WO2010047328A1 - Semiconductor memory device - Google Patents

Semiconductor memory device Download PDF

Info

Publication number
WO2010047328A1
WO2010047328A1 PCT/JP2009/068064 JP2009068064W WO2010047328A1 WO 2010047328 A1 WO2010047328 A1 WO 2010047328A1 JP 2009068064 W JP2009068064 W JP 2009068064W WO 2010047328 A1 WO2010047328 A1 WO 2010047328A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory cell
write
memory device
semiconductor memory
cell
Prior art date
Application number
PCT/JP2009/068064
Other languages
French (fr)
Japanese (ja)
Inventor
竜介 根橋
昇 崎村
直彦 杉林
弘明 本庄
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010534814A priority Critical patent/JP5565704B2/en
Publication of WO2010047328A1 publication Critical patent/WO2010047328A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a semiconductor memory device, and more particularly, to a semiconductor memory device in which a magnetoresistive element (MTJ: Magnetic Tunnel Junction) is introduced into a memory cell as a memory element, that is, a magnetic random access memory (MRAM).
  • MTJ Magnetoresistive element
  • MRAM magnetic random access memory
  • An MTJ element used for an MRAM memory cell includes a fixed magnetic layer, a free magnetic layer, and a tunnel insulating film.
  • the fixed magnetic layer the magnetization direction is fixed in an arbitrary direction.
  • the free magnetic layer the direction of magnetization is variable by an external magnetic field.
  • the tunnel insulating film is sandwiched between these two magnetic layers.
  • 1-bit stored information is assigned to the relative magnetization state between the fixed magnetic layer and the free magnetic layer. For example, it is defined as “0” when the magnetization of the pinned magnetic layer and the magnetization of the free magnetic layer are in the same direction, that is, in a parallel state.
  • FIG. 1 is a schematic diagram illustrating the writing principle of a typical MRAM.
  • a write current Ix is supplied to a write word line extending parallel to the easy axis of magnetization of the magnetic layer, and a write current Iy is supplied to a write bit line extending perpendicular to the easy axis of magnetization.
  • the magnetization of the free magnetic layer (cell A) is reversed by the combined magnetic field generated by these write currents.
  • FIG. 2 is a graph showing the relationship between the write current and the write margin.
  • the vertical axis represents the write current Ix, and the horizontal axis represents the write current Iy.
  • the write current has a lower limit and an upper limit (indicated by “operation margin” in the figure).
  • the write margin is narrow. Therefore, in order to selectively write to the selected memory cell (cell A), it is necessary to accurately control the current value and current waveform. Therefore, the current source circuit becomes complicated, and it is difficult to perform a high-speed write operation of 100 MHz or higher.
  • FIG. 3 is a schematic diagram showing the configuration of the 2T1MTJ cell in Japanese Patent Application Laid-Open No. 2004-348934. As shown in FIG. 3, the 2T1MTJ cell is placed directly above the write line 115, the transistor 111 that connects the bit line BL and the write line 115, the transistor 112 that connects the bit line / BL and the write line 115, and the like.
  • the MTJ element 113 is formed.
  • the word line WL of the selected memory cell is activated and the transistors 111 and 112 are turned on.
  • the write current Iw flowing through the bit lines BL and / BL flows through the write line 115.
  • the magnetization of the MTJ element 113 is reversed by the write magnetic field Hw generated by the write current Iw.
  • these wirings are formed in a wiring layer sufficiently far from the MTJ element 113 so that the magnetic field generated by the write current flowing only in the bit lines BL and / BL instead of the write line 115 does not reverse the magnetization of the MTJ element 113. Is done.
  • the one-layer wiring may be used as a bit line.
  • the write magnetic field Hw is not supplied to the non-selected memory cells, there is no half-selected state. Therefore, in the writing method using the 2T1MTJ cell, the selectivity of the memory cell at the time of writing is dramatically improved, and it is not necessary to accurately control the write current value and the current waveform. Therefore, the write circuit can be simplified by a logic circuit such as an SRAM decoder, and a high-speed write operation at the GHz level can be performed.
  • a configuration of an MRAM aimed at realizing a high-speed read operation is disclosed in Japanese Patent Application Laid-Open No. 2002-197852 (US 6,349,054 (B1)).
  • a memory array is configured by even-numbered memory cells connected to the bit line BL and odd-numbered memory cells connected to the bit line / BL.
  • dummy cells (equivalent to the above-described reference cells) used as a read determination criterion are also provided in the even rows and the odd rows, respectively.
  • the dummy cell holds an intermediate resistance value between the resistance value Rlow of data “0” and the resistance value Rhigh of data “1”.
  • a semiconductor device is disclosed in Japanese Patent Laid-Open No. 2000-12790.
  • the memory cell array of the memory unit of the semiconductor device is divided into a plurality of regions, an even number of I / O line groups are allocated and arranged in the divided memory cell array region, and the memory unit has a predetermined bit configuration. You can do it.
  • the number of bits 9 may be a basic unit.
  • the even number of I / O line groups two I / O lines assigned to adjacent memory cell array regions are combined into one I / O line, and the number of bits in the bit configuration of the memory cell portion is a predetermined bit. The number of bits in the configuration may be halved.
  • Japanese Patent Laid-Open No. 2003-281880 discloses a thin film magnetic memory device.
  • the thin film magnetic memory device includes a plurality of memory cells, a plurality of data lines, and a plurality of first and second gate wirings.
  • the plurality of memory cells are arranged in a matrix along the first and second directions, and a first group is formed for each memory cell group adjacent to each other along the first direction.
  • a second group is formed for each memory cell group adjacent to each other along the direction.
  • the plurality of data lines are provided for each of the first groups along the first direction.
  • the plurality of first and second gate lines are provided along the second direction, and each is provided for each of the second groups.
  • Each of the memory cells electrically connects the magnetoresistive element between a corresponding data line and a fixed voltage at the time of data reading, and a magnetoresistive element whose electrical resistance changes according to magnetically written storage data.
  • an access transistor for coupling Each of the access transistors is turned on and off in accordance with a voltage of a predetermined one of the first and second gate wirings that is predetermined for each of the first groups.
  • Japanese Unexamined Patent Application Publication No. 2003-346474 discloses a thin film magnetic memory device.
  • the thin film magnetic memory device includes a memory array, a plurality of bit lines, a plurality of column selection lines, an address decoder, and first and second write control circuits.
  • the memory array a plurality of memory cells each storing magnetically written data are arranged in a matrix.
  • the plurality of bit lines are provided corresponding to the plurality of memory cell columns, respectively.
  • the plurality of column selection lines are provided corresponding to the plurality of memory cell columns, respectively.
  • the address decoder sets voltages of the plurality of column selection lines according to a column selection result during data writing.
  • the first and second write control circuits are arranged corresponding to one end side and the other end side of the plurality of bit lines, respectively, and data in a direction corresponding to write data is applied to the selected bit line at the time of data writing Supply write current.
  • a first write control circuit configured to electrically connect one of the first and second voltages corresponding to the write data and a first shared node during the data writing;
  • a plurality of drivers each provided between one end side of the plurality of bit lines and the first shared node, each of which is turned on according to a corresponding voltage level of the plurality of column selection lines.
  • the second write control circuit is configured to electrically connect the other of the first and second voltages corresponding to the write data and a second shared node during the data write.
  • Each of the plurality of bit lines is provided between the other end side of the plurality of bit lines and the second shared node, each corresponding to the corresponding one of the voltage levels of the plurality of column selection lines.
  • Japanese Patent Application Laid-Open No. 2006-108565 discloses a magnetoresistive effect element and a magnetic recording apparatus.
  • the magnetoresistive element includes a first fixed layer whose magnetization direction is fixed, a recording layer whose magnetization direction changes, a first nonmagnetic layer provided between the first fixed layer and the recording layer, It comprises.
  • the film thickness of the recording layer is 5 nm to 20 nm.
  • the recording layer has an extending portion extending in the first direction and a protruding portion protruding in a second direction perpendicular to the first direction from the side surface of the extending portion.
  • a magnetic random access memory is disclosed in Japanese Patent Laid-Open No. 2006-114762 (US2006083053 (A1)).
  • This magnetic random access memory has a planar shape having a plurality of corners, and includes a magnetoresistive effect element having a radius of curvature of 20 nm or less at one or more corners.
  • the magnetoresistive storage device includes a plurality of memory cells, a plurality of word lines, a plurality of bit lines, a plurality of common lines, a plurality of bit line drivers, and a plurality of common line drivers.
  • the plurality of memory cells are arranged in a matrix, each having a variable magnetoresistive element in which the magnetization direction is set by an injection current and data is stored by its resistance value.
  • a plurality of word lines are arranged in pairs corresponding to each memory cell row. The paired word lines are alternately connected to the memory cells in the corresponding row.
  • the plurality of bit lines are arranged corresponding to each memory cell column, and the memory cells in the corresponding column are connected to each bit line.
  • the plurality of common lines are arranged parallel to the bit lines between each pair of adjacent bit lines of the plurality of bit lines, and each is connected to a memory cell connected to the corresponding bit line pair.
  • the plurality of bit line drivers are arranged corresponding to the respective bit lines, and at the time of data writing, a current flows through the corresponding bit line in accordance with the column selection signal and the write data.
  • the plurality of common line drivers are arranged corresponding to the respective common lines, and at the time of data writing, a current flows through the corresponding common line according to the write data and the column selection signal.
  • One of the bit line driver and the common line driver in the selected column supplies current while the other draws current during data writing.
  • the inventor newly discovered the following facts this time.
  • the 2T1MTJ cell can realize a high-speed write operation similar to that of SRAM as compared with the write method used in the conventional MRAM.
  • the operation speed is limited by the read speed.
  • FIG. 4 is a circuit block diagram showing a basic configuration of the MRAM 101 using 2T1MTJ cells.
  • the memory array 102 includes a cell column in which 2T1MTJ cells (hereinafter also simply referred to as memory cells) C are arranged in a matrix and a reference cell column in which reference cells R for two columns are arranged.
  • 2T1MTJ cells hereinafter also simply referred to as memory cells
  • the row decoder 103 selects the selected word line WL from the plurality of word lines WL.
  • the column decoder 104 selects at least one set of selected bit lines BL and / BL from the plurality of bit lines BL by the switch 106. That is, at least one selected cell C to which data is to be written is selected from the plurality of memory cells C by the selected word line WL and the selected bit lines BL and / BL.
  • the selected cell C is electrically connected to the column decoder 104 by the switch 106.
  • a write current Iw from a write current circuit is supplied to the path of the column decoder 104 -selected bit line BL-selected cell C, write line 115 -selected bit line / BL-column decoder 104.
  • the row decoder 103 selects the selected word line WL from the plurality of word lines WL.
  • the column decoder 104 selects a selected bit line BL from the plurality of bit lines BL by the switch 107. That is, the selected cell C from which memory data is to be read from the plurality of memory cells C is selected by the selected word line WL and the selected bit line BL.
  • the selected cell C is electrically connected to one input terminal of the sense amplifier 105 by the switch 107.
  • a sense current IR flowing through the MTJ element 113 of the selected cell C is generated and supplied to one input terminal of the sense amplifier 105.
  • the column decoder 104 always selects the two reference bit lines BLR0 and BLR1 by the switch 107. That is, by the selected word line WL and the two reference bit lines BLR0 and BLR1, a plurality of reference cells R0 storing data “0” and a plurality of reference cells R1 storing data “1” Therefore, the selected reference cells R0 and R1 are simultaneously selected. With the switch 107, the selected reference cells R0 and R1 are electrically connected to the other input terminal of the sense amplifier 105.
  • the reference current Iref (0) flowing through the MTJ element of the reference cell R0 and the Iref (1) flowing through the MTJ element of the reference cell R1 are averaged to generate a reference voltage Vref used as a read criterion. , And supplied to the other input terminal of the sense amplifier 105.
  • the sense amplifier 105 cannot perform a determination operation until the sense signal and the reference signal are sufficiently set, and the reading speed is limited.
  • the influence of fluctuations in the power supply voltage and the coupling between the wirings is not uniform, which is disadvantageous from the viewpoint of noise resistance. Therefore, it is not easy to improve the reading speed of the MRAM using the 2T1MTJ cell. As a result, the operation speed, that is, the random access time is limited by the read time of 10 ns or more.
  • An object of the present invention is to provide a semiconductor memory device using a magnetoresistive effect element that has a high degree of integration of memory cells and can perform high-speed operations (read operation and write operation).
  • the semiconductor memory device of the present invention includes a memory array including a plurality of memory cells.
  • the plurality of memory cells include a first memory cell and a third memory cell arranged along one of the even-numbered row and the odd-numbered row, and a second memory cell arranged along the other.
  • Each of the plurality of memory cells includes a magnetoresistive element having one end connected to the intra-cell wiring, and has a convex portion including the intra-cell wiring at the center of at least one of the sides along the row direction.
  • the convex part of the second memory cell is arranged facing a concave part formed between the convex part of the first memory cell and the convex part of the third memory cell.
  • the degree of integration of memory cells is high, and high-speed operation similar to SRAM can be performed.
  • FIG. 1 is a schematic diagram illustrating the writing principle of a typical MRAM.
  • FIG. 2 is a graph showing the relationship between the write current and the write margin.
  • FIG. 3 is a schematic diagram showing a configuration of a 2T1MTJ cell in Japanese Patent Application Laid-Open No. 2004-348934.
  • FIG. 4 is a circuit block diagram showing a basic configuration of an MRAM using 2T1MTJ cells.
  • FIG. 5 is a circuit block diagram showing a configuration of the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 6 is a circuit block diagram showing a configuration of the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 7 shows a truth table for controlling the voltage applied to the write bit line during the write operation of the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 8 shows a truth table for programming the reference cell of the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a part of the memory array in the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 10 is a plan view showing a part of the layout of the memory array in the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 11 is a plan view showing a part of the layout of the memory array in the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 12 is a circuit diagram showing a part of the memory array in the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 13 is a plan view showing a part of the layout of the memory array in the semiconductor memory device according to the modification of the embodiment of the present invention.
  • FIG. 14 is a plan view showing a part of the layout of the memory array in the semiconductor memory device to be compared.
  • FIG. 15 is a plan view showing a part of the layout of the memory array in the semiconductor memory device to be compared.
  • FIG. 16 is a circuit diagram showing a part of a memory array in a semiconductor memory device to be compared.
  • FIG. 17 is a cross-sectional view showing a part of a first modification of the memory array in the semiconductor device according to the embodiment of the present invention.
  • FIG. 18 is a plan view showing a part of the layout of the first modification of the memory array in the semiconductor device according to the embodiment of the present invention.
  • FIG. 19 is a cross-sectional view showing a part of a second modification of the memory array in the semiconductor device according to the embodiment of the present invention.
  • FIG. 20 is a plan view showing a part of the layout of the second modification of the memory array in the semiconductor device according to the embodiment of the present invention.
  • FIG. 5 and 6 are circuit block diagrams showing the configuration of the semiconductor memory device according to the embodiment of the present invention. However, FIG. 5 also shows the path of the sense current in the read operation. FIG. 6 also shows the path of the write current in the write operation.
  • the semiconductor memory device 1 is a 2T1MTJ cell type MRAM.
  • the semiconductor memory device 1 includes a memory array 2, a row decoder 3, a column decoder 4, a sense amplifier 5, a first switch unit 6, a second switch unit 8, and a selector 9.
  • the plurality of word lines WLi extend in the X direction and are connected to the row decoder 3.
  • the plurality of read bit lines RBLj and / RBLj extend in the Y direction and are connected to the sense amplifier 5 via the first switch unit 6 and the selection unit 9.
  • the plurality of write bit lines WBLj, / WBLj extend in the Y direction and are connected to the column decoder 4 via the second switch unit 8.
  • Write bit line WBLj, read bit line RBLj, write bit line / WBLj, and read bit line / RBLj are arranged in this order in the X direction.
  • write bit line WBL0, read bit line RBL0, write bit line / WBL0, read bit line / RBL0, write bit line WBL1, read bit line RBL1, write bit line / WBL1, read bit line / RBL1,. is there.
  • the plurality of memory cells Cij are arranged in a matrix.
  • the plurality of memory cells Cij are provided corresponding to the respective intersections between the plurality of word lines WLi and the plurality of write bit lines WBLj (or read bit lines RBLj).
  • i is provided corresponding to each of the intersections of the plurality of word lines WLi and the plurality of write bit lines / WBLj (or read bit lines / RBLj).
  • the even-numbered memory cells Cij for example, the memory cells C00, C01, C02,... Are arranged in the X direction on the 0th row (rows along the word line WL0 in the figure), and the 2nd row (words in the figure).
  • C20, C21, C22,... are arranged in the X direction in the row along the line WL2.
  • i is an even number.
  • the odd-numbered memory cells Cij for example, memory cells C10, C11, C12,...
  • the memory cells Cij in the even rows are arranged along the even columns.
  • the memory cells C00, C20, C40,... are arranged in the Y direction
  • the second column (along the read bit line RBL1 in the drawing).
  • C01, C21, C41,... are arranged in the Y direction.
  • the memory cells Cij in the odd rows are arranged along the odd columns as a result. For example, memory cells C10, C30, C50,...
  • Each memory cell Cij includes a first transistor 11, a second transistor 12, and an MTJ element 13.
  • the first transistor 11 has a gate connected to the word line WLi, one of the source / drain connected to the write bit line WBLj, and the other (via the write line 15; described later) to the other terminal of the MTJ element 13.
  • the second transistor 12 has a gate connected to the word line WLi, one of the source / drain connected to the write bit line / WBLj, and the other (via the write line 15; described later) to the other terminal of the MTJ element 13. Yes.
  • one terminal of the MTJ element 13 is connected to the read bit line / RBLj.
  • the first transistor 11 has a gate connected to the word line WLi, one source / drain connected to the write bit line / WBLj, and the other (via the write line 15; described later) to the other terminal of the MTJ element 13. Yes.
  • the second transistor 12 has a gate connected to the word line WLi, one of the source / drain connected to the write bit line WBL (j + 1), and the other (via the write line 15; described later) to the other terminal of the MTJ element 13. Has been.
  • the write bit lines WBLj, / WBLj are shared between even-numbered (column) memory cells and odd-numbered (column) memory cells.
  • the write bit line / WBL0 is shared between the memory cell C00 in the even row (column) and the memory cell C10 in the odd row (column), between C20 and C30, between C40 and C50, and so on.
  • the write bit line WBL1 is shared between the odd-numbered row (column) memory cell C10 and the even-numbered row (column) memory cell C01, between C30 and C21, between C50 and C41, and so on.
  • the write bit line / WBL1 is shared between the memory cell C01 in the even-numbered row (column) and the memory cell C11 in the odd-numbered row (column), between C21 and C31, between C41 and C51, and so on. .
  • the reference word lines WLR0 and WLR1 extend in the X direction and are connected to the row decoder 3.
  • the plurality of reference cells R0j are provided corresponding to each intersection of the reference word line WLR0 and the plurality of write bit lines WBLj (or read bit line RBLj).
  • the plurality of reference cells R1j are provided corresponding to each intersection of the reference word line WLR1 (odd row) and the plurality of write bit lines / WBLj (or read bit lines / RBLj). That is, the plurality of reference cells R0j (R00, R01, R02,...) Are arranged along the even-numbered reference word line WLR0 and arranged in the even-numbered columns.
  • a plurality of reference cells R1j (R10, R11, R12,...) are arranged along the odd-numbered reference word lines WLR1 and arranged in the odd columns.
  • the plurality of reference cells R0j and R1j form two rows of reference cell rows.
  • each reference cell R0j, R1j also includes a first transistor 11, a second transistor 12, and an MTJ element 13.
  • the MTJ element 13 has one terminal connected to the read bit line RBLj.
  • the first transistor 11 has a gate connected to the reference word line WLR0, one of the source / drain connected to the write bit line WBLj, and the other (via the write line 15; described later) to the other terminal of the MTJ element 13. Yes.
  • the second transistor 12 has a gate connected to the reference word line WLR0, one of the source / drain connected to the write bit line / WBLj, and the other (via the write line 15; described later) to the other terminal of the MTJ element 13. ing.
  • one terminal of the MTJ element 13 is connected to the read bit line / RBLj.
  • the first transistor 11 has a gate connected to the reference word line WLR1, one source / drain connected to the write bit line / WBLj, and the other (via the write line 15) to the other terminal of the MTJ element 13.
  • the second transistor 12 has a gate connected to the reference word line WLR1, one source / drain connected to the write bit line WBL (j + 1), and the other connected to the other terminal of the MTJ element 13 (via the write line 15). ing.
  • the write bit lines WBLj and / WBLj are shared between the even-numbered (column) reference cell R0j and the odd-numbered (column) reference cell R1j.
  • the write bit line / WBL0 is shared between the even-numbered row (column) reference cell R00 and the odd-numbered row (column) reference cell R10.
  • the write bit line WBL1 is shared between the even-numbered (column) reference cells R10 and the odd-numbered (column) reference cells R01.
  • even columns columns of a plurality of memory cells C and reference cells R arranged along the read bit line RBLj
  • odd columns memory cells C and reference cells R arranged along the read bit line / RBLj
  • the reference cell R belonging to the other column of the set is selected for reference.
  • the even-numbered read bit lines RBLj are connected to one input terminal of the sense amplifier 5, and the odd-numbered read bit lines / RBLj of the same set are connected to the other input terminal of the same sense amplifier 5. That is, in the set, a memory cell C and a reference cell R from which stored data is read are prepared.
  • the reference cell R10 in the first column (odd column) that forms a pair with the 0th column is prepared as a reference cell.
  • the row decoder 3 selects a selected word line from a plurality of word lines WLi and selects a selected reference word line from two reference word lines WLR0 and WLR1 during a read operation. Further, during the write operation, the selected word line is selected from the plurality of word lines WLi.
  • the column decoder 4 selects a set of selected read bit lines RBLj and / RBLj from the set of a plurality of read bit lines RBL and / RBLj by the first switch unit 6 during a read operation.
  • the second switch unit 8 selects a set of selected write bit lines WBLj and / WBLj from a set of a plurality of write bit lines WBLj and / WBLj.
  • the sense amplifier 5 receives sense signals from the selected read bit lines RBLj and / RBLj at two input terminals and outputs a sense result during a read operation.
  • the sense amplifier 5 includes a sense amplifier 5-1 in which j corresponds to an even number and a sense amplifier 5-2 in which j corresponds to an odd number. Note that the number of sense amplifiers 5 may be equal to the number of sets formed of even columns and odd columns. In that case, the same number of sets can be read out simultaneously.
  • the selector 9 includes transistors M10, M11, M12, and M13.
  • the selector 9 switches the input terminal of the sense amplifier 5 depending on whether the row address (XA) is even or odd. For example, when an even row of memory cells is selected, the signal X0N obtained by decoding the least significant bit X0 of the row address is activated, the X0T is deactivated, the transistors M10 and M11 are on, and the transistors M12 and M13 are off It becomes the state of.
  • SAINj is connected to the signal side input terminal SSi of the sense amplifier 5, and / SAINj is connected to the reference side input terminal SSR of the sense amplifier 5.
  • the reference side input terminals SSR of two adjacent sense amplifiers 5 are short-circuited to each other.
  • standard of read-out determination can be produced
  • any one of the first switch unit 6, the second switch unit 8, and the selector 9 may be included in the column decoder 4.
  • even-numbered memory cells C are selected based on the addresses (XA, YA) input in the read mode (reading operation)
  • reference to odd-numbered columns located in the same column address (belonging to the same set) Cell R is selected simultaneously. For example, when the memory cell C00 in the 0th column that is an even column is selected, the reference cell R10 in the first column that is an odd column is simultaneously selected.
  • odd-numbered memory cells when odd-numbered memory cells are selected, even-numbered reference cells located in the same column address (belonging to the same set) are simultaneously selected. For example, when the memory cell C10 in the first column that is an odd column is selected, the reference cell R00 in the 0th column that is an even column is simultaneously selected.
  • the memory cell C00 in the 0th column and the corresponding reference cell R10 in the first column are selected simultaneously.
  • the row decoder 3 selects and activates the word line WL0 as a selected word line based on the row address XA, and turns on the first and second transistors 11 and 12 of the memory cell C00.
  • the row decoder 3 selects and activates the reference word line WLR1 as the selected reference word line based on the row address XA, and turns on the first and second transistors 11 and 12 of the reference cell R10.
  • the column decoder 4 activates the signal RY0 based on the column address YA to turn on the transistors M0 and M1 of the first switch unit 6.
  • the read bit line RBL0 and the read bit line / RBL0 are selected as the selected read bit lines.
  • the memory cell C00 is selected by the word line WL0 and the read bit line RBL0.
  • the reference cell R10 is selected by the reference word line WLR1 and the read bit line / RBL0.
  • the read bit line RBL0 is connected to the input wiring SAIN0 to the sense amplifier 5 through the transistor M0.
  • Read bit line / RBL0 is connected to input wiring / SAIN0 to sense amplifier 5 through transistor M1.
  • the memory cell C01 in the second column and the corresponding reference cell R11 in the third column are simultaneously selected.
  • the row decoder 3 selects and activates the word line WL0 as the selected word line, and selects and activates the reference word line WLR1 as the selected reference word line.
  • the first and second transistors 11 and 12 of the memory cell C01 and the first and second transistors 11 and 12 of the reference cell R11 are turned on.
  • the column decoder 4 activates the signal RY1 based on the column address YA to turn on the transistors M2 and M3 of the first switch unit 6.
  • the read bit line RBL1 and the read bit line / RBL1 are selected as the selected read bit lines.
  • the memory cell C01 is selected by the word line WL0 and the read bit line RBL1.
  • the reference cell R11 is selected by the reference word line WLR1 and the read bit line / RBL1.
  • the read bit line RBL1 is connected to the input wiring SAIN1 to the sense amplifier 5 through the transistor M2.
  • Read bit line / RBL1 is connected to input wiring / SAIN1 to sense amplifier 5 through transistor M3.
  • the selector 9-1 activates the signal X0N obtained by decoding the least significant bit X0 of the row address and deactivates X0T.
  • the transistors M10 and M11 are turned on, and the transistors M12 and M13 are turned off.
  • the input wiring SAIN0 is connected to the signal side input terminal SSi of the sense amplifier 5, and the input wiring / SAIN0 is connected to the reference side input terminal SSR of the sense amplifier 5.
  • the selector 9-2 activates the signal X0N obtained by decoding the least significant bit X0 of the row address and deactivates X0T.
  • the transistors M10 and M11 are turned on, and the transistors M12 and M13 are turned off.
  • the input wiring SAIN1 is connected to the signal side input terminal SSi of the sense amplifier 5, and the input wiring / SAIN1 is connected to the reference side input terminal SSR of the sense amplifier 5.
  • the reference current Iref averaged by pre-programming data “0” in the reference cell R10 and data “1” in the reference cell R11 is the sense current Is (0) of “0” and the sense current of “1”. It is an intermediate value of Is (1).
  • the sense amplifiers 5-1 and 5-2 supply the clamp voltage Vc to the signal side input terminal SSi and the reference side input terminal SSR. That is, Vc is also applied to the input wirings SAIN0 and / SAIN0 and the selected read bit lines RBL0 and / RBL0. Similarly, Vc is also applied to the input wirings SAIN1 and / SAIN1 and the selected read bit lines RBL1 and / RBL1.
  • the sense current Is0 flows through the input memory line SAIN0 and the read bit line RBL0 in the selected memory cell C00.
  • a sense current Is1 flows in the selected memory cell C01 via the input wiring SAIN1 and the read bit line RBL1.
  • the reference current / Is0 flows through the input cell / SAIN0 and the read bit line / RBL0 in the selected reference cell R10.
  • a reference current / Is1 flows through the reference cell R11 via the input wiring / SAIN1 and the relax bit line / RBL1.
  • the memory cell C10 in the first column and the corresponding reference cell R00 in the 0th column are simultaneously selected.
  • the row decoder 3 selects and activates the word line WL1 as a selected word line based on the row address XA, and turns on the first and second transistors 11 and 12 of the memory cell C10.
  • the row decoder 3 selects and activates the reference word line WLR0 as the selected reference word line based on the row address XA, and turns on the first and second transistors 11 and 12 of the reference cell R00.
  • the column decoder 4 activates the signal RY0 based on the column address YA to turn on the transistors M0 and M1 of the first switch unit 6.
  • the read bit line RBL0 and the read bit line / RBL0 are selected as the selected read bit lines.
  • the memory cell C10 is selected by the word line WL1 and the read bit / line RBL0.
  • the reference cell R00 is selected by the reference word line WLR0 and the read bit line RBL0.
  • the read bit line RBL0 is connected to the input wiring SAIN0 to the sense amplifier 5 through the transistor M0.
  • Read bit line / RBL0 is connected to input wiring / SAIN0 to sense amplifier 5 through transistor M1.
  • the memory cell C11 in the second column and the corresponding reference cell R01 in the third column are selected simultaneously.
  • the row decoder 3 selects and activates the word line WL1 as the selected word line, and selects and activates the reference word line WLR0 as the selected reference word line.
  • the first and second transistors 11 and 12 of the memory cell C11 and the first and second transistors 11 and 12 of the reference cell R01 are turned on.
  • the column decoder 4 activates the signal RY1 based on the column address YA to turn on the transistors M2 and M3 of the first switch unit 6.
  • the read bit line RBL1 and the read bit line / RBL1 are selected as the selected read bit lines.
  • the memory cell C11 is selected by the word line WL1 and the read bit / line RBL1.
  • the reference cell R01 is selected by the reference word line WLR0 and the read bit line RBL1.
  • the read bit line RBL1 is connected to the input wiring SAIN1 to the sense amplifier 5 through the transistor M2.
  • Read bit line / RBL1 is connected to input wiring / SAIN1 to sense amplifier 5 through transistor M3.
  • the selector 9-1 deactivates the signal X0N obtained by decoding the least significant bit X0 of the row address, and activates X0T.
  • the transistors M10 and M11 are turned off, and the transistors M12 and M13 are turned on.
  • the input wiring / SAIN0 is connected to the signal side input terminal SSi of the sense amplifier 5, and the input wiring SAIN0 is connected to the reference side input terminal SSR of the sense amplifier 5.
  • the selector 9-2 deactivates the signal X0N obtained by decoding the least significant bit X0 of the row address and activates X0T.
  • the transistors M10 and M11 are turned off, and the transistors M12 and M13 are turned on.
  • the input wiring / SAIN1 is connected to the signal side input terminal SSi of the sense amplifier 5, and the input wiring SAIN1 is connected to the reference side input terminal SSR of the sense amplifier 5.
  • the sense amplifiers 5-1 and 5-2 supply the clamp voltage Vc to the signal side input terminal SSi and the reference side input terminal SSR. That is, Vc is also applied to the input wirings SAIN0 and / SAIN0 and the selected read bit lines RBL0 and / RBL0. Similarly, Vc is also applied to the input wirings SAIN1 and / SAIN1 and the selected read bit lines RBL1 and / RBL1. In the read mode (read operation), all the write bit lines WBL and / WBL are grounded. Therefore, the sense current Is0 flows through the input line / SAIN0 and the read bit line / RBL0 in the selected memory cell C10.
  • the sense current Is1 flows through the input line / SAIN1 and the read bit line / RBL1 in the selected memory cell C11.
  • a reference current / Is0 flows through the input cell SAIN0 and the read bit line RBL0 in the selected reference cell R00.
  • a reference current / Is1 flows through the reference cell R01 via the input wiring SAIN1 and the relax bit line RBL1.
  • the read operation in the embodiment of the semiconductor memory device of the present invention is executed.
  • two adjacent sense amplifiers 5 short-circuit the reference side input terminal SSR, while the reference side input terminal SSR of the sense amplifier 5 receives the reference current from the reference cell R that stores data “0”. And the reference side input terminal SSR of the other sense amplifier 5 needs to be supplied with a reference current from the reference cell R storing data “1”. Therefore, even when data is read from one memory cell, in addition to the reference cell for that memory cell (example: “0” is stored), there are also reference cells that store different data (example: “1”). Control to select at the same time. For example, even when data is read from one memory cell, two data are temporarily read as described above.
  • FIG. 7 shows a truth table for controlling the voltage applied to the write bit line in the write mode (write operation) in the semiconductor memory device according to the embodiment of the present invention.
  • “YA” is a column address
  • “Din” is input data (“1”, “0”)
  • the row decoder 3 activates the word line WL0.
  • the column decoder 4 sets the write bit line WBL0 to the “H” level and the write bit line / WBL0 to the “L” level.
  • the write current Iw (1) is supplied in the + X direction.
  • write bit line WBL0 is set to “L” level and write bit line / WBL0 is set to “H” level.
  • the write current Iw (0) is supplied in the ⁇ X direction (not shown).
  • the row decoder 3 activates the word line WL1.
  • the column decoder 4 sets the write bit line / WBL0 to “H” level and the write bit line WBL1 to “L” level.
  • the write current Iw (1) is supplied in the + X direction.
  • the write bit line / WBL0 is set to “L” level and the write bit line WBL1 is set to “H” level.
  • the write current Iw (0) is supplied in the ⁇ X direction (not shown).
  • the row decoder 3 activates the word line WL0.
  • the column decoder 4 sets the write bit line WBL1 to the “H” level and the write bit line / WBL1 to the “L” level.
  • the write current Iw (1) is supplied in the + X direction (not shown).
  • the write bit line WBL1 is set to “L” level and the write bit line / WBL1 is set to “H” level.
  • the write current Iw (0) is supplied in the ⁇ X direction.
  • the row decoder 3 activates the word line WL1.
  • the column decoder 4 sets the write bit line / WBL1 to the “H” level and the write bit line WBL2 to the “L” level.
  • the write current Iw (1) is supplied in the + X direction (not shown).
  • the write bit line / WBL1 is set to “L” level and the write bit line WBL2 is set to “H” level.
  • the write current Iw (0) is supplied in the ⁇ X direction.
  • a write current can be supplied by applying complementary voltages to the two write bit lines.
  • the write bit line WBL is driven by a logic gate buffer (or an inverter or the like) that receives the terminals W0, / W0,... Of FIG.
  • This buffer has the role of a write driver.
  • the overhead (additional portion) of the circuit related to writing is only the switch Sk and the terminal W of the second switch unit 8, and this switch is usually realized by a CMOS switch or the like, and its area overhead is small.
  • FIG. 8 shows a truth table for programming the reference cell in the semiconductor memory device according to the embodiment of the present invention.
  • “Operation mode” indicates the type of operation mode (read (read), write (write), reference cell program (reference cell write)), and “low address LSB (Least Significant Bit)” is even / odd of the least significant bit X0.
  • both the reference word lines WLR0 and WLR1 are deactivated ("L" level). Further, in the program mode to the reference cell, for example, when desired data is written (programmed) to the reference cell in the even-numbered row, the reference word line WLR0 is activated (“H” level). When programming into reference cells in odd rows, reference word line WLR1 is activated (“H" level).
  • FIG. 9 is a cross-sectional view showing a part of the memory array in the semiconductor memory device according to the embodiment of the present invention.
  • 10 and 11 are plan views showing a part of the layout of the memory array in the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 12 is a circuit diagram showing a part of the memory array in the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 9 is an AA ′ cross-sectional view in FIGS. 10 and 11.
  • FIG. 10 shows layers below the metal layer M1 in FIG.
  • FIG. 11 shows a layer above the metal layer M1 in FIG.
  • FIG. 12 is a circuit diagram corresponding to FIGS. 10 and 11 extracted from FIG.
  • the first transistor 11 of the memory cell C00 is a dual gate type transistor.
  • the first transistor 11 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate 62.
  • Diffusion layer 61-1 is connected to write bit line WBL0 via contact D1.
  • the diffusion layer 61-2 is connected to one end of the write line 15 through contacts D2, M1, and V1.
  • the gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0.
  • the second transistor 12 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate. Diffusion layer 61-1 is connected to write bit line / WBL0 via contact D1.
  • the diffusion layer 61-2 is connected to the other end of the write line 15 via contacts D2, M1, and V1.
  • the gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0.
  • An MTJ element 13 is disposed on the write line 15. The MTJ element 13 is connected to the upper read bit line RBL0 via the MTJ via.
  • the MTJ element 13 may be disposed below the write line 15. In that case, the MTJ element 13 is connected to the lower read bit line RBL0 via the MTJ via. In that case, the contacts D2, M1, and V1 are provided with a sufficient height so that the read bit line RBL0 and the write bit line WBL0 do not contact each other.
  • the first transistor 11 of the memory cell C01 is a dual gate transistor.
  • the first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL1 through a contact D1, a diffusion layer 61-2 connected to one end of the write line 15 through contacts D2, M1, and V1.
  • the gate 62 is connected to the word line WL0.
  • the second transistor 12 is a dual gate transistor.
  • the second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL1 via a contact D1, and a diffusion layer 61-2 connected to the other end of the write line via contacts D2, M1, and V1.
  • the gate 62 is connected to the word line WL0.
  • An MTJ element 13 is disposed on the write line 15.
  • the MTJ element 13 is connected to the upper read bit line RBL1 via an MTJ via.
  • the first transistor 11 of the memory cell C10 is a dual gate transistor.
  • the first transistor 11 includes a diffusion layer connected to the write bit line / WBL0 through the contact D1, a diffusion layer connected to the write wiring through the contacts D2, M1, and V1, and a gate connected to the word line. Is done.
  • the second transistor is a dual gate type transistor, and is connected to the diffusion layer connected to the write bit line WBL1 through the contact D1, connected to the write wiring through the contacts D2, M1, and V1, and connected to the word line. Composed of gates.
  • An MTJ element is disposed on the write wiring and is connected to the read bit line / RBL0 above the MTJ element. The same applies hereinafter.
  • each memory cell C shows an example in which normal transistors are used as the first transistor 11 and the second transistor 12.
  • each memory cell can use a dual gate type transistor as the first transistor 11 and the second transistor 12. That is, two first transistors 11 and second transistors 12 may be provided. In this case, two word lines WL are provided.
  • the contact D1 and the diffusion layer 61-1 connected thereto are the same and are shared. That is, the diffusion layer 61-1 and the contact D1 are shared between the memory cells (example C00) along the word line WL0 and the memory cells (example C10) along the word line WL1. In the case of a dual gate transistor, the diffusion layer 61-1 and the contact D1 are shared on one side of the memory cell C along the word line WL. On the other hand, in the case of a single gate type transistor, the diffusion layer and the contact are shared on one side of the memory cell along the word line. In either case, the area of the diffusion layer and the contact can be reduced, which is preferable.
  • FIGS. 9 to 12 is compared with other semiconductor memory devices.
  • 14 and 15 are plan views showing a part of the layout of the memory array in the semiconductor memory device to be compared.
  • FIG. 16 is a circuit diagram showing a part of a memory array in a semiconductor memory device to be compared. 14 corresponds to FIG. 10, FIG. 15 corresponds to FIG. 11, and FIG. 16 corresponds to FIG. Also, the reference numerals of the components in FIGS. 14 to 16 are the same as those of the corresponding components in FIGS.
  • the first transistor 11 of the memory cell C00 is a dual gate transistor.
  • the first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL0 via a contact D1, a diffusion layer 61-2 connected to the write line 15 via contacts D2, M1, and V1, and a word line WL0.
  • a gate 62 provided immediately below the word line WL0.
  • the second transistor 12 is a dual gate transistor.
  • the second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL0 via a contact D1, a diffusion layer 61-2 connected to the write line 15 via contacts D2, M1, and V1, a word line
  • the gate 62 is connected to WL0 and provided immediately below the word line WL0.
  • An MTJ element 13 is disposed on the write line 15.
  • the MTJ element 13 is connected to the read bit line RBL0 above the MTJ element 13 through an MTJ via.
  • the first transistor 11 of the memory cell C01 is a dual gate transistor.
  • the first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL1 through a contact D1, a diffusion layer 61-2 connected to the write line 15 through contacts D2, M1, and V1, and a word line WL0.
  • a gate 62 provided immediately below the word line WL0.
  • the second transistor 12 is a dual gate transistor.
  • the second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL1 through a contact D1, a diffusion layer 61-2 connected to the write line 15 through contacts D2, M1, and V1, a word line
  • the gate 62 is connected to WL0 and provided immediately below the word line WL0.
  • An MTJ element 13 is disposed on the write line 15.
  • the MTJ element 13 is connected to the read bit line RBL1 above the MTJ element 13 through an MTJ via.
  • the first transistor 11 of the memory cell C10 is a dual gate transistor.
  • the first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL0 via a contact D1, a diffusion layer 61-2 connected to the write line 15 via contacts D2, M1, and V1, and a word line WL1.
  • a gate 62 provided immediately below the word line WL1.
  • the second transistor 12 is a dual gate transistor.
  • the second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL0 via a contact D1, a diffusion layer 61-2 connected to the write line 15 via contacts D2, M1, and V1, a word line
  • the gate 62 is connected to WL1 and provided immediately below the word line WL1.
  • An MTJ element 13 is disposed on the write line 15.
  • the MTJ element 13 is connected to the read bit line RBL0 above the MTJ element 13 through an MTJ via. The same applies hereinafter.
  • each memory cell C shows an example in which normal transistors are used as the first transistor 11 and the second transistor 12.
  • each memory cell can use a dual gate transistor as the first transistor 11 and the second transistor 12. That is, two first transistors 11 and second transistors 12 may be provided. In this case, two word lines WL are provided.
  • the semiconductor memory device shown in FIGS. 9 to 12 and the semiconductor device shown in FIGS. 14 to 16 will be specifically compared. Comparing the layout of FIG. 10 and the layout of FIG. 14, the layout of the transistor layers (diffusion layers 61-1, 61-2, gate 62, word line WL, contacts D1, D2) is the same in both. However, the writing line 15 is drawn out differently in both cases. That is, in FIG. 10, the even-numbered write bit line WBL (of the memory cell C) and the odd-numbered write bit line WBL can be shared. Thereby, the memory cells C can be densely arranged. That is, the memory array of FIG. 10 can be formed without increasing the area of the memory cell as compared with the memory cell array of FIG. On the other hand, in the memory array described in Japanese Patent Laid-Open No. 2002-197852, an increase in the area of the memory cell is inevitable due to a dead area caused by staggering the memory cells.
  • the minimum distance between the MTJ elements 13 is different between them. That is, the distance D0 between the MTJ elements 13 in adjacent rows in FIG. 11 (embodiment) is larger than the distance D1 between the MTJ elements 13 in FIG. Thereby, in the MTJ element 13 in FIG. 11 (embodiment), the magnetic interaction between the MTJ elements 13 can be reduced. Reducing the magnetic interaction between the MTJ elements 13 is effective for improving data retention characteristics and reducing write defects and read defects.
  • the convex portion 15a of the memory cell C10 is disposed so as to face the concave portion 15b formed by the branch portion 15c between the convex portion 15a of the memory cell C00 and the convex portion 15a of the memory cell C01. Therefore, the minimum space between adjacent cells in the Y direction on the write line 15 can be made larger in FIG. 11 (the embodiment) than in FIG. 15 (distance S0 in FIG. 11> distance in FIG. S1).
  • the MTJ element 13 can be enlarged without changing the size of the memory cell by the amount of the generated space.
  • the data retention characteristic is improved.
  • the fact that the MTJ element 13 can be enlarged improves the consistency between the manufacturing process of the MTJ element 13 and the manufacturing process of the transistor. This is because the MTJ element 13 that can be processed is larger than the mature transistor.
  • the write line 15 in FIG. 11 has a central portion (convex portion 15a) having a rectangular shape, and both end portions (branches 15c) are elongated extending in the row direction (X direction) from the central portion. It has a rectangular shape.
  • the write line 15 is not limited to this shape, and the central portion (convex portion 15a) may have an elliptical shape like the MTJ element 13 or a rounded substantially rectangular shape. It may be.
  • the write line 15 in FIG. 11 is plane-symmetric with respect to a zx plane (substantially perpendicular to the substrate) passing through the central axis in the row direction (X direction) of the memory cell C.
  • the central axis is an axis passing through the center of the MTJ element 13 of the memory cell C adjacent in the row direction (X direction).
  • the writing line 15 does not necessarily have plane symmetry with respect to the zx plane passing through the central axis. Even if it is not plane-symmetric, the same effect can be obtained by arranging as follows. For example, the arrangement of the write lines 15 of even-numbered memory cells C and the write lines 15 of odd-numbered memory cells C is determined as follows.
  • the magnitude of the write current required for writing data to the MTJ element 13 is not so different from that of the write line of FIG. This is because the write current is most affected by the current distribution passing directly under the MTJ element 13, but the shape of the write wiring immediately under the MTJ element 13 does not change between FIG. 11 and FIG. 15.
  • FIG. 13 is a plan view showing a part of the layout of the memory array in the semiconductor memory device according to the modification of the embodiment of the present invention.
  • FIG. 13 corresponds to FIG. 11, and the reference numerals of the respective components in FIG. 13 are the same as those of the corresponding respective components in FIG.
  • CY (FIG. 11) is (CY-dY) (FIG. 13). That is, with respect to the layout of FIG. 11 in which the width in the Y direction at both ends of the write line 15 is narrowed and the memory cells C are arranged in a staggered manner, the space generated by the layout is further filled in the Y direction. Cell C can be placed. Therefore, the modification of this embodiment can increase the degree of integration of memory cells.
  • the layout of FIG. 13 shows that the tip (in the ⁇ Y direction) of the projection 15a of the write line 15 of the memory cell C10 is the tip (in the + Y direction) of the projection of the write line 15 of the memory cell C00. And closer to the memory cell C00 and the memory cell C01 than the line Q connecting the leading end of the convex portion of the write line 15 of the memory cell C01 (in the + Y direction). Accordingly, the convex portion 15a of the write line 15 of the memory cell C10 faces the concave portion 15b formed between the convex portion 15a of the write line 15 of the memory cell C00 and the convex portion 15a of the write line 15 of the memory cell C01. As compared with the case of FIG. 11, it arrange
  • the reading speed can be remarkably improved as compared with the MRAM memory array described in each document. That is, in the 2T1MTJ cell shown in FIG. 4 and the 1T1MTJ cell (1-Transistor-1-MTJ element type cell) described in Japanese Patent Laid-Open No. 2002-197852, the bit line is shared for reading and writing. Therefore, a write circuit (or a current switch for driving a write current) is added to the bit line. As a result, the load capacity of the bit line is increased, which causes a decrease in read speed. In the writing method using the MTJ inversion threshold curve described in Japanese Patent Laid-Open No. 2002-197852, it is difficult to reduce the writing time to 10 ns or less due to the complexity of the writing circuit. Therefore, even if the read time can be shortened to 10 ns or less, the random access time will be 10 ns or more.
  • the bit lines are separated for reading and writing (read bit line RBL and write bit line WBL). Therefore, the load capacity of the read bit line RBL can be reduced.
  • the number of MTJ elements 13 connected to one read bit line RBL is halved compared to the conventional case. Has been reduced.
  • the capacity of the tunnel insulating film of the MTJ element 13 is very large compared to the wiring capacity. Therefore, the load capacity of the read bit line RBL can be remarkably reduced by reducing the MTJ element 13.
  • the load capacity of read bit line RBL is equal to the load capacity of read bit line / RBL. Therefore, the settling time of the sense signal and the settling time of the reference signal can be made equal. Therefore, even if the sense signal and the reference signal are not set, if the difference signal is sufficiently large, it is possible to sense with high reliability.
  • the read time which took 10 ns or more in the conventional MRAM, to about 5 ns in this embodiment.
  • the 2T1MTJ cell is a cell system that can shorten the writing time to about 1 ns. Therefore, according to the present invention, the random access time of the MRAM can be increased to about 5 ns. This is approximately equal to the random access time required for SRAM macros mounted on many system LSIs.
  • FIG. 17 is a cross-sectional view showing a part of a first modification of the memory array in the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 18 is a plan view showing a part of the layout of the first modification of the memory array in the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 17 is a BB ′ cross-sectional view in FIG.
  • FIG. 18 shows a layer above the metal layer M2 in FIG.
  • the metal layer M1 and the subsequent layers are the same as those in FIG.
  • the present method can be applied to a domain wall motion type memory element.
  • the domain wall motion type memory element includes a magnetic layer 50 having perpendicular magnetization and an MTJ element 55 having in-plane magnetization.
  • the magnetic layer 50 includes a first fixed region 51, a second fixed region 52, and a free region 53.
  • the MTJ element 55 changes to a low resistance state or a high resistance state in response to a perpendicular magnetization leakage magnetic field in the free region 53.
  • the MTJ element 55 includes a free layer whose magnetization direction changes due to a leakage magnetic field from the free region 53, a barrier layer that is an insulating layer, and a pinned layer whose magnetization direction is fixed.
  • a write current is passed through the perpendicular magnetic film (magnetic layer 50), and the magnetization direction of the free region 53 can be freely changed by the effect of spin torque.
  • this element can write data with a small write current, low power consumption and a reduction in cell transistor can be expected.
  • the first transistor 11 of the memory cell C00 is a dual gate transistor.
  • the first transistor 11 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate 62.
  • Diffusion layer 61-1 is connected to write bit line WBL0 via contact D1.
  • the diffusion layer 61-2 is connected to the first fixed region 51 of the magnetic layer 50 through contacts D2, M1, V1, M2, V2, M3, and V3.
  • the gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0.
  • the second transistor 12 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate. Diffusion layer 61-1 is connected to write bit line / WBL0 via contact D1.
  • the diffusion layer 61-2 is connected to the second fixed region 52 of the magnetic layer 50 through contacts D2, M1, V1, M2, V2, M3, and V3.
  • the gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0.
  • An MTJ element 55 is disposed under the magnetic layer 50.
  • the MTJ element 55 is connected to the lower read bit line RBL0 via M3, V2, and M2.
  • the read bit line RBL0 may be arranged on the upper side of the magnetic layer 50.
  • the wiring layer M3 is connected to the read bit line RBL0 via a via.
  • the MTJ element 53 may be disposed on the upper side of the magnetic layer 50. In this case, the MTJ53 element is connected to the upper read bit line RBL0.
  • the first transistor 11 of the memory cell C01 is a dual gate transistor.
  • the first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL1 through a contact D1, and a first fixed region of the magnetic layer 50 through contacts D2, M1, V1, M2, V2, M3, and V3.
  • a diffusion layer 61-2 connected to 51 and a gate 62 connected to the word line WL0.
  • the second transistor 12 is a dual gate transistor.
  • the second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL1 through a contact D1, and a second fixed layer of the magnetic layer 50 through contacts D2, M1, V1, M2, V2, M3, and V3.
  • a diffusion layer 61-2 connected to the region 52 and a gate 62 connected to the word line WL0 are included.
  • An MTJ element 55 is disposed under the magnetic layer 50. The MTJ element 55 is connected to the lower read bit line RBL1 via M3, V2, and M2.
  • the first transistor 11 of the memory cell C10 is a dual gate transistor.
  • the first transistor 11 has a diffusion layer connected to the write bit line / WBL0 through the contact D1, and the first fixed region 51 of the magnetic layer 50 through the contacts D2, M1, V1, M2, V2, M3, and V3. It consists of a connected diffusion layer and a gate connected to a word line.
  • the second transistor 12 is a dual gate transistor.
  • the second transistor 12 is connected to the second fixed region 52 of the magnetic layer 50 through a contact connected to the write bit line WBL1 through the contact D1, and through the contacts D2, M1, V1, M2, V2, M3, and V3. And a gate connected to a word line.
  • An MTJ element is disposed under the magnetic layer 50 and is connected to the read bit line / RBL0 below the MTJ element. The same applies hereinafter.
  • the MTJ element 55 When the in-plane magnetization direction of the pinned layer of the MTJ element 55 is fixed in the ⁇ Y direction, the MTJ element 55 is in a low resistance state, and data “0” is written. Conversely, when a current is passed from the first fixed region 51 toward the second fixed region 52, the magnetization direction of the free region 53 is in the same ⁇ Z direction as the magnetization direction of the second fixed region 52. At this time, the magnetization of the free layer of the MTJ element 55 is oriented in the + Y direction. When the in-plane magnetization direction of the pinned layer of the MTJ element 55 is fixed in the ⁇ Y direction, the MTJ element 55 is in a high resistance state, and data “1” is written.
  • the magnetization of the first fixed region 51 is fixed in the -Z direction and the magnetization of the second fixed region 52 is fixed in the + Z direction.
  • the magnetization direction of the free region 53 is in the same ⁇ Z direction as the magnetization direction of the first fixed region 51.
  • the magnetization of the free layer of the MTJ element 55 is in the ⁇ Y direction.
  • the MTJ element 55 When the in-plane magnetization direction of the pinned layer of the MTJ element 55 is fixed in the ⁇ Y direction, the MTJ element 55 is in a low resistance state, and data “0” is written. Conversely, when a current is passed from the first fixed region 51 toward the second fixed region 52, the magnetization direction of the free region 53 is directed to the + Z direction, which is the same as the magnetization direction of the second fixed region 52. At this time, the magnetization of the free layer of the MTJ element 55 is oriented in the + Y direction. When the in-plane magnetization direction of the fixed layer of the MTJ element 55 is fixed in the ⁇ Y direction, the MTJ element 55 is in a high resistance state, and data “1” is written.
  • the magnetization direction of the pinned layer of the MTJ element 55 can be made constant, and FIGS.
  • the memory cell layout of FIG. 18 can increase the degree of integration of the memory cells as in FIG. That is, the tip of the convex portion (M3) of the memory cell C10 faces the concave portion (the region between the end portions of the magnetic layer 50 facing each memory cell) composed of the memory cell C00 and the memory cell C01. It is arranged to fit deeply. Thereby, the same effect as in the case of FIG. 13 can be obtained.
  • FIG. 19 is a cross-sectional view showing a part of a second modification of the memory array in the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 20 is a plan view showing a part of the layout of the second modification of the memory array in the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 19 is a CC ′ cross-sectional view in FIG.
  • FIG. 20 shows layers above the magnetic layer 50 in FIG.
  • the metal layer M1 and the subsequent layers are the same as those in FIG.
  • the present method can be applied to a domain wall motion type memory element.
  • the domain wall motion type memory element includes a magnetic layer 50 having perpendicular magnetization and an MTJ element 55 having perpendicular magnetization.
  • the magnetic layer 50 includes a first fixed region 51, a second fixed region 52, and a free region 53.
  • the MTJ element 55 includes a free layer that also serves as the free region 53, a barrier layer 56 that is an insulating layer formed on the free region 53, and a pinned layer 57 that has a fixed magnetization direction.
  • the MTJ element 55 changes to a low resistance state or a high resistance state depending on the magnetization direction of the free region 53, that is, the free layer.
  • a write current is passed through the perpendicular magnetic film (magnetic layer 50), and the magnetization direction of the free region 53 can be freely changed by the effect of spin torque.
  • this element can write data with a small write current, low power and a reduction in cell transistor can be expected.
  • the first transistor 11 of the memory cell C00 is a dual gate transistor.
  • the first transistor 11 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate 62.
  • Diffusion layer 61-1 is connected to write bit line WBL0 via contact D1.
  • the diffusion layer 61-2 is connected to the first fixed region 51 of the magnetic layer 50 through contacts D2, M1, and V1.
  • the gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0.
  • the second transistor 12 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate. Diffusion layer 61-1 is connected to write bit line / WBL0 via contact D1.
  • the diffusion layer 61-2 is connected to the second fixed region 52 of the magnetic layer 50 through contacts D2, M1, and V1.
  • the gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0.
  • the barrier layer 56 and the pinned layer 57 of the MTJ element 555 are disposed on the magnetic layer 50.
  • the MTJ element 55 is connected to the upper read bit line RBL0 via the MTJ via 59.
  • the MTJ element 55 may be disposed below the magnetic layer 50. In that case, the MTJ element 55 is connected to the lower read bit line RBL0 via the MTJ via 59. In that case, the contacts D2, M1, and V1 are provided with a sufficient height so that the read bit line RBL0 and the write bit line WBL0 do not contact each other.
  • the first transistor 11 of the memory cell C01 is a dual gate transistor.
  • the first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL1 through a contact D1, and a diffusion layer 61 connected to the first fixed region 51 of the magnetic layer 50 through contacts D2, M1, and V1.
  • the second transistor 12 is a dual gate transistor.
  • the second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL1 through a contact D1, and a diffusion layer connected to the second fixed region 52 of the magnetic layer 50 through contacts D2, M1, and V1. 61-2, comprising a gate 62 connected to the word line WL0.
  • the barrier layer 56 and the pinned layer 57 of the MTJ element 555 are disposed on the magnetic layer 50.
  • the MTJ element 55 is connected to the upper read bit line RBL1 via the MTJ via 59.
  • the first transistor 11 of the memory cell C10 is a dual gate transistor.
  • the first transistor 11 includes a diffusion layer connected to the write bit line / WBL0 via the contact D1, a diffusion layer connected to the first fixed region 51 of the magnetic layer 50 via the contacts D2, M1, and V1, a word line It consists of a gate connected to.
  • the second transistor 12 is a dual gate transistor. Second transistor 12, diffusion layer connected to write bit line WBL1 via contact D1, diffusion layer connected to second fixed region 52 of magnetic layer 50 via contact D2, M1 and V1, connected to word line Composed of gates.
  • the barrier layer 56 and the pinned layer 57 of the MTJ element 555 are disposed on the magnetic layer 50.
  • the MTJ element 55 is connected to the upper read bit line / RBL0 via the MTJ via 59. The same applies hereinafter.
  • the MTJ element 55 When the in-plane magnetization direction of the pinned layer 57 of the MTJ element 55 is fixed in the + Z direction, the MTJ element 55 is in a low resistance state, and data “0” is written. Conversely, when a current is passed from the first fixed region 51 toward the second fixed region 52, the magnetization direction of the free region 53 is in the same ⁇ Z direction as the magnetization direction of the second fixed region 52. When the in-plane magnetization direction of the pinned layer 57 of the MTJ element 55 is fixed in the + Z direction, the MTJ element 55 is in a high resistance state, and data “1” is written.
  • the magnetization direction of the free region 53 is in the same ⁇ Z direction as the magnetization direction of the second fixed region 52.
  • the in-plane magnetization direction of the pinned layer 57 of the MTJ element 55 is fixed in the + Z direction, the MTJ element 55 is in a high resistance state, and data “1” is written.
  • the width in the Y direction of the free region 53 (the free layer of the MTJ element 55) is wider than that of the first and second fixed layer regions 51 and 52.
  • the energy of the domain wall becomes higher in the free region 53, and the domain wall tends to stay at a bistable position at the boundary between the free region 53 and the first and second fixed layer regions 51 and 52. That is, it is possible to prevent a failure mode in which the domain wall stops in the free area when data is written, or the domain wall to move to the free area during data holding.
  • the memory cell layout of FIG. 20 can increase the degree of integration of the memory cells as in FIG. That is, the tip of the convex portion (M3) of the memory cell C10 faces the concave portion (the region between the end portions of the magnetic layer 50 facing each memory cell) composed of the memory cell C00 and the memory cell C01. It is arranged to fit deeply. Thereby, the same effect as in the case of FIG. 13 can be obtained.

Abstract

A semiconductor memory device has a memory array provided with a plurality of memory cells. The plurality of memory cells comprise first memory cells and third memory cells arranged along either the even rows or the odd rows, and second memory cells arranged along the other. Each of the plurality of memory cells includes a magnetoresistive element connected by one terminal to cell internal wiring, and has convex parts including the cell internal wiring in the center portion on at least one of the sides along the row direction. The convex parts of the second memory cells are arranged opposite concave parts formed between the convex parts of the first memory cells and the convex parts of the third memory cells.

Description

半導体記憶装置Semiconductor memory device
本発明は、半導体記憶装置に関し、特に、磁気抵抗素子(MTJ:Magnetic Tunnel Junction)を記憶素子としてメモリセルに導入した半導体記憶装置、すなわち、磁気ランダムアクセスメモリ(MRAM:Magnetic Random Access Memory)に関する。 The present invention relates to a semiconductor memory device, and more particularly, to a semiconductor memory device in which a magnetoresistive element (MTJ: Magnetic Tunnel Junction) is introduced into a memory cell as a memory element, that is, a magnetic random access memory (MRAM).
 MRAMのメモリセルに用いられるMTJ素子は、固定磁性層と、自由磁性層と、トンネル絶縁膜とを含む。固定磁性層は、磁化の向きが任意の方向に固定されている。自由磁性層は、外部磁場により磁化の向きが可変である。トンネル絶縁膜は、これら二枚の磁性層に挟まれている。MRAMにおいて、1ビットの記憶情報は固定磁性層と自由磁性層との間の相対的な磁化状態に割り当てられる。例えば、固定磁性層の磁化と自由磁性層の磁化とが同じ向きである場合、即ち平行状態である場合は「0」と定義される。固定磁性層の磁化と自由磁性層の磁化とが互いに180度向きが異なる場合、即ち反平行状態である場合は「1」と定義される。さらに、MTJ素子の抵抗値が上記磁化状態によって異なることを利用してMRAMの読み出しが実行される。図1は、典型的なMRAMの書き込み原理を示す概略図である。磁性層の磁化容易軸に平行に延在するライトワード線に書き込み電流Ixを流し、磁化容易軸に垂直に延在するライトビット線に書き込み電流Iyを流す。その結果、それら書き込み電流が作る合成磁場により自由磁性層(セルA)の磁化が反転される。このように、MTJ素子の磁化反転特性を利用してメモリセルを選択し書き込み動作を行う。図2は、書き込み電流と書き込みマージンとの関係を示すグラフである。縦軸は書き込み電流Ix、横軸は書き込み電流Iyをそれぞれ示す。書き込み電流には、下限値と上限値が存在する(図中、「動作マージン」で表示)。その書き込みマージンは狭い。そのため、選択されたメモリセル(セルA)に選択的に書き込みを行うためには、電流値や電流波形を正確に制御する必要がある。従って、電流源回路が複雑になり、100MHz以上の高速な書き込み動作を行うことが困難であった。 An MTJ element used for an MRAM memory cell includes a fixed magnetic layer, a free magnetic layer, and a tunnel insulating film. In the fixed magnetic layer, the magnetization direction is fixed in an arbitrary direction. In the free magnetic layer, the direction of magnetization is variable by an external magnetic field. The tunnel insulating film is sandwiched between these two magnetic layers. In MRAM, 1-bit stored information is assigned to the relative magnetization state between the fixed magnetic layer and the free magnetic layer. For example, it is defined as “0” when the magnetization of the pinned magnetic layer and the magnetization of the free magnetic layer are in the same direction, that is, in a parallel state. When the magnetization of the pinned magnetic layer and the magnetization of the free magnetic layer are different from each other by 180 degrees, that is, in the antiparallel state, it is defined as “1”. Further, reading of the MRAM is performed by utilizing the fact that the resistance value of the MTJ element varies depending on the magnetization state. FIG. 1 is a schematic diagram illustrating the writing principle of a typical MRAM. A write current Ix is supplied to a write word line extending parallel to the easy axis of magnetization of the magnetic layer, and a write current Iy is supplied to a write bit line extending perpendicular to the easy axis of magnetization. As a result, the magnetization of the free magnetic layer (cell A) is reversed by the combined magnetic field generated by these write currents. As described above, the memory cell is selected and the write operation is performed using the magnetization reversal characteristics of the MTJ element. FIG. 2 is a graph showing the relationship between the write current and the write margin. The vertical axis represents the write current Ix, and the horizontal axis represents the write current Iy. The write current has a lower limit and an upper limit (indicated by “operation margin” in the figure). The write margin is narrow. Therefore, in order to selectively write to the selected memory cell (cell A), it is necessary to accurately control the current value and current waveform. Therefore, the current source circuit becomes complicated, and it is difficult to perform a high-speed write operation of 100 MHz or higher.
 書き込み電流をトランジスタやダイオードで電気的に選択するというメモリセル(2-Transistor-1-MTJ素子型メモリセル:2T1MTJセル)が特開2004-348934号公報(US2004100835(A1))に紹介されている。図3は、この特開2004-348934号公報における2T1MTJセルの構成を示す概略図である。図3に示されるように、2T1MTJセルは、ビット線BLと書き込み線115とを接続するトランジスタ111と、ビット線/BLと書き込み線115とを接続するトランジスタ112と、書き込み線115の直上に置かれたMTJ素子113とから構成されている。書き込み動作において、選択メモリセルのワード線WLを活性化して、トランジスタ111、112をオン状態にする。それにより、ビット線BL、/BLに流れる書き込み電流Iwは書き込み線115に流れる。このとき、MTJ素子113の磁化は、書き込み電流Iwが生成する書き込み磁場Hwにより反転される。ただし、書き込み線115ではなくビット線BL、/BLのみに流れる書き込み電流で生成される磁場が、MTJ素子113の磁化を反転させないよう、これらの配線は、MTJ素子113から十分遠い配線層に形成される。例えば、3層配線と4層配線との間にMTJ素子113が形成される場合、1層配線をビット線に用いれば良い。このように、非選択状態のメモリセルへは書き込み磁場Hwが供給されないため、半選択の状態がないのが特徴である。従って、2T1MTJセルを用いた書き込み方式では、書き込み時のメモリセルの選択性が劇的に向上し、さらに、書き込み電流値や電流波形を正確に制御する必要がない。従って、書き込み回路はSRAMのデコーダの様な論理回路で単純化でき、GHzレベルでの高速な書き込み動作を行うことが可能となる。 A memory cell (2-Transistor-1-MTJ element type memory cell: 2T1MTJ cell) in which a write current is electrically selected by a transistor or a diode is introduced in Japanese Patent Application Laid-Open No. 2004-348934 (US2004100835 (A1)). . FIG. 3 is a schematic diagram showing the configuration of the 2T1MTJ cell in Japanese Patent Application Laid-Open No. 2004-348934. As shown in FIG. 3, the 2T1MTJ cell is placed directly above the write line 115, the transistor 111 that connects the bit line BL and the write line 115, the transistor 112 that connects the bit line / BL and the write line 115, and the like. The MTJ element 113 is formed. In the write operation, the word line WL of the selected memory cell is activated and the transistors 111 and 112 are turned on. As a result, the write current Iw flowing through the bit lines BL and / BL flows through the write line 115. At this time, the magnetization of the MTJ element 113 is reversed by the write magnetic field Hw generated by the write current Iw. However, these wirings are formed in a wiring layer sufficiently far from the MTJ element 113 so that the magnetic field generated by the write current flowing only in the bit lines BL and / BL instead of the write line 115 does not reverse the magnetization of the MTJ element 113. Is done. For example, when the MTJ element 113 is formed between a three-layer wiring and a four-layer wiring, the one-layer wiring may be used as a bit line. Thus, since the write magnetic field Hw is not supplied to the non-selected memory cells, there is no half-selected state. Therefore, in the writing method using the 2T1MTJ cell, the selectivity of the memory cell at the time of writing is dramatically improved, and it is not necessary to accurately control the write current value and the current waveform. Therefore, the write circuit can be simplified by a logic circuit such as an SRAM decoder, and a high-speed write operation at the GHz level can be performed.
 高速な読み出し動作を実現することを目的としたMRAMの構成が特開2002-197852号公報(US6,349,054(B1))に開示されている。これによれば、ビット線BLと接続される偶数行のメモリセルと、ビット線/BLと接続される奇数行のメモリセルとからメモリアレイが構成されている。読み出しの判定基準として用いられるダミーセル(先述の参照セルと同等)も、同様に、その偶数行及びその奇数行にそれぞれ備えられている。ダミーセルは、データ「0」の抵抗値Rlowとデータ「1」の抵抗値Rhighとの中間の抵抗値を保持している。そして、偶数行のメモリセルが選択された場合には奇数行のダミーセルを使用し、奇数行のメモリセルが選択された場合には偶数行のダミーセルを使用する。この技術によれば、ビット線BLとビット線/BLの負荷容量が等しくなり、読み出し時間の高速化が図れる。しかし、書き込み方式は、図1に示す従来のMRAMと同じ方式を用いているため、その動作速度、すなわち、ランダムアクセス時間は10ns以上の書き込み時間で制限されてしまう。また、マトリックス状にメモリセルを配置した場合に比べてセル面積が大きくなってしまう。 A configuration of an MRAM aimed at realizing a high-speed read operation is disclosed in Japanese Patent Application Laid-Open No. 2002-197852 (US 6,349,054 (B1)). According to this, a memory array is configured by even-numbered memory cells connected to the bit line BL and odd-numbered memory cells connected to the bit line / BL. Similarly, dummy cells (equivalent to the above-described reference cells) used as a read determination criterion are also provided in the even rows and the odd rows, respectively. The dummy cell holds an intermediate resistance value between the resistance value Rlow of data “0” and the resistance value Rhigh of data “1”. When even-numbered memory cells are selected, odd-numbered dummy cells are used, and when odd-numbered memory cells are selected, even-numbered dummy cells are used. According to this technique, the load capacitances of the bit line BL and the bit line / BL become equal, and the reading time can be increased. However, since the write method uses the same method as the conventional MRAM shown in FIG. 1, the operation speed, that is, the random access time is limited by a write time of 10 ns or more. Also, the cell area becomes larger than when memory cells are arranged in a matrix.
 以上述べたように、MRAMの動作速度(ランダムアクセス時間)をSRAM並みに高速にすることは容易ではない。例えば、特開2004-348934号公報に記載された2T1MTJセルを用いて、特開2002-197852号公報に記載の思想に基づくメモリアレイを構成した場合、セル面積は約2倍に大きくなり、現実的ではない。SRAM並みの高速動作が可能な、磁気抵抗効果素子を用いた半導体記憶装置(例示:MRAM)が望まれる。セル面積のオーバヘッドなしに高速な読み出し動作を実現可能な、高速な書き込み動作を実現できる2T1MTJセルを用いた半導体記憶装置(例示:MRAM)が求められる。 As described above, it is not easy to increase the operation speed (random access time) of the MRAM as high as that of the SRAM. For example, when a memory array based on the idea described in Japanese Patent Laid-Open No. 2002-197852 is configured using 2T1MTJ cells described in Japanese Patent Application Laid-Open No. 2004-348934, the cell area is approximately doubled, Not right. A semiconductor memory device (eg, MRAM) using a magnetoresistive effect element capable of high speed operation similar to SRAM is desired. There is a need for a semiconductor memory device (eg, MRAM) using a 2T1MTJ cell that can realize a high-speed write operation that can realize a high-speed read operation without cell area overhead.
 関連する技術として特開2000-12790号公報に半導体装置が開示されている。この半導体装置は、半導体装置のメモリ部のメモリセルアレイが複数領域に分割され、前記分割されたメモリセルアレイ領域に偶数のI/O線群が割り当てられて配列され、前記メモリ部が所定のビット構成にできるようになっている。前記メモリ部のビット構成において、ビット数9が基本単位になっていてもよい。前記偶数のI/O線群のうち隣接するメモリセルアレイ領域に割り当てられた2つのI/O線が1つのI/O線にまとめられ、メモリセル部のビット構成でのビット数が所定のビット構成でのビット数の1/2にできるようになっていてもよい。 As a related technique, a semiconductor device is disclosed in Japanese Patent Laid-Open No. 2000-12790. In this semiconductor device, the memory cell array of the memory unit of the semiconductor device is divided into a plurality of regions, an even number of I / O line groups are allocated and arranged in the divided memory cell array region, and the memory unit has a predetermined bit configuration. You can do it. In the bit configuration of the memory unit, the number of bits 9 may be a basic unit. Of the even number of I / O line groups, two I / O lines assigned to adjacent memory cell array regions are combined into one I / O line, and the number of bits in the bit configuration of the memory cell portion is a predetermined bit. The number of bits in the configuration may be halved.
 特開2003-281880号公報(US6,822,897(B2))に薄膜磁性体記憶装置が開示されている。この薄膜磁性体記憶装置は、複数のメモリセルと、複数のデータ線と、複数の第1および第2ゲート配線とを備える。複数のメモリセルは、第1および第2の方向に沿って行列状に配置され、前記第1の方向に沿って互いに隣接するメモリセル群ごとに第1のグループが形成され、前記第2の方向に沿って互いに隣接するメモリセル群ごとに第2のグループが形成される。複数のデータ線は、前記第1の方向に沿って、各々が前記第1のグループごとに設けられる。複数の第1および第2ゲート配線は、前記第2の方向に沿って設けられ、各々が前記第2のグループごとに設けられる。各前記メモリセルは、磁気的に書込まれた記憶データに応じて電気抵抗が変化する磁気抵抗素子と、データ読出時に、対応するデータ線および固定電圧の間に前記磁気抵抗素子を電気的に結合するためのアクセストランジスタとを含む。各前記アクセストランジスタは、対応する第1および第2のゲート配線のうちの前記第1のグループごとに予め定められる所定の一方のゲート配線の電圧に応じてオンおよびオフする。 Japanese Patent Laid-Open No. 2003-281880 (US Pat. No. 6,822,897 (B2)) discloses a thin film magnetic memory device. The thin film magnetic memory device includes a plurality of memory cells, a plurality of data lines, and a plurality of first and second gate wirings. The plurality of memory cells are arranged in a matrix along the first and second directions, and a first group is formed for each memory cell group adjacent to each other along the first direction. A second group is formed for each memory cell group adjacent to each other along the direction. The plurality of data lines are provided for each of the first groups along the first direction. The plurality of first and second gate lines are provided along the second direction, and each is provided for each of the second groups. Each of the memory cells electrically connects the magnetoresistive element between a corresponding data line and a fixed voltage at the time of data reading, and a magnetoresistive element whose electrical resistance changes according to magnetically written storage data. And an access transistor for coupling. Each of the access transistors is turned on and off in accordance with a voltage of a predetermined one of the first and second gate wirings that is predetermined for each of the first groups.
 特開2003-346474号公報(US6,618,317(B1))に薄膜磁性体記憶装置が開示されている。この薄膜磁性体記憶装置は、メモリアレイと、複数のビット線と、複数の列選択線と、アドレスデコーダと、第1および第2の書込制御回路とを備える。メモリアレイは、各々が磁気的に書込まれたデータを記憶する複数のメモリセルが行列状に配置された。複数のビット線は、複数のメモリセル列にそれぞれ対応して設けられる。複数の列選択線は、前記複数のメモリセル列にそれぞれ対応して設けられる。アドレスデコーダは、データ書込時に、列選択結果に応じて前記複数の列選択線の電圧を設定する。第1および第2の書込制御回路は、前記複数のビット線の一端側および他端側にそれぞれ対応して配置され、前記データ書込時に選択ビット線に書込データに応じた方向のデータ書込電流を供給する。前記第1の書込制御回路は、前記データ書込時に、第1および第2の電圧の前記書込データに応じた一方と第1の共有ノードとを電気的に接続するための第1のドライバと、前記複数のビット線の一端側と前記第1の共有ノードとの間にそれぞれ設けられ、各々が前記複数の列選択線のうちの対応する1本の電圧レベルに応じてオンする複数の第1のスイッチ回路とを含む。前記第2の書込制御回路は、前記データ書込時に、前記第1および第2の電圧の前記書込データに応じた他方と第2の共有ノードとを電気的に接続するための第2のドライバと、前記複数のビット線の他端側と前記第2の共有ノードとの間にそれぞれ設けられ、各々が前記複数の列選択線のうちの対応する1本の前記電圧レベルに応じてオンする複数の第2のスイッチ回路とを含む。 Japanese Unexamined Patent Application Publication No. 2003-346474 (US 6,618,317 (B1)) discloses a thin film magnetic memory device. The thin film magnetic memory device includes a memory array, a plurality of bit lines, a plurality of column selection lines, an address decoder, and first and second write control circuits. In the memory array, a plurality of memory cells each storing magnetically written data are arranged in a matrix. The plurality of bit lines are provided corresponding to the plurality of memory cell columns, respectively. The plurality of column selection lines are provided corresponding to the plurality of memory cell columns, respectively. The address decoder sets voltages of the plurality of column selection lines according to a column selection result during data writing. The first and second write control circuits are arranged corresponding to one end side and the other end side of the plurality of bit lines, respectively, and data in a direction corresponding to write data is applied to the selected bit line at the time of data writing Supply write current. A first write control circuit configured to electrically connect one of the first and second voltages corresponding to the write data and a first shared node during the data writing; A plurality of drivers, each provided between one end side of the plurality of bit lines and the first shared node, each of which is turned on according to a corresponding voltage level of the plurality of column selection lines. First switch circuit. The second write control circuit is configured to electrically connect the other of the first and second voltages corresponding to the write data and a second shared node during the data write. Each of the plurality of bit lines is provided between the other end side of the plurality of bit lines and the second shared node, each corresponding to the corresponding one of the voltage levels of the plurality of column selection lines. A plurality of second switch circuits that are turned on.
 また、特開2006-108565号公報(US7355884(B2))に磁気抵抗効果素子及び磁気記録装置が開示されている。この磁気抵抗効果素子は、磁化の向きが固定された第1の固定層と、磁化の向きが変化する記録層と、第1の固定層及び記録層間に設けられた第1の非磁性層とを具備する。この磁気抵抗効果素子では、記録層の膜厚は、5nm乃至20nmである。記録層は、第1の方向に延在する延在部と、延在部の側面から第1の方向に対して垂直な第2の方向に突出する突出部とを有する。記録層の第1の方向における最大の長さを第1の長さと規定し、記録層の第2の方向における最大の長さを第2の長さと規定した場合、第1の長さ/第2の長さは1.5乃至2.2である。 Further, Japanese Patent Application Laid-Open No. 2006-108565 (US735884 (B2)) discloses a magnetoresistive effect element and a magnetic recording apparatus. The magnetoresistive element includes a first fixed layer whose magnetization direction is fixed, a recording layer whose magnetization direction changes, a first nonmagnetic layer provided between the first fixed layer and the recording layer, It comprises. In this magnetoresistance effect element, the film thickness of the recording layer is 5 nm to 20 nm. The recording layer has an extending portion extending in the first direction and a protruding portion protruding in a second direction perpendicular to the first direction from the side surface of the extending portion. When the maximum length in the first direction of the recording layer is defined as the first length and the maximum length in the second direction of the recording layer is defined as the second length, the first length / the first length The length of 2 is 1.5 to 2.2.
 また、特開2006-114762号公報(US2006083053(A1))に磁気ランダムアクセスメモリが開示されている。この磁気ランダムアクセスメモリは、複数のコーナーを有する平面形状であり、一つ以上のコーナーにおける曲率半径が20nm以下である磁気抵抗効果素子を具備する。 In addition, a magnetic random access memory is disclosed in Japanese Patent Laid-Open No. 2006-114762 (US2006083053 (A1)). This magnetic random access memory has a planar shape having a plurality of corners, and includes a magnetoresistive effect element having a radius of curvature of 20 nm or less at one or more corners.
 また、特開2008-147437号公報に磁気抵抗性記憶装置が開示されている。この磁気抵抗性記憶装置は、複数のメモリセル、複数のワード線、複数のビット線、複数のコモン線、複数のビット線ドライバ、複数のコモン線ドライバを備える。複数のメモリセルは、行列状に配列され、各々が注入電流により磁化方向が設定され、その抵抗値によりデータを記憶する可変磁気抵抗素子を有する。複数のワード線は、各メモリセル行に対応して対をなして配置される。前記対をなすワード線は、対応の行のメモリセルに交互に接続される。複数のビット線は、各メモリセル列に対応して配置され、各々に対応の列のメモリセルが接続する。複数のコモン線は、前記複数のビット線の隣接するビット線の対各々の間に前記ビット線と平行に配置され、各々が対応のビット線対に接続するメモリセルに接続される。複数のビット線ドライバは、各前記ビット線に対応して配置され、データ書込時、列選択信号と書込データとに応じて対応のビット線に電流を流す。複数のコモン線ドライバは、各コモン線に対応して配置され、データ書込時、前記書込データと前記列選択信号とに従って対応のコモン線に電流を流す。選択列のビット線ドライバおよびコモン線ドライバは、データ書込時、一方が電流を供給し、他方が電流を引抜く。 Further, a magnetoresistive storage device is disclosed in Japanese Patent Application Laid-Open No. 2008-147437. The magnetoresistive memory device includes a plurality of memory cells, a plurality of word lines, a plurality of bit lines, a plurality of common lines, a plurality of bit line drivers, and a plurality of common line drivers. The plurality of memory cells are arranged in a matrix, each having a variable magnetoresistive element in which the magnetization direction is set by an injection current and data is stored by its resistance value. A plurality of word lines are arranged in pairs corresponding to each memory cell row. The paired word lines are alternately connected to the memory cells in the corresponding row. The plurality of bit lines are arranged corresponding to each memory cell column, and the memory cells in the corresponding column are connected to each bit line. The plurality of common lines are arranged parallel to the bit lines between each pair of adjacent bit lines of the plurality of bit lines, and each is connected to a memory cell connected to the corresponding bit line pair. The plurality of bit line drivers are arranged corresponding to the respective bit lines, and at the time of data writing, a current flows through the corresponding bit line in accordance with the column selection signal and the write data. The plurality of common line drivers are arranged corresponding to the respective common lines, and at the time of data writing, a current flows through the corresponding common line according to the write data and the column selection signal. One of the bit line driver and the common line driver in the selected column supplies current while the other draws current during data writing.
 発明者は、今回以下の事実を新たに発見した。2T1MTJセルは、それまでのMRAMで用いられる書き込み方式と比較して、SRAM並みの高速な書き込み動作を実現できる。しかし、それまでのMRAMと同じ読み出し方式を用いるため、その動作速度は読み出し速度で制限されてしまう。 The inventor newly discovered the following facts this time. The 2T1MTJ cell can realize a high-speed write operation similar to that of SRAM as compared with the write method used in the conventional MRAM. However, since the same read method as that of the conventional MRAM is used, the operation speed is limited by the read speed.
 図4は、2T1MTJセルを用いたMRAM101の基本な構成を示す回路ブロック図である。メモリアレイ102は、マトリックス状に2T1MTJセル(以下、単にメモリセルともいう)Cを配置したセルカラムと、2列分の参照セルRを配置した参照セルカラムとを備えている。 FIG. 4 is a circuit block diagram showing a basic configuration of the MRAM 101 using 2T1MTJ cells. The memory array 102 includes a cell column in which 2T1MTJ cells (hereinafter also simply referred to as memory cells) C are arranged in a matrix and a reference cell column in which reference cells R for two columns are arranged.
 書き込み動作では、ロウデコーダ103が、複数のワード線WLから選択ワード線WLを選択する。カラムデコーダ104は、複数のビット線BLから少なくとも1組の選択ビット線BL、/BLをスイッチ106により選択する。すなわち、選択ワード線WLと選択ビット線BL、/BLとにより、複数のメモリセルCからデータを書き込みたい少なくとも1個の選択セルCが選択される。スイッチ106により、選択セルCはカラムデコーダ104に電気的に接続される。そして、図示されない書き込み電流回路からの書き込み電流Iwが、カラムデコーダ104-選択ビット線BL-選択セルCの書き込み線115-選択ビット線/BL-カラムデコーダ104の経路に流される。 In the write operation, the row decoder 103 selects the selected word line WL from the plurality of word lines WL. The column decoder 104 selects at least one set of selected bit lines BL and / BL from the plurality of bit lines BL by the switch 106. That is, at least one selected cell C to which data is to be written is selected from the plurality of memory cells C by the selected word line WL and the selected bit lines BL and / BL. The selected cell C is electrically connected to the column decoder 104 by the switch 106. A write current Iw from a write current circuit (not shown) is supplied to the path of the column decoder 104 -selected bit line BL-selected cell C, write line 115 -selected bit line / BL-column decoder 104.
 一方、読み出し時では、ロウデコーダ103が、複数のワード線WLから選択ワード線WLを選択する。カラムデコーダ104は、複数のビット線BLから選択ビット線BLをスイッチ107により選択する。すなわち、選択ワード線WLと選択ビット線BLとにより、複数のメモリセルCから記憶データを読み出したい選択セルCが選択される。スイッチ107により、選択セルCはセンスアンプ105の一方の入力端子に電気的に接続される。選択セルCのMTJ素子113に流れるセンス電流IRが生成され、センスアンプ105の一方の入力端子に供給される。 On the other hand, at the time of reading, the row decoder 103 selects the selected word line WL from the plurality of word lines WL. The column decoder 104 selects a selected bit line BL from the plurality of bit lines BL by the switch 107. That is, the selected cell C from which memory data is to be read from the plurality of memory cells C is selected by the selected word line WL and the selected bit line BL. The selected cell C is electrically connected to one input terminal of the sense amplifier 105 by the switch 107. A sense current IR flowing through the MTJ element 113 of the selected cell C is generated and supplied to one input terminal of the sense amplifier 105.
 同時に、カラムデコーダ104は、2本の参照ビット線BLR0、BLR1をスイッチ107により常に選択状態とする。すなわち、選択ワード線WLと2本の参照ビット線BLR0、BLR1とにより、データ「0」が記憶されている複数の参照セルR0と、データ「1」が記憶されている複数の参照セルR1とから、選択参照セルR0、R1が同時に選択される。スイッチ107により、選択参照セルR0、R1はセンスアンプ105の他方の入力端子に電気的に接続される。参照セルR0のMTJ素子に流れる参照電流Iref(0)と、参照セルR1のMTJ素子に流れるIref(1)とが平均化されることで、読み出しの判定基準として使われる参照電圧Vrefが生成され、センスアンプ105の他方の入力端子に供給される。 At the same time, the column decoder 104 always selects the two reference bit lines BLR0 and BLR1 by the switch 107. That is, by the selected word line WL and the two reference bit lines BLR0 and BLR1, a plurality of reference cells R0 storing data “0” and a plurality of reference cells R1 storing data “1” Therefore, the selected reference cells R0 and R1 are simultaneously selected. With the switch 107, the selected reference cells R0 and R1 are electrically connected to the other input terminal of the sense amplifier 105. The reference current Iref (0) flowing through the MTJ element of the reference cell R0 and the Iref (1) flowing through the MTJ element of the reference cell R1 are averaged to generate a reference voltage Vref used as a read criterion. , And supplied to the other input terminal of the sense amplifier 105.
 すなわち、センスアンプ105の2つの入力端子のうち、一方には選択セルC、他方には選択参照セルR0、R1がそれぞれ接続される。そのため、センスアンプ105の2つの入力端子の負荷容量は不一致である。従って、センス信号(選択セルCに流れるセンス電流IR0)が安定する速度と、参照信号(参照セルに流れる参照電流Iref)が安定する速度とが異なる。従って、センスアンプ105を、センス信号と参照信号とが十分セットリングされるまで判定動作させることができず、読み出し速度が制限される。また、電源電圧の変動や配線間容量のカップリングの影響が一様ではなく、これら雑音耐性の観点からも不利である。従って、2T1MTJセルを用いたMRAMの読み出し速度を向上させるのは容易ではない。その結果、その動作速度、即ち、ランダムアクセス時間は10ns以上の読み出し時間で制限されてしまう。 That is, one of the two input terminals of the sense amplifier 105 is connected to the selected cell C, and the other is connected to the selected reference cells R0 and R1. For this reason, the load capacitances of the two input terminals of the sense amplifier 105 do not match. Therefore, the speed at which the sense signal (sense current IR0 flowing through the selected cell C) is stable differs from the speed at which the reference signal (reference current Iref flowing through the reference cell) is stabilized. Therefore, the sense amplifier 105 cannot perform a determination operation until the sense signal and the reference signal are sufficiently set, and the reading speed is limited. In addition, the influence of fluctuations in the power supply voltage and the coupling between the wirings is not uniform, which is disadvantageous from the viewpoint of noise resistance. Therefore, it is not easy to improve the reading speed of the MRAM using the 2T1MTJ cell. As a result, the operation speed, that is, the random access time is limited by the read time of 10 ns or more.
特開2004-348934号公報JP 2004-348934 A 特開2002-197852号公報JP 2002-197852 A 特開2000-12790号公報Japanese Patent Laid-Open No. 2000-12790 特開2003-281880号公報JP 2003-281880 A 特開2003-346474号公報JP 2003-346474 A 特開2006-108565号公報JP 2006-108565 A 特開2006-114762号公報JP 2006-114762 A 特開2008-147437号公報JP 2008-147437 A
 本発明の目的は、メモリセルの集積度が高く、かつ、高速動作(読み出し動作及び書き込み動作)を実行可能な、磁気抵抗効果素子を用いた半導体記憶装置を提供することにある。 An object of the present invention is to provide a semiconductor memory device using a magnetoresistive effect element that has a high degree of integration of memory cells and can perform high-speed operations (read operation and write operation).
 本発明の半導体記憶装置は、複数のメモリセルを備えるメモリアレイを具備する。複数のメモリセルは、偶数行および奇数行のいずれか一方に沿って配置された第1メモリセル及び第3メモリセルと、他方に沿って配置された第2メモリセルとを備える。複数のメモリセルの各々は、セル内配線に一端を接続された磁気抵抗素子を含み、行方向に沿った辺の少なくとも一方の辺の中央部に、前記セル内配線を含む凸部を有する。第2メモリセルの凸部は、第1メモリセルの凸部と第3メモリセルの凸部との間に形成される凹部に向いて配置される。 The semiconductor memory device of the present invention includes a memory array including a plurality of memory cells. The plurality of memory cells include a first memory cell and a third memory cell arranged along one of the even-numbered row and the odd-numbered row, and a second memory cell arranged along the other. Each of the plurality of memory cells includes a magnetoresistive element having one end connected to the intra-cell wiring, and has a convex portion including the intra-cell wiring at the center of at least one of the sides along the row direction. The convex part of the second memory cell is arranged facing a concave part formed between the convex part of the first memory cell and the convex part of the third memory cell.
 本発明により、磁気抵抗効果素子を用いた半導体記憶装置において、メモリセルの集積度が高く、SRAM並みの高速動作が実行可能となる。 According to the present invention, in a semiconductor memory device using a magnetoresistive effect element, the degree of integration of memory cells is high, and high-speed operation similar to SRAM can be performed.
 本発明の前記及びその他の目的、長所及び特徴は、添付の図面を考慮して次の実施の形態の記載によって、より詳細に分かるであろう。
図1は、典型的なMRAMの書き込み原理を示す概略図である。 図2は、書き込み電流と書き込みマージンとの関係を示すグラフである。 図3は、特開2004-348934号公報における2T1MTJセルの構成を示す概略図である。 図4は、2T1MTJセルを用いたMRAMの基本な構成を示す回路ブロック図である。 図5は、本発明の実施の形態に係る半導体記憶装置の構成を示す回路ブロック図である。 図6は、本発明の実施の形態に係る半導体記憶装置の構成を示す回路ブロック図である。 図7は、本発明の実施の形態に係る半導体記憶装置の書き込み動作時のライトビット線への印加電圧制御の真理値表を示す。 図8は、本発明の実施の形態に係る半導体記憶装置の参照セルにプログラムするための真理値表を示す。 図9は、本発明の実施の形態に係る半導体記憶装置におけるメモリアレイの一部を示す断面図である。 図10は、本発明の実施の形態に係る半導体記憶装置におけるメモリアレイのレイアウトの一部を示す平面図である。 図11は、本発明の実施の形態に係る半導体記憶装置におけるメモリアレイのレイアウトの一部を示す平面図である。 図12は、本発明の実施の形態に係る半導体記憶装置におけるメモリアレイの一部を示す回路図である。 図13は、本発明の実施の形態の変形例に係る半導体記憶装置におけるメモリアレイのレイアウトの一部を示す平面図である。 図14は、比較対象の半導体記憶装置におけるメモリアレイのレイアウトの一部を示す平面図である。 図15は、比較対象の半導体記憶装置におけるメモリアレイのレイアウトの一部を示す平面図である。 図16は、比較対象の半導体記憶装置におけるメモリアレイの一部を示す回路図である。 図17は、本発明の実施の形態に係る半導体装置におけるメモリアレイの第1変形例の一部を示す断面図である。 図18は、本発明の実施の形態に係る半導体装置におけるメモリアレイの第1変形例のレイアウトの一部を示す平面図である。 図19は、本発明の実施の形態に係る半導体装置におけるメモリアレイの第2変形例の一部を示す断面図である。 図20は、本発明の実施の形態に係る半導体装置におけるメモリアレイの第2変形例のレイアウトの一部を示す平面図である。
The above and other objects, advantages, and features of the present invention will be understood in more detail by the following description of embodiments with reference to the accompanying drawings.
FIG. 1 is a schematic diagram illustrating the writing principle of a typical MRAM. FIG. 2 is a graph showing the relationship between the write current and the write margin. FIG. 3 is a schematic diagram showing a configuration of a 2T1MTJ cell in Japanese Patent Application Laid-Open No. 2004-348934. FIG. 4 is a circuit block diagram showing a basic configuration of an MRAM using 2T1MTJ cells. FIG. 5 is a circuit block diagram showing a configuration of the semiconductor memory device according to the embodiment of the present invention. FIG. 6 is a circuit block diagram showing a configuration of the semiconductor memory device according to the embodiment of the present invention. FIG. 7 shows a truth table for controlling the voltage applied to the write bit line during the write operation of the semiconductor memory device according to the embodiment of the present invention. FIG. 8 shows a truth table for programming the reference cell of the semiconductor memory device according to the embodiment of the present invention. FIG. 9 is a cross-sectional view showing a part of the memory array in the semiconductor memory device according to the embodiment of the present invention. FIG. 10 is a plan view showing a part of the layout of the memory array in the semiconductor memory device according to the embodiment of the present invention. FIG. 11 is a plan view showing a part of the layout of the memory array in the semiconductor memory device according to the embodiment of the present invention. FIG. 12 is a circuit diagram showing a part of the memory array in the semiconductor memory device according to the embodiment of the present invention. FIG. 13 is a plan view showing a part of the layout of the memory array in the semiconductor memory device according to the modification of the embodiment of the present invention. FIG. 14 is a plan view showing a part of the layout of the memory array in the semiconductor memory device to be compared. FIG. 15 is a plan view showing a part of the layout of the memory array in the semiconductor memory device to be compared. FIG. 16 is a circuit diagram showing a part of a memory array in a semiconductor memory device to be compared. FIG. 17 is a cross-sectional view showing a part of a first modification of the memory array in the semiconductor device according to the embodiment of the present invention. FIG. 18 is a plan view showing a part of the layout of the first modification of the memory array in the semiconductor device according to the embodiment of the present invention. FIG. 19 is a cross-sectional view showing a part of a second modification of the memory array in the semiconductor device according to the embodiment of the present invention. FIG. 20 is a plan view showing a part of the layout of the second modification of the memory array in the semiconductor device according to the embodiment of the present invention.
 以下、本発明の半導体記憶装置の実施の形態に関して、添付図面を参照して説明する。 Hereinafter, embodiments of a semiconductor memory device of the present invention will be described with reference to the accompanying drawings.
 図5及び図6は、本発明の実施の形態に係る半導体記憶装置の構成を示す回路ブロック図である。ただし、図5は、読み出し動作におけるセンス電流の経路も併せて表示している。図6は、書き込み動作における書き込み電流の経路も併せて表示している。 5 and 6 are circuit block diagrams showing the configuration of the semiconductor memory device according to the embodiment of the present invention. However, FIG. 5 also shows the path of the sense current in the read operation. FIG. 6 also shows the path of the write current in the write operation.
 この半導体記憶装置1は、2T1MTJセル型MRAMである。半導体記憶装置1は、メモリアレイ2、ロウデコーダ3、カラムデコーダ4、センスアンプ5、第1スイッチ部6、第2スイッチ部8、セレクタ9を具備する。 The semiconductor memory device 1 is a 2T1MTJ cell type MRAM. The semiconductor memory device 1 includes a memory array 2, a row decoder 3, a column decoder 4, a sense amplifier 5, a first switch unit 6, a second switch unit 8, and a selector 9.
 メモリアレイ2は、複数のワード線WLi(i=0~n:nは自然数)、複数のリードビット線RBLj、/RBLj(j=1~m:mは自然数)、複数のライトビット線WBLj、/WBLj、複数のメモリセルCij(i=0~n、j=0~m)、二本の参照ワード線WLR0、WLR1、複数の参照セルR0j、R1j(j=0~m)を備える。ただし、区別する必要がない場合は、i、jは省略して記載する場合もある。 The memory array 2 includes a plurality of word lines WLi (i = 0 to n: n is a natural number), a plurality of read bit lines RBLj, / RBLj (j = 1 to m: m is a natural number), a plurality of write bit lines WBLj, / WBLj, a plurality of memory cells Cij (i = 0 to n, j = 0 to m), two reference word lines WLR0 and WLR1, and a plurality of reference cells R0j and R1j (j = 0 to m). However, if there is no need to distinguish between them, i and j may be omitted.
 複数のワード線WLiは、X方向に延伸し、ロウデコーダ3に接続されている。複数のリードビット線RBLj、/RBLjは、Y方向に延伸し、第1スイッチ部6及び選択部9を介してセンスアンプ5に接続されている。複数のライトビット線WBLj、/WBLjは、Y方向に延伸し、第2スイッチ部8を介してカラムデコーダ4に接続されている。ライトビット線WBLj、リードビット線RBLj、ライトビット線/WBLj、及びリードビット線/RBLjは、この順にX方向に並んでいる。例えば、ライトビット線WBL0、リードビット線RBL0、ライトビット線/WBL0、リードビット線/RBL0、ライトビット線WBL1、リードビット線RBL1、ライトビット線/WBL1、リードビット線/RBL1、…という順番である。 The plurality of word lines WLi extend in the X direction and are connected to the row decoder 3. The plurality of read bit lines RBLj and / RBLj extend in the Y direction and are connected to the sense amplifier 5 via the first switch unit 6 and the selection unit 9. The plurality of write bit lines WBLj, / WBLj extend in the Y direction and are connected to the column decoder 4 via the second switch unit 8. Write bit line WBLj, read bit line RBLj, write bit line / WBLj, and read bit line / RBLj are arranged in this order in the X direction. For example, write bit line WBL0, read bit line RBL0, write bit line / WBL0, read bit line / RBL0, write bit line WBL1, read bit line RBL1, write bit line / WBL1, read bit line / RBL1,. is there.
 複数のメモリセルCijは、行列状に配置されている。複数のメモリセルCijは、iが偶数の場合、複数のワード線WLiと複数のライトビット線WBLj(又はリードビット線RBLj)との交点の各々に対応して設けられている。iが奇数の場合、複数のワード線WLiと複数のライトビット線/WBLj(又はリードビット線/RBLj)との交点の各々に対応して設けられている。 The plurality of memory cells Cij are arranged in a matrix. When i is an even number, the plurality of memory cells Cij are provided corresponding to the respective intersections between the plurality of word lines WLi and the plurality of write bit lines WBLj (or read bit lines RBLj). When i is an odd number, i is provided corresponding to each of the intersections of the plurality of word lines WLi and the plurality of write bit lines / WBLj (or read bit lines / RBLj).
 複数のメモリセルCijは、偶数行(i=偶数)のメモリセルと、奇数行(i=奇数)のメモリセルとを備える。偶数行のメモリセルCijは、例えば、第0行(図中、ワード線WL0に沿った行)にメモリセルC00、C01、C02、…がX方向に配置され、第2行(図中、ワード線WL2に沿った行)には、C20、C21、C22、…がX方向に配置されている。以下、第4行、第6行、…についても同様である。この場合、iは偶数である。一方、奇数行のメモリセルCijは、例えば、第1行(図中、ワード線WL1に沿った行)にメモリセルC10、C11、C12、…がX方向に配置され、第3行(図中、ワード線WL3に沿った行)には、C30、C31、C32、…がX方向に配置されている。以下、第5行、第7行、…についても同様である。この場合、iは奇数である。 The plurality of memory cells Cij include memory cells in even rows (i = even) and memory cells in odd rows (i = odd). In the even-numbered memory cells Cij, for example, the memory cells C00, C01, C02,... Are arranged in the X direction on the 0th row (rows along the word line WL0 in the figure), and the 2nd row (words in the figure). C20, C21, C22,... Are arranged in the X direction in the row along the line WL2. The same applies to the fourth row, the sixth row, and so on. In this case, i is an even number. On the other hand, in the odd-numbered memory cells Cij, for example, memory cells C10, C11, C12,... Are arranged in the X direction in the first row (row along the word line WL1 in the figure), and the third row (in the figure). , C30, C31, C32,... Are arranged in the X direction. The same applies to the fifth row, the seventh row,. In this case, i is an odd number.
 偶数行のメモリセルCijは、結果として偶数列に沿って配置される。例えば、第0列(図中、リードビット線RBL0に沿った列)には、メモリセルC00、C20、C40、…がY方向に配置され、第2列(図中、リードビット線RBL1に沿った列)には、C01、C21、C41、…がY方向に配置されている。以下、第4列、第6列、…についても同様である。一方、奇数行のメモリセルCijは、結果として奇数列に沿って配置される。例えば、第1列(図中、リードビット線/RBL0に沿った列)にメモリセルC10、C30、C50、…がY方向に配置され、第3列(図中、リードビット線/RBL1に沿った列)には、C11、C31、C51、…がY方向に配置されている。以下、第5列、第7列、…についても同様である。 As a result, the memory cells Cij in the even rows are arranged along the even columns. For example, in the 0th column (column along the read bit line RBL0 in the drawing), the memory cells C00, C20, C40,... Are arranged in the Y direction, and the second column (along the read bit line RBL1 in the drawing). , C01, C21, C41,... Are arranged in the Y direction. The same applies to the fourth column, the sixth column,. On the other hand, the memory cells Cij in the odd rows are arranged along the odd columns as a result. For example, memory cells C10, C30, C50,... Are arranged in the first direction (column along the read bit line / RBL0 in the drawing) in the Y direction, and the third column (along the read bit line / RBL1 in the drawing). , C11, C31, C51,... Are arranged in the Y direction. The same applies to the fifth column, the seventh column,.
 各メモリセルCijは、第1トランジスタ11、第2トランジスタ12、MTJ素子13を備える。
 偶数行のメモリセルCijでは、まず、MTJ素子13は、一方の端子をリードビット線RBLjに接続されている。第1トランジスタ11は、ゲートをワード線WLiに、ソース/ドレインの一方をライトビット線WBLjに、他方を(書き込み線15を介して;後述)MTJ素子13の他方の端子にそれぞれ接続されている。第2トランジスタ12は、ゲートをワード線WLiに、ソース/ドレインの一方をライトビット線/WBLjに、他方を(書き込み線15を介して;後述)MTJ素子13の他方の端子にそれぞれ接続されている。
Each memory cell Cij includes a first transistor 11, a second transistor 12, and an MTJ element 13.
In the memory cells Cij in the even rows, first, one terminal of the MTJ element 13 is connected to the read bit line RBLj. The first transistor 11 has a gate connected to the word line WLi, one of the source / drain connected to the write bit line WBLj, and the other (via the write line 15; described later) to the other terminal of the MTJ element 13. . The second transistor 12 has a gate connected to the word line WLi, one of the source / drain connected to the write bit line / WBLj, and the other (via the write line 15; described later) to the other terminal of the MTJ element 13. Yes.
 奇数行のメモリセルCijでは、まず、MTJ素子13は、一方の端子をリードビット線/RBLjに接続されている。第1トランジスタ11は、ゲートをワード線WLiに、ソース/ドレインの一方をライトビット線/WBLjに、他方を(書き込み線15を介して;後述)MTJ素子13の他方の端子にそれぞれ接続されている。第2トランジスタ12は、ゲートをワード線WLiに、ソース/ドレインの一方をライトビット線WBL(j+1)に、他方を(書き込み線15を介して;後述)MTJ素子13の他方の端子にそれぞれ接続されている。 In the odd-numbered memory cells Cij, first, one terminal of the MTJ element 13 is connected to the read bit line / RBLj. The first transistor 11 has a gate connected to the word line WLi, one source / drain connected to the write bit line / WBLj, and the other (via the write line 15; described later) to the other terminal of the MTJ element 13. Yes. The second transistor 12 has a gate connected to the word line WLi, one of the source / drain connected to the write bit line WBL (j + 1), and the other (via the write line 15; described later) to the other terminal of the MTJ element 13. Has been.
 ライトビット線WBLj、/WBLjは偶数行(列)のメモリセルと奇数行(列)のメモリセルとの間で共有されている。例えば、ライトビット線/WBL0は、偶数行(列)のメモリセルC00と奇数行(列)のメモリセルC10との間、C20とC30との間、C40とC50との間、…で共有されている。ライトビット線WBL1は、奇数行(列)のメモリセルC10と偶数行(列)のメモリセルC01との間、C30とC21との間、C50とC41との間、…で共有されている。ライトビット線/WBL1は、偶数行(列)のメモリセルC01と奇数行(列)のメモリセルC11との間、C21とC31との間、C41とC51との間、…で共有されている。 The write bit lines WBLj, / WBLj are shared between even-numbered (column) memory cells and odd-numbered (column) memory cells. For example, the write bit line / WBL0 is shared between the memory cell C00 in the even row (column) and the memory cell C10 in the odd row (column), between C20 and C30, between C40 and C50, and so on. ing. The write bit line WBL1 is shared between the odd-numbered row (column) memory cell C10 and the even-numbered row (column) memory cell C01, between C30 and C21, between C50 and C41, and so on. The write bit line / WBL1 is shared between the memory cell C01 in the even-numbered row (column) and the memory cell C11 in the odd-numbered row (column), between C21 and C31, between C41 and C51, and so on. .
 参照ワード線WLR0、WLR1は、X方向に延伸し、ロウデコーダ3に接続されている。複数の参照セルR0jは、参照ワード線WLR0と複数のライトビット線WBLj(又はリードビット線RBLj)との交点の各々に対応して設けられている。複数の参照セルR1jは、参照ワード線WLR1(奇数行)と複数のライトビット線/WBLj(又はリードビット線/RBLj)との交点の各々に対応して設けられている。すなわち、複数の参照セルR0j(R00、R01、R02、…)は、偶数行の参照ワード線WLR0に沿って並び、上記偶数列に配置されている。一方、複数の参照セルR1j(R10、R11、R12、…)は、奇数行の参照ワード線WLR1に沿って並び、上記奇数列に配置されている。これら、複数の参照セルR0j、R1jは、二行の参照セルロウを形成している。 The reference word lines WLR0 and WLR1 extend in the X direction and are connected to the row decoder 3. The plurality of reference cells R0j are provided corresponding to each intersection of the reference word line WLR0 and the plurality of write bit lines WBLj (or read bit line RBLj). The plurality of reference cells R1j are provided corresponding to each intersection of the reference word line WLR1 (odd row) and the plurality of write bit lines / WBLj (or read bit lines / RBLj). That is, the plurality of reference cells R0j (R00, R01, R02,...) Are arranged along the even-numbered reference word line WLR0 and arranged in the even-numbered columns. On the other hand, a plurality of reference cells R1j (R10, R11, R12,...) Are arranged along the odd-numbered reference word lines WLR1 and arranged in the odd columns. The plurality of reference cells R0j and R1j form two rows of reference cell rows.
 各参照セルR0j、R1jも、メモリセルCと同様に第1トランジスタ11、第2トランジスタ12、MTJ素子13を備える。偶数行の参照セルR0jでは、まず、MTJ素子13は、一方の端子をリードビット線RBLjに接続されている。第1トランジスタ11は、ゲートを参照ワード線WLR0に、ソース/ドレインの一方をライトビット線WBLjに、他方を(書き込み線15を介して;後述)MTJ素子13の他方の端子にそれぞれ接続されている。第2トランジスタ12は、ゲートを参照ワード線WLR0に、ソース/ドレインの一方をライトビット線/WBLjに、他方を(書き込み線15を介して;後述)MTJ素子13の他方の端子にそれぞれ接続されている。 Similarly to the memory cell C, each reference cell R0j, R1j also includes a first transistor 11, a second transistor 12, and an MTJ element 13. In the reference cell R0j in the even-numbered row, first, the MTJ element 13 has one terminal connected to the read bit line RBLj. The first transistor 11 has a gate connected to the reference word line WLR0, one of the source / drain connected to the write bit line WBLj, and the other (via the write line 15; described later) to the other terminal of the MTJ element 13. Yes. The second transistor 12 has a gate connected to the reference word line WLR0, one of the source / drain connected to the write bit line / WBLj, and the other (via the write line 15; described later) to the other terminal of the MTJ element 13. ing.
 奇数行の参照セルR1jでは、まず、MTJ素子13は、一方の端子をリードビット線/RBLjに接続されている。第1トランジスタ11は、ゲートを参照ワード線WLR1に、ソース/ドレインの一方をライトビット線/WBLjに、他方を(書き込み線15を介して)MTJ素子13の他方の端子にそれぞれ接続されている。第2トランジスタ12は、ゲートを参照ワード線WLR1に、ソース/ドレインの一方をライトビット線WBL(j+1)に、他方を(書き込み線15を介して)MTJ素子13の他方の端子にそれぞれ接続されている。 In the odd-numbered reference cell R1j, first, one terminal of the MTJ element 13 is connected to the read bit line / RBLj. The first transistor 11 has a gate connected to the reference word line WLR1, one source / drain connected to the write bit line / WBLj, and the other (via the write line 15) to the other terminal of the MTJ element 13. . The second transistor 12 has a gate connected to the reference word line WLR1, one source / drain connected to the write bit line WBL (j + 1), and the other connected to the other terminal of the MTJ element 13 (via the write line 15). ing.
 ライトビット線WBLj、/WBLjは偶数行(列)の参照セルR0jと奇数行(列)の参照セルR1jとの間で共有されている。例えば、ライトビット線/WBL0は、偶数行(列)の参照セルR00と奇数行(列)の参照セルR10との間で共有されている。ライトビット線WBL1は、偶数行(列)の参照セルR10と奇数行(列)の参照セルR01との間で共有されている。 The write bit lines WBLj and / WBLj are shared between the even-numbered (column) reference cell R0j and the odd-numbered (column) reference cell R1j. For example, the write bit line / WBL0 is shared between the even-numbered row (column) reference cell R00 and the odd-numbered row (column) reference cell R10. The write bit line WBL1 is shared between the even-numbered (column) reference cells R10 and the odd-numbered (column) reference cells R01.
 本発明では、偶数列(リードビット線RBLjに沿って並ぶ複数のメモリセルC及び参照セルRの列)は、隣接する奇数列(リードビット線/RBLjに沿って並ぶメモリセルC及び参照セルRの列)と組を成している。そして、読み出し動作時に、当該組の偶数列及び奇数列のいずれか一方の列に属するメモリセルCが選択されたとき、当該組の他方の列に属する参照セルRが参照用に選択される。そして、偶数列のリードビット線RBLjがセンスアンプ5の一方の入力端子に接続され、同じ組の奇数列のリードビット線/RBLjが同一センスアンプ5の他方の入力端子に接続される。すなわち、当該組の中において、記憶データの読み出し対象のメモリセルCと参照セルRとが準備される。例えば、第0列(偶数列)のメモリセルC00が記憶データの読み出し対象として選択された場合、第0列と組を成す第1列(奇数列)の参照セルR10が、参照セルとして準備される。 In the present invention, even columns (columns of a plurality of memory cells C and reference cells R arranged along the read bit line RBLj) are adjacent odd columns (memory cells C and reference cells R arranged along the read bit line / RBLj). And a pair). Then, when the memory cell C belonging to one of the even and odd columns in the set is selected during the read operation, the reference cell R belonging to the other column of the set is selected for reference. The even-numbered read bit lines RBLj are connected to one input terminal of the sense amplifier 5, and the odd-numbered read bit lines / RBLj of the same set are connected to the other input terminal of the same sense amplifier 5. That is, in the set, a memory cell C and a reference cell R from which stored data is read are prepared. For example, when the memory cell C00 in the 0th column (even column) is selected as a storage data read target, the reference cell R10 in the first column (odd column) that forms a pair with the 0th column is prepared as a reference cell. The
 ロウデコーダ3は、読み出し動作時に、複数のワード線WLiから選択ワード線を選択し、二本の参照ワード線WLR0、WLR1から選択参照ワード線を選択する。また、書き込み動作時に、複数のワード線WLiから選択ワード線を選択する。 The row decoder 3 selects a selected word line from a plurality of word lines WLi and selects a selected reference word line from two reference word lines WLR0 and WLR1 during a read operation. Further, during the write operation, the selected word line is selected from the plurality of word lines WLi.
 カラムデコーダ4は、読み出し動作時に、複数のリードビット線RBL、/RBLjの組から一組の選択リードビット線RBLj、/RBLjを第1スイッチ部6により選択する。また、書き込み動作時に、複数のライトビット線WBLj、/WBLjの組から一組の選択ライトビット線WBLj、/WBLjを第2スイッチ部8により選択する。 The column decoder 4 selects a set of selected read bit lines RBLj and / RBLj from the set of a plurality of read bit lines RBL and / RBLj by the first switch unit 6 during a read operation. In the write operation, the second switch unit 8 selects a set of selected write bit lines WBLj and / WBLj from a set of a plurality of write bit lines WBLj and / WBLj.
 センスアンプ5は、読み出し動作時に、選択リードビット線RBLj、/RBLjからのセンス信号を二つの入力端子で受信して、センス結果を出力する。センスアンプ5は、jが偶数に対応する組のセンスアンプ5-1と、jが奇数に対応する組のセンスアンプ5-2を備える。なお、センスアンプ5は、偶数列と奇数列とで構成される組の数だけ有っても良い。その場合、その組の数だけ同時に読み出すことができる。 The sense amplifier 5 receives sense signals from the selected read bit lines RBLj and / RBLj at two input terminals and outputs a sense result during a read operation. The sense amplifier 5 includes a sense amplifier 5-1 in which j corresponds to an even number and a sense amplifier 5-2 in which j corresponds to an odd number. Note that the number of sense amplifiers 5 may be equal to the number of sets formed of even columns and odd columns. In that case, the same number of sets can be read out simultaneously.
 セレクタ9は、トランジスタM10、M11、M12、M13を備える。セレクタ9は、ロウアドレス(XA)の偶奇によってセンスアンプ5の入力端子を入れ替える。例えば、偶数行のメモリセルが選択された場合、ロウアドレスの最下位ビットX0をデコードした信号X0Nが活性化、X0Tが非活性となり、トランジスタM10とM11がオンの状態、トランジスタM12とM13がオフの状態となる。この時、SAINjはセンスアンプ5の信号側入力端子SSiに接続され、/SAINjはセンスアンプ5の参照側入力端子SSRに接続される。 The selector 9 includes transistors M10, M11, M12, and M13. The selector 9 switches the input terminal of the sense amplifier 5 depending on whether the row address (XA) is even or odd. For example, when an even row of memory cells is selected, the signal X0N obtained by decoding the least significant bit X0 of the row address is activated, the X0T is deactivated, the transistors M10 and M11 are on, and the transistors M12 and M13 are off It becomes the state of. At this time, SAINj is connected to the signal side input terminal SSi of the sense amplifier 5, and / SAINj is connected to the reference side input terminal SSR of the sense amplifier 5.
 ここで、隣り合う二台のセンスアンプ5の参照側入力端子SSRは互いに短絡されている。これにより、二つの参照セルに流れる参照電流を平均化することで読み出し判定の基準となる参照信号を生成することができる。例えば、参照セルR00とR10にはデータ「0」、R01とR11にデータ「1」を予めプログラムすることで、平均化された参照電流Irefは「0」のセンス電流Is(0)と「1」のセンス電流Is(1)の中間の値となる。 Here, the reference side input terminals SSR of two adjacent sense amplifiers 5 are short-circuited to each other. Thereby, the reference signal used as the reference | standard of read-out determination can be produced | generated by averaging the reference current which flows into two reference cells. For example, when data “0” is programmed in the reference cells R00 and R10 and data “1” is programmed in R01 and R11 in advance, the averaged reference current Iref is “0” sense currents Is (0) and “1”. ”Is an intermediate value of the sense current Is (1).
 なお、第1スイッチ部6、第2スイッチ部8、セレクタ9のいずれかは、カラムデコーダ4に含まれていても良い。 Note that any one of the first switch unit 6, the second switch unit 8, and the selector 9 may be included in the column decoder 4.
 次に、本発明の実施の形態に係る半導体記憶装置の読み出し動作について、図5を参照しながら説明する。 Next, a read operation of the semiconductor memory device according to the embodiment of the present invention will be described with reference to FIG.
 本実施の形態では、メモリセルCの偶数列は、隣接する奇数列と同じカラムアドレス(YA=同じ組)を形成している(偶数列か奇数列かはロウアドレス(XA)で区別される)。そして、リードモード(読み出し動作)時に入力されたアドレス(XA、YA)に基づいて、偶数列のメモリセルCが選択された場合、同じカラムアドレスに位置する(同じ組に属する)奇数列の参照セルRが同時に選択される。例えば、偶数列である第0列のメモリセルC00が選択された場合、奇数列である第1列の参照セルR10が同時に選択される。一方、奇数列のメモリセルが選択された場合、同じカラムアドレスに位置する(同じ組に属する)偶数列の参照セルが同時に選択される。例えば、奇数列である第1列のメモリセルC10が選択された場合、偶数列である第0列の参照セルR00が同時に選択される。 In the present embodiment, the even columns of the memory cells C form the same column address (YA = same set) as the adjacent odd columns (even columns or odd columns are distinguished by row addresses (XA)). ). When even-numbered memory cells C are selected based on the addresses (XA, YA) input in the read mode (reading operation), reference to odd-numbered columns located in the same column address (belonging to the same set) Cell R is selected simultaneously. For example, when the memory cell C00 in the 0th column that is an even column is selected, the reference cell R10 in the first column that is an odd column is simultaneously selected. On the other hand, when odd-numbered memory cells are selected, even-numbered reference cells located in the same column address (belonging to the same set) are simultaneously selected. For example, when the memory cell C10 in the first column that is an odd column is selected, the reference cell R00 in the 0th column that is an even column is simultaneously selected.
 まず、少なくとも二つのセンスアンプ5を有し、それら二つのセンスアンプ5に対応して、偶数列のメモリセルC00及びメモリセルC01を同時に読み出す場合を説明する(図5にはセンス電流経路が図示されている)。偶数列のメモリセルを読み出す場合、読み出されるメモリセルの属する偶数列と同じ組の奇数列の参照セルが選択される。なお、同時に読み出すことが可能なメモリセルの数は、センスアンプ5の数と同数又はそれ未満である。 First, a case will be described in which at least two sense amplifiers 5 are provided and the memory cells C00 and C01 in the even-numbered columns are read simultaneously corresponding to the two sense amplifiers 5 (the sense current path is shown in FIG. 5). Have been). When reading memory cells in even columns, the reference cells in odd columns in the same set as the even columns to which the memory cells to be read belong are selected. Note that the number of memory cells that can be read simultaneously is the same as or less than the number of sense amplifiers 5.
 まず、第0列のメモリセルC00と、対応する第1列の参照セルR10とを同時に選択する。
 ロウデコーダ3は、ロウアドレスXAに基づいて、選択ワード線としてワード線WL0を選択して活性化し、メモリセルC00の第1及び第2トランジスタ11、12をオンにする。同様に、ロウデコーダ3は、ロウアドレスXAに基づいて、選択参照ワード線として参照ワード線WLR1を選択して活性化し、参照セルR10の第1及び第2トランジスタ11、12をオンにする。次に、カラムデコーダ4は、カラムアドレスYAに基づいて、信号RY0を活性化して、第1スイッチ部6のトランジスタM0、M1をオンにする。これにより、選択リードビット線としてリードビット線RBL0、リードビット線/RBL0が選択される。その結果、ワード線WL0とリードビット線RBL0とにより、メモリセルC00が選択されたことになる。同様に、参照ワード線WLR1とリードビット線/RBL0とにより、参照セルR10が選択されたことになる。そして、リードビット線RBL0は、トランジスタM0を介して、センスアンプ5への入力用配線SAIN0に接続される。リードビット線/RBL0は、トランジスタM1を介して、センスアンプ5への入力用配線/SAIN0に接続される。
First, the memory cell C00 in the 0th column and the corresponding reference cell R10 in the first column are selected simultaneously.
The row decoder 3 selects and activates the word line WL0 as a selected word line based on the row address XA, and turns on the first and second transistors 11 and 12 of the memory cell C00. Similarly, the row decoder 3 selects and activates the reference word line WLR1 as the selected reference word line based on the row address XA, and turns on the first and second transistors 11 and 12 of the reference cell R10. Next, the column decoder 4 activates the signal RY0 based on the column address YA to turn on the transistors M0 and M1 of the first switch unit 6. As a result, the read bit line RBL0 and the read bit line / RBL0 are selected as the selected read bit lines. As a result, the memory cell C00 is selected by the word line WL0 and the read bit line RBL0. Similarly, the reference cell R10 is selected by the reference word line WLR1 and the read bit line / RBL0. The read bit line RBL0 is connected to the input wiring SAIN0 to the sense amplifier 5 through the transistor M0. Read bit line / RBL0 is connected to input wiring / SAIN0 to sense amplifier 5 through transistor M1.
 同様に第2列のメモリセルC01と、対応する第3列の参照セルR11とを同時に選択する。
 ロウデコーダ3は、ロウアドレスXAに基づいて、選択ワード線としてワード線WL0を選択して活性化し、選択参照ワード線として参照ワード線WLR1を選択して活性化している。従って、メモリセルC01の第1及び第2トランジスタ11、12、及び参照セルR11の第1及び第2トランジスタ11、12はオンになっている。次に、カラムデコーダ4は、カラムアドレスYAに基づいて、信号RY1を活性化して、第1スイッチ部6のトランジスタM2、M3をオンにする。これにより、選択リードビット線としてリードビット線RBL1、リードビット線/RBL1が選択される。その結果、ワード線WL0とリードビット線RBL1とにより、メモリセルC01が選択されたことになる。同様に、参照ワード線WLR1とリードビット線/RBL1とにより、参照セルR11が選択されたことになる。そして、リードビット線RBL1は、トランジスタM2を介して、センスアンプ5への入力用配線SAIN1に接続される。リードビット線/RBL1は、トランジスタM3を介して、センスアンプ5への入力用配線/SAIN1に接続される。
Similarly, the memory cell C01 in the second column and the corresponding reference cell R11 in the third column are simultaneously selected.
Based on the row address XA, the row decoder 3 selects and activates the word line WL0 as the selected word line, and selects and activates the reference word line WLR1 as the selected reference word line. Accordingly, the first and second transistors 11 and 12 of the memory cell C01 and the first and second transistors 11 and 12 of the reference cell R11 are turned on. Next, the column decoder 4 activates the signal RY1 based on the column address YA to turn on the transistors M2 and M3 of the first switch unit 6. As a result, the read bit line RBL1 and the read bit line / RBL1 are selected as the selected read bit lines. As a result, the memory cell C01 is selected by the word line WL0 and the read bit line RBL1. Similarly, the reference cell R11 is selected by the reference word line WLR1 and the read bit line / RBL1. The read bit line RBL1 is connected to the input wiring SAIN1 to the sense amplifier 5 through the transistor M2. Read bit line / RBL1 is connected to input wiring / SAIN1 to sense amplifier 5 through transistor M3.
 ここで、セレクタ9-1は、第0行(偶数行)のメモリセルC00が選択された場合、ロウアドレスの最下位ビットX0をデコードした信号X0Nを活性化し、X0Tを非活性とする。その結果、トランジスタM10とM11がオンの状態、トランジスタM12とM13がオフの状態となる。それにより、入力用配線SAIN0はセンスアンプ5の信号側入力端子SSiに接続され、入力用配線/SAIN0はセンスアンプ5の参照側入力端子SSRに接続される。 Here, when the memory cell C00 in the 0th row (even row) is selected, the selector 9-1 activates the signal X0N obtained by decoding the least significant bit X0 of the row address and deactivates X0T. As a result, the transistors M10 and M11 are turned on, and the transistors M12 and M13 are turned off. Thereby, the input wiring SAIN0 is connected to the signal side input terminal SSi of the sense amplifier 5, and the input wiring / SAIN0 is connected to the reference side input terminal SSR of the sense amplifier 5.
 一方、セレクタ9-2は、第0行(偶数行)のメモリセルC01が選択された場合、ロウアドレスの最下位ビットX0をデコードした信号X0Nを活性化し、X0Tを非活性とする。その結果、トランジスタM10とM11がオンの状態、トランジスタM12とM13がオフの状態となる。それにより、入力用配線SAIN1はセンスアンプ5の信号側入力端子SSiに接続され、入力用配線/SAIN1はセンスアンプ5の参照側入力端子SSRに接続される。 On the other hand, when the memory cell C01 in the 0th row (even row) is selected, the selector 9-2 activates the signal X0N obtained by decoding the least significant bit X0 of the row address and deactivates X0T. As a result, the transistors M10 and M11 are turned on, and the transistors M12 and M13 are turned off. As a result, the input wiring SAIN1 is connected to the signal side input terminal SSi of the sense amplifier 5, and the input wiring / SAIN1 is connected to the reference side input terminal SSR of the sense amplifier 5.
 参照セルR10にはデータ「0」、参照セルR11にはデータ「1」を予めプログラムすることで平均化された参照電流Irefは「0」のセンス電流Is(0)と「1」のセンス電流Is(1)の中間の値となる。センスアンプ5-1、5-2は信号側入力端子SSiと参照側入力端子SSRとにクランプ電圧Vcを供給する。すなわち、入力用配線SAIN0、/SAIN0、選択リードビット線RBL0、/RBL0にもVcが印加される。同様に、入力用配線SAIN1、/SAIN1、選択リードビット線RBL1、/RBL1にもVcが印加される。リードモード(読み出し動作)においては、全てのライトビット線WBL、/WBLは接地されている。従って、選択状態のメモリセルC00には入力用配線SAIN0とリードビット線RBL0を介してセンス電流Is0が流れる。同様に、選択状態のメモリセルC01には入力用配線SAIN1とリードビット線RBL1を介してセンス電流Is1が流れる。一方、選択状態の参照セルR10には入力用配線/SAIN0とリードビット線/RBL0を介して参照電流/Is0が流れる。同様に、参照セルR11には入力用配線/SAIN1とリーロビット線/RBL1を介して参照電流/Is1が流れる。センスアンプ5-1は、センス電流Is0と平均化された参照電流Iref(=(/Is0+/Is1)/2)との大小を比較し、読み出し結果を出力する。同様に、センスアンプ5-2は、センス電流Is1と平均化された参照電流Iref(=(/Is0+/Is1)/2)との大小を比較し、読み出し結果を出力する。 The reference current Iref averaged by pre-programming data “0” in the reference cell R10 and data “1” in the reference cell R11 is the sense current Is (0) of “0” and the sense current of “1”. It is an intermediate value of Is (1). The sense amplifiers 5-1 and 5-2 supply the clamp voltage Vc to the signal side input terminal SSi and the reference side input terminal SSR. That is, Vc is also applied to the input wirings SAIN0 and / SAIN0 and the selected read bit lines RBL0 and / RBL0. Similarly, Vc is also applied to the input wirings SAIN1 and / SAIN1 and the selected read bit lines RBL1 and / RBL1. In the read mode (read operation), all the write bit lines WBL and / WBL are grounded. Accordingly, the sense current Is0 flows through the input memory line SAIN0 and the read bit line RBL0 in the selected memory cell C00. Similarly, a sense current Is1 flows in the selected memory cell C01 via the input wiring SAIN1 and the read bit line RBL1. On the other hand, the reference current / Is0 flows through the input cell / SAIN0 and the read bit line / RBL0 in the selected reference cell R10. Similarly, a reference current / Is1 flows through the reference cell R11 via the input wiring / SAIN1 and the relax bit line / RBL1. The sense amplifier 5-1 compares the magnitude of the sense current Is0 and the averaged reference current Iref (= (/ Is0 + / Is1) / 2) and outputs a read result. Similarly, the sense amplifier 5-2 compares the magnitude of the sense current Is1 and the averaged reference current Iref (= (/ Is0 + / Is1) / 2), and outputs a read result.
 次に、少なくとも二つのセンスアンプ5を有し、それら二つのセンスアンプ5に対応して、奇数列のメモリセルC10及びメモリセルC11を同時に読み出す場合を説明する(図5にはセンス電流経路が図示されていない)。 Next, a case will be described in which at least two sense amplifiers 5 are provided and the odd-numbered memory cells C10 and C11 are read simultaneously corresponding to the two sense amplifiers 5 (the sense current path is shown in FIG. 5). Not shown).
 第1列のメモリセルC10と、対応する第0列の参照セルR00とを同時に選択する。
 まず、ロウデコーダ3は、ロウアドレスXAに基づいて、選択ワード線としてワード線WL1を選択して活性化し、メモリセルC10の第1及び第2トランジスタ11、12をオンにする。同様に、ロウデコーダ3は、ロウアドレスXAに基づいて、選択参照ワード線として参照ワード線WLR0を選択して活性化し、参照セルR00の第1及び第2トランジスタ11、12をオンにする。次に、カラムデコーダ4は、カラムアドレスYAに基づいて、信号RY0を活性化して、第1スイッチ部6のトランジスタM0、M1をオンにする。これにより、選択リードビット線としてリードビット線RBL0、リードビット線/RBL0が選択される。その結果、ワード線WL1とリードビット/線RBL0とにより、メモリセルC10が選択されたことになる。同様に、参照ワード線WLR0とリードビット線RBL0とにより、参照セルR00が選択されたことになる。そして、リードビット線RBL0は、トランジスタM0を介して、センスアンプ5への入力用配線SAIN0に接続される。リードビット線/RBL0は、トランジスタM1を介して、センスアンプ5への入力用配線/SAIN0に接続される。
The memory cell C10 in the first column and the corresponding reference cell R00 in the 0th column are simultaneously selected.
First, the row decoder 3 selects and activates the word line WL1 as a selected word line based on the row address XA, and turns on the first and second transistors 11 and 12 of the memory cell C10. Similarly, the row decoder 3 selects and activates the reference word line WLR0 as the selected reference word line based on the row address XA, and turns on the first and second transistors 11 and 12 of the reference cell R00. Next, the column decoder 4 activates the signal RY0 based on the column address YA to turn on the transistors M0 and M1 of the first switch unit 6. As a result, the read bit line RBL0 and the read bit line / RBL0 are selected as the selected read bit lines. As a result, the memory cell C10 is selected by the word line WL1 and the read bit / line RBL0. Similarly, the reference cell R00 is selected by the reference word line WLR0 and the read bit line RBL0. The read bit line RBL0 is connected to the input wiring SAIN0 to the sense amplifier 5 through the transistor M0. Read bit line / RBL0 is connected to input wiring / SAIN0 to sense amplifier 5 through transistor M1.
 同様に第2列のメモリセルC11と、対応する第3列の参照セルR01とを同時に選択する。
 ロウデコーダ3は、ロウアドレスXAに基づいて、選択ワード線としてワード線WL1を選択して活性化し、選択参照ワード線として参照ワード線WLR0を選択して活性化している。従って、メモリセルC11の第1及び第2トランジスタ11、12、及び参照セルR01の第1及び第2トランジスタ11、12はオンになっている。次に、カラムデコーダ4は、カラムアドレスYAに基づいて、信号RY1を活性化して、第1スイッチ部6のトランジスタM2、M3をオンにする。これにより、選択リードビット線としてリードビット線RBL1、リードビット線/RBL1が選択される。その結果、ワード線WL1とリードビット/線RBL1とにより、メモリセルC11が選択されたことになる。同様に、参照ワード線WLR0とリードビット線RBL1とにより、参照セルR01が選択されたことになる。そして、リードビット線RBL1は、トランジスタM2を介して、センスアンプ5への入力用配線SAIN1に接続される。リードビット線/RBL1は、トランジスタM3を介して、センスアンプ5への入力用配線/SAIN1に接続される。
Similarly, the memory cell C11 in the second column and the corresponding reference cell R01 in the third column are selected simultaneously.
Based on the row address XA, the row decoder 3 selects and activates the word line WL1 as the selected word line, and selects and activates the reference word line WLR0 as the selected reference word line. Accordingly, the first and second transistors 11 and 12 of the memory cell C11 and the first and second transistors 11 and 12 of the reference cell R01 are turned on. Next, the column decoder 4 activates the signal RY1 based on the column address YA to turn on the transistors M2 and M3 of the first switch unit 6. As a result, the read bit line RBL1 and the read bit line / RBL1 are selected as the selected read bit lines. As a result, the memory cell C11 is selected by the word line WL1 and the read bit / line RBL1. Similarly, the reference cell R01 is selected by the reference word line WLR0 and the read bit line RBL1. The read bit line RBL1 is connected to the input wiring SAIN1 to the sense amplifier 5 through the transistor M2. Read bit line / RBL1 is connected to input wiring / SAIN1 to sense amplifier 5 through transistor M3.
 ここで、セレクタ9-1は、第1行(奇数行)のメモリセルC10が選択された場合、ロウアドレスの最下位ビットX0をデコードした信号X0Nを非活性とし、X0Tを活性化する。その結果、トランジスタM10とM11がオフの状態、トランジスタM12とM13がオンの状態となる。それにより、入力用配線/SAIN0はセンスアンプ5の信号側入力端子SSiに接続され、入力用配線SAIN0はセンスアンプ5の参照側入力端子SSRに接続される。 Here, when the memory cell C10 in the first row (odd row) is selected, the selector 9-1 deactivates the signal X0N obtained by decoding the least significant bit X0 of the row address, and activates X0T. As a result, the transistors M10 and M11 are turned off, and the transistors M12 and M13 are turned on. As a result, the input wiring / SAIN0 is connected to the signal side input terminal SSi of the sense amplifier 5, and the input wiring SAIN0 is connected to the reference side input terminal SSR of the sense amplifier 5.
 一方、セレクタ9-2は、第1行(奇数行)のメモリセルC11が選択された場合、ロウアドレスの最下位ビットX0をデコードした信号X0Nを非活性し、X0Tを活性化とする。その結果、トランジスタM10とM11がオフの状態、トランジスタM12とM13がオンの状態となる。それにより、入力用配線/SAIN1はセンスアンプ5の信号側入力端子SSiに接続され、入力用配線SAIN1はセンスアンプ5の参照側入力端子SSRに接続される。 On the other hand, when the memory cell C11 in the first row (odd row) is selected, the selector 9-2 deactivates the signal X0N obtained by decoding the least significant bit X0 of the row address and activates X0T. As a result, the transistors M10 and M11 are turned off, and the transistors M12 and M13 are turned on. As a result, the input wiring / SAIN1 is connected to the signal side input terminal SSi of the sense amplifier 5, and the input wiring SAIN1 is connected to the reference side input terminal SSR of the sense amplifier 5.
 センスアンプ5-1、5-2は信号側入力端子SSiと参照側入力端子SSRとにクランプ電圧Vcを供給する。すなわち、入力用配線SAIN0、/SAIN0、選択リードビット線RBL0、/RBL0にもVcが印加される。同様に、入力用配線SAIN1、/SAIN1、選択リードビット線RBL1、/RBL1にもVcが印加される。リードモード(読み出し動作)においては、全てのライトビット線WBL、/WBLは接地されている。従って、選択状態のメモリセルC10には入力用配線/SAIN0とリードビット線/RBL0を介してセンス電流Is0が流れる。同様に、選択状態のメモリセルC11には入力用配線/SAIN1とリードビット線/RBL1を介してセンス電流Is1が流れる。一方、選択状態の参照セルR00には入力用配線SAIN0とリードビット線RBL0を介して参照電流/Is0が流れる。同様に、参照セルR01には入力用配線SAIN1とリーロビット線RBL1を介して参照電流/Is1が流れる。センスアンプ5-1は、センス電流Is0と平均化された参照電流Iref(=(/Is0+/Is1)/2)との大小を比較し、読み出し結果を出力する。同様に、センスアンプ5-2は、センス電流Is1と平均化された参照電流Iref(=(/Is0+/Is1)/2)との大小を比較し、読み出し結果を出力する。 The sense amplifiers 5-1 and 5-2 supply the clamp voltage Vc to the signal side input terminal SSi and the reference side input terminal SSR. That is, Vc is also applied to the input wirings SAIN0 and / SAIN0 and the selected read bit lines RBL0 and / RBL0. Similarly, Vc is also applied to the input wirings SAIN1 and / SAIN1 and the selected read bit lines RBL1 and / RBL1. In the read mode (read operation), all the write bit lines WBL and / WBL are grounded. Therefore, the sense current Is0 flows through the input line / SAIN0 and the read bit line / RBL0 in the selected memory cell C10. Similarly, the sense current Is1 flows through the input line / SAIN1 and the read bit line / RBL1 in the selected memory cell C11. On the other hand, a reference current / Is0 flows through the input cell SAIN0 and the read bit line RBL0 in the selected reference cell R00. Similarly, a reference current / Is1 flows through the reference cell R01 via the input wiring SAIN1 and the relax bit line RBL1. The sense amplifier 5-1 compares the magnitude of the sense current Is0 and the averaged reference current Iref (= (/ Is0 + / Is1) / 2) and outputs a read result. Similarly, the sense amplifier 5-2 compares the magnitude of the sense current Is1 and the averaged reference current Iref (= (/ Is0 + / Is1) / 2), and outputs a read result.
 以上のようにして、本発明の半導体記憶装置の実施の形態における読み出し動作が実行される。 As described above, the read operation in the embodiment of the semiconductor memory device of the present invention is executed.
 上述のように、隣り合う二台のセンスアンプ5は、参照側入力端子SSRを互いに短絡し、一方センスアンプ5の参照側入力端子SSRにはデータ「0」を記憶する参照セルRから参照電流を供給され、他方のセンスアンプ5の参照側入力端子SSRにはデータ「1」を記憶する参照セルRから参照電流を供給される必要がある。したがって、一つのメモリセルからデータを読み出す場合でも、そのメモリセル用の参照セル(例示:「0」を記憶)の他に、異なるデータ(例示:「1」)を記憶している参照セルも同時に選択するように制御する。例えば、一つのメモリセルからデータを読み出す場合でも、上記のように二つのデータを仮に読み出すようにする。 As described above, two adjacent sense amplifiers 5 short-circuit the reference side input terminal SSR, while the reference side input terminal SSR of the sense amplifier 5 receives the reference current from the reference cell R that stores data “0”. And the reference side input terminal SSR of the other sense amplifier 5 needs to be supplied with a reference current from the reference cell R storing data “1”. Therefore, even when data is read from one memory cell, in addition to the reference cell for that memory cell (example: “0” is stored), there are also reference cells that store different data (example: “1”). Control to select at the same time. For example, even when data is read from one memory cell, two data are temporarily read as described above.
 次に、本発明の半導体記憶装置の実施の形態における書き込み動作について、図6を参照しながら説明する。本図において、書き込み電流Iwが、メモリセルCにおいて-X方向(紙面に対し右から左)へ流れる場合を「0」書き込み、+X方向(紙面に対し左から右)へ流れる場合を「1」書き込みと定義する。 Next, a write operation in the embodiment of the semiconductor memory device of the present invention will be described with reference to FIG. In this figure, “0” is written when the write current Iw flows in the −X direction (right to left with respect to the paper surface) in the memory cell C, and “1” when the write current Iw flows in the + X direction (left to right with respect to the paper surface). Define as write.
 メモリセルC(2T1MTJセル)への書き込みは、ライトビット線WBLjとライトビット線/WBLjに書き込みデータに応じて相補の電圧を印加することによって実行される。図7は、本発明の実施の形態に係る半導体記憶装置おけるライトモード(書き込み動作)時のライトビット線への印加電圧制御の真理値表を示す。「YA」はカラムアドレス、「XA」はロウアドレス(「偶」=偶数、「奇」=奇数)、「Din」は入力データ(「1」、「0」)、「WBLj」及び「/WBLj」はライドビット線の状態(「H」=Highレベル、「L」=Lowレベル)をそれぞれ示している。 Writing to the memory cell C (2T1MTJ cell) is performed by applying complementary voltages to the write bit line WBLj and the write bit line / WBLj according to the write data. FIG. 7 shows a truth table for controlling the voltage applied to the write bit line in the write mode (write operation) in the semiconductor memory device according to the embodiment of the present invention. “YA” is a column address, “XA” is a row address (“even” = even, “odd” = odd), “Din” is input data (“1”, “0”), “WBLj”, and “/ WBLj” "Indicates the state of the ride bit line (" H "= High level," L "= Low level).
 例えば、第0組(YA=0)の偶数行(XA=「偶」)である第0行のメモリセルC00に書き込みを行う場合、ロウデコーダ3は、ワード線WL0を活性化する。カラムデコーダ4は、入力データが「1」のとき、ライトビット線WBL0を「H」レベル、ライトビット線/WBL0を「L」レベルにする。それにより、+X方向に書き込み電流Iw(1)が供給される。入力データが「0」のとき、ライトビット線WBL0を「L」レベル、ライトビット線/WBL0を「H」レベルにする。それにより、-X方向に書き込み電流Iw(0)が供給される(図示されず)。 For example, when writing to the memory cell C00 in the 0th row which is the even row (XA = “even”) of the 0th set (YA = 0), the row decoder 3 activates the word line WL0. When the input data is “1”, the column decoder 4 sets the write bit line WBL0 to the “H” level and the write bit line / WBL0 to the “L” level. As a result, the write current Iw (1) is supplied in the + X direction. When the input data is “0”, write bit line WBL0 is set to “L” level and write bit line / WBL0 is set to “H” level. As a result, the write current Iw (0) is supplied in the −X direction (not shown).
 一方、第0組(YA=0)の奇数行(XA=「奇」)である第1行のメモリセルC10に書き込みを行う場合、ロウデコーダ3は、ワード線WL1を活性化する。カラムデコーダ4は、入力データが「1」のとき、ライトビット線/WBL0を「H」レベル、ライトビット線WBL1を「L」レベルにする。それにより、+X方向に書き込み電流Iw(1)が供給される。入力データが「0」のとき、ライトビット線/WBL0を「L」レベル、ライトビット線WBL1を「H」レベルにする。それにより、-X方向に書き込み電流Iw(0)が供給される(図示されず)。 On the other hand, when writing to the memory cell C10 in the first row which is the odd row (XA = “odd”) of the 0th group (YA = 0), the row decoder 3 activates the word line WL1. When the input data is “1”, the column decoder 4 sets the write bit line / WBL0 to “H” level and the write bit line WBL1 to “L” level. As a result, the write current Iw (1) is supplied in the + X direction. When the input data is “0”, the write bit line / WBL0 is set to “L” level and the write bit line WBL1 is set to “H” level. As a result, the write current Iw (0) is supplied in the −X direction (not shown).
 例えば、第1組(YA=1)の偶数行(XA=「偶」)である第2行のメモリセルC01に書き込みを行う場合、ロウデコーダ3は、ワード線WL0を活性化する。カラムデコーダ4は、入力データが「1」のとき、ライトビット線WBL1を「H」レベル、ライトビット線/WBL1を「L」レベルにする。それにより、+X方向に書き込み電流Iw(1)が供給される(図示されず)。入力データが「0」のとき、ライトビット線WBL1を「L」レベル、ライトビット線/WBL1を「H」レベルにする。それにより、-X方向に書き込み電流Iw(0)が供給される。 For example, when writing to the memory cell C01 in the second row which is the even row (XA = “even”) of the first set (YA = 1), the row decoder 3 activates the word line WL0. When the input data is “1”, the column decoder 4 sets the write bit line WBL1 to the “H” level and the write bit line / WBL1 to the “L” level. Thereby, the write current Iw (1) is supplied in the + X direction (not shown). When the input data is “0”, the write bit line WBL1 is set to “L” level and the write bit line / WBL1 is set to “H” level. As a result, the write current Iw (0) is supplied in the −X direction.
 一方、第1組(YA=1)の奇数行(XA=「奇」)である第3行のメモリセルC11に書き込みを行う場合、ロウデコーダ3は、ワード線WL1を活性化する。カラムデコーダ4は、入力データが「1」のとき、ライトビット線/WBL1を「H」レベル、ライトビット線WBL2を「L」レベルにする。それにより、+X方向に書き込み電流Iw(1)が供給される(図示されず)。入力データが「0」のとき、ライトビット線/WBL1を「L」レベル、ライトビット線WBL2を「H」レベルにする。それにより、-X方向に書き込み電流Iw(0)が供給される。 On the other hand, when writing to the memory cell C11 in the third row, which is the odd row (XA = “odd”) in the first set (YA = 1), the row decoder 3 activates the word line WL1. When the input data is “1”, the column decoder 4 sets the write bit line / WBL1 to the “H” level and the write bit line WBL2 to the “L” level. Thereby, the write current Iw (1) is supplied in the + X direction (not shown). When the input data is “0”, the write bit line / WBL1 is set to “L” level and the write bit line WBL2 is set to “H” level. As a result, the write current Iw (0) is supplied in the −X direction.
 図7に示す真理値表に基づいてライトビット線WBLjへの電圧制御を行う書き込み回路は、図6に示すように第2スイッチ部8のスィッチSk(k=0~q:q自然数)を利用して実現できる。例えば、偶数行のメモリセルが選択された場合、X0Nが活性化され、X0Tが非活性となり、スィッチS0、S2、…がオン状態となる。この時、例えば、メモリセルC00に書き込む場合、カラムデコーダ4は、制御信号DY0を端子W0へ、制御信号/DY0を端子/W0へ伝達する。それにより、ライトビット線WBL0と/WBL0に(図7の真理値表に基づいて)入力データに応じた相補の電圧を印加することができる。 The write circuit for controlling the voltage to the write bit line WBLj based on the truth table shown in FIG. 7 uses the switch Sk (k = 0 to q: q natural number) of the second switch unit 8 as shown in FIG. Can be realized. For example, when an even-numbered memory cell is selected, X0N is activated, X0T is deactivated, and switches S0, S2,... Are turned on. At this time, for example, when writing to the memory cell C00, the column decoder 4 transmits the control signal DY0 to the terminal W0 and the control signal / DY0 to the terminal / W0. Thereby, complementary voltages corresponding to the input data can be applied to the write bit lines WBL0 and / WBL0 (based on the truth table of FIG. 7).
 一方、奇数行のメモリセルが選択された場合、X0Nが非活性となり、X0Tが活性化され、スィッチS1、S3、…がオン状態となる。この時、例えば、メモリセルC10に書き込む場合、カラムデコーダ4は、制御信号DY0をは端子/W0へ、制御信号/DY0を端子W1へ伝達する。それにより、ライトビット線/WBL0とWBL1に(図7の真理値表に基づいて)入力データに応じた相補の電圧を印加することができる。 On the other hand, when an odd row of memory cells is selected, X0N is deactivated, X0T is activated, and switches S1, S3,... Are turned on. At this time, for example, when writing to the memory cell C10, the column decoder 4 transmits the control signal DY0 to the terminal / W0 and the control signal / DY0 to the terminal W1. Thereby, complementary voltages according to the input data can be applied to the write bit lines / WBL0 and WBL1 (based on the truth table of FIG. 7).
 すなわち、本発明では、二本のライトビット線に相補の電圧を与えることで書き込み電流を流すことができる。例えば、図6の端子W0、/W0、…を入力とする論理ゲートのバッファ(あるいはインバータ等)によって、ライトビット線WBLを駆動する。このバッファは書き込みドライバの役割を有する。以上より、書き込みに関わる回路のオーバヘッド(付加分)は第2スイッチ部8のスィッチSk及び端子Wのみであり、このスィッチは通常CMOSスィッチ等で実現され、その面積オーバヘッドは小さい。 That is, in the present invention, a write current can be supplied by applying complementary voltages to the two write bit lines. For example, the write bit line WBL is driven by a logic gate buffer (or an inverter or the like) that receives the terminals W0, / W0,... Of FIG. This buffer has the role of a write driver. As described above, the overhead (additional portion) of the circuit related to writing is only the switch Sk and the terminal W of the second switch unit 8, and this switch is usually realized by a CMOS switch or the like, and its area overhead is small.
 次に、参照セルをプログラムする方法について説明する。図8は、本発明の実施の形態に係る半導体記憶装置おける参照セルにプログラムするための真理値表を示す。「動作モード」は、動作モードの種類(リード(読み出し)、ライト(書き込み)、参照セル・プログラム(参照セル書き込み))、「ロウアドレスのLSB(Least Significant Bit)」は最下位ビットX0の偶奇、「ワード線」はワード線WLiの状態(「H」=Highレベル、「L」=Lowレベル)、「参照ワード線」は参照ワード線WLR0、WLR1の状態(「H」=Highレベル、「L」=Lowレベル)をそれぞれ示している。 Next, a method for programming the reference cell will be described. FIG. 8 shows a truth table for programming the reference cell in the semiconductor memory device according to the embodiment of the present invention. “Operation mode” indicates the type of operation mode (read (read), write (write), reference cell program (reference cell write)), and “low address LSB (Least Significant Bit)” is even / odd of the least significant bit X0. The “word line” is the state of the word line WLi (“H” = High level, “L” = Low level), and the “reference word line” is the state of the reference word lines WLR0 and WLR1 (“H” = High level, “ L ”= Low level).
 先述した通常のリードモード(読み出し動作)において、偶数行(ワード線WL0,2,…)のメモリセルが選択(「H」レベル)されるアドレス(X0=0)が入力された場合、奇数行の参照ワード線WLR1を活性化(「H」レベル)する。一方、奇数行(ワード線WL1,3,…)のメモリセルが選択(「H」レベル)されるアドレス(X0=1)が入力された場合、偶数行の参照ワード線WLR0を活性化(「H」レベル)する。 In the above-described normal read mode (read operation), when an address (X0 = 0) for selecting (“H” level) memory cells in even rows (word lines WL0, 2,...) Is input, odd rows The reference word line WLR1 is activated ("H" level). On the other hand, when an address (X0 = 1) at which memory cells in odd rows (word lines WL1, 3,...) Are selected (“H” level) is input, reference word line WLR0 in even rows is activated (“ H ”level).
 また、上述した通常のライトモード(書き込み動作)において、参照ワード線WLR0、WLR1を共に非活性(「L」レベル)にする。更に、参照セルへのプログラムモードにおいて、例えば、偶数行の参照セルへ所望のデータを書き込む(プログラムする)場合、参照ワード線WLR0を活性化(「H」レベル)する。奇数行の参照セルへプログラムする場合、参照ワード線WLR1を活性化(「H」レベル)する。 In the normal write mode (write operation) described above, both the reference word lines WLR0 and WLR1 are deactivated ("L" level). Further, in the program mode to the reference cell, for example, when desired data is written (programmed) to the reference cell in the even-numbered row, the reference word line WLR0 is activated (“H” level). When programming into reference cells in odd rows, reference word line WLR1 is activated ("H" level).
 図9は、本発明の実施の形態に係る半導体記憶装置におけるメモリアレイの一部を示す断面図である。図10及び図11は、本発明の実施の形態に係る半導体記憶装置におけるメモリアレイのレイアウトの一部を示す平面図である。図12は、本発明の実施の形態に係る半導体記憶装置におけるメモリアレイの一部を示す回路図である。ただし、図9は、図10及び図11におけるAA’断面図である。図10は、図9におけるメタル層M1以下の層を示している。図11は、図9におけるメタル層M1より上の層を示す。図12は、図5から抽出した図10、図11に対応する回路図である。 FIG. 9 is a cross-sectional view showing a part of the memory array in the semiconductor memory device according to the embodiment of the present invention. 10 and 11 are plan views showing a part of the layout of the memory array in the semiconductor memory device according to the embodiment of the present invention. FIG. 12 is a circuit diagram showing a part of the memory array in the semiconductor memory device according to the embodiment of the present invention. However, FIG. 9 is an AA ′ cross-sectional view in FIGS. 10 and 11. FIG. 10 shows layers below the metal layer M1 in FIG. FIG. 11 shows a layer above the metal layer M1 in FIG. FIG. 12 is a circuit diagram corresponding to FIGS. 10 and 11 extracted from FIG.
 図9~図11に示されるように、例えば、メモリセルC00の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、拡散層61-1、拡散層61-2、ゲート62から構成される。拡散層61-1は、コンタクトD1を介してライトビット線WBL0に接続されている。拡散層61-2は、コンタクトD2とM1とV1を介して書き込み線15の一端部に接続されている。ゲート62は、ワード線WL0に接続され、ワード線WL0の直下に設けられているに設けられている。同様に、第2トランジスタ12は、拡散層61-1、拡散層61-2、ゲートから構成される。拡散層61-1は、コンタクトD1を介してライトビット線/WBL0に接続されている。拡散層61-2は、コンタクトD2とM1とV1を介して書き込み線15の他端部に接続されている。ゲート62は、ワード線WL0に接続され、ワード線WL0の直下に設けられているに設けられている。書き込み線15上には、MTJ素子13が配置されている。MTJ素子13は、その上方のリードビット線RBL0にMTJビアを介して接続されている。 As shown in FIGS. 9 to 11, for example, the first transistor 11 of the memory cell C00 is a dual gate type transistor. The first transistor 11 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate 62. Diffusion layer 61-1 is connected to write bit line WBL0 via contact D1. The diffusion layer 61-2 is connected to one end of the write line 15 through contacts D2, M1, and V1. The gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0. Similarly, the second transistor 12 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate. Diffusion layer 61-1 is connected to write bit line / WBL0 via contact D1. The diffusion layer 61-2 is connected to the other end of the write line 15 via contacts D2, M1, and V1. The gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0. An MTJ element 13 is disposed on the write line 15. The MTJ element 13 is connected to the upper read bit line RBL0 via the MTJ via.
 ただし、MTJ素子13は、図示されないが、書き込み線15の下側に配置されていてもよい。その場合、MTJ素子13は、その下方のリードビット線RBL0にMTJビアを介して接続される。その場合、リードビット線RBL0とライトビット線WBL0とが接触しないように、コンタクトD2,M1、V1には十分な高さを持たせる。 However, although not shown, the MTJ element 13 may be disposed below the write line 15. In that case, the MTJ element 13 is connected to the lower read bit line RBL0 via the MTJ via. In that case, the contacts D2, M1, and V1 are provided with a sufficient height so that the read bit line RBL0 and the write bit line WBL0 do not contact each other.
 同様にメモリセルC01の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、コンタクトD1を介してライトビット線WBL1に接続された拡散層61-1、コンタクトD2とM1とV1を介して書き込み線15の一端部に接続された拡散層61-2、ワード線WL0に接続されたゲート62から構成される。第2トランジスタ12は、デュアルゲート型トランジスタである。第2トランジスタ12は、コンタクトD1を介してライトビット線/WBL1に接続された拡散層61-1、コンタクトD2とM1とV1を介して書き込み線の他端部に接続された拡散層61-2、ワード線WL0に接続されたゲート62から構成される。書き込み線15上には、MTJ素子13が配置されている。MTJ素子13は、その上方のリードビット線RBL1にMTJビアを介して接続されている。 Similarly, the first transistor 11 of the memory cell C01 is a dual gate transistor. The first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL1 through a contact D1, a diffusion layer 61-2 connected to one end of the write line 15 through contacts D2, M1, and V1. The gate 62 is connected to the word line WL0. The second transistor 12 is a dual gate transistor. The second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL1 via a contact D1, and a diffusion layer 61-2 connected to the other end of the write line via contacts D2, M1, and V1. The gate 62 is connected to the word line WL0. An MTJ element 13 is disposed on the write line 15. The MTJ element 13 is connected to the upper read bit line RBL1 via an MTJ via.
 同様にメモリセルC10の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、コンタクトD1を介してライトビット線/WBL0に接続された拡散層、コンタクトD2とM1とV1を介して書き込み配線に接続された拡散層、ワード線に接続されたゲートから構成される。第2トランジスタは、デュアルゲート型トランジスタであり、コンタクトD1を介してライトビット線WBL1に接続された拡散層、コンタクトD2とM1とV1を介して書き込み配線に接続された拡散層、ワード線に接続されたゲートから構成される。書き込み配線上には、MTJ素子が配置され、MTJ素子の上方のリードビット線/RBL0と接続されている。以下同様である。 Similarly, the first transistor 11 of the memory cell C10 is a dual gate transistor. The first transistor 11 includes a diffusion layer connected to the write bit line / WBL0 through the contact D1, a diffusion layer connected to the write wiring through the contacts D2, M1, and V1, and a gate connected to the word line. Is done. The second transistor is a dual gate type transistor, and is connected to the diffusion layer connected to the write bit line WBL1 through the contact D1, connected to the write wiring through the contacts D2, M1, and V1, and connected to the word line. Composed of gates. An MTJ element is disposed on the write wiring and is connected to the read bit line / RBL0 above the MTJ element. The same applies hereinafter.
 ここで、図5、図6、図12の回路図上では、各メモリセルCは、第1トランジスタ11および第2トランジスタ12として通常のトランジスタを用いる例を示している。しかし、図10に示されるように、各メモリセルは、第1トランジスタ11及び第2トランジスタ12として、デュアルゲート型トランジスタを用いることも可能である。すなわち、二つの第1トランジスタ11及び第2トランジスタ12を有していても良い。この場合、各ワード線WLは2本ずつ設けられている。 Here, in the circuit diagrams of FIGS. 5, 6, and 12, each memory cell C shows an example in which normal transistors are used as the first transistor 11 and the second transistor 12. However, as shown in FIG. 10, each memory cell can use a dual gate type transistor as the first transistor 11 and the second transistor 12. That is, two first transistors 11 and second transistors 12 may be provided. In this case, two word lines WL are provided.
 また、メモリセルC00とメモリセルC10とが隣接する側において、コンタクトD1及びそれに接続される拡散層61-1とは同じであり、共用されている。すなわち、ワード線WL0に沿ったメモリセル(例示:C00)とワード線WL1に沿ったメモリセル(例示:C10)との間で、拡散層61-1およびコンタクトD1が共用されている。なお、デュアルゲート型トランジスタの場合、ワード線WLに沿ったメモリセルCの片側において、拡散層61-1及びコンタクトD1が共用されることになる。一方、シングルゲート型トランジスタの場合、ワード線に沿ったメモリセルの片側において、拡散層及びコンタクトが共用されることになる。いずれの場合にも、拡散層及びコンタクトの面積を削減でき好ましい。 Further, on the side where the memory cell C00 and the memory cell C10 are adjacent to each other, the contact D1 and the diffusion layer 61-1 connected thereto are the same and are shared. That is, the diffusion layer 61-1 and the contact D1 are shared between the memory cells (example C00) along the word line WL0 and the memory cells (example C10) along the word line WL1. In the case of a dual gate transistor, the diffusion layer 61-1 and the contact D1 are shared on one side of the memory cell C along the word line WL. On the other hand, in the case of a single gate type transistor, the diffusion layer and the contact are shared on one side of the memory cell along the word line. In either case, the area of the diffusion layer and the contact can be reduced, which is preferable.
 ここで、図9~図12に示される半導体記憶装置を他の半導体記憶装置と比較する。
 図14及び図15は、比較対象の半導体記憶装置におけるメモリアレイのレイアウトの一部を示す平面図である。図16は、比較対象の半導体記憶装置におけるメモリアレイの一部を示す回路図である。ただし、図14は図10に対応し、図15は図11に対応し、図16は図12に対応している。また、図14~図16における各構成の符号は、図9~図12における対応する各構成の符号と同じにしている。
Here, the semiconductor memory device shown in FIGS. 9 to 12 is compared with other semiconductor memory devices.
14 and 15 are plan views showing a part of the layout of the memory array in the semiconductor memory device to be compared. FIG. 16 is a circuit diagram showing a part of a memory array in a semiconductor memory device to be compared. 14 corresponds to FIG. 10, FIG. 15 corresponds to FIG. 11, and FIG. 16 corresponds to FIG. Also, the reference numerals of the components in FIGS. 14 to 16 are the same as those of the corresponding components in FIGS.
 図14及び図15において、例えば、メモリセルC00の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、コンタクトD1を介してライトビット線WBL0に接続された拡散層61-1、コンタクトD2とM1とV1を介して書き込み線15に接続された拡散層61-2、ワード線WL0に接続されワード線WL0直下に設けられたゲート62から構成される。第2トランジスタ12は、デュアルゲート型トランジスタである。第2トランジスタ12は、コンタクトD1を介してライトビット線/WBL0に接続された拡散層61-1、コンタクトD2とM1とV1を介して書き込み線15に接続された拡散層61-2、ワード線WL0に接続されワード線WL0直下に設けられたゲート62から構成される。書き込み線15上には、MTJ素子13が配置されている。MTJ素子13は、MTJ素子13の上方のリードビット線RBL0にMTJビアを介して接続されている。 14 and 15, for example, the first transistor 11 of the memory cell C00 is a dual gate transistor. The first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL0 via a contact D1, a diffusion layer 61-2 connected to the write line 15 via contacts D2, M1, and V1, and a word line WL0. And a gate 62 provided immediately below the word line WL0. The second transistor 12 is a dual gate transistor. The second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL0 via a contact D1, a diffusion layer 61-2 connected to the write line 15 via contacts D2, M1, and V1, a word line The gate 62 is connected to WL0 and provided immediately below the word line WL0. An MTJ element 13 is disposed on the write line 15. The MTJ element 13 is connected to the read bit line RBL0 above the MTJ element 13 through an MTJ via.
 同様にメモリセルC01の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、コンタクトD1を介してライトビット線WBL1に接続された拡散層61-1、コンタクトD2とM1とV1を介して書き込み線15に接続された拡散層61-2、ワード線WL0に接続されワード線WL0直下に設けられたゲート62から構成される。第2トランジスタ12は、デュアルゲート型トランジスタである。第2トランジスタ12は、コンタクトD1を介してライトビット線/WBL1に接続された拡散層61-1、コンタクトD2とM1とV1を介して書き込み線15に接続された拡散層61-2、ワード線WL0に接続されワード線WL0直下に設けられたゲート62から構成される。書き込み線15上には、MTJ素子13が配置されている。MTJ素子13は、MTJ素子13の上方のリードビット線RBL1にMTJビアを介して接続されている。 Similarly, the first transistor 11 of the memory cell C01 is a dual gate transistor. The first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL1 through a contact D1, a diffusion layer 61-2 connected to the write line 15 through contacts D2, M1, and V1, and a word line WL0. And a gate 62 provided immediately below the word line WL0. The second transistor 12 is a dual gate transistor. The second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL1 through a contact D1, a diffusion layer 61-2 connected to the write line 15 through contacts D2, M1, and V1, a word line The gate 62 is connected to WL0 and provided immediately below the word line WL0. An MTJ element 13 is disposed on the write line 15. The MTJ element 13 is connected to the read bit line RBL1 above the MTJ element 13 through an MTJ via.
 同様にメモリセルC10の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、コンタクトD1を介してライトビット線WBL0に接続された拡散層61-1、コンタクトD2とM1とV1を介して書き込み線15に接続された拡散層61-2、ワード線WL1に接続されワード線WL1直下に設けられたゲート62から構成される。第2トランジスタ12は、デュアルゲート型トランジスタである。第2トランジスタ12は、コンタクトD1を介してライトビット線/WBL0に接続された拡散層61-1、コンタクトD2とM1とV1を介して書き込み線15に接続された拡散層61-2、ワード線WL1に接続されワード線WL1直下に設けられたゲート62から構成される。書き込み線15上には、MTJ素子13が配置されている。MTJ素子13は、MTJ素子13の上方のリードビット線RBL0にMTJビアを介して接続されている。以下同様である。 Similarly, the first transistor 11 of the memory cell C10 is a dual gate transistor. The first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL0 via a contact D1, a diffusion layer 61-2 connected to the write line 15 via contacts D2, M1, and V1, and a word line WL1. And a gate 62 provided immediately below the word line WL1. The second transistor 12 is a dual gate transistor. The second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL0 via a contact D1, a diffusion layer 61-2 connected to the write line 15 via contacts D2, M1, and V1, a word line The gate 62 is connected to WL1 and provided immediately below the word line WL1. An MTJ element 13 is disposed on the write line 15. The MTJ element 13 is connected to the read bit line RBL0 above the MTJ element 13 through an MTJ via. The same applies hereinafter.
 ここで、図16の回路図上では、各メモリセルCは、第1トランジスタ11および第2トランジスタ12として通常のトランジスタを用いる例を示している。しかし、図14に示されるように、各メモリセルは、第1トランジスタ11及び第2トランジスタ12として、デュアルゲート型トランジスタを用いることも可能である。すなわち、二つの第1トランジスタ11及び第2トランジスタ12を有していても良い。この場合、各ワード線WLは2本ずつ設けられている。 Here, in the circuit diagram of FIG. 16, each memory cell C shows an example in which normal transistors are used as the first transistor 11 and the second transistor 12. However, as shown in FIG. 14, each memory cell can use a dual gate transistor as the first transistor 11 and the second transistor 12. That is, two first transistors 11 and second transistors 12 may be provided. In this case, two word lines WL are provided.
 以下、図9~図12に示される半導体記憶装置と、図14~図16に示される半導体装置とを具体的に比較する。
 図10のレイアウトと図14のレイアウトとを比較すると、その両者でトランジスタ層(拡散層61-1、61-2、ゲート62、ワード線WL、コンタクトD1、D2)のレイアウトは同じである。しかし、その両者で書き込み線15の引き出し方が異なる。すなわち、図10では、(メモリセルCの)偶数列のライトビット線WBLと奇数列のライトビット線WBLとを共有することができる。それにより、メモリセルCを緻密に配置することができる。すなわち、図14のメモリセルアレイと比較して、メモリセルの面積を増加させることなく、図10のメモリアレイを形成することができる。それに対し、特開2002-197852号公報に記載のメモリアレイにおいては、メモリセルを千鳥配置することによって生じるデッドエリアにより、メモリセルの面積の増加は避けられない。
Hereinafter, the semiconductor memory device shown in FIGS. 9 to 12 and the semiconductor device shown in FIGS. 14 to 16 will be specifically compared.
Comparing the layout of FIG. 10 and the layout of FIG. 14, the layout of the transistor layers (diffusion layers 61-1, 61-2, gate 62, word line WL, contacts D1, D2) is the same in both. However, the writing line 15 is drawn out differently in both cases. That is, in FIG. 10, the even-numbered write bit line WBL (of the memory cell C) and the odd-numbered write bit line WBL can be shared. Thereby, the memory cells C can be densely arranged. That is, the memory array of FIG. 10 can be formed without increasing the area of the memory cell as compared with the memory cell array of FIG. On the other hand, in the memory array described in Japanese Patent Laid-Open No. 2002-197852, an increase in the area of the memory cell is inevitable due to a dead area caused by staggering the memory cells.
 図11のメモリセルと図15のメモリセルとを比較すると、その両者でMTJ素子13間の最小距離が異なる。すなわち、図11(実施の形態)における隣接した行のMTJ素子13間の距離D0は、図15におけるMTJ素子13間の距離D1より大きい。それにより、図11(実施の形態)におけるにおけるMTJ素子13では、MTJ素子13間の磁気的な相互作用を小さくすることができる。MTJ素子13間の磁気的な相互作用を小さくすることは、データ保持特性の向上や、書き込み不良、読み出し不良の低減に効果がある。 11 is compared with the memory cell of FIG. 15, the minimum distance between the MTJ elements 13 is different between them. That is, the distance D0 between the MTJ elements 13 in adjacent rows in FIG. 11 (embodiment) is larger than the distance D1 between the MTJ elements 13 in FIG. Thereby, in the MTJ element 13 in FIG. 11 (embodiment), the magnetic interaction between the MTJ elements 13 can be reduced. Reducing the magnetic interaction between the MTJ elements 13 is effective for improving data retention characteristics and reducing write defects and read defects.
 また、図11のメモリセルと図15のメモリセルとを更に比較すると、その両者で書き込み線15のレイアウトが異なる。すなわち、図11のメモリセルにおいて、書き込み線15は、ビアV1と接続している両端部において、Y方向の幅が図15の場合よりも細い(図11の幅CY2<図15の幅CY0)。一方、書き込み線15は、MTJ素子13と接続している中央部で、Y方向の幅が図15の場合と変わらない(図11の幅CY1=図15の幅CY0)。すなわち、行方向(X方向)に沿った辺の少なくとも一方の辺(本図では両方の辺)の中央部が、両端部と比較して列方向(Y方向)に飛び出している。すなわち、その中央部は凸部15aを形成し、両端部は枝部15cを形成している。そして、例えば、メモリセルC10の凸部15aは、メモリセルC00の凸部15aとメモリセルC01の凸部15aとの間において枝部15cで形成された凹部15bに向くようにして配置される。そのため、書き込み線15におけるY方向の隣接セル間の最小スペースは、図11(実施の形態)の方が、図15の方よりも大きくすることができる(図11の距離S0>図15の距離S1)。それにより、図11の方が書き込み線15を加工しやすくなり、歩留まりの向上に寄与する。また、図11の方が、生じたスペースの分、メモリセルの大きさを変えずに、MTJ素子13を大きくすることができる。MTJ素子13を大きくすると、データ保持特性が向上する。また、MTJ素子13を大きくできることは、MTJ素子13の製造プロセスとトランジスタの製造プロセスとの整合性がよくなる。なぜなら、成熟したトランジスタの加工にくらべ、現状、MTJ素子13の加工できる寸法は大きいからである。 Further, when the memory cell of FIG. 11 and the memory cell of FIG. 15 are further compared, the layout of the write line 15 differs between them. That is, in the memory cell of FIG. 11, the write line 15 is narrower in the Y direction at both ends connected to the via V1 than in the case of FIG. 15 (width CY2 in FIG. 11 <width CY0 in FIG. 15). . On the other hand, the write line 15 is the central part connected to the MTJ element 13 and the width in the Y direction is the same as in FIG. 15 (width CY1 in FIG. 11 = width CY0 in FIG. 15). That is, the central part of at least one side (both sides in the figure) along the row direction (X direction) protrudes in the column direction (Y direction) as compared to both ends. That is, the center part forms the convex part 15a, and both ends form the branch part 15c. For example, the convex portion 15a of the memory cell C10 is disposed so as to face the concave portion 15b formed by the branch portion 15c between the convex portion 15a of the memory cell C00 and the convex portion 15a of the memory cell C01. Therefore, the minimum space between adjacent cells in the Y direction on the write line 15 can be made larger in FIG. 11 (the embodiment) than in FIG. 15 (distance S0 in FIG. 11> distance in FIG. S1). 11 makes it easier to process the write line 15 and contributes to the improvement of the yield. Further, in FIG. 11, the MTJ element 13 can be enlarged without changing the size of the memory cell by the amount of the generated space. When the MTJ element 13 is enlarged, the data retention characteristic is improved. In addition, the fact that the MTJ element 13 can be enlarged improves the consistency between the manufacturing process of the MTJ element 13 and the manufacturing process of the transistor. This is because the MTJ element 13 that can be processed is larger than the mature transistor.
 なお、図11(実施の形態)の書き込み線15は、中央部(凸部15a)は矩形形状であり、両端部(枝部15c)は中央部から行方向(X方向)へ延在する細長い矩形形状である。ただし、書き込み線15は、この形状に限定されるのもではなく、中央部(凸部15a)がMTJ素子13のような楕円形状を有していても良いし、丸みを帯びた略矩形形状であっても良い。 Note that the write line 15 in FIG. 11 (embodiment) has a central portion (convex portion 15a) having a rectangular shape, and both end portions (branches 15c) are elongated extending in the row direction (X direction) from the central portion. It has a rectangular shape. However, the write line 15 is not limited to this shape, and the central portion (convex portion 15a) may have an elliptical shape like the MTJ element 13 or a rounded substantially rectangular shape. It may be.
 なお、図11(実施の形態)の書き込み線15は、メモリセルCの行方向(X方向)の中心軸を通るzx平面(基板に略垂直)に対し、面対称である。ただし、中心軸とは、行方向(X方向)に隣接するメモリセルCのMTJ素子13の中心を通る軸である。しかし、その書き込み線15は、その中心軸を通るzx平面に対して必ずしも面対称である必要はない。面対称でなくとも、次のように配置することで、同様の効果が得られる。例えば、偶数行のモリセルCの書き込み線15及び奇数行のメモリセルCの書き込み線15の配置を以下のように決定する。すなわち、両メモリセルCの書き込み線15のうち、いずれか一方の書き込み線15の位置は、他方の書き込み線15を行方向(X方向)の軸に対して反転させて、その後、両書き込み線15の凸部同士が互いにかみ合う様にリードビット線RBL間隔分だけ行方向(X方向)にずらして配置すればよい。ただし、この軸は、概ね両メモリセルのC境界を通る、又は、概ね両メモリセルCのMTJ素子13から等距離にある、行方向(X方向)の軸である。それにより、書き込み線15の凸部の突出具合が大きい方同士が互いにかみ合いつつ、書き込み線15の凸部の突出具合が小さい方同士が互いにかみ合うことが出来る。その結果、凸部の突出具合と凹部の引っ込み具合とを適切に組み合わせることが出来る。
 なお、図11、図13(後述)は、この要件を満たしている。
Note that the write line 15 in FIG. 11 (embodiment) is plane-symmetric with respect to a zx plane (substantially perpendicular to the substrate) passing through the central axis in the row direction (X direction) of the memory cell C. However, the central axis is an axis passing through the center of the MTJ element 13 of the memory cell C adjacent in the row direction (X direction). However, the writing line 15 does not necessarily have plane symmetry with respect to the zx plane passing through the central axis. Even if it is not plane-symmetric, the same effect can be obtained by arranging as follows. For example, the arrangement of the write lines 15 of even-numbered memory cells C and the write lines 15 of odd-numbered memory cells C is determined as follows. That is, the position of one of the write lines 15 of both memory cells C is reversed with respect to the axis in the row direction (X direction), and then both write lines 15 are written. What is necessary is just to arrange | position by 15 bit shift | offset | difference to the row direction (X direction) so that 15 convex parts may mutually engage. However, this axis is an axis in the row direction (X direction) that substantially passes through the C boundary of both memory cells or is equidistant from the MTJ element 13 of both memory cells C. As a result, the projections of the writing line 15 having larger projections can be engaged with each other while the projections of the projection of the writing line 15 having smaller projections can be engaged with each other. As a result, the protruding state of the convex portion and the retracting state of the concave portion can be appropriately combined.
Note that FIGS. 11 and 13 (described later) satisfy this requirement.
 なお、図11(実施の形態)の書き込み線15では、MTJ素子13にデータを書き込むのに必要な書き込み電流の大きさは、図15の書き込み配線とそれほど変わらない。なぜなら、書き込み電流は、MTJ素子13の直下を通過する電流分布の影響を最も受けるが、MTJ素子13直下の書き込み配線の形状は、図11と図15とで変わらないからである。 Note that, in the write line 15 of FIG. 11 (embodiment), the magnitude of the write current required for writing data to the MTJ element 13 is not so different from that of the write line of FIG. This is because the write current is most affected by the current distribution passing directly under the MTJ element 13, but the shape of the write wiring immediately under the MTJ element 13 does not change between FIG. 11 and FIG. 15.
 図13は、本発明の実施の形態の変形例に係る半導体記憶装置におけるメモリアレイのレイアウトの一部を示す平面図である。ただし、図13は図11に対応し、図13における各構成の符号は、図11における対応する各構成の符号と同じにしている。 FIG. 13 is a plan view showing a part of the layout of the memory array in the semiconductor memory device according to the modification of the embodiment of the present invention. However, FIG. 13 corresponds to FIG. 11, and the reference numerals of the respective components in FIG. 13 are the same as those of the corresponding respective components in FIG.
 図13のレイアウトと図11のレイアウトとを比較すると、Y方向のセルサイズが小さくなっている。この図の例では、CY(図11)が(CY-dY)(図13)になっている。すなわち、書き込み線15の両端のY方向の幅を狭くし、メモリセルCを千鳥配置させた図11のレイアウトに対して、更に、そのレイアウトにより生じたスペースの分だけY方向につめて、メモリセルCを配置することができる。従って、この実施の形態の変形例は、メモリセルの集積度をより高くすることができる。 13 is compared with the layout of FIG. 11, the cell size in the Y direction is smaller. In the example of this figure, CY (FIG. 11) is (CY-dY) (FIG. 13). That is, with respect to the layout of FIG. 11 in which the width in the Y direction at both ends of the write line 15 is narrowed and the memory cells C are arranged in a staggered manner, the space generated by the layout is further filled in the Y direction. Cell C can be placed. Therefore, the modification of this embodiment can increase the degree of integration of memory cells.
 このとき、図13のレイアウトは、例えば、メモリセルC10の書き込み線15の凸部15aの(-Y方向の)先端部は、メモリセルC00の書き込み線15の凸部の(+Y方向の)先端部とメモリセルC01の書き込み線15の凸部の(+Y方向の)先端部とを結ぶ線Qよりも、メモリセルC00及びメモリセルC01に近い側にある。従って、メモリセルC10の書き込み線15の凸部15aは、メモリセルC00の書き込み線15の凸部15aとメモリセルC01の書き込み線15の凸部15aとの間に形成される凹部15bに向いて、図11の場合と比較してその凹部15bにより深く嵌まり込むように配置されている。 At this time, for example, the layout of FIG. 13 shows that the tip (in the −Y direction) of the projection 15a of the write line 15 of the memory cell C10 is the tip (in the + Y direction) of the projection of the write line 15 of the memory cell C00. And closer to the memory cell C00 and the memory cell C01 than the line Q connecting the leading end of the convex portion of the write line 15 of the memory cell C01 (in the + Y direction). Accordingly, the convex portion 15a of the write line 15 of the memory cell C10 faces the concave portion 15b formed between the convex portion 15a of the write line 15 of the memory cell C00 and the convex portion 15a of the write line 15 of the memory cell C01. As compared with the case of FIG. 11, it arrange | positions so that it may fit deeply into the recessed part 15b.
 なお、このような互いに凸部と凹部とを向い合せにする構造は、各組(一つの偶数行と一つの奇数行の組)ごとに、互いに向かい合った側だけとし、他の組と背中合わせとなる側については凸部/凹部を設けなくても良い。その場合でも、凸部/凹部を全く設けない場合に比較して、集積度を上げる効果を得ることができる。 In addition, such a structure in which the convex part and the concave part face each other is made only on the side facing each other for each group (one even line and one odd line group), and the other group and back to back. It is not necessary to provide a convex part / concave part on the side to be. Even in such a case, the effect of increasing the degree of integration can be obtained as compared with the case where no protrusion / recess is provided.
 以上のような、本実施の形態によれば、各文献に記載されたMRAMのメモリアレイに比べて格段に読み出し速度を向上することが可能となる。すなわち、図4に記載の2T1MTJセル及び特開2002-197852号公報に記載の1T1MTJセル(1-Transistor-1-MTJ素子型セル)では、ビット線が読み出しと書き込みで共有されている。そのため、ビット線に書き込み回路(あるいは書き込み電流をドライブするための電流スィッチ)が付加されている。その結果、ビット線の負荷容量が増大していて、読み出し速度を低下させる原因となる。そして、特開2002-197852号公報に記載されているMTJの反転しきい値カーブを利用した書き込み方式では、書き込み回路の複雑さ等の理由で書き込み時間を10ns以下にするのが難しい。従って、10ns以下に読み出し時間を短縮できたとしてもランダムアクセス時間は10ns以上になってしまう。 As described above, according to the present embodiment, the reading speed can be remarkably improved as compared with the MRAM memory array described in each document. That is, in the 2T1MTJ cell shown in FIG. 4 and the 1T1MTJ cell (1-Transistor-1-MTJ element type cell) described in Japanese Patent Laid-Open No. 2002-197852, the bit line is shared for reading and writing. Therefore, a write circuit (or a current switch for driving a write current) is added to the bit line. As a result, the load capacity of the bit line is increased, which causes a decrease in read speed. In the writing method using the MTJ inversion threshold curve described in Japanese Patent Laid-Open No. 2002-197852, it is difficult to reduce the writing time to 10 ns or less due to the complexity of the writing circuit. Therefore, even if the read time can be shortened to 10 ns or less, the random access time will be 10 ns or more.
 しかし、本実施の形態では、ビット線が読み出しと書き込みとで分離されている(リードビット線RBLとライトビット線WBL)。そのため、リードビット線RBLの負荷容量を低減することができる。加えて、図9及び図11に示されるように、本実施の形態では、一本のリードビット線RBLに接続されるMTJ素子13の数は、従来の場合に比較して、1/2に削減されている。MTJ素子13のトンネル絶縁膜の容量は、配線容量に比較して非常に大きい。そのため、MTJ素子13の削減により、リードビット線RBLの負荷容量を著しく低減させることができる。さらに、リードビット線RBLの負荷容量とリードビット線/RBLの負荷容量とは等しい。そのため、センス信号のセットリング時間と参照信号のセットリング時間とを等しくすることが可能である。従って、センス信号と参照信号とがセットリングしていなくても、それらの差の信号が十分大きければ高い信頼性をもってセンスすることが可能である。 However, in this embodiment, the bit lines are separated for reading and writing (read bit line RBL and write bit line WBL). Therefore, the load capacity of the read bit line RBL can be reduced. In addition, as shown in FIGS. 9 and 11, in this embodiment, the number of MTJ elements 13 connected to one read bit line RBL is halved compared to the conventional case. Has been reduced. The capacity of the tunnel insulating film of the MTJ element 13 is very large compared to the wiring capacity. Therefore, the load capacity of the read bit line RBL can be remarkably reduced by reducing the MTJ element 13. Further, the load capacity of read bit line RBL is equal to the load capacity of read bit line / RBL. Therefore, the settling time of the sense signal and the settling time of the reference signal can be made equal. Therefore, even if the sense signal and the reference signal are not set, if the difference signal is sufficiently large, it is possible to sense with high reliability.
 以上の理由により、従来のMRAMにおいて10ns以上かかっていた読み出し時間を、本実施の形態では5ns程度まで短縮することが可能となる。元々、2T1MTJセルは1ns程度まで書き込み時間を短縮できるセル方式である。従って、本発明によって、MRAMのランダムアクセス時間を5ns程度まで高速化が図れる。これは、多くのシステムLSIに搭載されているSRAMマクロに要求されるランダムアクセス時間にほぼ等しい。 For the above reasons, it is possible to reduce the read time, which took 10 ns or more in the conventional MRAM, to about 5 ns in this embodiment. Originally, the 2T1MTJ cell is a cell system that can shorten the writing time to about 1 ns. Therefore, according to the present invention, the random access time of the MRAM can be increased to about 5 ns. This is approximately equal to the random access time required for SRAM macros mounted on many system LSIs.
 次に、本発明の実施の形態に係る半導体記憶装置の第1変形例について説明する。
 図17は、本発明の実施の形態に係る半導体記憶装置におけるメモリアレイの第1変形例の一部を示す断面図である。図18は、本発明の実施の形態に係る半導体記憶装置におけるメモリアレイの第1変形例のレイアウトの一部を示す平面図である。ただし、図17は、図18におけるBB’断面図である。図18は、図17におけるメタル層M2より上の層を示す。なお、メタル層M1以下は、図10と同様であるため、説明図は省略する。
Next, a first modification of the semiconductor memory device according to the embodiment of the present invention will be described.
FIG. 17 is a cross-sectional view showing a part of a first modification of the memory array in the semiconductor memory device according to the embodiment of the present invention. FIG. 18 is a plan view showing a part of the layout of the first modification of the memory array in the semiconductor memory device according to the embodiment of the present invention. However, FIG. 17 is a BB ′ cross-sectional view in FIG. FIG. 18 shows a layer above the metal layer M2 in FIG. The metal layer M1 and the subsequent layers are the same as those in FIG.
 図17及び図18に示されるように、本方法は、磁壁移動型のメモリ素子へも適用できる。たとえば、磁壁移動型のメモリ素子は、垂直磁化を有する磁性層50と、面内磁化を有するMTJ素子55から構成されている。磁性層50は、第1固定領域51及び第2固定領域52と、フリー領域53とを備えている。MTJ素子55は、フリー領域53の垂直磁化の漏れ磁界に応答して、低抵抗状態または高抵抗状態に変化する。MTJ素子55は、フリー領域53からの漏れ磁界で磁化方向が変化するフリー層と、絶縁層であるバリア層と、磁化方向が固定されたピン層とを備えている。本素子は、垂直磁性膜(磁性層50)に書き込み電流を流し、スピントルクの効果により、フリー領域53の磁化の向きを自由に変化させることができる。また、本素子は、小さな書き込み電流でデータを書き込むことできるため、低電力、セルトランジスタの縮小化が期待できる。 As shown in FIG. 17 and FIG. 18, the present method can be applied to a domain wall motion type memory element. For example, the domain wall motion type memory element includes a magnetic layer 50 having perpendicular magnetization and an MTJ element 55 having in-plane magnetization. The magnetic layer 50 includes a first fixed region 51, a second fixed region 52, and a free region 53. The MTJ element 55 changes to a low resistance state or a high resistance state in response to a perpendicular magnetization leakage magnetic field in the free region 53. The MTJ element 55 includes a free layer whose magnetization direction changes due to a leakage magnetic field from the free region 53, a barrier layer that is an insulating layer, and a pinned layer whose magnetization direction is fixed. In this element, a write current is passed through the perpendicular magnetic film (magnetic layer 50), and the magnetization direction of the free region 53 can be freely changed by the effect of spin torque. In addition, since this element can write data with a small write current, low power consumption and a reduction in cell transistor can be expected.
 例えば、メモリセルC00の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、拡散層61-1、拡散層61-2、ゲート62から構成されている。拡散層61-1は、コンタクトD1を介してライトビット線WBL0に接続されている。拡散層61-2は、コンタクトD2とM1とV1とM2とV2とM3とV3を介して磁性層50の第1固定領域51に接続されている。ゲート62は、ワード線WL0に接続され、ワード線WL0の直下に設けられている。同様に、第2トランジスタ12は、拡散層61-1、拡散層61-2、ゲートから構成される。拡散層61-1は、コンタクトD1を介してライトビット線/WBL0に接続されている。拡散層61-2は、コンタクトD2とM1とV1とM2とV2とM3とV3を介して磁性層50の第2固定領域52に接続されている。ゲート62は、ワード線WL0に接続され、ワード線WL0の直下に設けられている。磁性層50下には、MTJ素子55が配置されている。MTJ素子55は、その下方のリードビット線RBL0にM3とV2とM2とを介して接続されている。 For example, the first transistor 11 of the memory cell C00 is a dual gate transistor. The first transistor 11 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate 62. Diffusion layer 61-1 is connected to write bit line WBL0 via contact D1. The diffusion layer 61-2 is connected to the first fixed region 51 of the magnetic layer 50 through contacts D2, M1, V1, M2, V2, M3, and V3. The gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0. Similarly, the second transistor 12 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate. Diffusion layer 61-1 is connected to write bit line / WBL0 via contact D1. The diffusion layer 61-2 is connected to the second fixed region 52 of the magnetic layer 50 through contacts D2, M1, V1, M2, V2, M3, and V3. The gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0. An MTJ element 55 is disposed under the magnetic layer 50. The MTJ element 55 is connected to the lower read bit line RBL0 via M3, V2, and M2.
 ただし、リードビット線RBL0は、図示されないが、磁性層50の上側に配置されていてもよい。その場合、配線層M3は、ビアを介して、リードビット線RBL0に接続される。また、MTJ素子53は、図示されないが、磁性層50の上側に配置されていてもよい。その場合、MTJ53素子は、その上方のリードビット線RBL0に接続される。 However, although not shown, the read bit line RBL0 may be arranged on the upper side of the magnetic layer 50. In that case, the wiring layer M3 is connected to the read bit line RBL0 via a via. Further, although not shown, the MTJ element 53 may be disposed on the upper side of the magnetic layer 50. In this case, the MTJ53 element is connected to the upper read bit line RBL0.
 同様にメモリセルC01の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、コンタクトD1を介してライトビット線WBL1に接続された拡散層61-1、コンタクトD2とM1とV1とM2とV2とM3とV3を介して磁性層50の第1固定領域51に接続された拡散層61-2、ワード線WL0に接続されたゲート62から構成されている。第2トランジスタ12は、デュアルゲート型トランジスタである。第2トランジスタ12は、コンタクトD1を介してライトビット線/WBL1に接続された拡散層61-1、コンタクトD2とM1とV1とM2とV2とM3とV3を介して磁性層50の第2固定領域52に接続された拡散層61-2、ワード線WL0に接続されたゲート62から構成されている。磁性層50下には、MTJ素子55が配置されている。MTJ素子55は、その下方のリードビット線RBL1にM3とV2とM2とを介して接続されている。 Similarly, the first transistor 11 of the memory cell C01 is a dual gate transistor. The first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL1 through a contact D1, and a first fixed region of the magnetic layer 50 through contacts D2, M1, V1, M2, V2, M3, and V3. A diffusion layer 61-2 connected to 51 and a gate 62 connected to the word line WL0. The second transistor 12 is a dual gate transistor. The second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL1 through a contact D1, and a second fixed layer of the magnetic layer 50 through contacts D2, M1, V1, M2, V2, M3, and V3. A diffusion layer 61-2 connected to the region 52 and a gate 62 connected to the word line WL0 are included. An MTJ element 55 is disposed under the magnetic layer 50. The MTJ element 55 is connected to the lower read bit line RBL1 via M3, V2, and M2.
 同様にメモリセルC10の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、コンタクトD1を介してライトビット線/WBL0に接続された拡散層、コンタクトD2とM1とV1とM2とV2とM3とV3を介して磁性層50の第1固定領域51に接続された拡散層、ワード線に接続されたゲートから構成される。第2トランジスタ12は、デュアルゲート型トランジスタである。第2トランジスタ12は、コンタクトD1を介してライトビット線WBL1に接続された拡散層、コンタクトD2とM1とV1とM2とV2とM3とV3を介して磁性層50の第2固定領域52に接続された拡散層、ワード線に接続されたゲートから構成される。磁性層50下には、MTJ素子が配置され、MTJ素子の下方のリードビット線/RBL0と接続されている。以下同様である。 Similarly, the first transistor 11 of the memory cell C10 is a dual gate transistor. The first transistor 11 has a diffusion layer connected to the write bit line / WBL0 through the contact D1, and the first fixed region 51 of the magnetic layer 50 through the contacts D2, M1, V1, M2, V2, M3, and V3. It consists of a connected diffusion layer and a gate connected to a word line. The second transistor 12 is a dual gate transistor. The second transistor 12 is connected to the second fixed region 52 of the magnetic layer 50 through a contact connected to the write bit line WBL1 through the contact D1, and through the contacts D2, M1, V1, M2, V2, M3, and V3. And a gate connected to a word line. An MTJ element is disposed under the magnetic layer 50 and is connected to the read bit line / RBL0 below the MTJ element. The same applies hereinafter.
 次に、データの書き込みについて説明する。たとえば、偶数行のC00のメモリセルにおいて、第1固定領域51の磁化が+Z方向に、第2固定領域52の磁化が-Z方向に固定されていた場合、第2固定領域52から第1固定領域51に向かって電流を流すと、電子は第1固定領域51から第2固定領域52へ流れる。そして、スピントルクの効果により、フリー領域53の磁化の向きは第1固定領域51の磁化の向きと同じ+Z方向に向く。この時、MTJ素子55のフリー層の磁化は、-Y方向に向く。MTJ素子55のピン層の面内磁化の向きが-Y方向に固定されていると、MTJ素子55は低抵抗状態となり、データ「0」が書き込まれる。逆に、第1固定領域51から第2固定領域52に向かって電流を流すと、フリー領域53の磁化の向きは第2固定領域52の磁化の向きと同じ-Z方向に向く。この時、MTJ素子55のフリー層の磁化は、+Y方向に向く。MTJ素子55のピン層の面内磁化の向きが-Y方向に固定されていると、MTJ素子55は高抵抗状態となり、データ「1」が書き込まれる。 Next, data writing will be described. For example, in the even-numbered C00 memory cell, if the magnetization of the first fixed region 51 is fixed in the + Z direction and the magnetization of the second fixed region 52 is fixed in the −Z direction, the second fixed region 52 to the first fixed region When a current is passed toward the region 51, electrons flow from the first fixed region 51 to the second fixed region 52. Then, due to the effect of the spin torque, the magnetization direction of the free region 53 is directed to the + Z direction, which is the same as the magnetization direction of the first fixed region 51. At this time, the magnetization of the free layer of the MTJ element 55 is in the −Y direction. When the in-plane magnetization direction of the pinned layer of the MTJ element 55 is fixed in the −Y direction, the MTJ element 55 is in a low resistance state, and data “0” is written. Conversely, when a current is passed from the first fixed region 51 toward the second fixed region 52, the magnetization direction of the free region 53 is in the same −Z direction as the magnetization direction of the second fixed region 52. At this time, the magnetization of the free layer of the MTJ element 55 is oriented in the + Y direction. When the in-plane magnetization direction of the pinned layer of the MTJ element 55 is fixed in the −Y direction, the MTJ element 55 is in a high resistance state, and data “1” is written.
 奇数行のC10のメモリセルにおいては、偶数行とは異なり、第1固定領域51の磁化が-Z方向に、第2固定領域52の磁化が+Z方向に固定される。第2固定領域52から第1固定領域51に向かって電流を流すと、電子は第1固定領域51から第2固定領域52へ流れる。そして、スピントルクの効果により、フリー領域53の磁化の向きは第1固定領域51の磁化の向きと同じ-Z方向に向く。この時、MTJ素子55のフリー層の磁化は、-Y方向に向く。MTJ素子55のピン層の面内磁化の向きが-Y方向に固定されていると、MTJ素子55は低抵抗状態となり、データ「0」が書き込まれる。逆に、第1固定領域51から第2固定領域52に向かって電流を流すと、フリー領域53の磁化の向きは第2固定領域52の磁化の向きと同じ+Z方向に向く。この時、MTJ素子55のフリー層の磁化は、+Y方向に向く。MTJ素子55の固定層の面内磁化の向きが-Y方向に固定されていると、MTJ素子55は高抵抗状態となり、データ「1」が書き込まれる。 In the odd-numbered C10 memory cell, unlike the even-numbered row, the magnetization of the first fixed region 51 is fixed in the -Z direction and the magnetization of the second fixed region 52 is fixed in the + Z direction. When current flows from the second fixed region 52 toward the first fixed region 51, electrons flow from the first fixed region 51 to the second fixed region 52. Then, due to the effect of the spin torque, the magnetization direction of the free region 53 is in the same −Z direction as the magnetization direction of the first fixed region 51. At this time, the magnetization of the free layer of the MTJ element 55 is in the −Y direction. When the in-plane magnetization direction of the pinned layer of the MTJ element 55 is fixed in the −Y direction, the MTJ element 55 is in a low resistance state, and data “0” is written. Conversely, when a current is passed from the first fixed region 51 toward the second fixed region 52, the magnetization direction of the free region 53 is directed to the + Z direction, which is the same as the magnetization direction of the second fixed region 52. At this time, the magnetization of the free layer of the MTJ element 55 is oriented in the + Y direction. When the in-plane magnetization direction of the fixed layer of the MTJ element 55 is fixed in the −Y direction, the MTJ element 55 is in a high resistance state, and data “1” is written.
 上述のように、偶数行と奇数行のメモリセル毎に磁化の向きが異なる固定領域を作成することで、MTJ素子55のピン層の磁化の方向は一定にでき、かつ、図5や図6に示した回路で動作させることができる。 As described above, by creating fixed regions having different magnetization directions for the even-numbered and odd-numbered memory cells, the magnetization direction of the pinned layer of the MTJ element 55 can be made constant, and FIGS. The circuit shown in FIG.
 また、図18のメモリセルのレイアウトは、図13と同様にメモリセルの集積度を高くすることができる。すなわち、メモリセルC10の凸部(M3)の先端は、メモリセルC00及びメモリセルC01から構成される凹部(各メモリセルの向かい合う磁性層50の端部間の領域)に向いて、その凹部に深く嵌りこむように配置されている。それにより、図13の場合と同様の効果を得ることができる。 Further, the memory cell layout of FIG. 18 can increase the degree of integration of the memory cells as in FIG. That is, the tip of the convex portion (M3) of the memory cell C10 faces the concave portion (the region between the end portions of the magnetic layer 50 facing each memory cell) composed of the memory cell C00 and the memory cell C01. It is arranged to fit deeply. Thereby, the same effect as in the case of FIG. 13 can be obtained.
 次に、本発明の実施の形態に係る半導体記憶装置の第2変形例について説明する。
 図19は、本発明の実施の形態にかかる半導体記憶装置におけるメモリアレイの第2変形例の一部を示す断面図である。図20は、本発明の実施の形態に係る半導体記憶装置におけるメモリアレイの第2変形例のレイアウトの一部を示す平面図である。ただし、図19は、図20におけるCC’断面図である。図20は、図19における磁性層50より上の層を示す。なお、メタル層M1以下は、図10と同様であるため、説明図は省略する。
Next, a second modification of the semiconductor memory device according to the embodiment of the present invention will be described.
FIG. 19 is a cross-sectional view showing a part of a second modification of the memory array in the semiconductor memory device according to the embodiment of the present invention. FIG. 20 is a plan view showing a part of the layout of the second modification of the memory array in the semiconductor memory device according to the embodiment of the present invention. However, FIG. 19 is a CC ′ cross-sectional view in FIG. FIG. 20 shows layers above the magnetic layer 50 in FIG. The metal layer M1 and the subsequent layers are the same as those in FIG.
 図19及び図20に示されるように、本方法は、磁壁移動型のメモリ素子へも適用できる。たとえば、磁壁移動型のメモリ素子は、垂直磁化を有する磁性層50と、垂直磁化を有するMTJ素子55から構成されている。磁性層50は、第1固定領域51及び第2固定領域52と、フリー領域53とを備えている。MTJ素子55は、フリー領域53と兼用されたフリー層と、フリー領域53上に形成された絶縁層のバリア層56と、磁化方向が固定されたピン層57とを備えている。MTJ素子55は、フリー領域53すなわちフリー層の磁化の向きによって、低抵抗状態または高抵抗状態に変化する。本素子は、垂直磁性膜(磁性層50)に書き込み電流を流し、スピントルクの効果により、フリー領域53の磁化の向きを自由に変化させることができる。また、本素子は、小さな書き込み電流でデータを書き込むことできるため、低電力、セルトランジスタの縮小化が期待できる。 19 and 20, the present method can be applied to a domain wall motion type memory element. For example, the domain wall motion type memory element includes a magnetic layer 50 having perpendicular magnetization and an MTJ element 55 having perpendicular magnetization. The magnetic layer 50 includes a first fixed region 51, a second fixed region 52, and a free region 53. The MTJ element 55 includes a free layer that also serves as the free region 53, a barrier layer 56 that is an insulating layer formed on the free region 53, and a pinned layer 57 that has a fixed magnetization direction. The MTJ element 55 changes to a low resistance state or a high resistance state depending on the magnetization direction of the free region 53, that is, the free layer. In this element, a write current is passed through the perpendicular magnetic film (magnetic layer 50), and the magnetization direction of the free region 53 can be freely changed by the effect of spin torque. In addition, since this element can write data with a small write current, low power and a reduction in cell transistor can be expected.
 例えば、メモリセルC00の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、拡散層61-1、拡散層61-2、ゲート62から構成される。拡散層61-1は、コンタクトD1を介してライトビット線WBL0に接続されている。拡散層61-2は、コンタクトD2とM1とV1を介して磁性層50の第1固定領域51に接続されている。ゲート62は、ワード線WL0に接続され、ワード線WL0の直下に設けられている。同様に、第2トランジスタ12は、拡散層61-1、拡散層61-2、ゲートから構成される。拡散層61-1は、コンタクトD1を介してライトビット線/WBL0に接続されている。拡散層61-2は、コンタクトD2とM1とV1を介して磁性層50の第2固定領域52に接続されている。ゲート62は、ワード線WL0に接続され、ワード線WL0の直下に設けられている。磁性層50上には、MTJ素子555のバリア層56及びピン層57が配置されている。MTJ素子55は、その上方のリードビット線RBL0にMTJビア59を介して接続されている。 For example, the first transistor 11 of the memory cell C00 is a dual gate transistor. The first transistor 11 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate 62. Diffusion layer 61-1 is connected to write bit line WBL0 via contact D1. The diffusion layer 61-2 is connected to the first fixed region 51 of the magnetic layer 50 through contacts D2, M1, and V1. The gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0. Similarly, the second transistor 12 includes a diffusion layer 61-1, a diffusion layer 61-2, and a gate. Diffusion layer 61-1 is connected to write bit line / WBL0 via contact D1. The diffusion layer 61-2 is connected to the second fixed region 52 of the magnetic layer 50 through contacts D2, M1, and V1. The gate 62 is connected to the word line WL0 and is provided immediately below the word line WL0. On the magnetic layer 50, the barrier layer 56 and the pinned layer 57 of the MTJ element 555 are disposed. The MTJ element 55 is connected to the upper read bit line RBL0 via the MTJ via 59.
 ただし、MTJ素子55は、図示されないが、磁性層50の下側に配置されていてもよい。その場合、MTJ素子55は、その下方のリードビット線RBL0にMTJビア59を介して接続される。その場合、リードビット線RBL0とライトビット線WBL0とが接触しないように、コンタクトD2,M1、V1には十分な高さを持たせる。 However, although not shown, the MTJ element 55 may be disposed below the magnetic layer 50. In that case, the MTJ element 55 is connected to the lower read bit line RBL0 via the MTJ via 59. In that case, the contacts D2, M1, and V1 are provided with a sufficient height so that the read bit line RBL0 and the write bit line WBL0 do not contact each other.
 同様にメモリセルC01の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、コンタクトD1を介してライトビット線WBL1に接続された拡散層61-1、コンタクトD2とM1とV1を介して磁性層50の第1固定領域51に接続された拡散層61-2、ワード線WL0に接続されたゲート62から構成される。第2トランジスタ12は、デュアルゲート型トランジスタである。第2トランジスタ12は、コンタクトD1を介してライトビット線/WBL1に接続された拡散層61-1、コンタクトD2とM1とV1を介して磁性層50の第2固定領域52に接続された拡散層61-2、ワード線WL0に接続されたゲート62から構成される。磁性層50上には、MTJ素子555のバリア層56及びピン層57が配置されている。MTJ素子55は、その上方のリードビット線RBL1にMTJビア59を介して接続されている。 Similarly, the first transistor 11 of the memory cell C01 is a dual gate transistor. The first transistor 11 includes a diffusion layer 61-1 connected to the write bit line WBL1 through a contact D1, and a diffusion layer 61 connected to the first fixed region 51 of the magnetic layer 50 through contacts D2, M1, and V1. -, Comprising a gate 62 connected to the word line WL0. The second transistor 12 is a dual gate transistor. The second transistor 12 includes a diffusion layer 61-1 connected to the write bit line / WBL1 through a contact D1, and a diffusion layer connected to the second fixed region 52 of the magnetic layer 50 through contacts D2, M1, and V1. 61-2, comprising a gate 62 connected to the word line WL0. On the magnetic layer 50, the barrier layer 56 and the pinned layer 57 of the MTJ element 555 are disposed. The MTJ element 55 is connected to the upper read bit line RBL1 via the MTJ via 59.
 同様にメモリセルC10の第1トランジスタ11は、デュアルゲート型トランジスタである。第1トランジスタ11は、コンタクトD1を介してライトビット線/WBL0に接続された拡散層、コンタクトD2とM1とV1を介して磁性層50の第1固定領域51に接続された拡散層、ワード線に接続されたゲートから構成される。第2トランジスタ12は、デュアルゲート型トランジスタである。第2トランジスタ12、コンタクトD1を介してライトビット線WBL1に接続された拡散層、コンタクトD2とM1とV1を介して磁性層50の第2固定領域52に接続された拡散層、ワード線に接続されたゲートから構成される。磁性層50上には、MTJ素子555のバリア層56及びピン層57が配置されている。MTJ素子55は、その上方のリードビット線/RBL0にMTJビア59を介して接続されている。以下同様である。 Similarly, the first transistor 11 of the memory cell C10 is a dual gate transistor. The first transistor 11 includes a diffusion layer connected to the write bit line / WBL0 via the contact D1, a diffusion layer connected to the first fixed region 51 of the magnetic layer 50 via the contacts D2, M1, and V1, a word line It consists of a gate connected to. The second transistor 12 is a dual gate transistor. Second transistor 12, diffusion layer connected to write bit line WBL1 via contact D1, diffusion layer connected to second fixed region 52 of magnetic layer 50 via contact D2, M1 and V1, connected to word line Composed of gates. On the magnetic layer 50, the barrier layer 56 and the pinned layer 57 of the MTJ element 555 are disposed. The MTJ element 55 is connected to the upper read bit line / RBL0 via the MTJ via 59. The same applies hereinafter.
 次に、データの書き込みについて説明する。たとえば、偶数行のC00のメモリセルにおいて、第1固定領域51の磁化が+Z方向に、第2固定領域52の磁化が-Z方向に固定されていた場合、第2固定領域52から第1固定領域51に向かって電流を流すと、電子は第1固定領域51から第2固定領域52へ流れる。そして、スピントルクの効果により、フリー領域53の磁化の向きは第1固定領域51の磁化の向きと同じ+Z方向に向く。MTJ素子55のピン層57の面内磁化の向きが+Z方向に固定されていると、MTJ素子55は低抵抗状態となり、データ「0」が書き込まれる。逆に、第1固定領域51から第2固定領域52に向かって電流を流すと、フリー領域53の磁化の向きは第2固定領域52の磁化の向きと同じ-Z方向に向く。MTJ素子55のピン層57の面内磁化の向きが+Z方向に固定されていると、MTJ素子55は高抵抗状態となり、データ「1」が書き込まれる。 Next, data writing will be described. For example, in the even-numbered C00 memory cell, if the magnetization of the first fixed region 51 is fixed in the + Z direction and the magnetization of the second fixed region 52 is fixed in the −Z direction, the second fixed region 52 to the first fixed region When a current is passed toward the region 51, electrons flow from the first fixed region 51 to the second fixed region 52. Then, due to the effect of the spin torque, the magnetization direction of the free region 53 is directed to the + Z direction, which is the same as the magnetization direction of the first fixed region 51. When the in-plane magnetization direction of the pinned layer 57 of the MTJ element 55 is fixed in the + Z direction, the MTJ element 55 is in a low resistance state, and data “0” is written. Conversely, when a current is passed from the first fixed region 51 toward the second fixed region 52, the magnetization direction of the free region 53 is in the same −Z direction as the magnetization direction of the second fixed region 52. When the in-plane magnetization direction of the pinned layer 57 of the MTJ element 55 is fixed in the + Z direction, the MTJ element 55 is in a high resistance state, and data “1” is written.
 奇数行のC10のメモリセルにおいて、第1固定領域51の磁化が+Z方向に、第2固定領域52の磁化が-Z方向に固定されていた場合、第2固定領域52から第1固定領域51に向かって電流を流すと、電子は第1固定領域51から第2固定領域52へ流れる。そして、スピントルクの効果により、フリー領域53の磁化の向きは第1固定領域51の磁化の向きと同じ+Z方向に向く。MTJ素子55のピン層57の面内磁化の向きが+Z方向に固定されていると、MTJ素子55は低抵抗状態となり、データ「0」が書き込まれる。逆に、第1固定領域51から第2固定領域52に向かって電流を流すと、フリー領域53の磁化の向きは第2固定領域52の磁化の向きと同じ-Z方向に向く。MTJ素子55のピン層57の面内磁化の向きが+Z方向に固定されていると、MTJ素子55は高抵抗状態となり、データ「1」が書き込まれる。 In the odd-numbered C10 memory cell, when the magnetization of the first fixed region 51 is fixed in the + Z direction and the magnetization of the second fixed region 52 is fixed in the −Z direction, the second fixed region 52 to the first fixed region 51 When an electric current is passed toward, electrons flow from the first fixed region 51 to the second fixed region 52. Then, due to the effect of the spin torque, the magnetization direction of the free region 53 is directed to the + Z direction, which is the same as the magnetization direction of the first fixed region 51. When the in-plane magnetization direction of the pinned layer 57 of the MTJ element 55 is fixed in the + Z direction, the MTJ element 55 is in a low resistance state, and data “0” is written. Conversely, when a current is passed from the first fixed region 51 toward the second fixed region 52, the magnetization direction of the free region 53 is in the same −Z direction as the magnetization direction of the second fixed region 52. When the in-plane magnetization direction of the pinned layer 57 of the MTJ element 55 is fixed in the + Z direction, the MTJ element 55 is in a high resistance state, and data “1” is written.
 図20に示した磁壁移動型のメモリセルの磁性層50においては、フリー領域53(MTJ素子55のフリー層)のY方向の幅が第1、第2固定層領域51、52に比べ広いという特徴を持つ。これにより、磁壁のエネルギーはフリー領域53で高くなるため、磁壁がフリー領域53と第1、第2固定層領域51、52との境界という双安定な位置に留まりやすくなる。すなわち、データの書き込み時に磁壁がフリー領域で止まってしまうような不良モードやデータ保持時に磁壁がフリー領域に移動してしまうこと防ぐことができる。 In the magnetic layer 50 of the domain wall motion type memory cell shown in FIG. 20, the width in the Y direction of the free region 53 (the free layer of the MTJ element 55) is wider than that of the first and second fixed layer regions 51 and 52. Has characteristics. As a result, the energy of the domain wall becomes higher in the free region 53, and the domain wall tends to stay at a bistable position at the boundary between the free region 53 and the first and second fixed layer regions 51 and 52. That is, it is possible to prevent a failure mode in which the domain wall stops in the free area when data is written, or the domain wall to move to the free area during data holding.
 また、図20のメモリセルのレイアウトは、図13と同様にメモリセルの集積度を高くすることができる。すなわち、メモリセルC10の凸部(M3)の先端は、メモリセルC00及びメモリセルC01から構成される凹部(各メモリセルの向かい合う磁性層50の端部間の領域)に向いて、その凹部に深く嵌りこむように配置されている。それにより、図13の場合と同様の効果を得ることができる。 Further, the memory cell layout of FIG. 20 can increase the degree of integration of the memory cells as in FIG. That is, the tip of the convex portion (M3) of the memory cell C10 faces the concave portion (the region between the end portions of the magnetic layer 50 facing each memory cell) composed of the memory cell C00 and the memory cell C01. It is arranged to fit deeply. Thereby, the same effect as in the case of FIG. 13 can be obtained.
 以上のように、本発明では、メモリセルの集積度が高く、SRAM並みの高速動作(読み出し動作及び書き込み動作)を実行可能な半導体記憶装置を得ることができる。 As described above, according to the present invention, it is possible to obtain a semiconductor memory device that has a high degree of integration of memory cells and can perform high-speed operations (read operation and write operation) similar to SRAM.
 以上、実施の形態を参照して本発明を説明したが、本発明は上記実施の形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、各実施の形態は、技術的な矛盾の発生しない限り互いに適用可能である。 Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. Further, the embodiments can be applied to each other as long as no technical contradiction occurs.
 この出願は、2008年10月23日に出願された特許出願番号2008-272870号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。 This application is based on Japanese Patent Application No. 2008-272870 filed on Oct. 23, 2008 and claims the benefit of the priority of the application, and the disclosure of that application should be cited Is incorporated here as it is.

Claims (16)

  1.  複数のメモリセルを備えるメモリアレイを具備し、
     前記複数のメモリセルは、
      偶数行および奇数行のいずれか一方に沿って配置された第1メモリセル及び第3メモリセルと、
      他方に沿って配置された第2メモリセルと
      を備え、
     前記複数のメモリセルの各々は、
      セル内配線に一端を接続された磁気抵抗素子を含み、
      行方向に沿った辺の少なくとも一方の辺の中央部に、前記セル内配線を含む凸部を有し、
     前記第2メモリセルの前記凸部は、前記第1メモリセルの前記凸部と前記第3メモリセルの前記凸部との間に形成される凹部に向いて配置される
     半導体記憶装置。
    Comprising a memory array comprising a plurality of memory cells;
    The plurality of memory cells include
    A first memory cell and a third memory cell disposed along one of the even-numbered row and the odd-numbered row;
    A second memory cell disposed along the other,
    Each of the plurality of memory cells includes
    Including a magnetoresistive element connected at one end to the wiring in the cell;
    In the central part of at least one side of the side along the row direction has a convex part including the in-cell wiring,
    The convex portion of the second memory cell is arranged facing a concave portion formed between the convex portion of the first memory cell and the convex portion of the third memory cell.
  2.  請求の範囲1に記載の半導体記憶装置において、
     前記セル内配線は、内部を流れる書き込み電流で誘起される磁界又はスピントルクで前記磁気抵抗素子にデータを書き込む書き込み線である
     半導体記憶装置。
    The semiconductor memory device according to claim 1,
    The in-cell wiring is a write line for writing data into the magnetoresistive element by a magnetic field or spin torque induced by a write current flowing through the semiconductor memory device.
  3.  請求の範囲2に記載の半導体記憶装置において、
     前記書き込み線は、
     前記磁気抵抗素子が接続された前記凸部と、
     前記凸部の両側に設けられ前記行方向に延在する枝部と
     を含む
     半導体記憶装置。
    The semiconductor memory device according to claim 2,
    The write line is
    The convex portion to which the magnetoresistive element is connected;
    And a branch portion provided on both sides of the convex portion and extending in the row direction.
  4.  請求の範囲3に記載の半導体記憶装置において、
     前記第2メモリセルの前記書き込み線のレイアウトは、前記第1メモリセルの前記書き込み線のレイアウトを、前記第1メモリセルと前記第2メモリセルとの境界を通る前記行方向の軸に対して、反転させ、所定の間隔だけ前記行方向に並進させて設けられている
     半導体記憶装置。
    The semiconductor memory device according to claim 3,
    The layout of the write line of the second memory cell is different from the layout of the write line of the first memory cell with respect to an axis in the row direction passing through a boundary between the first memory cell and the second memory cell. A semiconductor memory device provided by being inverted and translated in the row direction by a predetermined interval.
  5.  請求の範囲3に記載の半導体記憶装置において、
     前記書き込み線は、前記行方向に前記書込み配線の中心を通り基板に略垂直な平面に対して面対称である
     半導体記憶装置。
    The semiconductor memory device according to claim 3,
    The write line is plane-symmetric with respect to a plane that passes through the center of the write wiring in the row direction and is substantially perpendicular to the substrate.
  6.  請求の範囲3に記載の半導体記憶装置において、
     前記磁気抵抗素子は、前記書き込み線の前記凸部の領域の上部または下部に配置される
     半導体記憶装置。
    The semiconductor memory device according to claim 3,
    The magnetoresistive element is disposed above or below a region of the convex portion of the write line.
  7.  請求の範囲3に記載の半導体記憶装置において、
     前記第2メモリセルの前記書き込み線の凸部の先端部は、前記第1メモリセルの前記書き込み線の凸部の先端部と前記第3メモリセルの前記書き込み線の凸部の先端部とを結ぶ線よりも、前記第1メモリセル及び前記第3メモリセルに近い側にある
     半導体記憶装置。
    The semiconductor memory device according to claim 3,
    The tip of the convex portion of the write line of the second memory cell is connected to the tip of the convex portion of the write line of the first memory cell and the tip of the convex portion of the write line of the third memory cell. A semiconductor memory device located closer to the first memory cell and the third memory cell than a connecting line.
  8.  請求の範囲1に記載の半導体記憶装置において、
     前記セル内配線は、前記磁気抵抗素子に流れる読み出し電流が経由する読み出し線である
     半導体記憶装置。
    The semiconductor memory device according to claim 1,
    The in-cell wiring is a read line through which a read current flowing in the magnetoresistive element passes. Semiconductor memory device.
  9.  請求の範囲8に記載の半導体記憶装置において、
     前記複数のメモリセルの各々は、
      前記行方向に延び、前記磁気抵抗素子の近傍に、前記読み出し線と反対側に設けられた書き込み線を更に含み、
     前記磁気抵抗素子の重心は、前記書き込み線の行方向の中心軸から偏っており、
     前記読み出し線は、前記行方向に略垂直な方向に延びる
     半導体記憶装置。
    The semiconductor memory device according to claim 8,
    Each of the plurality of memory cells includes
    A write line extending in the row direction and provided near the magnetoresistive element on the side opposite to the read line;
    The center of gravity of the magnetoresistive element is biased from the central axis in the row direction of the write line,
    The read line extends in a direction substantially perpendicular to the row direction.
  10.  請求の範囲9に記載の半導体記憶装置において、
     前記第2メモリセルの前記凸部のレイアウトは、前記第1メモリセルの前記凸部のレイアウトを前記第1メモリセルと前記第2メモリセルとの境界を通る前記行方向の軸に対して、反転させ、所定の間隔だけ前記行方向に並進させて設けられている
     半導体記憶装置。
    The semiconductor memory device according to claim 9,
    The layout of the convex portion of the second memory cell is such that the layout of the convex portion of the first memory cell is relative to the axis in the row direction passing through the boundary between the first memory cell and the second memory cell. A semiconductor memory device provided by being inverted and translated in the row direction by a predetermined interval.
  11.  請求の範囲9に記載の半導体記憶装置において、
     前記第2メモリセルの前記凸部の先端は、前記第1メモリセルの前記凸部の先端部と前記第3メモリセルの前記凸部の先端部とを結ぶ線よりも前記第1メモリセル及び前記第3メモリセルに近い側にある
     半導体記憶装置。
    The semiconductor memory device according to claim 9,
    The tip of the convex part of the second memory cell is more than the line connecting the tip part of the convex part of the first memory cell and the tip part of the convex part of the third memory cell, and A semiconductor memory device on a side closer to the third memory cell.
  12.  請求の範囲9に記載の半導体記憶装置において、
     前記書き込み線は、磁性体を含み、
     前記磁性体は、
      磁化の向きが固定された2つの固定領域と、
      前記2つの固定領域の間に設けられ、磁化の向きが変化するフリー領域と
      を含み、
      前記フリー領域の磁化は、前記2つの固定領域の一方から他方へ流れる前記書き込み電流の向きにより制御される
     半導体記憶装置。
    The semiconductor memory device according to claim 9,
    The write line includes a magnetic material,
    The magnetic body is
    Two fixed regions with fixed magnetization directions;
    A free region provided between the two fixed regions, the direction of magnetization of which changes, and
    The semiconductor memory device, wherein the magnetization of the free region is controlled by the direction of the write current flowing from one of the two fixed regions to the other.
  13.  請求の範囲2に記載の半導体記憶装置において、
     前記書き込み線は、磁性体を含み、
     前記磁性体は、
      磁化の向きが固定された2つの固定領域と、
      前記2つの固定領域の間に設けられ、磁化の向きが変化するフリー領域と
      を含み、
      前記フリー領域の磁化は、前記2つの固定領域の一方から他方へ流れる前記書き込み電流の向きにより制御される
     半導体記憶装置。
    The semiconductor memory device according to claim 2,
    The write line includes a magnetic material,
    The magnetic body is
    Two fixed regions with fixed magnetization directions;
    A free region provided between the two fixed regions, the direction of magnetization of which changes, and
    The semiconductor memory device, wherein the magnetization of the free region is controlled by the direction of the write current flowing from one of the two fixed regions to the other.
  14.  請求の範囲13に記載の半導体記憶装置において、
     前記凸部は、前記フリー領域から形成され、
     前記凸部の両側に設けられ前記行方向に延在する枝部は、前記2つの固定領域から形成される
     半導体記憶装置。
    The semiconductor memory device according to claim 13,
    The convex portion is formed from the free region,
    Branch portions provided on both sides of the convex portion and extending in the row direction are formed from the two fixed regions. Semiconductor memory device.
  15.  請求の範囲1乃至14のいずれか1項に記載の半導体記憶装置において、
     前記複数のメモリセルの各々は、
     第1拡散層と第2拡散層とを含む第1トランジスタと、
     第3拡散層と第4拡散層とを含む第2トランジスタと
     を含み、
     前記第2拡散層と第3拡散層とは、前記書き込み線を介して電気的に接続される
     半導体記憶装置。
    15. The semiconductor memory device according to claim 1, wherein:
    Each of the plurality of memory cells includes
    A first transistor including a first diffusion layer and a second diffusion layer;
    A second transistor including a third diffusion layer and a fourth diffusion layer;
    The semiconductor memory device, wherein the second diffusion layer and the third diffusion layer are electrically connected via the write line.
  16.  請求の範囲15に記載の半導体記憶装置において、
     前記第1メモリセルの前記第4拡散層と前記第2メモリセルの前記第1拡散層とが共用され、
     前記第2メモリセルの前記第4拡散層と前記第3メモリセルの前記第1拡散層とが共用される
     半導体記憶装置。
    The semiconductor memory device according to claim 15,
    The fourth diffusion layer of the first memory cell and the first diffusion layer of the second memory cell are shared;
    A semiconductor memory device in which the fourth diffusion layer of the second memory cell and the first diffusion layer of the third memory cell are shared.
PCT/JP2009/068064 2008-10-23 2009-10-20 Semiconductor memory device WO2010047328A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010534814A JP5565704B2 (en) 2008-10-23 2009-10-20 Semiconductor memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008272870 2008-10-23
JP2008-272870 2008-10-23

Publications (1)

Publication Number Publication Date
WO2010047328A1 true WO2010047328A1 (en) 2010-04-29

Family

ID=42119365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068064 WO2010047328A1 (en) 2008-10-23 2009-10-20 Semiconductor memory device

Country Status (2)

Country Link
JP (1) JP5565704B2 (en)
WO (1) WO2010047328A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511540A (en) * 2011-02-25 2014-05-15 クアルコム,インコーポレイテッド Configurable memory array
US9805780B2 (en) 2014-09-19 2017-10-31 Kabushiki Kaisha Toshiba Nonvolatile memory with magnetoresistive element and transistor
CN111724838A (en) * 2019-03-20 2020-09-29 东芝存储器株式会社 Semiconductor memory device with a plurality of memory cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017665A (en) * 2001-04-26 2003-01-17 Mitsubishi Electric Corp Thin film magnetic material storage device
JP2007067064A (en) * 2005-08-30 2007-03-15 Toshiba Corp Magnetic random access memory
JP2007258460A (en) * 2006-03-23 2007-10-04 Nec Corp Magnetic memory cell, magnetic random access memory, semiconductor device, and method for manufacturing the same
WO2008099626A1 (en) * 2007-02-13 2008-08-21 Nec Corporation Magnetoresistance effect element and magnetic random access memory
WO2008102650A1 (en) * 2007-02-21 2008-08-28 Nec Corporation Semiconductor storage device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3848119B2 (en) * 2000-09-27 2006-11-22 キヤノン株式会社 Nonvolatile solid-state memory using magnetoresistance effect
JP4450538B2 (en) * 2002-03-26 2010-04-14 株式会社ルネサステクノロジ Thin film magnetic memory device
JP3888463B2 (en) * 2002-11-27 2007-03-07 日本電気株式会社 Memory cell and magnetic random access memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017665A (en) * 2001-04-26 2003-01-17 Mitsubishi Electric Corp Thin film magnetic material storage device
JP2007067064A (en) * 2005-08-30 2007-03-15 Toshiba Corp Magnetic random access memory
JP2007258460A (en) * 2006-03-23 2007-10-04 Nec Corp Magnetic memory cell, magnetic random access memory, semiconductor device, and method for manufacturing the same
WO2008099626A1 (en) * 2007-02-13 2008-08-21 Nec Corporation Magnetoresistance effect element and magnetic random access memory
WO2008102650A1 (en) * 2007-02-21 2008-08-28 Nec Corporation Semiconductor storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511540A (en) * 2011-02-25 2014-05-15 クアルコム,インコーポレイテッド Configurable memory array
US9805780B2 (en) 2014-09-19 2017-10-31 Kabushiki Kaisha Toshiba Nonvolatile memory with magnetoresistive element and transistor
CN111724838A (en) * 2019-03-20 2020-09-29 东芝存储器株式会社 Semiconductor memory device with a plurality of memory cells
CN111724838B (en) * 2019-03-20 2023-11-10 铠侠股份有限公司 Semiconductor memory device with a memory cell having a memory cell with a memory cell having a memory cell

Also Published As

Publication number Publication date
JP5565704B2 (en) 2014-08-06
JPWO2010047328A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5164027B2 (en) Semiconductor memory device
JP5025702B2 (en) Semiconductor memory device
US6839269B2 (en) Magnetic random access memory
US7505307B2 (en) Semiconductor memory having resistance change element
KR101604042B1 (en) Magnetic random access memory and method of operating the same
KR100428596B1 (en) Magnetic random access memory
JP5100514B2 (en) Semiconductor memory
US8902644B2 (en) Semiconductor storage device and its manufacturing method
US7672155B2 (en) Resistive memory devices including selected reference memory cells
JPWO2009031677A1 (en) Semiconductor device
WO2009122519A1 (en) Magnetic random access memory
US9754664B2 (en) Semiconductor memory
JP2011222829A (en) Resistance change memory
JP5045672B2 (en) MRAM using 2T2MTJ cell
US9293183B2 (en) Magnetoresistive random access memory
US20120063216A1 (en) Semiconductor storage device
US9741434B2 (en) Resistance change memory
JP2013026337A (en) Semiconductor device and magnetic random access memory
JP2010003391A (en) Resistance change type memory
JP5565704B2 (en) Semiconductor memory device
JP3809445B2 (en) Magnetoresistive random access memory and driving method thereof
JP5091450B2 (en) Magnetic random access memory
EP1433181A2 (en) Current source and drain arrangement for magnetoresistive memories (mrams)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010534814

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09822025

Country of ref document: EP

Kind code of ref document: A1