WO2010048567A1 - Pluripotent stem cells obtained by non-viral reprogramming - Google Patents
Pluripotent stem cells obtained by non-viral reprogramming Download PDFInfo
- Publication number
- WO2010048567A1 WO2010048567A1 PCT/US2009/061935 US2009061935W WO2010048567A1 WO 2010048567 A1 WO2010048567 A1 WO 2010048567A1 US 2009061935 W US2009061935 W US 2009061935W WO 2010048567 A1 WO2010048567 A1 WO 2010048567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- promoter
- cells
- ires2
- human
- vector
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0696—Artificially induced pluripotent stem cells, e.g. iPS
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/602—Sox-2
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/603—Oct-3/4
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/604—Klf-4
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/605—Nanog
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/606—Transcription factors c-Myc
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/608—Lin28
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
Definitions
- Embryonic stem (ES) cells hold great promise in science and medicine due to their pluripotent nature, i.e. the ability to replicate indefinitely and differentiate into cells of all three germ layers (Thomson et al, Science 282: 1145-1147 (1998), incorporated by reference herein as if set forth in its entirety).
- the application of human ES cells in therapy and regenerative medicine is complicated by the possibility of rejection by the recipient's immune system.
- Human pluripotent cells that are substantially genetically identical to a particular recipient are, thus, highly desirable. Also, genetic identity may be important for the use of ES cells in designing patient-specific treatment strategies.
- iPS induced pluripotent
- iPS cells Shortly thereafter, Lowry et al generated patient-specific iPS cell lines through ectopic expression of OCT4, SOX2, c-Myc, and KLF4 (Lowry et al, PNAS 105:2883-2888 (2008)) transgenes. More recently, iPS cells have been generated from a number of different human and murine somatic cell types, such as epithelial, fibroblast, liver, stomach, neural, and pancreatic cells. Further, iPS cells have been successfully differentiated into cells of various lineages (e.g., Dimos et al, Science 321:1218-1221 (2008)). [0006] Current methods for generating iPS cells employ retroviral vectors such as those derived from lentivirus.
- vectors stably integrate into, and permanently change, a target cell's DNA at virtually any chromosomal locus. This untargeted interaction between reprogramming vector and genome is associated with a risk of aberrant cellular gene expression as well as neoplastic growth caused by viral gene reactivation (Okita et al. Nature 448:313-317 (2007)).
- transgenes can interfere with the recipient cell's physiology.
- ectopic expression of transcription factors used to reprogram somatic cells can induce programmed cell death (apoptosis) (Askew et al, Oncogene 6:1915-1922 (1991), Evan et al, Cell 69:119-128 (1992)).
- continued expression of factors such as OCT4 can interfere with subsequent differentiation of iPS cells.
- the present invention is broadly summarized as relating to reprogramming of differentiated primate somatic cells to produce primate pluripotent cells.
- a method for producing a primate pluripotent cell includes the step of delivering into a primate somatic cell a set of transgenes sufficient to reprogram the somatic cell to a pluripotent state, the transgenes being carried on at least one episomal vector that does not encode an infectious virus, and recovering pluripotent cells.
- References herein to a "non-viral" vector or construct indicate that the vector or construct cannot encode an infectious virus.
- the invention in a second aspect, relates to an enriched population of replenishable reprogrammed pluripotent cells of a primate, including a human primate, wherein, in contrast to existing iPS cells, the at least one vector, including any element thereof having a viral source or derivation is substantially absent from the pluripotent cells.
- the reprogrammed cells contain fewer than one copy of the episomal vector per cell, and preferably no residual episomal vector in the cells. Because asymmetric partitioning during cell division dilutes the vector, one can readily obtain reprogrammed cells from which the vector has been lost.
- the primate pluripotent cells of the invention are substantially genetically identical to somatic cells from a fetal or post-natal individual. Fetal cells can be obtained from, e.g., amniotic fluid.
- the cells of the enriched population are not readily distinguished from existing primate ES and iPS cells morphologically (i.e., round shape, large nucleoli and scant cytoplasm) or by growth properties (i.e., doubling time; ES cells have a doubling time of about seventeen to eighteen hours).
- the reprogrammed cells also express pluripotent cell-specific markers (e.g., OCT-4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, but not SSEA-I).
- pluripotent cell-specific markers e.g., OCT-4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, but not SSEA-I.
- the reprogrammed cells are not immediately derived from embryos.
- "not immediately derived from embryos” means that the starting cell type for producing the pluripotent cells is a non- pluripotent cell, such as a multipotent cell or terminally differentiated cell, such as somatic cells obtained from a fetal or post-natal individual.
- the pluripotent cells are not immediately derived from embryos.
- QB ⁇ 960296.00915 ⁇ 9067411.1 produced in the method can transiently express one or more copies of selected potency- determining factors during their derivation.
- FIG. IA-B illustrate the effect on reprogramming efficiency of different nucleotide sequences that link transgenes on the vector(s) delivered during the reprogramming methods.
- FIG. 2A-C illustrate the effect on reprogramming efficiency of c-Myc, KLF-4, and SV40 large T antigen gene expression in human newborn foreskin fibroblasts.
- FIG. 3A-C illustrate a suitable construct for carrying transgenes into somatic cells in accord with the method, temporal expression of an episomal vector-mediated transgene, and the effect of vector quantity on cell survival after nucleofection.
- FIG. 4A-D illustrate reprogramming of human newborn foreskin fibroblasts with episomal vector-mediated transgene expression.
- FIG. 5A-B illustrate related constructs harboring an expression cassette useful in the reprogramming methods of the invention.
- the present invention broadly relates to novel methods for reprogramming differentiated primate somatic cells into reprogrammed primate cells that are substantially free of the vectors used in their production by introducing potency-determining factors on a non-viral vector that is present during reprogramming, but is substantially absent from the reprogrammed cells.
- reprogramming refers to a genetic process whereby differentiated somatic cells are converted into de-differentiated cells having a higher potency than the cells from which they were derived.
- the higher potency cells produced in the method are euploid pluripotent cells.
- pluripotent cells refer to a population of cells that express pluripotent cell-specific markers, have a cell morphology characteristic of undifferentiated cells (i.e., compact colony, high nucleus to cytoplasm ratio and prominent nucleolus) and can differentiate into all three germ layers (e.g., endoderm, mesoderm and ectoderm).
- the pluripotent cells form teratomas that typically contain cells or tissues characteristic of all three germ layers.
- Pluripotent cells are capable of both proliferation in cell culture and differentiation towards a variety of lineage-restricted cell populations that exhibit multipotent properties. Pluripotent cells have a higher potency than somatic multipotent cells, which by comparison are more differentiated, but which are not terminally differentiated.
- the pluripotent products of primate somatic cell reprogramming methods are referred to herein as "reprogrammed primate pluripotent cells” or as induced pluripotent (iPS) cells.
- reprogrammed primate pluripotent cells or as induced pluripotent (iPS) cells.
- iPS induced pluripotent
- Differentiated somatic cells including cells from a fetal, newborn, juvenile or adult primate, including human, individual, are suitable starting cells in the methods.
- Suitable somatic cells include, but are not limited to, bone marrow cells, epithelial cells, endothelial cells, fibroblast cells, hematopoietic cells, keratinocytes, hepatic cells, intestinal cells, mesenchymal cells, myeloid precursor cells and spleen cells.
- Another suitable somatic cell is a CD29 + CD44 + CD166 + CD105 + CD73 + and CD31 ' mesenchymal cell that attaches to a substrate.
- the somatic cells can be cells that can themselves proliferate and differentiate into other types of cells, including blood stem cells, muscle/bone stem cells, brain stem cells and liver stem cells.
- Suitable somatic cells are receptive, or can be made receptive using methods generally known in the scientific literature, to uptake of potency- determining factors including genetic material encoding the factors. Uptake-enhancing methods can vary depending on the cell type and expression system. Exemplary conditions used to prepare receptive somatic cells having suitable transduction efficiency are well- known by those of ordinary skill in the art.
- the starting somatic cells can have a doubling time of about twenty-four hours.
- the vectors described herein can be constructed and engineered using methods generally known in the scientific literature to increase their safety for use in therapy, to include selection and enrichment markers, if desired, and to optimize expression of QB ⁇ 960296.00915 ⁇ 9067411.1 5 nucleotide sequences contained thereon.
- the vectors should include structural components that permit the vector to self-replicate in the somatic starting cells.
- EBNA-I Epstein Barr oriP/Nuclear Antigen-1
- Plasmid 58:1 (2007), incorporated by reference as if set forth herein in its entirety is sufficient to support vector self-replication and other combinations known to function in mammalian, particularly primate, cells can also be employed.
- Standard techniques for the construction of expression vectors suitable for use in the present invention are well-known to one of ordinary skill in the art and can be found in publications such as Sambrook J, et al., "Molecular cloning: a laboratory manual,” (3rd ed. Cold Spring harbor Press, Cold Spring Harbor, N. Y. 2001), incorporated herein by reference as if set forth in its entirety.
- Suitable potency-determining factors can include, but are not limited to OCT-4, SOX2, LIN28, NANOG, c- Myc, KLF4, and combinations thereof.
- Each potency-determining factor can be introduced into the somatic cells as a polynucleotide transgene that encodes the potency-determining factor operably linked to a heterologous promoter that can drive expression of the polynucleotide in the somatic cell.
- SV40 T Antigen is not a potency-determining factor per se, it advantageously introduced into somatic cells as it provides the cells with a condition sufficient to promote cell survival during reprogramming while the potency- determining factors are expressed.
- Other conditions sufficient for expression of the factors include cell culture conditions described in the examples.
- Suitable reprogramming vectors are episomal vectors, such as plasmids, that do not encode all or part of a viral genome sufficient to give rise to an infectious or replication-competent virus, although the vectors can contain structural elements obtained from one or more virus.
- One or a plurality of reprogramming vectors can be introduced into a single somatic cell.
- One or more transgenes can be provided on a single reprogramming vector.
- One strong, constitutive transcriptional promoter can provide transcriptional control for a plurality of transgenes, which can be provided as an expression cassette.
- Separate expression cassettes on a vector can be under the transcriptional control of separate strong, constitutive promoters, which can be copies of the same promoter or can be distinct promoters.
- heterologous promoters are known in the art and can be used depending on factors such as the desired expression level of the potency-determining factor. It can be QB ⁇ 960296.00915 ⁇ 9067411.1 6 advantageous, as exemplified below, to control transcription of separate expression cassettes using distinct promoters having distinct strengths in the target somatic cells. Another consideration in selection of the transcriptional promoters) is the rate at which the promoters) is silenced in the target somatic cells. The skilled artisan will appreciate that it can be advantageous to reduce expression of one or more transgenes or transgene expression cassettes after the product of the gene(s) has completed or substantially completed its role in the reprogramming method.
- Exemplary promoters are the human EF l ⁇ elongation factor promoter, CMV cytomegalovirus immediate early promoter and CAG chicken albumin promoter, and corresponding homologous promoters from other species.
- both EF l ⁇ and CMV are strong promoters, but the CMV promoter is silenced more efficiently than the EFl ⁇ promoter such that expression of transgenes under control of the former is turned off sooner than that of transgenes under control of the latter.
- the potency-determining factors can be expressed in the somatic cells in a relative ratio that can be varied to modulate reprogramming efficiency.
- somatic cell reprogramming efficiency is fourfold higher when OCT-4 and SOX2 are encoded in a single transcript on a single vector in a 1 : 1 ratio than when the two factors are provided on separate vectors, such that the uptake ratio of the factors into single cells is uncontrolled.
- an internal ribosome entry site is provided upstream of transgene(s) distal from the transcriptional promoter.
- the vectors can persist in target cells while the introduced transgenes are transcribed and translated.
- Transgene expression can be advantageously downregulated or turned off in cells that have been reprogrammed to a pluripotent state.
- the reprogramming vector(s) can remain extra-chromosomal. At extremely low efficiency, the
- QB ⁇ 960296.00915 ⁇ 9067411.1 7 vector(s) can integrate into the cells' genome.
- the reprogramming vector(s) replicate coordinately with the recipient cell's genome and, as such, are reasonably stable for about two weeks, longer than episomal vectors that cannot replicate their DNA. Nevertheless, because the vectors are not partitioned evenly at cell division, in the absence of selective pressure, cells lose the episomal vector(s) so one can readily recover vector-free pluripotent cells in the method. For example, it usually takes two-to-three weeks for oriP/EBNA-1 -based episomal plasmids to be stably maintained in somatic cells. During the initial two-to-three weeks, cells quickly lose episomal plasmids. Once the cells are stabilized, the cells continue to lose episomal vector at ⁇ 5% per generation.
- Pluripotent cells produced in the method can be cultured in any medium that supports pluripotent cell growth, including but not limited to a defined medium, such as TeSRTM (StemCell Technologies, Inc.; Vancouver, Canada), mTeSRTM (StemCell Technologies, Inc.) and StemLine® serum-free medium (Sigma; St. Louis, Mo.), or a conditioned medium such as mouse embryonic fibroblast (MEF)-conditioned medium.
- a "defined medium” refers to a biochemically defined formulation comprised solely of biochemically-defined constituents which can include constituents of known chemical composition or constituents derived from known sources.
- conditioned medium refers to a growth medium that is further supplemented with soluble factors from cells cultured in the medium. Alternatively, cells can be maintained on MEFs in culture medium.
- Suitable expression cassettes structures were created using conventional methods by direct polymerase chain reaction (PCR) amplification of open reading frames (ORFs) from some or all of the transgenes, using the first and last 20-22 bases of the coding region as primers, and from the Internal Ribosome Entry Sites listed in Table 1.
- ORFs open reading frames
- the sources of SV40 T Antigen and human telomerase reverse transcriptase, plasmids pBABE-puro SV40 LT and pBABE-hygro-hTERT, are commercially available from Addgene, Inc, Cambridge, MA, as plasmids 13970 and 1773, respectively.
- E-02S refers to an expression cassette having an EFl ⁇ promoter upstream of the OCT4 and SOX2 coding regions, with IRES2 therebetween.
- C-M2K refers to an expression cassette having a CMV promoter upstream of the c-Myc and Klf4 coding regions, with IRES2 therebetween.
- O2S(2) a variant O2S expression cassette
- O2S(2) a variant O2S expression cassette
- TK promoter - Hyg - TK polyA cassette a variant O2S expression cassette
- FIG. 5A and 5B Cassettes having the indicated structures were selected for subsequent use in reprogramming methods by empirical determination of expression levels of various factors.
- the promoter designated as EF2 (SEQ ID NO: 12) was a slight variant from the known EF l ⁇ promoter (SEQ ID NO: 11) that did not differ from EF l ⁇ in activity and which was not used in subsequent episomal vector reprogramming trials, infra.
- the F2A is a peptide linker that facilitates co-translation of distinct coding regions expressed from a single transcript. F2A was tested but was not used in subsequent reprogramming trials using episomal vectors. IRESl was tested but was not used in subsequent reprogramming trials using episomal vectors.
- IA shows a Western blot analysis of OCT-4 and SOX2 in 293FT cells.
- Mouse anti-human OCT4 monoclonal antibody (1:500, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, sc-5279) and goat anti-human SOX2 polyclonal antibody (1:500, R&D Systems, Minneapolis, MN AF2018) were used to detect the relative expression of OCT4 and SOX2 respectively.
- FIG. IB shows reprogramming using linked potency-determining factors in
- mesenchymal cells derived (Yu et ah, supra) from OCT4 knock-in human ES cells QB ⁇ 960296.00915 ⁇ 9067411.1 9 (US Patent Application No. 2006/0128018 and Zwaka and Thomson, Nature Biotechnology 21:319-321 (2003), each incorporated herein by reference as if set forth in its entirety).
- This line was maintained under neomycin selection (geneticin: 100 ⁇ g/ml, Invitrogen Corp.). Human iPS cell colonies were counted on day 16 post-transduction.
- the gene combinations were pSIN4-EF2-OCT4-IRESl-SOX2 (01 S); pSIN4-EF2-OCT4-IRES2-SOX2 (O2S); pSM4- EF2-OCT4-F2A-SQX2 (OF2AS); pSIN4-EF2-NANOG-IRESl-LIN28 (NIL); pSIN4-EF2- NANOG-IRES2-LIN28 (N2L);pSIN4-EF2-OCT4-IRESJ-PURO (O); pSIN4-EF2-SOX2- IRESl-PURO (S); pSIN4-EF2-NANOG-IRESl-PURO (N); pSIN4-EF2-LIN28-IRESl-PURO (L).
- the abbreviation used for each lentiviral plasmid vector is shown in parentheses after the vector name.
- FIG. 2A shows that NANOG has a profound positive effect on reprogramming efficiency when OCT4, SOX2, LIN28, and c- MYC are also introduced, and that in combination with OCT4, SOX2, and LIN28, NANOG can support reprogramming, even in the absence of c-MYC or KLF4.
- Lentiviral constructs used w ⁇ epSIN4-EF2-OCT4-IRES2-SOX2 (O2S); pSIN4-EF2-NANOG-IRES2-LIN28 (N2L); pSIN4-EF2-LIN28-IRESl-PURO (L); pSIN4-CMV-c-Myc-IRESl-PURO (M); pSIN4-EF2- KLF4-IRES1-PURO (K).
- FIG. 2B evidences reprogramming using linked potency-determining factors.
- Lentiviral constructs used were pSIN4-EF2-c-Myc-IRES2-KLF4 (EF2-M2K); pSIN4-CMV-c- Myc-IRES2-KLF4 (CMV-M2K); pSIN4-EF2-KLF4-IRES2-c-Myc (EF2-K2M); pSIN4-CMV- KLF4-IRES2-c-Myc (CMV-K2M);pSIN4-CMV-c-Myc-IRES2-LIN28 (M2L); P SIN4-EF2- NANOG-IRES2-KLF4 (N2K).
- FIG. 2C shows the effect of SV40 large T antigen gene expression on reprogramming efficiency.
- SV40 large T antigen prevents c-Myc-induced in murine fibroblasts (Hermeking etal, PNAS 91:10412-10416 (1994)) and enhances reprogramming efficiency (Hanna et al, Cell 133:250-264 (2008); Mali et al., Stem Cells doi: 10.1634/stemcells.2008-0346 (2008)).
- Abbreviations of gene combinations are the same as in FIG. 2B, with the addition of SV40 large T antigen (T).
- T SV40 large T antigen
- Fig. 2C demonstrates that if present at levels achieved during lentiviral-based reprogramming, T antigen inhibits final stages of iPS cell derivation, hi contrast, see infra, wherein T antigen does not have this effect when present for the temporal expression time and/or level achieved during reprogramming using episomal vectors. In addition, T antigen prevents c-Myc-induced apoptosis but does not adversely affect c-Myc-induced cell proliferation.
- Human newborn foreskin fibroblasts (Cat# CRL-2097TM, ATCC) were maintained in foreskin fibroblast culture medium (DMEM (Cat# 11965, Invitrogen) supplemented with 10% heat-inactivated fetal bovine serum (FBS, HyClone Laboratories, Logan, UT), 2 mM Glutamax, 0.1 mM non-essential amino acids, and 0.1 mM ⁇ - mercaptoethanol) .
- DMEM foreskin fibroblast culture medium
- FBS heat-inactivated fetal bovine serum
- FBS HyClone Laboratories, Logan, UT
- 2 mM Glutamax 0.1 mM non-essential amino acids
- 0.1 mM ⁇ - mercaptoethanol 0.1 mM ⁇ - mercaptoethanol
- pCEP4-EGFP was created from commercially available mammalian episomal expression vector pCEP4 (Invitrogen Corp., Carlsbad, CA) by inserting the EGFP coding region between the pCEP4 BamHI and Nhel sites.
- the episomal vectors of Table 2 were created by inserting the designated expression cassettes into pCEP4-EGFP or into a related backbone lacking P CMV (designated pEP4).
- Vectors were introduced into the fibroblasts via a single nucleofection event, using Human Dermal Fibroblasts Nucleofector Kit (Normal Human Dermal Fibroblasts, QB ⁇ 960296.00915 ⁇ 9067411.1 11 Amaxa, Inc. Cat. No. VPD-1001), in accord with the manufacturer's instructions. After nucleofection, the transfected fibroblasts ( ⁇ 0.8 to 1.0 x 10 cells each) were immediately plated onto three 10 cm dishes seeded with irradiated mouse embryonic fibroblasts (MEF). Foreskin fibroblast culture medium was replaced every other day.
- Human Dermal Fibroblasts Nucleofector Kit Normal Human Dermal Fibroblasts, QB ⁇ 960296.00915 ⁇ 9067411.1 11 Amaxa, Inc. Cat. No. VPD-1001
- the foreskin fibroblast culture medium was replaced with human ES cell culture medium (DMEM/F12 culture medium supplemented with 20% KnockOut serum replacer, 0.1 mM non-essential amino acids (all from Invitrogen Corp.), 1 mM Glutamax, 0.1 mM ⁇ - mercaptoethanol and 100 ng/ml zebrafish basic fibroblast growth factor (zbFGF) as previously described (Amit et al, Developmental Biology 227:271-278 (2006); Ludwig et al., Nature Methods 3:637-646 (2006), each of which is incorporated herein by reference as if set forth in its entirety).
- human ES cell culture medium DMEM/F12 culture medium supplemented with 20% KnockOut serum replacer, 0.1 mM non-essential amino acids (all from Invitrogen Corp.), 1 mM Glutamax, 0.1 mM ⁇ - mercaptoethanol and 100 ng/ml zebrafish basic fibroblast growth factor (zbF
- human ES cell culture medium conditioned with irradiated MEF was used instead.
- the cultures were stained for alkaline phosphatase as an indication of human iPS colony development.
- temporal expression was initially evaluated by measuring EGFP level over time after introduction of EGFP from pEGFP-N2 (control) and pCEP4-EGFP episomal vector into 293FT cells was evaluated (Fig. 3B).
- FIG. 3C shows the effect of amount of pCEP4-EGFP episomal vector used on nucleofection efficiency and survival of human newborn foreskin fibroblasts, estimated from cell confluence on the day after nucleofection. Approximately 1 x 10 6 nucleofected foreskin fibroblasts were plated into each well of a 6-well plate. Gray lines represent non-transfected control fibroblasts; black lines represent transfected fibroblasts. [0041] Fig.
- 4A depicts schematic transgene expression constructs from Table 3 containing various expression cassettes that when introduced in certain combinations into human newborn foreskin fibroblasts result in reprogramming of the fibroblasts to pluripotent cells.
- Three combinations of introduced episomal reprogramming vectors have yielded reprogrammed pluripotent cells: (1) pEP4-E-O2S-E-T2K, pEP4-E-O2S-E-N2K and pCEP4- C-M2L; (2) pEP4-E-O2S-C-K2M-E-N2L and pEP4-E-O2S-E-T2K; and (3) pEP4-E-O2S-E- N2L, pEP4-E-O2S-E-T2K and pEP4-E-O2S-E-M2K.
- Table 3 indicates the amount of each
- FIG. 4B shows a bright-field microscopy image of a typical colony with morphological changes observed 18 days after episomal vector transfection.
- FIG. 4C shows a bright-field microscopy image of an alkaline phosphatase-positive colony 18 days after episomal vector transfection.
- FIG. 4D shows a bright-field microscopy image of a human iPS cell colony 6 days after the first passage of day 28 post-transfection reprogramming culture.
- the scale bar represents 0.1 mm.
- Reprogrammed cells were maintained for subsequent analysis in feeder-free culture on Matrigel (BD Biosciences, Bedford, MA) with conditioned medium as previously described (Xu et al., Nat. Biotechnol. 19:971 (2001), incorporated herein by reference as if set forth in its entirety).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Transplantation (AREA)
- Developmental Biology & Embryology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2741090A CA2741090C (en) | 2008-10-24 | 2009-10-23 | Pluripotent stem cells obtained by non-viral reprogramming |
EP18200217.0A EP3450545B1 (en) | 2008-10-24 | 2009-10-23 | Pluripotent stem cells obtained by non-viral reprogramming |
JP2011533384A JP2012506702A (en) | 2008-10-24 | 2009-10-23 | Pluripotent stem cells by non-viral reprogramming |
CN2009801480130A CN102239249A (en) | 2008-10-24 | 2009-10-23 | Pluripotent stem cells obtained by non-viral reprogramming |
EP09744285.9A EP2356221B1 (en) | 2008-10-24 | 2009-10-23 | Pluripotent stem cells obtained by non-viral reprogramming |
DK09744285.9T DK2356221T3 (en) | 2008-10-24 | 2009-10-23 | Pluripotent stem cells obtained by non-viral reprogramming |
IL212433A IL212433B (en) | 2008-10-24 | 2011-04-17 | Pluripotent stem cells obtained by non-viral reprogramming |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10836208P | 2008-10-24 | 2008-10-24 | |
US61/108,362 | 2008-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010048567A1 true WO2010048567A1 (en) | 2010-04-29 |
Family
ID=41698343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/061935 WO2010048567A1 (en) | 2008-10-24 | 2009-10-23 | Pluripotent stem cells obtained by non-viral reprogramming |
Country Status (10)
Country | Link |
---|---|
US (4) | US8268620B2 (en) |
EP (2) | EP2356221B1 (en) |
JP (5) | JP2012506702A (en) |
CN (2) | CN102239249A (en) |
CA (1) | CA2741090C (en) |
DK (2) | DK2356221T3 (en) |
ES (1) | ES2959327T3 (en) |
IL (1) | IL212433B (en) |
SG (1) | SG10201600234PA (en) |
WO (1) | WO2010048567A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8048999B2 (en) | 2005-12-13 | 2011-11-01 | Kyoto University | Nuclear reprogramming factor |
US8058065B2 (en) | 2005-12-13 | 2011-11-15 | Kyoto University | Oct3/4, Klf4, c-Myc and Sox2 produce induced pluripotent stem cells |
WO2011143343A1 (en) * | 2010-05-12 | 2011-11-17 | Ipierian, Inc. | Integration-free human induced pluripotent stem cells from blood |
US8129187B2 (en) | 2005-12-13 | 2012-03-06 | Kyoto University | Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2 |
WO2012037456A1 (en) | 2010-09-17 | 2012-03-22 | President And Fellows Of Harvard College | Functional genomics assay for characterizing pluripotent stem cell utility and safety |
US8211697B2 (en) | 2007-06-15 | 2012-07-03 | Kyoto University | Induced pluripotent stem cells produced using reprogramming factors and a rho kinase inhibitor or a histone deacetylase inhibitor |
JP2013528397A (en) * | 2010-06-15 | 2013-07-11 | セルラー ダイナミクス インターナショナル, インコーポレイテッド | Preparation of induced pluripotent stem cells from a small amount of peripheral blood |
JP2013532492A (en) * | 2010-08-05 | 2013-08-19 | ウイスコンシン アラムニ リサーチ ファンデーション | Simple basic medium for human pluripotent cell culture |
JP2014520551A (en) * | 2011-07-11 | 2014-08-25 | セルラー ダイナミクス インターナショナル, インコーポレイテッド | Cell reprogramming method and genome modification method |
WO2014200905A2 (en) | 2013-06-10 | 2014-12-18 | President And Fellows Of Harvard College | Early developmental genomic assay for characterizing pluripotent stem cell utility and safety |
WO2015034288A1 (en) * | 2013-09-06 | 2015-03-12 | 가톨릭대학교 산학협력단 | Human-induced pluripotent stem cells, and method for preparing animal in which human immune system is expressed, by using same |
US9213999B2 (en) | 2007-06-15 | 2015-12-15 | Kyoto University | Providing iPSCs to a customer |
US9279107B2 (en) | 2010-08-05 | 2016-03-08 | Wisconsin Alumni Research Foundation | Simplified basic media for human pluripotent cell culture |
US9499797B2 (en) | 2008-05-02 | 2016-11-22 | Kyoto University | Method of making induced pluripotent stem cells |
US11344577B2 (en) | 2011-11-18 | 2022-05-31 | Board Of Regents, The University Of Texas System | Car+ T cells genetically modified to eliminate expression of T-cell receptor and/or HLA |
US11464182B2 (en) | 2015-07-02 | 2022-10-11 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of inducing genetic recombination, and use therefor |
US11976295B2 (en) | 2011-10-17 | 2024-05-07 | Minerva Biotechnologies Corporation | Media for stem cell proliferation and induction |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090227032A1 (en) * | 2005-12-13 | 2009-09-10 | Kyoto University | Nuclear reprogramming factor and induced pluripotent stem cells |
US8440461B2 (en) | 2007-03-23 | 2013-05-14 | Wisconsin Alumni Research Foundation | Reprogramming somatic cells using retroviral vectors comprising Oct-4 and Sox2 genes |
DK2297307T3 (en) | 2008-06-04 | 2016-07-25 | Cellular Dynamics Int Inc | PROCEDURES FOR THE MANUFACTURE OF IPS CELLS USING NON-VIRAL METHODS |
US9175268B2 (en) * | 2008-08-12 | 2015-11-03 | Cellular Dynamics International, Inc. | Methods for the production of iPS cells |
SG10201600234PA (en) * | 2008-10-24 | 2016-02-26 | Wisconsin Alumni Res Found | Pluripotent Stem Cells Obtained By Non-Viral Reprogramming |
EP2438160B1 (en) | 2009-06-05 | 2015-12-23 | Cellular Dynamics International, Inc. | Reprogramming t cells and hematopoietic cells |
US9133266B2 (en) | 2011-05-06 | 2015-09-15 | Wisconsin Alumni Research Foundation | Vitronectin-derived cell culture substrate and uses thereof |
US8497124B2 (en) | 2011-12-05 | 2013-07-30 | Factor Bioscience Inc. | Methods and products for reprogramming cells to a less differentiated state |
DK3260140T3 (en) | 2011-12-05 | 2021-04-19 | Factor Bioscience Inc | METHODS AND CELL TRANSFER PROCEDURES |
US8772460B2 (en) | 2011-12-16 | 2014-07-08 | Wisconsin Alumni Research Foundation | Thermostable FGF-2 mutant having enhanced stability |
US20130266541A1 (en) * | 2012-04-06 | 2013-10-10 | The Johns Hopkins University | Human induced pluripotent stem cells |
KR102596302B1 (en) | 2012-11-01 | 2023-11-01 | 팩터 바이오사이언스 인크. | Methods and products for expressing proteins in cells |
US20150368713A1 (en) | 2013-02-01 | 2015-12-24 | THE UNITED STATES OF AMERICAN, as represented by the Secretary, Department of Health and Human Serv | METHOD FOR GENERATING RETINAL PIGMENT EPITHELIUM (RPE) CELLS FROM INDUCED PLURIPOTENT STEM CELLS (IPSCs) |
WO2015006725A2 (en) | 2013-07-12 | 2015-01-15 | Cedars-Sinai Medical Center | Generation of induced pluripotent stem cells from normal human mammary epithelial cells |
US11377639B2 (en) | 2013-11-15 | 2022-07-05 | Wisconsin Alumni Research Foundation | Lineage reprogramming to induced cardiac progenitor cells (iCPC) by defined factors |
RU2714404C2 (en) | 2014-01-31 | 2020-02-14 | Фэктор Байосайенс Инк. | Methods and products for producing and delivering nucleic acids |
WO2015164740A1 (en) | 2014-04-24 | 2015-10-29 | Board Of Regents, The University Of Texas System | Application of induced pluripotent stem cells to generate adoptive cell therapy products |
CN107249606A (en) * | 2014-10-31 | 2017-10-13 | 宾夕法尼亚大学董事会 | Altering gene expression in modified T cells and uses thereof |
JP7199809B2 (en) | 2015-02-13 | 2023-01-06 | ファクター バイオサイエンス インコーポレイテッド | Nucleic acid product and its administration method |
JP6873898B2 (en) * | 2015-04-14 | 2021-05-19 | 国立大学法人京都大学 | A method for producing a stem cell clone suitable for inducing differentiation into somatic cells |
ES2970537T3 (en) | 2015-09-08 | 2024-05-29 | Us Health | Method for reproducible differentiation of clinical-grade retinal pigment epithelial cells |
CN108291206B (en) | 2015-09-08 | 2022-07-08 | 富士胶片细胞动力公司 | MACS-based purification of stem cell-derived retinal pigment epithelium |
CN105219729B (en) * | 2015-09-28 | 2018-09-25 | 首都医科大学宣武医院 | Method for inducing neural stem cells by using non-integrative plasmid vector and application thereof |
WO2017070337A1 (en) | 2015-10-20 | 2017-04-27 | Cellular Dynamics International, Inc. | Methods for directed differentiation of pluripotent stem cells to immune cells |
US11352605B2 (en) | 2016-05-12 | 2022-06-07 | Erasmus University Medical Center Rotterdam | Method for culturing myogenic cells, cultures obtained therefrom, screening methods, and cell culture medium |
CN105861447B (en) * | 2016-06-13 | 2017-12-19 | 广州市搏克生物技术有限公司 | A kind of non-viral iPSCs inducing compositions and its kit |
US10221395B2 (en) | 2016-06-16 | 2019-03-05 | Cedars-Sinai Medical Center | Efficient method for reprogramming blood to induced pluripotent stem cells |
US11572545B2 (en) | 2016-06-16 | 2023-02-07 | Cedars-Sinai Medical Center | Efficient method for reprogramming blood to induced pluripotent stem cells |
JP7099967B2 (en) | 2016-07-01 | 2022-07-12 | リサーチ ディベロップメント ファウンデーション | Elimination of Proliferative Cells from Stem Cell-Derived Grafts |
EP3491134B1 (en) | 2016-08-01 | 2023-10-11 | University of Pittsburgh - of The Commonwealth System of Higher Education | Human induced pluripotent stem cells for high efficiency genetic engineering |
CN109803977B (en) | 2016-08-17 | 2023-03-17 | 菲克特生物科学股份有限公司 | Nucleic acid products and methods of administration thereof |
EP3523422A1 (en) | 2016-10-05 | 2019-08-14 | FUJIFILM Cellular Dynamics, Inc. | Generating mature lineages from induced pluripotent stem cells with mecp2 disruption |
WO2018089515A1 (en) | 2016-11-09 | 2018-05-17 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | 3d vascularized human ocular tissue for cell therapy and drug discovery |
EP3583201B1 (en) | 2017-02-14 | 2024-01-17 | University of Pittsburgh - Of the Commonwealth System of Higher Education | Methods of engineering human induced pluripotent stem cells to produce liver tissue |
EP4083063A3 (en) | 2017-04-18 | 2023-01-04 | FUJIFILM Cellular Dynamics, Inc. | Antigen-specific immune effector cells |
EP3621630A4 (en) | 2017-06-14 | 2021-03-10 | The Children's Medical Center | Hematopoietic stem and progenitor cells derived from hemogenic endothelial cells by episomal plasmid gene transfer |
US10760057B2 (en) | 2017-07-06 | 2020-09-01 | Wisconsin Alumni Research Foundation | Human pluripotent stem cell-based screening for smooth muscle cell differentiation and disease |
NL2019517B1 (en) | 2017-09-08 | 2019-03-19 | Univ Erasmus Med Ct Rotterdam | New therapy for Pompe disease |
AU2018345536B2 (en) | 2017-10-03 | 2024-07-18 | Sdf Biopharma Inc. | Treating diabetes with genetically modified beta cells |
KR20210005111A (en) | 2018-04-20 | 2021-01-13 | 후지필름 셀룰러 다이내믹스, 인코포레이티드 | Method for differentiation of ocular cells and uses thereof |
EP3847243A1 (en) | 2018-09-07 | 2021-07-14 | Wisconsin Alumni Research Foundation | Generation of hematopoietic progenitor cells from human pluripotent stem cells |
CA3119041A1 (en) | 2018-11-19 | 2020-05-28 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Biodegradable tissue replacement implant and its use |
US20220031749A1 (en) | 2018-11-28 | 2022-02-03 | Board Of Regents, The University Of Texas System | Multiplex genome editing of immune cells to enhance functionality and resistance to suppressive environment |
KR20210096648A (en) | 2018-11-29 | 2021-08-05 | 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 | Methods and uses thereof for ex vivo expansion of natural killer cells |
US10501404B1 (en) | 2019-07-30 | 2019-12-10 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
EP4118234A1 (en) | 2020-03-09 | 2023-01-18 | FUJIFILM Corporation | Markers specific for pluripotent stem cells, and methods of using the same |
IL298085A (en) | 2020-05-29 | 2023-01-01 | Fujifilm Cellular Dynamics Inc | Retinal pigmented epithelium and photoreceptor dual cell aggregates and methods of use thereof |
US20230212509A1 (en) | 2020-05-29 | 2023-07-06 | FUJIFILM Cellular Dynamics, Inc. | Bilayer of retinal pigmented epithelium and photoreceptors and use thereof |
EP3922431A1 (en) | 2020-06-08 | 2021-12-15 | Erasmus University Medical Center Rotterdam | Method of manufacturing microdevices for lab-on-chip applications |
AU2021377699A1 (en) | 2020-11-13 | 2023-06-15 | Catamaran Bio, Inc. | Genetically modified natural killer cells and methods of use thereof |
US20220162288A1 (en) | 2020-11-25 | 2022-05-26 | Catamaran Bio, Inc. | Cellular therapeutics engineered with signal modulators and methods of use thereof |
IL307358A (en) | 2021-04-07 | 2023-11-01 | Century Therapeutics Inc | Compositions and methods for generating gamma-delta t cells from induced pluripotent stem cells |
EP4320224A1 (en) | 2021-04-07 | 2024-02-14 | Century Therapeutics, Inc. | Compositions and methods for generating alpha-beta t cells from induced pluripotent stem cells |
AU2022280051A1 (en) | 2021-05-26 | 2023-11-23 | FUJIFILM Cellular Dynamics, Inc. | Methods to prevent rapid silencing of genes in pluripotent stem cells |
US20240271089A1 (en) | 2021-05-28 | 2024-08-15 | The U.S.A., As Represented By The Secretary, Department Of Health And Human Services | Methods to generate macular, central and peripheral retinal pigment epithelial cells |
EP4346928A1 (en) | 2021-05-28 | 2024-04-10 | The United States of America, as represented by The Secretary, Department of Health and Human Services | Biodegradable tissue scaffold with secondary matrix to host weakly adherent cells |
EP4402249A1 (en) | 2021-09-13 | 2024-07-24 | Fujifilm Cellular Dynamics, Inc. | Methods for the production of committed cardiac progenitor cells |
WO2023172514A1 (en) | 2022-03-07 | 2023-09-14 | Catamaran Bio, Inc. | Engineered immune cell therapeutics targeted to her2 and methods of use thereof |
WO2023240147A1 (en) | 2022-06-08 | 2023-12-14 | Century Therapeutics, Inc. | Genetically engineered cells expressing cd16 variants and nkg2d and uses thereof |
WO2024006911A1 (en) | 2022-06-29 | 2024-01-04 | FUJIFILM Holdings America Corporation | Ipsc-derived astrocytes and methods of use thereof |
WO2024073776A1 (en) | 2022-09-30 | 2024-04-04 | FUJIFILM Cellular Dynamics, Inc. | Methods for the production of cardiac fibroblasts |
WO2024192329A1 (en) | 2023-03-16 | 2024-09-19 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Methods for producing stable human chondroctyes and their use for promoting cartillage growth and repair |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5885808A (en) | 1992-11-04 | 1999-03-23 | Imperial Cancer Research Technology Limited | Adenovirus with modified binding moiety specific for the target cells |
WO2008118820A2 (en) | 2007-03-23 | 2008-10-02 | Wisconsin Alumni Research Foundation | Somatic cell reprogramming |
EP2072618A1 (en) | 2007-12-14 | 2009-06-24 | Johannes Gutenberg-Universität Mainz | Use of RNA for reprogramming somatic cells |
WO2009133971A1 (en) * | 2008-05-02 | 2009-11-05 | Kyoto University | Method of nuclear reprogramming |
WO2009149233A1 (en) * | 2008-06-04 | 2009-12-10 | Stem Cell Products, Inc. | Methods for the production of ips cells using non-viral approach |
WO2010012077A1 (en) * | 2008-07-28 | 2010-02-04 | Mount Sinai Hospital | Compositions, methods and kits for reprogramming somatic cells |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5925333A (en) * | 1995-11-15 | 1999-07-20 | Massachusetts Institute Of Technology | Methods for modulation of lipid uptake |
EP1226233B1 (en) * | 1999-08-05 | 2011-06-29 | ABT Holding Company | Multipotent adult stem cells and methods for isolation |
CA2515108A1 (en) | 2003-02-07 | 2004-08-26 | Wisconsin Alumni Research Foundation | Directed genetic modifications of human stem cells |
US8278104B2 (en) * | 2005-12-13 | 2012-10-02 | Kyoto University | Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2 |
JP2008307007A (en) * | 2007-06-15 | 2008-12-25 | Bayer Schering Pharma Ag | Human pluripotent stem cell induced from human tissue-originated undifferentiated stem cell after birth |
CN101250502A (en) * | 2008-04-01 | 2008-08-27 | 中国科学院上海生命科学研究院 | Method for preparing evoked pluripotent stem cell |
WO2009157201A1 (en) * | 2008-06-26 | 2009-12-30 | Osaka University | Method and kit for preparing ips cells |
SG10201600234PA (en) | 2008-10-24 | 2016-02-26 | Wisconsin Alumni Res Found | Pluripotent Stem Cells Obtained By Non-Viral Reprogramming |
-
2009
- 2009-10-23 SG SG10201600234PA patent/SG10201600234PA/en unknown
- 2009-10-23 EP EP09744285.9A patent/EP2356221B1/en active Active
- 2009-10-23 ES ES18200217T patent/ES2959327T3/en active Active
- 2009-10-23 DK DK09744285.9T patent/DK2356221T3/en active
- 2009-10-23 DK DK18200217.0T patent/DK3450545T5/en active
- 2009-10-23 WO PCT/US2009/061935 patent/WO2010048567A1/en active Application Filing
- 2009-10-23 CN CN2009801480130A patent/CN102239249A/en active Pending
- 2009-10-23 JP JP2011533384A patent/JP2012506702A/en not_active Withdrawn
- 2009-10-23 EP EP18200217.0A patent/EP3450545B1/en active Active
- 2009-10-23 US US12/605,220 patent/US8268620B2/en active Active
- 2009-10-23 CN CN201610213440.4A patent/CN105802917A/en active Pending
- 2009-10-23 CA CA2741090A patent/CA2741090C/en active Active
-
2011
- 2011-04-17 IL IL212433A patent/IL212433B/en active IP Right Grant
-
2012
- 2012-09-07 US US13/607,072 patent/US20130217117A1/en not_active Abandoned
-
2015
- 2015-08-24 JP JP2015165051A patent/JP6312638B2/en active Active
-
2016
- 2016-08-26 JP JP2016165793A patent/JP2016220686A/en active Pending
-
2018
- 2018-08-23 JP JP2018155983A patent/JP6861189B2/en active Active
- 2018-12-04 US US16/209,722 patent/US20190330654A1/en not_active Abandoned
-
2021
- 2021-03-29 JP JP2021055183A patent/JP7165228B2/en active Active
- 2021-06-21 US US17/352,873 patent/US20220010331A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5885808A (en) | 1992-11-04 | 1999-03-23 | Imperial Cancer Research Technology Limited | Adenovirus with modified binding moiety specific for the target cells |
WO2008118820A2 (en) | 2007-03-23 | 2008-10-02 | Wisconsin Alumni Research Foundation | Somatic cell reprogramming |
EP2072618A1 (en) | 2007-12-14 | 2009-06-24 | Johannes Gutenberg-Universität Mainz | Use of RNA for reprogramming somatic cells |
WO2009133971A1 (en) * | 2008-05-02 | 2009-11-05 | Kyoto University | Method of nuclear reprogramming |
WO2009149233A1 (en) * | 2008-06-04 | 2009-12-10 | Stem Cell Products, Inc. | Methods for the production of ips cells using non-viral approach |
WO2010012077A1 (en) * | 2008-07-28 | 2010-02-04 | Mount Sinai Hospital | Compositions, methods and kits for reprogramming somatic cells |
Non-Patent Citations (6)
Title |
---|
CAREY B W ET AL: "Reprogramming of murine and human somatic cells using a single polycistronic vector", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 20090106 US, vol. 106, no. 1, 6 January 2009 (2009-01-06), pages 157 - 162, XP002571325 * |
CONESE M ET AL: "Gene therapy progress and prospects: Episomally maintained self-replicating systems", GENE THERAPY, vol. 11, no. 24, December 2004 (2004-12-01), pages 1735 - 1741, XP002571324, ISSN: 0969-7128 * |
OKITA KEISUKE ET AL: "Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors", SCIENCE (WASHINGTON D C), vol. 322, no. 5903, 9 October 2008 (2008-10-09), pages 949 - 953, XP002571322, ISSN: 0036-8075 * |
YU J; THOMSON J A: "Pluripotent stem cell lines", GENES & DEVELOPMENT, vol. 22, no. 15, 1 August 2008 (2008-08-01), pages 1987 - 1997, XP055372545 |
YU JUNYING ET AL: "Human induced pluripotent stem cells free of vector and transgene sequences.", SCIENCE (NEW YORK, N.Y.) 8 MAY 2009, vol. 324, no. 5928, 8 May 2009 (2009-05-08), pages 797 - 801, XP002571323, ISSN: 1095-9203 * |
YU JUNYING ET AL: "Induced pluripotent stem cell lines derived from human somatic cells", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 318, no. 5858, 21 December 2007 (2007-12-21), pages 1917 - 1920, XP009105055, ISSN: 1095-9203 * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8278104B2 (en) | 2005-12-13 | 2012-10-02 | Kyoto University | Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2 |
US8058065B2 (en) | 2005-12-13 | 2011-11-15 | Kyoto University | Oct3/4, Klf4, c-Myc and Sox2 produce induced pluripotent stem cells |
US8048999B2 (en) | 2005-12-13 | 2011-11-01 | Kyoto University | Nuclear reprogramming factor |
US8129187B2 (en) | 2005-12-13 | 2012-03-06 | Kyoto University | Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2 |
US9213999B2 (en) | 2007-06-15 | 2015-12-15 | Kyoto University | Providing iPSCs to a customer |
US8257941B2 (en) | 2007-06-15 | 2012-09-04 | Kyoto University | Methods and platforms for drug discovery using induced pluripotent stem cells |
US8211697B2 (en) | 2007-06-15 | 2012-07-03 | Kyoto University | Induced pluripotent stem cells produced using reprogramming factors and a rho kinase inhibitor or a histone deacetylase inhibitor |
US9714433B2 (en) | 2007-06-15 | 2017-07-25 | Kyoto University | Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue |
US9499797B2 (en) | 2008-05-02 | 2016-11-22 | Kyoto University | Method of making induced pluripotent stem cells |
WO2011143343A1 (en) * | 2010-05-12 | 2011-11-17 | Ipierian, Inc. | Integration-free human induced pluripotent stem cells from blood |
EP2582794B1 (en) | 2010-06-15 | 2018-03-07 | Cellular Dynamics International, Inc. | Generation of induced pluripotent stem cells from small volumes of peripheral blood |
US9447382B2 (en) | 2010-06-15 | 2016-09-20 | Cellular Dynamics International, Inc. | Generation of induced pluripotent stem cells from small volumes of peripheral blood |
EP2582794B2 (en) † | 2010-06-15 | 2024-04-24 | FUJIFILM Cellular Dynamics, Inc. | Generation of induced pluripotent stem cells from small volumes of peripheral blood |
US10260048B2 (en) | 2010-06-15 | 2019-04-16 | FUJIFILM Cellular Dynamics, Inc. | Generation of induced pluripotent stem cells from small volumes of peripheral blood |
JP2018019725A (en) * | 2010-06-15 | 2018-02-08 | セルラー ダイナミクス インターナショナル, インコーポレイテッド | Generation of induced pluripotent stem cells from a small amount of peripheral blood |
JP2013528397A (en) * | 2010-06-15 | 2013-07-11 | セルラー ダイナミクス インターナショナル, インコーポレイテッド | Preparation of induced pluripotent stem cells from a small amount of peripheral blood |
JP2017018137A (en) * | 2010-08-05 | 2017-01-26 | ウィスコンシン アラムニ リサーチ ファンデーション | Simple basic media for human pluripotent cell culture |
US9279107B2 (en) | 2010-08-05 | 2016-03-08 | Wisconsin Alumni Research Foundation | Simplified basic media for human pluripotent cell culture |
JP2013532492A (en) * | 2010-08-05 | 2013-08-19 | ウイスコンシン アラムニ リサーチ ファンデーション | Simple basic medium for human pluripotent cell culture |
US9644186B2 (en) | 2010-08-05 | 2017-05-09 | Wisconsin Alumni Research Foundation | Simplified basic media for human pluripotent cell culture |
US9279103B2 (en) | 2010-08-05 | 2016-03-08 | Wisconsin Alumni Research Foundation | Simplified basic media for human pluripotent cell culture |
WO2012037456A1 (en) | 2010-09-17 | 2012-03-22 | President And Fellows Of Harvard College | Functional genomics assay for characterizing pluripotent stem cell utility and safety |
JP2014520551A (en) * | 2011-07-11 | 2014-08-25 | セルラー ダイナミクス インターナショナル, インコーポレイテッド | Cell reprogramming method and genome modification method |
US11976295B2 (en) | 2011-10-17 | 2024-05-07 | Minerva Biotechnologies Corporation | Media for stem cell proliferation and induction |
US11344577B2 (en) | 2011-11-18 | 2022-05-31 | Board Of Regents, The University Of Texas System | Car+ T cells genetically modified to eliminate expression of T-cell receptor and/or HLA |
WO2014200905A2 (en) | 2013-06-10 | 2014-12-18 | President And Fellows Of Harvard College | Early developmental genomic assay for characterizing pluripotent stem cell utility and safety |
KR101551926B1 (en) | 2013-09-06 | 2015-09-10 | 가톨릭대학교 산학협력단 | Human induced pluripotent stem cells and method for producing animal expressed human immune system using the same |
WO2015034288A1 (en) * | 2013-09-06 | 2015-03-12 | 가톨릭대학교 산학협력단 | Human-induced pluripotent stem cells, and method for preparing animal in which human immune system is expressed, by using same |
US11464182B2 (en) | 2015-07-02 | 2022-10-11 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of inducing genetic recombination, and use therefor |
Also Published As
Publication number | Publication date |
---|---|
CA2741090C (en) | 2018-10-16 |
US20190330654A1 (en) | 2019-10-31 |
JP2012506702A (en) | 2012-03-22 |
EP3450545A1 (en) | 2019-03-06 |
JP2016220686A (en) | 2016-12-28 |
CN102239249A (en) | 2011-11-09 |
EP2356221A1 (en) | 2011-08-17 |
ES2959327T3 (en) | 2024-02-23 |
CA2741090A1 (en) | 2010-04-29 |
US20130217117A1 (en) | 2013-08-22 |
JP2021094040A (en) | 2021-06-24 |
CN105802917A (en) | 2016-07-27 |
DK3450545T3 (en) | 2023-10-02 |
US8268620B2 (en) | 2012-09-18 |
JP6312638B2 (en) | 2018-04-18 |
EP2356221B1 (en) | 2018-11-21 |
DK3450545T5 (en) | 2024-09-09 |
IL212433A0 (en) | 2011-06-30 |
EP3450545B1 (en) | 2023-08-23 |
JP7165228B2 (en) | 2022-11-02 |
DK2356221T3 (en) | 2019-02-18 |
JP6861189B2 (en) | 2021-04-21 |
JP2018174945A (en) | 2018-11-15 |
JP2015213522A (en) | 2015-12-03 |
US20220010331A1 (en) | 2022-01-13 |
SG10201600234PA (en) | 2016-02-26 |
IL212433B (en) | 2019-08-29 |
US20100184227A1 (en) | 2010-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220010331A1 (en) | Pluripotent stem cells obtained by non-viral reporgramming | |
US11898162B2 (en) | Reprogramming somatic cells into pluripotent cells using a vector encoding Oct4 and Sox2 | |
US9850499B2 (en) | Vectors and methods for the efficient generation of integration/transgene-free induced pluripotent stem cells from peripheral blood cells | |
EP2476750A1 (en) | Somatic cell reprogramming | |
AU2010279913A1 (en) | Method of efficiently establishing induced pluripotent stem cells | |
AU2013267048B2 (en) | Somatic cell reprogramming | |
AU2016200360A1 (en) | Somatic cell reprogramming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980148013.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09744285 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 212433 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2741090 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011533384 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009744285 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3689/CHENP/2011 Country of ref document: IN |