WO2010048535A1 - Phosphor based authentication system - Google Patents

Phosphor based authentication system Download PDF

Info

Publication number
WO2010048535A1
WO2010048535A1 PCT/US2009/061896 US2009061896W WO2010048535A1 WO 2010048535 A1 WO2010048535 A1 WO 2010048535A1 US 2009061896 W US2009061896 W US 2009061896W WO 2010048535 A1 WO2010048535 A1 WO 2010048535A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
marking
emission
excitation radiation
wavelength range
Prior art date
Application number
PCT/US2009/061896
Other languages
French (fr)
Inventor
Yi-Qun Li
Haitao Yang
Original Assignee
Intematix Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intematix Corporation filed Critical Intematix Corporation
Priority to CN200980141958.XA priority Critical patent/CN102197262B/en
Priority to EP09822791A priority patent/EP2350525A4/en
Priority to JP2011533379A priority patent/JP5529878B2/en
Publication of WO2010048535A1 publication Critical patent/WO2010048535A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/387Special inks absorbing or reflecting ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30Β -Β B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30Β -Β B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77924Aluminosilicates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2425/00Cards, e.g. identity cards, credit cards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2519/00Labels, badges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2554/00Paper of special types, e.g. banknotes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a phosphor (photo-luminescent) material based authentication system and, more particularly, to a method of authenticating a photo- luminescent security marking, an apparatus for authenticating a photo-luminescent security marking and a photo-luminescent security marking.
  • Authentication is the act of establishing or confirming something as being genuine, that is, claims made about the thing are true.
  • Authenticating an article or document usually involves confirming its provenance using one or more authentication factors.
  • Articles or documents will often include one or more security markings or security devices in order to authenticate the article/document.
  • security markings/devices include: watermarks in documents, magnetic print on personal checks, micro-printing on banknotes, antibodies in oil and gas, molecular recognition agents in spirits and liquors, thermal transfer inks and color shifting pigments on packaging, holograms on credit cards, photo-luminescent security markings, bar codes, electronic tagging devices, invisible markers on pharmaceuticals capsules etc.
  • Security markings that utilize a phosphor material offer a number of potential authentication factors including excitation wavelength, emission spectra with unique signatures covering ultra violet (UV) to near infrared (NIR), peak intensity, peak wavelength, decay time or interval, rise and fall of particular peaks in the spectra.
  • UV ultra violet
  • NIR near infrared
  • Phosphor (photo-luminescent) materials can be characterized into two categories i) down-converting and ii) up-converting.
  • the material is excited with high energy photons such as UV or high ionizing radiations such as X-rays or ⁇ -rays and emit light in the visible or NIR spectral regions.
  • photo-luminescent materials absorb two or more low energy photons such as NIR, particularly 980nm radiation, and emit a single high energy photon of shorter wavelength (e.g. visible light) by a process of summing IR photons.
  • UV phosphors Most UV excitable down-converting phosphors, hereinafter termed UV phosphors, can be excited by 254nm or 365nm lines from a low pressure mercury vapor lamp. By analyzing the emission (photo luminescence) spectra, the identity of the phosphor can be determined. UV phosphors were extensively used in security markers during the 1980s and 1990s. A drawback of UV phosphors is that most of them fluoresce strongly on paper based substrates and this can reduce the effectiveness of the fluorescent marking. A further problem with UV phosphors is that the UV excitation radiation is harmful to the human eye. From a safety perspective phosphors that can be excited by an excitation radiation of wavelength within the visible part of the electromagnetic spectrum, that is 380 to 700nm, are considered to be ideal.
  • the up-conversion process relies on one absorber Yb (ytterbium) and typically one or more of three different emitters in blue Tm 3+ (thulium), green Er 3+ (erbium) or red Yb 3+ regions.
  • Absorption of a first infrared photon promotes a rare earth ion into a relatively long-lived first excited state. If a subsequent infrared photon encounters this excited ion it may, depending on the absorption probability, be absorbed, thereby promoting the ion into a second higher excited state. Transition of the ion from the second state to the ground state results in the emission of a photon of higher energy (i.e. of shorter wavelength).
  • up- converting phosphor materials rely on the absorbance of Yb + each of them can be excited by a 980nm (IR) laser diode.
  • An example of an up-converting phosphor is a Eu 3+ , Yb 3+ activated yttrium oxysulfide Y 2 ⁇ 2 S:Er,Yb.
  • Other examples of IR (980nm) excitable phosphors are Yb 3+ , Tm 3+ activated gadolinium oxysulfide as are described in US 6,686,074 and US 6,841,092.
  • a problem with up-converting phosphors is that due to their relatively low efficiency they need to be excited by high intensity IR radiation generated by a laser and such radiation is harmful to the human eye.
  • WO 2000/60527 teaches exciting an up-converting phosphor material using an NIR laser that is operated in a pulsed mode of operation such that the pulses have a peak power sufficient to induce a detectable emission in the phosphor material and the pulse repetition frequency and duration are selected such that the mean power of the laser emission is low enough not to produce eye damage.
  • Inks containing UV phosphors are readily available in the security industry at a relatively low cost.
  • counterfeiters due to the widespread use of such inks counterfeiters have become knowledgeable about various inks and their use.
  • counterfeiters are able to reproduce or procure the same ink with UV phosphors that matches the characteristics of the ink with phosphor from the product sample, and apply the same on the counterfeit products.
  • ink with up-converting phosphors that are excitable by light in the IR part of the spectrum ranging from 800nm to 1600nm have been developed.
  • US 5,766,324 describes an IR security ink that comprises an IR phosphor combined with a black colorant which does not absorb light in the IR wavelength range.
  • US 7,030,371 discloses a method of measuring the luminescence characteristic of a luminescent security marking in which the luminescence emission is measured during specific time intervals either during or after exposure to the excitation radiation. The intensity value measured during one time interval is subtracted from the intensity value measured during the other time interval with the result of the subtraction being representative of light emitted from the luminescent security marking. The duration of one time interval is shorter than 25% of the exposure time to the excitation radiation.
  • US 5,331,140 discloses a bar code reading system for reading a fluorescent bar code.
  • the bar code is irradiated with radiation that is sine wave or square wave modulated at two frequencies that are not harmonically related and detecting radiation emitted by the bar code at frequencies corresponding to the sum and difference of the two modulation frequencies.
  • Embodiments of the invention are directed to a phosphor based authentication system that utilizes a photo-luminescent security marking that comprises a blend of two or more phosphor materials that are, preferably, each excitable by "eye safe" excitation radiation comprising visible light of wavelength 380nm to 780nm.
  • a photo-luminescent security marking that comprises a blend of two or more phosphor materials that are, preferably, each excitable by "eye safe" excitation radiation comprising visible light of wavelength 380nm to 780nm.
  • the security marking when excited the security marking also emits visible light thereby substantially eliminating any risk of damage to an operator's eye in the event of accidental exposure to the excitation radiation and/or light generated by the photo-luminescent marking.
  • an authentic security marking comprises a blend of at least two phosphor materials that are excitable by excitation radiation of a selected wavelength that is within a wavelength range 380 to 780nm and which when excited has a known emission characteristic
  • the method comprising: a) irradiating the marking with excitation radiation of the selected wavelength, b) measuring at least one selected parameter of light emitted by the marking, and c) comparing the at least one measured parameter with a corresponding parameter of the known emission characteristic and verifying the authenticity of the marking if the parameters are within prescribed limits.
  • the marking comprises at least one phosphor material which is only excitable by excitation radiation of wavelength within a first wavelength range and at least one phosphor material which is excitable by excitation radiation of wavelength within a second different wavelength range which overlaps and includes the first wavelength range
  • the method comprising: a) irradiating the marking with excitation radiation of wavelength within the first wavelength range and measuring at least one selected parameter of light emitted by the marking, b) irradiating the marking with excitation radiation of wavelength that is within the overlapping region of the first and second wavelength ranges and measuring at least one selected parameter of light emitted by the marking, c) irradiating the marking with excitation radiation of wavelength within a part of the second wavelength range that does not overlap the first wavelength range and measuring at least one selected parameter of light emitted by the marking, and d) comparing the at least one measured parameters measured with corresponding parameters of the known emission characteristic and verifying the authenticity of the marking if the parameters are within prescribed limits.
  • the selected parameter comprises the intensity of emitted light within one or more selected wavelength regions, typically a wavelength region including an expected emission peak resulting from one of the phosphor materials.
  • the authenticity of the marking is verified by comparing the relative intensities (i.e. ratio) of emitted light within the selected regions with the corresponding ratios for the known emission characteristic.
  • the selected parameter can comprise the intensity and/or wavelength of an emission peak, the rate of rise and/or fall of an emission peak, the ratio of emission peak intensities and/or wavelengths, intensity and/or of an emission trough, the ratio of emission trough intensities and/or wavelengths, wavelength and/or intensity of a point of inflection, the ratio of point of inflection intensities and/or wavelengths, the number of emission peaks, troughs and/or points of inflection, the shape of an emission peak or trough or the general shape and/or form of the emission spectrum.
  • an authentic security marking comprises a blend of at least two phosphor materials in which at least one phosphor material is only excitable by excitation radiation of wavelength within a first wavelength range and at least one phosphor material is excitable by excitation radiation of wavelength within a second different wavelength range which overlaps and includes the first wavelength range
  • the method comprising: irradiating the marking with excitation radiation of wavelength within the first wavelength range and measuring at least one selected parameter of light emitted by the marking, irradiating the marking with excitation radiation of wavelength that is within the overlapping region of the first and second wavelength ranges and measuring at least one selected parameter of light emitted by the marking, irradiating the marking with excitation radiation of wavelength within a part of the second wavelength range that does not overlap the first wavelength range and measuring at least one selected parameter of light emitted by the marking, and comparing the measured at least one selected parameters with corresponding parameters of the known emission characteristic
  • an apparatus for authenticating a photo-luminescent security marking in which an authentic security marking comprises a blend of at least two phosphor materials that are excitable by excitation radiation of a selected wavelength that is within a wavelength range 380 to 780nm and which when excited has a known emission characteristic, said apparatus comprising: at least one excitation source operable to emit and irradiate the marking with excitation radiation of the selected wavelength; a detector operable to measure at least one selected parameter of light emitted by the marking; and processing means for comparing the at least one measured parameter with a corresponding parameter of the known emission characteristic and if the they are within prescribed limits verifying the authenticity of the marking.
  • the apparatus further comprises wavelength separating means for dividing the light emitted by the photo-luminescent security marking into selected wavelength regions and the detector is operable to measure the intensity for each selected wavelength regions.
  • the wavelength separating means can comprise one or more optical filters such as gel filters, optical fiber gratings, a grating or a prism.
  • an apparatus for authenticating a photo-luminescent security marking of a type comprising at least one phosphor material which is only excitable by excitation radiation of wavelength within a first wavelength range and at least one phosphor material which is excitable by excitation radiation of wavelength within a second different wavelength range which overlaps and includes the first wavelength range
  • the apparatus comprising: a first independently operable excitation source operable to emit and irradiate the marking with excitation radiation of wavelength within the first wavelength range; a second independently operable excitation source operable to emit and irradiate the marking with excitation radiation of wavelength within the second wavelength range; a detector operable to measure at least one selected parameter of light emitted by the photo-luminescent security marking; and processing means for comparing the at least one selected parameter with a corresponding parameter of the known emission characteristic and verifying the authenticity of the marking if the parameters are within prescribed limits; wherein the apparatus is operable a) to irradiate the marking radiation of
  • the apparatus of the invention verifies (authenticates) the authenticity of the photo-luminescent security marking on the basis of one or more selected parameters that can include: the intensity of a selected wavelength region, ratio of intensities of selected wavelength regions, intensity and/or wavelength of an emission peak, rate of rise and/or fall of an emission peak, ratio of emission peak intensities and/or wavelengths, intensity and/or wavelength of an emission trough, ratio of emission trough intensities and/or wavelengths, wavelength and/or intensity of a point of inflection, ratio of point of inflection intensities and/or wavelengths, number of emission peaks, troughs and/or points of inflection or shape of emission peak.
  • selected parameters can include: the intensity of a selected wavelength region, ratio of intensities of selected wavelength regions, intensity and/or wavelength of an emission peak, rate of rise and/or fall of an emission peak, ratio of emission peak intensities and/or wavelengths, intensity and/or wavelength of an emission trough, ratio of emission trough intensities and/or wavelengths, wavelength and/
  • a photo-luminescent security marking comprises a blend of at least two, preferably at least three, phosphor materials in which each phosphor material is excitable by excitation radiation of a selected wavelength that is within wavelength range 380 to 780nm.
  • each phosphor material is excitable by excitation radiation of the same selected wavelength range.
  • at least one phosphor material is only excitable by excitation radiation of a first wavelength range and at least one phosphor material is excitable by excitation radiation of a second different wavelength range which overlaps and includes the first wavelength range.
  • the marking comprises a blend of at least three phosphor materials
  • at least one phosphor material is excitable by excitation radiation of a first wavelength range
  • at least one phosphor material is excitable by excitation radiation of a second wavelength range which overlaps and includes the first wavelength range
  • at least one phosphor material is excitable by excitation radiation of a third wavelength range which overlaps and includes the first and second wavelength ranges.
  • the security marking when excited the security marking emits visible light thereby minimizing the risk of damage to an operator's eye in the event of accidental exposure to the excitation radiation and/or light generated by photo-luminescent marking.
  • the phosphor materials preferably comprise down-converting materials that are excitable by excitation radiation of wavelength 400 to 450nm.
  • each phosphor material preferably has an average particle size of five microns or less, preferably two microns or less or one micron or less.
  • the photo-luminescent security marking can comprise a blend of inorganic or organic phosphor materials including aluminate, silicate, nitride, sulfate, oxy-nitride, oxy- sulfate and garnet based phosphor materials.
  • the marking can comprise a blend of down- converting and up-converting phosphor materials that are excitable by a respective excitation source.
  • the blend of phosphor materials can be incorporated with a binder material, such as an ink, and the mixture then applied to the surface of an article or document by for example ink jet printing, letterpress, intaglio, screen printing or other printing deposition methods.
  • a binder material such as an ink
  • the blend of phosphor materials can be incorporated in a polymer material, such as for example a polycarbonate, acrylic or silicone material, which is then fabricated into sheets or fibers (threads/filaments) which can then be incorporated into a document or other article such as luxury goods or brand clothing.
  • the blend of phosphor materials can be laminated between sheets of material, such as a polymer or paper, in which at least one sheet is transmissive to the excitation radiation and light emitted by the phosphor materials.
  • the laminated sheet can then be applied to, for example, a credit/bank/store card or a part of the card composed of laminated sheet.
  • the marking can comprise a form of photo-luminescent "water mark" or be applied to the document in the form of a label.
  • the phosphor materials are applied to a surface of a metal foil, wire or strip and the foil/wire/strip applied to a surface of the article or incorporated within a document such as a banknote.
  • the phosphor materials be incorporated as part of a bar code or other encoding scheme.
  • lines (bars) of the bar code comprise different phosphor blends and the sequence of lines of different phosphor materials can be used as a further form of coding.
  • a photo- luminescent security marking comprising a blend of at least two phosphor materials in which at least one phosphor material is only excitable by excitation radiation of a first wavelength range and at least one phosphor material is excitable by excitation radiation of a second wavelength range which overlaps and includes the first wavelength range.
  • Figure 1 is a schematic diagram of an authentication system in accordance with the invention.
  • Figures 2 is a schematic representation of a detector arrangement in accordance with a first embodiment of the invention.
  • Figure 3 is a schematic representation of an optical fiber based detector arrangement in accordance with a second embodiment of the invention.
  • Figure 4 is a schematic representation of an optical fiber based detector arrangement in accordance with a third embodiment of the invention.
  • Figure 5 is a schematic representation of a spectrometer detector arrangement in accordance with a fourth embodiment of the invention.
  • Figure 6 is a schematic diagram of an emission spectrum indicating parameters used in authenticating the phosphor blend
  • Figure 7 (a) shows normalized emission spectra (intensity versus wavelength) for three phosphor material photo-luminescent security markings of different blends and Figure 7(b) shows the longer wavelength part of the spectra of Figure 7(a);
  • Figure 8 shows schematic emission spectra (intensity versus wavelength) for a photo-luminescent security marking excited by excitation radiation (a) of first and second wavelengths (b) of a first wavelength only and (c) of a second wavelength only; and [0044] Figure 9(a) and 9(b) show schematic representations of a photo-luminescent marking in the form of bar codes.
  • Embodiments of the invention are directed to a phosphor (photo-luminescent) material based authentication system in which a blend (mixture) of at least two, preferably three or more, phosphor materials are used as a photo-luminescent security marking which is applied to or incorporated within an article/document to be authenticated.
  • the phosphor materials are each excitable by "eye safe" excitation radiation comprising visible light of wavelength 380nm to 780nm.
  • the security marking when excited the security marking preferably also emits visible light thereby substantially eliminating any risk of damage to an operator's eye in the event of accidental exposure to the excitation radiation and/or light generated by the photo-luminescent marking.
  • the photo-luminescent security marking has a characteristic emission spectrum having two or more peaks and article/document can be verified (authenticated) by verification of the composition of the phosphor by comparing one or more selected parameters of light emitted by the security marking with corresponding parameters of the characteristic emission spectrum of the authentic phosphor blend.
  • a phosphor material that is excitable by excitation radiation within a selected wavelength range means that the phosphor is capable of being excited by excitation radiation of a wavelength within the selected wavelength range such that it emits light of sufficient intensity as to be measurable by a photodetector such as a photodiode. It does not require that the wavelength range of the excitation radiation be that for a maximum spectral efficiency.
  • FIG. 1 is a schematic diagram of an authentication system 10 in accordance with the invention for verifying the authenticity of an article 12.
  • the article 12 which can, for example, comprise a document such as a banknote, passport, identity document, admission ticket (e.g. a lottery, concert ticket etc) or card such as security, credit or identity card, has a photo-luminescent security marking 14 on a surface thereof.
  • the photo-luminescent security marking 14 comprises a blend of three phosphor materials 16, 18, 20 which are incorporated in a binder material 22, such as an ink, and the mixture is then applied to the surface of the object 12 by for example ink jet printing, letterpress, intaglio, screen printing or other printing or deposition methods.
  • the blend of phosphor materials can be incorporated with a binder material, such as an ink, and the mixture then applied to the surface of an article or document by for example ink jet printing, letterpress, intaglio, screen printing or other printing deposition methods.
  • a binder material such as an ink
  • the blend of phosphor materials can be incorporated in a polymer material, such as for example a polycarbonate, acrylic or silicone material, which is then fabricated into sheets or fibers (threads/filaments) which can then be incorporated into a document or other article such as luxury goods or brand clothing.
  • the blend of phosphor materials can be laminated between sheets of material, such as a polymer or paper, in which at least one sheet is transmissive to the excitation radiation and light emitted by the phosphor materials.
  • the laminated sheet can then be applied to, for example, a credit/bank/store card or a part of the card composed of laminated sheet.
  • the marking can comprise a form of photo-luminescent "water mark" or be applied to the document in the form of a label.
  • the phosphor materials are applied to a surface of a metal foil, wire or strip and the foil/wire/strip applied to a surface of the article or incorporated within a document such as a banknote.
  • each phosphor material preferably comprises a down- converting phosphor that has the same host matrix which when excited by excitation radiation of wavelength ⁇ ex give rise to a respective emission peak "a", "b", "c" at a respective wavelength ⁇ a , ⁇ j,, ⁇ c in the emission characteristic of the phosphor material blend.
  • Excitation radiation ⁇ ex that is not absorbed by the phosphor materials within the photo- luminescent security marking will be reflected and will give rise to an emission peak "d" at a wavelength ⁇ ex .
  • the authenticity of the article 12 is verified using a portable, preferably hand held, authentication device 24 (indicated by a dashed line box in Figure 1) by verifying the authenticity of the photo-luminescent security marking 14 through one or more selected parameters of its characteristic emission spectrum.
  • the authentication device 24 comprises an excitation source 26 which is operable to irradiate the photo-luminescent security marking 14 with excitation radiation 28 of wavelength ⁇ ex and a detector arrangement 30 for measuring radiation 32 generated by photo-luminescence of the photo-luminescent security marking 14.
  • the excitation source 26 and detector arrangement 30 are operated under control of a controller 34 which can comprise a microprocessor or dedicated circuitry such as a FPGA (Field Programmable Gate Array).
  • the excitation source 26 preferably comprises one or more light emitting diodes (LEDs) which generates excitation radiation 28 that is "eye safe" and within the visible part of the electromagnetic spectrum (i.e. 380 to 780nm) to minimize damage to an operator's eye in the event that they are exposed to the excitation radiation 28.
  • the choice of excitation wavelength ⁇ ex will depend on the composition of the phosphor blend and whether the phosphor materials are down-converting or up-converting.
  • the security marking emits visible light thereby substantially eliminating any risk of damage to an operator's eye in the event of accidental exposure to the excitation radiation and/or light generated by the photo-luminescent marking.
  • the phosphor materials preferably comprise down-converting materials and are excited by excitation radiation of comprising blue light in a wavelength range 400 to 450nm.
  • Figure 2 is a schematic representation of a detector arrangement 30 in accordance with a first embodiment of the invention and comprises a receiving aperture 36, a collimating lens 38, first and second optical splitters 40, 42, first, second and third optical band pass (BP) filters 44, 46, 48, first, second and third photo-detectors 50, 52, 54 and first, second and third analogue to digital (A to D) converters 74, 76, 78.
  • Light 32 emitted/reflected by the article 12 is received by the receiving aperture 36 and is collimated by the collimating lens 38 into a substantially parallel beam 56 which is incident on the first beam splitter 40.
  • BP optical band pass
  • the light 32 emitted by the article 12 will comprise a combination of excitation radiation 28 reflected by the article/marking and light generated by photo-luminescence of the phosphor materials within the photo-luminescent security marking 14.
  • the optical splitter 40 can comprise a partially reflecting mirror such as, for example, a half-silvered mirror which is configured such that the beam 56 strikes the mirror at an angle of 45Β° and is divided into two beams 58, 60 of substantially equal intensity.
  • One beam 58 is transmitted by the optical splitter 40 and the other beam 60 is reflected by the splitter.
  • the light 58 transmitted by the optical splitter 40 is filtered by the first optical band pass (BP) filter 44 and the filtered light transmitted by the filter is detected by the first photo-detector 50.
  • BP optical band pass
  • the first optical band pass filter 44 has an optical transmission pass band that corresponds to the expected first emission peak "a” such that in operation the first photo-detector 50 will measure the intensity of light corresponding to the first emission peak "a", that is light centered at the wavelength ⁇ a .
  • the first photo- detector thus produces an electrical signal (V a ) 66 whose magnitude (voltage) is related to the intensity of light at the wavelength ⁇ a .
  • Each of the optical band pass filters 44, 46, 48 can comprise a gel filter that comprises various inorganic or organic compounds incorporated in a glass or plastics material, typically a polycarbonate or acrylic.
  • the filters 44, 46, 48 can comprise dichroic filters in which multiple optical layers are deposited on a transparent substrate, typically a glass substrate. Whilst dichroic filters offer a superior optical performance in terms of a very precise pass band, they are more expensive to fabricate and it is preferred for economy to use gel filters whenever appropriate.
  • the light 60 reflected by the first optical splitter 40 is further divided by the second optical splitter 42 into two beams 62, 64 of substantially equal intensity, one of which is reflected 62 and one which is transmitted 64.
  • Light 62 reflected by the second splitter 42 is filtered by the second optical band pass filter 46 and the filtered light transmitted by the filter is detected by the second-photo detector 52.
  • the second optical band pass filter has an optical pass band characteristic that corresponds to the second emission peak "b" such that in operation the second photo detector 52 will measure the intensity of light corresponding to the second emission peak "b", that is light of wavelength centered at the wavelength ⁇ b
  • the second photo-detector 52 thus produces an electrical signal (Vb) 68 whose magnitude (voltage) is related to the intensity of light at the wavelength ⁇ b
  • the light 64 transmitted by the second optical splitter 42 is filtered by the third optical band pass filter 48 and the filtered light transmitted by the filter is detected by the third photo-detector 54.
  • the third optical band pass filter 48 has an optical pass band characteristic that corresponds to the third emission peak "c" such that in operation the third photo-detector 54 will measure the intensity of light corresponding to the third emission peak "c", that is light centered at the wavelength ⁇ c .
  • the third photo-detector thus produces an electrical signal (V c ) 70 whose magnitude (voltage) is related to the intensity of light at the wavelength ⁇ c .
  • the numeric values are read by the processor 34 over a data bus 80.
  • the processor 34 compares the ratios of the three numeric values (e.g.
  • the authentication device 24 indicates to a user that the marking is authenticated by means of an indicator 35 (See Figure 1) such as an audible indicator (a beep), a visual indicator such as a particular color light (e.g. green) or by another physical indicator such as a low frequency vibration which can be felt by an operator.
  • an indicator 35 See Figure 1
  • an audible indicator a beep
  • a visual indicator such as a particular color light (e.g. green) or by another physical indicator such as a low frequency vibration which can be felt by an operator.
  • the device preferably generates a corresponding negative indicator 35 (e.g. a red light).
  • the detector arrangement 30 can further comprise an optical filter 82 for blocking the excitation radiation ⁇ ex .
  • the filter 82 can be provided between the collimating lens 38 and the first optical splitter 40 or provided as a part of the receiving aperture 36.
  • the photo-luminescent marking comprises a blend of down- converting phosphor materials the filter 82 has an optical characteristic that will transmit light of wavelengths longer than ⁇ ex substantially unattenuated whilst substantially blocking light of wavelength equal to or shorter than X 6x .
  • the measured light 32 is divided (split) on the basis of intensity (power) the light intensities measured by the photo-detectors 50, 52, 54 will not be absolute intensity values.
  • the intensity value measured by the photo-detector 50 will be approximately half the value for the light received by the receiving aperture 36 whilst the intensity values measured by the photo- detectors 52, 54 will be approximately a quarter of their actual value due to the effect of the second optical splitter 42.
  • the values can be scaled by the processor 34 before calculating the relative ratios of peak intensities or the authentication device 24 can be calibrated using a reference security marking composed of an authentic blend of phosphors.
  • the band pass of the first optical band pass filter 44 is selected to correspond to the peak with the lowest expected intensity.
  • the detector arrangement 30 can further include an additional optical splitter, optical band pass filter and photo-detector for measuring the intensity of light corresponding to the excitation wavelength ⁇ ex . With such an arrangement the device can verify the authenticity of the emission spectra on the basis of the magnitude of the emission peaks "a", "b", "c" that have been normalized to the magnitude of the excitation radiation peak.
  • detector arrangements 30 that use free space optics such as that illustrated in Figure 2 it is also contemplated in other embodiments to use optical arrangements in which the light is guided within an optical medium such as an optical fiber or a solid state waveguide.
  • An advantage of waveguided arrangements is that they enable fabrication of a more compact detector arrangement that is less susceptible to vibration or shock.
  • An example of such a detector arrangement 330 is shown in Figure 3.
  • Like reference numerals preceded by the first figure number corresponding to a given embodiment are used to denote like parts.
  • the photo-detectors 50, 52, 54 of Figure 2 are respectively denoted 350, 352, 354 in Figure 3.
  • Figure 3 is a schematic representation of an optical fiber based detector arrangement 330 that is functionally equivalent to the detector arrangement 30 of Figure 2.
  • Light 32 received by the receiving aperture 36 is coupled, by a collimating lens 338, into a first optical fiber 384.
  • the light 356 is guided by the first optical fiber 384 to a first optical splitter 340 where it is divided equally between second and third optical fibers 386 and 388 respectively.
  • the optical splitter 340 typically comprises a fused fiber splitter/coupler.
  • Light 358 within the second optical fiber 386 is filtered by a first optical band pass filter 344 and light transmitted by the filter detected by the first photo-detector 350.
  • the optical band pass filters 344, 346, 348 comprise an optical fiber Bragg grating.
  • a fiber Bragg grating comprises a periodic perturbation of the effective refractive index in the core of an optical fiber.
  • the perturbation is approximately periodic over a certain length (e.g. a few millimeters or centimeters) and the period is of the order of hundreds of nanometers.
  • Fiber Bragg gratings are created by "inscribing" or β€œwriting” the periodic variation of refractive index into the core of an optical fiber using an intense ultraviolet (UV) source such as a UV laser (e.g. KrF or ArF excimer laser) which induces structural changes and thus a permanent modification of the refractive index.
  • UV intense ultraviolet
  • An advantage of using optical fiber gratings is that it possible to fabricate a band pass filter with a very narrow pass band (of the order of lnm) enabling the detector arrangement to discriminate between closely wavelength spaced peaks.
  • the first fiber Bragg grating 344 has an optical transmission pass band characteristic (determined by the grating structure) that allows the substantially unattenuated transmission of light with a wavelength corresponding to the expected first emission peak "a" whilst reflecting light of other wavelengths (that is light including the emission peaks "b", β€œc” and β€œd”). Consequently, in operation the first photo-detector 350 will measure the intensity of light corresponding to the first emission peak "a” that is light of wavelength centered at the wavelength ⁇ a . The first photo-detector 350 thus produces an electrical signal (V a ) 366 whose magnitude (voltage) is related to the intensity of light at the wavelength ⁇ a .
  • Light 360 within the third optical fiber 388 is further divided by a second optical splitter 342 equally into fourth and fifth optical fibers 390 and 392 respectively.
  • Light 362 within the fourth optical fiber 390 is filtered by the second optical band pass filter (fiber Bragg grating) 346 and the filtered light transmitted by the filter is detected by the second- photo detector 352.
  • the second optical band pass filter fiber Bragg grating
  • the second optical band pass filter 346 has an optical pass band characteristic (determined by the grating structure) that corresponds to the second emission peak "b" such that in operation the second photo detector 352 will measure the intensity of light corresponding to the second emission peak "b", that is light with a wavelength centered at the wavelength ⁇ b
  • the second photo-detector 352 thus produces an electrical signal (Vb) 368 whose magnitude (voltage) is related to the intensity of light at the wavelength ⁇ b [0064]
  • Light 364 within the fifth optical fiber 392 is filtered by the third optical band pass filter 348 and the filtered light transmitted by the filter is detected by the third photo- detector 354.
  • the third optical band pass filter (fiber Bragg grating) 348 has an optical pass band characteristic that corresponds to the third emission peak "c" such that in operation the third photo-detector 354 will measure the intensity of light corresponding to the third emission peak "c", that is light with a wavelength centered at the wavelength ⁇ c .
  • the third photo-detector 354 thus produces an electrical signal (V c ) 370 whose magnitude (voltage) is related to the intensity of light at the wavelength ⁇ c .
  • the numeric values are read by the processor 34 over the data bus 80.
  • the processor 34 compares the ratios of the three numeric values (e.g.
  • Figure 4 is a schematic representation of an optical fiber based detector arrangement 330 in which an optical circulator 494 and fiber Bragg grating filters 444, 446, 448 are used to divide the received light 32 on the basis of wavelength range rather than intensity.
  • an optical circulator 494 and fiber Bragg grating filters 444, 446, 448 are used to divide the received light 32 on the basis of wavelength range rather than intensity.
  • Like reference numerals preceded by the figure number are used to denote like parts.
  • the photo-detectors 350, 352, 354 of Figure 3 are respectively denoted 450, 452, 454 in Figure 4.
  • an optical circulator is a multiport optical fiber component that allows light to travel in only one direction e.g. from port 1 to port 2, then from port 2 to port 3 and so forth. As a result if light emitted from port 2 is reflected back to the circulator, it is directed not back to port 1, but on to port 3.
  • An advantage of an optical circulator is that it has high isolation of the input and reflected optical powers and a very low insertion loss.
  • the light 456 exits the second port 2 of the optical circulator 494 and travels along the second optical fiber 486 to the first fiber Bragg grating 444.
  • the first fiber Bragg grating 444 has an optical transmission pass band characteristic (determined by the grating structure) that allows the substantially unattenuated transmission of light corresponding to the expected first emission peak "a" whilst reflecting light 496 of other wavelengths (that is light including the emission peaks "b", "c” and β€œd”). Consequently, in operation the first photo- detector 450 will measure the intensity of light corresponding to the first emission peak "a” that is light with a wavelength centered at the wavelength ⁇ a .
  • the first photo-detector 450 thus produces an electrical signal (V a ) 466 whose magnitude (voltage) is related to the intensity of light at the wavelength ⁇ a .
  • Light 496 reflected by the first fiber Bragg grating 444 travels back along the first fiber 486 to the second port 2 of the optical circulator 494 and exits the third port 3 of the optical circulator into a fourth optical fiber 490.
  • the light 496 travels along the fourth optical fiber 490 to the second fiber Bragg grating 446.
  • the second fiber Bragg grating 446 has an optical transmission pass band characteristic (determined by the grating structure) that allows the substantially unattenuated transmission of light corresponding to the expected second emission peak "b" whilst reflecting light 498 of other wavelengths (that is light including the emission peaks "c" and "d").
  • the second photo-detector 452 will measure the intensity of light corresponding to the second emission peak "b", that is light with a wavelength centered at the wavelength ⁇ j,.
  • the second photo-detector 452 thus produces an electrical signal (Vb) 468 whose magnitude (voltage) is related to the intensity of light at the wavelength ⁇ t,.
  • the third fiber Bragg grating 448 has an optical transmission pass band characteristic (determined by the grating structure) that allows the substantially unattenuated transmission of light corresponding to the expected third emission peak "c" whilst reflecting light of other wavelengths (that is light including the emission peak "d").
  • the third photo-detector 454 will measure the intensity of light corresponding to the third emission peak "c" that is light with a wavelength centered at the wavelength ⁇ c .
  • the third photo-detector 454 thus produces an electrical signal (V c ) 470 whose magnitude (voltage) is related to the intensity of light at the wavelength ⁇ c .
  • the numeric values are read by the processor 34 over a data bus 80.
  • the processor 34 compares the ratios of the three numeric values (e.g.
  • the authenticity of the photo-luminescent security marking 14 is verified by comparing the ratios and/or normalized magnitudes of the measured emission peaks with those expected for an authentic phosphor blend to verify that they are within pre-selected margins.
  • the wavelengths (X 3 , ⁇ j,, ⁇ c ) at which the detector arrangement measures light intensity are fixed by the optical characteristics of the band pass filters. As a result such detector arrangements are only suitable for verifying a photo-luminescent security marking with a single phosphor blend.
  • the detector arrangement comprises a spectrometer arrangement that is capable of measuring the emission spectrum (intensity versus wavelength) of light 32 emitted by the photo-luminescent marker.
  • the processor 34 can compare other selected parameters of the emitted spectrum with corresponding parameters expected from the authentic phosphor blend to verify the photo-luminescent security marking.
  • a detector arrangement can, depending upon its resolution, be used to verify the authenticity of photo-luminescent security markings composed of almost any phosphor blends.
  • FIG. 5 is a schematic representation of a spectrometer detector arrangement 530 that uses a prism 5100 to separate wavelength components of the measured light 32.
  • the detector arrangement comprises a receiving aperture 536, typically in the form of a slot (slit), a convex cylindrical lens 538, a prism 5100 and an image sensor 5102.
  • Light 32 emitted by the object 12 is received by the receiving aperture 536 and is collimated by the lens which light 556 is incident on a face of the prism 5100.
  • the prism resolves light into spectral components 5104 dependent on the wavelength of light and these components are detected by the image sensor 5100.
  • the image sensor 5100 which can comprise a charge coupled device (CCD) or complementary metal oxide semiconductor (CMOS) device, measures the intensity of light over a wavelength range which typically corresponds to the visible part of the spectrum.
  • the emission spectrum measured by the image sensor 5100 is passed to the processor 34 over the data bus 80 which then analyzes it and compares selected parameters of the spectrum with corresponding parameters of a standard spectrum to authenticate an object.
  • the measured light can be spatially resolved into spectral components using an optical grating or an array waveguide grating (AWG).
  • scanning spectrometer arrangements can be used in which the prism or grating is moved such as to scan the light over the sensor. In such an arrangement the sensor can then comprise a simple photodetector.
  • the ratio of emission peaks is a preferred authenticating parameter
  • other parameters can be used to verify the authenticity of the light emitted by the photo- luminescent marking. Examples of such parameters are illustrated in Figure 6.
  • the spectrum in Figure 6 has three peaks β€œa”, β€œb”, β€œc” at wavelengths ( ⁇ a , ⁇ j,, ⁇ c ) and peak intensities (I a , Ib, I c ), three troughs β€œd”, β€œe”, β€œf ' at wavelengths ( ⁇ a, ⁇ e , ⁇ f) and trough intensities (Ia, I e , If) and one point of inflection "g" at wavelength ( ⁇ g ) and of intensity (I g ).
  • the selected parameters can include but are not limited to:
  • ratio of emission peak intensities e.g. I a :Ib:I c , I a :Ib, Ib:I c , I a :I c ),
  • ratio of emission peak wavelengths e.g. ⁇ a : ⁇ b: ⁇ c , ⁇ a : ⁇ b, ⁇ b ⁇ C; ⁇ a: ⁇ c
  • ratio of emission peak intensity to emission trough intensity e.g. I a :Ia, Ib:Id, Ib:I e , I c :I e ,
  • ratio of emission peak wavelength to emission trough wavelength e.g. ⁇ a : ⁇ a, ⁇ bi ⁇ a, ⁇ b: ⁇ e , ⁇ c : ⁇ e , ⁇ c : ⁇ f , ⁇ a : ⁇ e , ⁇ a : ⁇ f , ⁇ bi ⁇ f ),
  • a photo-luminescent security marking in accordance with the invention comprises a blend of at least two, preferably at least three, phosphor materials such that the blend produces an identifiable emission spectrum when excited by excitation radiation that is "eye safe".
  • the different phosphor materials have the same host matrix with differing activators and/or co-activators or differing concentrations.
  • the constituent phosphor materials have a small particle size to ensure better miscibility between the various materials.
  • the phosphor blends of the invention consist of phosphor particles whose average particle size (diameter) is smaller than 5 microns ( ⁇ m), preferably smaller than 2 ⁇ m and optionally smaller than l ⁇ m.
  • FIGs 7(a) and 7(b) show normalized emission spectra for four different weight ratio blends of three phosphor materials P R , P G , P B -
  • P R a europium activated yttrium oxide Yi 9 4 EU006O3 which generates red light of wavelength
  • the four phosphor blends respectively comprise weight ratio blends of the phosphors P R , P G , P B of: blend 1 - 4/1/1, blend 2 - 8/1/1, blend 3 - 8/2/1 and blend 4 - 16/2/1.
  • the emission spectra have been normalized to the second emission peak corresponding to light generated by the green phosphor P G (Ba 0 9EuO iMg 0 6Mn 04 AI 1 0O7).
  • Figure 7(b) is a portion of spectra at longer wavelengths showing the third emission peak in greater detail.
  • Table 1 tabulates respective values for the normalized intensities I B , I G , I R of the emission peaks and the normalized intensity I R/G of the trough between the first and second emission peaks together with ratios of the emission peaks and emission peaks to the emission trough.
  • each phosphor blend has a characteristic set of parameters (i.e. ratio of normalized intensities).
  • Figure 7 illustrates how different weight ratio blends of the phosphor materials produce a respective emission spectrum in which the wavelengths of the peaks and/or troughs are substantially unchanged but which have a characteristic ratio of emission peak intensities and/or ratio of emission peak to trough intensities.
  • a particular benefit of using different weight ratio blends of the same phosphor materials is that since each will produce peaks and/or trough at the substantially the same wavelength a simple optical detector arrangement that measures intensity for selected wavelength ranges, such as those illustrated in Figures 2, 3 and 4, can be utilized.
  • the authentication system of the invention is particularly suited for use with inorganic phosphors such as for example silicate-based phosphor of a general composition A 3 Si(O,D) 5 or A 2 Si(O,D) 4 in which Si is silicon, O is oxygen, A comprises strontium (Sr), barium (Ba), magnesium (Mg) or calcium (Ca) and D comprises chlorine (Cl), fluorine (F), nitrogen (N) or sulfur (S).
  • silicate-based phosphor of a general composition A 3 Si(O,D) 5 or A 2 Si(O,D) 4 in which Si is silicon, O is oxygen, A comprises strontium (Sr), barium (Ba), magnesium (Mg) or calcium (Ca) and D comprises chlorine (Cl), fluorine (F), nitrogen (N) or sulfur (S).
  • silicate-based phosphors are disclosed in our co- pending patent applications US2006/0145123, US2006/0261309, US2007/0029526 and patent US 7,311,858 (also assigned to Intematix Corporation) the content of each of which is hereby incorporated by way of reference thereto.
  • a europium (Eu 2+ ) activated silicate-based green phosphor has the general formula (Sr,Ai) x (Si,A 2 )(O,A3) 2+ ⁇ :Eu 2+ in which: Ai is at least one of a 2 + cation, a combination of I + and 3 + cations such as for example Mg, Ca, Ba, zinc (Zn), sodium (Na), lithium (Li), bismuth (Bi), yttrium (Y) or cerium (Ce); A 2 is a 3 + , 4 + or 5 + cation such as for example boron (B), aluminum (Al), gallium (Ga), carbon (C), germanium (Ge), N or phosphorus (P); and A3 is a 1 " , 2 " or 3 " anion such as for example F, Cl, bromine (Br), N or S.
  • the formula is written to indicate that the Ai cation replaces
  • US 7,311,858 discloses a silicate-based yellow-green phosphor having a formula A 2 SiO 4 )Eu 2+ D, where A is at least one of a divalent metal comprising Sr, Ca, Ba, Mg, Zn or cadmium (Cd); and D is a dopant comprising F, Cl, Br, iodine (I), P, S and N.
  • the dopant D can be present in the phosphor in an amount ranging from about 0.01 to 20 mole percent and at least some of the dopant substitutes for oxygen anions to become incorporated into the crystal lattice of the phosphor.
  • the phosphor can comprise (Sri_ x _ y Ba x M y )Si ⁇ 4 :Eu 2+ D in which M comprises Ca, Mg, Zn or Cd and where O ⁇ x ⁇ l and O ⁇ y ⁇ l.
  • US2006/0261309 teaches a two phase silicate-based phosphor having a first phase with a crystal structure substantially the same as that of (Ml) 2 SiO 4 ; and a second phase with a crystal structure substantially the same as that of (M2)3SiOs in which Ml and M2 each comprise Sr, Ba, Mg, Ca or Zn.
  • At least one phase is activated with divalent europium (Eu ) and at least one of the phases contains a dopant D comprising F, Cl, Br, S or N. It is believed that at least some of the dopant atoms are located on oxygen atom lattice sites of the host silicate crystal.
  • Eu divalent europium
  • US2007/0029526 discloses a silicate-based orange phosphor having the formula (Sri_ x M x ) y Eu z Si ⁇ 5 in which M is at least one of a divalent metal comprising Ba, Mg, Ca or Zn; 0 ⁇ x ⁇ 0.5; 2.6 ⁇ y ⁇ 3.3; and 0.001 ⁇ z ⁇ 0.5.
  • the phosphor is configured to emit visible light having a peak emission wavelength greater than about 565 nm.
  • the phosphor can also comprise an aluminate-based material such as is taught in our co-pending patent application US2006/0158090 and patent US 7,390,437 (also assigned to Intematix Corporation) or an aluminum-silicate phosphor as taught in co-pending application US2008/0111472 the content of each of which is hereby incorporated by way of reference thereto.
  • an aluminate-based material such as is taught in our co-pending patent application US2006/0158090 and patent US 7,390,437 (also assigned to Intematix Corporation) or an aluminum-silicate phosphor as taught in co-pending application US2008/0111472 the content of each of which is hereby incorporated by way of reference thereto.
  • US2006/0158090 teaches an aluminate-based green phosphor of formula Mi_ x Eu x Al y 0 [ i + 3 y / 2] in which M is at least one of a divalent metal comprising Ba, Sr, Ca, Mg, Mn, Zn, Cu, Cd, Sm or thulium (Tm) and in which 0.1 ⁇ x ⁇ 0.9 and 0.5 ⁇ y ⁇ 12.
  • US 7,390,437 discloses an aluminate-based blue phosphor having the formula (Mi_ x Eu x )2-zMg z Aly0[2+3y/2] in which M is at least one of a divalent metal of Ba or Sr.
  • the phosphor is configured to absorb radiation in a wavelength ranging from about 280 nm to 420 nm, and to emit visible light having a wavelength ranging from about 420 nm to 560 nm and 0.05 ⁇ x ⁇ 0.5 or 0.2 ⁇ x ⁇ 0.5; 3 ⁇ y ⁇ 12 and 0.8 ⁇ z ⁇ 1.2.
  • the phosphor can be further doped with a halogen dopant H such as Cl, Br or I and be of general composition (M 1-x Eu x ) 2-z Mg z Al y O [2+ 3 y / 2] :H.
  • US2008/0111472 teaches an aluminum-silicate orange-red phosphor with mixed divalent and trivalent cations of general formula (Sri_ x _ y M ⁇ T y )3- m Eu m (Sii- z Al z ) ⁇ 5 in which M is at least one divalent metal selected from Ba, Mg or Ca in an amount ranging from 0 ⁇ x ⁇ 0.4; T is a trivalent metal selected from Y, lanthanum (La), Ce, praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), Erbium (Er), Tm, ytterbium (Yt), lutetium (Lu), thorium (Th), protactinium (Pa) or uranium (U) in an amount ranging from 0
  • the phosphor is configured such that the halogen resides on oxygen lattice sites within the silicate crystal.
  • the phosphor can also comprise a nitride-based red phosphor material such as is taught in our co-pending provisional patent application 61/054,399 the content of which is hereby incorporated by way of reference thereto.
  • M m is a divalent element selected from beryllium (Be), Mg, Ca, Sr, Ba, Zn, Cd or mercury (Hg);
  • M a is a trivalent element selected from B, Al, Ga, In, Y, Se, P, As, La, Sm, antimony (Sb) or Bi;
  • M b is a tetravalent element selected from C, Si, Ge, tin (Sn), Ni, hafnium (Hf), molybdenum (Mo), tungsten (W), Cr, Pb, Ti or zirconium (Zr);
  • D is a halogen selected from F, Cl, Br or I;
  • Z is an activator selected from Eu, Ce, Mn, Tb or Sm, and N is nitrogen in
  • the phosphor is not limited to the examples described herein and can comprise any phosphor material including both up-converting or down- converting phosphors that are organic or inorganic phosphor materials such as for example nitride and/or sulfate phosphor materials, oxy-nitrides and oxy-sulfate phosphors or garnet materials (YAG).
  • organic or inorganic phosphor materials such as for example nitride and/or sulfate phosphor materials, oxy-nitrides and oxy-sulfate phosphors or garnet materials (YAG).
  • each source 26 when operated generates excitation radiation with a respective wavelengths ⁇ ex i ⁇ eX2 and can comprise, for example, LEDs that emit excitation radiation of 400nm and 465nm. Examples of LEDs and their emission wavelengths are given in Table 2.
  • LEDs Light emitting diodes
  • ⁇ ex emission wavelengths
  • the photo-luminescent security marking comprises a blend of (i) at least one phosphor material that is only excitable by excitation radiation of a first wavelength ⁇ ex i (e.g. 400nm) and (ii) at least one phosphor material that is excitable by radiation of both excitation wavelengths ⁇ ex i and ⁇ eX2 (e.g. excitation radiation within a wavelength range 400 to 465nm).
  • a first wavelength range e.g. 400nm
  • ⁇ ex i and ⁇ eX2 e.g. excitation radiation within a wavelength range 400 to 465nm.
  • one phosphor material is only excitable by excitation radiation of a first wavelength range
  • one phosphor material is excitable by excitation radiation of a second wavelength range which overlaps and includes the first wavelength range.
  • Each phosphor material when excited emits light with a respective emission peak (Pl, P2) at a respective different wavelength. Examples of suitable phosphor materials are given in Tables
  • FIG. 8 shows schematic emission spectra for a photo-luminescent security marking excited by excitation radiation (a) of the first and second wavelengths ⁇ ex i and ⁇ eX2 (b) of the first wavelength ⁇ ex i only and (c) of the second wavelength ⁇ eX2 only.
  • the emission spectrum (as shown in Figure 8(a)) will be the sum of emissions from the two phosphor materials in which there will be a proportionally larger contribution from the second phosphor material since this is excitable by excitation radiation of both wavelengths.
  • the emission spectrum (as shown in Figure 8(b)) will again be the sum of emissions from the first and second phosphor materials but with a relatively weaker contribution from the second phosphor material.
  • the emission spectrum (as shown in Figure 8(c)) will contain only a contribution from the second phosphor material.
  • the excitation sources in different combinations/permutations and measuring the emission spectrum and/or selected parameter(s) of the emission spectrum, such for example the ratio of the intensities of the first and second emission peaks, this provides a further level of security for verifying the authenticity of the photo-luminescent security marking.
  • the different combinations of "on” and β€œoff” for the two excitation sources can be programmed into the microprocessor.
  • each excitation source can comprise an LED which is operable to generate excitation radiation of a respective excitation wavelength ⁇ ex i, ⁇ eX2 and ⁇ eX3 (e.g.400nm, 465mn and 525nm).
  • the photo-luminescent security marking comprises a blend of (i) at least one phosphor material that is only excitable by radiation of the first wavelength ⁇ ex i (e.g.
  • the phosphor materials each have an emission peak at a respective different wavelength.
  • the emission spectrum will be the sum of emissions from the three phosphor materials in which there will be a proportionally larger contribution from the second and third phosphor materials since each of these is excitable by excitation radiation of at least two wavelengths ( ⁇ ex i and ⁇ eX2 ).
  • the photo- luminescent security marking When only the first excitation source is operated, the photo- luminescent security marking is irradiated with excitation radiation of the first wavelength ⁇ ex i only and the emission spectrum will again be the sum of emissions from the three phosphor materials but with a relatively weaker contribution from the second and third phosphor materials.
  • the photo- luminescent security marking When only the second excitation source is operated, the photo- luminescent security marking is irradiated with excitation radiation of the second wavelength ⁇ eX2 only and the emission spectrum will be the sum of emissions from the second and third phosphor material only.
  • the photo- luminescent security marking When only the third excitation source is operated, the photo- luminescent security marking is irradiated with excitation radiation of the third wavelength ⁇ eX 3 only and the emission spectrum will correspond to emission from the third phosphor material only.
  • the photo- luminescent security marking is irradiated with excitation radiation of wavelengths ⁇ ex i, ⁇ eX2 , and the emission spectrum will be the sum of emissions from the three phosphor materials in which the contribution from the third phosphor material with be lower than the situation when all three sources are operable.
  • the photo-luminescent security marking is irradiated with excitation radiation of wavelengths ⁇ e Xl , ⁇ eX 3, and the emission spectrum will be the sum of emissions from the three phosphor materials in which the contribution from the third phosphor material will be higher than the situation in which the first and second are operable.
  • the photo-luminescent security marking is irradiated with excitation radiation of wavelengths ⁇ eX2 , ⁇ eX 3, and the emission spectrum will be the sum of emissions from the second and third phosphor materials in which the magnitude of each contribution is lower since the second phosphor is excited by radiation of a single wavelength and the third phosphor is excited by radiation of two wavelengths.
  • the photo- luminescent marking can produce up to seven different emission spectra depending on which excitation sources are operable.
  • the photo-luminescent security marking 14 incorporates a further security device such as for example a bar code.
  • Photo-luminescent security markings in the form of a bar code are shown in Figures 9(a) and 9(b).
  • a bar code comprises a series of parallel lines (bars) whose width and/or spacing is used to encode data.
  • a photo-luminescent bar code marking comprises a series of parallel lines 106 that are composed of an ink containing a blend of at least two phosphor materials.
  • the photo- luminescent bar code marking 14 can be read using a conventional bar code scanner arrangement that uses light that does not excite the phosphor materials and the phosphor marking verified using the authentication device described above.
  • the bar code can comprise a series of bars 106, 108, 110 containing different phosphors and/or phosphor blends.
  • the authentication device preferably scans the bar code with excitation radiation and the emission spectrum is measured for individual bars and/or selected groups of bars.
  • the bars 106, 108, 110 containing different phosphor materials can be arranged in a set sequence or their sequence encoded by for example linking their sequence to the bar coding.
  • bars of a specific width can comprise a respective phosphor or phosphor blend.
  • the photo-luminescent marking can be provided in the spaces between lines of the bar code. It will be appreciated that the photo-luminescent marking of the invention can be incorporated into other forms of coding such as a matrix code, essentially a 2-dimensional bar code, in which data is encoded in the form of a pattern of dots, squares and other geometric symbols.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Credit Cards Or The Like (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Luminescent Compositions (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

A phosphor (photo-luminescent) material based authentication system in which a blend (mixture) of at least two, preferably three or more, phosphor materials are used as a photo-luminescent security marking which is applied to or incorporated within an article/document to be authenticated. Preferably, the phosphor materials are each excitable by "eye safe" excitation radiation comprising visible light of wavelength 380nm to 780nm. Moreover, when excited the security marking preferably also emits visible light thereby minimizing any risk of damage to an operator's eye in the event of accidental exposure to the excitation radiation and/or light generated by the photo-luminescent marking. The authenticity of the article/document can be authenticated by verification of the composition of the phosphor by exciting the marking and comparing one or more selected parameters of light emitted by the security marking with corresponding parameters of the characteristic emission spectrum of the authentic phosphor blend.

Description

PHOSPHOR BASED AUTHENTICATION SYSTEM
Inventors: Yi-Qun Li and Haitao Yang
CLAIM OF PRIORITY [0001] This application claims priority to U.S. Non-Provisional Patent Application No. 12/604,268 filed October 22, 2009, by Yi-Qun Ii et al, titled "Phosphor Based Authentication System" and U.S. Provisional Patent Application No. 61/107,928 filed October 23, 2008, by Yi-Qun Li et al., titled "Phosphor Based Authentication System." Both applications are incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTION Field of the invention
[0002] The present invention relates to a phosphor (photo-luminescent) material based authentication system and, more particularly, to a method of authenticating a photo- luminescent security marking, an apparatus for authenticating a photo-luminescent security marking and a photo-luminescent security marking.
Description of the Related Art
[0003] Authentication is the act of establishing or confirming something as being genuine, that is, claims made about the thing are true. Authenticating an article or document usually involves confirming its provenance using one or more authentication factors. Articles or documents will often include one or more security markings or security devices in order to authenticate the article/document. Examples of security markings/devices include: watermarks in documents, magnetic print on personal checks, micro-printing on banknotes, antibodies in oil and gas, molecular recognition agents in spirits and liquors, thermal transfer inks and color shifting pigments on packaging, holograms on credit cards, photo-luminescent security markings, bar codes, electronic tagging devices, invisible markers on pharmaceuticals capsules etc. [0004] A study sponsored by the World Economic Forum (WEF) estimates the rate of counterfeiting goods such as pharmaceuticals, tobacco, luxury goods, electronics, clothing, and other items is between 7 and 9% of global trade and totals more than $700 billion per annum. The World Health Organization (WHO) and FDA (US Food and Drug Administration) estimate that anything between 5 and 8% of pharmaceutical and related products are counterfeit. In addition to jeopardizing people's health, counterfeiting results in a loss of revenue of the order of $30 million a year.
[0005] Due to continuing improvements in color printing and image scanning technologies the counterfeiting of documents, such as for example, bank notes, identification papers, passports, drivers' licenses, admission tickets is increasing. Additionally, counterfeiting of credit, debit and security cards is increasing due to the widespread availability of computers and card readers. Brand protection has become a huge strategic issue due to globalization of trade, organized crime and the high profits with often low penalties associated with counterfeiting. [0006] To combat counterfeiting and safeguard a brand, a variety of security technologies have been developed including RFID (Radio Frequency Identification), holography, stable isotopic markers, molecular recognition markers, thermo-chromic materials, color shift inks, tags with visible and invisible fluorescent dyes, and phosphor material based markings. [0007] Security markings that utilize a phosphor material offer a number of potential authentication factors including excitation wavelength, emission spectra with unique signatures covering ultra violet (UV) to near infrared (NIR), peak intensity, peak wavelength, decay time or interval, rise and fall of particular peaks in the spectra. To verify the authenticity of an article or document it is known to provide a phosphor security marking on the article/document. The authenticity of the article/document is verified by irradiating the article with high energy radiation from a source such as a UV lamp and measuring the intensity of UV light reflected from the object and the amount of fluorescent light generated by the phosphor security marking. If the optical characteristics (reflection and emission) are within prescribed limits, then the article is verified as being genuine. [0008] Phosphor (photo-luminescent) materials can be characterized into two categories i) down-converting and ii) up-converting. In the case of down-converting photo-luminescent materials, the material is excited with high energy photons such as UV or high ionizing radiations such as X-rays or Ξ³-rays and emit light in the visible or NIR spectral regions. Conversely up-converting, or anti-Stokes, photo-luminescent materials absorb two or more low energy photons such as NIR, particularly 980nm radiation, and emit a single high energy photon of shorter wavelength (e.g. visible light) by a process of summing IR photons.
[0009] Most UV excitable down-converting phosphors, hereinafter termed UV phosphors, can be excited by 254nm or 365nm lines from a low pressure mercury vapor lamp. By analyzing the emission (photo luminescence) spectra, the identity of the phosphor can be determined. UV phosphors were extensively used in security markers during the 1980s and 1990s. A drawback of UV phosphors is that most of them fluoresce strongly on paper based substrates and this can reduce the effectiveness of the fluorescent marking. A further problem with UV phosphors is that the UV excitation radiation is harmful to the human eye. From a safety perspective phosphors that can be excited by an excitation radiation of wavelength within the visible part of the electromagnetic spectrum, that is 380 to 700nm, are considered to be ideal.
[0010] The up-conversion process relies on one absorber Yb (ytterbium) and typically one or more of three different emitters in blue Tm3+ (thulium), green Er3+ (erbium) or red Yb3+ regions. Absorption of a first infrared photon promotes a rare earth ion into a relatively long-lived first excited state. If a subsequent infrared photon encounters this excited ion it may, depending on the absorption probability, be absorbed, thereby promoting the ion into a second higher excited state. Transition of the ion from the second state to the ground state results in the emission of a photon of higher energy (i.e. of shorter wavelength). Since up- converting phosphor materials rely on the absorbance of Yb + each of them can be excited by a 980nm (IR) laser diode. An example of an up-converting phosphor is a Eu3+, Yb3+ activated yttrium oxysulfide Y2ΞΈ2S:Er,Yb. Other examples of IR (980nm) excitable phosphors are Yb3+, Tm3+ activated gadolinium oxysulfide as are described in US 6,686,074 and US 6,841,092. [0011] A problem with up-converting phosphors is that due to their relatively low efficiency they need to be excited by high intensity IR radiation generated by a laser and such radiation is harmful to the human eye. To reduce the likelihood of eye damage WO 2000/60527 teaches exciting an up-converting phosphor material using an NIR laser that is operated in a pulsed mode of operation such that the pulses have a peak power sufficient to induce a detectable emission in the phosphor material and the pulse repetition frequency and duration are selected such that the mean power of the laser emission is low enough not to produce eye damage.
[0012] Inks containing UV phosphors are readily available in the security industry at a relatively low cost. However, due to the widespread use of such inks counterfeiters have become knowledgeable about various inks and their use. Moreover, counterfeiters are able to reproduce or procure the same ink with UV phosphors that matches the characteristics of the ink with phosphor from the product sample, and apply the same on the counterfeit products. To overcome this problem, ink with up-converting phosphors that are excitable by light in the IR part of the spectrum ranging from 800nm to 1600nm have been developed. US 5,766,324 describes an IR security ink that comprises an IR phosphor combined with a black colorant which does not absorb light in the IR wavelength range.
[0013] US 7,030,371 discloses a method of measuring the luminescence characteristic of a luminescent security marking in which the luminescence emission is measured during specific time intervals either during or after exposure to the excitation radiation. The intensity value measured during one time interval is subtracted from the intensity value measured during the other time interval with the result of the subtraction being representative of light emitted from the luminescent security marking. The duration of one time interval is shorter than 25% of the exposure time to the excitation radiation. [0014] US 5,331,140 discloses a bar code reading system for reading a fluorescent bar code. The bar code is irradiated with radiation that is sine wave or square wave modulated at two frequencies that are not harmonically related and detecting radiation emitted by the bar code at frequencies corresponding to the sum and difference of the two modulation frequencies. [0015] A need exists for an inexpensive authentication system that offers a high level of security and which can be verified using a portable authentication device.
SUMMARY OF THE INVENTION [0016] Embodiments of the invention are directed to a phosphor based authentication system that utilizes a photo-luminescent security marking that comprises a blend of two or more phosphor materials that are, preferably, each excitable by "eye safe" excitation radiation comprising visible light of wavelength 380nm to 780nm. Preferably, when excited the security marking also emits visible light thereby substantially eliminating any risk of damage to an operator's eye in the event of accidental exposure to the excitation radiation and/or light generated by the photo-luminescent marking.
[0017] According to the invention there is provided a method of authenticating a photo- luminescent security marking in which an authentic security marking comprises a blend of at least two phosphor materials that are excitable by excitation radiation of a selected wavelength that is within a wavelength range 380 to 780nm and which when excited has a known emission characteristic, the method comprising: a) irradiating the marking with excitation radiation of the selected wavelength, b) measuring at least one selected parameter of light emitted by the marking, and c) comparing the at least one measured parameter with a corresponding parameter of the known emission characteristic and verifying the authenticity of the marking if the parameters are within prescribed limits. [0018] In one arrangement, the marking comprises at least one phosphor material which is only excitable by excitation radiation of wavelength within a first wavelength range and at least one phosphor material which is excitable by excitation radiation of wavelength within a second different wavelength range which overlaps and includes the first wavelength range, the method comprising: a) irradiating the marking with excitation radiation of wavelength within the first wavelength range and measuring at least one selected parameter of light emitted by the marking, b) irradiating the marking with excitation radiation of wavelength that is within the overlapping region of the first and second wavelength ranges and measuring at least one selected parameter of light emitted by the marking, c) irradiating the marking with excitation radiation of wavelength within a part of the second wavelength range that does not overlap the first wavelength range and measuring at least one selected parameter of light emitted by the marking, and d) comparing the at least one measured parameters measured with corresponding parameters of the known emission characteristic and verifying the authenticity of the marking if the parameters are within prescribed limits. [0019] Conveniently, the selected parameter comprises the intensity of emitted light within one or more selected wavelength regions, typically a wavelength region including an expected emission peak resulting from one of the phosphor materials. In one arrangement the authenticity of the marking is verified by comparing the relative intensities (i.e. ratio) of emitted light within the selected regions with the corresponding ratios for the known emission characteristic. Alternatively and/or in addition the selected parameter can comprise the intensity and/or wavelength of an emission peak, the rate of rise and/or fall of an emission peak, the ratio of emission peak intensities and/or wavelengths, intensity and/or of an emission trough, the ratio of emission trough intensities and/or wavelengths, wavelength and/or intensity of a point of inflection, the ratio of point of inflection intensities and/or wavelengths, the number of emission peaks, troughs and/or points of inflection, the shape of an emission peak or trough or the general shape and/or form of the emission spectrum. [0020] The concept of using a photo-luminescent marking that comprises a blend or mixture of two phosphor materials in which one phosphor material is excitable by excitation radiation of a first wavelength range and a second phosphor material is excitable by excitation radiation of a second different wavelength range which overlaps and includes the first wavelength range is considered inventive in its own right. Thus according to a second aspect of the invention there is provided a method of authenticating a photo-luminescent security marking in which an authentic security marking comprises a blend of at least two phosphor materials in which at least one phosphor material is only excitable by excitation radiation of wavelength within a first wavelength range and at least one phosphor material is excitable by excitation radiation of wavelength within a second different wavelength range which overlaps and includes the first wavelength range, the method comprising: irradiating the marking with excitation radiation of wavelength within the first wavelength range and measuring at least one selected parameter of light emitted by the marking, irradiating the marking with excitation radiation of wavelength that is within the overlapping region of the first and second wavelength ranges and measuring at least one selected parameter of light emitted by the marking, irradiating the marking with excitation radiation of wavelength within a part of the second wavelength range that does not overlap the first wavelength range and measuring at least one selected parameter of light emitted by the marking, and comparing the measured at least one selected parameters with corresponding parameters of the known emission characteristic and if the parameters are within prescribed limits verifying the authenticity of the marking. [0021] According to a third aspect of the invention there is provided an apparatus for authenticating a photo-luminescent security marking in which an authentic security marking comprises a blend of at least two phosphor materials that are excitable by excitation radiation of a selected wavelength that is within a wavelength range 380 to 780nm and which when excited has a known emission characteristic, said apparatus comprising: at least one excitation source operable to emit and irradiate the marking with excitation radiation of the selected wavelength; a detector operable to measure at least one selected parameter of light emitted by the marking; and processing means for comparing the at least one measured parameter with a corresponding parameter of the known emission characteristic and if the they are within prescribed limits verifying the authenticity of the marking.
[0022] In one implementation the apparatus further comprises wavelength separating means for dividing the light emitted by the photo-luminescent security marking into selected wavelength regions and the detector is operable to measure the intensity for each selected wavelength regions. The wavelength separating means can comprise one or more optical filters such as gel filters, optical fiber gratings, a grating or a prism. [0023] According to a another aspect of the invention there is provided an apparatus for authenticating a photo-luminescent security marking of a type comprising at least one phosphor material which is only excitable by excitation radiation of wavelength within a first wavelength range and at least one phosphor material which is excitable by excitation radiation of wavelength within a second different wavelength range which overlaps and includes the first wavelength range, the apparatus comprising: a first independently operable excitation source operable to emit and irradiate the marking with excitation radiation of wavelength within the first wavelength range; a second independently operable excitation source operable to emit and irradiate the marking with excitation radiation of wavelength within the second wavelength range; a detector operable to measure at least one selected parameter of light emitted by the photo-luminescent security marking; and processing means for comparing the at least one selected parameter with a corresponding parameter of the known emission characteristic and verifying the authenticity of the marking if the parameters are within prescribed limits; wherein the apparatus is operable a) to irradiate the marking radiation of the first wavelength range and to measure the at least one selected parameter of light emitted by the marking, b) to irradiate the marking with excitation radiation of the first and second wavelength ranges and to measure the at least one selected parameter of light emitted by the marking, c) to irradiate the marking radiation within the part of the second wavelength range that does not overlap the first wavelength range and to measure the at least one selected parameter of light emitted by the marking and d) to compare values of the at least one selected parameter with corresponding parameters of the known emission characteristic and verifying the authenticity of the marking if the parameters are within prescribed limits. [0024] As with the method of the invention the apparatus of the invention verifies (authenticates) the authenticity of the photo-luminescent security marking on the basis of one or more selected parameters that can include: the intensity of a selected wavelength region, ratio of intensities of selected wavelength regions, intensity and/or wavelength of an emission peak, rate of rise and/or fall of an emission peak, ratio of emission peak intensities and/or wavelengths, intensity and/or wavelength of an emission trough, ratio of emission trough intensities and/or wavelengths, wavelength and/or intensity of a point of inflection, ratio of point of inflection intensities and/or wavelengths, number of emission peaks, troughs and/or points of inflection or shape of emission peak.
[0025] Preferably, when excited the security marking emits visible light thereby minimizing the risk of damage to an operator's eye in the event of accidental exposure to the excitation radiation and/or light generated by photo-luminescent marking. Since the phosphor materials preferably comprise down-converting materials the at least one excitation source is preferably operable to generate excitation radiation of wavelength range 400 to 450nm. Typically, the at least one excitation source comprises one or more light emitting diodes. [0026] According to further aspect of the invention a photo-luminescent security marking comprises a blend of at least two, preferably at least three, phosphor materials in which each phosphor material is excitable by excitation radiation of a selected wavelength that is within wavelength range 380 to 780nm. In one arrangement the phosphor materials have the same host lattice structure. An advantage of a blend of phosphor materials having the same host matrix is that such a composition makes it more difficult to analyze and determine the exact phosphor blend to counterfeit the photo-luminescent security marking. [0027] In one embodiment each phosphor material is excitable by excitation radiation of the same selected wavelength range. In an another embodiment at least one phosphor material is only excitable by excitation radiation of a first wavelength range and at least one phosphor material is excitable by excitation radiation of a second different wavelength range which overlaps and includes the first wavelength range.
[0028] Preferably, when the marking comprises a blend of at least three phosphor materials, at least one phosphor material is excitable by excitation radiation of a first wavelength range, at least one phosphor material is excitable by excitation radiation of a second wavelength range which overlaps and includes the first wavelength range, and at least one phosphor material is excitable by excitation radiation of a third wavelength range which overlaps and includes the first and second wavelength ranges.
[0029] Preferably, when excited the security marking emits visible light thereby minimizing the risk of damage to an operator's eye in the event of accidental exposure to the excitation radiation and/or light generated by photo-luminescent marking. Accordingly, the phosphor materials preferably comprise down-converting materials that are excitable by excitation radiation of wavelength 400 to 450nm.
[0030] To enable thorough mixing of the phosphor materials each phosphor material preferably has an average particle size of five microns or less, preferably two microns or less or one micron or less.
[0031] The photo-luminescent security marking can comprise a blend of inorganic or organic phosphor materials including aluminate, silicate, nitride, sulfate, oxy-nitride, oxy- sulfate and garnet based phosphor materials. The marking can comprise a blend of down- converting and up-converting phosphor materials that are excitable by a respective excitation source.
[0032] The blend of phosphor materials can be incorporated with a binder material, such as an ink, and the mixture then applied to the surface of an article or document by for example ink jet printing, letterpress, intaglio, screen printing or other printing deposition methods. Alternatively, the blend of phosphor materials can be incorporated in a polymer material, such as for example a polycarbonate, acrylic or silicone material, which is then fabricated into sheets or fibers (threads/filaments) which can then be incorporated into a document or other article such as luxury goods or brand clothing. It is also contemplated to laminate the blend of phosphor materials between sheets of material, such as a polymer or paper, in which at least one sheet is transmissive to the excitation radiation and light emitted by the phosphor materials. The laminated sheet can then be applied to, for example, a credit/bank/store card or a part of the card composed of laminated sheet. Alternatively, when the phosphor materials are laminated between paper sheets, the marking can comprise a form of photo-luminescent "water mark" or be applied to the document in the form of a label. In yet another arrangement the phosphor materials are applied to a surface of a metal foil, wire or strip and the foil/wire/strip applied to a surface of the article or incorporated within a document such as a banknote.
[0033] To further enhance the security of the photo-luminescent marking it is further contemplated that the phosphor materials be incorporated as part of a bar code or other encoding scheme. In one arrangement lines (bars) of the bar code comprise different phosphor blends and the sequence of lines of different phosphor materials can be used as a further form of coding.
[0034] According to a yet further aspect of the invention there is provided a photo- luminescent security marking comprising a blend of at least two phosphor materials in which at least one phosphor material is only excitable by excitation radiation of a first wavelength range and at least one phosphor material is excitable by excitation radiation of a second wavelength range which overlaps and includes the first wavelength range.
BRIEF DESCRIPTION OF THE DRAWINGS [0035] In order that the present invention is better understood embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
[0036] Figure 1 is a schematic diagram of an authentication system in accordance with the invention; [0037] Figures 2 is a schematic representation of a detector arrangement in accordance with a first embodiment of the invention;
[0038] Figure 3 is a schematic representation of an optical fiber based detector arrangement in accordance with a second embodiment of the invention;
[0039] Figure 4 is a schematic representation of an optical fiber based detector arrangement in accordance with a third embodiment of the invention;
[0040] Figure 5 is a schematic representation of a spectrometer detector arrangement in accordance with a fourth embodiment of the invention;
[0041] Figure 6 is a schematic diagram of an emission spectrum indicating parameters used in authenticating the phosphor blend;
[0042] Figure 7 (a) shows normalized emission spectra (intensity versus wavelength) for three phosphor material photo-luminescent security markings of different blends and Figure 7(b) shows the longer wavelength part of the spectra of Figure 7(a);
[0043] Figure 8 shows schematic emission spectra (intensity versus wavelength) for a photo-luminescent security marking excited by excitation radiation (a) of first and second wavelengths (b) of a first wavelength only and (c) of a second wavelength only; and [0044] Figure 9(a) and 9(b) show schematic representations of a photo-luminescent marking in the form of bar codes.
DETAILED DESCRIPTION OF THE INVENTION
[0045] Embodiments of the invention are directed to a phosphor (photo-luminescent) material based authentication system in which a blend (mixture) of at least two, preferably three or more, phosphor materials are used as a photo-luminescent security marking which is applied to or incorporated within an article/document to be authenticated. Preferably, the phosphor materials are each excitable by "eye safe" excitation radiation comprising visible light of wavelength 380nm to 780nm. Moreover, when excited the security marking preferably also emits visible light thereby substantially eliminating any risk of damage to an operator's eye in the event of accidental exposure to the excitation radiation and/or light generated by the photo-luminescent marking. Typically the photo-luminescent security marking has a characteristic emission spectrum having two or more peaks and article/document can be verified (authenticated) by verification of the composition of the phosphor by comparing one or more selected parameters of light emitted by the security marking with corresponding parameters of the characteristic emission spectrum of the authentic phosphor blend. [0046] In this specification a phosphor material that is excitable by excitation radiation within a selected wavelength range means that the phosphor is capable of being excited by excitation radiation of a wavelength within the selected wavelength range such that it emits light of sufficient intensity as to be measurable by a photodetector such as a photodiode. It does not require that the wavelength range of the excitation radiation be that for a maximum spectral efficiency.
[0047] Figure 1 is a schematic diagram of an authentication system 10 in accordance with the invention for verifying the authenticity of an article 12. The article 12 which can, for example, comprise a document such as a banknote, passport, identity document, admission ticket (e.g. a lottery, concert ticket etc) or card such as security, credit or identity card, has a photo-luminescent security marking 14 on a surface thereof. The photo-luminescent security marking 14 comprises a blend of three phosphor materials 16, 18, 20 which are incorporated in a binder material 22, such as an ink, and the mixture is then applied to the surface of the object 12 by for example ink jet printing, letterpress, intaglio, screen printing or other printing or deposition methods. The blend of phosphor materials can be incorporated with a binder material, such as an ink, and the mixture then applied to the surface of an article or document by for example ink jet printing, letterpress, intaglio, screen printing or other printing deposition methods. Alternatively, the blend of phosphor materials can be incorporated in a polymer material, such as for example a polycarbonate, acrylic or silicone material, which is then fabricated into sheets or fibers (threads/filaments) which can then be incorporated into a document or other article such as luxury goods or brand clothing. It is also contemplated to laminate the blend of phosphor materials between sheets of material, such as a polymer or paper, in which at least one sheet is transmissive to the excitation radiation and light emitted by the phosphor materials. The laminated sheet can then be applied to, for example, a credit/bank/store card or a part of the card composed of laminated sheet. Alternatively, when the phosphor materials are laminated between paper sheets, the marking can comprise a form of photo-luminescent "water mark" or be applied to the document in the form of a label. In yet another arrangement the phosphor materials are applied to a surface of a metal foil, wire or strip and the foil/wire/strip applied to a surface of the article or incorporated within a document such as a banknote.
[0048] In Figure 1 the phosphor materials are respectively indicated by circular 16, triangular 18 and square 20 symbols. Each phosphor material preferably comprises a down- converting phosphor that has the same host matrix which when excited by excitation radiation of wavelength Ξ»ex give rise to a respective emission peak "a", "b", "c" at a respective wavelength Ξ»a, Ξ»j,, Ξ»c in the emission characteristic of the phosphor material blend. Excitation radiation Ξ»ex that is not absorbed by the phosphor materials within the photo- luminescent security marking will be reflected and will give rise to an emission peak "d" at a wavelength Ξ»ex. [0049] The authenticity of the article 12 is verified using a portable, preferably hand held, authentication device 24 (indicated by a dashed line box in Figure 1) by verifying the authenticity of the photo-luminescent security marking 14 through one or more selected parameters of its characteristic emission spectrum. The authentication device 24 comprises an excitation source 26 which is operable to irradiate the photo-luminescent security marking 14 with excitation radiation 28 of wavelength Ξ»ex and a detector arrangement 30 for measuring radiation 32 generated by photo-luminescence of the photo-luminescent security marking 14. The excitation source 26 and detector arrangement 30 are operated under control of a controller 34 which can comprise a microprocessor or dedicated circuitry such as a FPGA (Field Programmable Gate Array). The excitation source 26 preferably comprises one or more light emitting diodes (LEDs) which generates excitation radiation 28 that is "eye safe" and within the visible part of the electromagnetic spectrum (i.e. 380 to 780nm) to minimize damage to an operator's eye in the event that they are exposed to the excitation radiation 28. The choice of excitation wavelength Ξ»ex will depend on the composition of the phosphor blend and whether the phosphor materials are down-converting or up-converting. Preferably, when excited the security marking emits visible light thereby substantially eliminating any risk of damage to an operator's eye in the event of accidental exposure to the excitation radiation and/or light generated by the photo-luminescent marking. Due to their higher efficiency, the phosphor materials preferably comprise down-converting materials and are excited by excitation radiation of comprising blue light in a wavelength range 400 to 450nm.When up-converting phosphors are used the excitation radiation can comprise red to NIR (Near Infra Red) light within a wavelength range Ξ»ex = 650 to lOOOnm. [0050] Figure 2 is a schematic representation of a detector arrangement 30 in accordance with a first embodiment of the invention and comprises a receiving aperture 36, a collimating lens 38, first and second optical splitters 40, 42, first, second and third optical band pass (BP) filters 44, 46, 48, first, second and third photo-detectors 50, 52, 54 and first, second and third analogue to digital (A to D) converters 74, 76, 78. Light 32 emitted/reflected by the article 12 is received by the receiving aperture 36 and is collimated by the collimating lens 38 into a substantially parallel beam 56 which is incident on the first beam splitter 40. The light 32 emitted by the article 12 will comprise a combination of excitation radiation 28 reflected by the article/marking and light generated by photo-luminescence of the phosphor materials within the photo-luminescent security marking 14. The optical splitter 40 can comprise a partially reflecting mirror such as, for example, a half-silvered mirror which is configured such that the beam 56 strikes the mirror at an angle of 45Β° and is divided into two beams 58, 60 of substantially equal intensity. One beam 58 is transmitted by the optical splitter 40 and the other beam 60 is reflected by the splitter. The light 58 transmitted by the optical splitter 40 is filtered by the first optical band pass (BP) filter 44 and the filtered light transmitted by the filter is detected by the first photo-detector 50. The first optical band pass filter 44 has an optical transmission pass band that corresponds to the expected first emission peak "a" such that in operation the first photo-detector 50 will measure the intensity of light corresponding to the first emission peak "a", that is light centered at the wavelength Ξ»a. The first photo- detector thus produces an electrical signal (Va) 66 whose magnitude (voltage) is related to the intensity of light at the wavelength Ξ»a. [0051] Each of the optical band pass filters 44, 46, 48 can comprise a gel filter that comprises various inorganic or organic compounds incorporated in a glass or plastics material, typically a polycarbonate or acrylic. Alternatively, the filters 44, 46, 48 can comprise dichroic filters in which multiple optical layers are deposited on a transparent substrate, typically a glass substrate. Whilst dichroic filters offer a superior optical performance in terms of a very precise pass band, they are more expensive to fabricate and it is preferred for economy to use gel filters whenever appropriate.
[0052] The light 60 reflected by the first optical splitter 40 is further divided by the second optical splitter 42 into two beams 62, 64 of substantially equal intensity, one of which is reflected 62 and one which is transmitted 64. Light 62 reflected by the second splitter 42 is filtered by the second optical band pass filter 46 and the filtered light transmitted by the filter is detected by the second-photo detector 52. The second optical band pass filter has an optical pass band characteristic that corresponds to the second emission peak "b" such that in operation the second photo detector 52 will measure the intensity of light corresponding to the second emission peak "b", that is light of wavelength centered at the wavelength Ξ»b The second photo-detector 52 thus produces an electrical signal (Vb) 68 whose magnitude (voltage) is related to the intensity of light at the wavelength Ξ»b
[0053] The light 64 transmitted by the second optical splitter 42 is filtered by the third optical band pass filter 48 and the filtered light transmitted by the filter is detected by the third photo-detector 54. The third optical band pass filter 48 has an optical pass band characteristic that corresponds to the third emission peak "c" such that in operation the third photo-detector 54 will measure the intensity of light corresponding to the third emission peak "c", that is light centered at the wavelength Ξ»c. The third photo-detector thus produces an electrical signal (Vc) 70 whose magnitude (voltage) is related to the intensity of light at the wavelength Ξ»c. [0054] The electrical signals 66, 68, 68 generated by the photo-detectors 50, 52, 54, which are voltages Va, Vb, Vc that are respectively related to the intensity of light centered at the wavelengths Ξ»a, Ξ»b, Ξ»c, are converted into numeric values representative of the measured intensity by a respective analogue to digital (A to D) converter 74, 76 78. The numeric values are read by the processor 34 over a data bus 80. [0055] In operation the processor 34 compares the ratios of the three numeric values (e.g. voltages Va:Vb, Vb:Vc, Va:Vc, Va:Vb:Vc) with the corresponding ratios expected for the authentic phosphor blend and if they correspond within pre-selected limits (margins) the photo-luminescent security marking 14, and hence article 12, are deemed to be authenticated. The authentication device 24 indicates to a user that the marking is authenticated by means of an indicator 35 (See Figure 1) such as an audible indicator (a beep), a visual indicator such as a particular color light (e.g. green) or by another physical indicator such as a low frequency vibration which can be felt by an operator. In the event that the measured ratios are not within prescribed limits, the device preferably generates a corresponding negative indicator 35 (e.g. a red light). [0056] Optionally, the detector arrangement 30 can further comprise an optical filter 82 for blocking the excitation radiation Ξ»ex. As indicated in Figure 2 the filter 82 can be provided between the collimating lens 38 and the first optical splitter 40 or provided as a part of the receiving aperture 36. When the photo-luminescent marking comprises a blend of down- converting phosphor materials the filter 82 has an optical characteristic that will transmit light of wavelengths longer than Ξ»ex substantially unattenuated whilst substantially blocking light of wavelength equal to or shorter than X6x.
[0057] It will be appreciated that since the measured light 32 is divided (split) on the basis of intensity (power) the light intensities measured by the photo-detectors 50, 52, 54 will not be absolute intensity values. For example, as a result of the first optical splitter 40, the intensity value measured by the photo-detector 50 will be approximately half the value for the light received by the receiving aperture 36 whilst the intensity values measured by the photo- detectors 52, 54 will be approximately a quarter of their actual value due to the effect of the second optical splitter 42. As a result the values can be scaled by the processor 34 before calculating the relative ratios of peak intensities or the authentication device 24 can be calibrated using a reference security marking composed of an authentic blend of phosphors. Moreover, due to the optical power dividing arrangement the band pass of the first optical band pass filter 44 is selected to correspond to the peak with the lowest expected intensity. [0058] In other embodiments the detector arrangement 30 can further include an additional optical splitter, optical band pass filter and photo-detector for measuring the intensity of light corresponding to the excitation wavelength Ξ»ex. With such an arrangement the device can verify the authenticity of the emission spectra on the basis of the magnitude of the emission peaks "a", "b", "c" that have been normalized to the magnitude of the excitation radiation peak. [0059] As well as detector arrangements 30 that use free space optics such as that illustrated in Figure 2 it is also contemplated in other embodiments to use optical arrangements in which the light is guided within an optical medium such as an optical fiber or a solid state waveguide. An advantage of waveguided arrangements is that they enable fabrication of a more compact detector arrangement that is less susceptible to vibration or shock. An example of such a detector arrangement 330 is shown in Figure 3. Like reference numerals preceded by the first figure number corresponding to a given embodiment are used to denote like parts. For example the photo-detectors 50, 52, 54 of Figure 2 are respectively denoted 350, 352, 354 in Figure 3. [0060] Figure 3 is a schematic representation of an optical fiber based detector arrangement 330 that is functionally equivalent to the detector arrangement 30 of Figure 2. Light 32 received by the receiving aperture 36 is coupled, by a collimating lens 338, into a first optical fiber 384. The light 356 is guided by the first optical fiber 384 to a first optical splitter 340 where it is divided equally between second and third optical fibers 386 and 388 respectively. The optical splitter 340 typically comprises a fused fiber splitter/coupler. Light 358 within the second optical fiber 386 is filtered by a first optical band pass filter 344 and light transmitted by the filter detected by the first photo-detector 350.
[0061] Preferably the optical band pass filters 344, 346, 348 comprise an optical fiber Bragg grating. As is known a fiber Bragg grating comprises a periodic perturbation of the effective refractive index in the core of an optical fiber. Typically, the perturbation is approximately periodic over a certain length (e.g. a few millimeters or centimeters) and the period is of the order of hundreds of nanometers. Fiber Bragg gratings are created by "inscribing" or "writing" the periodic variation of refractive index into the core of an optical fiber using an intense ultraviolet (UV) source such as a UV laser (e.g. KrF or ArF excimer laser) which induces structural changes and thus a permanent modification of the refractive index. An advantage of using optical fiber gratings is that it possible to fabricate a band pass filter with a very narrow pass band (of the order of lnm) enabling the detector arrangement to discriminate between closely wavelength spaced peaks.
[0062] The first fiber Bragg grating 344 has an optical transmission pass band characteristic (determined by the grating structure) that allows the substantially unattenuated transmission of light with a wavelength corresponding to the expected first emission peak "a" whilst reflecting light of other wavelengths (that is light including the emission peaks "b", "c" and "d"). Consequently, in operation the first photo-detector 350 will measure the intensity of light corresponding to the first emission peak "a" that is light of wavelength centered at the wavelength Ξ»a. The first photo-detector 350 thus produces an electrical signal (Va) 366 whose magnitude (voltage) is related to the intensity of light at the wavelength Ξ»a. [0063] Light 360 within the third optical fiber 388 is further divided by a second optical splitter 342 equally into fourth and fifth optical fibers 390 and 392 respectively. Light 362 within the fourth optical fiber 390 is filtered by the second optical band pass filter (fiber Bragg grating) 346 and the filtered light transmitted by the filter is detected by the second- photo detector 352. The second optical band pass filter 346 has an optical pass band characteristic (determined by the grating structure) that corresponds to the second emission peak "b" such that in operation the second photo detector 352 will measure the intensity of light corresponding to the second emission peak "b", that is light with a wavelength centered at the wavelength Ξ»b The second photo-detector 352 thus produces an electrical signal (Vb) 368 whose magnitude (voltage) is related to the intensity of light at the wavelength Ξ»b [0064] Light 364 within the fifth optical fiber 392 is filtered by the third optical band pass filter 348 and the filtered light transmitted by the filter is detected by the third photo- detector 354. The third optical band pass filter (fiber Bragg grating) 348 has an optical pass band characteristic that corresponds to the third emission peak "c" such that in operation the third photo-detector 354 will measure the intensity of light corresponding to the third emission peak "c", that is light with a wavelength centered at the wavelength Ξ»c. The third photo-detector 354 thus produces an electrical signal (Vc) 370 whose magnitude (voltage) is related to the intensity of light at the wavelength Ξ»c. [0065] The electrical signals 366, 368, 370 generated by the photo-detectors 350, 252, 354 which comprise voltages Va, Vb, Vc which are respectively related to the intensity of light at wavelengths Ξ»a, Ξ»b, Ξ»c, are converted into numeric values representative of the measured intensity by a respective analogue to digital (A to D) converter 374, 376 378. The numeric values are read by the processor 34 over the data bus 80. [0066] In operation the processor 34 compares the ratios of the three numeric values (e.g. voltages Va:Vb, Vb:Vc, Va:Vc, Va:Vb:Vc) with the ratios expected for the authentic phosphor blend and if they correspond within pre-selected limits (margins) the photo- luminescent security marking 14, and hence article 12, are deemed to be authenticated. [0067] In addition to detector arrangements in which the detected light is divided (split) on the basis of intensity (power) it is also contemplated in other embodiments to divide the measured light on the basis of wavelength range. Figure 4 is a schematic representation of an optical fiber based detector arrangement 330 in which an optical circulator 494 and fiber Bragg grating filters 444, 446, 448 are used to divide the received light 32 on the basis of wavelength range rather than intensity. Like reference numerals preceded by the figure number are used to denote like parts. For example the photo-detectors 350, 352, 354 of Figure 3 are respectively denoted 450, 452, 454 in Figure 4.
[0068] Light 32 received by the receiving aperture 436 is coupled, by the collimating lens 438, into the first optical fiber 484. The light 456 is guided by the first optical fiber 484 to a first port 1 of a four port optical circular 494. As is known an optical circulator is a multiport optical fiber component that allows light to travel in only one direction e.g. from port 1 to port 2, then from port 2 to port 3 and so forth. As a result if light emitted from port 2 is reflected back to the circulator, it is directed not back to port 1, but on to port 3. An advantage of an optical circulator is that it has high isolation of the input and reflected optical powers and a very low insertion loss.
[0069] The light 456 exits the second port 2 of the optical circulator 494 and travels along the second optical fiber 486 to the first fiber Bragg grating 444. The first fiber Bragg grating 444 has an optical transmission pass band characteristic (determined by the grating structure) that allows the substantially unattenuated transmission of light corresponding to the expected first emission peak "a" whilst reflecting light 496 of other wavelengths (that is light including the emission peaks "b", "c" and "d"). Consequently, in operation the first photo- detector 450 will measure the intensity of light corresponding to the first emission peak "a" that is light with a wavelength centered at the wavelength Ξ»a. The first photo-detector 450 thus produces an electrical signal (Va) 466 whose magnitude (voltage) is related to the intensity of light at the wavelength Ξ»a.
[0070] Light 496 reflected by the first fiber Bragg grating 444 travels back along the first fiber 486 to the second port 2 of the optical circulator 494 and exits the third port 3 of the optical circulator into a fourth optical fiber 490. The light 496 travels along the fourth optical fiber 490 to the second fiber Bragg grating 446. The second fiber Bragg grating 446 has an optical transmission pass band characteristic (determined by the grating structure) that allows the substantially unattenuated transmission of light corresponding to the expected second emission peak "b" whilst reflecting light 498 of other wavelengths (that is light including the emission peaks "c" and "d"). Consequently, in operation the second photo-detector 452 will measure the intensity of light corresponding to the second emission peak "b", that is light with a wavelength centered at the wavelength Ξ»j,. The second photo-detector 452 thus produces an electrical signal (Vb) 468 whose magnitude (voltage) is related to the intensity of light at the wavelength Ξ»t,.
[0071] Light 498 reflected by the second fiber Bragg grating 446 travels back along the fourth optical fiber 490 to the third port 3 of the optical circulator 494 and exits the fourth port 4 of the optical circulator into a fifth optical fiber 492. The light 498 travels along the fifth optical fiber 492 to the third fiber Bragg grating 448. The third fiber Bragg grating 448 has an optical transmission pass band characteristic (determined by the grating structure) that allows the substantially unattenuated transmission of light corresponding to the expected third emission peak "c" whilst reflecting light of other wavelengths (that is light including the emission peak "d"). Consequently, in operation the third photo-detector 454 will measure the intensity of light corresponding to the third emission peak "c" that is light with a wavelength centered at the wavelength Ξ»c. The third photo-detector 454 thus produces an electrical signal (Vc) 470 whose magnitude (voltage) is related to the intensity of light at the wavelength Ξ»c. [0072] The electrical signals 466, 468, 470 generated by the photo-detectors 450, 452, 454, which comprise voltages Va, Vb, Vc which are respectively related to the intensity of light at wavelengths Ξ»a, Ξ»j,, Ξ»c, are converted into numeric values representative of the measured intensity by a respective analogue to digital (A to D) converter 474, 476 478. The numeric values are read by the processor 34 over a data bus 80. [0073] In operation the processor 34 compares the ratios of the three numeric values (e.g. voltages voltages Va:Vb, Vb:Vc, Va:Vc, Va:Vb:Vc) with the corresponding ratios expected for the authentic phosphor blend and if they correspond within pre-selected limits (margins) the photo-luminescent security marking 14, and hence object 12, are deemed to be authenticated. [0074] It is further contemplated in other detector arrangements to divide the measured light on the basis of wavelength range using other optical components such as bifringent optical splitters.
[0075] In each of the detector arrangements described (i.e. those of Figures 2, 3 and 4) the authenticity of the photo-luminescent security marking 14 is verified by comparing the ratios and/or normalized magnitudes of the measured emission peaks with those expected for an authentic phosphor blend to verify that they are within pre-selected margins. Whilst such detector arrangements are relatively simple and inexpensive to implement it will be appreciated that the wavelengths (X3, Ξ»j,, Ξ»c) at which the detector arrangement measures light intensity are fixed by the optical characteristics of the band pass filters. As a result such detector arrangements are only suitable for verifying a photo-luminescent security marking with a single phosphor blend. In other embodiments it is contemplated that the detector arrangement comprises a spectrometer arrangement that is capable of measuring the emission spectrum (intensity versus wavelength) of light 32 emitted by the photo-luminescent marker. As will be described in such a detector arrangement the processor 34 can compare other selected parameters of the emitted spectrum with corresponding parameters expected from the authentic phosphor blend to verify the photo-luminescent security marking. Moreover, it will be appreciated that such a detector arrangement can, depending upon its resolution, be used to verify the authenticity of photo-luminescent security markings composed of almost any phosphor blends.
[0076] Figure 5 is a schematic representation of a spectrometer detector arrangement 530 that uses a prism 5100 to separate wavelength components of the measured light 32. The detector arrangement comprises a receiving aperture 536, typically in the form of a slot (slit), a convex cylindrical lens 538, a prism 5100 and an image sensor 5102. Light 32 emitted by the object 12 is received by the receiving aperture 536 and is collimated by the lens which light 556 is incident on a face of the prism 5100. As is known the prism resolves light into spectral components 5104 dependent on the wavelength of light and these components are detected by the image sensor 5100. The image sensor 5100, which can comprise a charge coupled device (CCD) or complementary metal oxide semiconductor (CMOS) device, measures the intensity of light over a wavelength range which typically corresponds to the visible part of the spectrum. The emission spectrum measured by the image sensor 5100 is passed to the processor 34 over the data bus 80 which then analyzes it and compares selected parameters of the spectrum with corresponding parameters of a standard spectrum to authenticate an object. It will be appreciated that in other arrangements the measured light can be spatially resolved into spectral components using an optical grating or an array waveguide grating (AWG). Additionally, scanning spectrometer arrangements can be used in which the prism or grating is moved such as to scan the light over the sensor. In such an arrangement the sensor can then comprise a simple photodetector. [0077] Although the ratio of emission peaks is a preferred authenticating parameter other parameters can be used to verify the authenticity of the light emitted by the photo- luminescent marking. Examples of such parameters are illustrated in Figure 6. The spectrum in Figure 6 has three peaks "a", "b", "c" at wavelengths (Ξ»a, Ξ»j,, Ξ»c) and peak intensities (Ia, Ib, Ic), three troughs "d", "e", "f ' at wavelengths (Ξ»a, Ξ»e, Ξ»f) and trough intensities (Ia, Ie, If) and one point of inflection "g" at wavelength (Ξ»g) and of intensity (Ig). The selected parameters can include but are not limited to:
β€’ the actual wavelength (Ξ»a, Ξ»j,, Ξ»c) and/or intensity (Ia, Ib, Ic) of emission peaks,
β€’ the actual wavelength (Ξ»a, Ξ»e, Ξ»f) and/or intensity (Ia, Ie, If) of emission troughs,
β€’ the wavelength (Ξ»g) and/or intensity (Ig) corresponding to points of inflection in the emission spectrum,
β€’ the rate of rise of emission peaks (dVdΞ»),
β€’ the rate of fall of emission peaks (dVdΞ»),
β€’ ratio of emission peak intensities (e.g. Ia:Ib:Ic, Ia:Ib, Ib:Ic, Ia:Ic),
β€’ ratio of emission peak wavelengths (e.g. Ξ»a:Ξ»b:Ξ»c, Ξ»a:Ξ»b, Ξ»b Ξ»C; Ξ»a:Ξ»c), β€’ ratio of emission peak intensity to emission trough intensity (e.g. Ia:Ia, Ib:Id, Ib:Ie, Ic:Ie,
Figure imgf000021_0001
β€’ ratio of emission peak wavelength to emission trough wavelength (e.g. Ξ»a:Ξ»a, Ξ»biΞ»a, Ξ»b:Ξ»e, Ξ»c:Ξ»e, Ξ»c:Ξ»f, Ξ»a:Ξ»e, Ξ»a:Ξ»f, Ξ»biΞ»f),
β€’ peak line width (i.e. full width at half-maximum FWHM), β€’ ratio of peak line widths and
β€’ rate of decay of phosphor photo-luminescence when the excitation source is switched off (not shown in Figure 6).
[0078] As described a photo-luminescent security marking in accordance with the invention comprises a blend of at least two, preferably at least three, phosphor materials such that the blend produces an identifiable emission spectrum when excited by excitation radiation that is "eye safe". Preferably, the different phosphor materials have the same host matrix with differing activators and/or co-activators or differing concentrations. An advantage of a blend of phosphor materials having the same host matrix is that such a composition makes it more difficult to analyze and reverse engineer the phosphor blend to counterfeit the photo-luminescent security marking.
[0079] It is preferable that the constituent phosphor materials have a small particle size to ensure better miscibility between the various materials. Preferably, the phosphor blends of the invention consist of phosphor particles whose average particle size (diameter) is smaller than 5 microns (ΞΌm), preferably smaller than 2ΞΌm and optionally smaller than lΞΌm. [0080] Figures 7(a) and 7(b) show normalized emission spectra for four different weight ratio blends of three phosphor materials PR, PG, PB- The phosphor materials respectively comprise (i) PR a europium (Eu) activated yttrium oxide Yi 94EU006O3 which generates red light of wavelength Ξ»R=612nm, (ii) PQ a europium/manganese (Mn) activated barium magnesium aluminate Bao 9Euo iMgo6Mno4AlioΞΈ7 which generates green light of wavelength Ξ»G=514nm and (iii) PB a europium activated barium magnesium aluminate Ba09EU0 iMgAlioOn which generates blue light of wavelength Ξ»B=444 to 445nm. The four phosphor blends respectively comprise weight ratio blends of the phosphors PR, PG, PB of: blend 1 - 4/1/1, blend 2 - 8/1/1, blend 3 - 8/2/1 and blend 4 - 16/2/1. The photo-luminescent security marking was excited by excitation radiation of wavelength Ξ»ex=400nm generated by an indium gallium nitride (InGaN) based LED. The emission spectra have been normalized to the second emission peak corresponding to light generated by the green phosphor PG (Ba09EuO iMg06Mn04AI10O7). Figure 7(b) is a portion of spectra at longer wavelengths showing the third emission peak in greater detail. Table 1 tabulates respective values for the normalized intensities IB, IG, IR of the emission peaks and the normalized intensity IR/G of the trough between the first and second emission peaks together with ratios of the emission peaks and emission peaks to the emission trough.
Figure imgf000022_0001
Table 1. Normalized peak intensity and ratio of normalized peak intensities for different weight ratio blends of three phosphors PR, PG and PB.
[0081] It will be apparent from Table 1 that each phosphor blend has a characteristic set of parameters (i.e. ratio of normalized intensities). Figure 7 illustrates how different weight ratio blends of the phosphor materials produce a respective emission spectrum in which the wavelengths of the peaks and/or troughs are substantially unchanged but which have a characteristic ratio of emission peak intensities and/or ratio of emission peak to trough intensities. A particular benefit of using different weight ratio blends of the same phosphor materials is that since each will produce peaks and/or trough at the substantially the same wavelength a simple optical detector arrangement that measures intensity for selected wavelength ranges, such as those illustrated in Figures 2, 3 and 4, can be utilized. [0082] The authentication system of the invention is particularly suited for use with inorganic phosphors such as for example silicate-based phosphor of a general composition A3Si(O,D)5 or A2Si(O,D)4 in which Si is silicon, O is oxygen, A comprises strontium (Sr), barium (Ba), magnesium (Mg) or calcium (Ca) and D comprises chlorine (Cl), fluorine (F), nitrogen (N) or sulfur (S). Examples of silicate-based phosphors are disclosed in our co- pending patent applications US2006/0145123, US2006/0261309, US2007/0029526 and patent US 7,311,858 (also assigned to Intematix Corporation) the content of each of which is hereby incorporated by way of reference thereto.
[0083] As taught in US2006/0145123, a europium (Eu2+) activated silicate-based green phosphor has the general formula (Sr,Ai)x(Si,A2)(O,A3)2+Ο‡:Eu2+ in which: Ai is at least one of a 2+ cation, a combination of I+ and 3+ cations such as for example Mg, Ca, Ba, zinc (Zn), sodium (Na), lithium (Li), bismuth (Bi), yttrium (Y) or cerium (Ce); A2 is a 3+, 4+ or 5+ cation such as for example boron (B), aluminum (Al), gallium (Ga), carbon (C), germanium (Ge), N or phosphorus (P); and A3 is a 1", 2" or 3" anion such as for example F, Cl, bromine (Br), N or S. The formula is written to indicate that the Ai cation replaces Sr; the A2 cation replaces Si and the A3 anion replaces oxygen. The value of x is an integer or non-integer between 1.5 and 2.5.
[0084] US 7,311,858 discloses a silicate-based yellow-green phosphor having a formula A2SiO4)Eu2+ D, where A is at least one of a divalent metal comprising Sr, Ca, Ba, Mg, Zn or cadmium (Cd); and D is a dopant comprising F, Cl, Br, iodine (I), P, S and N. The dopant D can be present in the phosphor in an amount ranging from about 0.01 to 20 mole percent and at least some of the dopant substitutes for oxygen anions to become incorporated into the crystal lattice of the phosphor. The phosphor can comprise (Sri_x_yBaxMy)SiΞΈ4:Eu2+D in which M comprises Ca, Mg, Zn or Cd and where O≀x≀l and O≀y≀l. [0085] US2006/0261309 teaches a two phase silicate-based phosphor having a first phase with a crystal structure substantially the same as that of (Ml)2SiO4; and a second phase with a crystal structure substantially the same as that of (M2)3SiOs in which Ml and M2 each comprise Sr, Ba, Mg, Ca or Zn. At least one phase is activated with divalent europium (Eu ) and at least one of the phases contains a dopant D comprising F, Cl, Br, S or N. It is believed that at least some of the dopant atoms are located on oxygen atom lattice sites of the host silicate crystal.
[0086] US2007/0029526 discloses a silicate-based orange phosphor having the formula (Sri_xMx)yEuzSiΞΈ5 in which M is at least one of a divalent metal comprising Ba, Mg, Ca or Zn; 0<x<0.5; 2.6<y<3.3; and 0.001<z<0.5. The phosphor is configured to emit visible light having a peak emission wavelength greater than about 565 nm. [0087] The phosphor can also comprise an aluminate-based material such as is taught in our co-pending patent application US2006/0158090 and patent US 7,390,437 (also assigned to Intematix Corporation) or an aluminum-silicate phosphor as taught in co-pending application US2008/0111472 the content of each of which is hereby incorporated by way of reference thereto. [0088] US2006/0158090 teaches an aluminate-based green phosphor of formula Mi_xEuxAly0[i+3y/2] in which M is at least one of a divalent metal comprising Ba, Sr, Ca, Mg, Mn, Zn, Cu, Cd, Sm or thulium (Tm) and in which 0.1<x<0.9 and 0.5 <y <12. [0089] US 7,390,437 discloses an aluminate-based blue phosphor having the formula (Mi_xEux)2-zMgzAly0[2+3y/2] in which M is at least one of a divalent metal of Ba or Sr. In one composition the phosphor is configured to absorb radiation in a wavelength ranging from about 280 nm to 420 nm, and to emit visible light having a wavelength ranging from about 420 nm to 560 nm and 0.05<x<0.5 or 0.2<x<0.5; 3 < y <12 and 0.8 < z <1.2. The phosphor can be further doped with a halogen dopant H such as Cl, Br or I and be of general composition (M1-xEux)2-zMgzAlyO[2+3y/2]:H.
[0090] US2008/0111472 teaches an aluminum-silicate orange-red phosphor with mixed divalent and trivalent cations of general formula (Sri_x_yMΟ‡Ty)3-mEum(Sii-zAlz)ΞΈ5 in which M is at least one divalent metal selected from Ba, Mg or Ca in an amount ranging from 0<x<0.4; T is a trivalent metal selected from Y, lanthanum (La), Ce, praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), Erbium (Er), Tm, ytterbium (Yt), lutetium (Lu), thorium (Th), protactinium (Pa) or uranium (U) in an amount ranging from 0<y<0.4 and z and m are in a range 0<z<0.2 and 0.001<m<0.5. The phosphor is configured such that the halogen resides on oxygen lattice sites within the silicate crystal. [0091] The phosphor can also comprise a nitride-based red phosphor material such as is taught in our co-pending provisional patent application 61/054,399 the content of which is hereby incorporated by way of reference thereto. 61/054,399 teaches a nitride-based red phosphor having the formula MmMaMbD3WN[(2/3)m+z+a+(4/3)b-w]Zx where Mm is a divalent element selected from beryllium (Be), Mg, Ca, Sr, Ba, Zn, Cd or mercury (Hg); Ma is a trivalent element selected from B, Al, Ga, In, Y, Se, P, As, La, Sm, antimony (Sb) or Bi; Mb is a tetravalent element selected from C, Si, Ge, tin (Sn), Ni, hafnium (Hf), molybdenum (Mo), tungsten (W), Cr, Pb, Ti or zirconium (Zr); D is a halogen selected from F, Cl, Br or I; Z is an activator selected from Eu, Ce, Mn, Tb or Sm, and N is nitrogen in amounts 0.01<m<1.5, 0.01<a<1.5, 0.01<b<1.5, O.OOOl≀w≀O.6 and 0.0001<z<0.5. The phosphor is configured to emit visible light with an emission peak wavelength greater than 640nm.
[0092] It will be appreciated that the phosphor is not limited to the examples described herein and can comprise any phosphor material including both up-converting or down- converting phosphors that are organic or inorganic phosphor materials such as for example nitride and/or sulfate phosphor materials, oxy-nitrides and oxy-sulfate phosphors or garnet materials (YAG).
[0093] It is contemplated, in other embodiments, to use two or more individually operable excitation sources (LEDs) 26 to excite the photo-luminescent security marking with different wavelength excitation radiation and to measure the emission spectra and/or selected parameter(s) of the emission spectra for the various combinations of operation of the excitation sources. Operating the excitation sources in different combinations/permutations and measuring the emission spectrum and/or selected parameter(s) provides a further level of security for verifying the authenticity of the photo-luminescent security marking. In such an arrangement each source 26 when operated generates excitation radiation with a respective wavelengths Ξ»exi Ξ»eX2 and can comprise, for example, LEDs that emit excitation radiation of 400nm and 465nm. Examples of LEDs and their emission wavelengths are given in Table 2.
Figure imgf000025_0001
Table 2. Light emitting diodes (LEDs) and emission wavelengths Ξ»ex.
[0094] In such a system the photo-luminescent security marking comprises a blend of (i) at least one phosphor material that is only excitable by excitation radiation of a first wavelength Ξ»exi (e.g. 400nm) and (ii) at least one phosphor material that is excitable by radiation of both excitation wavelengths Ξ»exi and Ξ»eX2 (e.g. excitation radiation within a wavelength range 400 to 465nm). In other words one phosphor material is only excitable by excitation radiation of a first wavelength range and one phosphor material is excitable by excitation radiation of a second wavelength range which overlaps and includes the first wavelength range. Each phosphor material when excited emits light with a respective emission peak (Pl, P2) at a respective different wavelength. Examples of suitable phosphor materials are given in Tables 3 and 4.
Figure imgf000026_0001
Table 3. Examples of phosphors that are excitable by excitation radiation of a first wavelength Ξ»exi (e.g. 400nm).
Figure imgf000026_0002
Table 4. Examples of phosphors that are excitable by both excitation radiation of a first wavelength Ξ»eXi (e.g. 400nm) and second wavelength Ξ»eX2 (e.g. 465nm).
[0095] Operation of such an authentication system will now be described with reference to Figure 8 which shows schematic emission spectra for a photo-luminescent security marking excited by excitation radiation (a) of the first and second wavelengths Ξ»exi and Ξ»eX2 (b) of the first wavelength Ξ»exi only and (c) of the second wavelength Ξ»eX2 only. In operation when both excitation sources are activated and the photo-luminescent security marking is irradiated with excitation radiation of both wavelengths Ξ»exi and Ξ»eX2, the emission spectrum (as shown in Figure 8(a)) will be the sum of emissions from the two phosphor materials in which there will be a proportionally larger contribution from the second phosphor material since this is excitable by excitation radiation of both wavelengths. When the photo- luminescent security marking is irradiated with excitation radiation of the first wavelength only, the emission spectrum (as shown in Figure 8(b)) will again be the sum of emissions from the first and second phosphor materials but with a relatively weaker contribution from the second phosphor material. Finally when the photo-luminescent security marking is irradiated with excitation radiation of the second wavelength only, the emission spectrum (as shown in Figure 8(c)) will contain only a contribution from the second phosphor material. Thus by operating the excitation sources in different combinations/permutations and measuring the emission spectrum and/or selected parameter(s) of the emission spectrum, such for example the ratio of the intensities of the first and second emission peaks, this provides a further level of security for verifying the authenticity of the photo-luminescent security marking. The different combinations of "on" and "off" for the two excitation sources can be programmed into the microprocessor.
[0096] In yet a further embodiment it is contemplated to use three individually operable excitation sources to excite the photo-luminescent security marking and to measure the emission spectrum and/or selected parameters of the emission spectrum for various combinations of actuated sources. For example each excitation source can comprise an LED which is operable to generate excitation radiation of a respective excitation wavelength Ξ»exi, Ξ»eX2 and Ξ»eX3 (e.g.400nm, 465mn and 525nm). In such an arrangement the photo-luminescent security marking comprises a blend of (i) at least one phosphor material that is only excitable by radiation of the first wavelength Ξ»exi (e.g. 400nm), (ii) at least one phosphor material that is excitable by radiation of both the first Ξ»exi and Ξ»eX2 second wavelengths (e.g. excitation radiation with a wavelength range 400 to 460nm), and (iii) at least one phosphor material that is excitable by radiation of all excitation wavelengths Ξ»exi, Ξ»eX2 and Ξ»eX3 (e.g. excitation radiation with a wavelength range 400 to 510nm). In general the phosphor materials each have an emission peak at a respective different wavelength.
Figure imgf000027_0001
Table 5. Examples of phosphors that are excitable by excitation radiation of a first wavelength Ξ»exi (e.g. 400nm), second wavelength Ξ»ex2 (e.g. 465nm) and third wavelength Ξ»eX3
(e.g. 520nm).
[0097] With three excitation sources there are seven different combinations in which the excitation sources can be operated these being:
β€’ excitation source one only (Ξ»exi),
β€’ excitation source two only (Ξ»ex2), β€’ excitation source three only (Ξ»eX3),
‒ excitation sources one and two (λexi+λex2), ‒ excitation sources one and three (λeχi+λeχ3),
‒ excitation sources two and three (λeχ2+λeχ3) and
‒ all three excitation sources (λeχi+λeχ2+λeχ3).
[0098] In operation when all three excitation sources are operable and the photo- luminescent security marking is irradiated with excitation radiation of all three wavelengths Ξ»exi, Ξ»eX2, Ξ»ex3, the emission spectrum will be the sum of emissions from the three phosphor materials in which there will be a proportionally larger contribution from the second and third phosphor materials since each of these is excitable by excitation radiation of at least two wavelengths (Ξ»exi and Ξ»eX2). When only the first excitation source is operated, the photo- luminescent security marking is irradiated with excitation radiation of the first wavelength Ξ»exi only and the emission spectrum will again be the sum of emissions from the three phosphor materials but with a relatively weaker contribution from the second and third phosphor materials. When only the second excitation source is operated, the photo- luminescent security marking is irradiated with excitation radiation of the second wavelength Ξ»eX2 only and the emission spectrum will be the sum of emissions from the second and third phosphor material only. When only the third excitation source is operated, the photo- luminescent security marking is irradiated with excitation radiation of the third wavelength Ξ»eX3 only and the emission spectrum will correspond to emission from the third phosphor material only. When the first and second excitation sources are operable, the photo- luminescent security marking is irradiated with excitation radiation of wavelengths Ξ»exi, Ξ»eX2, and the emission spectrum will be the sum of emissions from the three phosphor materials in which the contribution from the third phosphor material with be lower than the situation when all three sources are operable. When the first and third excitation sources are operable, the photo-luminescent security marking is irradiated with excitation radiation of wavelengths Ξ»eXl, Ξ»eX3, and the emission spectrum will be the sum of emissions from the three phosphor materials in which the contribution from the third phosphor material will be higher than the situation in which the first and second are operable. Finally, when the second and third excitation sources are operable, the photo-luminescent security marking is irradiated with excitation radiation of wavelengths Ξ»eX2, Ξ»eX3, and the emission spectrum will be the sum of emissions from the second and third phosphor materials in which the magnitude of each contribution is lower since the second phosphor is excited by radiation of a single wavelength and the third phosphor is excited by radiation of two wavelengths. As a result the photo- luminescent marking can produce up to seven different emission spectra depending on which excitation sources are operable. [0099] It will be appreciated that the present invention is not restricted to the specific embodiments described and that variations can be made that are within the scope of the invention. For example, in other embodiments it is contemplated that the photo-luminescent security marking 14 incorporates a further security device such as for example a bar code. Photo-luminescent security markings in the form of a bar code are shown in Figures 9(a) and 9(b). As is known a bar code comprises a series of parallel lines (bars) whose width and/or spacing is used to encode data. As shown in Figure 9(a), and in accordance with the invention, a photo-luminescent bar code marking comprises a series of parallel lines 106 that are composed of an ink containing a blend of at least two phosphor materials. The photo- luminescent bar code marking 14 can be read using a conventional bar code scanner arrangement that uses light that does not excite the phosphor materials and the phosphor marking verified using the authentication device described above. In other arrangements as illustrated in Figure 9(b) the bar code can comprise a series of bars 106, 108, 110 containing different phosphors and/or phosphor blends. With such a photo-luminescent security marking the authentication device preferably scans the bar code with excitation radiation and the emission spectrum is measured for individual bars and/or selected groups of bars. The bars 106, 108, 110 containing different phosphor materials can be arranged in a set sequence or their sequence encoded by for example linking their sequence to the bar coding. In one arrangement bars of a specific width can comprise a respective phosphor or phosphor blend. In other arrangements the photo-luminescent marking can be provided in the spaces between lines of the bar code. It will be appreciated that the photo-luminescent marking of the invention can be incorporated into other forms of coding such as a matrix code, essentially a 2-dimensional bar code, in which data is encoded in the form of a pattern of dots, squares and other geometric symbols.

Claims

CLAIMSWhat is claimed is:
1. A method of authenticating a photo-luminescent security marking in which an authentic security marking comprises a blend of at least two phosphor materials that are excitable by excitation radiation of a selected wavelength that is within a wavelength range 380 to 780nm and which when excited has a known emission characteristic, the method comprising: a) irradiating the marking with excitation radiation of the selected wavelength, b) measuring at least one selected parameter of light emitted by the marking, and c) comparing the at least one measured parameter with a corresponding parameter of the known emission characteristic and verifying the authenticity of the marking if the parameters are within prescribed limits.
2. The method of Claim 1, wherein the marking comprises at least one phosphor material which is only excitable by excitation radiation of wavelength within a first wavelength range and at least one phosphor material which is excitable by excitation radiation of wavelength within a second different wavelength range which overlaps and includes the first wavelength range, the method comprising: a) irradiating the marking with excitation radiation of wavelength within the first wavelength range and measuring at least one selected parameter of light emitted by the marking, b) irradiating the marking with excitation radiation of wavelength that is within the overlapping region of the first and second wavelength ranges and measuring at least one selected parameter of light emitted by the marking, c) irradiating the marking with excitation radiation of wavelength within a part of the second wavelength range that does not overlap the first wavelength range and measuring at least one selected parameter of light emitted by the marking, and d) comparing the at least one measured parameters measured with corresponding parameters of the known emission characteristic and verifying the authenticity of the marking if the parameters are within prescribed limits.
3. The method according to Claim 1, wherein the at least one selected parameter is selected from the group consisting of: intensity of selected wavelength region, ratio of intensities of selected wavelength regions, intensity of an emission peak, wavelength of an emission peak, rate of rise of an emission peak, rate of fall of an emission peak, ratio of emission peak intensities, ratio of emission peak wavelengths, intensity of an emission trough, wavelength of an emission trough, ratio of emission trough intensities, ratio of emission trough wavelengths, wavelength of a point of inflection, intensity of a point of inflection, ratio of point of inflection intensities, ratio of points of inflection wavelengths, number of emission peaks, number of emission troughs, number of points of inflection, shape of emission peak, and combinations thereof.
4. A method of authenticating a photo-luminescent security marking in which an authentic security marking comprises a blend of at least two phosphor materials in which at least one phosphor material is only excitable by excitation radiation of wavelength within a first wavelength range and at least one phosphor material is excitable by excitation radiation of wavelength within a second different wavelength range which overlaps and includes the first wavelength range, the method comprising: a) irradiating the marking with excitation radiation of wavelength within the first wavelength range and measuring at least one selected parameter of light emitted by the marking, b) irradiating the marking with excitation radiation of wavelength that is within the overlapping region of the first and second wavelength ranges and measuring at least one selected parameter of light emitted by the marking, c) irradiating the marking with excitation radiation of wavelength within a part of the second wavelength range that does not overlap the first wavelength range and measuring at least one selected parameter of light emitted by the marking, and d) comparing the selected parameters measured in a), b) and c) with corresponding parameters of the known emission characteristic and if the parameters are within prescribed limits verifying the authenticity of the marking.
5. The method according to Claim 4, wherein the at least one selected parameter is selected from the group consisting of: intensity of selected wavelength region, ratio of intensities of selected wavelength regions, intensity of an emission peak, wavelength of an emission peak, rate of rise of an emission peak, rate of fall of an emission peak, ratio of emission peak intensities, ratio of emission peak wavelengths, intensity of an emission trough, wavelength of an emission trough, ratio of emission trough intensities, ratio of emission trough wavelengths, wavelength of a point of inflection, intensity of a point of inflection, ratio of point of inflection intensities, ratio of points of inflection wavelengths, number of emission peaks, number of emission troughs, number of points of inflection, shape of emission peak, and combinations thereof.
6. An apparatus for authenticating a photo-luminescent security marking in which an authentic security marking comprises a blend of at least two phosphor materials that are excitable by excitation radiation of a selected wavelength that is within a wavelength range 380 to 780nm and which when excited has a known emission characteristic, said apparatus comprising: at least one excitation source operable to emit and irradiate the marking with excitation radiation of the selected wavelength; a detector operable to measure at least one selected parameter of light emitted by the marking; and processing means for comparing the at least one measured parameter with a corresponding parameter of the known emission characteristic and if the they are within prescribed limits verifying the authenticity of the marking.
7. The apparatus according to Claim 6, and further comprising wavelength separating means for dividing the light emitted by the photo-luminescent security marking into selected wavelength regions and wherein the detector is operable to measure the intensity for each selected wavelength region.
8. The apparatus according to Claim 7, wherein the wavelength separating means is selected from the group consisting of: optical filter, gel filter, dichroic filter, a grating, an optical fiber grating, and a prism.
9. The apparatus according to Claim 6, wherein the at least one selected parameter is selected from the group consisting of: intensity of selected wavelength region, ratio of intensities of selected wavelength regions, intensity of an emission peak, wavelength of an emission peak, rate of rise of an emission peak, rate of fall of an emission peak, ratio of emission peak intensities, ratio of emission peak wavelengths, intensity of an emission trough, wavelength of an emission trough, ratio of emission trough intensities, ratio of emission trough wavelengths, wavelength of a point of inflection, intensity of a point of inflection, ratio of point of inflection intensities, ratio of points of inflection wavelengths, number of emission peaks, number of emission troughs, number of points of inflection, shape of emission peak, and combinations thereof.
10. An apparatus for authenticating a photo-luminescent security marking in an authentic marking comprises at least one phosphor material which is only excitable by excitation radiation of wavelength within a first wavelength range and at least one phosphor material which is excitable by excitation radiation of wavelength within a second different wavelength range which overlaps and includes the first wavelength range the apparatus comprising: i) a first independently operable excitation source operable to emit and irradiate the marking with excitation radiation of wavelength within the first wavelength range; ii) a second independently operable excitation source operable to emit and irradiate the marking with excitation radiation of wavelength within the second wavelength range; iii) a detector operable to measure at least one selected parameter of light emitted by the marking; and iv) processing means for comparing the at least one selected parameter with a corresponding parameter of the known emission characteristic and if the they are within prescribed limits verifying the authenticity of the marking; wherein the apparatus is operable a) to irradiate the marking with excitation radiation of wavelength within the first wavelength range and to measure the at least one selected parameter of light emitted by the marking, b) to irradiate the marking with excitation radiation of wavelength within the overlapping region of the first and second wavelength ranges and to measure the at least one selected parameter of light emitted by the marking, c) to irradiate the marking with excitation radiation of wavelength within a part of the second wavelength range that does not overlap the first wavelength range and to measure the at least one selected parameter of light emitted by the marking and d) compare values of the at least one selected parameter with corresponding parameters of the known emission characteristic and verifying the authenticity of the marking if the parameters are within prescribed limits.
11. The apparatus according to Claim 10, wherein the at least one selected parameter is selected from the group consisting of: intensity of selected wavelength region, ratio of intensities of selected wavelength regions, intensity of an emission peak, wavelength of an emission peak, rate of rise of an emission peak, rate of fall of an emission peak, ratio of emission peak intensities, ratio of emission peak wavelengths, intensity of an emission trough, wavelength of an emission trough, ratio of emission trough intensities, ratio of emission trough wavelengths, wavelength of a point of inflection, intensity of a point of inflection, ratio of point of inflection intensities, ratio of points of inflection wavelengths, number of emission peaks, number of emission troughs, number of points of inflection, shape of emission peak, and combinations thereof.
12. The apparatus according to Claim 6, wherein the at least one excitation source is operable to generate excitation radiation of wavelength range 400 to 450nm.
13. The apparatus according to Claim 6, wherein the at least one excitation source comprises a light emitting diode.
14. A photo-luminescent security marking comprising a blend of at least two phosphor materials in which each phosphor material is excitable by excitation radiation of a selected wavelength that is within a wavelength range 380 to 780nm.
15. The marking according to Claim 14, wherein the phosphor materials have the same host lattice structure.
16. The marking of Claim 14, wherein each phosphor material is excitable by excitation radiation of a same wavelength range.
17. The marking of Claim 14, wherein at least one phosphor material is only excitable by excitation radiation of a first wavelength range and at least one phosphor material is excitable by excitation radiation of a second wavelength range which overlaps and includes the first wavelength range.
18. The marking of Claim 14, wherein the marking comprises a blend of at least three phosphor materials in which at least one phosphor material is excitable by excitation radiation of a first wavelength range, at least one phosphor material is excitable by excitation radiation of a second wavelength range which overlaps and includes the first wavelength range, and at least one phosphor material is excitable by excitation radiation of a third wavelength range which overlaps and includes the first and second wavelength ranges.
19. The marking according to Claim 14, wherein the blend of at least two phosphor materials is selected from the group consisting of: being incorporated with a binder material, being incorporated with an ink, being incorporated in a polymer material, being incorporated into a sheet of polymer material, being incorporated into a fiber of polymer material, being laminated between sheets of material in which at least one sheet is transmissive to the excitation radiation and light emitted by the phosphor materials, being applied to a surface of a metal foil, being applied to a surface of a metal foil and being incorporated as part of a bar code.
20. The marking according to Claim 14, wherein the phosphor materials are excitable with excitation radiation of wavelength range 400 to 450nm.
21. The marking according to Claim 14, wherein each phosphor material has an average particle size selected from the group consisting of: five microns or less, two microns or less, and one micron or less.
22. The marking according to Claim 14, wherein the phosphor materials are selected from the group consisting of: an aluminate, a silicate, a nitride, a sulfate, an oxy-nitride, an oxy-sulfate, and a garnet material.
23. A photo-luminescent security marking comprising a blend of at least two phosphor materials in which at least one phosphor material is only excitable by excitation radiation of a first wavelength range and at least one phosphor material is excitable by excitation radiation of a second wavelength range which overlaps and includes the first wavelength range.
PCT/US2009/061896 2008-10-23 2009-10-23 Phosphor based authentication system WO2010048535A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980141958.XA CN102197262B (en) 2008-10-23 2009-10-23 Phosphor based authentication system
EP09822791A EP2350525A4 (en) 2008-10-23 2009-10-23 Phosphor based authentication system
JP2011533379A JP5529878B2 (en) 2008-10-23 2009-10-23 Authentic proof system based on phosphor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10792808P 2008-10-23 2008-10-23
US61/107,928 2008-10-23
US12/604,268 2009-10-22
US12/604,268 US8822954B2 (en) 2008-10-23 2009-10-22 Phosphor based authentication system

Publications (1)

Publication Number Publication Date
WO2010048535A1 true WO2010048535A1 (en) 2010-04-29

Family

ID=42116579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/061896 WO2010048535A1 (en) 2008-10-23 2009-10-23 Phosphor based authentication system

Country Status (6)

Country Link
US (1) US8822954B2 (en)
EP (1) EP2350525A4 (en)
JP (1) JP5529878B2 (en)
KR (1) KR20110086061A (en)
CN (1) CN102197262B (en)
WO (1) WO2010048535A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515095A (en) * 2009-12-21 2013-05-02 γƒγƒγ‚¦γ‚§γƒ«γƒ»γ‚€γƒ³γ‚ΏγƒΌγƒŠγ‚·γƒ§γƒŠγƒ«γƒ»γ‚€γƒ³γ‚³γƒΌγƒγƒ¬γƒΌγƒ†γƒƒγƒ‰ Method and apparatus for authenticating valuable documents
JP2013515091A (en) * 2009-12-17 2013-05-02 γƒγƒγ‚¦γ‚§γƒ«γƒ»γ‚€γƒ³γ‚ΏγƒΌγƒŠγ‚·γƒ§γƒŠγƒ«γƒ»γ‚€γƒ³γ‚³γƒΌγƒγƒ¬γƒΌγƒ†γƒƒγƒ‰ Control of article detectability and article authentication method
DE102014016858A1 (en) 2014-02-19 2015-08-20 Giesecke & Devrient Gmbh Security feature and use thereof, value document and method for checking the authenticity thereof
JP2015525880A (en) * 2012-07-20 2015-09-07 γƒγƒγ‚¦γ‚§γƒ«γƒ»γ‚€γƒ³γ‚ΏγƒΌγƒŠγ‚·γƒ§γƒŠγƒ«γƒ»γ‚€γƒ³γ‚³γƒΌγƒγƒ¬γƒΌγƒ†γƒƒγƒ‰ Article, method for discriminating it, and discrimination system using attenuation constant modulation

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900790B2 (en) * 2006-09-01 2012-03-21 ζ—₯ζœ¬η™Ίζ’ζ ͺ式会瀾 Identification medium, article, identification device, and identification medium identification method
JP2009120405A (en) * 2007-11-09 2009-06-04 Canon Inc Glass composition for ultraviolet light and optical device using the same
US8153984B2 (en) 2008-12-18 2012-04-10 Eastman Kodak Company Security system with different size emissive particles
US8400509B2 (en) * 2009-09-22 2013-03-19 Honeywell International Inc. Authentication apparatus for value documents
JP4991834B2 (en) * 2009-12-17 2012-08-01 シャープζ ͺ式会瀾 Vehicle headlamp
JP5232815B2 (en) * 2010-02-10 2013-07-10 シャープζ ͺ式会瀾 Vehicle headlamp
JP5059208B2 (en) * 2010-04-07 2012-10-24 シャープζ ͺ式会瀾 Lighting device and vehicle headlamp
US8733996B2 (en) 2010-05-17 2014-05-27 Sharp Kabushiki Kaisha Light emitting device, illuminating device, and vehicle headlamp
US20110305919A1 (en) 2010-06-10 2011-12-15 Authentix, Inc. Metallic materials with embedded luminescent particles
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US20120153184A1 (en) * 2010-12-21 2012-06-21 Honeywell International Inc. Luminescent phosphor-containing materials, and methods for their production and use in authenticating articles
US9239262B2 (en) * 2011-07-15 2016-01-19 Honeywell International Inc. Methods and apparatus for authenticating articles with luminescent phosphor compounds
US8864038B2 (en) * 2011-11-17 2014-10-21 The Trustees Of Columbia University In The City Of New York Systems and methods for fraud prevention, supply chain tracking, secure material tracing and information encoding using isotopes and other markers
US8975598B2 (en) * 2012-01-17 2015-03-10 Honeywell International Inc. Articles incorporating thermographic phosphors, and methods and apparatus for authenticating such articles
WO2014031107A1 (en) * 2012-08-21 2014-02-27 Empire Technology Development Llc Orthogonal encoding for tags
DE102012025263A1 (en) * 2012-12-21 2014-06-26 Giesecke & Devrient Gmbh Sensor and method for checking value documents
CN103122247A (en) * 2013-02-27 2013-05-29 η¦ε»Ίηœι•Ώζ±€ι‡‘ιΎ™η¨€εœŸζœ‰ι™ε…¬εΈ Green emitting phosphor and preparation method
CN104077697B (en) 2013-03-29 2021-12-07 δΌ˜ε“δΏζœ‰ι™ε…¬εΈ System and method for mobile on-site item authentication
EP3013595B1 (en) * 2013-06-24 2017-08-09 Gluco Technology Limited Security coding system & marker, optoelectronic scanner and method of coding articles
AU2014315312A1 (en) * 2013-09-04 2016-03-17 Taaneh, Inc. Authentication systems employing fluorescent diamond particles
MY189864A (en) * 2013-09-25 2022-03-14 Sicpa Holding Sa Mark authentication from light spectra
US20150332040A1 (en) * 2014-05-19 2015-11-19 Honeywell International Inc. Systems, Devices, and Methods for Authenticating A Value Article
JP6288709B2 (en) * 2014-05-22 2018-03-07 γ‚°γƒ­γƒΌγƒͺγƒΌζ ͺ式会瀾 Fluorescence / phosphorescence detector
US9322709B2 (en) * 2014-06-24 2016-04-26 Stardust Materials, LLC Luminescent infrared transparent sticker
US10650630B2 (en) * 2014-10-31 2020-05-12 Honeywell International Inc. Authentication systems, authentication devices, and methods for authenticating a value article
GB201501342D0 (en) * 2015-01-27 2015-03-11 Univ Lancaster Improvements relating to the authentication of physical entities
DE102015204360A1 (en) * 2015-03-11 2016-09-15 Osram Oled Gmbh Optoelectronic component and method for exchanging an optoelectronic component
US10066160B2 (en) 2015-05-01 2018-09-04 Intematix Corporation Solid-state white light generating lighting arrangements including photoluminescence wavelength conversion components
US9909972B2 (en) * 2016-02-08 2018-03-06 MANTA Instruments, Inc. Multi-camera apparatus for observation of microscopic movements and counting of particles in colloids and its calibration
GB2540739A (en) * 2015-07-13 2017-02-01 Innovia Films Ltd Authentication apparatus and method
TWI586957B (en) * 2016-06-24 2017-06-11 θ«Ύθ²ηˆΎη”Ÿη‰©ζœ‰ι™ε…¬εΈ Multi-channel fluorescene detecting system and method using the same
TWI742100B (en) * 2016-07-06 2021-10-11 η‘žε£«ε•†θ₯Ώε…‹εΈ•ζŽ§θ‚‘ζœ‰ι™ε…¬εΈ Method for authenticating a security marking utilizing long afterglow emission, and security marking comprising one or more afterglow compound
US10721082B2 (en) * 2016-07-18 2020-07-21 International Business Machines Corporation Screen printed phosphors for intrinsic chip identifiers
EP3352145A1 (en) 2017-01-23 2018-07-25 University of Copenhagen An optically detectable marker including luminescent dopants and system and method for reading such markers
US10402610B2 (en) * 2017-06-13 2019-09-03 Nthdegree Technologies Worldwide Inc. Printed LEDs embedded in objects to provide optical security feature
CN109423285B (en) * 2017-08-31 2023-09-26 ζ—₯δΊšεŒ–ε­¦ε·₯业ζ ͺ式会瀾 Aluminate phosphor and light-emitting device
US11054530B2 (en) 2017-11-24 2021-07-06 Saint-Gobain Ceramics & Plastics, Inc. Substrate including scintillator materials, system including substrate, and method of use
DE102018109141A1 (en) 2018-04-17 2019-10-17 Bundesdruckerei Gmbh Smartphone-verifiable, fluorescent-based security feature and device for verification Smartcard-verifiable, fluorescent-based security feature and arrangement for verification
US11320308B2 (en) * 2018-07-17 2022-05-03 The Trustees Of Princeton University System and method for shaping incoherent light for control of chemical kinetics
CN113272638A (en) * 2019-01-07 2021-08-17 ζ™Ίθƒ½ζζ–™θ§£ε†³ζ–Ήζ‘ˆε…¬εΈ System and method for mobile device phosphor excitation and detection
US11589703B1 (en) 2019-05-08 2023-02-28 Microtrace, LLC. Spectral signature systems that use encoded image data and encoded spectral signature data
KR102387772B1 (en) * 2020-01-10 2022-07-08 κ³΅μ£ΌλŒ€ν•™κ΅ μ‚°ν•™ν˜‘λ ₯단 Composition for UC fluorescent particle, UC fluorescent particle made from the same composition, method of making the same particle, security luminescent ink including the same particle
KR102374411B1 (en) * 2020-03-10 2022-03-15 κ³΅μ£ΌλŒ€ν•™κ΅ μ‚°ν•™ν˜‘λ ₯단 Method of preparing UC fluorescent particle, UC fluorescent particle made thereby and fluorescent ink including the same
US20230298044A1 (en) 2020-08-19 2023-09-21 Microtrace, Llc Strategies and systems that use spectral signatures and a remote authentication authority to authenticate physical items and linked documents
DE102022000101A1 (en) 2022-01-12 2023-07-13 Giesecke+Devrient Currency Technology Gmbh Optically variable security element
WO2023235896A1 (en) * 2022-06-03 2023-12-07 Sio2 Medical Products, Inc. Authentication/tracking of a product or package using wave-shifting marker crystals incorporated into a component of the product or package
US11978286B2 (en) 2022-07-01 2024-05-07 George Phillips Voter and voting official authenticatable ballot and method
WO2024129736A1 (en) * 2022-12-16 2024-06-20 Lumileds Llc Patterned phosphor item identification code and method of authenticating an object
WO2024155729A1 (en) * 2023-01-18 2024-07-25 Sun Chemical Corporation Security marking and verification system

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331140A (en) 1992-04-02 1994-07-19 Xerox Corporation Code reading systems
US5439997A (en) 1992-04-09 1995-08-08 Lever Brothers Company, Division Of Conopco, Inc. Polymers and detergent compositions containing them
US5766324A (en) 1994-12-28 1998-06-16 Hitachi Maxell, Ltd. Ink composition, printed matter, and thermal transfer recording medium
WO2000060527A1 (en) 1999-04-07 2000-10-12 Sicpa Holding S.A. A method and device for exciting a luminescent material
US6686074B2 (en) 2001-03-16 2004-02-03 Bundesdruckerei Gmbh Secured documents identified with anti-stokes fluorescent compositions
US6841092B2 (en) 2001-03-16 2005-01-11 Bundesdruckerei Gmbh Anti-stokes fluorescent compositions and methods of use
US7030371B2 (en) 2001-03-01 2006-04-18 Sicpa Holding S.A. Luminescence characteristics detector
US20060145123A1 (en) 2004-08-04 2006-07-06 Intematix Corporation Silicate-based green phosphors
US20060158090A1 (en) 2005-01-14 2006-07-20 Intematix Corporation Novel aluminate-based green phosphors
US20060219673A1 (en) * 2003-12-05 2006-10-05 Spi Lasers Uk Ltd Apparatus for the industrial processing of a material by optical radiation
US20060261309A1 (en) 2004-08-04 2006-11-23 Intematix Corporation Two-phase silicate-based yellow phosphor
US20070029526A1 (en) 2005-08-03 2007-02-08 Intematix Corporation Silicate-based orange phosphors
US7311858B2 (en) 2004-08-04 2007-12-25 Intematix Corporation Silicate-based yellow-green phosphors
US20070295116A1 (en) * 2004-07-16 2007-12-27 Rhodia Chimie Method For Marking A Material And Resulting Marked Material
US20080014463A1 (en) * 2006-03-21 2008-01-17 John Varadarajan Luminescent materials that emit light in the visible range or the near infrared range
US20080111472A1 (en) 2006-11-10 2008-05-15 Intematix Corporation Aluminum-silicate based orange-red phosphors with mixed divalent and trivalent cations
US7390437B2 (en) 2004-08-04 2008-06-24 Intematix Corporation Aluminate-based blue phosphors

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3290255A (en) 1963-09-30 1966-12-06 Gen Electric White electroluminescent phosphor
US3593055A (en) 1969-04-16 1971-07-13 Bell Telephone Labor Inc Electro-luminescent device
US3676668A (en) 1969-12-29 1972-07-11 Gen Electric Solid state lamp assembly
US3691482A (en) 1970-01-19 1972-09-12 Bell Telephone Labor Inc Display system
GB1311361A (en) 1970-02-19 1973-03-28 Ilford Ltd Electrophotographic material
US4104076A (en) 1970-03-17 1978-08-01 Saint-Gobain Industries Manufacture of novel grey and bronze glasses
US3670193A (en) 1970-05-14 1972-06-13 Duro Test Corp Electric lamps producing energy in the visible and ultra-violet ranges
NL7017716A (en) 1970-12-04 1972-06-06
JPS5026433B1 (en) 1970-12-21 1975-09-01
BE786323A (en) 1971-07-16 1973-01-15 Eastman Kodak Co REINFORCING SCREEN AND RADIOGRAPHIC PRODUCT THE
JPS48102585A (en) 1972-04-04 1973-12-22
US3932881A (en) 1972-09-05 1976-01-13 Nippon Electric Co., Inc. Electroluminescent device including dichroic and infrared reflecting components
US4081764A (en) 1972-10-12 1978-03-28 Minnesota Mining And Manufacturing Company Zinc oxide light emitting diode
US3819973A (en) 1972-11-02 1974-06-25 A Hosford Electroluminescent filament
US3849707A (en) 1973-03-07 1974-11-19 Ibm PLANAR GaN ELECTROLUMINESCENT DEVICE
US3819974A (en) 1973-03-12 1974-06-25 D Stevenson Gallium nitride metal-semiconductor junction light emitting diode
DE2314051C3 (en) 1973-03-21 1978-03-09 Hoechst Ag, 6000 Frankfurt Electrophotographic recording material
NL164697C (en) 1973-10-05 1981-01-15 Philips Nv LOW-PRESSURE MERCURY DISCHARGE LAMP.
DE2509047C3 (en) 1975-03-01 1980-07-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Plastic housing for a light emitting diode
US4176294A (en) 1975-10-03 1979-11-27 Westinghouse Electric Corp. Method and device for efficiently generating white light with good rendition of illuminated objects
US4176299A (en) 1975-10-03 1979-11-27 Westinghouse Electric Corp. Method for efficiently generating white light with good color rendition of illuminated objects
DE2634264A1 (en) 1976-07-30 1978-02-02 Licentia Gmbh SEMICONDUCTOR LUMINESCENT COMPONENT
US4211955A (en) 1978-03-02 1980-07-08 Ray Stephen W Solid state lamp
GB2017409A (en) 1978-03-22 1979-10-03 Bayraktaroglu B Light-emitting diode
US4305019A (en) 1979-12-31 1981-12-08 Westinghouse Electric Corp. Warm-white fluorescent lamp having good efficacy and color rendering and using special phosphor blend as separate undercoat
US4315192A (en) 1979-12-31 1982-02-09 Westinghouse Electric Corp. Fluorescent lamp using high performance phosphor blend which is protected from color shifts by a very thin overcoat of stable phosphor of similar chromaticity
US4315193A (en) * 1980-03-18 1982-02-09 Westinghouse Electric Corp. High-pressure mercury-vapor lamp which has both improved color rendition and light output
JPS57174847A (en) 1981-04-22 1982-10-27 Mitsubishi Electric Corp Fluorescent discharge lamp
US4443532A (en) 1981-07-29 1984-04-17 Bell Telephone Laboratories, Incorporated Induced crystallographic modification of aromatic compounds
US4667036A (en) 1983-08-27 1987-05-19 Basf Aktiengesellschaft Concentration of light over a particular area, and novel perylene-3,4,9,10-tetracarboxylic acid diimides
US4526466A (en) * 1983-09-01 1985-07-02 Rca Corporation Technique for verifying genuineness of authenticating device
US4573766A (en) 1983-12-19 1986-03-04 Cordis Corporation LED Staggered back lighting panel for LCD module
JPS60147743A (en) 1984-01-11 1985-08-03 Mitsubishi Chem Ind Ltd Electrophotographic sensitive body
US4678285A (en) 1984-01-13 1987-07-07 Ricoh Company, Ltd. Liquid crystal color display device
US4772885A (en) 1984-11-22 1988-09-20 Ricoh Company, Ltd. Liquid crystal color display device
US4638214A (en) 1985-03-25 1987-01-20 General Electric Company Fluorescent lamp containing aluminate phosphor
JPH086086B2 (en) 1985-09-30 1996-01-24 ζ ͺ式会瀾γƒͺγ‚³γƒΌ White electroluminescent device
US4845223A (en) 1985-12-19 1989-07-04 Basf Aktiengesellschaft Fluorescent aryloxy-substituted perylene-3,4,9,10-tetracarboxylic acid diimides
FR2597851B1 (en) 1986-04-29 1990-10-26 Centre Nat Rech Scient NOVEL MIXED BORATES BASED ON RARE EARTHS, THEIR PREPARATION AND THEIR APPLICATION AS LUMINOPHORES
US4859539A (en) 1987-03-23 1989-08-22 Eastman Kodak Company Optically brightened polyolefin coated paper support
DE3740280A1 (en) 1987-11-27 1989-06-01 Hoechst Ag METHOD FOR PRODUCING N, N'-DIMETHYL-PERYLEN-3,4,9,10-TETRACARBONESEUREDIIMIDE IN HIGH-COVERING PIGMENT FORM
US4915478A (en) 1988-10-05 1990-04-10 The United States Of America As Represented By The Secretary Of The Navy Low power liquid crystal display backlight
US4918497A (en) 1988-12-14 1990-04-17 Cree Research, Inc. Blue light emitting diode formed in silicon carbide
US5126214A (en) 1989-03-15 1992-06-30 Idemitsu Kosan Co., Ltd. Electroluminescent element
US4992704A (en) 1989-04-17 1991-02-12 Basic Electronics, Inc. Variable color light emitting diode
DE3926564A1 (en) 1989-08-11 1991-02-14 Hoechst Ag NEW PIGMENT PREPARATIONS BASED ON PERYLENE COMPOUNDS
DE4006396A1 (en) 1990-03-01 1991-09-05 Bayer Ag FLUORESCENTLY COLORED POLYMER EMULSIONS
US5210051A (en) 1990-03-27 1993-05-11 Cree Research, Inc. High efficiency light emitting diodes from bipolar gallium nitride
US5077161A (en) 1990-05-31 1991-12-31 Xerox Corporation Imaging members with bichromophoric bisazo perylene photoconductive materials
GB9022343D0 (en) 1990-10-15 1990-11-28 Emi Plc Thorn Improvements in or relating to light sources
JP2593960B2 (en) 1990-11-29 1997-03-26 シャープζ ͺ式会瀾 Compound semiconductor light emitting device and method of manufacturing the same
US5166761A (en) 1991-04-01 1992-11-24 Midwest Research Institute Tunnel junction multiple wavelength light-emitting diodes
JP2666228B2 (en) 1991-10-30 1997-10-22 θ±Šη”°εˆζˆζ ͺ式会瀾 Gallium nitride based compound semiconductor light emitting device
US5143433A (en) 1991-11-01 1992-09-01 Litton Systems Canada Limited Night vision backlighting system for liquid crystal displays
DK0616625T3 (en) 1991-11-12 1997-09-15 Eastman Chem Co Concentrates of fluorescent pigments.
GB9124444D0 (en) 1991-11-18 1992-01-08 Black Box Vision Limited Display device
US5208462A (en) 1991-12-19 1993-05-04 Allied-Signal Inc. Wide bandwidth solid state optical source
US5211467A (en) 1992-01-07 1993-05-18 Rockwell International Corporation Fluorescent lighting system
JPH05304318A (en) 1992-02-06 1993-11-16 Rohm Co Ltd Led array board
JPH087614B2 (en) 1992-03-27 1996-01-29 ζ ͺεΌδΌšη€Ύη‰§ι‡Žγƒ•γƒ©γ‚€γ‚Ήθ£½δ½œζ‰€ Method and device for correcting tool length of machine tool
US6137217A (en) 1992-08-28 2000-10-24 Gte Products Corporation Fluorescent lamp with improved phosphor blend
US5578839A (en) 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
JP2809951B2 (en) 1992-12-17 1998-10-15 ζ ͺ式会瀾東芝 Semiconductor light emitting device and method of manufacturing the same
US5518808A (en) 1992-12-18 1996-05-21 E. I. Du Pont De Nemours And Company Luminescent materials prepared by coating luminescent compositions onto substrate particles
SG59953A1 (en) 1993-03-26 1999-02-22 Sumitomo Electric Industries Organic electroluminescent elements
US5557168A (en) 1993-04-02 1996-09-17 Okaya Electric Industries Co., Ltd. Gas-discharging type display device and a method of manufacturing
JP3498132B2 (en) 1993-05-04 2004-02-16 γƒžγƒƒγ‚―γ‚Ήβˆ’γƒ—γƒ©γƒ³γ‚―βˆ’γ‚²γ‚Όγƒ«γ‚·γƒ£γƒ•γƒˆγƒ»γƒ„γ‚’γƒ»γƒ•γ‚§γƒ«γƒ‡γƒ«γƒ³γ‚°γƒ»γƒ‡γ‚’γƒ»γƒ΄γ‚£γƒƒγ‚»γƒ³γ‚·γƒ£γƒ•γƒ†γƒ³γƒ»γ‚¨γƒΌγƒ»γƒ•γ‚‘γ‚ͺ Tetraalloxyperylene-3,4,9,10-tetracarboxylic acid polyimide
US5405709A (en) 1993-09-13 1995-04-11 Eastman Kodak Company White light emitting internal junction organic electroluminescent device
JPH0784252A (en) 1993-09-16 1995-03-31 Sharp Corp Liquid crystal display device
EP0647730B1 (en) 1993-10-08 2002-09-11 Mitsubishi Cable Industries, Ltd. GaN single crystal
US5679152A (en) 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
US5578832A (en) * 1994-09-02 1996-11-26 Affymetrix, Inc. Method and apparatus for imaging a sample on a device
JP2596709B2 (en) 1994-04-06 1997-04-02 都築 省吾 Illumination light source device using semiconductor laser element
US5771039A (en) 1994-06-06 1998-06-23 Ditzik; Richard J. Direct view display device integration techniques
JPH07331239A (en) 1994-06-08 1995-12-19 Hitachi Maxell Ltd Infrared luminous fluorescent substance, fluorescent substance composition, material carrying fluorescent substance thereon, latent image mark-forming member, optical reader and optical reading system
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
US5660461A (en) 1994-12-08 1997-08-26 Quantum Devices, Inc. Arrays of optoelectronic devices and method of making same
US5585640A (en) 1995-01-11 1996-12-17 Huston; Alan L. Glass matrix doped with activated luminescent nanocrystalline particles
US5583349A (en) 1995-11-02 1996-12-10 Motorola Full color light emitting diode display
US6600175B1 (en) 1996-03-26 2003-07-29 Advanced Technology Materials, Inc. Solid state white light emitter and display using same
US5962971A (en) 1997-08-29 1999-10-05 Chen; Hsing LED structure with ultraviolet-light emission chip and multilayered resins to generate various colored lights
US6340824B1 (en) 1997-09-01 2002-01-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device including a fluorescent material
US5959316A (en) 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
JP4010665B2 (en) 1998-09-08 2007-11-21 δΈ‰ζ΄‹ι›»ζ©Ÿζ ͺ式会瀾 Installation method of solar cell module
JP4010666B2 (en) 1998-09-11 2007-11-21 δΈ‰ζ΄‹ι›»ζ©Ÿζ ͺ式会瀾 Solar power plant
US6490030B1 (en) * 1999-01-18 2002-12-03 Verification Technologies, Inc. Portable product authentication device
US6504301B1 (en) 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
JP3836302B2 (en) 2000-06-09 2006-10-25 εΈηœžθ²Ώζ˜“ζ ͺ式会瀾 Identification method and identification apparatus using identification marks
US7241399B2 (en) * 2000-09-08 2007-07-10 Centrum Fuer Angewandte Nanotechnologie (Can) Gmbh Synthesis of nanoparticles
JP5110744B2 (en) 2000-12-21 2012-12-26 フィγƒͺップス γƒ«γƒŸγƒ¬γƒƒγ‚Ί ラむティング カンパニー γƒͺγƒŸγƒ†γƒƒγƒ‰ ラむをビγƒͺティ カンパニー Light emitting device and manufacturing method thereof
US6642652B2 (en) 2001-06-11 2003-11-04 Lumileds Lighting U.S., Llc Phosphor-converted light emitting device
US6576488B2 (en) 2001-06-11 2003-06-10 Lumileds Lighting U.S., Llc Using electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor
US7153015B2 (en) 2001-12-31 2006-12-26 Innovations In Optics, Inc. Led white light optical system
US6970236B1 (en) * 2002-08-19 2005-11-29 Jds Uniphase Corporation Methods and systems for verification of interference devices
KR100622209B1 (en) 2002-08-30 2006-09-19 μ €μ½”μ–΄ μ—˜μ—˜μ”¨ Coated led with improved efficiency
EP1403333A1 (en) * 2002-09-24 2004-03-31 Sicpa Holding S.A. Method and ink sets for marking and authenticating articles
US6869812B1 (en) 2003-05-13 2005-03-22 Heng Liu High power AllnGaN based multi-chip light emitting diode
US7488954B2 (en) * 2003-06-26 2009-02-10 Ncr Corporation Security markers for marking a person or property
KR100546213B1 (en) * 2003-12-05 2006-01-24 μ£Όμ‹νšŒμ‚¬ ν•˜μ΄λ‹‰μŠ€λ°˜λ„μ²΄ Pulse width control circuit of column address selection signal
JP4321280B2 (en) 2004-01-29 2009-08-26 γƒˆγƒ¨γ‚Ώθ‡ͺε‹•θ»Šζ ͺ式会瀾 Bifuel engine start control method and stop control method
ES2292273B1 (en) * 2004-07-13 2009-02-16 Fabrica Nacional De Moneda Y Timbre - Real Casa De La Moneda LIGHTING PIGMENTS USED IN SECURITY DOCUMENTS AND THE SAME DETECTION PROCEDURE.
EP1632908A1 (en) * 2004-09-02 2006-03-08 Giesecke & Devrient GmbH Value document with luminescent properties
ES2627416T3 (en) 2004-09-02 2017-07-28 Giesecke & Devrient Gmbh Luminescent safety feature and procedure to manufacture the luminescent safety feature
GB0525665D0 (en) * 2005-12-16 2006-01-25 Filtrona Plc Detector and method of detection
EP1898365A1 (en) * 2006-08-23 2008-03-12 E.I. Dupont de Nemours and Company Method and apparatus for verifying the authenticity of an item by detecting encoded luminescent security markers
US20090283721A1 (en) 2008-05-19 2009-11-19 Intematix Corporation Nitride-based red phosphors

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331140A (en) 1992-04-02 1994-07-19 Xerox Corporation Code reading systems
US5439997A (en) 1992-04-09 1995-08-08 Lever Brothers Company, Division Of Conopco, Inc. Polymers and detergent compositions containing them
US5766324A (en) 1994-12-28 1998-06-16 Hitachi Maxell, Ltd. Ink composition, printed matter, and thermal transfer recording medium
WO2000060527A1 (en) 1999-04-07 2000-10-12 Sicpa Holding S.A. A method and device for exciting a luminescent material
US7030371B2 (en) 2001-03-01 2006-04-18 Sicpa Holding S.A. Luminescence characteristics detector
US6686074B2 (en) 2001-03-16 2004-02-03 Bundesdruckerei Gmbh Secured documents identified with anti-stokes fluorescent compositions
US6841092B2 (en) 2001-03-16 2005-01-11 Bundesdruckerei Gmbh Anti-stokes fluorescent compositions and methods of use
US20060219673A1 (en) * 2003-12-05 2006-10-05 Spi Lasers Uk Ltd Apparatus for the industrial processing of a material by optical radiation
US20070295116A1 (en) * 2004-07-16 2007-12-27 Rhodia Chimie Method For Marking A Material And Resulting Marked Material
US7311858B2 (en) 2004-08-04 2007-12-25 Intematix Corporation Silicate-based yellow-green phosphors
US20060261309A1 (en) 2004-08-04 2006-11-23 Intematix Corporation Two-phase silicate-based yellow phosphor
US20060145123A1 (en) 2004-08-04 2006-07-06 Intematix Corporation Silicate-based green phosphors
US7390437B2 (en) 2004-08-04 2008-06-24 Intematix Corporation Aluminate-based blue phosphors
US20060158090A1 (en) 2005-01-14 2006-07-20 Intematix Corporation Novel aluminate-based green phosphors
US20070029526A1 (en) 2005-08-03 2007-02-08 Intematix Corporation Silicate-based orange phosphors
US20080014463A1 (en) * 2006-03-21 2008-01-17 John Varadarajan Luminescent materials that emit light in the visible range or the near infrared range
US20080111472A1 (en) 2006-11-10 2008-05-15 Intematix Corporation Aluminum-silicate based orange-red phosphors with mixed divalent and trivalent cations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2350525A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515091A (en) * 2009-12-17 2013-05-02 γƒγƒγ‚¦γ‚§γƒ«γƒ»γ‚€γƒ³γ‚ΏγƒΌγƒŠγ‚·γƒ§γƒŠγƒ«γƒ»γ‚€γƒ³γ‚³γƒΌγƒγƒ¬γƒΌγƒ†γƒƒγƒ‰ Control of article detectability and article authentication method
JP2013515095A (en) * 2009-12-21 2013-05-02 γƒγƒγ‚¦γ‚§γƒ«γƒ»γ‚€γƒ³γ‚ΏγƒΌγƒŠγ‚·γƒ§γƒŠγƒ«γƒ»γ‚€γƒ³γ‚³γƒΌγƒγƒ¬γƒΌγƒ†γƒƒγƒ‰ Method and apparatus for authenticating valuable documents
JP2015525880A (en) * 2012-07-20 2015-09-07 γƒγƒγ‚¦γ‚§γƒ«γƒ»γ‚€γƒ³γ‚ΏγƒΌγƒŠγ‚·γƒ§γƒŠγƒ«γƒ»γ‚€γƒ³γ‚³γƒΌγƒγƒ¬γƒΌγƒ†γƒƒγƒ‰ Article, method for discriminating it, and discrimination system using attenuation constant modulation
DE102014016858A1 (en) 2014-02-19 2015-08-20 Giesecke & Devrient Gmbh Security feature and use thereof, value document and method for checking the authenticity thereof
US10013835B2 (en) 2014-02-19 2018-07-03 Giesecke+Devrient Currency Technology Gmbh Security feature and use thereof, value document and process for verifying the authenticity thereof

Also Published As

Publication number Publication date
JP2012507084A (en) 2012-03-22
JP5529878B2 (en) 2014-06-25
CN102197262A (en) 2011-09-21
US8822954B2 (en) 2014-09-02
EP2350525A1 (en) 2011-08-03
KR20110086061A (en) 2011-07-27
US20100102250A1 (en) 2010-04-29
CN102197262B (en) 2014-08-20
EP2350525A4 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
US8822954B2 (en) Phosphor based authentication system
US4598205A (en) Security paper with authenticity features in the form of substances luminescing only in the invisible region of the optical spectrum and process for testing the same
US8759794B2 (en) Articles, methods of validating the same, and validation systems employing decay constant modulation
EP2517167B1 (en) Method and authentication apparatus for authenticating value documents
US20060180792A1 (en) Security marker having overt and covert security features
EP3390066A1 (en) Security element formed from at least two materials present in partially or fully overlapping areas, articles carrying the security element, and authentication methods
KR101659593B1 (en) Authentication systems for discriminating value documents based on variable luminescence and magnetic properties
RU2570670C2 (en) Protective sign
ES2667846T3 (en) Control of the detectability of an article and procedure to authenticate the article
JP2013508809A5 (en)
US10981406B2 (en) Security feature
CN112689857B (en) Value document system
JP2013531697A (en) Combination of luminescent materials
RU2769394C1 (en) Protective ink system
KR20150093779A (en) Non-periodic tiling document security element
WO2016068232A1 (en) Method for determining authenticity of anti-counterfeit medium and authenticity determining device for anti-counterfeit medium
RU2720464C1 (en) Method of marking anti-counterfeit object, method of identifying marking and marking identification device
RU2793581C2 (en) Valuable document system
JP4178630B2 (en) Securities with verification function and verification method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141958.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011533379

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117011202

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009822791

Country of ref document: EP