WO2010047268A1 - Resin forming apparatus and resin forming method - Google Patents

Resin forming apparatus and resin forming method Download PDF

Info

Publication number
WO2010047268A1
WO2010047268A1 PCT/JP2009/067846 JP2009067846W WO2010047268A1 WO 2010047268 A1 WO2010047268 A1 WO 2010047268A1 JP 2009067846 W JP2009067846 W JP 2009067846W WO 2010047268 A1 WO2010047268 A1 WO 2010047268A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
light
light source
thermoplastic resin
irradiation position
Prior art date
Application number
PCT/JP2009/067846
Other languages
French (fr)
Japanese (ja)
Inventor
栗原文夫
高見正光
Original Assignee
テクノポリマー株式会社
日本レックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノポリマー株式会社, 日本レックス株式会社 filed Critical テクノポリマー株式会社
Publication of WO2010047268A1 publication Critical patent/WO2010047268A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • B29C35/0894Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds provided with masks or diaphragms

Definitions

  • the present invention relates to a resin molding apparatus and a resin molding method configured to distribute light emitted from a light source by a reflector, guide the light to a rubber mold, and heat a thermoplastic resin in the mold.
  • lamps configured to heat an object to be heated using light (electromagnetic waves).
  • light electromagnetic waves
  • the use efficiency of light is low because the depth of the reflector disposed behind the lamp is shallow and the lamp itself becomes an obstacle. For this reason, enormous power is consumed, and the light intensity is insufficient for irradiation at a relatively long distance.
  • a single lamp type (point light source) lamp is arranged and a substantially uniform light distribution is formed by the structural design of the reflecting mirror.
  • a reflecting mirror having a curved reflecting surface formed in a bowl shape or a combination of a number of minute flat reflecting surfaces in a bowl shape is used.
  • the shape of a light source such as a filament is projected onto an object to be heated by a reflecting mirror, thereby forming a portion that is locally heated significantly. Therefore, it is not sufficient for heating the object to be heated substantially uniformly.
  • the shape of the object to be heated is different, the part to be heated locally changes, and it is difficult to use the object to be heated with various shapes.
  • Patent Document 1 in order to uniformly heat a semiconductor wafer to be heated, light from a light source is collected by a reflecting mirror, and light from the reflecting mirror is focused on a semiconductor wafer via a deflector.
  • a light heating device is disclosed that irradiates and drives a deflector to scan the wafer surface with the focused light.
  • spot-concentrated focused light is scanned at high speed to reduce light irradiation unevenness. For this reason, the configuration of the apparatus for performing high-speed scanning is complicated.
  • the present invention has been made in view of such conventional problems, and can selectively heat a thermoplastic resin in a mold compared to a rubber mold.
  • An object of the present invention is to provide a resin molding apparatus and a resin molding method capable of making the heating temperature uniform in each part of the plastic resin.
  • a rubber mold having a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 ⁇ m, and light emitted from the light source.
  • a reflector for distributing light and guiding it to the mold, The reflector has a reflecting surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflecting surface to a target irradiation position at a predetermined distance from the light source.
  • the light source and the reflector are fixed and light is distributed to the target irradiation position, the light source and the reflector are defined as a range in which the light reflected by the reflecting surface reaches the target irradiation position.
  • the irradiation range is changed so as to draw a circle with respect to the target irradiation position, and the target irradiation is performed.
  • the thermoplastic resin filled in the cavity is irradiated with light from the surface of the molding die arranged around the position to heat the thermoplastic resin.
  • the resin molding apparatus uses a single-lamp lamp using a light source and a reflector when forming a resin molded product made of a thermoplastic resin using a rubber mold, and appropriately applies a light irradiation range. By changing the temperature, the heating temperature at each portion of the thermoplastic resin in the mold can be made uniform.
  • a thermoplastic resin is filled in a cavity of a rubber mold. At the time of filling, light including a wavelength region of 0.78 to 2 ⁇ m emitted from a light source is distributed by a reflector and irradiated to the thermoplastic resin in the cavity from the surface of the mold. At this time, the thermoplastic resin can be heated more than the rubber mold because of the difference in physical properties between the rubber and the thermoplastic resin constituting the mold.
  • the temperature of the thermoplastic resin in the cavity can be maintained higher than the temperature of the rubber mold until the filling of the thermoplastic resin into the cavity is completed. Therefore, it is possible to selectively heat the thermoplastic resin in the cavity with respect to the rubber mold, and it is possible to prevent poor filling of the thermoplastic resin in the cavity and obtain a good resin molded product. be able to.
  • the light (electromagnetic wave) irradiated to the thermoplastic resin through the mold may include not only light in the wavelength region of 0.78 to 2 ⁇ m but also light in other regions. In this case, it is preferable that the light irradiated to the thermoplastic resin through the mold includes a larger amount of light in a region having a wavelength of 0.78 to 2 ⁇ m than light in other regions.
  • a reflector having a structure in which a reflecting surface is formed in a bowl shape and light is distributed substantially uniformly to a target irradiation position is used. Then, the light irradiation range is changed so as to draw a circle with respect to the target irradiation position by rotating the light source and the reflector integrally or by rotating the reflector while fixing the light source. Thereby, it can prevent that the site
  • the heating temperature is uniformized not only in the thermoplastic resin in the specific-shaped mold but also in the various portions of the thermoplastic resin. be able to.
  • the resin molding apparatus of the present invention has a simple configuration in which the light source and the reflector are rotated, or only the reflector is rotated.
  • thermoplastic resin in the molding die it is possible to selectively heat the thermoplastic resin in the molding die as compared with the rubber molding die.
  • the heating temperature at the site can be made uniform.
  • thermoplastic resin can be selectively heated by the light including the wavelength region of 0.78 to 2 ⁇ m (particularly near infrared rays) as compared with the rubber mold is as follows. That is, light including a wavelength region of 0.78 to 2 ⁇ m irradiated on the surface of the rubber mold is absorbed by the thermoplastic resin, whereas the light reflected on the mold surface or transmitted through the mold is large. We think that there is much ratio to be done. For this reason, it is considered that the energy of light including a wavelength region of 0.78 to 2 ⁇ m is preferentially absorbed by the thermoplastic resin, and the thermoplastic resin can be selectively heated.
  • a rubber mold having a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 ⁇ m, and light emitted from the light source.
  • the reflector has a reflective surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflective surface to the relay reflector at a predetermined distance from the light source.
  • the relay reflector is configured to reflect light received from the reflector to a target irradiation position at a predetermined distance from the relay reflector,
  • the range in which the light reflected by the relay reflector reaches the target irradiation position is set as the irradiation range
  • the irradiation range is changed to draw a circle with respect to the target irradiation position, and around the target irradiation position
  • the thermoplastic resin filled in the cavity is irradiated with light from the surface of the molding die arranged on the surface to heat the thermoplastic resin.
  • the resin molding apparatus uses a single-lamp lamp using a light source and a reflector and a relay reflector in molding a resin molded product made of a thermoplastic resin using a rubber mold.
  • the light irradiation range can be appropriately changed more easily, and the heating temperature at each part of the thermoplastic resin in the mold can be made uniform.
  • a thermoplastic resin is filled in a cavity of a rubber mold.
  • light including a wavelength region of 0.78 to 2 ⁇ m emitted from the light source is distributed by the reflector and the relay reflector, and irradiated to the thermoplastic resin in the cavity from the surface of the mold. .
  • the thermoplastic resin can be heated more than the rubber mold because of the difference in physical properties between the rubber and the thermoplastic resin constituting the mold.
  • the temperature of the thermoplastic resin in the cavity can be maintained higher than the temperature of the rubber mold until the filling of the thermoplastic resin into the cavity is completed. Therefore, it is possible to selectively heat the thermoplastic resin in the cavity with respect to the rubber mold, and it is possible to prevent poor filling of the thermoplastic resin in the cavity and obtain a good resin molded product. be able to.
  • the reflector is formed in a bowl shape to distribute light substantially uniformly to the target irradiation position, and the relay reflector that reflects the light received from the reflector to the target irradiation position. Is used. Then, by rotating the relay reflecting mirror with the light source and the reflector fixed, the light irradiation range is changed to draw a circle with respect to the target irradiation position. Thereby, it can prevent that the site
  • the relay reflecting mirror since the relay reflecting mirror is rotated, it is not particularly necessary to rotate the light source, and it is possible to prevent the light source from being deteriorated due to vibration or the like when rotating.
  • the relay reflecting mirror since the relay reflecting mirror that is lightweight and does not have wiring or the like is configured to rotate, it is possible to easily drive the rotating component.
  • the concentration of the high light intensity portion does not occur at the target irradiation position, the heating temperature is uniformized not only in the thermoplastic resin in the specific-shaped mold but also in the various portions of the thermoplastic resin. be able to.
  • thermoplastic resin in the mold can be selectively heated compared to the rubber mold, and each part of the thermoplastic resin can be obtained by a simple apparatus configuration.
  • the heating temperature can be made uniform.
  • thermoplastic resin can be selectively heated by the light (particularly near infrared rays) including the wavelength region of 0.78 to 2 ⁇ m as compared with the rubber mold. Think the same way.
  • a rubber mold having a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 ⁇ m, and light emitted from the light source.
  • a resin molding apparatus having a reflector for distributing light and guiding it to the mold,
  • the reflector has a reflection surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflection surface to a target irradiation position at a predetermined distance from the light source,
  • the light source and the reflector are fixed and light is distributed to the target irradiation position, the light source and the reflector are defined as a range in which the light reflected by the reflecting surface reaches the target irradiation position.
  • the thermoplastic resin filled in the cavity is irradiated with light from the surface of the molding die arranged in the periphery of the mold to heat the thermoplastic resin.
  • a resin molded product can be obtained by utilizing the characteristics of a resin molding apparatus that can make the heating temperature of the thermoplastic resin uniform. Therefore, according to the resin molding method of the present invention, the thermoplastic resin in the mold can be selectively heated compared to the rubber mold, and the heating temperature of each part in the thermoplastic resin is made uniform. Therefore, an excellent quality resin molded product can be obtained.
  • a rubber mold that forms a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 ⁇ m, and light emitted from the light source.
  • a resin molding apparatus having a reflector that distributes and reflects light, and a relay reflector for further reflecting the light reflected from the reflector and guiding it to the mold,
  • the reflector has a reflection surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflection surface to the relay reflector at a predetermined distance from the light source.
  • the relay reflector is configured to reflect the light received from the reflector to a target irradiation position at a predetermined distance from the relay reflector,
  • the range in which the light reflected by the relay reflector reaches the target irradiation position is set as the irradiation range
  • the irradiation range is changed to draw a circle with respect to the target irradiation position, and around the target irradiation position
  • the thermoplastic resin filled in the cavity is irradiated with light from the surface of the molding die arranged on the surface to heat the thermoplastic resin.
  • a resin molded product can be obtained by utilizing the characteristics of a resin molding apparatus that can make the heating temperature of the thermoplastic resin uniform. Therefore, even with the resin molding method of the present invention, the thermoplastic resin in the mold can be selectively heated compared to the rubber mold, and the heating temperature of each part in the thermoplastic resin can be made uniform. As a result, an excellent quality resin molded product can be obtained.
  • FIG. 3 is an explanatory view showing a resin molding apparatus in Example 1.
  • FIG. 3 is an explanatory diagram showing a halogen heater in the first embodiment. Explanatory drawing which shows the movement irradiation range of the light in the target irradiation position by the resin molding apparatus in Example 1.
  • FIG. FIG. 3 is an explanatory diagram illustrating a result of a simulation of a light distribution state of a halogen heater in Example 1. The graph which shows the light intensity of each site
  • FIG. 3 is an explanatory diagram showing a result of a simulation of a light distribution state of another halogen heater in Example 1.
  • FIG. 3 is a graph showing the light transmittance of silicone rubber in Example 1.
  • FIG. Explanatory drawing which shows the resin molding apparatus in Example 2.
  • FIG. Explanatory drawing which shows the resin molding apparatus of the state in which the relay reflecting mirror in Example 2 rotates.
  • Explanatory drawing which shows the resin molding apparatus of the state in which the relay reflecting mirror in Example 2 rotates.
  • Explanatory drawing which shows typically a relay reflecting mirror in Example 2.
  • FIG. The graph which shows the result of having measured the temperature in each site
  • FIG. 1 The graph which shows the result of having measured the temperature in each site
  • the circle drawn by the irradiation range is not necessarily a perfect circle, and may be a circle such as an ellipse.
  • the irradiation range is preferably changed in a perfect circular orbit.
  • the irradiation range can be turned while rotating the irradiation range by devising the driving means (it can be changed in a planetary orbit).
  • the reflector can have a bowl shape that forms a circular irradiation range.
  • the light source and the reflector can be used not only as one set but also as a set.
  • the light source, the reflector, and the relay reflector can be used not only as one set but also as a set. That is, depending on the shape of the molded product (or cavity), it may be preferable to irradiate light from both sides or from the top, bottom, left, and right.
  • the thermoplastic resin is preferably an amorphous thermoplastic resin.
  • the cooling rate of the thermoplastic resin is slower than that of the mold because the mold is made of rubber. Therefore, the crystallinity of the thermoplastic resin may increase during cooling, which may reduce the dimensional accuracy of the resin molded product or the impact resistance of the resin molded product.
  • the thermoplastic resin an amorphous thermoplastic resin, it is possible to prevent a decrease in dimensional accuracy and a decrease in impact resistance of the resin molded product.
  • amorphous thermoplastic resins examples include styrene resins such as styrene / acrylonitrile copolymers, styrene / maleic anhydride copolymers, styrene / methyl methacrylate copolymers, and ABS resins (acrylonitrile / butadiene / styrene resins).
  • thermoplastic resin acrylonitrile, ethylene-propylene-diene, styrene resin
  • ASA resin acrylate, styrene, acrylonitrile resin
  • other rubber-modified thermoplastic resins or polymethyl methacrylate, polycarbonate resin (PC), PC / rubber A modified thermoplastic resin alloy or the like can be used.
  • PC polycarbonate resin
  • PC / rubber A modified thermoplastic resin alloy or the like can be used.
  • the rubber-modified thermoplastic resin is not particularly limited, but is preferably one containing one or more polymers obtained by graft polymerization of vinyl monomers in the presence of a rubbery polymer.
  • the rubbery polymer is not particularly limited, but polybutadiene, butadiene / styrene copolymer, butadiene / acrylonitrile copolymer, ethylene / propylene copolymer, ethylene / propylene / non-conjugated diene copolymer, ethylene / butene. -1 copolymer, ethylene / butene-1 / non-conjugated diene copolymer, acrylic rubber, silicone rubber, and the like. These can be used alone or in combination of two or more.
  • the rubber polymer polybutadiene, butadiene / styrene copolymer, ethylene / propylene copolymer, ethylene / propylene / nonconjugated diene copolymer, acrylic rubber is preferably used, and the rubber-modified thermoplastic is used.
  • the resin for example, ABS resin, AES resin, ASA resin or the like can be used. Among these, it is more preferable to use an ABS resin.
  • the mold is preferably made of silicone rubber.
  • the mold can be easily produced, and the thermoplastic resin can be selectively heated by the light including the wavelength region of 0.78 to 2 ⁇ m with little heating of the mold.
  • the hardness of the silicone rubber is preferably 25 to 80 in JIS-A standard measurement.
  • the light source is at a position offset with respect to a rotation center axis for integrally rotating the light source and the reflector, and the light source and the reflector are
  • the irradiation range can be changed so as to draw a circle with respect to the target irradiation position by integrally rotating around the moving center axis. In this case, it is easy to integrally rotate the light source and the reflector, and the resin molding apparatus can be configured easily.
  • the relay reflector has a light distribution direction reflected by the reflecting surface thereof in a direction inclined with respect to a rotation center axis for rotating the relay reflector,
  • the irradiation range can be changed to draw a circle with respect to the target irradiation position.
  • the relay reflector may be configured such that the tilt angle in the reflection light distribution direction can be changed by adjusting a screw with respect to the rotating main body rotating around the rotation center axis. it can.
  • the inclination angle of the relay reflector can be easily changed, and the turning diameter of the irradiation range to be changed so as to draw the circle can be easily adjusted.
  • the center in the irradiation range moves on a circular orbit around the center at the target irradiation position, and the diameter B of the circular orbit is 0.2A ⁇ B where A is the maximum outer diameter of the irradiation range. It is preferable to have a relationship of ⁇ 2A. In this case, in the irradiation range in which light is irradiated to the target irradiation position, it is easy to avoid the concentration of locally significantly heated parts on the thermoplastic resin in the mold by direct irradiation from the light source. it can.
  • the reflecting surface in the reflector has a multistage structure in which a large number of flat reflecting surfaces are combined or a continuous curved surface structure composed of one continuous curved reflecting surface, and the irradiation range is:
  • the reflection central axes of light reflected by a large number of flat reflecting surfaces are within the range where the light reflecting central axes reach the target irradiation position, or the light reflecting central axes of a large number of virtual reflecting surfaces defining one continuous curved reflecting surface. It can be set as a range to reach the target irradiation position.
  • the reflection central axis of light by each reflection surface or each virtual reflection surface means an optical axis that reflects the centroid position of each reflection surface or each virtual reflection surface.
  • the irradiation range has a circular shape
  • the multiple reflection surfaces or the multiple virtual reflection surfaces in the reflector are reflection centers of light reflected by the multiple reflection surfaces or the multiple virtual reflection surfaces.
  • the entire axis can be formed so as to reach the outside of the central portion of the diameter having a predetermined size with respect to the diameter of the entire irradiation range.
  • size with respect to the diameter of the said whole irradiation range means that it is the circular shape formed concentrically with the circular irradiation range.
  • the light source may be a halogen lamp, a xenon lamp, or the like that emits light including a wavelength region of 0.78 to 2 ⁇ m. Further, the output characteristics, shape, and the like of the light source can be selected according to the type of the object to be heated, the heating application, and the like.
  • the resin molding apparatus 1 of this example includes a rubber molding die 6 having a cavity 61 for filling a thermoplastic resin 8 and a wavelength region of 0.78 to 2 ⁇ m. And a reflector 3 for distributing the light emitted from the light source 2 and guiding it to the mold 6.
  • the reflector 3 is formed by combining a large number of flat reflecting surfaces 31 in a bowl shape, and distributes light emitted from the light source 2 by the large number of reflecting surfaces 31 to a target irradiation position G at a predetermined distance from the light source 2. It is configured.
  • the resin molding apparatus 1 of the present example has a light reflection center axis D ⁇ b> 1 of light reflected by each reflecting surface 31 when the light source 2 and the reflector 3 are fixed and light is distributed to the target irradiation position G. Irradiating the light source 2 and the reflector 3 in an integrated manner so as to draw a circle around the center O of the target irradiation position G.
  • the range E is changed, and the thermoplastic resin 8 filled in the cavity 61 is irradiated with light from the surface of the molding die 6 arranged around the target irradiation position G, and the thermoplastic resin 8 is heated. .
  • a moving irradiation range E ′ where the light reflection central axis D1 reaches is formed at the target irradiation position G.
  • the resin molding method of this example also heats the thermoplastic resin 8 by changing the irradiation range E so as to draw a circle with respect to the target irradiation position G by the same configuration as the resin molding apparatus 1.
  • the target irradiation position G can be matched with the central location in the light distribution direction X1 in the cavity 61 of the mold 6.
  • the light source 2 and the reflector 3 of this example constitute a halogen heater 11.
  • the halogen heater 11 is configured to rotate the light source 2 and the reflector 3 in an integrated manner so that the light distribution direction X1 (the reflection center axis C2 which is the center of the center of the reflection center axis D1) by the many reflecting surfaces 31 is rotated. It is arranged offset with respect to the moving center axis C1.
  • the light source 2 and the reflector 3 of this example are disposed in a rotating main body 4 that rotates (rotates) in response to a rotational force from a driving source such as a motor.
  • the center of the light source 2 and the reflector 3 (the entire reflection center axis C2) is offset (laterally shifted) with respect to the rotation center axis C1 to be configured.
  • the rotation main body 4 rotates, the light source 2 and the reflector 3 rotate (turn) around the rotation center axis C ⁇ b> 1, so that the light at the target irradiation position G is reflected.
  • the irradiation range E can be changed on a circular orbit S around the center O.
  • the reflector 3 of this example is formed by arranging a large number of flat reflecting plates 31 in a bowl shape that forms a circular irradiation range E.
  • the resin molding apparatus 1 is arranged so that the light distribution direction X1 (reflection center axis C2) is a predetermined inclination angle ⁇ with respect to the rotation center axis C1 of the rotation main body 4. It can also be set up. Also by this, the light irradiation range E at the target irradiation position G can be changed on the circular orbit S.
  • the light reflected by each reflecting surface 31 in the reflector 3 is irradiated to the target irradiation position G as light that diffuses around the reflection center axis D1 (having a light intensity peak on the reflection center axis D1).
  • the light source 2 of the present example is a halogen lamp 2 that emits light including a wavelength region of 0.78 to 2 ⁇ m (corresponding to a near infrared wavelength region).
  • the halogen lamp 2 has a light intensity peak in the wavelength region of 0.78 to 2 ⁇ m (in this example, about 0.9 ⁇ m).
  • the halogen lamp 2 includes a filament (light emitting body) 21 formed in a spiral shape in a protective tube 22 made of glass or the like. The center of the filament 21 is indicated by the symbol H.
  • the center in the light irradiation range E at the target irradiation position G moves on a circular orbit S around the center O at the target irradiation position G.
  • the turning center diameter (the turning diameter through which the center of the irradiation range E passes, the diameter of the circular orbit) B for turning the irradiation range E by the rotating main body 4 is the maximum outer diameter (in this example, the diameter) of the irradiation range E as A. Then, it can be determined to satisfy the relationship of 0.2A ⁇ B ⁇ 2A.
  • the maximum outer diameter of the irradiation range E refers to the maximum width on the diagonal line at the arrival point of the light reflection central axis D1 in the irradiation range E.
  • the maximum outer diameter of the irradiation range E refers to the diameter of a perfect circle.
  • the light irradiation range E can be set, for example, as a range having a diameter of ⁇ 20 to 300 mm.
  • the rotation speed for rotating the rotation main body 4 can be set to 10 to 100 rpm, for example.
  • the light emitted from the light source 2 is reflected by each reflecting surface 31 of the reflector 3 and irradiated to the target irradiation position G.
  • the light emitted from the light source 2 is indicated by the center H of the emission position of the light from the filament 21, and the straight line drawn from the reflector 3 to the target irradiation position G indicates the reflection center axis D ⁇ b> 1 on the multiple reflection surfaces 31.
  • the reflection center axis D ⁇ b> 1 is indicated by the optical axis that reflects the centroid position of the reflection surface 31.
  • the large number of reflecting surfaces 31 in the reflector 3 of this example are such that the entire reflection center axis D ⁇ b> 1 of the light reflected by the large number of reflecting surfaces 31 is the entire diameter of the irradiation range E. Is arranged in a state of reaching the outside of the range of the central portion F having a diameter of a predetermined size.
  • an irradiation range E at the target irradiation position G is set, and the directions of the reflecting surfaces 31 are set so that light reaches substantially the entire irradiation range E substantially uniformly. Can be determined.
  • FIG. 4 is arranged so that the entire reflection center axis D1 of the light reaches outside the range of the central portion F having a diameter of about 60% of the entire diameter of the irradiation range E.
  • the designed reflector 3 is shown.
  • FIG. 6 is designed so that the entire reflection center axis D1 of light reaches the outside of the range of the central portion F having a diameter of about 40% of the entire diameter of the irradiation range E.
  • the reflector 3 is shown.
  • the reflector 3 in FIG. 6 is formed by bringing the position of the light source 2 closer to the target irradiation position G by 1 mm (1 mm away from the reflector 3) than the reflector 3 in FIG.
  • the horizontal axis represents the relative distance (%) from the center of the irradiation range E
  • the vertical axis represents the light intensity (irradiation illuminance ratio) (%). It is a graph which shows the light intensity of.
  • FIG. 5 shows the characteristics in the case of FIG. 4, and
  • FIG. 7 shows the characteristics in the case of FIG.
  • the light intensity in the central portion F of the irradiation range E is higher in the halogen heater 11 in FIGS. 6 and 7 than in the halogen heater 11 in FIGS.
  • the relative distance (%) from the center of the irradiation range E indicates that 100% is the radial position of the irradiation range (irradiation diameter) E.
  • the light intensity (%) represents the light intensity at each portion (each relative distance from the center of the irradiation range E) with respect to the design specified value as a ratio (irradiation illuminance ratio) (%) when the design specified value is 100%. .
  • each halogen heater 11 has a light intensity (%) of about 100% or more in the range where the relative distance (%) from the center of the irradiation range E is about 80%, and from the center of the irradiation range E. In the range where the relative distance (%) is 80% or more, the light intensity (%) has a characteristic of decreasing at a predetermined gradient.
  • thermoplastic resin 8 an ABS resin that is an amorphous thermoplastic resin and a rubber-modified thermoplastic resin is used as the thermoplastic resin 8.
  • the mold 6 of this example is made of silicone rubber. This mold 6 is produced by placing a master model (handmade actual product, etc.) of a resin molded product to be molded in liquid silicone rubber, curing the silicone rubber, and taking out the master model from the cured silicone rubber. can do. Further, since the mold 6 is made of rubber, a parting surface (divided surface) for performing mold opening when taking out a molded resin molded product can be easily and arbitrarily formed.
  • the particulate thermoplastic resin 8 is introduced into the cavity 61 of the rubber mold 6, and the particulate heat in the cavity 61 is inserted through the mold 6.
  • the thermoplastic resin 8 is irradiated with light including a wavelength region of 0.78 to 2 ⁇ m to heat and melt the particulate thermoplastic resin 8
  • the molten thermoplastic resin is left in the space left in the cavity 61. 8 is filled and a resin molded product is molded.
  • a filter that reduces the amount of light having a wavelength exceeding 2 ⁇ m can be disposed between the reflector 3 and the mold 6.
  • This filter can be made of quartz glass or the like. In this case, the filter can make it difficult for the mold 6 to be irradiated with light having a wavelength easily absorbed by the mold 6 exceeding 2 ⁇ m, and the temperature rise of the mold 6 can be more effectively prevented.
  • a rubber filter made of the same quality rubber as the mold 6 can be disposed between the reflector 3 and the mold 6. Also in this case, light having a wavelength that is easily absorbed by the mold 6 can be absorbed by the rubber filter, and the temperature rise of the mold 6 can be more effectively prevented.
  • FIG. 9 shows the light transmittance of each silicone rubber, with wavelength (nm) on the horizontal axis and light transmittance (%) on the vertical axis for transparent silicone rubber and translucent silicone rubber. It is a graph. In the figure, it can be seen that each silicone rubber transmits light having a wavelength between 200 and 2200 (nm). For this reason, when near-infrared rays of this wavelength region are irradiated on the surface of the silicone rubber mold 6, most of the near-infrared light can be transmitted through the mold 6 and absorbed by the thermoplastic resin 8.
  • the resin molding apparatus 1 of this example uses a single-lamp lamp using a light source 2 and a reflector 3 to mold a resin molded product made of a thermoplastic resin 8 using a rubber mold 6.
  • the thermoplastic resin 8 in the mold 6 can be heated substantially uniformly.
  • the thermoplastic resin 8 is filled into the cavity 61 of the rubber mold 6.
  • light including a wavelength region of 0.78 to 2 ⁇ m emitted from the light source 2 is distributed by the reflector 3 and irradiated to the thermoplastic resin 8 in the cavity 61 from the surface of the mold 6.
  • the thermoplastic resin 8 can be heated more than the rubber mold 6 due to the difference in physical properties between the rubber constituting the mold 6 and the thermoplastic resin 8.
  • thermoplastic resin 8 in the cavity 61 can be maintained higher than the temperature of the rubber mold 6 until the filling of the thermoplastic resin 8 into the cavity 61 is completed. . Therefore, the thermoplastic resin 8 in the cavity 61 can be selectively heated with respect to the rubber mold 6, and it is possible to prevent a poor filling of the thermoplastic resin 8 in the cavity 61 from occurring. A resin molded product can be obtained.
  • the reflector 3 having a structure in which a large number of reflecting surfaces 31 are formed in a bowl shape and light is distributed substantially uniformly to the target irradiation position G is used. Then, when the rotation main body 4 is rotated around the rotation center axis C1, the light source 2 and the reflector 3 whose center is offset with respect to the rotation center axis C1 rotate integrally on the circular orbit S. To do.
  • the center P of the irradiation range E moves on the circular orbit S to form a moving irradiation range E ′.
  • a time zone in which light is irradiated and a time zone in which light is not irradiated are formed.
  • the heating temperature in each part of the thermoplastic resin 8 in the rubber mold 6 arranged at the target irradiation position G can be made uniform.
  • the shadow (local heating part) of the filament 21 generated when the shape of the filament (light emitting body) 21 is projected onto the target irradiation position G by the multiple reflecting surfaces 31 of the reflector 3 is the target. It moves at the irradiation position G. Thereby, it can prevent that the site
  • the heating temperature is uniformized not only in the thermoplastic resin 8 having a specific shape but also in the various portions of the thermoplastic resin 8. Can do. Furthermore, the heating temperature in each part of the thermoplastic resin 8 can be made uniform by a simple configuration in which the light source 2 and the reflector 3 are rotated. Therefore, according to the resin molding apparatus 1 of this example, the thermoplastic resin 8 in the molding die 6 can be selectively heated compared to the rubber molding die 6, and a simple device configuration can The heating temperature at each part of the plastic resin 8 can be made uniform.
  • the resin molding method of this example can also obtain a resin molded product by utilizing the characteristics of the resin molding apparatus 1 that can make the heating temperature of the thermoplastic resin 8 uniform. Therefore, according to the resin molding method of this example, the thermoplastic resin 8 in the molding die 6 can be selectively heated as compared with the rubber molding die 6, and each part of the thermoplastic resin 8 can be heated. It is possible to obtain an excellent quality resin molded product by making the temperature uniform.
  • thermoplastic resin 8 an ABS resin was used as the thermoplastic resin 8.
  • thermoplastic resin 8 in addition to this, when the surface of the mold 6 is irradiated with light including the wavelength region of 0.78 to 2 ⁇ m, the light transmitted without being absorbed into the mold 6 is transmitted.
  • a thermoplastic resin 8 that can be absorbed can be used.
  • the molded resin molded product is cooled by air cooling in the cavity 61 of the mold 6 and then taken out from the cavity 61.
  • the thermoplastic resin 8 can be selectively heated as described above, the temperature of the mold 6 can be maintained lower than the temperature of the thermoplastic resin 8. Therefore, the cooling time required for cooling the resin molded product can be shortened.
  • molding die 6 can be maintained low, deterioration of the shaping
  • Example 2 In this example, as shown in FIG. 10, instead of turning the light source 2 and the reflector 3, the light reflected by the reflector 3 is guided to the target irradiation position G by using the relay reflecting mirror 5.
  • the resin molding apparatus 1 of this example includes a rubber molding die 6 in which a cavity 61 for filling a thermoplastic resin 8 is formed, a light source 2 that emits light including a wavelength region of 0.78 to 2 ⁇ m, A reflector 3 that distributes and reflects light emitted from the light source 2 and a relay reflector 5 that further reflects the light reflected from the reflector 3 and guides it to the mold 6 are provided.
  • the reflector 3 of this example is formed with a large number of flat reflecting surfaces 31 in a bowl shape (see FIG. 2), and the light emitted from the light source 2 by the numerous reflecting surfaces 31 is at a predetermined distance from the light source 2. Light is distributed to the relay reflector 5.
  • the relay reflector 5 of this example is configured to reflect the light received from the reflector 3 to the target irradiation position G that is a predetermined distance from the relay reflector 5.
  • the resin molding apparatus 1 of the present example fixes the light source 2, the reflector 3, and the relay reflector 5 and distributes the light to the target irradiation position G.
  • the relay reflector is in a state where the light source 2 and the reflector 3 are fixed.
  • the irradiation range E is changed so as to draw a circle with respect to the target irradiation position G, and the cavity 61 is filled from the surface of the mold 6 arranged around the target irradiation position G.
  • the thermoplastic resin 8 is irradiated with light, and the thermoplastic resin 8 is heated.
  • the light distribution direction X2 reflected by the reflecting surface 51 is inclined with respect to the rotation center axis C1 for rotating the relay reflecting mirror 5. Facing the direction.
  • the relay reflecting mirror 5 of this example is disposed in the rotating main body 4 that rotates (rotates) in response to rotational force from a driving source such as a motor, and constitutes the center of rotation in the rotating main body 4.
  • the reflection light distribution direction X2 of the relay reflecting mirror 5 is inclined with respect to the rotation center axis C1.
  • the reflection light distribution direction X2 by the reflection surface 51 of the relay reflecting mirror 5 is the center O of the target irradiation position G by rotating the relay reflecting mirror 5 around the rotation center axis C1. It moves on the circular orbit S around. 11 and 12 show a state in which the reflected light distribution direction X2 changes due to the rotation of the rotation main body 4.
  • the relay reflector 5 of this example is in a state in which the reflection light distribution direction X2 by the reflection surface 51 is parallel to the rotation center axis C1 of the rotation main body 4 (the reflection surface 51 is vertical).
  • the relay reflector 5 is in the original position, the light received from the light source 2 (filament 21) is reflected to the center at the target irradiation position G.
  • the relay reflecting mirror 5 refracts the light received from the reflector 3 by 90 ° at the original position where the reflected light distribution direction X2 coincides with the rotation center axis C1, and guides it to the center O of the target irradiation position G. It is configured.
  • the rotation center axis C ⁇ b> 1 of the rotation main body 4 of this example is provided to be inclined by 45 ° with respect to the light distribution direction X ⁇ b> 1 by the reflector 3.
  • the relay reflecting mirror 5 of this example was formed in a disk shape.
  • the reflective surface 51 of the relay reflecting mirror 5 was formed in planar shape, it can also be formed in curved surface form other than this, for example.
  • the relay reflector 5 is configured such that the tilt angle ⁇ in the reflected light distribution direction X2 can be changed by adjusting the screw 42 with respect to the rotating main body 4 rotating around the rotation center axis C1. It is.
  • the relay reflecting mirror 5 of this example is screwed to both sides of the rotation main body 4 with the rotation center axis C1 sandwiched when the inclination angle ⁇ is changed with respect to the rotation main body 4.
  • the tip of the pair of screws 42 or the plurality of screws 42 is brought into contact with the relay reflector 5 and the projecting length from the screwing position to the tip position of each screw 42 with respect to the turning main body 4 is adjusted.
  • the reflection light distribution direction X2 of the reflection surface 51 with respect to the axis C1 is adjusted.
  • the reflector 3 When the tilt angle ⁇ of the reflection light distribution direction X2 with respect to the rotation center axis C1 is set to a predetermined angle by adjusting the screw 42, the reflector 3 is turned off when the relay reflecting mirror 5 is rotated by the rotation main body 4. The oriented light moves on a circular orbit S around the center O at the target irradiation position G.
  • the resin molding apparatus 1 of the present example includes a single-lamp lamp using a light source 2 and a reflector 3 and a relay reflector in molding a resin molded product made of a thermoplastic resin 8 using a rubber mold 6. 5, the light irradiation range E can be changed appropriately more easily, and the heating temperature in each part of the thermoplastic resin 8 in the mold 6 can be made uniform. .
  • the thermoplastic resin 8 is filled into the cavity 61 of the rubber mold 6. In this filling, light including a wavelength region of 0.78 to 2 ⁇ m emitted from the light source 2 is distributed by the reflector 3 and the relay reflecting mirror 5, and the heat in the cavity 61 is transmitted from the surface of the mold 6. Irradiate the plastic resin 8. At this time, the thermoplastic resin 8 can be heated more than the rubber mold 6 due to the difference in physical properties between the rubber constituting the mold 6 and the thermoplastic resin 8.
  • thermoplastic resin 8 in the cavity 61 can be maintained higher than the temperature of the rubber mold 6 until the filling of the thermoplastic resin 8 into the cavity 61 is completed. . Therefore, the thermoplastic resin 8 in the cavity 61 can be selectively heated with respect to the rubber mold 6, and it is possible to prevent a poor filling of the thermoplastic resin 8 in the cavity 61 from occurring. A resin molded product can be obtained.
  • the reflector 3 having a structure in which a large number of reflecting surfaces 31 are formed in a bowl shape to distribute light substantially uniformly to the target irradiation position G, and the light received from the reflector 3 is irradiated with the target.
  • the relay reflecting mirror 5 that reflects to the position G is used.
  • the thermoplastic resin 8 in the mold 6 is heated, the light emitted from the light source 2 is distributed by the reflector 3 and guided to the relay reflecting mirror 5. Further, the relay reflecting mirror 5 is rotated by the rotating main body 4.
  • the reflection light distribution direction X2 of the relay reflecting mirror 5 with respect to the rotation center axis C1 is adjusted to a predetermined inclination angle ⁇ , and the light incident on the reflecting surface 51 of the relay reflecting mirror 5 has a predetermined reflection angle.
  • the light is emitted to the target irradiation position G.
  • the center P of the irradiation range (irradiation diameter) E reflected by the relay reflector 5 moves on the circular orbit S, and each distance from the center O at the target irradiation position G.
  • a time zone in which light is irradiated and a time zone in which light is not irradiated are formed. And by this alternating irradiation of light, the heating temperature in each part of the thermoplastic resin 8 in the mold 6 arranged at the target irradiation position G can be made uniform.
  • the shadow (local heating part) of the filament 21 generated when the shape of the filament (light emitting body) 21 is projected onto the target irradiation position G by the multiple reflecting surfaces 31 of the reflector 3 is the target. It moves at the irradiation position G. Thereby, it can prevent that the site
  • the relay reflecting mirror 5 since the relay reflecting mirror 5 is configured to rotate, it is not particularly necessary to rotate the light source 2, and it is possible to prevent the light source 2 from being deteriorated due to vibration or the like when rotating. Can do.
  • the relay reflecting mirror 5 since the relay reflecting mirror 5 that is lightweight and has no wiring or the like is configured to rotate, the driving of the rotating main body 4 can be facilitated.
  • the concentration of the portion having high light intensity does not occur at the target irradiation position G, the heating temperature of each portion of the thermoplastic resin 8 in various shapes as well as the thermoplastic resin 8 in the specific shape molding die 6 is determined. Uniformity can be achieved.
  • thermoplastic resin 8 in the mold 6 can be selectively heated compared to the rubber mold 6, and the thermoplastic resin can be obtained by a simple apparatus configuration.
  • the heating temperature in each part of the resin 8 can be made uniform.
  • the resin molding method of this example can also obtain a resin molded product by utilizing the characteristics of the resin molding apparatus 1 that can make the heating temperature of the thermoplastic resin 8 uniform. Therefore, also by the resin molding method of this example, similarly to Example 1 above, it is possible to obtain a resin molded product of excellent quality by making the heating temperature of each part in the thermoplastic resin 8 uniform.
  • other configurations are the same as those of the first embodiment, and the same effects as those of the first embodiment can be obtained.
  • ABS resin a particulate thermoplastic resin 8 was used, and micro pellets having an average particle diameter of 700 ⁇ m were used.
  • ABS resin one having a recommended molding temperature of 220 ° C., an unmelted temperature of 170 ° C. or less, and an upper limit temperature that causes burning is 300 ° C. was used.
  • the cavity 61 was in a planar state with a thickness of 2 mm for testing.
  • the irradiation distance from the light source 2 to the target irradiation position G was 300 mm, and the irradiation range E at the target irradiation position G was ⁇ 100 mm.
  • the reflection diameter by the many reflecting surfaces 31 in the reflector 3 of this example was ⁇ 145 mm.
  • the relay reflector 5 is used in this confirmation test, the distance from the light source 2 to the relay reflector 5 is 150 mm, and the distance from the relay reflector 5 to the target irradiation position G is 150 mm.
  • the irradiation range E at the target irradiation position G was set to ⁇ 100 mm by narrowing down by the path from the light source 2 to the relay reflecting mirror 5 and the path from the relay reflecting mirror 5 to the target irradiation position G.
  • the halogen heater 11 shown in FIGS. 6 and 7 of Example 1 was used.
  • the entire reflection center axis D1 of the light reflected by the many reflecting surfaces 31 is about 40 with respect to the entire diameter of the irradiation range E. It is arranged so as to reach out of the range of the central portion F having a diameter of%.
  • the temperature of the ABS resin before heating filled in the cavity 61 of the mold 6 is 30 ° C., and the recommended molding temperature is within the range of ⁇ 150 mm, which is the irradiated range of the ABS resin in the cavity 61, by the resin molding apparatus 1.
  • the irradiation time (sec) until reaching 220 ° C. was measured.
  • the maximum temperature (° C.), average temperature (° C.), and minimum temperature (° C.) of the ABS resin on the irradiated surface having a diameter of 200 mm were also calculated from the values recorded every 10 seconds. Each temperature was measured using an infrared thermography (manufactured by Nippon Avionics Co., Ltd.). The results of this measurement are shown in Table 1.
  • Invention 1 shows a case where the rotation ratio B / A is 0.2
  • Invention 10 shows a case where the rotation ratio B / A is 2.
  • the evaluation of the test includes burn determination (determination of whether the surface of the thermoplastic resin 8 has burned), unmelting determination (determination of whether the thermoplastic resin 8 has melted), and comprehensively determine these. went.
  • the burn judgment is x when the maximum temperature of the thermoplastic resin 8 is 320 ° C. or higher, ⁇ when 300 to 319 ° C., ⁇ 280 ° C. when 280 to 299 ° C. The case of less than is indicated by ⁇ .
  • the unmelted determination is x when the minimum temperature of the thermoplastic resin 8 is less than 150 ° C., ⁇ when the temperature is 150 to 159 ° C., ⁇ when the temperature is 160 to 169 ° C., 170 ° C. or more. When it becomes, it shows by (double-circle).
  • thermoplastic resin 8 in the cavity 61 is burned (burning judgment is x), and the thermoplastic resin 8 is likely to be in an unmelted state (unmelting judgment is ⁇ ). Therefore, it can be seen that, depending on the comparison 1, the overall judgment is x, and it is not possible to make the heating temperature uniform in each part of the thermoplastic resin 8 in the mold 6.
  • thermoplastic resin 8 in each part of the cavity 61 may be burned depending on the irradiation time. (Burn determination is ⁇ ). However, an unmelted state does not occur (unmelted determination is ⁇ ). Therefore, it can be seen that, depending on the inventions 3 to 5, the overall judgment becomes “good”, and the heating temperature in each part of the thermoplastic resin 8 in the mold 6 can be made uniform.
  • thermoplastic resin 8 in each part of the cavity 61 is burned. It does not occur (burning judgment is ⁇ ), and an unmelted state does not occur (unmelting judgment is ⁇ ). Therefore, according to Inventions 6 to 10, the overall judgment is “ ⁇ ”, and it was found that the invention is more suitable for achieving uniform heating temperature at each part of the thermoplastic resin 8 in the mold 6.
  • the irradiation time (sec) until the inside of the range of ⁇ 150 mm which is the irradiation range reaches 220 ° C. becomes longer as the rotation ratio B / A is increased. That is, it can be seen that if the rotation ratio B / A is increased, the heating temperature of each part in the thermoplastic resin 8 can be made uniform, but the irradiation time becomes longer.
  • the rotation ratio B / A represents the entire reflection center axis D1 of the light reflected by the multiple reflecting surfaces 31 in the irradiation range E
  • the rotation ratio B / A is preferably 0.2-2, more preferably 0.6-2, and even more preferably 1.2-2.
  • the horizontal axis represents the distance from the center O at the target irradiation position G, and the vertical axis represents the temperature of the thermoplastic resin 8, and the temperature at each part of the thermoplastic resin 8 was measured. Results are shown. 14 shows Comparison 1, FIG. 15 shows Invention 5, and FIG. 16 shows Invention 9. In each figure, Invention 5 has less temperature deviation at each part of the thermoplastic resin 8 than Comparison 1, and Invention 9 has less temperature deviation at each part of the thermoplastic resin 8 than Invention 5. I understand that.
  • the entire reflection center axis D1 of the light reflected by the many reflecting surfaces 31 is about 60% of the entire diameter of the irradiation range E. It was formed so as to reach out of the range of the central part of the diameter.
  • the remaining configuration of the halogen heater 11 used in this confirmation test is the same as that in the confirmation test 1.
  • the formation state of the thermoplastic resin 8, the mold 6, and the cavity 61 in the mold 6 used in this confirmation test is the same as that in the confirmation test 1.
  • thermoplastic resin 8 in the cavity 61 is likely to be burned (burning judgment is ⁇ ), but the thermoplastic resin 8 is not in an unmelted state (unmelting judgment is ⁇ ). Therefore, depending on the comparison 2, it can be seen that the overall judgment is ⁇ , and it is not possible to make the heating temperature uniform in each part of the thermoplastic resin 8 in the mold 6.
  • thermoplastic resin 8 in each part of the cavity 61 may be burned (the burn judgment is ⁇ ). ) And no unmelted state occurs (unmelted determination is)). Therefore, it can be seen that, depending on the inventions 11 and 12, the overall judgment becomes “good”, and the heating temperature at each part of the thermoplastic resin 8 in the mold 6 can be made uniform.
  • FIG. 17 and FIG. 18 the horizontal axis is the distance from the center O at the target irradiation position G, and the vertical axis is the temperature of the thermoplastic resin 8, and the temperature at each part of the thermoplastic resin 8 is measured. Results are shown.
  • FIG. 17 shows Comparison 2
  • FIG. 18 shows Invention 13. In each figure, it can be seen that Invention 13 has less temperature deviation in each part of the thermoplastic resin 8 than Comparison 2. However, it can be seen that Invention 13 has a large temperature deviation compared to Invention 5 and Invention 9 shown in Confirmation Test 1. From the above results, the halogen heater 11 used in the confirmation test 1 is more uniform in the heating temperature of each part in the thermoplastic resin 8 in the mold 6 than the halogen heater 11 used in the confirmation test 2. Was found to be more suitable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A resin forming apparatus (1) has a forming die (6) composed of a rubber, a light source (2) which emits light including a wavelength region of 0.78-2μm, and a reflector (3) composed of many reflecting surfaces (31).  In the resin forming apparatus (1), at the time of distributing light to a target irradiation position (G) by fixing the light source (2) and the reflector (3), the light source (2) and the reflector (3) are integrally rotated and an irradiation range (E) is changed in a manner of drawing a circle with respect to the center of the target irradiation position (G), where the irradiation range (E) is the range where the reflection center axis line of light reflected by each reflecting surface (31) reaches the target irradiation position (G), and a thermoplastic resin (8) in the forming die (6) is heated.

Description

樹脂成形装置及び樹脂成形方法Resin molding apparatus and resin molding method
 本発明は、光源から発した光をリフレクタによって配光してゴム製の成形型へ導き、この成形型内の熱可塑性樹脂を加熱するよう構成した樹脂成形装置及び樹脂成形方法に関する。 The present invention relates to a resin molding apparatus and a resin molding method configured to distribute light emitted from a light source by a reflector, guide the light to a rubber mold, and heat a thermoplastic resin in the mold.
 光(電磁波)を用いて被加熱物を加熱するよう構成したランプとしては種々のものがある。
 例えば、直管型のランプを複数本並べて配置し、広い範囲に略均一に光を照射する方法がある。しかしながら、この方法によれば、ランプの後方に配置した反射鏡の奥行きが浅く、ランプ自身が邪魔になるなどの理由によって光の利用効率が低い。そのため、膨大な電力を消費し、かつ比較的遠距離の照射には光強度が不足する。
There are various types of lamps configured to heat an object to be heated using light (electromagnetic waves).
For example, there is a method in which a plurality of straight tube type lamps are arranged side by side and light is irradiated uniformly over a wide range. However, according to this method, the use efficiency of light is low because the depth of the reflector disposed behind the lamp is shallow and the lamp itself becomes an obstacle. For this reason, enormous power is consumed, and the light intensity is insufficient for irradiation at a relatively long distance.
 これに対し、単灯式(点光源)のランプを配置し、反射鏡の構造設計によって略均一な配光分布を形成する方法がある。この方法においては、反射鏡には、1つの曲面状の反射面を椀状に形成したもの又は多数の微小な平坦状の反射面を組み合わせて椀状に形成したものを用い、反射面による配光方向を設計することによって、所望の照射範囲に略均一な配光分布が得られるようにしている。これにより、光の利用効率を高くすることができ、遠距離の照射を行う際にも光強度が不足することを解消している。
 しかしながら、単灯式のランプを用いる際には、フィラメント等の光源の形状が反射鏡によって被加熱物上に投影されることにより、局所的に著しく加熱される部位を形成してしまう。そのため、被加熱物の略均一な加熱を行うためには十分ではない。また、被加熱物の形状が異なる場合には、局所的に加熱される部位が変化し、種々の形状の被加熱物に対して使用することが困難である。
On the other hand, there is a method in which a single lamp type (point light source) lamp is arranged and a substantially uniform light distribution is formed by the structural design of the reflecting mirror. In this method, a reflecting mirror having a curved reflecting surface formed in a bowl shape or a combination of a number of minute flat reflecting surfaces in a bowl shape is used. By designing the light direction, a substantially uniform light distribution can be obtained in a desired irradiation range. As a result, the light utilization efficiency can be increased, and the shortage of light intensity is eliminated even when long-distance irradiation is performed.
However, when a single-lamp lamp is used, the shape of a light source such as a filament is projected onto an object to be heated by a reflecting mirror, thereby forming a portion that is locally heated significantly. Therefore, it is not sufficient for heating the object to be heated substantially uniformly. In addition, when the shape of the object to be heated is different, the part to be heated locally changes, and it is difficult to use the object to be heated with various shapes.
 また、特許文献1には、被加熱対象となる半導体ウエハを均一に加熱するために、光源からの光を反射鏡により集め、反射鏡からの光を偏向器を介して半導体ウエハに集束光として照射すると共に、この集束光でウエハ面を走査するよう偏向器を駆動させる光加熱装置が開示されている。しかしながら、特許文献1においては、点集中させた集束光を高速で走査させて、光の照射むらを低減している。そのため、高速の走査を行うための装置の構成が複雑である。 Further, in Patent Document 1, in order to uniformly heat a semiconductor wafer to be heated, light from a light source is collected by a reflecting mirror, and light from the reflecting mirror is focused on a semiconductor wafer via a deflector. A light heating device is disclosed that irradiates and drives a deflector to scan the wafer surface with the focused light. However, in Japanese Patent Laid-Open No. 2004-228620, spot-concentrated focused light is scanned at high speed to reduce light irradiation unevenness. For this reason, the configuration of the apparatus for performing high-speed scanning is complicated.
実開平5-63043号公報Japanese Utility Model Publication No. 5-63043
 本発明は、かかる従来の問題点に鑑みてなされたもので、ゴム製の成形型に比べて成形型内の熱可塑性樹脂を選択的に加熱することができ、簡単な装置の構成によって、熱可塑性樹脂の各部位における加熱温度の均一化を図ることができる樹脂成形装置及び樹脂成形方法を提供しようとするものである。 The present invention has been made in view of such conventional problems, and can selectively heat a thermoplastic resin in a mold compared to a rubber mold. An object of the present invention is to provide a resin molding apparatus and a resin molding method capable of making the heating temperature uniform in each part of the plastic resin.
 第1の発明は、熱可塑性樹脂を充填するためのキャビティを形成してなるゴム製の成形型と、0.78~2μmの波長領域を含む光を発する光源と、該光源から発した光を配光して上記成形型へ導くためのリフレクタとを有し、
 該リフレクタは、その反射面を椀状に形成してなると共に、該反射面によって上記光源から発した光を該光源から所定距離にある目標照射位置へ配光するよう構成してあり、
 上記光源と上記リフレクタとを固定して上記目標照射位置へ配光する際に、上記反射面によって反射された光が上記目標照射位置に到達する範囲を照射範囲としたとき、上記光源と上記リフレクタとを一体的に回動させる、又は上記光源を固定した状態で上記リフレクタを回動させることにより、上記目標照射位置に対して、円を描くように上記照射範囲を変化させて、上記目標照射位置の周辺に配置した上記成形型の表面から上記キャビティ内に充填する上記熱可塑性樹脂に光を照射し、該熱可塑性樹脂を加熱するよう構成したことを特徴とする樹脂成形装置にある。
According to a first aspect of the present invention, there is provided a rubber mold having a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 μm, and light emitted from the light source. A reflector for distributing light and guiding it to the mold,
The reflector has a reflecting surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflecting surface to a target irradiation position at a predetermined distance from the light source.
When the light source and the reflector are fixed and light is distributed to the target irradiation position, the light source and the reflector are defined as a range in which the light reflected by the reflecting surface reaches the target irradiation position. , Or by rotating the reflector with the light source fixed, the irradiation range is changed so as to draw a circle with respect to the target irradiation position, and the target irradiation is performed. In the resin molding apparatus, the thermoplastic resin filled in the cavity is irradiated with light from the surface of the molding die arranged around the position to heat the thermoplastic resin.
 本発明の樹脂成形装置は、ゴム製の成形型を用いて熱可塑性樹脂からなる樹脂成形品を成形するに当たり、光源及びリフレクタを用いた単灯式のランプを用い、光の照射範囲を適切に変化させることによって、成形型内の熱可塑性樹脂の各部位における加熱温度の均一化を図ることができるものである。
 樹脂成形品を成形するに当たっては、ゴム製の成形型のキャビティ内に熱可塑性樹脂を充填する。そして、この充填の際には、光源から発した0.78~2μmの波長領域を含む光を、リフレクタによって配光し、成形型の表面からキャビティ内の熱可塑性樹脂に照射する。このとき、成形型を構成するゴムと熱可塑性樹脂との物性の違いにより、ゴム製の成形型に比べて、熱可塑性樹脂をより多く加熱することができる。
The resin molding apparatus according to the present invention uses a single-lamp lamp using a light source and a reflector when forming a resin molded product made of a thermoplastic resin using a rubber mold, and appropriately applies a light irradiation range. By changing the temperature, the heating temperature at each portion of the thermoplastic resin in the mold can be made uniform.
In molding a resin molded product, a thermoplastic resin is filled in a cavity of a rubber mold. At the time of filling, light including a wavelength region of 0.78 to 2 μm emitted from a light source is distributed by a reflector and irradiated to the thermoplastic resin in the cavity from the surface of the mold. At this time, the thermoplastic resin can be heated more than the rubber mold because of the difference in physical properties between the rubber and the thermoplastic resin constituting the mold.
 これにより、キャビティ内への熱可塑性樹脂の充填が完了するまでの間において、ゴム製の成形型の温度よりも、キャビティ内における熱可塑性樹脂の温度を高く維持することができる。そのため、ゴム製の成形型に対してキャビティ内の熱可塑性樹脂を選択的に加熱することができ、キャビティ内に熱可塑性樹脂の充填不良が生じることを防止して、良好な樹脂成形品を得ることができる。 Thereby, the temperature of the thermoplastic resin in the cavity can be maintained higher than the temperature of the rubber mold until the filling of the thermoplastic resin into the cavity is completed. Therefore, it is possible to selectively heat the thermoplastic resin in the cavity with respect to the rubber mold, and it is possible to prevent poor filling of the thermoplastic resin in the cavity and obtain a good resin molded product. be able to.
 なお、成形型を介して熱可塑性樹脂に照射する光(電磁波)としては、波長が0.78~2μmの領域の光だけでなく、これ以外の領域の光も含まれていてもよい。この場合において、成形型を介して熱可塑性樹脂に照射する光は、波長が0.78~2μmの領域の光を、これ以外の領域の光よりも多く含むことが好ましい。 Note that the light (electromagnetic wave) irradiated to the thermoplastic resin through the mold may include not only light in the wavelength region of 0.78 to 2 μm but also light in other regions. In this case, it is preferable that the light irradiated to the thermoplastic resin through the mold includes a larger amount of light in a region having a wavelength of 0.78 to 2 μm than light in other regions.
 また、本発明の樹脂成形装置においては、反射面を椀状に形成して目標照射位置へ略均一に配光する構造のリフレクタを用いる。そして、光源とリフレクタとを一体的に回動させる、又は光源を固定してリフレクタを回動させることにより、目標照射位置に対して、円を描くように光の照射範囲を変化させる。これにより、光源の形状がリフレクタによって目標照射位置に投影されることによって成形型内の熱可塑性樹脂に局所的に著しく加熱される部位が集中することを防止することができる。 In the resin molding apparatus of the present invention, a reflector having a structure in which a reflecting surface is formed in a bowl shape and light is distributed substantially uniformly to a target irradiation position is used. Then, the light irradiation range is changed so as to draw a circle with respect to the target irradiation position by rotating the light source and the reflector integrally or by rotating the reflector while fixing the light source. Thereby, it can prevent that the site | part which is heated remarkably locally on the thermoplastic resin in a shaping | molding die by projecting the shape of a light source to a target irradiation position with a reflector.
 また、目標照射位置に光強度が高い部位の集中が生じないため、特定形状の成形型内の熱可塑性樹脂だけでなく、種々の形状の熱可塑性樹脂の各部位における加熱温度の均一化を図ることができる。さらに、本発明の樹脂成形装置は、光源及びリフレクタを回動させるか、又はリフレクタのみを回動させる簡単な構成である。 In addition, since the concentration of the high light intensity portion does not occur at the target irradiation position, the heating temperature is uniformized not only in the thermoplastic resin in the specific-shaped mold but also in the various portions of the thermoplastic resin. be able to. Furthermore, the resin molding apparatus of the present invention has a simple configuration in which the light source and the reflector are rotated, or only the reflector is rotated.
 それ故、本発明の樹脂成形装置によれば、ゴム製の成形型に比べて成形型内の熱可塑性樹脂を選択的に加熱することができ、簡単な装置の構成によって、熱可塑性樹脂の各部位における加熱温度の均一化を図ることができる。 Therefore, according to the resin molding apparatus of the present invention, it is possible to selectively heat the thermoplastic resin in the molding die as compared with the rubber molding die. The heating temperature at the site can be made uniform.
 なお、上記0.78~2μmの波長領域を含む光(特に近赤外線)により、ゴム製の成形型に比べて、熱可塑性樹脂を選択的に加熱することができる理由としては、以下のように考える。
 すなわち、ゴム製の成形型の表面に照射された0.78~2μmの波長領域を含む光は、成形型の表面を反射又は成形型を透過する割合が多いのに対し、熱可塑性樹脂に吸収される割合が多いと考える。そのため、0.78~2μmの波長領域を含む光のエネルギーが熱可塑性樹脂に優先的に吸収されて、熱可塑性樹脂を選択的に加熱することができると考える。
The reason why the thermoplastic resin can be selectively heated by the light including the wavelength region of 0.78 to 2 μm (particularly near infrared rays) as compared with the rubber mold is as follows. Think.
That is, light including a wavelength region of 0.78 to 2 μm irradiated on the surface of the rubber mold is absorbed by the thermoplastic resin, whereas the light reflected on the mold surface or transmitted through the mold is large. We think that there is much ratio to be done. For this reason, it is considered that the energy of light including a wavelength region of 0.78 to 2 μm is preferentially absorbed by the thermoplastic resin, and the thermoplastic resin can be selectively heated.
 第2の発明は、熱可塑性樹脂を充填するためのキャビティを形成してなるゴム製の成形型と、0.78~2μmの波長領域を含む光を発する光源と、該光源から発した光を配光して反射するリフレクタと、該リフレクタから反射された光をさらに反射させて上記成形型へ導くための中継反射鏡とを有し、
 上記リフレクタは、その反射面を椀状に形成してなると共に、該反射面によって上記光源から発した光を該光源から所定距離にある上記中継反射鏡へ配光するよう構成してあり、
 上記中継反射鏡は、上記リフレクタから受けた光を当該中継反射鏡から所定距離にある目標照射位置へ反射させるよう構成してあり、
 上記光源と上記リフレクタと上記中継反射鏡とを固定して上記目標照射位置へ配光する際に、上記中継反射鏡によって反射された光が上記目標照射位置に到達する範囲を照射範囲としたとき、上記光源と上記リフレクタとを固定した状態で上記中継反射鏡を回動させることにより、上記目標照射位置に対して、円を描くように上記照射範囲を変化させて、上記目標照射位置の周辺に配置した上記成形型の表面から上記キャビティ内に充填する上記熱可塑性樹脂に光を照射し、該熱可塑性樹脂を加熱するよう構成したことを特徴とする樹脂成形装置にある。
According to a second aspect of the present invention, there is provided a rubber mold having a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 μm, and light emitted from the light source. A reflector for distributing and reflecting light, and a relay reflector for further reflecting the light reflected from the reflector and guiding it to the mold,
The reflector has a reflective surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflective surface to the relay reflector at a predetermined distance from the light source.
The relay reflector is configured to reflect light received from the reflector to a target irradiation position at a predetermined distance from the relay reflector,
When the light source, the reflector, and the relay reflector are fixed and light is distributed to the target irradiation position, the range in which the light reflected by the relay reflector reaches the target irradiation position is set as the irradiation range By rotating the relay reflector in a state where the light source and the reflector are fixed, the irradiation range is changed to draw a circle with respect to the target irradiation position, and around the target irradiation position In the resin molding apparatus, the thermoplastic resin filled in the cavity is irradiated with light from the surface of the molding die arranged on the surface to heat the thermoplastic resin.
 本発明の樹脂成形装置は、ゴム製の成形型を用いて熱可塑性樹脂からなる樹脂成形品を成形するに当たり、光源及びリフレクタを用いた単灯式のランプと、中継反射鏡とを用いることによって、より簡単に光の照射範囲を適切に変化させることができ、成形型内の熱可塑性樹脂の各部位における加熱温度の均一化を図ることができるものである。
 樹脂成形品を成形するに当たっては、ゴム製の成形型のキャビティ内に熱可塑性樹脂を充填する。そして、この充填の際には、光源から発した0.78~2μmの波長領域を含む光を、リフレクタ及び中継反射鏡によって配光し、成形型の表面からキャビティ内の熱可塑性樹脂に照射する。このとき、成形型を構成するゴムと熱可塑性樹脂との物性の違いにより、ゴム製の成形型に比べて、熱可塑性樹脂をより多く加熱することができる。
The resin molding apparatus according to the present invention uses a single-lamp lamp using a light source and a reflector and a relay reflector in molding a resin molded product made of a thermoplastic resin using a rubber mold. The light irradiation range can be appropriately changed more easily, and the heating temperature at each part of the thermoplastic resin in the mold can be made uniform.
In molding a resin molded product, a thermoplastic resin is filled in a cavity of a rubber mold. At the time of filling, light including a wavelength region of 0.78 to 2 μm emitted from the light source is distributed by the reflector and the relay reflector, and irradiated to the thermoplastic resin in the cavity from the surface of the mold. . At this time, the thermoplastic resin can be heated more than the rubber mold because of the difference in physical properties between the rubber and the thermoplastic resin constituting the mold.
 これにより、キャビティ内への熱可塑性樹脂の充填が完了するまでの間において、ゴム製の成形型の温度よりも、キャビティ内における熱可塑性樹脂の温度を高く維持することができる。そのため、ゴム製の成形型に対してキャビティ内の熱可塑性樹脂を選択的に加熱することができ、キャビティ内に熱可塑性樹脂の充填不良が生じることを防止して、良好な樹脂成形品を得ることができる。 Thereby, the temperature of the thermoplastic resin in the cavity can be maintained higher than the temperature of the rubber mold until the filling of the thermoplastic resin into the cavity is completed. Therefore, it is possible to selectively heat the thermoplastic resin in the cavity with respect to the rubber mold, and it is possible to prevent poor filling of the thermoplastic resin in the cavity and obtain a good resin molded product. be able to.
 また、本発明の樹脂成形装置においては、反射面を椀状に形成して目標照射位置へ略均一に配光する構造のリフレクタ、及びリフレクタから受けた光を目標照射位置へ反射させる中継反射鏡を用いる。そして、光源とリフレクタとを固定した状態で中継反射鏡を回動させることにより、目標照射位置に対して、円を描くように光の照射範囲を変化させる。これにより、光源の形状がリフレクタによって目標照射位置に投影されることによって成形型内の熱可塑性樹脂に局所的に著しく加熱される部位が集中することを防止することができる。 In the resin molding apparatus of the present invention, the reflector is formed in a bowl shape to distribute light substantially uniformly to the target irradiation position, and the relay reflector that reflects the light received from the reflector to the target irradiation position. Is used. Then, by rotating the relay reflecting mirror with the light source and the reflector fixed, the light irradiation range is changed to draw a circle with respect to the target irradiation position. Thereby, it can prevent that the site | part which is heated remarkably locally on the thermoplastic resin in a shaping | molding die by projecting the shape of a light source to a target irradiation position with a reflector.
 また、本発明においては、中継反射鏡を回動させる構造にしたことにより、特に光源を回動させる必要がなく、回動する際の振動等によって光源が劣化することを防止することができる。また、軽量かつ配線等がない中継反射鏡を回動させる構造にしたことにより、回動構成部分の駆動を容易にすることができる。
 また、目標照射位置に光強度が高い部位の集中が生じないため、特定形状の成形型内の熱可塑性樹脂だけでなく、種々の形状の熱可塑性樹脂の各部位における加熱温度の均一化を図ることができる。
In the present invention, since the relay reflecting mirror is rotated, it is not particularly necessary to rotate the light source, and it is possible to prevent the light source from being deteriorated due to vibration or the like when rotating. In addition, since the relay reflecting mirror that is lightweight and does not have wiring or the like is configured to rotate, it is possible to easily drive the rotating component.
In addition, since the concentration of the high light intensity portion does not occur at the target irradiation position, the heating temperature is uniformized not only in the thermoplastic resin in the specific-shaped mold but also in the various portions of the thermoplastic resin. be able to.
 それ故、本発明の樹脂成形装置によっても、ゴム製の成形型に比べて成形型内の熱可塑性樹脂を選択的に加熱することができ、簡単な装置の構成によって、熱可塑性樹脂の各部位における加熱温度の均一化を図ることができる。 Therefore, even with the resin molding apparatus of the present invention, the thermoplastic resin in the mold can be selectively heated compared to the rubber mold, and each part of the thermoplastic resin can be obtained by a simple apparatus configuration. The heating temperature can be made uniform.
 なお、上記0.78~2μmの波長領域を含む光(特に近赤外線)により、ゴム製の成形型に比べて、熱可塑性樹脂を選択的に加熱することができる理由は、上記第1の発明と同様に考える。 The reason why the thermoplastic resin can be selectively heated by the light (particularly near infrared rays) including the wavelength region of 0.78 to 2 μm as compared with the rubber mold is the first invention. Think the same way.
 第3の発明は、熱可塑性樹脂を充填するためのキャビティを形成してなるゴム製の成形型と、0.78~2μmの波長領域を含む光を発する光源と、該光源から発した光を配光して上記成形型へ導くためのリフレクタとを有する樹脂成形装置を用い、
 上記リフレクタは、その反射面を椀状に形成してなると共に、該反射面によって上記光源から発した光を該光源から所定距離にある目標照射位置へ配光するよう構成しておき、
 上記光源と上記リフレクタとを固定して上記目標照射位置へ配光する際に、上記反射面によって反射された光が上記目標照射位置に到達する範囲を照射範囲としたとき、上記光源と上記リフレクタとを一体的に回動させる、又は上記光源を固定して上記リフレクタを回動させることにより、上記目標照射位置に対して、円を描くように上記照射範囲を変化させて、上記目標照射位置の周辺に配置した上記成形型の表面から上記キャビティ内に充填する上記熱可塑性樹脂に光を照射し、該熱可塑性樹脂を加熱することを特徴とする樹脂成形方法にある。
According to a third aspect of the present invention, there is provided a rubber mold having a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 μm, and light emitted from the light source. Using a resin molding apparatus having a reflector for distributing light and guiding it to the mold,
The reflector has a reflection surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflection surface to a target irradiation position at a predetermined distance from the light source,
When the light source and the reflector are fixed and light is distributed to the target irradiation position, the light source and the reflector are defined as a range in which the light reflected by the reflecting surface reaches the target irradiation position. , Or by rotating the reflector while fixing the light source, the irradiation range is changed to draw a circle with respect to the target irradiation position, and the target irradiation position In the resin molding method, the thermoplastic resin filled in the cavity is irradiated with light from the surface of the molding die arranged in the periphery of the mold to heat the thermoplastic resin.
 本発明の樹脂成形方法においては、熱可塑性樹脂の加熱温度の均一化を図ることができる樹脂成形装置の特性を活用して樹脂成形品を得ることができる。
 それ故、本発明の樹脂成形方法によれば、ゴム製の成形型に比べて成形型内の熱可塑性樹脂を選択的に加熱することができ、熱可塑性樹脂における各部位の加熱温度の均一化を図って優れた品質の樹脂成形品を得ることができる。
In the resin molding method of the present invention, a resin molded product can be obtained by utilizing the characteristics of a resin molding apparatus that can make the heating temperature of the thermoplastic resin uniform.
Therefore, according to the resin molding method of the present invention, the thermoplastic resin in the mold can be selectively heated compared to the rubber mold, and the heating temperature of each part in the thermoplastic resin is made uniform. Therefore, an excellent quality resin molded product can be obtained.
 第4の発明は、熱可塑性樹脂を充填するためのキャビティを形成してなるゴム製の成形型と、0.78~2μmの波長領域を含む光を発する光源と、該光源から発した光を配光して反射するリフレクタと、該リフレクタから反射された光をさらに反射させて上記成形型へ導くための中継反射鏡とを有する樹脂成形装置を用い、
 上記リフレクタは、その反射面を椀状に形成してなると共に、該反射面によって上記光源から発した光を該光源から所定距離にある上記中継反射鏡へ配光するよう構成しておき、
 上記中継反射鏡は、上記リフレクタから受けた光を当該中継反射鏡から所定距離にある目標照射位置へ反射させるよう構成しておき、
 上記光源と上記リフレクタと上記中継反射鏡とを固定して上記目標照射位置へ配光する際に、上記中継反射鏡によって反射された光が上記目標照射位置に到達する範囲を照射範囲としたとき、上記光源と上記リフレクタとを固定した状態で上記中継反射鏡を回動させることにより、上記目標照射位置に対して、円を描くように上記照射範囲を変化させて、上記目標照射位置の周辺に配置した上記成形型の表面から上記キャビティ内に充填する上記熱可塑性樹脂に光を照射し、該熱可塑性樹脂を加熱することを特徴とする樹脂成形方法にある。
According to a fourth aspect of the present invention, there is provided a rubber mold that forms a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 μm, and light emitted from the light source. Using a resin molding apparatus having a reflector that distributes and reflects light, and a relay reflector for further reflecting the light reflected from the reflector and guiding it to the mold,
The reflector has a reflection surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflection surface to the relay reflector at a predetermined distance from the light source.
The relay reflector is configured to reflect the light received from the reflector to a target irradiation position at a predetermined distance from the relay reflector,
When the light source, the reflector, and the relay reflector are fixed and light is distributed to the target irradiation position, the range in which the light reflected by the relay reflector reaches the target irradiation position is set as the irradiation range By rotating the relay reflector in a state where the light source and the reflector are fixed, the irradiation range is changed to draw a circle with respect to the target irradiation position, and around the target irradiation position In the resin molding method, the thermoplastic resin filled in the cavity is irradiated with light from the surface of the molding die arranged on the surface to heat the thermoplastic resin.
 本発明の樹脂成形方法においても、熱可塑性樹脂の加熱温度の均一化を図ることができる樹脂成形装置の特性を活用して樹脂成形品を得ることができる。
 それ故、本発明の樹脂成形方法によっても、ゴム製の成形型に比べて成形型内の熱可塑性樹脂を選択的に加熱することができ、熱可塑性樹脂における各部位の加熱温度の均一化を図って優れた品質の樹脂成形品を得ることができる。
Also in the resin molding method of the present invention, a resin molded product can be obtained by utilizing the characteristics of a resin molding apparatus that can make the heating temperature of the thermoplastic resin uniform.
Therefore, even with the resin molding method of the present invention, the thermoplastic resin in the mold can be selectively heated compared to the rubber mold, and the heating temperature of each part in the thermoplastic resin can be made uniform. As a result, an excellent quality resin molded product can be obtained.
実施例1における、樹脂成形装置を示す説明図。FIG. 3 is an explanatory view showing a resin molding apparatus in Example 1. 実施例1における、ハロゲンヒータを示す説明図。FIG. 3 is an explanatory diagram showing a halogen heater in the first embodiment. 実施例1における、樹脂成形装置による目標照射位置における光の移動照射範囲を示す説明図。Explanatory drawing which shows the movement irradiation range of the light in the target irradiation position by the resin molding apparatus in Example 1. FIG. 実施例1における、ハロゲンヒータについて光の配光状態のシミュレーションを行った結果を示す説明図。FIG. 3 is an explanatory diagram illustrating a result of a simulation of a light distribution state of a halogen heater in Example 1. 実施例1における、図4のハロゲンヒータについて目標照射位置における各部位の光強度を示すグラフ。The graph which shows the light intensity of each site | part in a target irradiation position about the halogen heater of FIG. 実施例1における、他のハロゲンヒータについて光の配光状態のシミュレーションを行った結果を示す説明図。FIG. 3 is an explanatory diagram showing a result of a simulation of a light distribution state of another halogen heater in Example 1. 実施例1における、図6のハロゲンヒータについて目標照射位置における各部位の光強度を示すグラフ。The graph which shows the light intensity of each site | part in a target irradiation position about the halogen heater of FIG. 実施例1における、他の樹脂成形装置を示す説明図。Explanatory drawing which shows the other resin molding apparatus in Example 1. FIG. 実施例1における、シリコーンゴムにおける光の透過率を示すグラフ。3 is a graph showing the light transmittance of silicone rubber in Example 1. FIG. 実施例2における、樹脂成形装置を示す説明図。Explanatory drawing which shows the resin molding apparatus in Example 2. FIG. 実施例2における、中継反射鏡が回動する状態の樹脂成形装置を示す説明図。Explanatory drawing which shows the resin molding apparatus of the state in which the relay reflecting mirror in Example 2 rotates. 実施例2における、中継反射鏡が回動する状態の樹脂成形装置を示す説明図。Explanatory drawing which shows the resin molding apparatus of the state in which the relay reflecting mirror in Example 2 rotates. 実施例2における、中継反射鏡を模式的に示す説明図。Explanatory drawing which shows typically a relay reflecting mirror in Example 2. FIG. 確認試験1の比較1について、熱可塑性樹脂の各部位における温度を測定した結果を示すグラフ。The graph which shows the result of having measured the temperature in each site | part of a thermoplastic resin about the comparison 1 of the confirmation test 1. FIG. 確認試験1の発明5について、熱可塑性樹脂の各部位における温度を測定した結果を示すグラフ。The graph which shows the result of having measured the temperature in each site | part of a thermoplastic resin about the invention 5 of the confirmation test 1. FIG. 確認試験1の発明9について、熱可塑性樹脂の各部位における温度を測定した結果を示すグラフ。The graph which shows the result of having measured the temperature in each site | part of a thermoplastic resin about the invention 9 of the confirmation test 1. FIG. 確認試験2の比較2について、熱可塑性樹脂の各部位における温度を測定した結果を示すグラフ。The graph which shows the result of having measured the temperature in each site | part of a thermoplastic resin about the comparison 2 of the confirmation test 2. FIG. 確認試験2の発明13について、熱可塑性樹脂の各部位における温度を測定した結果を示すグラフ。The graph which shows the result of having measured the temperature in each site | part of a thermoplastic resin about the invention 13 of the confirmation test 2. FIG.
 上述した第1~第4の発明における好ましい実施の形態につき説明する。
 第1~第4の発明において、上記照射範囲によって描く円は、必ずしも真円である必要はなく、楕円等の円とすることもできる。ただし、装置構成の簡単化を図るためには、上記照射範囲は、真円軌道で変化させることが好ましい。また、上記照射範囲は、駆動手段に工夫をすることにより、照射範囲を自転させながら旋回させることもできる(遊星円軌道で変化させることもできる)。
 また、上記リフレクタは、円形状の照射範囲を形成する椀形状とすることができる。
A preferred embodiment in the first to fourth inventions described above will be described.
In the first to fourth inventions, the circle drawn by the irradiation range is not necessarily a perfect circle, and may be a circle such as an ellipse. However, in order to simplify the apparatus configuration, the irradiation range is preferably changed in a perfect circular orbit. Further, the irradiation range can be turned while rotating the irradiation range by devising the driving means (it can be changed in a planetary orbit).
Further, the reflector can have a bowl shape that forms a circular irradiation range.
 また、第1、第3の発明において、上記光源と上記リフレクタとは、1組として用いるだけでなく、複数組をセットにして用いることができる。また、第2、第4の発明において、上記光源と上記リフレクタと上記中継反射鏡とは、1組として用いるだけでなく、複数組をセットにして用いることができる。すなわち、成形品(あるいはキャビティ)の形状によっては、両側又は上下左右から光を照射した方が好ましい場合がある。 In the first and third inventions, the light source and the reflector can be used not only as one set but also as a set. In the second and fourth inventions, the light source, the reflector, and the relay reflector can be used not only as one set but also as a set. That is, depending on the shape of the molded product (or cavity), it may be preferable to irradiate light from both sides or from the top, bottom, left, and right.
 また、上記熱可塑性樹脂は、非晶性熱可塑性樹脂であることが好ましい。
 ところで、熱可塑性樹脂の冷却速度は、成形型がゴム製であるため、金型の場合に比べて遅くなる。そのため、冷却中に熱可塑性樹脂の結晶性が高くなることがあり、これによって、樹脂成形品の寸法精度が低下したり、樹脂成形品の耐衝撃性が低下したりすることがある。これに対し、熱可塑性樹脂を非晶性熱可塑性樹脂にしたことにより、上記樹脂成形品の寸法精度の低下及び耐衝撃性の低下等を防止することができる。
The thermoplastic resin is preferably an amorphous thermoplastic resin.
By the way, the cooling rate of the thermoplastic resin is slower than that of the mold because the mold is made of rubber. Therefore, the crystallinity of the thermoplastic resin may increase during cooling, which may reduce the dimensional accuracy of the resin molded product or the impact resistance of the resin molded product. On the other hand, by making the thermoplastic resin an amorphous thermoplastic resin, it is possible to prevent a decrease in dimensional accuracy and a decrease in impact resistance of the resin molded product.
 非晶性熱可塑性樹脂としては、例えば、スチレン・アクリロニトリル共重合体、スチレン・無水マレイン酸共重合体、スチレン・メタクリル酸メチル共重合体等のスチレン系樹脂、ABS樹脂(アクリロニトリル・ブタジエン・スチレン樹脂)、AES樹脂(アクリロニトリル・エチレン-プロピレン-ジエン・スチレン樹脂)、ASA樹脂(アクリレート・スチレン・アクリロニトリル樹脂)等のゴム変性熱可塑性樹脂、又はポリメタクリル酸メチル、ポリカーボネート樹脂(PC)、PC/ゴム変性熱可塑性樹脂アロイ等を用いることができる。その中でも、特にゴム変性熱可塑性樹脂を用いることが好ましい。 Examples of amorphous thermoplastic resins include styrene resins such as styrene / acrylonitrile copolymers, styrene / maleic anhydride copolymers, styrene / methyl methacrylate copolymers, and ABS resins (acrylonitrile / butadiene / styrene resins). ), AES resin (acrylonitrile, ethylene-propylene-diene, styrene resin), ASA resin (acrylate, styrene, acrylonitrile resin), or other rubber-modified thermoplastic resins, or polymethyl methacrylate, polycarbonate resin (PC), PC / rubber A modified thermoplastic resin alloy or the like can be used. Among these, it is particularly preferable to use a rubber-modified thermoplastic resin.
 ゴム変性熱可塑性樹脂としては、特に限定されないが、ゴム質重合体の存在下にビニル系単量体をグラフト重合させた重合体を1種又は2種以上含むものが好ましい。
 上記ゴム質重合体としては、特に限定されないが、ポリブタジエン、ブタジエン・スチレン共重合体、ブタジエン・アクリロニトリル共重合体、エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、エチレン・ブテン-1共重合体、エチレン・ブテン-1・非共役ジエン共重合体、アクリルゴム、シリコーンゴム等が挙げられ、これらは1種単独で、又は2種以上を組み合わせて用いることができる。
The rubber-modified thermoplastic resin is not particularly limited, but is preferably one containing one or more polymers obtained by graft polymerization of vinyl monomers in the presence of a rubbery polymer.
The rubbery polymer is not particularly limited, but polybutadiene, butadiene / styrene copolymer, butadiene / acrylonitrile copolymer, ethylene / propylene copolymer, ethylene / propylene / non-conjugated diene copolymer, ethylene / butene. -1 copolymer, ethylene / butene-1 / non-conjugated diene copolymer, acrylic rubber, silicone rubber, and the like. These can be used alone or in combination of two or more.
 また、上記ゴム質重合体としては、ポリブタジエン、ブタジエン・スチレン共重合体、エチレン・プロピレン共重合体、エチレン・プロピレン・非共役ジエン共重合体、アクリルゴムを用いることが好ましく、上記ゴム変性熱可塑性樹脂としては、例えば、ABS樹脂、AES樹脂、ASA樹脂等を用いることができる。その中でも、特にABS樹脂を用いることがさらに好ましい。 As the rubber polymer, polybutadiene, butadiene / styrene copolymer, ethylene / propylene copolymer, ethylene / propylene / nonconjugated diene copolymer, acrylic rubber is preferably used, and the rubber-modified thermoplastic is used. As the resin, for example, ABS resin, AES resin, ASA resin or the like can be used. Among these, it is more preferable to use an ABS resin.
 また、上記成形型は、シリコーンゴムからなることが好ましい。
 この場合には、成形型の作製が容易であると共に、上記0.78~2μmの波長領域を含む光により、成形型をほとんど加熱することなく熱可塑性樹脂を選択的に加熱することができる。
 また、シリコーンゴムの硬度は、JIS-A規格測定において25~80であることが好ましい。
The mold is preferably made of silicone rubber.
In this case, the mold can be easily produced, and the thermoplastic resin can be selectively heated by the light including the wavelength region of 0.78 to 2 μm with little heating of the mold.
The hardness of the silicone rubber is preferably 25 to 80 in JIS-A standard measurement.
 また、第1の発明においては、上記光源は、該光源と上記リフレクタとを一体的に回動させるための回動中心軸線に対してオフセットした位置にあり、上記光源と上記リフレクタとを上記回動中心軸線の回りに一体的に回動させることによって、上記目標照射位置に対して、円を描くように上記照射範囲を変化させるよう構成することができる。
 この場合には、光源とリフレクタとを一体的に回動させることが容易であり、簡単に樹脂成形装置を構成することができる。
In the first invention, the light source is at a position offset with respect to a rotation center axis for integrally rotating the light source and the reflector, and the light source and the reflector are The irradiation range can be changed so as to draw a circle with respect to the target irradiation position by integrally rotating around the moving center axis.
In this case, it is easy to integrally rotate the light source and the reflector, and the resin molding apparatus can be configured easily.
 また、第2の発明においては、上記中継反射鏡は、その反射面による反射配光方向が、当該中継反射鏡を回動させるための回動中心軸線に対して傾斜する方向を向いており、上記中継反射鏡を上記回動中心軸線の回りに回動させることによって、上記目標照射位置に対して、円を描くように上記照射範囲を変化させるよう構成することができる。
 この場合には、中継反射鏡を回動させることが容易であり、簡単に樹脂成形装置を構成することができる。
In the second aspect of the invention, the relay reflector has a light distribution direction reflected by the reflecting surface thereof in a direction inclined with respect to a rotation center axis for rotating the relay reflector, By rotating the relay reflecting mirror around the rotation center axis, the irradiation range can be changed to draw a circle with respect to the target irradiation position.
In this case, it is easy to rotate the relay reflecting mirror, and the resin molding apparatus can be configured easily.
 また、上記中継反射鏡は、上記回動中心軸線の回りに回動する回動本体部に対して、ねじの調整によって上記反射配光方向の傾斜角度を変更することができるよう構成することができる。
 この場合には、中継反射鏡の傾斜角度を容易に変更することができ、上記円を描くように変化させる照射範囲の旋回直径を容易に調整することができる。
The relay reflector may be configured such that the tilt angle in the reflection light distribution direction can be changed by adjusting a screw with respect to the rotating main body rotating around the rotation center axis. it can.
In this case, the inclination angle of the relay reflector can be easily changed, and the turning diameter of the irradiation range to be changed so as to draw the circle can be easily adjusted.
 また、上記照射範囲における中心は、上記目標照射位置における中心回りの円軌道上を移動し、該円軌道の直径Bは、上記照射範囲の最大外径をAとしたとき、0.2A≦B≦2Aの関係を有していることが好ましい。
 この場合には、目標照射位置に光が照射される照射範囲において、光源からの直接照射によって成形型内の熱可塑性樹脂に局所的に著しく加熱される部位が集中することを容易に避けることができる。
The center in the irradiation range moves on a circular orbit around the center at the target irradiation position, and the diameter B of the circular orbit is 0.2A ≦ B where A is the maximum outer diameter of the irradiation range. It is preferable to have a relationship of ≦ 2A.
In this case, in the irradiation range in which light is irradiated to the target irradiation position, it is easy to avoid the concentration of locally significantly heated parts on the thermoplastic resin in the mold by direct irradiation from the light source. it can.
 また、上記リフレクタにおける上記反射面は、多数の平坦状の反射面を組み合わせた多段式構造、又は連続する1つの曲面状の反射面からなる連続曲面構造を有しており、上記照射範囲は、上記多数の平坦状の反射面による光の反射中心軸線が上記目標照射位置に到達する範囲、又は上記連続する1つの曲面状の反射面を区画した多数の仮想反射面による光の反射中心軸線が上記目標照射位置に到達する範囲として設定することができる。
 上記各反射面又は各仮想反射面による光の反射中心軸線とは、各反射面又は各仮想反射面の図心位置を反射する光軸線のことをいう。
Further, the reflecting surface in the reflector has a multistage structure in which a large number of flat reflecting surfaces are combined or a continuous curved surface structure composed of one continuous curved reflecting surface, and the irradiation range is: The reflection central axes of light reflected by a large number of flat reflecting surfaces are within the range where the light reflecting central axes reach the target irradiation position, or the light reflecting central axes of a large number of virtual reflecting surfaces defining one continuous curved reflecting surface. It can be set as a range to reach the target irradiation position.
The reflection central axis of light by each reflection surface or each virtual reflection surface means an optical axis that reflects the centroid position of each reflection surface or each virtual reflection surface.
 また、上記照射範囲は、円形状を有しており、上記リフレクタにおける上記多数の反射面又は多数の仮想反射面は、該多数の反射面又は多数の仮想反射面によって反射された光の反射中心軸線の全体が、上記照射範囲全体の直径に対して所定の大きさの直径の中心部の範囲外に到達する状態に形成することができる。
 この場合には、成形型内の熱可塑性樹脂における各部位の加熱温度の均一化を図ることができる樹脂成形装置に適したリフレクタを容易に形成することができる。
 なお、上記照射範囲全体の直径に対して所定の大きさの直径の中心部は、円形状の照射範囲と同心状に形成した円形状であることを意味する。
In addition, the irradiation range has a circular shape, and the multiple reflection surfaces or the multiple virtual reflection surfaces in the reflector are reflection centers of light reflected by the multiple reflection surfaces or the multiple virtual reflection surfaces. The entire axis can be formed so as to reach the outside of the central portion of the diameter having a predetermined size with respect to the diameter of the entire irradiation range.
In this case, it is possible to easily form a reflector suitable for a resin molding apparatus that can equalize the heating temperature of each part of the thermoplastic resin in the mold.
In addition, the center part of the diameter of a predetermined magnitude | size with respect to the diameter of the said whole irradiation range means that it is the circular shape formed concentrically with the circular irradiation range.
 また、上記光源は、0.78~2μmの波長領域を含む光を発するハロゲンランプ、キセノンランプ等とすることができる。また、光源の出力特性、形状等は、被加熱物の種類、加熱用途等に応じて選択することができる。 The light source may be a halogen lamp, a xenon lamp, or the like that emits light including a wavelength region of 0.78 to 2 μm. Further, the output characteristics, shape, and the like of the light source can be selected according to the type of the object to be heated, the heating application, and the like.
 以下に、本発明の樹脂成形装置及び樹脂成形方法にかかる実施例につき、図面を参照して説明する。
(実施例1)
 本例の樹脂成形装置1は、図1、図2に示すごとく、熱可塑性樹脂8を充填するためのキャビティ61を形成してなるゴム製の成形型6と、0.78~2μmの波長領域を含む光(電磁波)を発する光源2と、光源2から発した光を配光して成形型6へ導くためのリフレクタ3とを有している。リフレクタ3は、多数の平坦状の反射面31を椀状に組み合わせてなると共に、多数の反射面31によって光源2から発した光を光源2から所定距離にある目標照射位置Gへ配光するよう構成してある。
Hereinafter, embodiments of the resin molding apparatus and the resin molding method of the present invention will be described with reference to the drawings.
Example 1
As shown in FIGS. 1 and 2, the resin molding apparatus 1 of this example includes a rubber molding die 6 having a cavity 61 for filling a thermoplastic resin 8 and a wavelength region of 0.78 to 2 μm. And a reflector 3 for distributing the light emitted from the light source 2 and guiding it to the mold 6. The reflector 3 is formed by combining a large number of flat reflecting surfaces 31 in a bowl shape, and distributes light emitted from the light source 2 by the large number of reflecting surfaces 31 to a target irradiation position G at a predetermined distance from the light source 2. It is configured.
 図3に示すごとく、本例の樹脂成形装置1は、光源2とリフレクタ3とを固定して目標照射位置Gへ配光する際に、各反射面31によって反射された光の反射中心軸線D1が目標照射位置Gに到達する範囲を照射範囲Eとしたとき、光源2とリフレクタ3とを一体的に回動させることにより、目標照射位置Gの中心Oに対して、円を描くように照射範囲Eを変化させて、目標照射位置Gの周辺に配置した成形型6の表面からキャビティ61内に充填する熱可塑性樹脂8に光を照射し、熱可塑性樹脂8を加熱するよう構成してある。なお、円を描くように照射範囲Eを変化させることにより、目標照射位置Gにおいては、光の反射中心軸線D1が到達する移動照射範囲E’が形成される。また、本例の樹脂成形方法も、樹脂成形装置1と同様の構成によって、目標照射位置Gに対して、円を描くように照射範囲Eを変化させて熱可塑性樹脂8を加熱する。
 また、目標照射位置Gは、成形型6のキャビティ61における配光方向X1の中心箇所に合わせることができる。
As shown in FIG. 3, the resin molding apparatus 1 of the present example has a light reflection center axis D <b> 1 of light reflected by each reflecting surface 31 when the light source 2 and the reflector 3 are fixed and light is distributed to the target irradiation position G. Irradiating the light source 2 and the reflector 3 in an integrated manner so as to draw a circle around the center O of the target irradiation position G. The range E is changed, and the thermoplastic resin 8 filled in the cavity 61 is irradiated with light from the surface of the molding die 6 arranged around the target irradiation position G, and the thermoplastic resin 8 is heated. . In addition, by changing the irradiation range E so as to draw a circle, a moving irradiation range E ′ where the light reflection central axis D1 reaches is formed at the target irradiation position G. The resin molding method of this example also heats the thermoplastic resin 8 by changing the irradiation range E so as to draw a circle with respect to the target irradiation position G by the same configuration as the resin molding apparatus 1.
In addition, the target irradiation position G can be matched with the central location in the light distribution direction X1 in the cavity 61 of the mold 6.
 以下に、本例の樹脂成形装置1及び樹脂成形方法につき、図1~図9を参照して詳説する。
 図1に示すごとく、本例の光源2とリフレクタ3とは、ハロゲンヒータ11を構成している。ハロゲンヒータ11は、多数の反射面31による配光方向X1(反射中心軸線D1の全体の中心である反射全体中心軸線C2)が、光源2とリフレクタ3とを一体的に回動させるための回動中心軸線C1に対してオフセットして配置してある。本例の光源2及びリフレクタ3は、モータ等の駆動源による回転力を受けて回動(回転)する回動本体部4に配設してあり、回動本体部4における回動の中心を構成する回動中心軸線C1に対し、光源2及びリフレクタ3の中心(反射全体中心軸線C2)をオフセットさせて(横ずれさせて)配設してある。そして、図3に示すごとく、回動本体部4が回動する際に、回動中心軸線C1の回りに光源2及びリフレクタ3が回動(旋回)することによって、目標照射位置Gにおける光の照射範囲Eを中心Oの回りの円軌道S上に変化させることができる。
 本例のリフレクタ3は、円形状の照射範囲Eを形成する椀形状に多数の平坦状の反射板31を配置してなる。
Hereinafter, the resin molding apparatus 1 and the resin molding method of this example will be described in detail with reference to FIGS.
As shown in FIG. 1, the light source 2 and the reflector 3 of this example constitute a halogen heater 11. The halogen heater 11 is configured to rotate the light source 2 and the reflector 3 in an integrated manner so that the light distribution direction X1 (the reflection center axis C2 which is the center of the center of the reflection center axis D1) by the many reflecting surfaces 31 is rotated. It is arranged offset with respect to the moving center axis C1. The light source 2 and the reflector 3 of this example are disposed in a rotating main body 4 that rotates (rotates) in response to a rotational force from a driving source such as a motor. The center of the light source 2 and the reflector 3 (the entire reflection center axis C2) is offset (laterally shifted) with respect to the rotation center axis C1 to be configured. As shown in FIG. 3, when the rotation main body 4 rotates, the light source 2 and the reflector 3 rotate (turn) around the rotation center axis C <b> 1, so that the light at the target irradiation position G is reflected. The irradiation range E can be changed on a circular orbit S around the center O.
The reflector 3 of this example is formed by arranging a large number of flat reflecting plates 31 in a bowl shape that forms a circular irradiation range E.
 なお、図8に示すごとく、樹脂成形装置1は、回動本体部4の回動中心軸線C1に対して、配光方向X1(反射全体中心軸線C2)が所定の傾斜角度θとなるよう配設することもできる。これによっても、目標照射位置Gにおける光の照射範囲Eを円軌道S上に変化させることができる。 As shown in FIG. 8, the resin molding apparatus 1 is arranged so that the light distribution direction X1 (reflection center axis C2) is a predetermined inclination angle θ with respect to the rotation center axis C1 of the rotation main body 4. It can also be set up. Also by this, the light irradiation range E at the target irradiation position G can be changed on the circular orbit S.
 リフレクタ3における各反射面31によって反射された光は、反射中心軸線D1を中心として(反射中心軸線D1上に光強度のピークを有して)拡散する光として目標照射位置Gに照射される。
 本例の光源2は、0.78~2μmの波長領域(ほぼ近赤外線の波長領域に相当する。)を含む光を発するハロゲンランプ2である。このハロゲンランプ2は、0.78~2μmの波長領域内に(本例では約0.9μmに)光強度のピークを有するものを用いた。また、図2に示すごとく、ハロゲンランプ2は、ガラス等からなる保護管22内に、つる巻き状に形成したフィラメント(発光体)21を配設してなる。なお、フィラメント21の中心を符号Hによって示す。
The light reflected by each reflecting surface 31 in the reflector 3 is irradiated to the target irradiation position G as light that diffuses around the reflection center axis D1 (having a light intensity peak on the reflection center axis D1).
The light source 2 of the present example is a halogen lamp 2 that emits light including a wavelength region of 0.78 to 2 μm (corresponding to a near infrared wavelength region). The halogen lamp 2 has a light intensity peak in the wavelength region of 0.78 to 2 μm (in this example, about 0.9 μm). Further, as shown in FIG. 2, the halogen lamp 2 includes a filament (light emitting body) 21 formed in a spiral shape in a protective tube 22 made of glass or the like. The center of the filament 21 is indicated by the symbol H.
 図3に示すごとく、本例の樹脂成形装置1においては、目標照射位置Gにおける光の照射範囲Eにおける中心は、目標照射位置Gにおける中心Oの回りの円軌道S上を移動する。回動本体部4によって照射範囲Eを旋回させる旋回中心直径(照射範囲Eの中心が通る旋回直径、円軌道の直径)Bは、照射範囲Eの最大外径(本例では直径)をAとしたとき、0.2A≦B≦2Aの関係を満たすよう決定することができる。ここで、照射範囲Eの最大外径とは、照射範囲Eにおける光の反射中心軸線D1の到達部位における対角線上の最大幅のことをいう。本例では、照射範囲Eが真円形状であるため、照射範囲Eの最大外径とは真円の直径のことをいう。
 なお、光の照射範囲Eは、例えば、直径がφ20~300mmの範囲として設定することができる。また、回動本体部4を回動させる回転速度は、例えば、10~100rpmとすることができる。
As shown in FIG. 3, in the resin molding apparatus 1 of this example, the center in the light irradiation range E at the target irradiation position G moves on a circular orbit S around the center O at the target irradiation position G. The turning center diameter (the turning diameter through which the center of the irradiation range E passes, the diameter of the circular orbit) B for turning the irradiation range E by the rotating main body 4 is the maximum outer diameter (in this example, the diameter) of the irradiation range E as A. Then, it can be determined to satisfy the relationship of 0.2A ≦ B ≦ 2A. Here, the maximum outer diameter of the irradiation range E refers to the maximum width on the diagonal line at the arrival point of the light reflection central axis D1 in the irradiation range E. In this example, since the irradiation range E has a perfect circle shape, the maximum outer diameter of the irradiation range E refers to the diameter of a perfect circle.
The light irradiation range E can be set, for example, as a range having a diameter of φ20 to 300 mm. The rotation speed for rotating the rotation main body 4 can be set to 10 to 100 rpm, for example.
 図4、図6には、光源2及びリフレクタ3からなるハロゲンヒータ11について、光の配光状態のシミュレーションを行った結果を示す。各図においては、光源2から発した光がリフレクタ3の各反射面31によって反射されて、目標照射位置Gに照射される状態を示す。また、光源2から発する光は、フィラメント21による光の出射位置の中心Hで示し、リフレクタ3から目標照射位置Gへと描かれた直線は、多数の反射面31における反射中心軸線D1を示す。ここで、反射中心軸線D1は、反射面31の図心位置を反射する光軸線によって示す。 4 and 6 show the results of simulation of the light distribution state of the halogen heater 11 including the light source 2 and the reflector 3. In each figure, the light emitted from the light source 2 is reflected by each reflecting surface 31 of the reflector 3 and irradiated to the target irradiation position G. The light emitted from the light source 2 is indicated by the center H of the emission position of the light from the filament 21, and the straight line drawn from the reflector 3 to the target irradiation position G indicates the reflection center axis D <b> 1 on the multiple reflection surfaces 31. Here, the reflection center axis D <b> 1 is indicated by the optical axis that reflects the centroid position of the reflection surface 31.
 また、図4、図6に示すごとく、本例のリフレクタ3における多数の反射面31は、多数の反射面31によって反射された光の反射中心軸線D1の全体が、照射範囲Eの全体の直径に対して所定の大きさの直径の中心部Fの範囲外に到達する状態に配置してある。リフレクタ3における多数の反射面31の構造設計に当たっては、目標照射位置Gにおける照射範囲Eを設定し、この照射範囲E内の略全体に略均一に光が到達するよう各反射面31の向きを決定することができる。 Further, as shown in FIGS. 4 and 6, the large number of reflecting surfaces 31 in the reflector 3 of this example are such that the entire reflection center axis D <b> 1 of the light reflected by the large number of reflecting surfaces 31 is the entire diameter of the irradiation range E. Is arranged in a state of reaching the outside of the range of the central portion F having a diameter of a predetermined size. In designing the structure of the large number of reflecting surfaces 31 in the reflector 3, an irradiation range E at the target irradiation position G is set, and the directions of the reflecting surfaces 31 are set so that light reaches substantially the entire irradiation range E substantially uniformly. Can be determined.
 また、図4は、光の反射中心軸線D1の全体が、照射範囲Eの全体の直径に対して約60%の大きさの直径の中心部Fの範囲外に到達する状態に配置されるよう設計したリフレクタ3を示す。図6は、光の反射中心軸線D1の全体が、照射範囲Eの全体の直径に対して約40%の大きさの直径の中心部Fの範囲外に到達する状態に配置されるよう設計したリフレクタ3を示す。図6のリフレクタ3は、図4のリフレクタ3に対して、光源2の位置を目標照射位置Gに1mm近づける(リフレクタ3から1mm遠ざける)ことによって形成した。 Further, FIG. 4 is arranged so that the entire reflection center axis D1 of the light reaches outside the range of the central portion F having a diameter of about 60% of the entire diameter of the irradiation range E. The designed reflector 3 is shown. FIG. 6 is designed so that the entire reflection center axis D1 of light reaches the outside of the range of the central portion F having a diameter of about 40% of the entire diameter of the irradiation range E. The reflector 3 is shown. The reflector 3 in FIG. 6 is formed by bringing the position of the light source 2 closer to the target irradiation position G by 1 mm (1 mm away from the reflector 3) than the reflector 3 in FIG.
 図5、図7には、横軸に照射範囲Eの中心からの相対距離(%)をとり、縦軸に光強度(照射照度比)(%)をとって、目標照射位置Gにおける各部位の光強度を示すグラフである。図5は、図4の場合の特性を示し、図7は、図6の場合の特性を示す。図6、図7のハロゲンヒータ11の方が、図4、図5のハロゲンヒータ11よりも、照射範囲Eの中心部Fにおける光強度が強くなっている。
 ここで、照射範囲Eの中心からの相対距離(%)は、100%が照射範囲(照射直径)Eの半径位置であることを示す。光強度(%)は、設計規定値を100%としたとき、設計規定値に対する各部位(照射範囲Eの中心からの各相対距離)における光強度を比率(照射照度比)(%)で表す。
5 and 7, the horizontal axis represents the relative distance (%) from the center of the irradiation range E, and the vertical axis represents the light intensity (irradiation illuminance ratio) (%). It is a graph which shows the light intensity of. FIG. 5 shows the characteristics in the case of FIG. 4, and FIG. 7 shows the characteristics in the case of FIG. The light intensity in the central portion F of the irradiation range E is higher in the halogen heater 11 in FIGS. 6 and 7 than in the halogen heater 11 in FIGS.
Here, the relative distance (%) from the center of the irradiation range E indicates that 100% is the radial position of the irradiation range (irradiation diameter) E. The light intensity (%) represents the light intensity at each portion (each relative distance from the center of the irradiation range E) with respect to the design specified value as a ratio (irradiation illuminance ratio) (%) when the design specified value is 100%. .
 図5、図7において、中心からの相対距離が100%までの範囲は目標照射位置Gに形成する照射範囲Eであり、光強度が90%以上になるよう設定されている。また、照射範囲Eの範囲外においては、光が完全に到達しなくなるのではなく、照射範囲Eの範囲外においても所定の相対距離までは光が到達し、所定の勾配で光強度が減少することを示す。また、各ハロゲンヒータ11は、照射範囲Eの中心からの相対距離(%)が80%ぐらいまでの範囲においては、光強度(%)が約100%以上であり、照射範囲Eの中心からの相対距離(%)が80%以上である範囲においては、光強度(%)が所定の勾配で低下していく特性を有している。 5 and 7, the range up to 100% relative distance from the center is the irradiation range E formed at the target irradiation position G, and the light intensity is set to 90% or more. Further, the light does not completely reach outside the irradiation range E, but the light reaches a predetermined relative distance outside the irradiation range E, and the light intensity decreases with a predetermined gradient. It shows that. In addition, each halogen heater 11 has a light intensity (%) of about 100% or more in the range where the relative distance (%) from the center of the irradiation range E is about 80%, and from the center of the irradiation range E. In the range where the relative distance (%) is 80% or more, the light intensity (%) has a characteristic of decreasing at a predetermined gradient.
 本例においては、熱可塑性樹脂8として、非晶性熱可塑性樹脂であると共にゴム変性熱可塑性樹脂であるABS樹脂を用いる。
 また、本例の成形型6は、シリコーンゴムからなる。この成形型6は、成形する樹脂成形品のマスターモデル(手作りの現物等)を液状のシリコーンゴム内に配置し、このシリコーンゴムを硬化させ、硬化後のシリコーンゴムからマスターモデルを取り出すことによって作製することができる。また、成形型6は、ゴム製であるため、成形後の樹脂成形品を取り出す際の型開きを行うためのパーティング面(分割面)を簡単にかつ任意に形成することができる。
In this example, an ABS resin that is an amorphous thermoplastic resin and a rubber-modified thermoplastic resin is used as the thermoplastic resin 8.
The mold 6 of this example is made of silicone rubber. This mold 6 is produced by placing a master model (handmade actual product, etc.) of a resin molded product to be molded in liquid silicone rubber, curing the silicone rubber, and taking out the master model from the cured silicone rubber. can do. Further, since the mold 6 is made of rubber, a parting surface (divided surface) for performing mold opening when taking out a molded resin molded product can be easily and arbitrarily formed.
 本例の樹脂成形装置1及び樹脂成形方法においては、ゴム製の成形型6のキャビティ61内に粒子状態の熱可塑性樹脂8を投入し、成形型6を介してキャビティ61内における粒子状態の熱可塑性樹脂8に、0.78~2μmの波長領域を含む光を照射し、粒子状態の熱可塑性樹脂8を加熱して溶融させた後、キャビティ61において残された空間に溶融状態の熱可塑性樹脂8を充填して、樹脂成形品を成形する。
 これにより、溶融状態の熱可塑性樹脂8の充填圧力をあまり高くすることなくキャビティ61の全体へ熱可塑性樹脂8を充填することができ、成形型6の変形及び開きを効果的に抑制することができる。そのため、成形型6におけるパーティング面からの樹脂漏れを防止することができ、成形した樹脂成形品の形状、表面精度等の品質を効果的に向上させることができる。
In the resin molding apparatus 1 and the resin molding method of this example, the particulate thermoplastic resin 8 is introduced into the cavity 61 of the rubber mold 6, and the particulate heat in the cavity 61 is inserted through the mold 6. After the thermoplastic resin 8 is irradiated with light including a wavelength region of 0.78 to 2 μm to heat and melt the particulate thermoplastic resin 8, the molten thermoplastic resin is left in the space left in the cavity 61. 8 is filled and a resin molded product is molded.
Thereby, it is possible to fill the entire cavity 61 with the thermoplastic resin 8 without increasing the filling pressure of the thermoplastic resin 8 in the molten state, and to effectively suppress deformation and opening of the mold 6. it can. Therefore, resin leakage from the parting surface in the mold 6 can be prevented, and the quality such as the shape and surface accuracy of the molded resin molded product can be effectively improved.
 また、図示は省略するが、リフレクタ3と成形型6との間には、波長が2μmを超える光の透過量を減少させるフィルタを配置することができる。このフィルタは、石英ガラス等から構成することができる。この場合には、フィルタによって、成形型6に吸収されやすい波長が2μmを超える光が成形型6に照射され難くすることができ、成形型6の温度上昇をより効果的に防止することができる。
 また、図示は省略するが、リフレクタ3と成形型6との間には、成形型6と同質のゴムからなるゴム製フィルタを配置することもできる。この場合にも、成形型6によって吸収され易い波長の光をゴム製フィルタによって吸収することができ、成形型6の温度上昇をより効果的に防止することができる。
Although not shown, a filter that reduces the amount of light having a wavelength exceeding 2 μm can be disposed between the reflector 3 and the mold 6. This filter can be made of quartz glass or the like. In this case, the filter can make it difficult for the mold 6 to be irradiated with light having a wavelength easily absorbed by the mold 6 exceeding 2 μm, and the temperature rise of the mold 6 can be more effectively prevented. .
Although not shown, a rubber filter made of the same quality rubber as the mold 6 can be disposed between the reflector 3 and the mold 6. Also in this case, light having a wavelength that is easily absorbed by the mold 6 can be absorbed by the rubber filter, and the temperature rise of the mold 6 can be more effectively prevented.
 図9は、透明のシリコーンゴムと半透明のシリコーンゴムについて、横軸に波長(nm)をとり、縦軸に光の透過率(%)をとって、各シリコーンゴムにおける光の透過率を示すグラフである。同図において、各シリコーンゴムは、200~2200(nm)の間の波長の光を透過させることがわかる。そのため、この波長の領域である近赤外線をシリコーンゴム製の成形型6の表面に照射すると、当該近赤外線の多くを、成形型6を透過させて熱可塑性樹脂8に吸収させることができる。 FIG. 9 shows the light transmittance of each silicone rubber, with wavelength (nm) on the horizontal axis and light transmittance (%) on the vertical axis for transparent silicone rubber and translucent silicone rubber. It is a graph. In the figure, it can be seen that each silicone rubber transmits light having a wavelength between 200 and 2200 (nm). For this reason, when near-infrared rays of this wavelength region are irradiated on the surface of the silicone rubber mold 6, most of the near-infrared light can be transmitted through the mold 6 and absorbed by the thermoplastic resin 8.
 本例の樹脂成形装置1は、ゴム製の成形型6を用いて熱可塑性樹脂8からなる樹脂成形品を成形するに当たり、光源2及びリフレクタ3を用いた単灯式のランプを用い、光の照射範囲Eを適切に変化させることによって、成形型6内の熱可塑性樹脂8を略均一に加熱することができるものである。
 樹脂成形品を成形するに当たっては、ゴム製の成形型6のキャビティ61内に熱可塑性樹脂8を充填する。そして、この充填の際には、光源2から発した0.78~2μmの波長領域を含む光を、リフレクタ3によって配光し、成形型6の表面からキャビティ61内の熱可塑性樹脂8に照射する。このとき、成形型6を構成するゴムと熱可塑性樹脂8との物性の違いにより、ゴム製の成形型6に比べて、熱可塑性樹脂8をより多く加熱することができる。
The resin molding apparatus 1 of this example uses a single-lamp lamp using a light source 2 and a reflector 3 to mold a resin molded product made of a thermoplastic resin 8 using a rubber mold 6. By appropriately changing the irradiation range E, the thermoplastic resin 8 in the mold 6 can be heated substantially uniformly.
In molding the resin molded product, the thermoplastic resin 8 is filled into the cavity 61 of the rubber mold 6. At the time of filling, light including a wavelength region of 0.78 to 2 μm emitted from the light source 2 is distributed by the reflector 3 and irradiated to the thermoplastic resin 8 in the cavity 61 from the surface of the mold 6. To do. At this time, the thermoplastic resin 8 can be heated more than the rubber mold 6 due to the difference in physical properties between the rubber constituting the mold 6 and the thermoplastic resin 8.
 これにより、キャビティ61内への熱可塑性樹脂8の充填が完了するまでの間において、ゴム製の成形型6の温度よりも、キャビティ61内における熱可塑性樹脂8の温度を高く維持することができる。そのため、ゴム製の成形型6に対してキャビティ61内の熱可塑性樹脂8を選択的に加熱することができ、キャビティ61内に熱可塑性樹脂8の充填不良が生じることを防止して、良好な樹脂成形品を得ることができる。 Thereby, the temperature of the thermoplastic resin 8 in the cavity 61 can be maintained higher than the temperature of the rubber mold 6 until the filling of the thermoplastic resin 8 into the cavity 61 is completed. . Therefore, the thermoplastic resin 8 in the cavity 61 can be selectively heated with respect to the rubber mold 6, and it is possible to prevent a poor filling of the thermoplastic resin 8 in the cavity 61 from occurring. A resin molded product can be obtained.
 また、本例の樹脂成形装置1においては、多数の反射面31を椀状に形成して目標照射位置Gへ略均一に配光する構造のリフレクタ3を用いる。そして、回動中心軸線C1の回りに回動本体部4を回動させるときには、回動中心軸線C1に対して中心がオフセットした光源2とリフレクタ3とが、円軌道S上を一体的に旋回する。 Further, in the resin molding apparatus 1 of this example, the reflector 3 having a structure in which a large number of reflecting surfaces 31 are formed in a bowl shape and light is distributed substantially uniformly to the target irradiation position G is used. Then, when the rotation main body 4 is rotated around the rotation center axis C1, the light source 2 and the reflector 3 whose center is offset with respect to the rotation center axis C1 rotate integrally on the circular orbit S. To do.
 このとき、目標照射位置Gにおいては、照射範囲E(照射直径)の中心Pが円軌道S上を移動して移動照射範囲E’を形成し、目標照射位置Gにおいて中心Oからの各距離の部位においては、光が照射されている時間帯と、照射されていない時間帯とが形成される。そして、この光の照射の交番により、目標照射位置Gに配置したゴム製の成形型6内の熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができる。
 また、上記光の照射の交番により、フィラメント(発光体)21の形状がリフレクタ3の多数の反射面31によって目標照射位置Gに投影されることによって生じるフィラメント21の影(局所加熱部位)が目標照射位置Gにおいて移動することになる。これにより、成形型6内の熱可塑性樹脂8に局所的に著しく加熱される部位が集中することを防止することができる。
At this time, at the target irradiation position G, the center P of the irradiation range E (irradiation diameter) moves on the circular orbit S to form a moving irradiation range E ′. In the part, a time zone in which light is irradiated and a time zone in which light is not irradiated are formed. And by this alternating irradiation of light, the heating temperature in each part of the thermoplastic resin 8 in the rubber mold 6 arranged at the target irradiation position G can be made uniform.
In addition, due to the alternating irradiation of light, the shadow (local heating part) of the filament 21 generated when the shape of the filament (light emitting body) 21 is projected onto the target irradiation position G by the multiple reflecting surfaces 31 of the reflector 3 is the target. It moves at the irradiation position G. Thereby, it can prevent that the site | part which is heated remarkably locally on the thermoplastic resin 8 in the shaping | molding die 6 concentrates.
 また、目標照射位置Gに光強度が高い部位の集中が生じないため、特定形状の熱可塑性樹脂8だけでなく、種々の形状の熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができる。さらに、光源2及びリフレクタ3を回動させる簡単な構成によって、熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができる。
 それ故、本例の樹脂成形装置1によれば、ゴム製の成形型6に比べて成形型6内の熱可塑性樹脂8を選択的に加熱することができ、簡単な装置の構成によって、熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができる。
In addition, since the concentration of the high light intensity portion does not occur at the target irradiation position G, the heating temperature is uniformized not only in the thermoplastic resin 8 having a specific shape but also in the various portions of the thermoplastic resin 8. Can do. Furthermore, the heating temperature in each part of the thermoplastic resin 8 can be made uniform by a simple configuration in which the light source 2 and the reflector 3 are rotated.
Therefore, according to the resin molding apparatus 1 of this example, the thermoplastic resin 8 in the molding die 6 can be selectively heated compared to the rubber molding die 6, and a simple device configuration can The heating temperature at each part of the plastic resin 8 can be made uniform.
 また、本例の樹脂成形方法も、熱可塑性樹脂8の加熱温度の均一化を図ることができる樹脂成形装置1の特性を活用して樹脂成形品を得ることができる。
 それ故、本例の樹脂成形方法によれば、ゴム製の成形型6に比べて成形型6内の熱可塑性樹脂8を選択的に加熱することができ、熱可塑性樹脂8における各部位の加熱温度の均一化を図って優れた品質の樹脂成形品を得ることができる。
Further, the resin molding method of this example can also obtain a resin molded product by utilizing the characteristics of the resin molding apparatus 1 that can make the heating temperature of the thermoplastic resin 8 uniform.
Therefore, according to the resin molding method of this example, the thermoplastic resin 8 in the molding die 6 can be selectively heated as compared with the rubber molding die 6, and each part of the thermoplastic resin 8 can be heated. It is possible to obtain an excellent quality resin molded product by making the temperature uniform.
 なお、本例においては、熱可塑性樹脂8としてABS樹脂を用いた。熱可塑性樹脂8としては、これ以外にも、上記成形型6の表面に上記0.78~2μmの波長領域を含む光を照射したときに、成形型6内に吸収されずに透過した光を吸収することができる熱可塑性樹脂8を用いることができる。 In this example, an ABS resin was used as the thermoplastic resin 8. As the thermoplastic resin 8, in addition to this, when the surface of the mold 6 is irradiated with light including the wavelength region of 0.78 to 2 μm, the light transmitted without being absorbed into the mold 6 is transmitted. A thermoplastic resin 8 that can be absorbed can be used.
 また、本例においては、成形した樹脂成形品は、成形型6のキャビティ61内において空冷することにより冷却した後、このキャビティ61内から取り出す。このとき、上記のごとく熱可塑性樹脂8を選択的に加熱できることにより、成形型6の温度は、熱可塑性樹脂8の温度よりも低く維持することができる。そのため、樹脂成形品を冷却するために要する冷却時間を短縮することができる。
 また、成形型6の温度を低く維持することができることにより、成形型6の劣化を抑制することができ、成形型6の耐久性を向上させることができる。
In this example, the molded resin molded product is cooled by air cooling in the cavity 61 of the mold 6 and then taken out from the cavity 61. At this time, since the thermoplastic resin 8 can be selectively heated as described above, the temperature of the mold 6 can be maintained lower than the temperature of the thermoplastic resin 8. Therefore, the cooling time required for cooling the resin molded product can be shortened.
Moreover, since the temperature of the shaping | molding die 6 can be maintained low, deterioration of the shaping | molding die 6 can be suppressed and durability of the shaping | molding die 6 can be improved.
(実施例2)
 本例は、図10に示すごとく、光源2及びリフレクタ3を旋回させる代わりに、中継反射鏡5を用いてリフレクタ3によって反射された光を目標照射位置Gへ導くよう構成した例である。
 本例の樹脂成形装置1は、熱可塑性樹脂8を充填するためのキャビティ61を形成してなるゴム製の成形型6と、0.78~2μmの波長領域を含む光を発する光源2と、光源2から発した光を配光して反射するリフレクタ3と、リフレクタ3から反射された光をさらに反射させて成形型6へ導くための中継反射鏡5とを有している。
(Example 2)
In this example, as shown in FIG. 10, instead of turning the light source 2 and the reflector 3, the light reflected by the reflector 3 is guided to the target irradiation position G by using the relay reflecting mirror 5.
The resin molding apparatus 1 of this example includes a rubber molding die 6 in which a cavity 61 for filling a thermoplastic resin 8 is formed, a light source 2 that emits light including a wavelength region of 0.78 to 2 μm, A reflector 3 that distributes and reflects light emitted from the light source 2 and a relay reflector 5 that further reflects the light reflected from the reflector 3 and guides it to the mold 6 are provided.
 本例のリフレクタ3は、多数の平坦状の反射面31を椀状に形成してなると共に(図2参照)、多数の反射面31によって光源2から発した光を光源2から所定距離にある中継反射鏡5へ配光するよう構成してある。また、本例の中継反射鏡5は、リフレクタ3から受けた光を中継反射鏡5から所定距離にある目標照射位置Gへ反射させるよう構成してある。
 本例の樹脂成形装置1は、図10に示すごとく、光源2とリフレクタ3と中継反射鏡5とを固定して目標照射位置Gへ配光する際に、中継反射鏡5によって反射された各反射面31による光の反射中心軸線D1が目標照射位置Gに到達する範囲を照射範囲Eとしたとき、図11、図12に示すごとく、光源2とリフレクタ3とを固定した状態で中継反射鏡5を回動させることにより、目標照射位置Gに対して、円を描くように照射範囲Eを変化させて、目標照射位置Gの周辺に配置した成形型6の表面からキャビティ61内に充填する熱可塑性樹脂8に光を照射し、この熱可塑性樹脂8を加熱するよう構成してある。
The reflector 3 of this example is formed with a large number of flat reflecting surfaces 31 in a bowl shape (see FIG. 2), and the light emitted from the light source 2 by the numerous reflecting surfaces 31 is at a predetermined distance from the light source 2. Light is distributed to the relay reflector 5. In addition, the relay reflector 5 of this example is configured to reflect the light received from the reflector 3 to the target irradiation position G that is a predetermined distance from the relay reflector 5.
As shown in FIG. 10, the resin molding apparatus 1 of the present example fixes the light source 2, the reflector 3, and the relay reflector 5 and distributes the light to the target irradiation position G. Assuming that the range in which the reflection center axis D1 of the light reflected by the reflecting surface 31 reaches the target irradiation position G is the irradiation range E, as shown in FIGS. 11 and 12, the relay reflector is in a state where the light source 2 and the reflector 3 are fixed. By rotating 5, the irradiation range E is changed so as to draw a circle with respect to the target irradiation position G, and the cavity 61 is filled from the surface of the mold 6 arranged around the target irradiation position G. The thermoplastic resin 8 is irradiated with light, and the thermoplastic resin 8 is heated.
 図11~図13に示すごとく、本例の中継反射鏡5は、その反射面51による反射配光方向X2が、中継反射鏡5を回動させるための回動中心軸線C1に対して傾斜する方向を向いている。本例の中継反射鏡5は、モータ等の駆動源による回転力を受けて回動(回転)する回動本体部4に配設してあり、回動本体部4における回動の中心を構成する回動中心軸線C1に対し、中継反射鏡5の反射配光方向X2が傾斜している。
 本例の樹脂成形装置1は、中継反射鏡5を回動中心軸線C1の回りに回動させることによって、中継反射鏡5の反射面51による反射配光方向X2が目標照射位置Gの中心Oの回りの円軌道S上を移動するよう構成されている。なお、図11、図12は、回動本体部4の回動により反射配光方向X2が変化する状態を示す。
As shown in FIGS. 11 to 13, in the relay reflecting mirror 5 of this example, the light distribution direction X2 reflected by the reflecting surface 51 is inclined with respect to the rotation center axis C1 for rotating the relay reflecting mirror 5. Facing the direction. The relay reflecting mirror 5 of this example is disposed in the rotating main body 4 that rotates (rotates) in response to rotational force from a driving source such as a motor, and constitutes the center of rotation in the rotating main body 4. The reflection light distribution direction X2 of the relay reflecting mirror 5 is inclined with respect to the rotation center axis C1.
In the resin molding apparatus 1 of this example, the reflection light distribution direction X2 by the reflection surface 51 of the relay reflecting mirror 5 is the center O of the target irradiation position G by rotating the relay reflecting mirror 5 around the rotation center axis C1. It moves on the circular orbit S around. 11 and 12 show a state in which the reflected light distribution direction X2 changes due to the rotation of the rotation main body 4.
 図10に示すごとく、本例の中継反射鏡5は、回動本体部4の回動中心軸線C1に対して反射面51による反射配光方向X2を平行にした状態(反射面51を垂直にした状態)を原位置とし、中継反射鏡5が原位置にあるときには、光源2(フィラメント21)から受けた光を、目標照射位置Gにおける中心に反射させるよう構成してある。また、中継反射鏡5は、その反射配光方向X2が回動中心軸線C1と一致する原位置において、リフレクタ3から受けた光を90°屈折させて、目標照射位置Gの中心Oへ導くよう構成してある。また、本例の回動本体部4の回動中心軸線C1は、リフレクタ3による配光方向X1に対して45°傾斜して設けてある。また、本例の中継反射鏡5は円盤状に形成した。
 なお、中継反射鏡5の反射面51は、平面状に形成したが、これ以外にも、例えば曲面状に形成することもできる。
As shown in FIG. 10, the relay reflector 5 of this example is in a state in which the reflection light distribution direction X2 by the reflection surface 51 is parallel to the rotation center axis C1 of the rotation main body 4 (the reflection surface 51 is vertical). When the relay reflector 5 is in the original position, the light received from the light source 2 (filament 21) is reflected to the center at the target irradiation position G. Further, the relay reflecting mirror 5 refracts the light received from the reflector 3 by 90 ° at the original position where the reflected light distribution direction X2 coincides with the rotation center axis C1, and guides it to the center O of the target irradiation position G. It is configured. Further, the rotation center axis C <b> 1 of the rotation main body 4 of this example is provided to be inclined by 45 ° with respect to the light distribution direction X <b> 1 by the reflector 3. Moreover, the relay reflecting mirror 5 of this example was formed in a disk shape.
In addition, although the reflective surface 51 of the relay reflecting mirror 5 was formed in planar shape, it can also be formed in curved surface form other than this, for example.
 また、中継反射鏡5は、回動中心軸線C1の回りに回動する回動本体部4に対して、ねじ42の調整によって反射配光方向X2の傾斜角度θを変更することができるよう構成してある。本例の中継反射鏡5は、回動本体部4に対して傾斜角度θを変更する際に、回動本体部4の回動部41に対して回動中心軸線C1を挟む両側に螺合した一対又は複数のねじ42の先端を、中継反射鏡5に当接させ、各ねじ42の回動本体部4に対する螺合位置から先端位置までの突出長さを調整することによって、回動中心軸線C1に対する反射面51の反射配光方向X2を調整するよう構成してある。そして、ねじ42の調整によって回動中心軸線C1に対する反射配光方向X2の傾斜角度θを所定の角度に設定すると、回動本体部4によって中継反射鏡5を回動させる際に、リフレクタ3から配向される光が、目標照射位置Gにおける中心Oの回りの円軌道S上を移動する。 Further, the relay reflector 5 is configured such that the tilt angle θ in the reflected light distribution direction X2 can be changed by adjusting the screw 42 with respect to the rotating main body 4 rotating around the rotation center axis C1. It is. The relay reflecting mirror 5 of this example is screwed to both sides of the rotation main body 4 with the rotation center axis C1 sandwiched when the inclination angle θ is changed with respect to the rotation main body 4. The tip of the pair of screws 42 or the plurality of screws 42 is brought into contact with the relay reflector 5 and the projecting length from the screwing position to the tip position of each screw 42 with respect to the turning main body 4 is adjusted. The reflection light distribution direction X2 of the reflection surface 51 with respect to the axis C1 is adjusted. When the tilt angle θ of the reflection light distribution direction X2 with respect to the rotation center axis C1 is set to a predetermined angle by adjusting the screw 42, the reflector 3 is turned off when the relay reflecting mirror 5 is rotated by the rotation main body 4. The oriented light moves on a circular orbit S around the center O at the target irradiation position G.
 本例の樹脂成形装置1は、ゴム製の成形型6を用いて熱可塑性樹脂8からなる樹脂成形品を成形するに当たり、光源2及びリフレクタ3を用いた単灯式のランプと、中継反射鏡5とを用いることによって、より簡単に光の照射範囲Eを適切に変化させることができ、成形型6内の熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができるものである。
 樹脂成形品を成形するに当たっては、ゴム製の成形型6のキャビティ61内に熱可塑性樹脂8を充填する。そして、この充填の際には、光源2から発した0.78~2μmの波長領域を含む光を、リフレクタ3及び中継反射鏡5によって配光し、成形型6の表面からキャビティ61内の熱可塑性樹脂8に照射する。このとき、成形型6を構成するゴムと熱可塑性樹脂8との物性の違いにより、ゴム製の成形型6に比べて、熱可塑性樹脂8をより多く加熱することができる。
The resin molding apparatus 1 of the present example includes a single-lamp lamp using a light source 2 and a reflector 3 and a relay reflector in molding a resin molded product made of a thermoplastic resin 8 using a rubber mold 6. 5, the light irradiation range E can be changed appropriately more easily, and the heating temperature in each part of the thermoplastic resin 8 in the mold 6 can be made uniform. .
In molding the resin molded product, the thermoplastic resin 8 is filled into the cavity 61 of the rubber mold 6. In this filling, light including a wavelength region of 0.78 to 2 μm emitted from the light source 2 is distributed by the reflector 3 and the relay reflecting mirror 5, and the heat in the cavity 61 is transmitted from the surface of the mold 6. Irradiate the plastic resin 8. At this time, the thermoplastic resin 8 can be heated more than the rubber mold 6 due to the difference in physical properties between the rubber constituting the mold 6 and the thermoplastic resin 8.
 これにより、キャビティ61内への熱可塑性樹脂8の充填が完了するまでの間において、ゴム製の成形型6の温度よりも、キャビティ61内における熱可塑性樹脂8の温度を高く維持することができる。そのため、ゴム製の成形型6に対してキャビティ61内の熱可塑性樹脂8を選択的に加熱することができ、キャビティ61内に熱可塑性樹脂8の充填不良が生じることを防止して、良好な樹脂成形品を得ることができる。 Thereby, the temperature of the thermoplastic resin 8 in the cavity 61 can be maintained higher than the temperature of the rubber mold 6 until the filling of the thermoplastic resin 8 into the cavity 61 is completed. . Therefore, the thermoplastic resin 8 in the cavity 61 can be selectively heated with respect to the rubber mold 6, and it is possible to prevent a poor filling of the thermoplastic resin 8 in the cavity 61 from occurring. A resin molded product can be obtained.
 また、本例の樹脂成形装置1においては、多数の反射面31を椀状に形成して目標照射位置Gへ略均一に配光する構造のリフレクタ3、及びリフレクタ3から受けた光を目標照射位置Gへ反射させる中継反射鏡5を用いる。そして、成形型6内の熱可塑性樹脂8を加熱する際には、光源2から発した光をリフレクタ3によって配光して、中継反射鏡5へと導く。また、回動本体部4によって中継反射鏡5を回動させる。このとき、回動中心軸線C1に対する中継反射鏡5の反射配光方向X2が所定の傾斜角度θに調整してあり、中継反射鏡5の反射面51に入射した光は、所定の反射角度で目標照射位置Gへ出射される。 Further, in the resin molding apparatus 1 of this example, the reflector 3 having a structure in which a large number of reflecting surfaces 31 are formed in a bowl shape to distribute light substantially uniformly to the target irradiation position G, and the light received from the reflector 3 is irradiated with the target. The relay reflecting mirror 5 that reflects to the position G is used. When the thermoplastic resin 8 in the mold 6 is heated, the light emitted from the light source 2 is distributed by the reflector 3 and guided to the relay reflecting mirror 5. Further, the relay reflecting mirror 5 is rotated by the rotating main body 4. At this time, the reflection light distribution direction X2 of the relay reflecting mirror 5 with respect to the rotation center axis C1 is adjusted to a predetermined inclination angle θ, and the light incident on the reflecting surface 51 of the relay reflecting mirror 5 has a predetermined reflection angle. The light is emitted to the target irradiation position G.
 また、このとき、目標照射位置Gにおいては、中継反射鏡5によって反射された照射範囲(照射直径)Eの中心Pが円軌道S上を移動し、目標照射位置Gにおいて中心Oからの各距離の部位においては、光が照射されている時間帯と、照射されていない時間帯とが形成される。そして、この光の照射の交番により、目標照射位置Gに配置した成形型6内の熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができる。
 また、上記光の照射の交番により、フィラメント(発光体)21の形状がリフレクタ3の多数の反射面31によって目標照射位置Gに投影されることによって生じるフィラメント21の影(局所加熱部位)が目標照射位置Gにおいて移動することになる。これにより、成形型6内の熱可塑性樹脂8に局所的に著しく加熱される部位が集中することを防止することができる。
At this time, at the target irradiation position G, the center P of the irradiation range (irradiation diameter) E reflected by the relay reflector 5 moves on the circular orbit S, and each distance from the center O at the target irradiation position G. In the part, a time zone in which light is irradiated and a time zone in which light is not irradiated are formed. And by this alternating irradiation of light, the heating temperature in each part of the thermoplastic resin 8 in the mold 6 arranged at the target irradiation position G can be made uniform.
In addition, due to the alternating irradiation of light, the shadow (local heating part) of the filament 21 generated when the shape of the filament (light emitting body) 21 is projected onto the target irradiation position G by the multiple reflecting surfaces 31 of the reflector 3 is the target. It moves at the irradiation position G. Thereby, it can prevent that the site | part which is heated remarkably locally on the thermoplastic resin 8 in the shaping | molding die 6 concentrates.
 また、本例においては、中継反射鏡5を回動させる構造にしたことにより、特に光源2を回動させる必要がなく、回動する際の振動等によって光源2が劣化することを防止することができる。また、軽量かつ配線等がない中継反射鏡5を回動させる構造にしたことにより、回動本体部4の駆動を容易にすることができる。
 また、目標照射位置Gに光強度が高い部位の集中が生じないため、特定形状の成形型6内の熱可塑性樹脂8だけでなく、種々の形状の熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができる。
Further, in this example, since the relay reflecting mirror 5 is configured to rotate, it is not particularly necessary to rotate the light source 2, and it is possible to prevent the light source 2 from being deteriorated due to vibration or the like when rotating. Can do. In addition, since the relay reflecting mirror 5 that is lightweight and has no wiring or the like is configured to rotate, the driving of the rotating main body 4 can be facilitated.
In addition, since the concentration of the portion having high light intensity does not occur at the target irradiation position G, the heating temperature of each portion of the thermoplastic resin 8 in various shapes as well as the thermoplastic resin 8 in the specific shape molding die 6 is determined. Uniformity can be achieved.
 それ故、本例の樹脂成形装置1によっても、ゴム製の成形型6に比べて成形型6内の熱可塑性樹脂8を選択的に加熱することができ、簡単な装置の構成によって、熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができる。
 また、本例の樹脂成形方法も、熱可塑性樹脂8の加熱温度の均一化を図ることができる樹脂成形装置1の特性を活用して樹脂成形品を得ることができる。それ故、本例の樹脂成形方法によっても、上記実施例1と同様に、熱可塑性樹脂8における各部位の加熱温度の均一化を図って優れた品質の樹脂成形品を得ることができる。
 本例においても、その他の構成は上記実施例1と同様であり、上記実施例1と同様の作用効果を得ることができる。
Therefore, even with the resin molding apparatus 1 of this example, the thermoplastic resin 8 in the mold 6 can be selectively heated compared to the rubber mold 6, and the thermoplastic resin can be obtained by a simple apparatus configuration. The heating temperature in each part of the resin 8 can be made uniform.
Further, the resin molding method of this example can also obtain a resin molded product by utilizing the characteristics of the resin molding apparatus 1 that can make the heating temperature of the thermoplastic resin 8 uniform. Therefore, also by the resin molding method of this example, similarly to Example 1 above, it is possible to obtain a resin molded product of excellent quality by making the heating temperature of each part in the thermoplastic resin 8 uniform.
Also in this example, other configurations are the same as those of the first embodiment, and the same effects as those of the first embodiment can be obtained.
(確認試験1)
 本確認試験においては、上記実施例2に示した樹脂成形装置1による熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができる効果を確認するための試験を行った。
 光源2及びリフレクタ3としては、0.9μmの波長に光強度のピークを有し、最大定格容量が100V、2.5kWであるハロゲンヒータ11(インフリッヂ工業(株)製、HSH-2、f300、φ100)を用い、光源2(フィラメント21)のランプ温度は3200Kであるものを用いた。
 また、熱可塑性樹脂8としてはABS樹脂を用い、成形型6としてはシリコーンゴムからなるものを用いた。また、ABS樹脂は、粒子状態の熱可塑性樹脂8を用い、平均粒径が700μmのマイクロペレットとした。また、ABS樹脂は、推奨成形温度が220℃、未溶融温度が170℃以下、焼けを生じる上限温度が300℃であるものを用いた。
 また、キャビティ61は、試験用として2mmの厚みの平面状態のものとした。
(Confirmation test 1)
In this confirmation test, a test was performed to confirm the effect of making the heating temperature uniform in each part of the thermoplastic resin 8 by the resin molding apparatus 1 shown in Example 2 above.
As the light source 2 and the reflector 3, a halogen heater 11 having a peak of light intensity at a wavelength of 0.9 μm and a maximum rated capacity of 100 V and 2.5 kW (manufactured by Infridge Industry Co., Ltd., HSH-2, f300, φ100) and the lamp temperature of the light source 2 (filament 21) is 3200K.
Further, as the thermoplastic resin 8, an ABS resin was used, and as the mold 6, one made of silicone rubber was used. Further, as the ABS resin, a particulate thermoplastic resin 8 was used, and micro pellets having an average particle diameter of 700 μm were used. In addition, as the ABS resin, one having a recommended molding temperature of 220 ° C., an unmelted temperature of 170 ° C. or less, and an upper limit temperature that causes burning is 300 ° C. was used.
The cavity 61 was in a planar state with a thickness of 2 mm for testing.
 本確認試験のハロゲンヒータ11は、光源2から目標照射位置Gまでの照射距離を300mmとし、目標照射位置Gにおける照射範囲Eをφ100mmとした。本例のリフレクタ3における多数の反射面31による反射直径は、φ145mmとした。
 また、本確認試験においては中継反射鏡5を用いているため、光源2から中継反射鏡5までの距離を150mmとし、中継反射鏡5から目標照射位置Gまでの距離を150mmとした。そして、目標照射位置Gにおける照射範囲Eは、光源2から中継反射鏡5までの経路と、中継反射鏡5から目標照射位置Gまでの経路とによって絞って、φ100mmとした。
In the halogen heater 11 of this confirmation test, the irradiation distance from the light source 2 to the target irradiation position G was 300 mm, and the irradiation range E at the target irradiation position G was φ100 mm. The reflection diameter by the many reflecting surfaces 31 in the reflector 3 of this example was φ145 mm.
Further, since the relay reflector 5 is used in this confirmation test, the distance from the light source 2 to the relay reflector 5 is 150 mm, and the distance from the relay reflector 5 to the target irradiation position G is 150 mm. The irradiation range E at the target irradiation position G was set to φ100 mm by narrowing down by the path from the light source 2 to the relay reflecting mirror 5 and the path from the relay reflecting mirror 5 to the target irradiation position G.
 本確認試験においては、実施例1の図6、図7に示したハロゲンヒータ11を用いた。
 図6に示したように、本確認試験において用いたハロゲンヒータ11は、多数の反射面31によって反射された光の反射中心軸線D1の全体が、照射範囲Eの全体の直径に対して約40%の大きさの直径の中心部Fの範囲外に到達する状態に配置してある。
In this confirmation test, the halogen heater 11 shown in FIGS. 6 and 7 of Example 1 was used.
As shown in FIG. 6, in the halogen heater 11 used in this confirmation test, the entire reflection center axis D1 of the light reflected by the many reflecting surfaces 31 is about 40 with respect to the entire diameter of the irradiation range E. It is arranged so as to reach out of the range of the central portion F having a diameter of%.
 成形型6のキャビティ61内に充填した加熱前のABS樹脂の温度は30℃とし、樹脂成形装置1によって、キャビティ61内のABS樹脂における被照射範囲であるφ150mmの範囲内が推奨成形温度である220℃に到達するまでの照射時間(sec)を測定した。そして、10秒ごとに記録した値から直径φ200mmの被照射面のABS樹脂の最大温度(℃)、平均温度(℃)、最小温度(℃)も計算した。この各温度の測定は、赤外線サーモグラフィ(日本アビオニクス(株)製)を用いて行った。
 この測定を行った結果を表1に示す。
The temperature of the ABS resin before heating filled in the cavity 61 of the mold 6 is 30 ° C., and the recommended molding temperature is within the range of φ150 mm, which is the irradiated range of the ABS resin in the cavity 61, by the resin molding apparatus 1. The irradiation time (sec) until reaching 220 ° C. was measured. The maximum temperature (° C.), average temperature (° C.), and minimum temperature (° C.) of the ABS resin on the irradiated surface having a diameter of 200 mm were also calculated from the values recorded every 10 seconds. Each temperature was measured using an infrared thermography (manufactured by Nippon Avionics Co., Ltd.).
The results of this measurement are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、本確認試験においては、中継反射鏡5の回動を停止した場合(照射範囲Eを固定した場合)(比較1)、照射範囲Eの中心が通る旋回直径(円軌道の直径)Bを、照射範囲Eの直径をAとしたとき、0.2A≦B≦2Aの範囲内で変化させた場合(発明1~10)について、照射時間及び各温度の測定を行った。
 同表において、照射範囲Eの直径Aに対する円軌道の直径Bである比率を回転比B/Aで示す。また、最大温度(℃)と最小温度(℃)との差を温度差(℃)で示す。
 発明1は、回転比B/Aが0.2である場合を示し、発明10は、回転比B/Aが2である場合を示す。
Further, in this confirmation test, when the rotation of the relay reflector 5 is stopped (when the irradiation range E is fixed) (Comparison 1), the turning diameter (circular orbit diameter) B through which the center of the irradiation range E passes is calculated. When the diameter of the irradiation range E is A, the irradiation time and each temperature were measured for the case where the diameter was changed within the range of 0.2A ≦ B ≦ 2A (Inventions 1 to 10).
In the table, the ratio of the diameter B of the circular orbit to the diameter A of the irradiation range E is shown as a rotation ratio B / A. Further, the difference between the maximum temperature (° C.) and the minimum temperature (° C.) is indicated by a temperature difference (° C.).
Invention 1 shows a case where the rotation ratio B / A is 0.2, and Invention 10 shows a case where the rotation ratio B / A is 2.
 また、試験の評価は、焼け判定(熱可塑性樹脂8の表面に焼けが生じたかの判定)、未溶融判定(熱可塑性樹脂8が溶融したかの判定)を行い、これらを総合して総合判定を行った。同表において、焼け判定は、熱可塑性樹脂8の最大温度が320℃以上になった場合を×、300~319℃になった場合を△、280~299℃になった場合を○、280℃未満になった場合を◎で示す。また、未溶融判定は、熱可塑性樹脂8の最小温度が150℃未満になった場合を×、150~159℃になった場合を△、160~169℃になった場合を○、170℃以上になった場合を◎で示す。 In addition, the evaluation of the test includes burn determination (determination of whether the surface of the thermoplastic resin 8 has burned), unmelting determination (determination of whether the thermoplastic resin 8 has melted), and comprehensively determine these. went. In the table, the burn judgment is x when the maximum temperature of the thermoplastic resin 8 is 320 ° C. or higher, Δ when 300 to 319 ° C., ◯ 280 ° C. when 280 to 299 ° C. The case of less than is indicated by ◎. In addition, the unmelted determination is x when the minimum temperature of the thermoplastic resin 8 is less than 150 ° C., Δ when the temperature is 150 to 159 ° C., ○ when the temperature is 160 to 169 ° C., 170 ° C. or more. When it becomes, it shows by (double-circle).
 同表において、比較1については、平均温度では高くなるものの、最大温度と最小温度との温度差が著しく大きい。また、キャビティ61内の熱可塑性樹脂8に焼けが生じ(焼け判定が×となり)、また、熱可塑性樹脂8の未溶融の状態が生じ易い(未溶融判定が△となった)。そのため、比較1によっては、総合判定が×となり、成形型6内の熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができないことがわかる。 In the table, for Comparison 1, although the average temperature is high, the temperature difference between the maximum temperature and the minimum temperature is remarkably large. Further, the thermoplastic resin 8 in the cavity 61 is burned (burning judgment is x), and the thermoplastic resin 8 is likely to be in an unmelted state (unmelting judgment is Δ). Therefore, it can be seen that, depending on the comparison 1, the overall judgment is x, and it is not possible to make the heating temperature uniform in each part of the thermoplastic resin 8 in the mold 6.
 一方、発明1、2(回転比B/Aが0.2、0.4の場合)については、キャビティ61の各部位における熱可塑性樹脂8に、焼けが生じるか(焼け判定が△となり)、未溶融の状態が生じるおそれがある(未溶融判定が○となった)。そのため、発明品1、2によっては、総合判定が△となり、成形型6内の熱可塑性樹脂8の各部位における加熱温度の均一化を図るためには不充分であることがわかる。
 また、発明3~5(回転比B/Aが0.6、0.8、1の場合)については、キャビティ61の各部位における熱可塑性樹脂8に、照射時間によっては焼けが生じるおそれがある(焼け判定が○となった)。ただし、未溶融の状態は生じない(未溶融判定が◎となった)。そのため、発明品3~5によっては、総合判定が○となり、成形型6内の熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができることがわかる。
On the other hand, for inventions 1 and 2 (when the rotation ratio B / A is 0.2 or 0.4), is the burnout occurring in the thermoplastic resin 8 in each part of the cavity 61 (burn determination is Δ), There is a possibility that an unmelted state may occur (the unmelted determination is ○). For this reason, depending on the inventions 1 and 2, the overall judgment is Δ, indicating that the heating temperature at each portion of the thermoplastic resin 8 in the mold 6 is not sufficient for achieving uniformity.
In Inventions 3 to 5 (when the rotation ratio B / A is 0.6, 0.8, 1), the thermoplastic resin 8 in each part of the cavity 61 may be burned depending on the irradiation time. (Burn determination is ○). However, an unmelted state does not occur (unmelted determination is ◎). Therefore, it can be seen that, depending on the inventions 3 to 5, the overall judgment becomes “good”, and the heating temperature in each part of the thermoplastic resin 8 in the mold 6 can be made uniform.
 また、発明品6~10(回転比B/Aが1.2、1.4、1.6、1.8、2の場合)については、キャビティ61の各部位における熱可塑性樹脂8に焼けが生じることがなく(焼け判定が◎となり)、未溶融の状態も生じない(未溶融判定が◎となった)。そのため、発明品6~10によれば、総合判定が◎となり、成形型6内の熱可塑性樹脂8の各部位における加熱温度の均一化を図るのにより適していることがわかった。 Inventive products 6 to 10 (when the rotation ratio B / A is 1.2, 1.4, 1.6, 1.8, and 2), the thermoplastic resin 8 in each part of the cavity 61 is burned. It does not occur (burning judgment is ◎), and an unmelted state does not occur (unmelting judgment is ◎). Therefore, according to Inventions 6 to 10, the overall judgment is “◎”, and it was found that the invention is more suitable for achieving uniform heating temperature at each part of the thermoplastic resin 8 in the mold 6.
 なお、被照射範囲であるφ150mmの範囲内が220℃に到達するまでの照射時間(sec)は、回転比B/Aを大きくするほど長くなることがわかる。すなわち、回転比B/Aを大きくすれば、熱可塑性樹脂8における各部位の加熱温度の均一化を図ることができるが、照射時間が長くなることがわかる。
 そのため、回転比(照射範囲Eの直径Aに対する移動照射範囲E’の円軌道の直径Bの比率)B/Aは、多数の反射面31による光の反射中心軸線D1の全体を、照射範囲Eの全体の直径に対して約40%の大きさの直径の中心部Fの範囲外に到達する状態に形成したハロゲンヒータ11を用いた場合には、加熱温度の偏りと照射時間との兼ね合いより、回転比B/Aを0.2~2とすることが好ましく、0.6~2とすることがより好ましく、さらには、1.2~2とすることがより一層好ましいことがわかる。
In addition, it turns out that the irradiation time (sec) until the inside of the range of φ150 mm which is the irradiation range reaches 220 ° C. becomes longer as the rotation ratio B / A is increased. That is, it can be seen that if the rotation ratio B / A is increased, the heating temperature of each part in the thermoplastic resin 8 can be made uniform, but the irradiation time becomes longer.
Therefore, the rotation ratio (ratio of the diameter B of the circular orbit of the moving irradiation range E ′ to the diameter A of the irradiation range E) B / A represents the entire reflection center axis D1 of the light reflected by the multiple reflecting surfaces 31 in the irradiation range E In the case of using the halogen heater 11 formed so as to reach the outside of the central portion F having a diameter of about 40% with respect to the overall diameter, the balance between the uneven heating temperature and the irradiation time is used. It can be seen that the rotation ratio B / A is preferably 0.2-2, more preferably 0.6-2, and even more preferably 1.2-2.
 図14~図16には、横軸に、目標照射位置Gにおける中心Oからの距離をとり、縦軸に熱可塑性樹脂8の温度をとって、熱可塑性樹脂8の各部位における温度を測定した結果を示す。図14は比較1を示し、図15は発明5を示し、図16は発明9を示す。
 各図において、発明5は比較1に比べて熱可塑性樹脂8の各部位における温度の偏りが少なく、発明9は発明5に比べて熱可塑性樹脂8の各部位における温度の偏りがさらに少なくなっていることがわかる。
14 to 16, the horizontal axis represents the distance from the center O at the target irradiation position G, and the vertical axis represents the temperature of the thermoplastic resin 8, and the temperature at each part of the thermoplastic resin 8 was measured. Results are shown. 14 shows Comparison 1, FIG. 15 shows Invention 5, and FIG. 16 shows Invention 9.
In each figure, Invention 5 has less temperature deviation at each part of the thermoplastic resin 8 than Comparison 1, and Invention 9 has less temperature deviation at each part of the thermoplastic resin 8 than Invention 5. I understand that.
(確認試験2)
 本確認試験においても、上記実施例2に示した樹脂成形装置1による熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができる効果を確認するための試験を行った。
 本確認試験においては、実施例1の図4、図5に示したハロゲンヒータ11を用いた。
 図4に示したように、ハロゲンヒータ11のリフレクタ3における多数の反射面31による反射中心軸線D1は、確認試験1の場合(図6)と比べて照射範囲Eの外縁部により多く位置する状態に形成した。より具体的には、本確認試験のハロゲンヒータ11は、多数の反射面31によって反射された光の反射中心軸線D1の全体が、照射範囲Eの全体の直径に対して約60%の大きさの直径の中心部の範囲外に到達する状態に形成した。
 なお、本確認試験に用いたハロゲンヒータ11の上記以外の構成は、確認試験1と同様である。また、本確認試験において用いた熱可塑性樹脂8、成形型6、成形型6内のキャビティ61の形成状態についても確認試験1と同様である。
(Confirmation test 2)
Also in this confirmation test, the test for confirming the effect which can aim at equalizing of the heating temperature in each site | part of the thermoplastic resin 8 by the resin molding apparatus 1 shown in the said Example 2 was done.
In this confirmation test, the halogen heater 11 shown in FIGS. 4 and 5 of Example 1 was used.
As shown in FIG. 4, the reflection center axis D1 due to the large number of reflecting surfaces 31 in the reflector 3 of the halogen heater 11 is located more in the outer edge portion of the irradiation range E than in the case of the confirmation test 1 (FIG. 6). Formed. More specifically, in the halogen heater 11 of this confirmation test, the entire reflection center axis D1 of the light reflected by the many reflecting surfaces 31 is about 60% of the entire diameter of the irradiation range E. It was formed so as to reach out of the range of the central part of the diameter.
The remaining configuration of the halogen heater 11 used in this confirmation test is the same as that in the confirmation test 1. Further, the formation state of the thermoplastic resin 8, the mold 6, and the cavity 61 in the mold 6 used in this confirmation test is the same as that in the confirmation test 1.
 本確認試験においては、中継反射鏡5の回動を停止した場合(照射範囲Eを固定した場合)(比較2)、照射範囲Eの中心が通る旋回直径(円軌道の直径)Bを、照射範囲Eの直径をAとしたとき、0.2A≦B≦2Aの範囲内で変化させた場合(発明11~16)について、照射時間及び各温度の測定を行った。本確認試験においては、発明11は、回転比B/Aが0.2である場合を示し、発明16は、回転比B/Aが1.2である場合を示す。
 この測定を行った結果を表2に示す。
In this confirmation test, when the rotation of the relay reflector 5 is stopped (when the irradiation range E is fixed) (Comparison 2), the turning diameter (circular orbit diameter) B through which the center of the irradiation range E passes is irradiated. When the diameter of the range E is A, the irradiation time and each temperature were measured for the case where the diameter was changed within the range of 0.2A ≦ B ≦ 2A (Inventions 11 to 16). In this confirmation test, Invention 11 shows a case where the rotation ratio B / A is 0.2, and Invention 16 shows a case where the rotation ratio B / A is 1.2.
The results of this measurement are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 同表において、比較2については、平均温度では高くなるものの、最大温度と最小温度との温度差が著しく大きい。また、キャビティ61内の熱可塑性樹脂8に焼けが生じやすいが(焼け判定が△となり)、熱可塑性樹脂8の未溶融の状態は生じない(未溶融判定が◎となった)。そのため、比較2によっては、総合判定が△となり、成形型6内の熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができないことがわかる。 In the table, for Comparison 2, although the average temperature is high, the temperature difference between the maximum temperature and the minimum temperature is remarkably large. Further, the thermoplastic resin 8 in the cavity 61 is likely to be burned (burning judgment is Δ), but the thermoplastic resin 8 is not in an unmelted state (unmelting judgment is ◎). Therefore, depending on the comparison 2, it can be seen that the overall judgment is Δ, and it is not possible to make the heating temperature uniform in each part of the thermoplastic resin 8 in the mold 6.
 一方、発明11、12(回転比B/Aが0.2、0.4の場合)については、キャビティ61の各部位における熱可塑性樹脂8に、焼けが生じるおそれがあるが(焼け判定が○となり)、未溶融の状態は生じない(未溶融判定が◎となった)。そのため、発明品11、12によっては、総合判定が○となり、成形型6内の熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができることがわかる。 On the other hand, in the inventions 11 and 12 (when the rotation ratio B / A is 0.2 or 0.4), there is a possibility that the thermoplastic resin 8 in each part of the cavity 61 may be burned (the burn judgment is ◯). ) And no unmelted state occurs (unmelted determination is)). Therefore, it can be seen that, depending on the inventions 11 and 12, the overall judgment becomes “good”, and the heating temperature at each part of the thermoplastic resin 8 in the mold 6 can be made uniform.
 また、発明13(回転比B/Aが0.6の場合)については、キャビティ61の各部位における熱可塑性樹脂8に、焼けが生じることがなく(焼け判定が◎となった)、未溶融の状態も生じない(未溶融判定が◎となった)。そのため、発明品13によれば、総合判定が◎となり、成形型6内の熱可塑性樹脂8の各部位における加熱温度の均一化をより効果的に図ることができることがわかる。
 また、発明14~16(回転比B/Aが0.8、1、1.2の場合)については、キャビティ61の各部位における熱可塑性樹脂8に、焼けが生じるおそれはほとんどなく(焼け判定が○か◎となった)、未溶融の状態もほとんど生じない(未溶融判定が○となった)。そのため、発明品14~16によっては、総合判定が○となり、成形型6内の熱可塑性樹脂8の各部位における加熱温度の均一化を図ることができることがわかる。
 なお、本確認試験においても、評価方法は確認試験1と同様である。
In Invention 13 (when the rotation ratio B / A is 0.6), the thermoplastic resin 8 in each part of the cavity 61 is not burned (burning judgment is ◎) and is not melted. This also does not occur (the unmelted determination is ◎). Therefore, according to Invention 13, the overall judgment is “◎”, and it can be seen that the heating temperature at each portion of the thermoplastic resin 8 in the mold 6 can be made more effective.
In Inventions 14 to 16 (when the rotation ratio B / A is 0.8, 1, 1.2), there is almost no possibility that the thermoplastic resin 8 in each part of the cavity 61 will be burned (burn determination). Is ◯ or ◎), almost no unmelted state occurs (unmelted determination is ◯). Therefore, it can be seen that, depending on the inventions 14 to 16, the overall judgment becomes “good”, and the heating temperature at each part of the thermoplastic resin 8 in the mold 6 can be made uniform.
In this confirmation test, the evaluation method is the same as that of confirmation test 1.
 図17、図18には、横軸に、目標照射位置Gにおける中心Oからの距離をとり、縦軸に熱可塑性樹脂8の温度をとって、熱可塑性樹脂8の各部位における温度を測定した結果を示す。図17は比較2を示し、図18は発明13を示す。
 各図において、発明13は比較2に比べて熱可塑性樹脂8の各部位における温度の偏りが少なくなっていることがわかる。ただし、発明13は、確認試験1で示した発明5、発明9の場合に比べて、温度の偏りが大きいことがわかる。
 以上の結果より、確認試験1に用いたハロゲンヒータ11の方が確認試験2で用いたハロゲンヒータ11よりも、成形型6内の熱可塑性樹脂8における各部位の加熱温度の均一化を図るためにより適していることがわかった。
In FIG. 17 and FIG. 18, the horizontal axis is the distance from the center O at the target irradiation position G, and the vertical axis is the temperature of the thermoplastic resin 8, and the temperature at each part of the thermoplastic resin 8 is measured. Results are shown. FIG. 17 shows Comparison 2 and FIG. 18 shows Invention 13.
In each figure, it can be seen that Invention 13 has less temperature deviation in each part of the thermoplastic resin 8 than Comparison 2. However, it can be seen that Invention 13 has a large temperature deviation compared to Invention 5 and Invention 9 shown in Confirmation Test 1.
From the above results, the halogen heater 11 used in the confirmation test 1 is more uniform in the heating temperature of each part in the thermoplastic resin 8 in the mold 6 than the halogen heater 11 used in the confirmation test 2. Was found to be more suitable.

Claims (9)

  1.  熱可塑性樹脂を充填するためのキャビティを形成してなるゴム製の成形型と、0.78~2μmの波長領域を含む光を発する光源と、該光源から発した光を配光して上記成形型へ導くためのリフレクタとを有し、
     該リフレクタは、その反射面を椀状に形成してなると共に、該反射面によって上記光源から発した光を該光源から所定距離にある目標照射位置へ配光するよう構成してあり、
     上記光源と上記リフレクタとを固定して上記目標照射位置へ配光する際に、上記反射面によって反射された光が上記目標照射位置に到達する範囲を照射範囲としたとき、上記光源と上記リフレクタとを一体的に回動させる、又は上記光源を固定した状態で上記リフレクタを回動させることにより、上記目標照射位置に対して、円を描くように上記照射範囲を変化させて、上記目標照射位置の周辺に配置した上記成形型の表面から上記キャビティ内に充填する上記熱可塑性樹脂に光を照射し、該熱可塑性樹脂を加熱するよう構成したことを特徴とする樹脂成形装置。
    A molding die made of rubber formed with a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 μm, and the above-mentioned molding by distributing light emitted from the light source A reflector for guiding to the mold,
    The reflector has a reflecting surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflecting surface to a target irradiation position at a predetermined distance from the light source.
    When the light source and the reflector are fixed and light is distributed to the target irradiation position, the light source and the reflector are defined as a range in which the light reflected by the reflecting surface reaches the target irradiation position. , Or by rotating the reflector with the light source fixed, the irradiation range is changed so as to draw a circle with respect to the target irradiation position, and the target irradiation is performed. A resin molding apparatus configured to irradiate light to the thermoplastic resin filling the cavity from a surface of the molding die arranged around a position and to heat the thermoplastic resin.
  2.  熱可塑性樹脂を充填するためのキャビティを形成してなるゴム製の成形型と、0.78~2μmの波長領域を含む光を発する光源と、該光源から発した光を配光して反射するリフレクタと、該リフレクタから反射された光をさらに反射させて上記成形型へ導くための中継反射鏡とを有し、
     上記リフレクタは、その反射面を椀状に形成してなると共に、該反射面によって上記光源から発した光を該光源から所定距離にある上記中継反射鏡へ配光するよう構成してあり、
     上記中継反射鏡は、上記リフレクタから受けた光を当該中継反射鏡から所定距離にある目標照射位置へ反射させるよう構成してあり、
     上記光源と上記リフレクタと上記中継反射鏡とを固定して上記目標照射位置へ配光する際に、上記中継反射鏡によって反射された光が上記目標照射位置に到達する範囲を照射範囲としたとき、上記光源と上記リフレクタとを固定した状態で上記中継反射鏡を回動させることにより、上記目標照射位置に対して、円を描くように上記照射範囲を変化させて、上記目標照射位置の周辺に配置した上記成形型の表面から上記キャビティ内に充填する上記熱可塑性樹脂に光を照射し、該熱可塑性樹脂を加熱するよう構成したことを特徴とする樹脂成形装置。
    A rubber molding die formed with a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 μm, and light emitted from the light source is distributed and reflected. A reflector and a relay reflector for further reflecting the light reflected from the reflector and guiding it to the mold,
    The reflector has a reflective surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflective surface to the relay reflector at a predetermined distance from the light source.
    The relay reflector is configured to reflect light received from the reflector to a target irradiation position at a predetermined distance from the relay reflector,
    When the light source, the reflector, and the relay reflector are fixed and light is distributed to the target irradiation position, the range in which the light reflected by the relay reflector reaches the target irradiation position is set as the irradiation range By rotating the relay reflector in a state where the light source and the reflector are fixed, the irradiation range is changed to draw a circle with respect to the target irradiation position, and around the target irradiation position A resin molding apparatus configured to irradiate light to the thermoplastic resin filled in the cavity from the surface of the molding die disposed on the mold and to heat the thermoplastic resin.
  3.  請求項1において、上記光源は、該光源と上記リフレクタとを一体的に回動させるための回動中心軸線に対してオフセットした位置にあり、
     上記光源と上記リフレクタとを上記回動中心軸線の回りに一体的に回動させることによって、上記目標照射位置に対して、円を描くように上記照射範囲を変化させるよう構成したことを特徴とする樹脂成形装置。
    In Claim 1, the light source is at a position offset with respect to a rotation center axis for integrally rotating the light source and the reflector,
    The irradiation range is changed so as to draw a circle with respect to the target irradiation position by integrally rotating the light source and the reflector around the rotation center axis. Resin molding equipment.
  4.  請求項2において、上記中継反射鏡は、その反射面による反射配光方向が、当該中継反射鏡を回動させるための回動中心軸線に対して傾斜する方向を向いており、
     上記中継反射鏡を上記回動中心軸線の回りに回動させることによって、上記目標照射位置に対して、円を描くように上記照射範囲を変化させるよう構成したことを特徴とする樹脂成形装置。
    In claim 2, the relay reflector is directed such that the light distribution direction reflected by the reflecting surface is inclined with respect to the rotation center axis for rotating the relay reflector,
    A resin molding apparatus configured to change the irradiation range so as to draw a circle with respect to the target irradiation position by rotating the relay reflecting mirror around the rotation center axis.
  5.  請求項4において、上記中継反射鏡は、上記回動中心軸線の回りに回動する回動本体部に対して、ねじの調整によって上記反射配光方向の傾斜角度を変更することができるよう構成してあることを特徴とする樹脂成形装置。 5. The relay reflector according to claim 4, wherein the relay reflecting mirror can change an inclination angle in the reflection light distribution direction by adjusting a screw with respect to a rotating main body rotating around the rotation center axis. The resin molding apparatus characterized by the above-mentioned.
  6.  請求項1~5のいずれか一項において、上記照射範囲における中心は、上記目標照射位置における中心回りの円軌道上を移動し、該円軌道の直径Bは、上記照射範囲の最大外径をAとしたとき、0.2A≦B≦2Aの関係を有していることを特徴とする樹脂成形装置。 6. The center of the irradiation range according to claim 1, wherein the center of the irradiation range moves on a circular orbit around the center at the target irradiation position, and the diameter B of the circular orbit is the maximum outer diameter of the irradiation range. A resin molding apparatus having a relationship of 0.2A ≦ B ≦ 2A when A is used.
  7.  請求項1~6のいずれか一項において、上記リフレクタにおける上記反射面は、多数の平坦状の反射面を組み合わせた多段式構造、又は連続する1つの曲面状の反射面からなる連続曲面構造を有しており、
     上記照射範囲は、上記多数の平坦状の反射面による光の反射中心軸線が上記目標照射位置に到達する範囲、又は上記連続する1つの曲面状の反射面を区画した多数の仮想反射面による光の反射中心軸線が上記目標照射位置に到達する範囲として設定してあることを特徴とする光照射加熱装置。
    The reflective surface of the reflector according to any one of Claims 1 to 6, wherein the reflective surface has a multistage structure in which a large number of flat reflective surfaces are combined, or a continuous curved surface structure composed of one continuous curved reflective surface. Have
    The irradiation range is a range in which the reflection central axis of light by the many flat reflecting surfaces reaches the target irradiation position, or light by a large number of virtual reflecting surfaces that divide the one continuous curved reflecting surface. The light irradiation heating device is characterized in that the reflection center axis of the light beam is set as a range that reaches the target irradiation position.
  8.  熱可塑性樹脂を充填するためのキャビティを形成してなるゴム製の成形型と、0.78~2μmの波長領域を含む光を発する光源と、該光源から発した光を配光して上記成形型へ導くためのリフレクタとを有する樹脂成形装置を用い、
     上記リフレクタは、その反射面を椀状に形成してなると共に、該反射面によって上記光源から発した光を該光源から所定距離にある目標照射位置へ配光するよう構成しておき、
     上記光源と上記リフレクタとを固定して上記目標照射位置へ配光する際に、上記反射面によって反射された光が上記目標照射位置に到達する範囲を照射範囲としたとき、上記光源と上記リフレクタとを一体的に回動させる、又は上記光源を固定して上記リフレクタを回動させることにより、上記目標照射位置に対して、円を描くように上記照射範囲を変化させて、上記目標照射位置の周辺に配置した上記成形型の表面から上記キャビティ内に充填する上記熱可塑性樹脂に光を照射し、該熱可塑性樹脂を加熱することを特徴とする樹脂成形方法。
    A molding die made of rubber formed with a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 μm, and the above-mentioned molding by distributing light emitted from the light source Using a resin molding device having a reflector for guiding to a mold,
    The reflector has a reflection surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflection surface to a target irradiation position at a predetermined distance from the light source,
    When the light source and the reflector are fixed and light is distributed to the target irradiation position, the light source and the reflector are defined as a range in which the light reflected by the reflecting surface reaches the target irradiation position. , Or by rotating the reflector while fixing the light source, the irradiation range is changed to draw a circle with respect to the target irradiation position, and the target irradiation position A resin molding method comprising irradiating light to the thermoplastic resin filled in the cavity from the surface of the molding die arranged in the periphery of the mold and heating the thermoplastic resin.
  9.  熱可塑性樹脂を充填するためのキャビティを形成してなるゴム製の成形型と、0.78~2μmの波長領域を含む光を発する光源と、該光源から発した光を配光して反射するリフレクタと、該リフレクタから反射された光をさらに反射させて上記成形型へ導くための中継反射鏡とを有する樹脂成形装置を用い、
     上記リフレクタは、その反射面を椀状に形成してなると共に、該反射面によって上記光源から発した光を該光源から所定距離にある上記中継反射鏡へ配光するよう構成しておき、
     上記中継反射鏡は、上記リフレクタから受けた光を当該中継反射鏡から所定距離にある目標照射位置へ反射させるよう構成しておき、
     上記光源と上記リフレクタと上記中継反射鏡とを固定して上記目標照射位置へ配光する際に、上記中継反射鏡によって反射された光が上記目標照射位置に到達する範囲を照射範囲としたとき、上記光源と上記リフレクタとを固定した状態で上記中継反射鏡を回動させることにより、上記目標照射位置に対して、円を描くように上記照射範囲を変化させて、上記目標照射位置の周辺に配置した上記成形型の表面から上記キャビティ内に充填する上記熱可塑性樹脂に光を照射し、該熱可塑性樹脂を加熱することを特徴とする樹脂成形方法。
    A rubber molding die formed with a cavity for filling a thermoplastic resin, a light source that emits light including a wavelength region of 0.78 to 2 μm, and light emitted from the light source is distributed and reflected. Using a resin molding apparatus having a reflector and a relay reflector for further reflecting the light reflected from the reflector and guiding it to the mold,
    The reflector has a reflection surface formed in a bowl shape, and is configured to distribute light emitted from the light source by the reflection surface to the relay reflector at a predetermined distance from the light source.
    The relay reflector is configured to reflect the light received from the reflector to a target irradiation position at a predetermined distance from the relay reflector,
    When the light source, the reflector, and the relay reflector are fixed and light is distributed to the target irradiation position, the range in which the light reflected by the relay reflector reaches the target irradiation position is set as the irradiation range By rotating the relay reflector in a state where the light source and the reflector are fixed, the irradiation range is changed to draw a circle with respect to the target irradiation position, and around the target irradiation position A resin molding method comprising: irradiating light onto the thermoplastic resin filled in the cavity from the surface of the molding die disposed on the substrate and heating the thermoplastic resin.
PCT/JP2009/067846 2008-10-21 2009-10-15 Resin forming apparatus and resin forming method WO2010047268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-271245 2008-10-21
JP2008271245A JP2010099860A (en) 2008-10-21 2008-10-21 Resin molding apparatus and resin molding method

Publications (1)

Publication Number Publication Date
WO2010047268A1 true WO2010047268A1 (en) 2010-04-29

Family

ID=42119308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067846 WO2010047268A1 (en) 2008-10-21 2009-10-15 Resin forming apparatus and resin forming method

Country Status (2)

Country Link
JP (1) JP2010099860A (en)
WO (1) WO2010047268A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070998A1 (en) * 2009-12-10 2011-06-16 テクノポリマー株式会社 Method for molding thermoplastic resin molded article
WO2012070406A1 (en) * 2010-11-23 2012-05-31 テクノポリマー株式会社 Rubber die for light irradiation molding and method for producing same
WO2012073674A1 (en) * 2010-11-30 2012-06-07 テクノポリマー株式会社 Light irradiation molding device and light irradiation molding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101970680B1 (en) * 2017-06-26 2019-04-19 장봉철 staking apparatus using infrared light heating and method of staking using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563043U (en) * 1992-01-31 1993-08-20 ヤマハ株式会社 Light heating device
WO2007058184A1 (en) * 2005-11-15 2007-05-24 Techno Polymer Co., Ltd. Resin molding process and resin molding apparatus
JP2008194910A (en) * 2007-02-12 2008-08-28 Techno Polymer Co Ltd Resin molding apparatus and resin molding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563043U (en) * 1992-01-31 1993-08-20 ヤマハ株式会社 Light heating device
WO2007058184A1 (en) * 2005-11-15 2007-05-24 Techno Polymer Co., Ltd. Resin molding process and resin molding apparatus
JP2008194910A (en) * 2007-02-12 2008-08-28 Techno Polymer Co Ltd Resin molding apparatus and resin molding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070998A1 (en) * 2009-12-10 2011-06-16 テクノポリマー株式会社 Method for molding thermoplastic resin molded article
WO2012070406A1 (en) * 2010-11-23 2012-05-31 テクノポリマー株式会社 Rubber die for light irradiation molding and method for producing same
WO2012073674A1 (en) * 2010-11-30 2012-06-07 テクノポリマー株式会社 Light irradiation molding device and light irradiation molding method
JP2012116023A (en) * 2010-11-30 2012-06-21 Techno Polymer Co Ltd Light irradiation molding equipment, and light irradiation molding method
US9682497B2 (en) 2010-11-30 2017-06-20 Jsr Corporation Light irradiation molding apparatus and light irradiation molding method

Also Published As

Publication number Publication date
JP2010099860A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
US7679828B2 (en) Method and apparatus for aperture sculpting in a microlens array film
JP2010229023A (en) Substrate cutting apparatus and method of cutting substrate using the same
WO2010047268A1 (en) Resin forming apparatus and resin forming method
KR101444019B1 (en) Edge-lit backlight module
CN103430276B (en) Corner cubes radiation control
US8293165B2 (en) Resin forming method and resin forming apparatus
CN108180443A (en) Source light injection is not parallel to the lighting device of device optical axis
JPH10282496A (en) Light transmission body, production of light transmission body and surface light source
TWI436356B (en) A resin film forming method and a resin film forming apparatus
CN101922634A (en) LED (Light Emitting Diode) illumination device
TWI520839B (en) Method for manufacturing a flexible optical plate and flexible optical plate fabricated by the method, and backlight module using the flexible optical plate
WO2010047269A1 (en) Resin molding rubber mold, resin molding device, and resin molding method
CN102200609A (en) Method for manufacturing flexible optical plates, and flexible optical plate manufactured by utilizing same and backlight module
JP3197315U (en) Wrap-around window for lighting module
JP4696736B2 (en) Light heating device
JP2011033643A (en) Optical path changing sheet, backlight unit and display device
JP5982744B2 (en) Heating device, heating method, molding device, and plastic molding product molding method
JP2010103183A (en) Light irradiation heating device and light irradiation heating method
JP2004306510A (en) Method and apparatus for heating and crystallizing saturated polyester hollow object
JP2007222790A (en) Light convergence and irradiation device and ultraviolet irradiation device
JP3639318B2 (en) Parallel beam splitter
US20240035641A1 (en) Luminaires with light refocusing elements
JP4419377B2 (en) Flash lamp light irradiation device
JPH10255529A (en) Directive planar light source
JP2003264157A (en) Wafer heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821965

Country of ref document: EP

Kind code of ref document: A1