中, 变速工具由外部直流电源 1提供电力, 该外部直流电源为由若干 电池组成的电池包。 作为优选的实施方式, 该电池包可以是锂离子电池包。 需要说明的是, 这儿所说的锂离子电池是负极材料为锂元素的可充电电池的 总称, 依据正极材料的不同, 其可构成许多体系, 如 "锂锰,, 电池, "锂铁" 电池等。 在本实施方式中, 锂离子电池包包括由由五节 3.6V (伏) 的锂离子 电池串联成额定电压为 18V的电池组。 当然, 对于本领域普通技术人员可轻 易想到的是, 可以视需要而串联更多或更少的电池来组成电池组, 如串联四 节 3.6V (伏) 的锂离子电池成额定电压为 14.4V的电池组, 或串联六节 3.6V (伏) 的锂离子电池成额定电压为 21 .6V的电池组。 本实施方式中, 电池包 1 内还设有代表该电池包电压的识别电阻 386, 用来被电动工具识别, 从而确 定相应的电池包过放保护方式。
如图 20所示, 同时可配合参照图 6所示, 本实施方式中, 变速工具的变 速系统包括处理器 30、 速度调制电路 31、 马达负载检测电路 32、 驱动装置 控制电路 33、 档位信号反馈电路 34、 信号发生装置 35、 以及功能开关 36。
处理器 30可以采用 MCU、 PLC或者 CPU等。 在本实施方式中, 处理器 30 为一微电脑控制系统(MCU), 本领域技术人员可易于想到的是, MCU 通 常包括有中央处理单元(CPU)、 只读存储器(ROM)、 随机存储器(RAM)、 数字 I模拟转换单元(A/D converter)、 计时器(timer)、 输入 /输出 端 口 (I/O p 0 rt ) P 1 - P 28等, 由于这些单元或功能模块的工作原理都为本领域的普通技术 人员所熟识, 所以申请人在此不再予以赘述。
如图 20所示, 主开关 13 串联在电池包 1和主电路之间, 可用于控制主 电路的通断。 当主手柄 23上的按钮 131 (如图 10示) 被操作者压下时, 主 电路被接通, 通过直流电源转换模块( DC/DC ) 381, 电池包 1 的电压被转换 成一个较低的恒定电压, 在本实施方式中为 5V, 用来为处理器 30、 及电子 电路提供电力。在本实施方式中,处理器的端口 P20与直流电源转换模块 381 连接, 端口 P19接地, 端口 P1 与直流电源转换模块 381通过电阻 R5连接, 从而在主开关 13 闭合后, 经直流电源转换模块 381 转换后的电流通过端口 P 20输入处理器,且处理器从端口 P 1接收到一个复位信号而执行初始化动作。 主开关 13不仅可用于控制电路的通断, 还进一步可以用于控制马达的转速。 本实施方式中, 主开关 13 包括一电位器 ( potentiometer), 其用来测量按钮 在操作者按压的作用下所移动的距离并产生一个与该移动距离成比例的一个 电信号, 如电压值信号, 该电信号通过端口 P2传送给处理器 30, 而后处理 器的数字 /模拟转换单元将该电信号转换成数字信号并进行处理而生成相应 的控制信号。 在本实施方式中, 该控制信号为脉宽调制 ( P WM, Pulse Width Modulation) 信号, 用于控制施加到马达 22上的电压, 其通过处理器 30 的 端口 P12输出给速度调制电路 31。 速度调制电路 31 由电阻 R19、 功率开关 驱动器组成。 其中功率开关驱动器有若干三极管组成, 其用于调节 MOSFET 的占空比, 也就是说, 功率开关驱动器根据接收到的 PWM信号, 来提高或 降低单个周期内电压信号的持续输出时间, 从而通过功率开关元件 10 ( 即电 器开关)来控制马达 22的运转速度。 其中功率开关元件 10可以半导体开关, 在本实施方式中为金属氧化物半导体场效应晶体管( MOSFET, metallic oxide semiconductor field effecttransistor )。
处理器 30的端口 P3可与电池包 1连接来采集电池包的工作电压, 以便 于监测电池包的放电情况, 并且在电压过低时采取相应的措施来提醒使用者 或切断供给马达的电力。 如图 20所示, 处理器 30的端口 P 1 8、 P 17、 P 16、 P 15通过电阻 R22、 R23、 R29、 R30与发光二极管 D2、 D3、 D4、 D5连接。 这些发光二极管可以设在机壳上, 用来表示电池包 1 的剩余电量, 其中 D2、 D3、 D4发射绿光, 而 D5发射出红光。 当电量充足时, D2、 D3、 D4均常亮, D5 不亮; 当电量中等时, D3、 D4常亮, D2、 D5 不亮; 当电量低时, D4 常亮, D3、 D2、 D5均不亮; 而当电量不足时, D2、 D3、 D4均不亮, 而 D5 常亮; 当电量严重不足时, D2、 D3、 D4 均不亮, 而 D5 闪烁, 在此时, 为 避免电池包过放而发生危险, 处理器的端口 P 12被阻断而无法向马达提供电 力。 在本实施方式中, 对于额定电压 Vb= 18V的电池包而言, 当 12.5V < Vb < 14.5V时, 表示电池包电量不足, 从而 D2、 D3、 D4均不亮, 而 D5常亮; 当 Vb < 12.5 V时, 表示电池包电量严重不足, 从而 D2、 D3、 D4均不亮, 而 D5 闪烁, 同时, 处理器 30的端口 P 12被阻断。
为监测马达 22的运行状态, 处理器会实时检测通过马达的工作电流。 如 图 20所示, 一检测电阻 383与开关 10和马达 22 串联, 一放大器 382用于将 检测电阻 383上产生的压降信号放大并通过端口 P4输入到处理器 30 , 以便 于处理器 30检测通过马达 22的电流。另外, 电路中还包括过流保护电路 37 , 其包括一比较器 384 , 其通过电阻 R18 采集 R6上的压降信号, 并与输入的 参考电压信号 Vref 作比较。 当采集到的电压值大于参考电压 Vref 时, 比较 器 384将初置的高电平状态转换为低电平状态, 并通过电阻 R24将低电平信 号输出给处理器 30的端口 P21。 此外, 为避免马达 22工作温度过高, 可利 用热敏电阻 385的阻值随温度变化而线性变化的特性来检测马达的温度。 热 敏电阻 385与电阻 R10 串联组成分压电路, 处理器 30的端口 P5通过导线连 接在 385与电阻 R10之间, 来检测热敏电阻 385上的电压变化, 从而便于处 理器 30实时监测马达 22温度的变化, 并在马达温度超过预定值, 断开供给 马达的电力。
控制系统还包括用于识别电池包 1 电压的识别电路。 在本实施方式中, 该识别电路是在电池包 1 与变速工具连接后由识别电阻 386 , 以及电阻 R13 和 R21组成的分压电路。 处理器端口 P7通过电阻 R21连接在电阻 R13和识 别电阻 386之间, 用来感测识别电阻 386上的压降, 从而确定电池包 1 的电 压, 并执行相应的过放保护的程序。
本实施方式中, 驱动装置控制电路 33为一 H桥电路, 处理器 30通过端 口 Pll、 P9、 P10、 P6分别连接到 H桥电路的四个输入口 A、 B、 C、 D, 该 四个输入口分别通过电阻 R4、 Rl、 R2、 R3 与功率开关元件 Q4、 Ql、 Q2、 Q3连接, 电磁铁装置 5连接在功率开关元件 Q1和 Q2的连接点 H以及功率 开关元件 Q3和 Q4 的连接点 L之间, 且 H桥电路的一端接电池包电源, 另 一端接地。在本实施方式中,上述功率开关为半导体开关,且最好为 MOSFET。 处理器通过通断四个输入口 A、 B、 C、 D来控制电磁铁装置 53。 例如, 当输 入口 A、 B接通, 而输入口 C、 D断开时, 功率开关元件 Q1和 Q4接通, 此 时电流的流向为从连接点 H到连接点 L, 相应地, 电磁铁装置 53的推杆 535 带动内齿圏 45从如图 10所示的高速位置移动到图 11所示的低速位置。反之, 当输入口 A、 B断开, 而输入口 C、 D接通时, 电磁铁装置 53的推杆 535带 动内齿圏 45从低速位置移动到高速位置。
档位信号反馈电路 34包括一开关 387, 以及电阻 R25、 R26、 R27、 R28。 在本实施方式中, 开关 387为一单刀双位开关, 其包括触点 HI和触点 L1, 其中, 触点 L1和处理器的端口 13连接, 触点 HI和处理器的端口 14连接。 对于本领域的普通技术人员可轻易想到的是, 具体实施时, 触点 HI 和触点 L1 可以是设置在机壳上的传动架行程两端的簧片, 传动架上则设置有金属 片, 如铜片, 到传动架运动到高速位置时, 其金属片与相应的簧片接触而接 通触点 HI; 反之, 则接通触点 Ll。 如图 20所示, 当传动架运动到低速位置 时, 触点 HI被断开而触点 L1被接通, 此时, 端口 13会检测到一个低电平 信号, 端口 14会检测到一个高电平信号, 从而处理器 30判断目前齿轮传动 机构在高减速比下工作; 反之, 当传动架返回到高速位置后, 端口 14会检测 到一个低电平信号, 端口 13会检测到一个高电平信号。 对于本领域普通技术 人员可轻易想到的是, 金属片和簧片可相应设置在内齿圏和齿轮箱上, 或设 置在电磁铁装置的推杆和壳体上。
本实施方式中, 功能开关 36采用的是如图 16所示的可切换三种速度模 式的速度模式开关, 即在高速模式、 低速模式、 和自动模式之间切换。 如图 20所示, 速度模式开关 36是一个单刀三位开关, 其具有三个触点 L2、 H2、 A, 分别通过电阻 R14、 R15、 R16连接到处理器的端口 P26、 P25、 P24。 当 速度模式开关 36位于如图中所示的位置, 即触点 A接通, 而触点 H2和触点 L2都断开, 此时, 处理器 30检测到端口 P24为 氏电平信号, 而端口 P25、 P26 均为高电平信号, 如此, 处理器将调用并运行自动换档的程序 (后续将 对此进行详细描述)。 而当触点 A断开, 触点 H2或触点 L2接通时, 处理器 30不会调用并运行自动换档的程序。
信号发生装置 35的两个开关 S2、 S3并联, 并通过电阻 R17与处理器 30 的端口 P23 连接。 当开关 S2、 S3 中任一个被压下时, 将产生一个电信号并 通过端口 P23输入处理器 30, 如此, 处理器 30将会中断目前正在运行的程 序而调用速度切换程序 ( 以下将会作详细描述)。
接下来, 配合图 21和图 22以分别说明处理器的执行自动变速的工作流 程以及速度切换的工作流程。
参照图 21, 同时配合参照图 20所示, 当主开关 13 闭合后 (步骤 711 ), 处理器端口 P1 接收到复位信号, 从而处理器执行初始化动作 (步骤 712)。 而后, 处理器通过端口 3采集电池包的电压信号 (步骤 713 ), 以判断电池包 是否处于可正常应用的状态, 即判断电池包电压是否小于 12.5V, 如果是, 表明电池包已经过放, 不适于再进行放电, 从而可以阻断端口 P12输出 PWM 信号; 如果否, 表明电池包可正常使用, 接下来, 检测速度模式开关 36 目前 所选择的模式 (步骤 714)。 如果速度模式开关 36选择的是自动模式, 则进 一步判断电磁铁装置 53是否处在高速位置 (步骤 715 ), 如果是, 则继续下 一步骤; 如果不是, 则处理器接通输入口 C、 D, 并断开输入口 A、 B, 从而 给电磁铁装置 53 通反向电流而驱动推杆移动到高速位置 (步骤 718)。 如果 速度模式开关 36选择的是高速模式,则进一步判断电磁铁装置是否处在高速 位置 (步骤 716), 如果是, 则继续下一步骤; 如果不是, 则驱动电磁铁装置 而促使推杆移动到高速位置 (步骤 719)。 如果速度模式开关 36选择的是低 速模式, 则进一步判断电磁铁装置是否处在低速位置 (步骤 717), 如果是, 则继续下一步骤; 如果不是, 则处理器断开输入口 C、 D, 并接通输入口 A、
B, 从而给电磁铁装置通正向电流而驱动推杆移动到低速位置 (步骤 720 )。
接下来, 通过 LED灯 D2-D5显示电池包的剩余电量 (步骤 721 ), 并在 电量严重不足时切断供给马达的电力; 实时检测电池包的电压 (步骤 722 ), 并在电池包过放时切断供给马达的电力; 检测扳机开关的按压深度 (步骤 723 ); 根据扳机开关的按压深度来输出相应的 PWM信号 (步骤 724 ); 检测 马达电流 (步骤 725 )。
判断速度模式 (步骤 726 ) , 如果控制系统目前运行在高速模式或低速模 式, 则判断马达电流是否持续 500ms (毫秒) 大于 90A (安培) (步骤 727、 729 ) , 如果是, 表明马达有可能发生堵转等异常情形而导致电流过大, 因此, 为保护马达, 断开供给马达的电流 (步骤 728、 730 ); 如果不是, 则返回步 骤 72 1。 如果控制运行在自动模式, 则判断马达电流是否持续 300ms (毫秒) 大于 90A (安培) (步骤 73 1 ) , 如果是, 表明马达有可能已发生堵转, 则执 行自动换档的步骤; 如果不是, 则继续判断马达电流是否持续 500ms (毫秒) 大于 30A (安培) (步骤 732 ) , 如果是, 表明工具高速输出的效率即将低于 低速输出的效率, 如此则执行自动换档的步骤; 如果不是, 则返回步骤 721。
在本实施方式中, 自动换档步骤包括步骤 733-步骤 736。 首先, 为避免 打齿, 暂时停止向马达提供电力 (步骤 733 ) , 即处理器暂时阻断端口 P 12输 出信号, 从而使马达以及内齿圏的转速降下来。 而后, 处理器控制 H桥电路 给电磁铁装置通正向电流, 即处理器接通输入口 A、 B , 并断开输入口 C、 D , 从而使电磁铁装置驱动推杆从高速位置移动到低速位置 (步骤 734 ) , 并在移 动到低速位置时, 触发开关 S5而使触点 L 1接通。 然后, 软启动马达 (步骤 735 ) , 即处理器通过端口 P 12输出的 PWM信号逐步增加电压信号的脉宽, 从而促使马达慢慢地回复到正常的运转速度。 再后, 处理器根据端口 1 3接收 到的低电平信号而设定低速标记 (步骤 736 ) , 接下来, 返回步骤 721。 需要 说明的是, 由于内齿圏在推杆的驱动下从高速位置运动到低速位置需要一段 时间, 所以, 在其他实施方式中, 也可以是由处理器先驱动电磁铁装置, 然 后在马达暂停的步骤。 在这个过程中, 只需要确保在内齿圏和止转装置啮合 前, 马达驱动力已经不存在, 如此, 即使内齿圏的速度还没有降到零, 但由 于其不具有主动旋转的驱动力, 所以, 可以与止转装置啮合而很快静止下来。
参照图 22 , 并配合参照图 20所示, 当处理器的端口 23接收到一个中断 信号时,处理器会停止目前正在运行的程序并调用速度切换程序(步骤 75 1 )。 处理器首先通过端口 2 1检测马达电流是否过大(步骤 752 ) ,如大于 100A(安 培), 如果是, 表明马达已经堵转, 则停止向马达供给电流 (步骤 753 ); 如 果否, 则检测速度模式开关目前处于何种模式(步骤 754 )。 如果是自动模式, 则中断返回, 即处理器继续执行原程序 (步骤 767 ); 如果是高速模式或低速 模式, 则需要判断马达是否处于空载。 由于有负载时相对于空载时马达速度 降低地更快, 所以相比有负载时, 空载时马达电力切断后, 需要更长的时间 才能使马达停下来。 如果是高速模式, 判断马达电流是否持续 500ms (毫秒) 大于 30A (安培) (步骤 755 ) , 如果是, 表明有负载, 随后停止供给马达的 电力并延迟 0.5 S (步骤 756 ); 如果不是, 则停止供给马达的电力并延迟 2 S (步骤 757 )。 如果是低速模式, 判断马达电流是否持续 500ms (毫秒) 大于 30A (安培)(步骤 76 1 ) , 如果是, 表明有负载, 随后停止供给马达的电力并 延迟 0.5 S (步骤 762 ); 如果不是, 则停止供给马达的电力并延迟 2S (步骤 763 )。 在执行停机延迟, 接下来处理器驱动电磁铁装置执行从高速到低速或 从低速到高速的切换 (步骤 758、 764 ) , 随后启动马达 (步骤 759、 765 ) , 并 相应设定低速标记或高速标记(步骤 760、 766 ) , 而后返回原程序(步骤 767 )„ 图 23 a、 23b、 和 24揭示了本发明变速工具的另一种实施方式。 与之前 提到的实施方式的不同之处在于, 该实施方式中, 驱动装置包括小电机 55、 和用于传递小电机的旋转输出的一传动机构。 本实施方式中该传动机构包括 具有一输出轴 561 的小齿轮传动机构 56、 固定设置在输出轴 561上的一齿轮 57 , 以及可旋转地设置在齿轮箱 47外部的一圆形套筒 58。 上述小电机 55和 小齿轮传动机构 56是指相对于传统的电机和齿轮传动机构,如马达 2和齿轮 传动机构 4 , 其尺寸大大减小以为满足特殊应用而设计的电机和齿轮传动机 构。 圆形套筒 58具有相对地设置在其圆周壁上的一对导引槽, 用来收容并导 引钢丝套 5 13的两相对末端。圆形套筒 58还具有设置在其圆周壁外表面上的 外齿 584 , 用以和齿轮 57配合。每一导引槽包括基本垂直于一轴线(如图 23 a 和 23b的虚线所示) 的第一、 第二段 58 1、 583 , 以及位于第一、 二段 58 1、 583之间并沿轴线倾斜延伸的一第三段 582。
图 23 a、 23b 分别表示的是本实施方式中变速工具处于高速和低速状态 下。 当启动小电机 55 , 相对于输出轴 561 固定设置的齿轮 57获得一旋转速 度, 并通过与圆形套筒 58的外齿 584间的配合驱动套筒 58旋转。 需要注意 的是, 本实施方式中, 钢丝套 5 13被只能沿轴线方向运动的方式设置在齿轮 箱 47 内。 从而, 当圆形套筒 58旋转时, 钢丝套 5 13被导引槽的第三段 582 驱使而沿轴向运动,并且移动件 45随钢丝套 5 13—起沿轴向从一速度位置移 动到另一速度位置从而实现自动变速。 同之前的实施方式, 小电机可以连接 在一 H桥电路中, 并由 处理器控制, 通过改变施加在 H桥电路上的电流方 向来改变电机的旋转方向, 从而实现高速和低速之间的切换。 另外, 本领域 的普通技术人员可轻易想到的是,如果采用的小电机的输出扭矩足够大的话, 可以省去小齿轮传动系统, 如此, 同样可以达到速度切换的效果。
图 25和图 26所示的是本发明电动工具的驱动装置的另一实施方式。 与 上一实施方式类似的是, 驱动件仍采用小电机 55 , 但传动机构却不同。 如图 25所示, 在本实施方式中, 传动机构包括由小电机 55旋转驱动的螺杆 565、 设置在螺杆 565 和钢丝套 5 1 3 之间并可被螺杆 565 驱动而线形移动的托架 575、 以及用于导引托架 575 的导引座 586。 如图 26所示, 螺杆 565 沿轴向 延伸设置, 其一端套设在小电机 55的输出轴 (未标示)上, 另一端通过一连 接套筒 566可旋转的设置在导引座 586上。 位于螺杆 565的两端之间的杆体 上凸设有连续的螺旋状凸紋 565 1。 导引座 586 固定设置在齿轮箱 47的底部, 其形成有沿轴向延伸的导轨 587。 托架 575 包括底座 576和由底座 576 两侧 向上延伸出的一对侧臂 577 , 每一侧臂的顶部凹设有卡槽 5771 , 可相应收容 钢丝套 5 13的末端。 托架 575的底座 576的顶部形成有导引槽 5761 , 可与导 引座 586的导轨 587配合而沿轴向滑移。 底座 576的底部凹陷形成有沿轴向 延伸的凹槽 5762 , 且凹槽 5762 的内壁上进一步凹陷形成有与螺杆 565 的螺 旋状凸紋 565 1相应配合的螺旋槽 5763。
小电机 55启动后,螺杆 565被旋转驱动,继而托架 575被螺杆 565驱动, 由于受到导引座 586导轨 587的导引, 托架 575沿轴向线性移动, 进一步带 动钢丝套 5 13沿线性移动。 从而, 通过小电机 55的旋转可实现工具在高速和 低速之间的切换。如之前所述的实施方式, 小电机可以连接在一 H桥电路中, 并由 处理器控制, 通过改变施加在 H桥电路上的电流方向来改变电机的旋 转方向, 从而实现高速和低速之间的切换。
本发明中的齿轮传动机构及其移动件不局限于本实施例揭示的结构, 特 别是不局限于本实施例中高速挡和低速档时的齿轮啮合关系, 在现有技术中 的齿轮传动机构各种各样, 如美国专利公告第 679692 1 号揭示了多种齿轮传 动机构, 其高速档和低速档时的啮合关系各不相同, 但本领域普通技术人员 很容易根据本发明的发明构思将各种齿轮传动机构应用于本发明。

Claims

权 利 要 求 书
1 . 一种变速工具, 其特征在于: 该工具包括
机壳;
马达, 设置在机壳内, 并输出旋转动力;
输出轴;
齿轮传动机构, 设置在马达和输出轴之间, 并以至少包括第一齿轮减速 比和第二齿轮减速比的若干齿轮减速比中的一个来将马达的旋转输出 传递到输出轴上, 所述齿轮传动机构包括
至少一组齿轮系, 以及
移动件, 与所述齿轮系可变地配合, 且所述移动件可在与第一齿轮 减速比相应的第一位置和与第二齿轮减速比相应的第二位置间移 动;
控制系统, 其包括驱动装置, 用于驱动所述移动件从第一位置移动到第 二位置, 还用于驱动所述移动件从第二位置移动到第一位置。
2. 根据权利要求 1所述的变速工具, 其特征在于: 所述驱动装置包括一 小电机以及将小电机的旋转输出传递给移动件的传动机构。
3. 根据权利要求 2所述的变速工具, 其特征在于: 所述传动机构包括套 筒、 设置在小电机和套筒之间的小齿轮传动机构。
4. 根据权利要求 3所述的变速工具, 其特征在于: 所述套筒被所述小齿 轮传动机构旋转驱动。
5. 根据权利要求 3或 4所述的变速工具, 其特征在于: 所述齿轮传动机 构包括与移动件轴向固定配合的钢丝套, 所述套筒沿其圆周壁设置有相对于 轴向倾斜的导引槽以收容并导引所述钢丝套。
6. 根据权利要求 4所述的变速工具, 其特征在于: 所述移动件在所述套 筒的旋转驱动下线性移动。
7. 根据权利要求 2所述的变速工具, 其特征在于: 所述传动机构包括由 小电机旋转驱动的螺杆, 以及被螺杆驱动而作轴向线性移动的托架。
8. 根据权利要求 7所述的变速工具, 其特征在于: 所述齿轮传动机构包 括与移动件轴向固定配合的钢丝套, 所述托架与所述钢丝套轴向固定配合。
9. 根据权利要求 7所述的变速工具, 其特征在于: 所述螺杆上凸设有螺 旋形凸紋, 所述托架上设有与所述凸紋配合的螺旋形槽。
10. 根据权利要求 7 所述的变速工具, 其特征在于: 所述传动机构还包 括固定设置在机壳内的导引座, 所述导引座设有导轨, 所述托架上设有与所 述导轨配合的导引槽。
1 1 . 根据权利要求 1 所述的变速工具, 其特征在于: 所述齿轮系包括行 星轮系, 所述行星轮系包括若干行星轮、 以及用于支撑行星轮的行星架。
12. 根据权利要求 1 1所述的变速工具, 其特征在于: 所述移动件包括内 齿圏, 在第一位置时, 所述内齿圏同时与所述行星轮和行星架啮合; 在第二 位置时, 所述内齿圏仅与所述行星轮啮合。
13. 根据权利要求 12所述的变速工具, 其特征在于: 所述齿轮传动机构 包括相对于机壳固定设置的止转装置, 在第二位置时, 所述移动件与所述止 转装置配合而与机壳保持相对固定。
14. 根据权利要求 1 所述的变速工具, 其特征在于: 所述控制系统包括 电子控制单元, 所述电子控制单元通过给所述驱动装置施加电流来驱动所述 移动件在第一位置和第二位置间运动。
15. 根据权利要求 14所述的变速工具, 其特征在于: 所述电子控制单元 还包括 H桥电路, 可用于改变施加给驱动装置的电流流向来改变所述移动件 的运动方向。
16. 根据权利要求 1 所述的变速工具, 其特征在于: 变速工具还包括与 输出轴连接的夹头。
17. 根据权利要求 1 所述的变速工具, 其特征在于: 变速工具还包括扳 机开关, 所述扳机开关与电机电性连接, 所述扳机被按压的深度与电机的旋 转速度成比例。
PCT/CN2009/074677 2008-10-30 2009-10-29 变速工具 WO2010048889A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810194519.2 2008-10-30
CN2008101945192A CN101761615B (zh) 2008-10-30 2008-10-30 变速工具

Publications (1)

Publication Number Publication Date
WO2010048889A1 true WO2010048889A1 (zh) 2010-05-06

Family

ID=42128268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074677 WO2010048889A1 (zh) 2008-10-30 2009-10-29 变速工具

Country Status (2)

Country Link
CN (1) CN101761615B (zh)
WO (1) WO2010048889A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233461B2 (en) 2012-02-27 2016-01-12 Black & Decker Inc. Tool having multi-speed compound planetary transmission
CN112772587A (zh) * 2019-11-07 2021-05-11 广东赛肯科技创新股份有限公司 一种电动渔轮及其调速器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293988A (zh) * 2013-03-28 2013-09-11 马钢控制技术有限责任公司 一种电动执行机的控制方式
CN108687705A (zh) * 2017-04-08 2018-10-23 刘志斌 扭剪扳手
CN110617325B (zh) * 2018-06-20 2021-06-11 宝时得科技(中国)有限公司 变速传动机构及其变速工具
CN108757857B (zh) * 2018-08-16 2023-07-21 东莞力嘉塑料制品有限公司 一种能够实现三种传动比的行星齿轮箱
JP2020151811A (ja) * 2019-03-20 2020-09-24 パナソニックIpマネジメント株式会社 電動工具
CN115533807A (zh) * 2022-10-26 2022-12-30 深圳市兴富鑫五金有限公司 一种电动螺丝批

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869131A (en) * 1987-03-09 1989-09-26 Olympic Co., Ltd. Variable speed gearing in rotary electric tool
EP0787931B1 (en) * 1996-01-31 2001-12-05 Black & Decker Inc. Automatic variable transmission for power tool
JP2004160592A (ja) * 2002-11-12 2004-06-10 Makita Corp 電動工具
CN1748950A (zh) * 2004-09-17 2006-03-22 苏州宝时得电动工具有限公司 钻类电动工具
CN101091998A (zh) * 2006-06-19 2007-12-26 苏州宝时得电动工具有限公司 变速工具
CN201093036Y (zh) * 2007-08-31 2008-07-30 苏州宝时得电动工具有限公司 变速工具
CN101377229A (zh) * 2007-08-29 2009-03-04 苏州宝时得电动工具有限公司 变速工具及其变速控制方法
CN201300407Y (zh) * 2008-09-05 2009-09-02 苏州宝时得电动工具有限公司 变速工具
CN201300408Y (zh) * 2008-09-05 2009-09-02 苏州宝时得电动工具有限公司 变速工具
CN201300410Y (zh) * 2008-09-05 2009-09-02 苏州宝时得电动工具有限公司 变速工具
CN201300409Y (zh) * 2008-09-05 2009-09-02 苏州宝时得电动工具有限公司 变速工具
CN201309145Y (zh) * 2008-09-05 2009-09-16 苏州宝时得电动工具有限公司 变速工具
CN201335130Y (zh) * 2008-10-31 2009-10-28 苏州宝时得电动工具有限公司 变速工具

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6796921B1 (en) * 2003-05-30 2004-09-28 One World Technologies Limited Three speed rotary power tool

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869131A (en) * 1987-03-09 1989-09-26 Olympic Co., Ltd. Variable speed gearing in rotary electric tool
EP0787931B1 (en) * 1996-01-31 2001-12-05 Black & Decker Inc. Automatic variable transmission for power tool
JP2004160592A (ja) * 2002-11-12 2004-06-10 Makita Corp 電動工具
CN1748950A (zh) * 2004-09-17 2006-03-22 苏州宝时得电动工具有限公司 钻类电动工具
CN101091998A (zh) * 2006-06-19 2007-12-26 苏州宝时得电动工具有限公司 变速工具
CN101377229A (zh) * 2007-08-29 2009-03-04 苏州宝时得电动工具有限公司 变速工具及其变速控制方法
CN201093036Y (zh) * 2007-08-31 2008-07-30 苏州宝时得电动工具有限公司 变速工具
CN201300407Y (zh) * 2008-09-05 2009-09-02 苏州宝时得电动工具有限公司 变速工具
CN201300408Y (zh) * 2008-09-05 2009-09-02 苏州宝时得电动工具有限公司 变速工具
CN201300410Y (zh) * 2008-09-05 2009-09-02 苏州宝时得电动工具有限公司 变速工具
CN201300409Y (zh) * 2008-09-05 2009-09-02 苏州宝时得电动工具有限公司 变速工具
CN201309145Y (zh) * 2008-09-05 2009-09-16 苏州宝时得电动工具有限公司 变速工具
CN201335130Y (zh) * 2008-10-31 2009-10-28 苏州宝时得电动工具有限公司 变速工具

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233461B2 (en) 2012-02-27 2016-01-12 Black & Decker Inc. Tool having multi-speed compound planetary transmission
US9604354B2 (en) 2012-02-27 2017-03-28 Black & Decker Inc. Tool having multi-speed compound planetary transmission
US10195731B2 (en) 2012-02-27 2019-02-05 Black & Decker Inc. Tool having compound planetary transmission
US10926398B2 (en) 2012-02-27 2021-02-23 Black & Decker Inc. Tool having compound planetary transmission
US11738439B2 (en) 2012-02-27 2023-08-29 Black & Decker Inc. Power tool with planetary transmission
CN112772587A (zh) * 2019-11-07 2021-05-11 广东赛肯科技创新股份有限公司 一种电动渔轮及其调速器

Also Published As

Publication number Publication date
CN101761615B (zh) 2012-03-28
CN101761615A (zh) 2010-06-30

Similar Documents

Publication Publication Date Title
WO2010048889A1 (zh) 变速工具
JP5550218B2 (ja) 電動工具
CN201405095Y (zh) 电动工具
US20140165525A1 (en) Motor drive device and electric mowing machine
US20190047131A1 (en) Electric working machine and method of controlling rotational state of motor of electric working machine
EP2027974A3 (en) Electric power tool, control unit and program
CN102528123B (zh) 变速工具
JP2017087412A (ja) 電動作業機
CN101786178B (zh) 电动工具
CN101637906A (zh) 变速工具
CN201300408Y (zh) 变速工具
CN101637902B (zh) 变速工具
JP4563259B2 (ja) 電動工具
WO2021220992A1 (ja) 作業機
CN101786268A (zh) 电动工具
JP2017205834A (ja) 電動作業機
CN201300407Y (zh) 变速工具
CN101637901B (zh) 变速工具
CN201353657Y (zh) 电动工具
CN201300410Y (zh) 变速工具
CN101637904B (zh) 变速工具
CN102562958B (zh) 变速工具及其变速控制方法
CN101637903B (zh) 变速工具
CN201300409Y (zh) 变速工具
CN201335130Y (zh) 变速工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823081

Country of ref document: EP

Kind code of ref document: A1