WO2010048785A1 - 一种高压、超高压大电流断路器 - Google Patents

一种高压、超高压大电流断路器 Download PDF

Info

Publication number
WO2010048785A1
WO2010048785A1 PCT/CN2009/001198 CN2009001198W WO2010048785A1 WO 2010048785 A1 WO2010048785 A1 WO 2010048785A1 CN 2009001198 W CN2009001198 W CN 2009001198W WO 2010048785 A1 WO2010048785 A1 WO 2010048785A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit breaker
phase selection
vacuum
selection controller
Prior art date
Application number
PCT/CN2009/001198
Other languages
English (en)
French (fr)
Inventor
陈轩恕
潘垣
刘飞
何俊佳
袁召
尹婷
杜砚
何妍
Original Assignee
国网武汉高压研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网武汉高压研究院 filed Critical 国网武汉高压研究院
Priority to US13/393,225 priority Critical patent/US20120187089A1/en
Publication of WO2010048785A1 publication Critical patent/WO2010048785A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/14Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H9/563Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle for multipolar switches, e.g. different timing for different phases, selecting phase with first zero-crossing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/543Contacts shunted by static switch means third parallel branch comprising an energy absorber, e.g. MOV, PTC, Zener
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/16Impedances connected with contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/167Circuits for remote indication

Definitions

  • the invention relates to a high voltage and ultra high voltage circuit breaker, in particular to a high voltage and ultra high voltage large current circuit breaker composed of a series-parallel combination method of a light control intelligent vacuum circuit breaker module with phase selection function, belonging to the technical field of power protection equipment. . Background technique
  • the power supply system is stable and the power equipment is the most dangerous, causing a large-area power outage accident and a high probability of a short-circuit fault.
  • the power system expands and interconnects through the Internet, the system structure becomes more complicated, and the short-circuit capacity and short-circuit current are also increasing.
  • the short-circuit current exceeds the breaking capacity of the circuit breaker, the circuit breaker cannot effectively cut the short-circuit fault, which seriously threatens the safe operation of the power equipment and the entire power system.
  • the short-circuit current level of some nodes in China's transmission network has exceeded 100kA; the short-circuit current of the generator outlet is also increasing: the short-circuit current of 300MW unit can reach 128.7 ⁇ 194.7kA, the short-circuit current of 600MW unit can reach more than 180kA, the short circuit of the Three Gorges unit The current can even reach 315kA.
  • the breaking capacity of domestic circuit breakers is far from satisfactory.
  • the price of imported circuit breakers is too high, which limits its application in domestic power plants, and it is also difficult to meet the breaking requirements of excessive short-circuit currents like the Three Gorges units. Therefore, circuit breakers have become the main technical bottleneck restricting the development of the power industry.
  • Vacuum is considered to be the most likely alternative to SF 6 insulation and arc extinguishing media, but due to the special nature of vacuum media, vacuum circuit breakers are currently only suitable for medium and low voltage fields.
  • phase-selective closing can control the circuit breaker to complete the closing or opening in the most favorable phase of voltage or current according to different load characteristics, and can actively eliminate electromagnetic transient effects such as inrush current and over-voltage generated by the switching process, and avoid the system. Unstable.
  • phase-selective closing can control the circuit breaker to complete the closing or opening in the most favorable phase of voltage or current according to different load characteristics, and can actively eliminate electromagnetic transient effects such as inrush current and over-voltage generated by the switching process, and avoid the system. Unstable.
  • phase-selective closing can control the circuit breaker to complete the closing or opening in the most favorable phase of voltage or current according to different load characteristics, and can actively eliminate electromagnetic transient effects such as inrush current and over-voltage generated by the switching process, and avoid the system. Unstable.
  • high-current circuit breakers due to the long contact gap, high moving contact quality, long opening and closing operation time, and large dispersion, it is difficult to achieve fast and precise phase selection control of the opening and closing
  • the object of the present invention is to provide a high-voltage, ultra-high-voltage large-current circuit breaker, which is composed of a series of light-controlled intelligent vacuum circuit breaker modules with phase selection functions, which can be applied to high-voltage and high-current systems, and can be accurately and quickly realized.
  • the high-voltage, ultra-high-voltage and high-current circuit breakers include intelligent phase selection and closing operations including fault current phase selection and breaking.
  • a high voltage, ultra high voltage large current circuit breaker characterized in that: it is composed of a series of light and intelligent vacuum circuit breaker modules with phase selection functions, which are combined in series and / or parallel.
  • each vacuum circuit breaker module comprises an intelligent phase selection controller low potential unit, an intelligent phase selection controller high potential unit, a power driving unit, and a multi-party energy operation.
  • Power system permanent magnet operating mechanism, vacuum killing chamber and external insulation system; intelligent phase selection controller low potential unit, intelligent phase selection controller high potential unit, power drive unit and
  • the permanent magnet operating mechanism is electrically connected in sequence, and the static contact, the moving contact and the opening spring are located in the vacuum interrupter, and the moving contact is directly connected with the driving rod of the permanent magnet operating mechanism, and the multi-functional power supply system and the power drive are operated.
  • the unit is electrically connected, and the multi-party power operation system includes current energy extraction, voltage energy dissipation and low-level energy transmission; the external insulation system surrounds the vacuum isolation chamber.
  • the high-voltage, ultra-high-voltage large-current circuit breaker as described above is characterized in that: the intelligent phase selection controller uses a digital signal processor in the high and low potential units.
  • the high voltage and ultra high voltage large current circuit breaker as described above is characterized in that: the intelligent phase selection controller low potential unit and the intelligent phase selection controller high potential unit are connected by a fiber optic control interface.
  • the high-voltage, ultra-high-voltage large-current circuit breaker as described above is characterized in that: each of the three phases of the vacuum circuit breaker is provided with an independent permanent magnet operating mechanism.
  • each of the vacuum circuit breaker modules is connected in series after the parallel resistor-capacitor device or the resistor-capacitor device and the zinc oxide surge arrester valve.
  • the high-voltage, ultra-high-voltage large-current circuit breaker as described above is characterized in that '.
  • the plurality of series branches of the vacuum circuit breaker module are simultaneously connected with the tight-coupled reactor to realize the parallel connection of the series branches of the plurality of vacuum circuit breaker modules.
  • the working principle of the invention is: In each vacuum circuit breaker module, the power station computer system issues an action command, and the intelligent phase selection controller low potential unit is based on the three-phase voltage of the power grid collected from the voltage transformer PT and the current transformer CT.
  • the three-phase current signal is used to calculate the optimal split/close phase, and the vacuum breaker status information (switch position, control voltage, ambient temperature, etc.) is collected in real time according to the high-level unit of the intelligent phase selection controller transmitted by the fiber control interface.
  • the intelligent phase selection controller continuously adjusts the compensation record of the switching action time, and calculates the required delay to issue an operation command; the intelligent phase selection controller high potential unit receives the operation command through the fiber optic control interface, and sends a split and close signal to the power drive unit.
  • the power drive unit charges the charge and discharge coil of the permanent magnet operating mechanism under the control of the high potential unit of the intelligent phase selection controller to realize the opening/closing operation of the vacuum circuit breaker.
  • the intelligent phase selection controller low potential unit records the operation result, and returns the vacuum circuit breaker status information and operation result to the power station computer system.
  • the beneficial effects of the present invention are as follows: (1) The present invention shares the high voltage and large current to the respective series and parallel vacuum circuit breaker modules of relatively low voltage and small current.
  • the switch structure based on the series and parallel combination of the vacuum circuit breaker modules can multiply the working voltage level, current carrying capacity and breaking capacity of the single vacuum interrupter, and the vacuum circuit breaker can be applied to the high voltage and high current systems.
  • (2) The moving contact of each vacuum circuit breaker module has small mass and short opening distance, so the time of splitting, closing time and full stroke of the contact is short, and the time dispersion is small, which can accurately predict and control the time of splitting and closing.
  • phase selection and closing operation can be realized based on the respective independent operating mechanisms, which fundamentally changes the overvoltage and inrush current characteristics of the power system during the switching operation, and the realization of the phase selection function will greatly improve the breaking capacity of the switch.
  • the method of voltage equalization of the zinc oxide arrester valve and the tight coupling reactor technology are connected in parallel by the resistor-capacitor device, and the series-parallel combined high-voltage and ultra-high-voltage large-current circuit breaker
  • the intelligent phase selection and closing operation including fault current phase selection and disconnection can be realized.
  • FIG. 1 is a schematic diagram showing the working principle of a single vacuum circuit breaker module according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram showing the structure of the permanent magnet operating mechanism and the vacuum interrupter in Fig. 1.
  • the embodiment of the present invention uses a resistor-capacitor device and a zinc oxide arrester valve plate Schematic diagram of the principle of pressure equalization structure.
  • Figure 4 (1), a schematic diagram of a single high-voltage large-current circuit breaker.
  • Fig. 4 (2) is a schematic diagram showing the structure of operation of a plurality of vacuum circuit breaker modules according to an embodiment of the present invention.
  • Figure 5 shows the working principle of the power drive unit and the current-capacitance mode power supply.
  • Figure 6 shows the working principle of the voltage-carrying mode power supply.
  • Figure 7 shows the working principle of the clamped power supply mode.
  • Figure 1 is a schematic diagram of the low-potential unit software of the intelligent phase selection controller. detailed description
  • FIG. 1 A schematic diagram of the working principle of a single vacuum circuit breaker module according to an embodiment of the present invention is shown in FIG. 1 , including an intelligent phase selection controller low potential unit 1 , a high potential unit 2 , a power driving unit 3 , and a multi-party power operation power system 4 .
  • the intelligent phase selection controller low potential unit 1 receives the telecontrol/local operation command issued by the power station computer system, and feeds back the vacuum circuit breaker state information, and collects the grid three-phase voltage and three phases from the voltage transformer PT and the current transformer CT. Current signal
  • the intelligent phase selection controller high-potential unit collects the vacuum circuit breaker state information such as the switch position state, the control voltage and the ambient temperature, and transmits it to the intelligent phase selection controller low potential unit 1; the intelligent phase selection controller low potential unit 1 issues the operation instruction Passed to the intelligent phase selection controller high potential unit 2, the intelligent phase selection controller high potential unit 2 receives the operation command, sends a split/close signal to the power drive unit 3, and is electrically connected to the multi-party power operation power supply system 4.
  • the power driving unit 3 drives the permanent magnet operating mechanism 8 to realize the opening/closing operation of the vacuum circuit breaker.
  • Intelligent phase selection controller low potential unit 1 high potential unit 2 are all digital signal processor (DSP processor); The signal transmission between the two uses a fiber optic control interface; each phase of the three-phase vacuum circuit breaker is provided with an independent permanent magnet operating mechanism 8.
  • DSP processor digital signal processor
  • the above-mentioned permanent magnet operating mechanism 8 is exemplified by a monostable permanent magnet operating mechanism.
  • the vacuum interrupter 9 includes a stationary contact 11, a split spring 12, and a movable contact 13;
  • the permanent magnet operating mechanism 8 includes a cover plate 14, a magnetic path guiding ring 15, a permanent magnet 16, a static iron core 17, a charging and discharging coil 18, a moving iron core 19, a driving rod 20;
  • the opening spring 12 is connected between the stationary contact 11 and the movable contact 13; the driving rod 20 is connected to the movable iron core 19 and connected to the movable contact 13 in the vacuum interrupter 9; the upper end of the static iron core 17 is fixed non-conductive The magnetic cover 14; the upper end of the permanent magnet 16 is connected to the magnetic path guiding ring 15, and the lower end is connected to the charging and discharging coil 18.
  • the same single charge and discharge coil 18 is used to realize the opening and closing operation by supplying current to the charging and discharging coil 18 in different directions.
  • the closing state is maintained by the magnetic force, and the opening state is controlled by the opening spring 12.
  • the opening it is completed by releasing the energy of the opening spring 12, and has a high rigidity; the monostable permanent operating mechanism 8 has a small number of parts, and the moving part has only one moving iron core 19, mechanical life The reliability is greatly improved; the monostable permanent magnet operating mechanism 8 and the vacuum interrupter 9 are at the same high potential, which simplifies the insulation; and the opening and closing operation shares a charging and discharging coil 18, which has the advantages of miniaturization and maintenance-free. ; The movement time is small, making it easy to achieve independent operation.
  • each series vacuum circuit breaker module 21 (simple drawing) is a light control intelligent vacuum capable of realizing phase selection and closing function as described in FIG. 1 and FIG. Circuit breaker, three-phase independent.
  • a resistor-capacitor device and a zinc oxide surge arrester valve 22 are connected in parallel to the input and output lines of the single vacuum circuit breaker module 21.
  • the resistor-capacitor device includes a capacitor C23, a series small resistor 25 and a parallel large resistor R 2 24.
  • the capacitor C23 and the resistor 25 are connected in series to equalize the voltage, wherein the resistor 25 is used to limit the transient.
  • the resistor 25 series branch in parallel constitute a loop for discharging the electrical energy stored in the capacitor C23 during the transient operation.
  • a zinc oxide arrester valve 22 is also connected in parallel, and the residual voltage of the arrester is reasonably selected to limit the recovery voltage amplitude of the vacuum circuit breaker, thereby reducing the possibility of re-ignition or heavy breakdown. A reliable series operation of the plurality of vacuum circuit breaker modules 21 is achieved.
  • the movable contact 13 of each vacuum circuit breaker module 21 of the embodiment of the present invention shown in FIG. 4 (2) has small mass and short opening distance. Therefore, the splitting and closing time and the moving contact 13 full stroke movement time are short, the time dispersion is small, and the splitting and closing time can be accurately predicted and controlled; since each vacuum circuit breaker module 21 can be based on its independent permanent magnet operation
  • the moving mechanism 8 realizes accurate phase selection and closing operation, and rationally designs the communication between the modules 21, and the precise phase selection function of each module 21 is embodied on the high voltage and ultra high voltage large current circuit breakers after string and parallel combination.
  • FIG. 5 The working principle diagram of the power driving unit 3 in Fig. 1 is shown in Fig. 5, current transformer CT, instantaneous voltage surge suppressor TVS, rectifier bridge B1, filter capacitor C1, voltage regulator circuit 34, inverter circuit 35, rectifier bridge B2, the storage capacitor C is electrically connected in turn, and the switching charge/discharge coil 31 and the high-power controllable thyristor S are connected in series and connected in parallel with the storage capacitor C, and the inverter circuit is electrically connected to a battery 36;
  • Multi-potential operation power supply system 4 always charges the storage capacitor C, when high power can After the thyristor S receives the split/close signal of the intelligent phase selection controller high potential unit 2, the fully charged storage capacitor C discharges the charge and discharge coil 31 in the monostable ?1 operating mechanism 8 A pulsed magnetic field is generated to drive the moving core 32 to move.
  • the multi-function power-operated power system 4 uses a method that draws energy directly from the high-side side bus current.
  • the current transformer CT directly extracts energy from the load current of the power grid, and passes through the instantaneous voltage surge suppressor TVS, the rectifier bridge B1, the filter capacitor C1 and the voltage stabilizing circuit 34, and becomes a low-voltage DC source. Then, the storage capacitor C is charged by the inverter circuit 35 and the rectifier bridge B2.
  • the current transformer CT cannot directly extract energy from the grid current, and a battery 36 can be added in front of the inverter circuit 35.
  • the inverter circuit 35 and the rectifier bridge B2 are performed by the already-charged battery 36, and the storage capacitor C is given. Charging.
  • FIG 1 shows the working principle of the voltage-carrying mode power supply.
  • the voltage-powered mode power supply is used to ensure reliable energy-receiving.
  • the current i is in the direction shown in the figure, and the storage capacitor C is charged by the filter capacitor C2, the resistor R1, and the Zener diode D3.
  • the terminal voltage of the storage capacitor C exceeds the limit value of the Zener diode D1
  • the thyristor Q3 is turned on
  • the Zener diode D3 is turned off, and the storage capacitor C is stopped.
  • the terminal voltage of the storage capacitor C is kept to the limit value, and the energy storage of the storage capacitor C is the working power.
  • the low-level energy-sending mode can be adopted. See Figure 1 for the low-level energy-sending mode power supply working principle.
  • Figure 7 any DC power supply at ground potential, high frequency via inverter 37 Battery. According to the principle of electromagnetic induction, the energy of the ground potential is sent to the high voltage side through the magnetic ring T.
  • the high frequency power supply obtained by the magnetic ring T is filtered, stabilized, and rectified by the bridge B3 to charge the storage capacitor C. After charging, the switch K is turned off to stop charging the storage capacitor C.
  • Gate phase, and vacuum breaker status information (switch position, control voltage, ambient temperature, etc.) collected in real time according to the intelligent phase selection controller high potential unit 2 transmitted by the fiber optic control interface, respectively, from the switch position sensor, the control voltage sensor And the ambient temperature sensor, continuously adjust the compensation parameter of the switch action time, and calculate the required delay to issue an operation command;
  • the intelligent phase selection controller high potential unit 2 receives the operation command through the fiber optic control interface, and sends the operation command to the power drive unit 3
  • the power supply unit 3 charges the charge and discharge coil 31 of the permanent magnet operating mechanism 8 under the control of the intelligent phase selection controller high potential unit 1 by means of the multi-party power-operated power supply system 4 for reliable power supply.
  • the software schematic diagram of the intelligent phase selection controller low potential unit 1 in Fig. 1 is shown in Fig. 8.
  • the program enters the initialization phase, including the DSP control register settings, timer, and internal data memory initialization.
  • the system does not receive the local/remote command, it completes the functions of grid parameter acquisition, control voltage and ambient temperature monitoring, and uploading data for the power station computer system.
  • the switch state information such as the control voltage, the ambient temperature and the switch contact position meets the opening and closing conditions, thereby adaptively calculating the optimal opening and closing phase required.
  • Delay time according to The relevant subroutine is called by different load characteristics, and the function of phase selection and closing is completed and the operation result is recorded.
  • the invention also has the following features: the parallelization of the resistor-capacitor device at both ends of the inlet and outlet lines of each vacuum circuit breaker module can enhance the uniformity of the partial pressure of the upper and lower vacuum interrupters.
  • the zinc oxide arrester valve plate acts first, limiting The voltage is restored between the contacts of the vacuum interrupter to avoid re-ignition or heavy breakdown of the vacuum interrupter, so that the plurality of vacuum interrupters jointly complete the breaking process.
  • the breaking process can reduce the number of times of vacuuming the dead chamber and the series vacuum. Breaking capacity of the circuit breaker.
  • the circuit breaker module branches connected in series are connected in parallel by tightly coupled reactors.
  • the tightly coupled reactors work normally, the current sharing between the parallel branches is ensured.
  • the tightly coupled reactors exhibit small impedance and low power consumption.
  • the tight-fitting reactor works in the automatic current-limiting state, and the tight-fitting reactor exhibits a large current-limiting reactance, limiting the fault. The current, so that the rear-breaking vacuum circuit breaker module can separately complete the breaking of the fault current, thereby realizing the reliable parallel operation of the series modules of the plurality of vacuum circuit breakers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

一种高压、 超高压大电流断路器 技术领域
本发明涉及一种高压、超高压断路器,特别涉及一种由具有选相功能的 光控智能真空断路器模块串并联组合方法构成的高压、 超高压大电流断路 器, 属于电力保护设备技术领域。 背景技术
在电力系统可能发生的各种故障中,对电力系统稳定运行和电力设备危 害最大、导致大面积停电事故而且发生概率较大的首推短路故障。随着电力 系统通过自身扩容和网际互联, 系统结构更加趋于复杂化,短路容量和短路 电流也越来越大。 当短路电流超过断路器的开断能力后, 断路器无法有效切 除短路故障,这会严重威胁到电力设备乃至整个电力系统的安全运行。目前, 我国输电网中部分节点的短路电流水平已经超过 100kA;发电机出口短路电 流也越来越大: 300MW机组短路电流可达 128.7 ~ 194.7kA, 600MW机组 短路电流可达 180kA以上, 三峡机组短路电流甚至可达到 315kA。 国内断 路器开断能力远不能满足要求,进口断路器价格太高,限制了其在国内电厂 中的应用,而且也难以满足类似三峡机組的过大短路电流的开断要求。因此, 断路器已经成为制约电力行业发展的主要技术瓶颈。
同时, 在高压、 超高压及大电流领域目前应用最为广泛的 SF6断路器由 于环保原因将逐渐被限制使用。真空被认为是最可能代替 SF6的绝缘、 灭弧 介质,但由于真空介质的特殊性质,导致真空断路器目前只适用于中低压场
1
确认丰 合; 且由于技术及加工工艺等方面的限制,真空断路器额定电流及额定短路 电流等参数无法大幅提高, 不能满足大电流应用场合。上述原因限制了真空 断路器在高压、 大电流等领域的应用。
另外, 随着系统规模和容量增大, 故障电流增大, 内部过电压升高, 传 统的开关操作容易引起系统的不稳定,而同时用户对供电质量的要求却曰益 提高。选相分合闸可以根据不同的负载特性,控制断路器在电压或电流最有 利的相位完成合闸或分闸,可以主动消除开关过程所产生的涌流和过电压等 电磁暂态效应, 避免系统的不稳定。 但是, 对于传统高压、 大电流断路器而 言由于触头间隙长, 动触头质量大, 分合闸操作时间长, 且分散性大, 很难 实现分合闸的快速、 精确选相控制。 发明内容
本发明的目的在于提供一种高压、超高压大电流断路器, 它由具有选相 功能的光控智能真空断路器模块串并联构成 ,既可应用于高压、大电流系统; 又能够精确快速实现高压、超高压大电流断路器包括故障电流选相开断在内 的智能选相分合闸操作。
本发明的技术方案是: 一种高压、 超高压大电流断路器, 其特征在于: 它由具有选相功能的光控智能真空断路器模块通过串和 /或并联组合而成。
如上所述的高压、超高压大电流断路器, 其特征在于: 每个真空断路器 模块包括智能选相控制器低电位单元、智能选相控制器高电位单元,功率驱 动单元,多方取能操作电源系统,永磁操动机构,真空灭孤室和外绝缘系统; 智能选相控制器低电位单元、智能选相控制器高电位单元、功率驱动单元和 永磁操动机构依次电连接, 静触头、 动触头和分闸弹簧位于真空灭弧室内, 动触头与永磁操动机构的驱动杆直接相连,多方取能操作电源系统与功率驱 动单元电连接,多方取能操作电源系统包括电流取能、电压取能和低位送能; 外绝缘系统包围真空灭孤室。
如上所述的高压、超高压大电流断路器, 其特征在于: 智能选相控制器 高、 低电位单元中采用数字信号处理器。
如上所述的高压、超高压大电流断路器, 其特征在于: 智能选相控制器 低电位单元和智能选相控制器高电位单元间采用光纤控制接口连接。
如上所述的高压、超高压大电流断路器, 其特征在于: 真空断路器三相 中每相配置独立的永磁操动机构。
如上所述的高压、超高压大电流断路器, 其特征在于: 每个真空断路器 模块在并联电阻电容装置或电阻电容装置和氧化锌避雷器阀片后, 进行串 联。
如上所述的高压、超高压大电流断路器, 其特征在于'. 真空断路器模块 的多条串联支路同时连接紧耦合电抗器,实现多条真空断路器模块串联支路 的并联。
本发明的工作原理是: 在每个真空断路器模块中, 电站计算机系统发出 动作指令, 智能选相控制器低电位单元根据从电压互感器 PT和电流互感器 CT采集到的电网三相电压与三相电流信号, 计算出最佳分 /合闸相位, 同时 根据由光纤控制接口传送的智能选相控制器高电位单元实时采集到的真空 断路器状态信息 (开关位置、 控制电压和环境温度等), 分别来自智能选相 控制器高电位单元中的开关位置传感器、 控制电压传感器和环境温度传感 器,不断调整开关动作时间的补偿錄,计算出需要的延时后发出操作指令; 智能选相控制器高电位单元通过光纤控制接口收到操作指令后,向功率驱动 单元发出分、合闸信号; 凭借多方取能操作电源系统的可靠供电, 功率驱动 单元在智能选相控制器高电位单元的控制下给永磁操动机构的充放电线圈 充电, 实现真空断路器的分 /合闸操动; 真空断路器动作结束后, 智能选相 控制器低电位单元记录操作结果,并把真空断路器状态信息和操作结果回送 到电站计算机系统。 本发明的有益效果是: (1 )本发明把高压、 大电流分配到相对低压、 小 电流的各个串联、并联真空断路器模块共同承担。这种基于真空断路器模块 串并联组合的开关结构形式, 可以成倍提高单个真空灭弧室的工作电压等 级、载流能力和遮断容量,可以将真空断路器应用于高压、大电流系统。(2 ) 每个真空断路器模块的动触头质量小, 开距短, 因此分、 合闸时间及触头满 行程运动时间短, 时间分散性小, 可精确预测并控制分、 合闸时间, 可以基 于各自的独立操动机构实现精确快速的选相分合闸操作,从根本上改变电力 系统在开关操作时的过电压和涌流特性,同时选相功能的实现将大幅提高开 关的分断能力 (3 ) 而以各个真空断路器模块的精确选相操作为基础, 通过 电阻电容装置并联氧化锌避雷器阀片均压的方式和紧耦合电抗器技术,串并 联组合式高压、超高压大电流断路器, 能够实现包括故障电流选相开断在内 的智能选相分合闸操作。
附图说明 图 1 , 本发明实施例的单个真空断路器模块工作原理简图。
图 2, 图 1中的永磁操动机构与真空灭弧室结构原理图。
图 3, 本发明实施例采用电阻电容装置和氧化锌避雷器阀片組成的双重 均压结构原理简图。
图 4 ( 1 ), 单个高压大电流断路器示意筒图。
图 4 ( 2 ), 本发明实施例多个真空断路器模块工作的结构示意简图。 图 5, 图 1中的功率驱动单元及电流取能方式电源工作原理图。
图 6, 图 1中的电压取能方式电源工作原理图。
图 7, 图 1中的氐位送能方式电源工作原理图。
图 8, 图 1中的智能选相控制器低电位单元软件原理图。 具体实施方式
以下结合附图和实施例对本发明高压、超高压大电流断路器做详细的说 明。
图 1中标记的说明: 1-智能选相控制器低电位单元, 2-智能选相控制器 高电位单元, 3-功率驱动单元, 4-多方取能操作电源系统, 5-电流取能, 6- 电压取能, 7-低位送能, 8-永磁操动机构, 9-真空灭弧室, 10-外绝缘系统, PT-电压互感器, CT-电流互感器。
图 2中标记的说明: 11-静触头, 12-分闸弹簧, 13-动触头, 14-盖板, 15-磁路导向环, 16-永磁体, 17-静铁心, 18-充放电线圈, 19-动铁心, 20- 驱动杆。
图 3 中标记的说明: 21-真空断路器模块, 22-氧化锌避雷器阀片, 23- 电客器 C, 24-电阻 R2, 25-电阻 Rl t)
图 5中标记的说明: TVS-瞬时电压浪涌抑制器, Bl、 B2-整流桥, C1- 滤波电容, C-储能电容器, S-大功率可控晶闸管, 31-充放电线圈, 34-稳压 电路, 35-逆变电路, 36-蓄电池。
图 6中标记的说明: Rl、 R2、 R3-电阻, Dl、 D2、 D3-稳压二极管, C2、 C3-滤波电容, Q3-晶闸管, i-电流方向。
图 7中标记的说明: 37-逆变器, K-开关, T-磁环, B3-整流桥。 本发明实施例的单个真空断路器模块工作原理简图如图 1所示,包括智 能选相控制器低电位单元 1、 高电位单元 2, 功率驱动单元 3, 多方取能操 作电源系统 4, 永磁操动机构 8, 真空灭弧室 9和外绝缘系统 10等; 智能选 相控制器低电位单元 1、 智能选相控制器高电位单元 2、 功率驱动单元 3、 永磁操动机构 8和真空灭弧室 9顺序连接,多方取能操作电源系统 4与功率 驱动单元 3连接, 它包括电流取能 5、 电压取能 6和低位送能 7; 外绝缘系 统 10包围真空灭弧室 9;
智能选相控制器低电位单元 1接收电站计算机系统发出的远动 /就地操 作指令,并反馈真空断路器状态信息,且从电压互感器 PT和电流互感器 CT 采集电网三相电压与三相电流信号;
智能选相控制器高电位单元 采集到开关位置状态、控制电压和环境温 度等真空断路器状态信息, 传给智能选相控制器低电位单元 1; 智能选相控 制器低电位单元 1发出操作指令传给智能选相控制器高电位单元 2, 智能选 相控制器高电位单元 2收到操作指令后, 向功率驱动单元 3发出分 /合闸信 号,与多方取能操作电源系统 4电连接的功率驱动单元 3驱动永磁操动机构 8, 实现真空断路器的分 /合闸操动。
智能选相控制器低电位单元 1、 高电位单元 2 均采用数字信号处理器 ( DSP处理器); 两者之间的信号传输采用光纤控制接口; 真空断路器三相 中每相配置独立的永磁操动机构 8。
上述所说的永磁操动机构 8以单稳态永磁操动机构为例, 图 2中,真空 灭弧室 9包括静触头 11 , 分闸弹簧 12, 动触头 13; 单稳态永磁操动机构 8 包括盖板 14, 磁路导向环 15, 永磁体 16, 静铁心 17, 充放电线圈 18, 动 铁心 19, 驱动杆 20;
分闸弹簧 12连接在静触头 11和动触头 13之间; 驱动杆 20和动铁心 19相连, 并与真空灭弧室 9中的动触头 13连接; 静铁心 17的上端固定非 导磁盖板 14; 永磁体 16上端与磁路导向环 15连接, 下端与充放电线圈 18 连接。 分合闹操作采用同一个单充放电线圈 18, 通过给充放电线圈 18不同 方向电流来实现分合闸操作, 合闸状态靠磁力保持, 分闸状态靠分闸弹簧 12。 在分闸中, 是靠释放分闸弹簧 12的能量来完成的, 具有较高的刚分速 度; 单稳态永 ^兹操动机构 8零件数少, 运动部件只有一个动铁心 19, 机械 寿命和可靠性大大提高;单稳态永磁操动机构 8和真空灭弧室 9处于同一高 电位, 简化了绝缘; 其分合闸操作共用一个充放电线圈 18, 具有小型化和 免维护的优点; 动作时间分散性小, 便于实现分相独立操动。
本发明实施例中多个真空断路器模块的串联技术:每个串联的真空断路 器模块 21 (简画)是图 1和图 2所述的能够实现选相分合闸功能的光控智 能真空断路器, 三相独立。 单个真空断路器模块 21的进出线两端并联电阻 电容装置以及氧化锌避雷器阀片 22, 如图 3所示, 电阻电容装置包括电容 器 C23 , 串联小电阻 25和并联大电阻 R224。真空灭弧室 9中电流熄灭后, 电容器 C23、 电阻 25串联支路起均压作用, 其中电阻 25用来限制暂态 情况下通过电容器 C23的电流; 电阻 R224与电容器 C23、电阻 25串联支 路并联构成回路, 用来泻放操作暂态过程中电容器 C23 中存储的电能。 在 每个真空断路器模块 21的两端同时还并联氧化锌避雷器阀片 22, 合理选取 避雷器残压, 限制真空断路器的恢复电压幅值,从而减小重燃或重击穿的可 能性, 实现多个真空断路器模块 21的可靠串联运行。
如图 4 ( 2 )所示,在图 3所述的多个真空断路器模块 21串联的 ^出上, 在两組多个真空断路器模块 21 串联后构成的高压真空断路器的出线上, 同 时连接紧耦合电抗器, 通过其自动均流限流作用, 并联运行。 实现多个真空 断路器模块 21串联、 并联组合成高压、 超高压大电流断路器。
与图 4 ( 1 )所示的单个高压大电流断路器相比, 图 4 ( 2 )所示的本发 明实施例的每个真空断路器模块 21的动触头 13质量小, 开距短, 因此分、 合闸时间及动触头 13满行程运动时间短, 时间分散性小, 可精确预测并控 制分、 合闸时间; 由于每个真空断路器模块 21都能够基于各自的独立永磁 操动机构 8实现精确选相分合闸操作, 合理设计模块 21间通信, 将把每个 模块 21的精确选相功能体现到串、 并联组合后的高压、 超高压大电流断路 器上。
图 1中的功率驱动单元 3工作原理图如图 5所示, 电流互感器 CT, 瞬 时电压浪涌抑制器 TVS, 整流桥 B1 , 滤波电容 C1 , 稳压电路 34, 逆变电 路 35, 整流桥 B2, 储能电容器 C依次电连接, 分合闸充放电线圈 31和大 功率可控晶闸管 S 串联后与储能电容器 C并联, 逆变电路电连接一个蓄电 池 36;
多方取能操作电源系统 4一直对储能电容器 C进行充电, 当大功率可 控晶闸管 S收到智能选相控制器高电位单元 2的分 /合闸信号后, 已充满电 的储能电容器 C对单稳态 ?1^兹操动机构 8中的充放电线圈 31放电, 产生脉 冲磁场驱动动铁心 32运动。
图 5中,多方取能操作电源系统 4采用直接从高压侧母线电流取能的方 法。 当真空断路器处于闭合状态时, 电流互感器 CT直接从电网的负载电流 中取出能量, 经过瞬时电压浪涌抑制器 TVS, 整流桥 Bl、 滤波电容 C1和 稳压电路 34后变为低压直流源, 再经逆变电路 35和整流桥 B2后给储能电 容器 C充电。 当真空断路器处于分闸状态或系统空载时, 电流互感器 CT无 法直接从电网电流中取出能量, 可在逆变电路 35前增加一个蓄电池 36。 经 过稳压电路 34后的低压直流源同时对蓄电池 36进行恒压浮充电,电流取能 方式不成功时, 由已经充电的蓄电池 36进行逆变电路 35和整流桥 B2后, 给储能电容器 C充电。
图 1中的电压取能方式电源工作原理图如图 6所示,为进一步保证真空 断路器在长期分闸条件下的操作电源供应,还采用电压取能方式电源来保证 可靠取能, 当电压在正半周时, 电流 i为图中所示方向, 通过滤波电容 C2、 电阻 R1和稳压二极管 D3向储能电容器 C充电。 当储能电容器 C的端电压 超过稳压二极管 D1限幅值时, 晶闸管 Q3导通, 稳压二极管 D3截止, 停 止给储能电容器 C充电。 储能电容器 C的端电压保持为限幅值, 储能电容 器 C的储能就是工作电源。
当真空断路器两侧断电时间太长,电流取能和电压取能方式都不能获取 能量且蓄电池电源不足时,可采用低位送能方式, 图 1中的低位送能方式电 源工作原理图见图 7, 处于地电位的任意直流电源, 经逆变器 37得到高频 电流源。 根据电磁感应原理, 通过磁环 T把地电位的能量送到高压侧。 由 磁环 T得到的高频电源经过滤波、稳压和整流桥 B3后为储能电容器 C充电。 充好后, 断开开关 K, 停止给储能电容器 C充电。
实施例: 电站计算机系统发出动作指令, 智能选相控制器低电位单元 1 根据从电压互感器 PT和电流互感器 CT采集到的电网三相电压与三相电流 信号, 计算出最佳分 /合闸相位, 同时根据由光纤控制接口传送的智能选相 控制器高电位单元 2实时采集到的真空断路器状态信息(开关位置、控制电 压和环境温度等), 分别来自开关位置传感器、 控制电压传感器和环境温度 传感器, 不断调整开关动作时间的补偿参数,计算出需要的延时后发出操作 指令; 智能选相控制器高电位单元 2通过光纤控制接口收到操作指令后, 向 功率驱动单元 3发出分、合闸信号; 凭借多方取能操作电源系统 4的可靠供 电,功率驱动单元 3在智能选相控制器高电位单元 1的控制下给永磁操动机 构 8的充放电线圈 31充电, 实现真空断路器的分 /合闸操动; 真空断路器动 作结束后, 智能选相控制器低电位单元 1记录操作结果, 并通过通讯接口把 真空断路器状态信息和操作结果回送到电站计算机系统。
图 1中的智能选相控制器低电位单元 1软件原理图如图 8所示,为了保 证控制系统正常工作, 启动时必须自检。 系统自检通过后, 程序进入初始化 阶段, 包括 DSP控制寄存器设置, 定时器、 内部数据存储器的初始化。 系 统没有收到就地 /远动指令时, 完成电网参数采集、 控制电压和环境温度监 测、 为电站计算机系统上传数据等功能。 当通过多种通讯接口收到就地 /远 动指令后,检测控制电压、环境温度和开关触头位置等开关状态信息是否满 足分合闸条件,进而自适应计算最佳分合闸相位所需的延时触发时间,按照 不同负载特性调用相关子程序, 完成选相分合闸的功能并记录操作结果。 本发明特点还表现为:在每个真空断路器模块的进出线两端并联电阻电 容装置后可以加强上下真空灭弧室的分压均匀性。 同时,再并联氧化锌避雷 器阀片, 这样, 在弧后介质恢复的过程中, 某个真空断路器模块灭弧室承受 恢复电压过高时, 与之并联的氧化锌避雷器阀片先动作, 限制真空灭弧室触 头间恢复电压,避免真空灭弧室重燃或重击穿,从而多个真空灭弧室共同完 成分断过程。 相较单纯由电阻电容装置均压的串联真空断路器模块运行方 式,在氧化锌避雷器阀片的辅助均压作用下,开断过程更能减少真空灭孤室 重击穿的次数, 提高串联真空断路器开断能力。
串联后的真空断路器模块支路通过紧耦合电抗器连接在一起实现并联 运行, 紧耦合电抗器正常工作时保证并联支路间电流均分, 紧耦合电抗器表 现为小阻抗, 功耗小; 而当多个真空断路器模块动作不一致, 先动作真空断 路器模块过零熄弧后, 紧鶫合电抗器工作在自动限流状态, 紧鶫合电抗器表 现为大的限流电抗, 限制故障电流,从而后开断真空断路器模块可单独完成 故障电流的开断, 从而实现多个真空断路器串联模块的可靠并联运行。

Claims

权 利 要 求 书
1、 一种高压、 超高压大电流断路器, 其特征在于: 它由具有选相功能 的光控智能真空断路器模块通过串和 /或并联组合而成。
2、 根据权利要求 1所述的高压、 超高压大电流断路器, 其特征在于: 每个真空断路器模块包括智能选相控制器低电位单元、智能选相控制器高电 位单元, 功率驱动单元, 多方取能操作电源系统, 永磁操动机构, 真空灭弧 室和外绝缘系统;智能选相控制器低电位单元、智能选相控制器高电位单元、 功率驱动单元和永磁操动机构依次电连接,静触头、动触头和分闸弹簧位于 真空灭弧室内, 动触头与永磁操动机构的驱动杆直接相连, 多方取能操作电 源系统与功率驱动单元电连接, 多方取能操作电源系统包括电流取能、 电压 取能和低位送能; 外绝缘系统包围真空灭弧室。
3、 根据权利要求 2所述的高压、 超高压大电流断路器, 其特征在于: 智能选相控制器高、 低电位单元中采用数字信号处理器。
4、 根据权利要求 2所述的高压、 超高压大电流断路器, 其特征在于: 智能选相控制器低电位单元和智能选相控制器高电位单元间采用光纤控制 接口连接。
5、 根据权利要求 2所述的高压、 超高压大电流断路器, 其特征在于: 真空断路器三相中每相配置独立的永磁操动机构。
6、 根据权利要求 1或 2所述的高压、 超高压大电流断路器, 其特征在 于:每个真空断路器模块在并联电阻电容装置或电阻电容装置和氧化锌避雷 器阀片后, 进行串联。
7、 根据权利要求 1或 2所述的高压、 超高压大电流断路器, 其特征在 于:真空断路器模块的多条串联支路同时连接紧耦合电抗器, 实现多条真空 断路器模块串联支路的并联。
PCT/CN2009/001198 2008-10-27 2009-10-27 一种高压、超高压大电流断路器 WO2010048785A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/393,225 US20120187089A1 (en) 2008-10-27 2009-10-27 High-voltage, super-voltage and heavy current breaker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810197399.1 2008-10-27
CN200810197399.1A CN101728140B (zh) 2008-10-27 2008-10-27 一种高压、超高压大电流断路器

Publications (1)

Publication Number Publication Date
WO2010048785A1 true WO2010048785A1 (zh) 2010-05-06

Family

ID=42128201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001198 WO2010048785A1 (zh) 2008-10-27 2009-10-27 一种高压、超高压大电流断路器

Country Status (3)

Country Link
US (1) US20120187089A1 (zh)
CN (1) CN101728140B (zh)
WO (1) WO2010048785A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364655A (zh) * 2011-11-17 2012-02-29 武汉大学 多断口真空断路器的动态均压装置及其参数选取方法
CN104576176A (zh) * 2014-12-22 2015-04-29 苏州施源特电气有限公司 一种灭弧室串联结构的断路器
CN106054116A (zh) * 2016-08-12 2016-10-26 国网冀北电力有限公司承德供电公司 一种智能型高压计量装置
CN112782571A (zh) * 2020-03-25 2021-05-11 天津市中力神盾电子科技有限公司 断路器寿命监测方法、装置及系统
CN112927978A (zh) * 2021-01-29 2021-06-08 云南电网有限责任公司电力科学研究院 一种断路器动态电容均压装置及方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765542B (zh) * 2011-08-29 2016-10-26 三菱电机株式会社 真空断路器的电磁操作装置
CN102901925B (zh) * 2012-10-16 2015-09-02 四川电力科学研究院 超、特高压直流断路器转换回路特性参数测试方法
CN103441045A (zh) * 2013-09-10 2013-12-11 沈阳工业大学 一种基于两相磁性材料的新型智能断路器
US20150247886A1 (en) 2014-02-28 2015-09-03 International Business Machines Corporation Transformer Phase Permutation Causing More Uniform Transformer Phase Aging and general switching network suitable for same
CN105702530A (zh) * 2014-11-24 2016-06-22 国网河南省电力公司平顶山供电公司 一种高压断路器永磁电机操动机构驱动控制器
CN104467781B (zh) * 2015-01-03 2017-05-10 黎树荣 光控漏电断路器
US10553381B2 (en) * 2015-01-20 2020-02-04 Electronics And Telecommunications Research Institute Electrical switchgear for overcurrent protection using critical temperature device
CN105428149B (zh) * 2015-12-22 2018-02-09 福州大学 直连双灭弧室式高压快速转换开关
CN106129957A (zh) * 2016-07-01 2016-11-16 广州供电局有限公司 一种基于并联开关装置开断短路电流的电路结构
CN107275145A (zh) * 2017-06-08 2017-10-20 山东泰开高压开关有限公司 一种快速机械式开关以及使用该快速机械式开关的高压电力系统
CN107171277A (zh) * 2017-07-03 2017-09-15 安徽恒凯电力保护设备有限公司 一种基于首波开断技术的零损耗深度限流保护装置
US10732223B2 (en) * 2017-09-14 2020-08-04 Schweitzer Engineering Laboratories, Inc. Circuit breaker health monitoring
DE102018101312A1 (de) * 2018-01-22 2019-07-25 Eaton Intelligent Power Limited Elektrische Schutzschaltungsanordnung
CN108565184A (zh) * 2018-05-16 2018-09-21 许昌亿源电气有限公司 一种户外永磁智能断路器
US10784064B2 (en) * 2018-10-12 2020-09-22 S&C Electric Company Reduced size fault interrupter
CN108987173A (zh) * 2018-10-17 2018-12-11 宁夏晟晏实业集团能源循环经济有限公司 一种用于35kv高压真空开关的防击穿装置
DE102019204303A1 (de) * 2019-03-28 2020-10-01 Siemens Aktiengesellschaft Schalteinrichtung, Hochspannungsleistungsschalter und Verfahren zum Betrieb der Schalteinrichtung
CN112213551B (zh) * 2020-09-30 2022-12-06 东南大学 一种提高永磁操动机构选相精度的方法
CN112117157B (zh) * 2020-10-28 2022-12-30 南瑞智能配电技术有限公司 一种深度融合自供电真空断路器
CN113488351B (zh) * 2021-06-29 2024-04-30 广东电网有限责任公司广州供电局 一种高压断路器真空度在线监测实验装置及方法
US20230402239A1 (en) * 2022-06-09 2023-12-14 Hubbell Incorporated Capacitor harvester

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215669A (ja) * 1993-01-13 1994-08-05 Fuji Electric Co Ltd 直流真空遮断器
WO2001022459A1 (en) * 1999-09-24 2001-03-29 Politechnika Łòdzka Dc circuit-breaker
CN1332465A (zh) * 2001-07-12 2002-01-23 大连理工大学 一种光控模块式高压真空开关技术
CN201282091Y (zh) * 2008-10-28 2009-07-29 国网武汉高压研究院 高压、超高压大电流断路器
CN201282069Y (zh) * 2008-10-28 2009-07-29 国网武汉高压研究院 具有选相功能的光控模块化智能真空开关

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1013346B (de) * 1952-03-19 1957-08-08 Voigt & Haeffner Ag Druckluftschalter
CH346926A (de) * 1956-09-22 1960-06-15 Bbc Brown Boveri & Cie Elektrischer Leistungsschalter mit parallelen Zweigen
US3030476A (en) * 1957-02-14 1962-04-17 Mc Graw Edison Co Automatic circuit interrupter
US3068379A (en) * 1957-04-11 1962-12-11 Fed Pacific Electric Co Circuit protective apparatus
US3071668A (en) * 1958-12-30 1963-01-01 Westinghouse Electric Corp Circuit interrupters
CH380800A (de) * 1960-09-16 1964-08-15 Bbc Brown Boveri & Cie Leistungsschalter mit Mehrfachunterbrechung
DE1236052B (de) * 1960-10-26 1967-03-09 Continental Elektro Ind Ag Hochspannungsleistungsschalter mit mehreren in Reihe geschalteten Schaltstellen pro Pol
US3159731A (en) * 1961-02-07 1964-12-01 Joslyn Mfg & Supply Co Switch with plural actuator devices having improved overtravel takeup for plural electrical interrupters
CA713179A (en) * 1961-03-30 1965-07-06 Berg Daniel Circuit interrupters
US3198986A (en) * 1962-07-12 1965-08-03 Joslyn Mfg & Supply Co High voltage switching apparatus
US3489870A (en) * 1967-09-22 1970-01-13 Gen Electric Cascaded electric current interrupting device with ionized gas assisting in breakdown and eventual arc extinction
US3538277A (en) * 1968-06-13 1970-11-03 Gen Electric High voltage circuit breaker with resistance means
US3604869A (en) * 1969-07-03 1971-09-14 Gen Electric High-voltage multibreak circuit breaker with means for accelerating restoration of normal voltage distribution following sparkover and clearance of one break
US3674959A (en) * 1970-12-10 1972-07-04 Allis Chalmers Mfg Co Circuit interrupter closing resistors
DE2248117B2 (de) * 1972-09-28 1975-03-20 Siemens Ag, 1000 Berlin Und 8000 Muenchen Überspannungsableiter mit einem gasgefüllten Gehäuse
US3813506A (en) * 1973-04-12 1974-05-28 Gen Electric Vacuum-type circuit breaker with improved ability to interrupt capacitance currents
JPS50158882A (zh) * 1974-06-13 1975-12-23
US3970809A (en) * 1975-02-10 1976-07-20 General Electric Company Electric circuit breaker comprising parallel-connected vacuum interrupters
US3970810A (en) * 1975-03-06 1976-07-20 General Electric Company Electric circuit breaker comprising parallel-connected vacuum interrupters
US4027123A (en) * 1975-03-11 1977-05-31 General Electric Company Vacuum circuit breaker comprising series connected vacuum interrupters and capacitive voltage-distribution means
US4340921A (en) * 1978-05-17 1982-07-20 General Electric Company HVDC Power transmission system with metallic return conductor
JPS5774917A (en) * 1980-10-25 1982-05-11 Tokyo Shibaura Electric Co Breaker with parallel resistor
US4479165A (en) * 1981-02-06 1984-10-23 Tokyo Shibaura Denki Kabushiki Kaisha Gas insulated switching apparatus
US4492835A (en) * 1982-07-08 1985-01-08 Turner Electric Corporation Load interrupter device
DE3413962A1 (de) * 1984-02-23 1985-08-29 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Hochspannungsschalter
CN85202138U (zh) * 1985-04-01 1986-03-26 中国科学院等离子体物理研究所 并联型氧化锌真空开关过电压限制器
JPH01122530A (ja) * 1987-11-06 1989-05-15 Mitsubishi Electric Corp 真空遮断器の遮断性能劣化予知装置
JPH03179627A (ja) * 1989-12-08 1991-08-05 Hitachi Ltd 真空遮断器
JPH04190527A (ja) * 1990-11-22 1992-07-08 Mitsubishi Electric Corp 断路器
US5629658A (en) * 1992-08-18 1997-05-13 Chen; William W. Methods of arc suppression and circuit breakers with electronic alarmers
FR2760125B1 (fr) * 1997-02-27 2003-08-22 Gec Alsthom T & D Sa Commutateur pour sectionneur a cinq poles a usage inverseur de phases
KR100399545B1 (ko) * 1998-10-13 2003-09-26 가부시끼가이샤 히다치 세이사꾸쇼 가스절연개폐장치
DE19912022B4 (de) * 1999-03-17 2009-02-12 Abb Ag Hochspannungsschaltgerät mit Serienschaltung von mindestens zwei Vakuumschaltkammern und Verfahren zum Betrieb des Hochspannungsschallgerätes
US6362445B1 (en) * 2000-01-03 2002-03-26 Eaton Corporation Modular, miniaturized switchgear
WO2002097839A1 (de) * 2001-05-30 2002-12-05 Abb Patent Gmbh Steuerung mindestens einer vakuumschaltstrecke
NL1020347C2 (nl) * 2002-04-09 2003-10-13 Holec Holland Nv Keramische buis voor vacuümonderbreker. Keramische buis voor vacuümonderbreker.
US7816894B2 (en) * 2006-06-23 2010-10-19 Electro-Chance, Llc Method and apparatus for regulating voltage
US20110182094A1 (en) * 2007-08-13 2011-07-28 The Powerwise Group, Inc. System and method to manage power usage
CN101855694B (zh) * 2007-09-10 2014-04-23 Abb技术有限公司 具有用于接入合闸电阻的开关的高压功率开关
US7550691B2 (en) * 2007-09-27 2009-06-23 Vacuum Electric Switch Co. Adjustable switching mechanism for series coupled vaccum interrupters
EP2048679B1 (de) * 2007-10-12 2010-04-07 SMA Solar Technology AG Lasttrenner-Anordnung
JP4568765B2 (ja) * 2008-01-07 2010-10-27 株式会社日立製作所 真空スイッチギヤ
EP2494571B1 (en) * 2009-10-27 2013-12-11 ABB Technology AG An hvdc breaker and control apparatus for controlling an hvdc breaker
US9035626B2 (en) * 2010-08-18 2015-05-19 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215669A (ja) * 1993-01-13 1994-08-05 Fuji Electric Co Ltd 直流真空遮断器
WO2001022459A1 (en) * 1999-09-24 2001-03-29 Politechnika Łòdzka Dc circuit-breaker
CN1332465A (zh) * 2001-07-12 2002-01-23 大连理工大学 一种光控模块式高压真空开关技术
CN201282091Y (zh) * 2008-10-28 2009-07-29 国网武汉高压研究院 高压、超高压大电流断路器
CN201282069Y (zh) * 2008-10-28 2009-07-29 国网武汉高压研究院 具有选相功能的光控模块化智能真空开关

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364655A (zh) * 2011-11-17 2012-02-29 武汉大学 多断口真空断路器的动态均压装置及其参数选取方法
CN104576176A (zh) * 2014-12-22 2015-04-29 苏州施源特电气有限公司 一种灭弧室串联结构的断路器
CN106054116A (zh) * 2016-08-12 2016-10-26 国网冀北电力有限公司承德供电公司 一种智能型高压计量装置
CN112782571A (zh) * 2020-03-25 2021-05-11 天津市中力神盾电子科技有限公司 断路器寿命监测方法、装置及系统
CN112927978A (zh) * 2021-01-29 2021-06-08 云南电网有限责任公司电力科学研究院 一种断路器动态电容均压装置及方法
CN112927978B (zh) * 2021-01-29 2023-06-23 云南电网有限责任公司电力科学研究院 一种断路器动态电容均压装置及方法

Also Published As

Publication number Publication date
US20120187089A1 (en) 2012-07-26
CN101728140B (zh) 2012-04-18
CN101728140A (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
WO2010048785A1 (zh) 一种高压、超高压大电流断路器
CN102034619B (zh) 永磁机构自动转换开关
CN101728114B (zh) 一种具有选相功能的光控模块化智能真空开关
CN201282091Y (zh) 高压、超高压大电流断路器
US11417481B2 (en) Switch assembly
AU2020216260B2 (en) Multiple hammer blow vacuum interrupter weld breaking
CN105958437A (zh) 外部回路实现断路器失压跳闸的控制电路
CN101728819A (zh) 智能开关及其控制方法
CN102570484A (zh) 一种新型10kV开关装置及其控制方法
CN203573896U (zh) 一种户外高压永磁真空断路器
CN201584355U (zh) 智能永磁真空断路器
CN203301164U (zh) 一种同步分合闸控制器
CN201936800U (zh) 户外高压智能型永磁真空开关
CN201444464U (zh) 一种新型真空断路器永磁机构控制系统
CN201741623U (zh) 户外高压智能型永磁真空开关
CN201282069Y (zh) 具有选相功能的光控模块化智能真空开关
CN202678949U (zh) 可避免多次重合闸故障的110kv线路保护系统
CN206947240U (zh) 一种智能光控真空断路器
CN201893293U (zh) 一种无弧拉闸继电器
CN206060167U (zh) 一种智能漏电断路器的控制器
CN104124102A (zh) 一种新型电气化铁道交流高压真空断路器
CN103456573A (zh) 断路器及其配电的保护和控制方法
CN213877929U (zh) 一种10kv智能相控负荷开关
CN202996684U (zh) 一种矿用隔爆型移动变电站用永磁真空馈电开关
CN108471125A (zh) 具有漏电保护的三相电网换相系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09822978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13393225

Country of ref document: US