WO2010047191A1 - Device for measuring blood cell deformability - Google Patents

Device for measuring blood cell deformability Download PDF

Info

Publication number
WO2010047191A1
WO2010047191A1 PCT/JP2009/065813 JP2009065813W WO2010047191A1 WO 2010047191 A1 WO2010047191 A1 WO 2010047191A1 JP 2009065813 W JP2009065813 W JP 2009065813W WO 2010047191 A1 WO2010047191 A1 WO 2010047191A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
gate
deformability
blood cell
volume
Prior art date
Application number
PCT/JP2009/065813
Other languages
French (fr)
Japanese (ja)
Inventor
修司 一谷
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to CN200980141499.5A priority Critical patent/CN102187217B/en
Priority to JP2010534755A priority patent/JP5093357B2/en
Publication of WO2010047191A1 publication Critical patent/WO2010047191A1/en

Links

Images

Classifications

    • G01N15/1433
    • G01N2015/012
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1493Particle size
    • G01N2015/1495Deformation of particles

Definitions

  • the present invention relates to a blood cell deformability measuring apparatus.
  • the deformation index is defined using the major and minor diameters of elliptical red blood cells from the diffraction image.
  • a method for calculating the deformation index as a quantitative value of the deformability of red blood cells has been proposed (see, for example, Patent Documents 1 and 2).
  • Patent Documents 1 and 2 are methods that can be applied only to red blood cells that retain an elliptical shape, and cannot be applied to amoeba-like white blood cells that can be deformed into various shapes.
  • moving blood cells can be displayed as an image, it is difficult to visually grasp how the blood cells move while deforming because the blood cells flow at a uniform speed on the image.
  • the present invention has been made in view of the above circumstances, and can measure each deformability when red blood cells and white blood cells pass through capillaries and can easily grasp the state of blood cells moving while deforming. It is an object to provide a measuring device.
  • a blood cell deformability measuring device for flowing blood from an upstream terrace having a width wider than the blood cell diameter toward a gate having a width narrower than the blood cell diameter, and measuring the deformability of the blood cells in the blood, Imaging means for imaging the flow of blood passing through the upstream terrace and the gate; From the blood flow image obtained by the imaging means, speed calculation means for calculating the speed of blood cells passing through the upstream terrace or the gate; From the blood flow image obtained by the imaging means, volume calculating means for calculating the volume of blood cells passing through the gate; Deformability calculating means for calculating the deformability of the blood cell from the velocity of the blood cell and the volume of the blood cell; It is characterized by providing.
  • the invention according to claim 2 is the blood cell deformability measuring device according to claim 1,
  • the deformability calculating means calculates D 1 or D 2 satisfying the following formula (1) or formula (2) as the deformability of the blood cell.
  • the invention according to claim 4 is the blood cell deformability measuring apparatus according to any one of claims 1 to 3, It has blood flow image display means for displaying a blood flow image obtained by the photographing means on a display screen.
  • the invention according to claim 5 is the blood cell deformability measuring apparatus according to any one of claims 1 to 4, A plurality of the gates; Occlusion state calculation means for calculating the occlusion ratio of the gate occluded by the blood cells, wherein the blood cell speed obtained by the speed calculation means is zero,
  • the deformability calculating means calculates the deformability of the blood cell from the occlusion ratio of the gate and the volume of the blood cell closed by the volume calculating means.
  • the invention according to claim 6 is the blood cell deformability measuring device according to claim 5,
  • the occlusion state calculating means calculates the occlusion ratio of the gate that is occluded by blood cells of the volume according to the volume of the blood cells,
  • the deformability calculation means calculates a D 1 satisfies the following equation (3).
  • the invention according to claim 7 is the blood cell deformability measuring device according to claim 5 or 6,
  • the plurality of gates are arranged in the blood flow direction and are formed in a plurality of different widths so as to gradually narrow from the upstream side to the downstream side in the blood flow direction, or orthogonal to the blood flow direction.
  • the occlusion state calculating means detects, as a maximum occlusion width, the largest one of the widths of the gates occluded by the blood cells, from the blood flow image obtained by the imaging means,
  • the deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means.
  • the invention according to claim 8 is the blood cell deformability measuring apparatus according to claim 5 or 6,
  • the plurality of gates form a plurality of sets for each width
  • the blockage state calculating means obtains the blockage rate of the gate blocked by the blood cells according to the width of the gate, and detects the width of the gate that maximizes the blockage rate as the maximum blockage width
  • the deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means.
  • the invention according to claim 9 is the blood cell deformability measuring device according to claim 5 or 6,
  • the occlusion state calculating means detects, as a maximum occlusion width, the width of the gate at the occlusion position of the blood cell in the gate occluded with the blood cell from the blood flow image obtained by the imaging means,
  • the deformability calculating means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell closed by the volume means.
  • the invention according to claim 10 is the blood cell deformability measuring apparatus according to any one of claims 7 to 9,
  • the deformability calculating means calculates D 2 or D 3 satisfying the following formula (4) or formula (5) as the deformability of the blood cell.
  • the invention according to claim 11
  • a blood cell deformability measuring apparatus for flowing blood to a plurality of gates formed with a narrower width than the blood cell diameter and measuring the deformability of the blood cells in the blood, Photographing means for photographing the flow of blood passing through the gate; From the blood flow image obtained by the imaging means, an occlusion state calculation means for calculating the occlusion ratio of the gate occluded by the blood cells, From the blood flow image obtained by the imaging means, a volume calculation means for calculating the volume of the blood cell
  • the invention according to claim 12 is the blood cell deformability measuring device according to claim 11,
  • the occlusion state calculating means calculates the occlusion ratio of the gate that is occluded by blood cells of the volume according to the volume of the blood cells,
  • the deformability calculation means calculates a D 1 satisfies the following equation (3).
  • the invention according to claim 13 is the blood cell deformability measuring device according to claim 11 or 12, It has blood flow image display means for displaying a blood flow image obtained by the photographing means on a display screen.
  • the invention according to claim 14 is the blood cell deformability measuring device according to any one of claims 11 to 13,
  • the plurality of gates are arranged in the blood flow direction and are formed in a plurality of different widths so as to gradually narrow from the upstream side to the downstream side in the blood flow direction, or orthogonal to the blood flow direction.
  • the occlusion state calculating means detects, as a maximum occlusion width, the largest one of the widths of the gates occluded by the blood cells, from the blood flow image obtained by the imaging means,
  • the deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means.
  • the invention according to claim 15 is the blood cell deformability measuring apparatus according to any one of claims 11 to 13,
  • the plurality of gates form a plurality of sets for each width
  • the blockage state calculating means obtains the blockage rate of the gate blocked by the blood cells according to the width of the gate, and detects the width of the gate that maximizes the blockage rate as the maximum blockage width
  • the deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means.
  • the invention according to claim 16 is the blood cell deformability measuring apparatus according to any one of claims 11 to 13,
  • the occlusion state calculating means detects, as a maximum occlusion width, the width of the gate at the occlusion position of the blood cell in the gate occluded with the blood cell from the blood flow image obtained by the imaging means,
  • the deformability calculating means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell closed by the volume means.
  • the invention according to claim 17 is the blood cell deformability measuring apparatus according to any one of claims 14 to 16,
  • the deformability calculating means calculates D 2 or D 3 satisfying the following formula (4) or formula (5) as the deformability of the blood cell.
  • the deformability of the blood cell is calculated from the velocity of the blood cell and the volume of the blood cell. Therefore, the deformability of the blood cell is not limited to the red blood cell having an elliptical shape, and even if it is an amoeba-like white blood cell. Can be measured. Further, since the deformability of blood cells passing through a gate having a width narrower than the blood cell diameter is calculated, the deformability when blood cells pass through the capillaries can be measured by simulating capillaries by the gate.
  • the invention since the deformability of the blood cell is calculated from the occlusion ratio or the maximum occlusion width of the gate and the volume of the blood cell, the invention is not limited to the red blood cell having an elliptical shape, but an amoeba-like shape. Even leukocytes can be measured for deformability. Further, since the deformability of blood cells passing through a gate having a width narrower than the blood cell diameter is calculated, the deformability when blood cells pass through the capillaries can be measured by simulating capillaries by the gate.
  • the gate having a plurality of sets for each width, the maximum obtained as the gate width at which the blocking ratio for each width of the gate is maximized. Since the deformability of the blood cell is calculated from the occlusion width, the deformability is calculated using more gates, and a more stable calculation result is obtained.
  • FIG. 3A is a plan view of the flow path portion
  • FIG. 3B is a side sectional view.
  • It is a flowchart of deformability measurement in an embodiment. It is a figure which shows an example of the velocity map of a blood cell. It is a graph of a deformability. It is a flowchart of the deformability measurement in the modification of embodiment. It is a figure which shows a mode that white blood cells pass a gate. It is a graph which shows the time change of the density
  • FIG. 11 (a) is a graph showing the distribution range of measurement results of soft blood cells, with the vertical and horizontal axes representing changes in the vertical and horizontal widths of blood cells
  • FIG. 11 (b) shows the distribution ranges of measurement results of hard blood cells. It is the shown graph.
  • FIG. 12A is a graph showing measurement results of soft blood cells
  • FIG. 12B is a graph showing measurement results of hard blood cells, with the vertical width and the horizontal axis representing the change width and area of the vertical width of the blood cells.
  • FIG. 15 (a) is a processing image diagram in edge extraction processing
  • FIG. 15 (b) is a processing image diagram in monochrome / binarization processing
  • FIG. 15 (c) is a processing image diagram in noise processing
  • FIG. d) It is a process image figure in a morphological process
  • FIG.15 (e) is a process image figure in a blood cell residence part determination process. It is a figure which shows a mode that some gates are obstruct
  • FIG. 20 (a) is a figure which shows the state in which the blood containing many soft blood cells was poured
  • FIG. 20 (a) is a figure which shows the state in which the blood containing many soft blood cells was poured
  • FIG.20 (b) contains many hard blood cells.
  • FIG. 20 (b) contains many hard blood cells.
  • FIG. 20 (b) contains many hard blood cells.
  • FIG. 20 (b) contains many hard blood cells.
  • FIG. 1 is a block diagram showing an overall configuration of a blood cell deformability measuring apparatus 1 according to the present invention.
  • the blood cell deformability measuring apparatus 1 guides blood from a supply tank 10 through a filter 2 to a discharge tank 11, and measures the deformability of blood cells in the blood from information acquired in the process.
  • blood cells indicate red blood cells and / or white blood cells.
  • the blood cell deformability measuring apparatus 1 mainly includes a filter 2, a TV camera 3 for photographing a blood flow in the filter 2, and a deformability based on a blood flow image photographed by the TV camera 3.
  • a personal computer (PC) 7 that measures the blood flow
  • a display 8 that displays a blood flow image
  • a differential pressure control unit 9 that controls the blood flow in the filter 2.
  • a plurality of liquids such as physiological saline and physiologically active substances that are connected to the flow path via the mixer 12 so as to be mixed with blood and guided to the filter 2.
  • a solution bottle 13 or the like is further provided.
  • the differential pressure control unit 9 controls the pressurization pump 15 and the decompression pump 16 to adjust the differential pressure across the filter 2. By doing so, the filter 2 flows by a desired amount.
  • the valve 10 a of the supply tank 10 and the like are integrated and controlled by the sequence control unit 17.
  • FIG. 2 is a sectional view of the filter 2.
  • the filter 2 includes a base plate 21, silicon single crystal substrates 22 and 22, an outer plate 23, and a glass flat plate 24.
  • the base plate 21 is formed in a flat plate shape, and has an introduction hole 21a that communicates the upper surface near the center and the outer surface, and a discharge hole 21b that communicates the upper surface near one side end and the outer surface. .
  • the introduction hole 21a and the discharge hole 21b are connected to the supply tank 10 and the discharge tank 11 from the outer surface of the base plate 21 via a blood tube (not shown).
  • the two silicon single crystal substrates 22 and 22 are both formed in a substantially flat plate shape, and are arranged in parallel on the upper surface of the base plate 21 with a predetermined gap therebetween.
  • An introduction hole 21 a of the base plate 21 is opened in the gap between the two silicon single crystal substrates 22 and 22.
  • a protruding portion 22a extends in the direction in which the silicon single crystal substrates 22 and 22 are juxtaposed (the X direction in the drawing).
  • a plurality of hexagonal bank portions 22b are arranged in the X direction with the top surface in contact with the glass flat plate 24 (see FIG. 3).
  • the outer plate 23 is fixed to the upper surface end of the base plate 21 so as to surround the silicon single crystal substrates 22 and 22.
  • a predetermined gap is provided between the outer plate 23 and the silicon single crystal substrates 22, 22, and a discharge hole 21 b of the base plate 21 is opened in this gap.
  • the glass flat plate 24 is formed in a flat plate shape and is fixed to the upper surface of the outer plate 23. Further, between the lower surface of the glass flat plate 24 and the upper surface of the raised portion 22a, a channel portion 25 of a fine channel group is formed.
  • FIGS. 3A and 3B are diagrams for explaining the flow path section 25.
  • FIG. 3A is a view (plan view) of the flow path portion 25 as viewed from above, and
  • FIG. 3B is a side sectional view.
  • the flow path portion 25 includes a plurality of gates 25a formed between a plurality of bank portions 22b at the upper end of the raised portion 22a, and the gate 25a.
  • the upper terrace 25b is a space on the center side of the filter 2 (upper side in the drawing) and the downstream terrace 25c is a space outside the filter 2 (lower side in the drawing) with respect to the gate 25a.
  • the width t of the gate 25a is narrower than the blood cell diameter (about 8 ⁇ m) of the red blood cells R in the present embodiment.
  • the height h of the gate 25a is formed to be narrower than the blood cell diameter of the red blood cells R (about 8 ⁇ m).
  • the width t and height h may be formed narrower than the blood cell diameter of white blood cells W (about 10 to 20 ⁇ m).
  • the lengths la, lb, and lc in the width direction (Y direction in the drawing) of the raised portion 22a in the upstream terrace 25b, the gate 25a, and the downstream terrace 25c are all formed to be about 30 ⁇ m.
  • the upstream terrace 25b should just be formed in the width
  • the blood introduced from the supply tank 10 through the introduction hole 21a passes through the flow path portion 25 and is then discharged to the discharge tank 11 through the discharge hole 21b. More specifically, blood cells in blood flowing through the flow path section 25, for example, red blood cells R, first pass through the upstream terrace 25b, pass through the gate 25a, and finally pass through the downstream terrace 25c. It becomes.
  • pressure sensors E1 and E2 are provided upstream and downstream of the filter 2, and the pressure sensors E1 and E2 are configured to provide a difference between the measured filter upstream pressure P1 and filter downstream pressure P2.
  • the pressure is output to the pressure control unit 9.
  • the TV camera 3 is a digital CCD camera, for example, and is a high-speed camera having a resolution sufficient for photographing a blood flow.
  • the TV camera 3 is installed opposite to the glass flat plate 24 in the filter 2 and photographs the blood flow passing through the flow path portion 25 over the glass flat plate 24.
  • the photographing range may be a range including at least the plurality of gates 25a and the upstream terrace 25b.
  • the blood flow image obtained by the TV camera 3 is output to the personal computer 7 and displayed on the display 8.
  • the TV camera 3 is not particularly limited, but is a camera capable of shooting a moving image.
  • the personal computer 7 is connected to the TV camera 3 and includes an arithmetic processing unit 70 capable of calculating a plurality of types of blood characteristics from image information output from the TV camera 3.
  • the blood characteristics are various characteristic values indicating the properties of blood and the like, and include those relating to fluidity such as blood cell velocity and volume as well as blood cell deformability.
  • the arithmetic processing unit 70 can detect the gate 25a clogged with blood cells. As such an arithmetic processing part 70, a conventionally well-known thing can be used.
  • the display 8 is connected to the personal computer 7 and displays a blood flow image output from the TV camera 3 and blood characteristics calculated by the personal computer 7.
  • the differential pressure control unit 9 is connected to the sequence control unit 17, the pressure pump 15, and the pressure reduction pump 16, and controls the differential pressure before and after the filter 2 in accordance with a control command from the sequence control unit 17. Yes. More specifically, the differential pressure control unit 9 controls the pressure pump 15 upstream of the filter 2 and the pressure reduction pump 16 downstream of the filter 2 so that the filter upstream pressure P1 and the filter downstream pressure P2 become predetermined pressures. To do. Note that the differential pressure control unit 9 and the sequence control unit 17 may be configured integrally with the personal computer 7.
  • FIG. 4 is a flowchart of deformability measurement by the blood cell deformability measuring apparatus 1.
  • the blood flow passing through the flow path portion 25 is imaged (step S1). Specifically, first, blood to be measured is poured into the supply tank 10, and physiological saline or the like is added to the solution bottle 13 as necessary. Then, a predetermined differential pressure is applied to the filter 2 by the differential pressure control unit 9 so that blood flows through the filter 2, and at the same time, the blood flow passing through the flow path unit 25 is photographed with the TV camera 3. The photographed blood flow image is displayed on the display 8.
  • the blood flow image is processed by the arithmetic processing unit 70, and a blood cell velocity map is created (step S2).
  • a blood cell velocity map is created (step S2).
  • FIG. As shown, blood cells are detected at each intersection of the grid set on the blood flow image of the upstream terrace 25b, and a velocity map is obtained that calculates the velocity vector of the blood cells at the intersection where the blood cells are detected.
  • the created velocity map may not be obtained from the velocity vector of blood cells passing through the upstream terrace 25b, but may be obtained from the velocity vector of blood cells passing through the gate 25a.
  • the blood cell type of the blood cell detected on the speed map is determined by the arithmetic processing unit 70 (step S3).
  • the red blood cell R is determined as a white portion in the red hue range.
  • the white blood cells W may be discriminated using luminance, or may be discriminated as white portions with few holes or white portions with a small number of edges per unit area using the fact that they are larger than other blood cell types.
  • the blood cell type is discriminated using a known method described in, for example, JP-A-10-48120, JP-A-10-90163, and JP-A-10-274652. Can do. If the blood to be measured includes only one of red blood cells R and white blood cells W, this blood cell type discrimination step is omitted.
  • the blood cell velocity S is calculated by the arithmetic processing unit 70 (step S4).
  • the average value of the velocity vector of the blood cell calculated in step S2 is calculated by dividing into the red blood cell R and the white blood cell W determined in step S3, so that the average value of the red blood cell R and the white blood cell W is obtained as the average value.
  • a speed S is calculated.
  • the blood cell volume V is calculated by the arithmetic processing unit 70 (step S5).
  • the area of a blood cell passing through the gate 25a is calculated using a known method described in Japanese Patent Laid-Open No. 5-79970, and the area V is multiplied by the height h of the gate 25a to obtain the volume V of the blood cell. Calculated.
  • step S6 the deformability of the blood cell is calculated by the arithmetic processing unit 70 (step S6).
  • the speed S and the volume V of the blood cell of the blood cell which is calculated in step S4 and step S5, D 1 satisfies the following equation (1) is calculated as a deformability of blood cells.
  • ⁇ / (S ⁇ V) (1)
  • is a predetermined coefficient set in a measurement test performed in advance. More specifically, ⁇ is calculated by the blood cell deformability measuring apparatus 1 with the deformability of red blood cells measured by another apparatus as positive. The coefficient is set so that the deformability is calculated from the velocity S of the red blood cells and the volume V of the blood cells. If ⁇ is not constant with respect to the product S ⁇ V of blood cell velocity S and volume V in a measurement test performed in advance, ⁇ may be used as a lookup table for the product S ⁇ V. .
  • D 2 satisfying the following equation (2) may be calculated as the deformability of the blood cell.
  • D 2 1 / (S ⁇ V) / (1 / (S 0 ⁇ V 0 )) (2) here, S 0 : velocity of blood cells in the blood when a predetermined reference blood is passed to the upstream terrace 25b or the gate 25a, V 0 : The volume of blood cells in the blood when the predetermined reference blood is passed to the gate 25a, and the predetermined reference blood is blood of a standard health level.
  • D 1 calculated as deformability shows that blood cells stiff greater the value.
  • D 2 indicates that the blood cell has a standard hardness when the value is 1, and indicates that the blood cell is harder as it is larger than 1 and softer as it is smaller.
  • D 1 or D 2 calculated as deformability is arranged as a graph relating to the blood cell volume V as shown in FIG. 6, and the graph for each blood cell type of red blood cells R and white blood cells W is displayed on the display 8. Is done.
  • FIG. 6 is an example in which measurement results for two types of blood A and B are displayed together.
  • the blood cell deformability measuring device 1 is not limited to the red blood cell R having an elliptical shape, and is an amoeba-like white blood cell. Even if it is W, its deformability can be measured. Further, since the deformability of the blood cells passing through the gate 25a having a width smaller than the blood cell diameter is calculated, the deformability when the blood cells pass through the capillaries can be measured by simulating the capillaries by the gate 25a.
  • the blood flow passing through the gate 25a having a width narrower than the blood cell diameter is displayed on the display 8, the blood cell having the velocity S decreased can be confirmed by the gate 25a, and the blood cell has a uniform velocity on the image. Compared to the conventional flow that has flowed in step 1, it is possible to visually grasp how the blood cells move while deforming.
  • the blood cell deformability measuring apparatus 1A includes a personal computer 7A instead of the personal computer 7 in the above embodiment, and the personal computer 7A includes an arithmetic processing unit 70A instead of the arithmetic processing unit 70. Yes.
  • the arithmetic processing unit 70A is configured to be able to measure a passage time T required for blood cells to pass through the gate 25a instead of the velocity S of the blood cells in the blood.
  • the blood cell deformability measuring apparatus 1A includes a filter 2A instead of the filter 2 in the above embodiment, and the filter 2A is replaced with a flow path portion 25 as shown in FIG. 25A is provided.
  • the shape of the flow path portion 25A is equivalent to that of the flow path portion 25.
  • FIG. 7 is a flowchart of deformability measurement by the blood cell deformability measuring apparatus 1A.
  • step T1 the blood flow passing through the flow path portion 25 is photographed. This step is performed in the same manner as step S1 in the above embodiment.
  • the blood flow image is processed by the arithmetic processing unit 70A, and blood cells are detected (step T2).
  • a blood cell flowing in the upstream terrace 25b is detected and tracked by using a known method described in JP-A-2001-264318.
  • step T3 the blood cell type of the blood cell detected in step T2 is determined by the arithmetic processing unit 70A (step T3). This step is performed in the same manner as step S3 in the above embodiment.
  • step T4 the blood cell volume V is calculated by the arithmetic processing unit 70A (step T4). This step is performed in the same manner as step S5 in the above embodiment.
  • the passage time T required for the blood cells to pass through the gate 25a is measured by the arithmetic processing unit 70A (step T5).
  • the passage time T is measured by detecting the density change of the image color in the gate 25a.
  • FIGS. 8A to 8D are views showing how the white blood cells W pass through the gate 25a
  • FIG. 9 is a graph showing the change over time of the color density of the blood flow image at that time.
  • the deformability of the blood cell is calculated by the arithmetic processing unit 70A (step T6).
  • D 3 satisfying the following equation (30) is calculated as the deformability of the blood cell from the blood cell volume V and the passage time T calculated in step T4 and step T5.
  • ⁇ ⁇ T / V (30)
  • is a predetermined coefficient set in a measurement test performed in advance, and is a coefficient set in the same manner as ⁇ in the above equation (1).
  • D 4 satisfying the following formula (40) may be calculated as the deformability of the blood cell.
  • T 0 is a transit time required for blood cells in a predetermined reference blood to pass through the gate 25a.
  • D 3 and D 4 calculated from the equations (30) and (40) are the reciprocals of the passage time T instead of the blood cell velocity S with respect to the equations (1) and (2) in the above embodiment. It is none other than D 1 and D 2 when. Therefore, D 3 and D 4 can be used for the evaluation of deformability in the same manner as D 1 and D 2 .
  • D 3 or D 4 calculated as deformability is arranged as a graph relating to blood cell volume V as shown in FIG. 6, and the graph for each blood cell type of red blood cells R and white blood cells W is displayed on the display 8. Is done. If the blood to be measured includes only one of red blood cells R and white blood cells W, the calculated values in steps T4 to T6 may be the average value of all blood cells detected in step T1. .
  • the deformability is calculated from the volume V of the blood cells passing through the gate 25a, etc.
  • the deformability can also be obtained from a blood flow image when passing through the upstream terrace 25b or the downstream terrace 25c.
  • the blood cells passing through the upstream terrace 25b or the downstream terrace 25c change their shapes in various ways depending on their deformability as shown in FIGS. 10 (a) to 10 (c), for example. Therefore, the changes in the vertical and horizontal widths of the blood cells are calculated from the blood flow image, and as shown in FIGS. 11A and 11B, the coordinates of the vertical and horizontal axes corresponding to the data of each of the plurality of blood cells are obtained. Create a plotted graph.
  • the vertical width and horizontal width of a blood cell be the length of the Y direction of a flow-path part 25, and a X direction, for example.
  • the vertical width of the blood cell passing through the upstream terrace 25b or the downstream terrace 25c and the area of the blood cell are expressed as the vertical axis and the horizontal axis.
  • the vertical width of the blood cell on the vertical axis may be the horizontal width of the blood cell.
  • the blood cell deformability measuring apparatus 1E includes a personal computer 7E instead of the personal computer 7 in the above embodiment, and the personal computer 7E includes an arithmetic processing unit 70E instead of the arithmetic processing unit 70. Yes.
  • the arithmetic processing unit 70E is configured to determine that the gate 25a where the blood cell velocity S is zero is a closed gate 25a, and to calculate the closed ratio.
  • FIG. 13 is a flowchart of deformability measurement by the blood cell deformability measuring apparatus 1E
  • FIG. 14 is a flowchart when the closed gate 25a is detected.
  • blood to be measured is flowed to the filter 2E (step S10). Specifically, blood to be measured is poured into the supply tank 10 and physiological saline or the like is added to the solution bottle 13 as necessary. Then, a predetermined differential pressure is applied to the filter 2E by the differential pressure control unit 9, and blood flows through the filter 2E.
  • a blood flow passing through the flow path portion 25E is photographed, and a blood flow image is collected (step S20).
  • the TV camera 3 takes a moving image of the blood flow that passes through the flow path portion 25E.
  • the photographed blood flow image is displayed on the display 8.
  • FIGS. 15A to 15E are diagrams showing an example of the processed image in each step of FIG. However, FIGS. 15A to 15E are for facilitating the understanding of the processing in this step, and are not processed blood flow images in the gate 25a.
  • a Sobel filter is applied to the collected blood flow image in both the vertical and horizontal directions to extract the edge of the staying blood cell portion (hereinafter referred to as a blood cell staying portion).
  • the image is grayscaled and binarized with a predetermined threshold value, and the blood cell retention portion is displayed in white (step S32).
  • noise and blood flow shadows that are misrecognized as edges of the blood cell retention portion are removed from the white portion (step S33).
  • a white portion having an area smaller than a preset threshold is set as noise, and a white portion whose length ratio between the X direction and the Y direction is outside a predetermined range is blackened as a blood flow shadow.
  • step S34 The image from which noise or the like has been removed is expanded and contracted by morphological processing, and the gaps in the white portion are filled (step S34). And the white part which remained so far is determined as a blood cell retention part (step S35).
  • the blood cell retention part is detected, and the gate 25a having the blood cell retention part is detected as the closed gate 25a.
  • the volume V of the blood cell retention part is calculated by the arithmetic processing part 70E (step S40).
  • the area of the blood cell retention portion in the gate 25a is calculated using a known method described in JP-A-5-79970, and this area is multiplied by the height h of the gate 25a, whereby the gate 25a is The volume V of the blood cell retention part being obstructed is calculated.
  • the blood cell type of the blood cell retention part is determined by the arithmetic processing unit 70E (step S50).
  • the red blood cell R is determined as a white portion in the red hue range.
  • the white blood cells W may be discriminated using luminance, or may be discriminated as white portions with few holes or white portions with a small number of edges per unit area using the fact that they are larger than other blood cell types.
  • the blood to be measured contains only one of red blood cells R and white blood cells W, this blood cell type discrimination step is omitted.
  • the blockage rate C of the gate 25a is calculated by the arithmetic processing unit 70E (step S60).
  • the ratio of the gate 25a blocked by the blood cell retention part of the volume V is calculated as the blockage ratio C for each volume V of the blood cell retention part.
  • the occlusion ratio C is preferably a ratio with respect to the total number of gates 25a. However, when all the gates 25a are not included in the blood flow image, the ratio is as a ratio with respect to the number of gates 25a included in the blood flow image. Also good.
  • the deformability of the blood cell is calculated by the arithmetic processing unit 70E (step S70).
  • a graph as shown in FIG. 17 is drawn with the horizontal axis and the vertical axis respectively from the volume V and the blockage rate C of the blood cell retention portion calculated in step S40 and step S60, and the blockage rate C of the graph is shown.
  • the deformability of the blood cell is calculated by multiplying the reciprocal of the integrated value by a predetermined coefficient. That, D 1 satisfies the following equation (3) is calculated as a deformability of blood cells.
  • ⁇ 2 is a predetermined coefficient set in a measurement test performed in advance. More specifically, ⁇ 2 is calculated by the blood cell deformability measuring apparatus 1E with the red blood cell deformability measured by another apparatus as positive. The coefficient is set so that the deformability is calculated from the volume V and the occlusion ratio C of the erythrocytes. In the measurement test performed in advance, if ⁇ 2 is not constant with respect to the integral value of the blocking ratio C with respect to the volume V, a lookup table for the integral value may be used.
  • step S60 when the blockage ratio C averaged about all the blood cell retention parts was calculated by step S60, you may calculate D1A which satisfy
  • ⁇ 2 A is a predetermined coefficient set in a measurement test performed in advance, and is a coefficient set in the same manner as ⁇ 2 in the above equation (3).
  • D 1 or D 1A calculated as the deformability indicates that the larger the value, the softer the blood cell and the higher the deformability.
  • the deformability of the blood cells is calculated from the blockage ratio C of the gate 25a and the volume V of the blood cell retention portion. Therefore, the blood cell deformability measuring device 1E is not limited to the red blood cells R having an elliptical shape. Even if it is an amoeba-like leukocyte W, its deformability can be measured. Further, since the deformability of the blood cells passing through the gate 25a having a width smaller than the blood cell diameter is calculated, the deformability when the blood cells pass through the capillaries can be measured by simulating the capillaries by the gate 25a.
  • the flow of blood passing through the gate 25a having a narrower width than the blood cell diameter is displayed on the display 8, the blood cells whose speed has been reduced by the gate 25a can be confirmed, and the blood cells are displayed at a uniform speed on the image. Compared to the conventional flow, it is possible to visually grasp how the blood cells move while deforming.
  • the blood cell deformability measuring apparatus 1F includes a filter 2F instead of the filter 2E in the above embodiment, and the filter 2F is replaced with a flow path portion 25E as shown in FIG. A flow path portion 25F is provided.
  • the flow path portion 25F has a plurality of gates 25aF formed between a plurality of bank portions 22bF,.
  • the widths of the plurality of gates 25aF are narrower than the blood cell diameter and are different from each other.
  • the width is gradually changed in the arrangement direction of the bank portions 22bF.
  • FIG. 19 is a flowchart of deformability measurement by the blood cell deformability measuring apparatus 1F.
  • step T1 blood to be measured is flowed to the filter 2F (step T1), and a blood flow image of the flow path portion 25E is collected (step T2).
  • steps S10 and S20 blood to be measured is flowed to the filter 2F (step T1), and a blood flow image of the flow path portion 25E is collected (step T2).
  • the blood flow image is processed by the arithmetic processing unit 70E, and the blood flow image of the gate 25aF is extracted for each different width (step T3).
  • the blood flow image is divided and extracted by each gate 25aF.
  • step T4 After the gate 25aF closed by the blood cell retention part is detected by the arithmetic processing unit 70E (step T4), the volume V of the blood cell retention part is calculated (step T5), and then the blood cell retention part Are determined (step T6). These steps are performed in the same manner as steps S30 to S50 in the above embodiment.
  • the arithmetic processing unit 70E detects the maximum width of the gate 25aF blocked by the blood cell retention part as the maximum blocking width L (step T7).
  • the deformability of the blood cell is calculated by the arithmetic processing unit 70E (step T8).
  • D satisfying the following equation (4) from the maximum occlusion width L of the blood cell retention portion calculated in step T7 and the volume V of the blood retention portion that occludes the gate 25aF corresponding to the maximum occlusion width L: 2 is calculated as the deformability of blood cells.
  • is a predetermined coefficient set in a measurement test performed in advance, and is a coefficient set in the same manner as ⁇ 2 in the above equation (3).
  • the D 3 that satisfies the following equation (5) may be calculated as a deformability of blood cells.
  • L 0 is the volume of the blood cell in the maximum occlusion width L for each volume of the blood cell in the gate 25aF blocked by the blood cell in the blood when a predetermined reference blood is passed to the gate 25aF. It is a value when it is V in Formula (4), and the predetermined reference blood is blood of a standard health level.
  • D 2 calculated as deformability shows that blood cells stiff greater the value.
  • D 3 indicates that the blood cell has a standard hardness when the value is 1, and indicates that the blood cell is harder as it is larger than 1 and softer as it is smaller. If the D 3 is calculated, since deformability is shown as a relative value with respect to blood cells of the standard health, it is possible to understand the degree of uniquely deformability regardless of the volume V of the blood cell trapping portion.
  • the gate 25aF is described as having a width that gradually changes in the arrangement direction of the bank portion 22bF.
  • FIGS. A plurality of stages of gates 25a 1 ,... Having respective widths gradually narrowing in the blood flow direction (Y direction in the figure) may be provided.
  • the gates 25a 1 to 25a 4 formed between the four bank portions 22b 1 to 22b 4 having different arrangement intervals at each stage are provided in the direction of blood flow.
  • Each step has a width that gradually decreases.
  • the blood cell deformability measuring apparatus 1B includes a filter 2B instead of the filter 2E in the above embodiment, and the filter 2B is replaced with a flow path portion 25E as shown in FIG. A flow path portion 25B is provided.
  • the flow path portion 25B has a plurality of gates 25aB formed between a plurality of bank portions 22bB,.
  • the plurality of gates 25aB are formed to have a width narrower than the blood cell diameter and form a plurality of sets for each width.
  • three gates 25aB constitute a set of the bank portion 22bB. It is gradually changing in the arrangement direction.
  • the blood cell deformability measuring apparatus 1B having the above configuration can calculate the deformability of blood cells by the same operation as the blood cell deformability measuring apparatus 1F in the third modified example.
  • the maximum blocking width L is detected (step T7), as shown in FIG. 22, the blocking ratio C of the gate 25aB is obtained for each width of the gate 25aB, and the width of the gate 25aB at which the blocking ratio C is maximized. Is preferably detected as the maximum closing width L.
  • the number of gates 25aB closed is determined according to the width of the gate 25aB, and the gate 25aB width obtained by averaging the blockage numbers or the width of the gate 25aB having the maximum blockage number is maximum blocked.
  • the width L may be detected.
  • the size of blood cells contained in the blood flowing through the gate 25aB is not uniform but has a distribution variation, so that a distribution peak occurs at an intermediate gate width.
  • the blood cell deformability measuring apparatus 1B it has the gate 25aB that forms a plurality of sets for each width as well as the same effect as that of the above-described embodiment. Since the deformability of blood cells can be calculated from the maximum occlusion width L obtained as the width of the gate 25aB where the occlusion ratio C by width of 25aB is the maximum, the deformability is calculated using more gates 25aB, and is more stable. A calculation result is obtained.
  • the blood cell deformability measuring apparatus 1C includes a filter 2C instead of the filter 2E in the above embodiment, and the filter 2C is replaced with a flow path portion 25E as shown in FIG. A flow path portion 25C is provided.
  • the flow path portion 25C has a plurality of gates 25aC formed between a plurality of bank portions 22bC,... Which are tapered in the blood flow direction (Y direction in the drawing). .
  • the width of the plurality of gates 25aC is gradually narrowed in the blood flow direction and narrower than the blood cell diameter.
  • the blood cell deformability measuring apparatus 1C having the above configuration can calculate the deformability of blood cells by the same operation as the blood cell deformability measuring apparatus 1F in the third modified example.
  • the width of the gate 25aC at the position where the blood cell retention portion is retained is the maximum occlusion width L. Detect as.
  • the blood flow image in the gate 25aC formed with a width narrowing in the blood flow direction can be obtained as well as the same effect as the above embodiment. Since it is displayed on the display 8, it is easy to visually grasp the width of the gate 25aC blocked by the blood cell retention portion.
  • red blood cells R and / or white blood cells W is calculated, but among leukocytes W, granulocytes, lymphocytes and monocytes are further discriminated, Each of these deformability may be calculated. In this way, more detailed blood diagnosis can be performed.
  • a known method described in, for example, JP-A-2001-174456 may be used.
  • Blood cell deformability measuring device 3 TV camera (photographing means) 7, 7A, 7E PC (blood flow image display means) 8 Display (display screen) 25, 25A, 25B, 25C, 25E, 25F Channel portion 25a Gate 25b Upstream terrace 70, 70A Arithmetic processing section (speed calculation means, volume calculation means, deformability calculation means) 70E arithmetic processing unit (speed calculation means, volume calculation means, deformability calculation means, blockage state calculation means, blockage ratio calculation means, blockage width detection means) S Blood cell velocity T Passing time V Blood cell volume C Blockage ratio L Maximum blockage width

Abstract

A device for measuring blood cell deformability comprising, in order to measure the deformability of each of erythrocytes and leukocytes passing through a capillary blood vessel, a TV camera (3) for photographing a blood flow passing through an upstream terrace (25b) being wider than the blood cell diameter and a gate (25a) being narrower than the blood cell diameter, and a computing unit (70) for calculating, from a blood flow image photographed by the TV camera (3), the speed (S) of a blood cell passing through the upstream terrace (25b) or the gate (25a) and the volume (V) of the blood cell passing through the gate (25a), and further calculating the deformability of the blood cell from the blood cell speed (S) and the blood cell volume (V).

Description

血球変形能計測装置Blood cell deformability measuring device
 本発明は、血球変形能計測装置に関する。 The present invention relates to a blood cell deformability measuring apparatus.
 近年、健康に対する関心の高まりとともに、健康のバロメータとして血液の流動性が注目されるようになっている。この血液の流動性を調べる方法としては、微細な溝を有するフィルタに血液を通過させて、通過に要する時間を計測する方法が知られている。 In recent years, with increasing interest in health, blood fluidity has attracted attention as a health barometer. As a method for examining the blood fluidity, a method is known in which blood is passed through a filter having fine grooves and the time required for passage is measured.
 ところで、血液の流動性には、血液中の血球の変形能(変形し易さ)や凝集度,粘性などの複数のパラメータが複合的に作用している。したがって、血液の流動性をより詳細に評価するためにはこれら各パラメータの定量化が必要となるが、なかでも代表的なパラメータである血球の変形能を定量化する方法は確立されていなかった。 By the way, a plurality of parameters such as deformability (easiness of deformation), aggregation degree, and viscosity of blood cells in blood act in a complex manner on blood fluidity. Therefore, in order to evaluate blood fluidity in more detail, it is necessary to quantify each of these parameters, but a method for quantifying the deformability of blood cells, which is a typical parameter, has not been established. .
 そこで、浸透圧又は粘度の異なる複数の血液試料液を混合して平衡状態に至る様子を撮像し、その回析像から楕円形状の赤血球の長径及び短径を用いて変形指数を定義することで、当該変形指数を赤血球の変形能の定量値として算出する方法が提案されている(例えば、特許文献1,2参照)。 Therefore, by mixing multiple blood sample solutions with different osmotic pressures or viscosities and imaging the state of reaching an equilibrium state, the deformation index is defined using the major and minor diameters of elliptical red blood cells from the diffraction image. A method for calculating the deformation index as a quantitative value of the deformability of red blood cells has been proposed (see, for example, Patent Documents 1 and 2).
特開平8-122328号公報JP-A-8-122328 特開平9-318523号公報JP 9-318523 A
 しかしながら、上記特許文献1,2に記載の方法は、楕円形状を保持する赤血球のみに適用し得る方法であり、様々な形状に変形可能なアメーバ状の白血球には適用できなかった。 However, the methods described in Patent Documents 1 and 2 are methods that can be applied only to red blood cells that retain an elliptical shape, and cannot be applied to amoeba-like white blood cells that can be deformed into various shapes.
 また、血球径より狭い幅の流路を使用していないため、血球が毛細血管を通過するときの変形能は計測できなかった。 In addition, since a flow path having a width narrower than the blood cell diameter is not used, the deformability when the blood cell passes through the capillary vessel cannot be measured.
 加えて、移動する血球を画像表示できるものの、画像上は血球が一様な速度で流れているため、血球が変形しつつ移動する様子を視覚的に捉えにくかった。 In addition, although moving blood cells can be displayed as an image, it is difficult to visually grasp how the blood cells move while deforming because the blood cells flow at a uniform speed on the image.
 本発明は、上記事情を鑑みてなされたもので、赤血球及び白血球が毛細血管を通過するときの各変形能を計測できるとともに、血球が変形しつつ移動する様子を視覚的に捉え易い血球変形能計測装置の提供を課題とする。 The present invention has been made in view of the above circumstances, and can measure each deformability when red blood cells and white blood cells pass through capillaries and can easily grasp the state of blood cells moving while deforming. It is an object to provide a measuring device.
 前記の課題を解決するために、請求項1に記載の発明は、
 血球径よりも広い幅の上流テラスから血球径よりも狭い幅のゲートへ向けて血液を流し、当該血液中の血球の変形能を計測する血球変形能計測装置であって、
 前記上流テラス及び前記ゲートを通過する血液の流れを撮影する撮影手段と、
 前記撮影手段によって得られた血流画像から、前記上流テラス又は前記ゲートを通過する血球の速度を算出する速度算出手段と、
 前記撮影手段によって得られた血流画像から、前記ゲートを通過する血球の体積を算出する体積算出手段と、
 前記血球の速度及び前記血球の体積から、前記血球の変形能を算出する変形能算出手段と、
 を備えることを特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1
A blood cell deformability measuring device for flowing blood from an upstream terrace having a width wider than the blood cell diameter toward a gate having a width narrower than the blood cell diameter, and measuring the deformability of the blood cells in the blood,
Imaging means for imaging the flow of blood passing through the upstream terrace and the gate;
From the blood flow image obtained by the imaging means, speed calculation means for calculating the speed of blood cells passing through the upstream terrace or the gate;
From the blood flow image obtained by the imaging means, volume calculating means for calculating the volume of blood cells passing through the gate;
Deformability calculating means for calculating the deformability of the blood cell from the velocity of the blood cell and the volume of the blood cell;
It is characterized by providing.
 請求項2に記載の発明は、請求項1に記載の血球変形能計測装置であって、
 前記変形能算出手段は、前記血球の変形能として、以下の式(1)又は式(2)を満たすD又はDを算出することを特徴とする。
The invention according to claim 2 is the blood cell deformability measuring device according to claim 1,
The deformability calculating means calculates D 1 or D 2 satisfying the following formula (1) or formula (2) as the deformability of the blood cell.
  D=α/(S×V)               …(1)
  D=1/(S×V)/(1/(S×V))    …(2)
(但し、
 α:所定の係数
 S:前記上流テラス又は前記ゲートを通過する血球の速度
 V:前記ゲートを通過する血球の体積
 S:所定の基準血液を前記上流テラス又は前記ゲートへ通過させたときの当該血液中の血球の速度
 V:所定の基準血液を前記ゲートへ通過させたときの当該血液中の血球の体積)
 請求項3に記載の発明は、請求項1又は2に記載の血球変形能計測装置であって、
 前記速度算出手段は、前記血球の速度として、前記血球が前記ゲートを通過するのに要する通過時間の逆数を算出することを特徴とする。
D 1 = α / (S × V) (1)
D 2 = 1 / (S × V) / (1 / (S 0 × V 0 )) (2)
(However,
α: a predetermined coefficient S: velocity of blood cells passing through the upstream terrace or the gate V: volume of blood cells passing through the gate S 0 : the time when a predetermined reference blood is passed through the upstream terrace or the gate Velocity of blood cells in blood V 0 : volume of blood cells in the blood when a predetermined reference blood is passed through the gate)
The invention according to claim 3 is the blood cell deformability measuring apparatus according to claim 1 or 2,
The velocity calculation means calculates the reciprocal of the transit time required for the blood cells to pass through the gate as the velocity of the blood cells.
 請求項4に記載の発明は、請求項1から3の何れか一項に記載の血球変形能計測装置であって、
 前記撮影手段によって得られた血流画像を表示画面に表示する血流画像表示手段を有することを特徴とする。
The invention according to claim 4 is the blood cell deformability measuring apparatus according to any one of claims 1 to 3,
It has blood flow image display means for displaying a blood flow image obtained by the photographing means on a display screen.
 請求項5に記載の発明は、請求項1から4の何れか一項に記載の血球変形能計測装置であって、
 前記ゲートは複数であり、
 前記速度算出手段により得られた血球の速度がゼロである前記血球で閉塞された前記ゲートの閉塞割合を算出する閉塞状態算出手段を備え、
 前記変形能算出手段は、前記ゲートの閉塞割合及び前記体積算出手段が算出した前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする。
The invention according to claim 5 is the blood cell deformability measuring apparatus according to any one of claims 1 to 4,
A plurality of the gates;
Occlusion state calculation means for calculating the occlusion ratio of the gate occluded by the blood cells, wherein the blood cell speed obtained by the speed calculation means is zero,
The deformability calculating means calculates the deformability of the blood cell from the occlusion ratio of the gate and the volume of the blood cell closed by the volume calculating means.
 請求項6に記載の発明は、請求項5に記載の血球変形能計測装置であって、
 前記閉塞状態算出手段は、前記血球の体積別に当該体積の血球で閉塞された前記ゲートの閉塞割合を算出し、
 前記変形能算出手段は、前記血球の変形能として、以下の式(3)を満たすDを算出することを特徴とする。
The invention according to claim 6 is the blood cell deformability measuring device according to claim 5,
The occlusion state calculating means calculates the occlusion ratio of the gate that is occluded by blood cells of the volume according to the volume of the blood cells,
The deformability calculation means, as a deformability of the blood cells, and calculates a D 1 satisfies the following equation (3).
  D=α2/∫CdV              …(3)
(但し、
 α2:所定の係数
 C:前記ゲートの閉塞割合
 V:前記ゲートを閉塞させた前記血球の体積)
 請求項7に記載の発明は、請求項5又は6に記載の血球変形能計測装置であって、
 複数の前記ゲートは、血流方向に複数配設されるとともに血流方向上流側から下流側に向けて除々に狭くなるように複数の異なる幅に形成されるか、或いは血流方向に直交する方向に複数配設されるとともに複数の異なる幅で形成されており、
 前記閉塞状態算出手段は、前記撮影手段によって得られた血流画像から、前記血球で閉塞された前記ゲートの幅のうち最大のものを最大閉塞幅として検出し、
 前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積算出手段が算出した前記最大閉塞幅に対応する前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする。
D 1 = α2 / ∫CdV (3)
(However,
α2: Predetermined coefficient C: Blocking ratio of the gate V: Volume of the blood cell blocking the gate)
The invention according to claim 7 is the blood cell deformability measuring device according to claim 5 or 6,
The plurality of gates are arranged in the blood flow direction and are formed in a plurality of different widths so as to gradually narrow from the upstream side to the downstream side in the blood flow direction, or orthogonal to the blood flow direction. It is formed with a plurality of different widths and a plurality of different widths in the direction,
The occlusion state calculating means detects, as a maximum occlusion width, the largest one of the widths of the gates occluded by the blood cells, from the blood flow image obtained by the imaging means,
The deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means. Features.
 請求項8に記載の発明は、請求項5又は6に記載の血球変形能計測装置であって、
 複数の前記ゲートは幅毎に複数の組を形成しており、
 前記閉塞状態算出手段は、前記血球で閉塞された前記ゲートの閉塞割合を前記ゲートの幅別に求め、当該閉塞割合が最大となる前記ゲートの幅を最大閉塞幅として検出し、
 前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積算出手段が算出した前記最大閉塞幅に対応する前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする。
The invention according to claim 8 is the blood cell deformability measuring apparatus according to claim 5 or 6,
The plurality of gates form a plurality of sets for each width,
The blockage state calculating means obtains the blockage rate of the gate blocked by the blood cells according to the width of the gate, and detects the width of the gate that maximizes the blockage rate as the maximum blockage width,
The deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means. Features.
 請求項9に記載の発明は、請求項5又は6に記載の血球変形能計測装置であって、
 前記閉塞状態算出手段は、前記撮影手段によって得られた血流画像から、前記血球で閉塞された前記ゲートにおける当該血球の閉塞位置での当該ゲートの幅を最大閉塞幅として検出し、
 前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積手段が算出した前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする。
The invention according to claim 9 is the blood cell deformability measuring device according to claim 5 or 6,
The occlusion state calculating means detects, as a maximum occlusion width, the width of the gate at the occlusion position of the blood cell in the gate occluded with the blood cell from the blood flow image obtained by the imaging means,
The deformability calculating means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell closed by the volume means.
 請求項10に記載の発明は、請求項7から9のいずれか一項に記載の血球変形能計測装置であって、
 前記変形能算出手段は、前記血球の変形能として、以下の式(4)又は式(5)を満たすD又はDを算出することを特徴とする。
The invention according to claim 10 is the blood cell deformability measuring apparatus according to any one of claims 7 to 9,
The deformability calculating means calculates D 2 or D 3 satisfying the following formula (4) or formula (5) as the deformability of the blood cell.
  D=β×L/V               …(4)
  D=L/L                …(5)
(但し、
 β:所定の係数
 L:前記ゲートの最大閉塞幅
 L:所定の基準血液を前記ゲートへ通過させたときに、当該血液中の血球で閉塞されたゲートにおける当該血球の体積別の最大閉塞幅のうち、血球の体積が式(4)におけるVであるときの値
 V:前記ゲートを閉塞させた前記血球の体積)
 前記の課題を解決するために、請求項11に記載の発明は、
 血球径より狭い幅に形成された複数のゲートへ血液を流し、当該血液中の血球の変形能を計測する血球変形能計測装置であって、
 前記ゲートを通過する血液の流れを撮影する撮影手段と、
 前記撮影手段によって得られた血流画像から、前記血球で閉塞された前記ゲートの閉塞割合を算出する閉塞状態算出手段と、
 前記撮影手段によって得られた血流画像から、前記ゲートを閉塞させた前記血球の体積を算出する体積算出手段と、
 前記ゲートの閉塞割合及び前記血球の体積から、前記血球の変形能を算出する変形能算出手段と、
 を備えることを特徴とする。
D 2 = β × L / V (4)
D 3 = L / L 0 (5)
(However,
β: Predetermined coefficient L: Maximum occlusion width of the gate L 0 : Maximum occlusion width for each blood cell volume at the gate occluded with blood cells in the blood when a predetermined reference blood is passed through the gate Value when the volume of blood cells is V in the formula (4) V: volume of the blood cells with the gate blocked)
In order to solve the above-mentioned problem, the invention according to claim 11
A blood cell deformability measuring apparatus for flowing blood to a plurality of gates formed with a narrower width than the blood cell diameter and measuring the deformability of the blood cells in the blood,
Photographing means for photographing the flow of blood passing through the gate;
From the blood flow image obtained by the imaging means, an occlusion state calculation means for calculating the occlusion ratio of the gate occluded by the blood cells,
From the blood flow image obtained by the imaging means, a volume calculation means for calculating the volume of the blood cell with the gate blocked,
Deformability calculating means for calculating the deformability of the blood cell from the blockage ratio of the gate and the volume of the blood cell;
It is characterized by providing.
 請求項12に記載の発明は、請求項11に記載の血球変形能計測装置であって、
 前記閉塞状態算出手段は、前記血球の体積別に当該体積の血球で閉塞された前記ゲートの閉塞割合を算出し、
 前記変形能算出手段は、前記血球の変形能として、以下の式(3)を満たすDを算出することを特徴とする。
The invention according to claim 12 is the blood cell deformability measuring device according to claim 11,
The occlusion state calculating means calculates the occlusion ratio of the gate that is occluded by blood cells of the volume according to the volume of the blood cells,
The deformability calculation means, as a deformability of the blood cells, and calculates a D 1 satisfies the following equation (3).
  D=α2/∫CdV              …(3)
(但し、
 α2:所定の係数
 C:前記ゲートの閉塞割合
 V:前記ゲートを閉塞させた前記血球の体積)
 請求項13に記載の発明は、請求項11又は12に記載の血球変形能計測装置であって、
 前記撮影手段によって得られた血流画像を表示画面に表示する血流画像表示手段を有することを特徴とする。
D 1 = α2 / ∫CdV (3)
(However,
α2: Predetermined coefficient C: Blocking ratio of the gate V: Volume of the blood cell blocking the gate)
The invention according to claim 13 is the blood cell deformability measuring device according to claim 11 or 12,
It has blood flow image display means for displaying a blood flow image obtained by the photographing means on a display screen.
 請求項14に記載の発明は、請求項11から13のいずれか一項に記載の血球変形能計測装置であって、
 複数の前記ゲートは、血流方向に複数配設されるとともに血流方向上流側から下流側に向けて除々に狭くなるように複数の異なる幅に形成されるか、或いは血流方向に直交する方向に複数配設されるとともに複数の異なる幅で形成されており、
 前記閉塞状態算出手段は、前記撮影手段によって得られた血流画像から、前記血球で閉塞された前記ゲートの幅のうち最大のものを最大閉塞幅として検出し、
 前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積算出手段が算出した前記最大閉塞幅に対応する前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする。
The invention according to claim 14 is the blood cell deformability measuring device according to any one of claims 11 to 13,
The plurality of gates are arranged in the blood flow direction and are formed in a plurality of different widths so as to gradually narrow from the upstream side to the downstream side in the blood flow direction, or orthogonal to the blood flow direction. It is formed with a plurality of different widths and a plurality of different widths in the direction,
The occlusion state calculating means detects, as a maximum occlusion width, the largest one of the widths of the gates occluded by the blood cells, from the blood flow image obtained by the imaging means,
The deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means. Features.
 請求項15に記載の発明は、請求項11から13のいずれか一項に記載の血球変形能計測装置であって、
 複数の前記ゲートは幅毎に複数の組を形成しており、
 前記閉塞状態算出手段は、前記血球で閉塞された前記ゲートの閉塞割合を前記ゲートの幅別に求め、当該閉塞割合が最大となる前記ゲートの幅を最大閉塞幅として検出し、
 前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積算出手段が算出した前記最大閉塞幅に対応する前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする。
The invention according to claim 15 is the blood cell deformability measuring apparatus according to any one of claims 11 to 13,
The plurality of gates form a plurality of sets for each width,
The blockage state calculating means obtains the blockage rate of the gate blocked by the blood cells according to the width of the gate, and detects the width of the gate that maximizes the blockage rate as the maximum blockage width,
The deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means. Features.
 請求項16に記載の発明は、請求項11から13のいずれか一項に記載の血球変形能計測装置であって、
 前記閉塞状態算出手段は、前記撮影手段によって得られた血流画像から、前記血球で閉塞された前記ゲートにおける当該血球の閉塞位置での当該ゲートの幅を最大閉塞幅として検出し、
 前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積手段が算出した前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする。
The invention according to claim 16 is the blood cell deformability measuring apparatus according to any one of claims 11 to 13,
The occlusion state calculating means detects, as a maximum occlusion width, the width of the gate at the occlusion position of the blood cell in the gate occluded with the blood cell from the blood flow image obtained by the imaging means,
The deformability calculating means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell closed by the volume means.
 請求項17に記載の発明は、請求項14から16のいずれか一項に記載の血球変形能計測装置であって、
 前記変形能算出手段は、前記血球の変形能として、以下の式(4)又は式(5)を満たすD又はDを算出することを特徴とする。
The invention according to claim 17 is the blood cell deformability measuring apparatus according to any one of claims 14 to 16,
The deformability calculating means calculates D 2 or D 3 satisfying the following formula (4) or formula (5) as the deformability of the blood cell.
  D=β×L/V               …(4)
  D=L/L                …(5)
(但し、
 β:所定の係数
 L:前記ゲートの最大閉塞幅
 L:所定の基準血液を前記ゲートへ通過させたときに、当該血液中の血球で閉塞されたゲートにおける当該血球の体積別の最大閉塞幅のうち、血球の体積が式(4)におけるVであるときの値
 V:前記ゲートを閉塞させた前記血球の体積)
D 2 = β × L / V (4)
D 3 = L / L 0 (5)
(However,
β: Predetermined coefficient L: Maximum occlusion width of the gate L 0 : Maximum occlusion width for each blood cell volume at the gate occluded with blood cells in the blood when a predetermined reference blood is passed through the gate Value when the volume of blood cells is V in the formula (4) V: volume of the blood cells with the gate blocked)
 請求項1に記載の発明によれば、血球の速度及び血球の体積から血球の変形能を算出するので、楕円形状を保持する赤血球に限定されず、アメーバ状の白血球であってもその変形能を計測することができる。また、血球径より狭い幅のゲートを通過する血球の変形能が算出されるので、ゲートによって毛細血管を模擬して血球が毛細血管を通過するときの変形能を計測することができる。 According to the first aspect of the present invention, the deformability of the blood cell is calculated from the velocity of the blood cell and the volume of the blood cell. Therefore, the deformability of the blood cell is not limited to the red blood cell having an elliptical shape, and even if it is an amoeba-like white blood cell. Can be measured. Further, since the deformability of blood cells passing through a gate having a width narrower than the blood cell diameter is calculated, the deformability when blood cells pass through the capillaries can be measured by simulating capillaries by the gate.
 更に、請求項4、13に記載の発明によれば血球径より狭い幅のゲートを通過する血液の流れが表示画面に表示されるので、ゲートにより速度が低下した血球を確認することができ、画像上は血球が一様な速度で流れていた従来に比べて、血球が変形しつつ移動する様子を視覚的に捉え易くすることができる。 Furthermore, according to the inventions of claims 4 and 13, since the flow of blood passing through a gate having a narrower width than the blood cell diameter is displayed on the display screen, it is possible to check blood cells whose speed has been reduced by the gate, Compared with the conventional technique in which blood cells flow at a uniform speed on the image, it is possible to make it easier to visually grasp how the blood cells move while deforming.
 請求項5、11に記載の発明によれば、ゲートの閉塞割合又は最大閉塞幅と血球の体積とから血球の変形能を算出するので、楕円形状を保持する赤血球に限定されず、アメーバ状の白血球であってもその変形能を計測することができる。また、血球径より狭い幅のゲートを通過する血球の変形能が算出されるので、ゲートによって毛細血管を模擬して血球が毛細血管を通過するときの変形能を計測することができる。更に、血球径より狭い幅のゲートを通過する血液の流れが表示画面に表示されるので、ゲートにより速度が低下した血球を確認することができ、画像上は血球が一様な速度で流れていた従来に比べて、血球が変形しつつ移動する様子を視覚的に捉え易くすることができる。 According to the inventions of claims 5 and 11, since the deformability of the blood cell is calculated from the occlusion ratio or the maximum occlusion width of the gate and the volume of the blood cell, the invention is not limited to the red blood cell having an elliptical shape, but an amoeba-like shape. Even leukocytes can be measured for deformability. Further, since the deformability of blood cells passing through a gate having a width narrower than the blood cell diameter is calculated, the deformability when blood cells pass through the capillaries can be measured by simulating capillaries by the gate. Furthermore, since the flow of blood passing through a gate narrower than the blood cell diameter is displayed on the display screen, blood cells whose speed has been reduced by the gate can be confirmed, and blood cells are flowing at a uniform speed on the image. Compared with the conventional art, it is possible to visually grasp the state in which the blood cell moves while being deformed.
 また、請求項8、15に記載の発明によれば、幅毎に複数の組を形成しているゲートを有し、当該ゲートの幅別の閉塞割合が最大となるゲートの幅として求めた最大閉塞幅から血球の変形能を算出するので、より多くのゲートを用いて変形能が算出され、より安定した算出結果が得られる。 According to the invention described in claims 8 and 15, the gate having a plurality of sets for each width, the maximum obtained as the gate width at which the blocking ratio for each width of the gate is maximized. Since the deformability of the blood cell is calculated from the occlusion width, the deformability is calculated using more gates, and a more stable calculation result is obtained.
 また、請求項9、16に記載の発明によれば、血流方向に狭くなる幅に形成されたゲート内の血流画像が表示画面に表示されるので、血球で閉塞されているゲートの幅が視覚的に捉え易い。 According to the invention described in claims 9 and 16, since the blood flow image in the gate formed in a width narrowing in the blood flow direction is displayed on the display screen, the width of the gate blocked by the blood cells is displayed. Is easy to catch visually.
血球変形能計測装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of a blood cell deformability measuring apparatus. フィルタの断面図である。It is sectional drawing of a filter. 図3(a)流路部の平面図であり、図3(b)側断面図である。FIG. 3A is a plan view of the flow path portion, and FIG. 3B is a side sectional view. 実施の形態における変形能計測のフローチャートである。It is a flowchart of deformability measurement in an embodiment. 血球の速度マップの一例を示す図である。It is a figure which shows an example of the velocity map of a blood cell. 変形能のグラフである。It is a graph of a deformability. 実施の形態の変形例における変形能計測のフローチャートである。It is a flowchart of the deformability measurement in the modification of embodiment. 白血球がゲートを通過する様子を示す図である。It is a figure which shows a mode that white blood cells pass a gate. 白血球がゲートを通過するときの血流画像の色の濃度の時間変化を示すグラフである。It is a graph which shows the time change of the density | concentration of the color of the blood-flow image when a leukocyte passes a gate. 上流テラス又は下流テラスでの血球の変形例を示す図である。It is a figure which shows the modification of the blood cell in an upstream terrace or a downstream terrace. 血球の縦幅及び横幅の各変化を縦軸及び横軸として図11(a)柔らかい血球の計測結果の分布範囲を示したグラフであり、図11(b)硬い血球の計測結果の分布範囲を示したグラフである。FIG. 11 (a) is a graph showing the distribution range of measurement results of soft blood cells, with the vertical and horizontal axes representing changes in the vertical and horizontal widths of blood cells, and FIG. 11 (b) shows the distribution ranges of measurement results of hard blood cells. It is the shown graph. 血球の縦幅の変化幅及び面積を縦軸及び横軸として図12(a)柔らかい血球の計測結果を示したグラフであり、図12(b)硬い血球の計測結果を示したグラフである。FIG. 12A is a graph showing measurement results of soft blood cells, and FIG. 12B is a graph showing measurement results of hard blood cells, with the vertical width and the horizontal axis representing the change width and area of the vertical width of the blood cells. 第1の変形例における変形能計測のフローチャートである。It is a flowchart of the deformability measurement in a 1st modification. 閉塞ゲートが検知される際のフローチャートである。It is a flowchart at the time of a blockade gate being detected. 図14の各ステップにおける処理画像の一例を示す図である。図15(a)エッジ抽出処理における処理画像図であり、図15(b)モノクロ・二値化処理における処理画像図であり、図15(c)ノイズ処理における処理画像図であり、図15(d)モルフォロジー処理における処理画像図であり、図15(e)血球滞留部判定処理における処理画像図である。It is a figure which shows an example of the process image in each step of FIG. 15 (a) is a processing image diagram in edge extraction processing, FIG. 15 (b) is a processing image diagram in monochrome / binarization processing, FIG. 15 (c) is a processing image diagram in noise processing, and FIG. d) It is a process image figure in a morphological process, FIG.15 (e) is a process image figure in a blood cell residence part determination process. 白血球で一部のゲートが閉塞している様子を示す図である。It is a figure which shows a mode that some gates are obstruct | occluded with leukocytes. 血球の体積に対する閉塞割合の変化を示すグラフである。It is a graph which shows the change of the obstruction | occlusion ratio with respect to the volume of a blood cell. 第2の変形例における流路部を示す図である。It is a figure which shows the flow-path part in a 2nd modification. 第2の変形例における変形能計測のフローチャートである。It is a flowchart of the deformability measurement in the 2nd modification. 第2の変形例における流路部の別例を示す図であり、図20(a)柔らかい血球を多く含む血液が流された状態を示す図であり、図20(b)硬い血球を多く含む血液が流された状態を示す図である。It is a figure which shows another example of the flow-path part in a 2nd modification, FIG. 20 (a) is a figure which shows the state in which the blood containing many soft blood cells was poured, and FIG.20 (b) contains many hard blood cells. It is a figure which shows the state in which the blood was poured. 第3の変形例における流路部を示す図である。It is a figure which shows the flow-path part in a 3rd modification. ゲートの幅に対する閉塞割合の変化を示すグラフである。It is a graph which shows the change of the obstruction | occlusion ratio with respect to the width | variety of a gate. ゲートの幅に対する閉塞個数の変化を示すグラフである。It is a graph which shows the change of the blockage number with respect to the width | variety of a gate. 第4の変形例における流路部を示す図である。It is a figure which shows the flow-path part in a 4th modification.
 以下、本発明の実施の形態について、図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明に係る血球変形能計測装置1の全体構成を示すブロック図である。 FIG. 1 is a block diagram showing an overall configuration of a blood cell deformability measuring apparatus 1 according to the present invention.
 この図に示すように、血球変形能計測装置1は、血液を供給槽10からフィルタ2に通して排出槽11へ導き、その過程で取得される情報から血液中の血球の変形能を計測するものである。なお、本実施の形態においては、血球とは赤血球及び/又は白血球を指すものとする。 As shown in this figure, the blood cell deformability measuring apparatus 1 guides blood from a supply tank 10 through a filter 2 to a discharge tank 11, and measures the deformability of blood cells in the blood from information acquired in the process. Is. In the present embodiment, blood cells indicate red blood cells and / or white blood cells.
 具体的には、血球変形能計測装置1は、主に、フィルタ2と、フィルタ2内の血液の流れを撮影するTVカメラ3と、TVカメラ3で撮影された血流画像に基づいて変形能を計測するパソコン(PC)7と、血流画像を表示するディスプレイ8と、フィルタ2内の血流を制御する差圧制御部9とを備えている。なお、本実施の形態における血球変形能計測装置1には、生理食塩水や生理活性物質などの液体を血液と混合してフィルタ2に導けるよう、ミクサー12を介して流路に連結された複数の溶液びん13等が更に具備されている。そして、生理食塩水や生理活性物質などの液体と混合した血液(以下、血液という)は、差圧制御部9が加圧ポンプ15及び減圧ポンプ16を制御してフィルタ2前後の差圧を調整することにより、フィルタ2内を所望量だけ流れるようになっている。また、上述の差圧制御部9やミクサー12の他、供給槽10のバルブ10a等は、シーケンス制御部17によって統合制御されている。 Specifically, the blood cell deformability measuring apparatus 1 mainly includes a filter 2, a TV camera 3 for photographing a blood flow in the filter 2, and a deformability based on a blood flow image photographed by the TV camera 3. A personal computer (PC) 7 that measures the blood flow, a display 8 that displays a blood flow image, and a differential pressure control unit 9 that controls the blood flow in the filter 2. In the blood cell deformability measuring apparatus 1 according to the present embodiment, a plurality of liquids such as physiological saline and physiologically active substances that are connected to the flow path via the mixer 12 so as to be mixed with blood and guided to the filter 2. A solution bottle 13 or the like is further provided. For blood mixed with a liquid such as physiological saline or physiologically active substance (hereinafter referred to as blood), the differential pressure control unit 9 controls the pressurization pump 15 and the decompression pump 16 to adjust the differential pressure across the filter 2. By doing so, the filter 2 flows by a desired amount. In addition to the differential pressure control unit 9 and the mixer 12 described above, the valve 10 a of the supply tank 10 and the like are integrated and controlled by the sequence control unit 17.
 図2は、フィルタ2の断面図である。フィルタ2は、図2に示すように、ベース板21、シリコン単結晶基板22,22、外側板23及びガラス平板24を含んで構成されている。 FIG. 2 is a sectional view of the filter 2. As shown in FIG. 2, the filter 2 includes a base plate 21, silicon single crystal substrates 22 and 22, an outer plate 23, and a glass flat plate 24.
 ベース板21は、平板状に形成されており、中央近傍の上面と外側面とを連通する導入孔21a、及び一側端寄りの上面と外側面とを連通する排出孔21bを有している。これら導入孔21a及び排出孔21bは、ベース板21の外側面から血液チューブ(図示せず)を介して供給槽10及び排出槽11に連結されている。 The base plate 21 is formed in a flat plate shape, and has an introduction hole 21a that communicates the upper surface near the center and the outer surface, and a discharge hole 21b that communicates the upper surface near one side end and the outer surface. . The introduction hole 21a and the discharge hole 21b are connected to the supply tank 10 and the discharge tank 11 from the outer surface of the base plate 21 via a blood tube (not shown).
 2つのシリコン単結晶基板22,22は、いずれも略平板状に形成されており、互いに所定の隙間を介した状態でベース板21の上面に並設されている。この2つのシリコン単結晶基板22,22間の隙間には、ベース板21の導入孔21aが開口している。また、シリコン単結晶基板22,22の上端部には、隆起部22aが当該シリコン単結晶基板22,22の並設方向(図中のX方向)に延在しており、この隆起部22aの上端部には、六角形状の土手部22bが頂面をガラス平板24に当接させてX方向に複数配列されている(図3参照)。 The two silicon single crystal substrates 22 and 22 are both formed in a substantially flat plate shape, and are arranged in parallel on the upper surface of the base plate 21 with a predetermined gap therebetween. An introduction hole 21 a of the base plate 21 is opened in the gap between the two silicon single crystal substrates 22 and 22. Further, at the upper end portions of the silicon single crystal substrates 22 and 22, a protruding portion 22a extends in the direction in which the silicon single crystal substrates 22 and 22 are juxtaposed (the X direction in the drawing). At the upper end, a plurality of hexagonal bank portions 22b are arranged in the X direction with the top surface in contact with the glass flat plate 24 (see FIG. 3).
 外側板23は、シリコン単結晶基板22,22の周囲を囲んでベース板21の上面端に固定されている。外側板23とシリコン単結晶基板22,22との間には所定の隙間が設けられ、この隙間にベース板21の排出孔21bが開口している。 The outer plate 23 is fixed to the upper surface end of the base plate 21 so as to surround the silicon single crystal substrates 22 and 22. A predetermined gap is provided between the outer plate 23 and the silicon single crystal substrates 22, 22, and a discharge hole 21 b of the base plate 21 is opened in this gap.
 ガラス平板24は、平板状に形成されており、外側板23の上面に固定されている。また、ガラス平板24の下面と隆起部22aの上面との間には、微細な流路群の流路部25が形成されている。 The glass flat plate 24 is formed in a flat plate shape and is fixed to the upper surface of the outer plate 23. Further, between the lower surface of the glass flat plate 24 and the upper surface of the raised portion 22a, a channel portion 25 of a fine channel group is formed.
 図3(a),(b)は、流路部25を説明するための図である。図3(a)は流路部25を上面から見た図(平面図)であり、図3(b)は側断面図である。 FIGS. 3A and 3B are diagrams for explaining the flow path section 25. FIG. 3A is a view (plan view) of the flow path portion 25 as viewed from above, and FIG. 3B is a side sectional view.
 流路部25は、図3(a),(b)に示すように、隆起部22a上端部の複数の土手部22b,…に挟まれて形成される複数のゲート25aと、当該ゲート25aよりもフィルタ2中央側(図中の上側)の空間である上流テラス25bと、ゲート25aよりもフィルタ2外側(図中の下側)の空間である下流テラス25cとから構成されている。このうちのゲート25aの幅tは、本実施の形態においては、赤血球Rの血球径(約8μm)よりも狭く形成されている。また、ゲート25aの高さhも同様に赤血球Rの血球径(約8μm)よりも狭く形成されている。但し、計測対象の血球が白血球Wのみであれば、当該幅t、高さhは白血球Wの血球径(約10~20μm)よりも狭く形成されていればよい。また、特に限定はされないが、上流テラス25b,ゲート25a,下流テラス25cにおける隆起部22a幅方向(図中のY方向)の各長さla,lb,lcは、いずれも約30μmに形成されている。なお、上流テラス25bは、通過する血球が大きく変形しないように、血球径よりも広い幅に形成されていればよい。 As shown in FIGS. 3A and 3B, the flow path portion 25 includes a plurality of gates 25a formed between a plurality of bank portions 22b at the upper end of the raised portion 22a, and the gate 25a. The upper terrace 25b is a space on the center side of the filter 2 (upper side in the drawing) and the downstream terrace 25c is a space outside the filter 2 (lower side in the drawing) with respect to the gate 25a. Of these, the width t of the gate 25a is narrower than the blood cell diameter (about 8 μm) of the red blood cells R in the present embodiment. Similarly, the height h of the gate 25a is formed to be narrower than the blood cell diameter of the red blood cells R (about 8 μm). However, if the blood cells to be measured are only white blood cells W, the width t and height h may be formed narrower than the blood cell diameter of white blood cells W (about 10 to 20 μm). Although not particularly limited, the lengths la, lb, and lc in the width direction (Y direction in the drawing) of the raised portion 22a in the upstream terrace 25b, the gate 25a, and the downstream terrace 25c are all formed to be about 30 μm. Yes. In addition, the upstream terrace 25b should just be formed in the width | variety wider than a blood cell diameter so that the passing blood cell may not deform | transform large.
 以上の構成を具備するフィルタ2においては、供給槽10から導入孔21aを通じて導入された血液は、流路部25を通過した後、排出孔21bを通じて排出槽11へ排出されることとなる。そして、より詳細には、流路部25を流れる血液中の血球、例えば赤血球Rは、まず上流テラス25bを通過した後、ゲート25aを変形しながら通過し、最後に下流テラス25cを通過することとなる。 In the filter 2 having the above configuration, the blood introduced from the supply tank 10 through the introduction hole 21a passes through the flow path portion 25 and is then discharged to the discharge tank 11 through the discharge hole 21b. More specifically, blood cells in blood flowing through the flow path section 25, for example, red blood cells R, first pass through the upstream terrace 25b, pass through the gate 25a, and finally pass through the downstream terrace 25c. It becomes.
 また、フィルタ2の上流及び下流には、図1に示すように、圧力センサE1,E2が設けられており、この圧力センサE1,E2は、計測したフィルタ上流圧力P1,フィルタ下流圧力P2を差圧制御部9へ出力するようになっている。 Further, as shown in FIG. 1, pressure sensors E1 and E2 are provided upstream and downstream of the filter 2, and the pressure sensors E1 and E2 are configured to provide a difference between the measured filter upstream pressure P1 and filter downstream pressure P2. The pressure is output to the pressure control unit 9.
 TVカメラ3は、例えばデジタルCCDカメラであり、血液の流れを撮影するのに十分な解像度を有した高速カメラである。このTVカメラ3は、フィルタ2におけるガラス平板24に対向して設置され、流路部25を通過する血液の流れをガラス平板24超しに撮影する。但し、その撮影範囲は、少なくとも複数のゲート25a及び上流テラス25bを含む範囲であればよい。TVカメラ3によって得られた血流画像は、パソコン7に出力されるとともに、ディスプレイ8に表示されるようになっている。なお、TVカメラ3は、特に限定はされないが、動画が撮影可能なカメラである。 The TV camera 3 is a digital CCD camera, for example, and is a high-speed camera having a resolution sufficient for photographing a blood flow. The TV camera 3 is installed opposite to the glass flat plate 24 in the filter 2 and photographs the blood flow passing through the flow path portion 25 over the glass flat plate 24. However, the photographing range may be a range including at least the plurality of gates 25a and the upstream terrace 25b. The blood flow image obtained by the TV camera 3 is output to the personal computer 7 and displayed on the display 8. The TV camera 3 is not particularly limited, but is a camera capable of shooting a moving image.
 パソコン7は、TVカメラ3と接続されており、当該TVカメラ3が出力した画像情報から複数種類の血液特性をそれぞれ算出可能な演算処理部70を備えている。なお、血液特性とは、血液の性状等を示す種々の特性値であり、血液中の血球の速度や体積の他、血球の変形能といった流動性に関するものを含む。また演算処理部70は、血球が詰まって閉塞したゲート25aを検知できるようになっている。このような演算処理部70としては、従来より公知のものを用いることができる。 The personal computer 7 is connected to the TV camera 3 and includes an arithmetic processing unit 70 capable of calculating a plurality of types of blood characteristics from image information output from the TV camera 3. The blood characteristics are various characteristic values indicating the properties of blood and the like, and include those relating to fluidity such as blood cell velocity and volume as well as blood cell deformability. The arithmetic processing unit 70 can detect the gate 25a clogged with blood cells. As such an arithmetic processing part 70, a conventionally well-known thing can be used.
 ディスプレイ8は、パソコン7と接続されており、TVカメラ3が出力した血流画像や、パソコン7によって算出された血液特性を表示するようになっている。 The display 8 is connected to the personal computer 7 and displays a blood flow image output from the TV camera 3 and blood characteristics calculated by the personal computer 7.
 差圧制御部9は、シーケンス制御部17,加圧ポンプ15及び減圧ポンプ16と接続されており、シーケンス制御部17からの制御指令に応じてフィルタ2前後の差圧を制御するようになっている。より詳細には、差圧制御部9は、フィルタ上流圧力P1及びフィルタ下流圧力P2が所定の圧力となるように、フィルタ2上流の加圧ポンプ15とフィルタ2下流の減圧ポンプ16とをそれぞれ制御する。なお、この差圧制御部9やシーケンス制御部17は、パソコン7と一体に構成してもよい。 The differential pressure control unit 9 is connected to the sequence control unit 17, the pressure pump 15, and the pressure reduction pump 16, and controls the differential pressure before and after the filter 2 in accordance with a control command from the sequence control unit 17. Yes. More specifically, the differential pressure control unit 9 controls the pressure pump 15 upstream of the filter 2 and the pressure reduction pump 16 downstream of the filter 2 so that the filter upstream pressure P1 and the filter downstream pressure P2 become predetermined pressures. To do. Note that the differential pressure control unit 9 and the sequence control unit 17 may be configured integrally with the personal computer 7.
 [実施形態]
 続いて、血球変形能計測装置1の動作について、主に図4を参照して説明する。図4は、血球変形能計測装置1による変形能計測のフローチャートである。
[Embodiment]
Next, the operation of the blood cell deformability measuring apparatus 1 will be described mainly with reference to FIG. FIG. 4 is a flowchart of deformability measurement by the blood cell deformability measuring apparatus 1.
 まず、図4に示すように、流路部25を通過する血流が撮影される(ステップS1)。具体的には、最初に、供給槽10へ計測対象の血液が注がれるとともに、必要に応じて溶液びん13へ生理食塩水等が加えられる。そして、差圧制御部9によりフィルタ2に所定の差圧が加えられて血液がフィルタ2に流されると同時に、流路部25を通過する血流がTVカメラ3で動画撮影される。撮影された血流画像はディスプレイ8に表示される。 First, as shown in FIG. 4, the blood flow passing through the flow path portion 25 is imaged (step S1). Specifically, first, blood to be measured is poured into the supply tank 10, and physiological saline or the like is added to the solution bottle 13 as necessary. Then, a predetermined differential pressure is applied to the filter 2 by the differential pressure control unit 9 so that blood flows through the filter 2, and at the same time, the blood flow passing through the flow path unit 25 is photographed with the TV camera 3. The photographed blood flow image is displayed on the display 8.
 次に、演算処理部70により血流画像が処理され、血球の速度マップが作成される(ステップS2)。ここでは、例えば特開平2-257931号公報、特開平6-18539号公報、特開2001-264318号公報及び特開2006-223761号公報等に記載の公知の方法を用いることで、図5に示すように、上流テラス25bの血流画像上に設定した格子の各交点において血球の検出が行われ、血球が検出された交点での当該血球の速度ベクトルを求めた速度マップが作成される。なお、作成される速度マップは、上流テラス25bを通過する血球の速度ベクトルを求めたものでなくとも、ゲート25aを通過する血球の速度ベクトルを求めたものであってもよい。 Next, the blood flow image is processed by the arithmetic processing unit 70, and a blood cell velocity map is created (step S2). Here, for example, by using a known method described in JP-A-2-257931, JP-A-6-18539, JP-A-2001-264318, JP-A-2006-223761, etc., FIG. As shown, blood cells are detected at each intersection of the grid set on the blood flow image of the upstream terrace 25b, and a velocity map is obtained that calculates the velocity vector of the blood cells at the intersection where the blood cells are detected. Note that the created velocity map may not be obtained from the velocity vector of blood cells passing through the upstream terrace 25b, but may be obtained from the velocity vector of blood cells passing through the gate 25a.
 次に、図4に示すように、演算処理部70により、速度マップ上で検出された血球の血球種が判別される(ステップS3)。赤血球Rは赤の色相範囲にある白色部分として判別する。白血球Wは、輝度を利用して判別してもよいし、他の血球種より大きいことを利用し、穴の少ない白色部分や単位面積当たりのエッジ数が少ない白色部分として判別してもよい。 Next, as shown in FIG. 4, the blood cell type of the blood cell detected on the speed map is determined by the arithmetic processing unit 70 (step S3). The red blood cell R is determined as a white portion in the red hue range. The white blood cells W may be discriminated using luminance, or may be discriminated as white portions with few holes or white portions with a small number of edges per unit area using the fact that they are larger than other blood cell types.
 また、上述の判別方法以外にも、例えば特開平10-48120号公報、特開平10-90163号公報及び特開平10-274652号公報等に記載の公知の方法を用いて血球種を判別することができる。なお、計測対象の血液が赤血球R及び白血球Wのいずれか一方のみを含むものであれば、この血球種判別ステップは省略される。 In addition to the discrimination method described above, the blood cell type is discriminated using a known method described in, for example, JP-A-10-48120, JP-A-10-90163, and JP-A-10-274652. Can do. If the blood to be measured includes only one of red blood cells R and white blood cells W, this blood cell type discrimination step is omitted.
 次に、演算処理部70により血球の速度Sが算出される(ステップS4)。ここでは、ステップS3で判別された赤血球Rと白血球Wとに分けて、ステップS2で算出された血球の速度ベクトルの各平均値を算出することにより、当該各平均値として赤血球R及び白血球Wの速度Sが算出される。 Next, the blood cell velocity S is calculated by the arithmetic processing unit 70 (step S4). Here, the average value of the velocity vector of the blood cell calculated in step S2 is calculated by dividing into the red blood cell R and the white blood cell W determined in step S3, so that the average value of the red blood cell R and the white blood cell W is obtained as the average value. A speed S is calculated.
 次に、演算処理部70により血球の体積Vが算出される(ステップS5)。ここでは、例えば特開平5-79970号公報に記載の公知の方法を用いてゲート25aを通過する血球の面積を算出し、この面積にゲート25aの高さhを乗じることで血球の体積Vが算出される。 Next, the blood cell volume V is calculated by the arithmetic processing unit 70 (step S5). Here, for example, the area of a blood cell passing through the gate 25a is calculated using a known method described in Japanese Patent Laid-Open No. 5-79970, and the area V is multiplied by the height h of the gate 25a to obtain the volume V of the blood cell. Calculated.
 次に、演算処理部70により血球の変形能が算出される(ステップS6)。ここでは、ステップS4及びステップS5で算出された血球の速度S及び血球の体積Vから、以下の式(1)を満たすDが血球の変形能として算出される。 Next, the deformability of the blood cell is calculated by the arithmetic processing unit 70 (step S6). Here, the speed S and the volume V of the blood cell of the blood cell which is calculated in step S4 and step S5, D 1 satisfies the following equation (1) is calculated as a deformability of blood cells.
  D=α/(S×V)               …(1)
 ここで、αは、予め行われた計測試験で設定された所定の係数であり、より詳細には、他の装置で計測された赤血球の変形能を正として、血球変形能計測装置1で算出された赤血球の速度S及び血球の体積Vから当該変形能が算出されるよう設定された係数である。なお、予め行われた計測試験において、血球の速度Sと体積Vとの積S×Vに対してαが一定とならない場合には、αを当該積S×Vに対するルックアップテーブルとすればよい。
D 1 = α / (S × V) (1)
Here, α is a predetermined coefficient set in a measurement test performed in advance. More specifically, α is calculated by the blood cell deformability measuring apparatus 1 with the deformability of red blood cells measured by another apparatus as positive. The coefficient is set so that the deformability is calculated from the velocity S of the red blood cells and the volume V of the blood cells. If α is not constant with respect to the product S × V of blood cell velocity S and volume V in a measurement test performed in advance, α may be used as a lookup table for the product S × V. .
 また、このステップでは、以下の式(2)を満たすDを血球の変形能として算出してもよい。
=1/(S×V)/(1/(S×V))      …(2)
 ここで、
:所定の基準血液を上流テラス25b又はゲート25aへ通過させたときの当該血液中の血球の速度、
:所定の基準血液をゲート25aへ通過させたときの当該血液中の血球の体積であり、所定の基準血液とは、標準的な健康度の血液である。
In this step, D 2 satisfying the following equation (2) may be calculated as the deformability of the blood cell.
D 2 = 1 / (S × V) / (1 / (S 0 × V 0 )) (2)
here,
S 0 : velocity of blood cells in the blood when a predetermined reference blood is passed to the upstream terrace 25b or the gate 25a,
V 0 : The volume of blood cells in the blood when the predetermined reference blood is passed to the gate 25a, and the predetermined reference blood is blood of a standard health level.
 ここで、変形能として算出されたDは、その値が大きいほど血球が硬いことを示す。また、Dは、その値が1のときに血球が標準的な硬さであることを示し、1より大きいほど硬く、小さいほど柔らかいことを示す。Dが算出された場合には、標準的な健康度の血球に対する相対値として変形能が示されるので、血球の体積Vによらず一意に変形能の程度を理解することができる。 Here, D 1 calculated as deformability, shows that blood cells stiff greater the value. Further, D 2 indicates that the blood cell has a standard hardness when the value is 1, and indicates that the blood cell is harder as it is larger than 1 and softer as it is smaller. When the D 2 is calculated, since the deformability as a relative value with respect to blood cells of the standard health is shown, it is possible to understand the degree of uniquely deformability regardless of the volume V of the blood cell.
 そして、変形能として算出されたD又はDは、図6に示すように、血球の体積Vに関するグラフとして整理され、赤血球R及び白血球Wの各血球種についての当該グラフがディスプレイ8に表示される。なお、図6は、2種類の血液A,Bについての計測結果を併せて表示した例である。 Then, D 1 or D 2 calculated as deformability is arranged as a graph relating to the blood cell volume V as shown in FIG. 6, and the graph for each blood cell type of red blood cells R and white blood cells W is displayed on the display 8. Is done. FIG. 6 is an example in which measurement results for two types of blood A and B are displayed together.
 以上のように、血球変形能計測装置1によれば、血球の速度S及び血球の体積Vから血球の変形能を算出するので、楕円形状を保持する赤血球Rに限定されず、アメーバ状の白血球Wであってもその変形能を計測することができる。また、血球径より狭い幅のゲート25aを通過する血球の変形能が算出されるので、ゲート25aによって毛細血管を模擬して血球が毛細血管を通過するときの変形能を計測することができる。更に、血球径より狭い幅のゲート25aを通過する血液の流れがディスプレイ8に表示されるので、ゲート25aにより速度Sが低下した血球を確認することができ、画像上は血球が一様な速度で流れていた従来に比べて、血球が変形しつつ移動する様子を視覚的に捉え易くすることができる。 As described above, according to the blood cell deformability measuring device 1, the blood cell deformability is calculated from the blood cell velocity S and the blood cell volume V. Therefore, the blood cell deformability measuring device 1 is not limited to the red blood cell R having an elliptical shape, and is an amoeba-like white blood cell. Even if it is W, its deformability can be measured. Further, since the deformability of the blood cells passing through the gate 25a having a width smaller than the blood cell diameter is calculated, the deformability when the blood cells pass through the capillaries can be measured by simulating the capillaries by the gate 25a. Further, since the blood flow passing through the gate 25a having a width narrower than the blood cell diameter is displayed on the display 8, the blood cell having the velocity S decreased can be confirmed by the gate 25a, and the blood cell has a uniform velocity on the image. Compared to the conventional flow that has flowed in step 1, it is possible to visually grasp how the blood cells move while deforming.
 [第1の変形例]
 続いて、上記実施の形態に係る血球変形能計測装置1の第1の変形例としての血球変形能計測装置1Aについて説明する。なお、上記実施の形態と同様の構成要素には同一の符号を付し、その説明を省略する。
[First Modification]
Subsequently, a blood cell deformability measuring apparatus 1A as a first modification of the blood cell deformability measuring apparatus 1 according to the above embodiment will be described. In addition, the same code | symbol is attached | subjected to the component similar to the said embodiment, and the description is abbreviate | omitted.
 血球変形能計測装置1Aは、図1に示すように、上記実施の形態におけるパソコン7に代えてパソコン7Aを備えており、パソコン7Aは、演算処理部70に代えて演算処理部70Aを備えている。演算処理部70Aは、血液中の血球の速度Sに代えて、血球がゲート25aを通過するのに要する通過時間Tを計測可能に構成されている。また血球変形能計測装置1Aは、図1に示すように、上記実施の形態におけるフィルタ2に代えてフィルタ2Aを備えており、フィルタ2Aは、図2に示すように、流路部25に代えて流路部25Aを備えている。但し、流路部25Aの形状は流路部25と同等である。 As shown in FIG. 1, the blood cell deformability measuring apparatus 1A includes a personal computer 7A instead of the personal computer 7 in the above embodiment, and the personal computer 7A includes an arithmetic processing unit 70A instead of the arithmetic processing unit 70. Yes. The arithmetic processing unit 70A is configured to be able to measure a passage time T required for blood cells to pass through the gate 25a instead of the velocity S of the blood cells in the blood. Further, as shown in FIG. 1, the blood cell deformability measuring apparatus 1A includes a filter 2A instead of the filter 2 in the above embodiment, and the filter 2A is replaced with a flow path portion 25 as shown in FIG. 25A is provided. However, the shape of the flow path portion 25A is equivalent to that of the flow path portion 25.
 続いて、血球変形能計測装置1Aの動作について、主に図7を参照して説明する。 Subsequently, the operation of the blood cell deformability measuring apparatus 1A will be described mainly with reference to FIG.
 図7は、血球変形能計測装置1Aによる変形能計測のフローチャートである。 FIG. 7 is a flowchart of deformability measurement by the blood cell deformability measuring apparatus 1A.
 まず、図7に示すように、流路部25を通過する血流が撮影される(ステップT1)。このステップは、上記実施の形態におけるステップS1と同様に行われる。 First, as shown in FIG. 7, the blood flow passing through the flow path portion 25 is photographed (step T1). This step is performed in the same manner as step S1 in the above embodiment.
 次に、演算処理部70Aにより血流画像が処理され、血球が検出される(ステップT2)。ここでは、例えば特開2001-264318号公報に記載の公知の方法を用いて、上流テラス25bを流れる血球を検出して追尾する。 Next, the blood flow image is processed by the arithmetic processing unit 70A, and blood cells are detected (step T2). Here, for example, a blood cell flowing in the upstream terrace 25b is detected and tracked by using a known method described in JP-A-2001-264318.
 次に、演算処理部70Aにより、ステップT2で検出された血球の血球種が判別される(ステップT3)。このステップは、上記実施の形態におけるステップS3と同様に行われる。 Next, the blood cell type of the blood cell detected in step T2 is determined by the arithmetic processing unit 70A (step T3). This step is performed in the same manner as step S3 in the above embodiment.
 次に、演算処理部70Aにより血球の体積Vが算出される(ステップT4)。このステップは、上記実施の形態におけるステップS5と同様に行われる。 Next, the blood cell volume V is calculated by the arithmetic processing unit 70A (step T4). This step is performed in the same manner as step S5 in the above embodiment.
 次に、演算処理部70Aにより、血球がゲート25aを通過するのに要する通過時間Tが計測される(ステップT5)。ここでは、ゲート25a内の画像色の濃度変化を検知することにより通過時間Tが計測される。 Next, the passage time T required for the blood cells to pass through the gate 25a is measured by the arithmetic processing unit 70A (step T5). Here, the passage time T is measured by detecting the density change of the image color in the gate 25a.
 この通過時間Tの具体的な計測方法について、図8,9を参照して説明する。図8(a)~(d)は白血球Wがゲート25aを通過する様子を示す図であり、図9はそのときの血流画像の色の濃度の時間変化を示すグラフである。 A specific method for measuring the passage time T will be described with reference to FIGS. FIGS. 8A to 8D are views showing how the white blood cells W pass through the gate 25a, and FIG. 9 is a graph showing the change over time of the color density of the blood flow image at that time.
 図8(a)~(d)に示すように、例えば白血球Wがゲート25aを通過するときの、ゲート25a内の任意の位置に設定された計測ラインPでの血流画像の色の濃度の時間変化を計測すると、図9に示すようなグラフが得られる。 As shown in FIGS. 8A to 8D, for example, when the white blood cell W passes through the gate 25a, the color density of the blood flow image on the measurement line P set at an arbitrary position in the gate 25a. When the time change is measured, a graph as shown in FIG. 9 is obtained.
 より詳細には、まず、図8(a)に示すように白血球Wが計測ラインPよりも上流にあるときには、血流画像の色は薄い(図9の点C)。そして、白血球W前縁が計測ラインPに差し掛かると色は濃くなりだし(図9の点C)、図8(b)に示すように白血球W前縁が計測ラインPを通過しきると色は少し薄くなる(図9の点C)。これは、白血球Wを包む膜の方が白血球W内部よりも色が濃いためである。続けて、図8(c)に示すように白血球W後縁が計測ラインPに差し掛かると再び色が濃くなり(図9の点C)、白血球W後縁が計測ラインPを通過するにつれて今度は色が薄くなっていく。そして、白血球W後縁が計測ラインPを通過し終えるところで濃度の変化が殆ど無くなり(図9の点C)、図8(d)に示すように白血球W後縁が計測ラインPを完全に通過しきると、濃度の変化が完全に無くなるとともに白血球W通過前の濃度まで回復する(図9の点C)。 More specifically, first, as shown in FIG. 8A, when the white blood cell W is upstream of the measurement line P, the color of the blood flow image is light (point C 1 in FIG. 9). When the leading edge of the white blood cell W reaches the measurement line P, the color starts to become dark (point C 2 in FIG. 9), and when the leading edge of the white blood cell W passes through the measurement line P as shown in FIG. Becomes a little thinner (point C 3 in FIG. 9). This is because the membrane that wraps the leukocytes W is darker than the inside of the leukocytes W. Next, as shown in FIG. 8C, when the trailing edge of the white blood cell W reaches the measurement line P, the color becomes dark again (point C 4 in FIG. 9), and as the trailing edge of the white blood cell W passes the measurement line P. This time the color will fade. When the trailing edge of the white blood cell W finishes passing through the measurement line P, the density change is almost eliminated (point C 5 in FIG. 9), and the trailing edge of the white blood cell W completely passes the measurement line P as shown in FIG. 8 (d). When it completely passes, the concentration change is completely eliminated and the concentration before passing through the leukocytes W is recovered (point C 6 in FIG. 9).
 以上の色の濃度の変化点のうち、白血球W前縁が計測ラインPに差し掛かる点Cから、白血球W後縁が計測ラインPを通過し終える点Cまでの時間として、通過時間Tが計測される。なお、血流画像にエッジを強調する処理を施しておくと、血球通過時の色の濃度変化をより顕著にすることができる。また、赤血球Rの通過時間Tを計測する場合には、赤の色相の変化を検知すればよく、この検知によりステップT3における赤血球Rの判別を兼ねることもできる。 Of the change point of the concentration of more colors, from the point C 2 leukocytes W leading edge approaches the measurement line P, as the time point to C 5 leukocytes W trailing edge passing completely through the measurement line P, the transit time T Is measured. In addition, if the process which emphasizes an edge is given to a blood-flow image, the color density change at the time of blood-cell passage can be made more remarkable. Further, when the passage time T of the red blood cell R is measured, it is only necessary to detect a change in the red hue, and this detection can also serve as the determination of the red blood cell R in step T3.
 次に、図7に示すように、演算処理部70Aにより血球の変形能が算出される(ステップT6)。ここでは、ステップT4及びステップT5で算出された血球の体積V及び通過時間Tから、以下の式(30)を満たすDが血球の変形能として算出される。 Next, as shown in FIG. 7, the deformability of the blood cell is calculated by the arithmetic processing unit 70A (step T6). Here, D 3 satisfying the following equation (30) is calculated as the deformability of the blood cell from the blood cell volume V and the passage time T calculated in step T4 and step T5.
  D=β×T/V               …(30)
 ここで、βは、予め行われた計測試験で設定された所定の係数であり、上述の式(1)におけるαと同様に設定された係数である。
D 3 = β × T / V (30)
Here, β is a predetermined coefficient set in a measurement test performed in advance, and is a coefficient set in the same manner as α in the above equation (1).
 また、このステップでは、以下の式(40)を満たすDを血球の変形能として算出してもよい。 In this step, D 4 satisfying the following formula (40) may be calculated as the deformability of the blood cell.
  D=T/V/(T/V)      …(40)
 ここで、Tは、所定の基準血液中の血球がゲート25aを通過するのに要する通過時間である。
D 4 = T / V / (T 0 / V 0 ) (40)
Here, T 0 is a transit time required for blood cells in a predetermined reference blood to pass through the gate 25a.
 ここで、式(30),(40)から算出されるD,Dは、上記実施の形態での式(1),(2)に対し血球の速度Sに代えて通過時間Tの逆数を代入したときのD,Dに他ならない。したがって、D,Dは、D,Dと同様に変形能の評価に用いることができる。 Here, D 3 and D 4 calculated from the equations (30) and (40) are the reciprocals of the passage time T instead of the blood cell velocity S with respect to the equations (1) and (2) in the above embodiment. It is none other than D 1 and D 2 when. Therefore, D 3 and D 4 can be used for the evaluation of deformability in the same manner as D 1 and D 2 .
 そして、変形能として算出されたD又はDは、図6に示すように、血球の体積Vに関するグラフとして整理され、赤血球R及び白血球Wの各血球種についての当該グラフがディスプレイ8に表示される。なお、計測対象の血液が赤血球R及び白血球Wのいずれか一方のみを含むものであれば、ステップT4~T6での各算出値を、ステップT1で検出された全ての血球の平均値としてもよい。 Then, D 3 or D 4 calculated as deformability is arranged as a graph relating to blood cell volume V as shown in FIG. 6, and the graph for each blood cell type of red blood cells R and white blood cells W is displayed on the display 8. Is done. If the blood to be measured includes only one of red blood cells R and white blood cells W, the calculated values in steps T4 to T6 may be the average value of all blood cells detected in step T1. .
 以上のように、血球変形能計測装置1Aによれば、上記実施の形態と同様の効果を奏することができる。 As described above, according to the blood cell deformability measuring apparatus 1A, the same effects as those in the above embodiment can be obtained.
 また、ゲート25aを通過する血球の体積V等から変形能を算出するものとして記載したが、上流テラス25b又は下流テラス25cを通過するときの血流画像から変形能を求めることもできる。上流テラス25b又は下流テラス25cを通過する血球は、例えば図10(a)~(c)に示すように、その変形能に応じて様々に形状を変化させる。そこで、この血球の縦幅及び横幅の変化を血流画像から算出し、図11(a),(b)に示すように、複数の血球それぞれのデータに対応する縦軸及び横軸の座標にプロットとしたグラフを作成する。そして、このグラフにプロットした各データの分布範囲から、血球の縦幅及び横幅の各変化幅が交差する部分(図中のハッチング部で分布範囲)の面積を変形能として算出することで、当該変形能が小さいほど硬い血球として評価することができる。なお、血球の縦幅及び横幅は、例えば流路部25のY方向及びX方向の長さとすればよい。 In addition, although it has been described that the deformability is calculated from the volume V of the blood cells passing through the gate 25a, etc., the deformability can also be obtained from a blood flow image when passing through the upstream terrace 25b or the downstream terrace 25c. The blood cells passing through the upstream terrace 25b or the downstream terrace 25c change their shapes in various ways depending on their deformability as shown in FIGS. 10 (a) to 10 (c), for example. Therefore, the changes in the vertical and horizontal widths of the blood cells are calculated from the blood flow image, and as shown in FIGS. 11A and 11B, the coordinates of the vertical and horizontal axes corresponding to the data of each of the plurality of blood cells are obtained. Create a plotted graph. Then, from the distribution range of each data plotted in this graph, by calculating the area of the portion where the change widths of the vertical and horizontal widths of blood cells intersect (distribution range in the hatched portion in the figure) as the deformability, The smaller the deformability, the harder the blood cell can be evaluated. In addition, what is necessary is just to let the vertical width and horizontal width of a blood cell be the length of the Y direction of a flow-path part 25, and a X direction, for example.
 その他にも、例えば図12(a),(b)に示すように、上流テラス25b又は下流テラス25cを通過する血球の縦幅の変化幅、及び当該血球の面積を、縦軸及び横軸としたグラフを作成してもよい。このグラフから、例えば、図12(b)よりも血球の縦幅の変化幅が大きい図12(a)の方が、より柔らかい血球を示しているとして変形能を評価することができる。なお、縦軸の血球の縦幅は、血球の横幅としてもよい。 In addition, for example, as shown in FIGS. 12A and 12B, the vertical width of the blood cell passing through the upstream terrace 25b or the downstream terrace 25c and the area of the blood cell are expressed as the vertical axis and the horizontal axis. You may create a graph. From this graph, for example, the deformability can be evaluated assuming that FIG. 12A, in which the change in the vertical width of the blood cell is larger than that in FIG. 12B, shows a softer blood cell. The vertical width of the blood cell on the vertical axis may be the horizontal width of the blood cell.
 また、その他の点についても、本発明は上記実施の形態及びその変形例に限定されるものではなく、適宜変更可能であるのは勿論である。 Also, with respect to other points, the present invention is not limited to the above-described embodiment and its modifications, and can of course be changed as appropriate.
 [第2の変形例]
 続いて、上記実施の形態に係る血球変形能計測装置1の第2の変形例としての血球変形能計測装置1Eについて説明する。なお、上記実施の形態と同様の構成要素には同一の符号を付し、その説明を省略する。
[Second Modification]
Subsequently, a blood cell deformability measuring apparatus 1E as a second modification of the blood cell deformability measuring apparatus 1 according to the above embodiment will be described. In addition, the same code | symbol is attached | subjected to the component similar to the said embodiment, and the description is abbreviate | omitted.
 血球変形能計測装置1Eは、図1に示すように、上記実施の形態におけるパソコン7に代えてパソコン7Eを備えており、パソコン7Eは、演算処理部70に代えて演算処理部70Eを備えている。演算処理部70Eは、血球の速度Sがゼロであるゲート25aを閉塞したゲート25aと判断し、閉塞した割合を算出可能に構成されている。 As shown in FIG. 1, the blood cell deformability measuring apparatus 1E includes a personal computer 7E instead of the personal computer 7 in the above embodiment, and the personal computer 7E includes an arithmetic processing unit 70E instead of the arithmetic processing unit 70. Yes. The arithmetic processing unit 70E is configured to determine that the gate 25a where the blood cell velocity S is zero is a closed gate 25a, and to calculate the closed ratio.
 続いて、血球変形能計測装置1Eの動作について、主に図13,図14を参照して説明する。 Subsequently, the operation of the blood cell deformability measuring apparatus 1E will be described mainly with reference to FIGS.
 図13は血球変形能計測装置1Eによる変形能計測のフローチャートであり、図14は閉塞しているゲート25aが検知される際のフローチャートである。 13 is a flowchart of deformability measurement by the blood cell deformability measuring apparatus 1E, and FIG. 14 is a flowchart when the closed gate 25a is detected.
 まず、図13に示すように、計測対象の血液がフィルタ2Eへ流される(ステップS10)。具体的には、供給槽10へ計測対象の血液が注がれるとともに、必要に応じて溶液びん13へ生理食塩水等が加えられる。そして、差圧制御部9によりフィルタ2Eに所定の差圧が加えられて血液がフィルタ2Eに流される。 First, as shown in FIG. 13, blood to be measured is flowed to the filter 2E (step S10). Specifically, blood to be measured is poured into the supply tank 10 and physiological saline or the like is added to the solution bottle 13 as necessary. Then, a predetermined differential pressure is applied to the filter 2E by the differential pressure control unit 9, and blood flows through the filter 2E.
 次に、流路部25Eを通過する血流が撮影され、血流画像が採取される(ステップS20)。ここでは、流路部25Eを通過する血流がTVカメラ3で動画撮影される。撮影された血流画像はディスプレイ8に表示される。 Next, a blood flow passing through the flow path portion 25E is photographed, and a blood flow image is collected (step S20). Here, the TV camera 3 takes a moving image of the blood flow that passes through the flow path portion 25E. The photographed blood flow image is displayed on the display 8.
 次に、演算処理部70Eにより血流画像が処理され、ゲート25a内で滞留している血球が検出されることにより、血球が詰まって閉塞しているゲート25aが検知される(ステップS30)。このステップは、図14及び図15(a)~(e)に示す各ステップ及び処理画像を経て行われる。ここで、図15(a)~(e)は、図14の各ステップにおける処理画像の一例を示す図である。但し、図15(a)~(e)は、当該ステップでの処理の理解を容易にするためのものであり、ゲート25a内の血流画像を処理したものではない。 Next, the blood flow image is processed by the arithmetic processing unit 70E, and the blood cells staying in the gate 25a are detected, whereby the gate 25a clogged with the blood cells is detected (step S30). This step is performed through each step and processed image shown in FIGS. 14 and 15A to 15E. Here, FIGS. 15A to 15E are diagrams showing an example of the processed image in each step of FIG. However, FIGS. 15A to 15E are for facilitating the understanding of the processing in this step, and are not processed blood flow images in the gate 25a.
 図14に示すように、まず、採取された血流画像に対し垂直及び水平の両方向へSobelフィルタをかけることで、滞留している血球部分(以下、血球滞留部という)のエッジが抽出される(ステップS31)。そして、この画像がグレースケール化されるとともに所定の閾値で二値化され、血球滞留部が白色で表示される(ステップS32)。 As shown in FIG. 14, first, a Sobel filter is applied to the collected blood flow image in both the vertical and horizontal directions to extract the edge of the staying blood cell portion (hereinafter referred to as a blood cell staying portion). (Step S31). The image is grayscaled and binarized with a predetermined threshold value, and the blood cell retention portion is displayed in white (step S32).
 二値化の後、血球滞留部のエッジとして誤認識されたノイズや血流の影が白色部分から除去される(ステップS33)。ここでは、予め設定した閾値より小さい面積の白色部分をノイズとするとともに、X方向とY方向との長さの比が所定範囲外となる白色部分を血流の影として、それぞれ黒色化する。 After binarization, noise and blood flow shadows that are misrecognized as edges of the blood cell retention portion are removed from the white portion (step S33). Here, a white portion having an area smaller than a preset threshold is set as noise, and a white portion whose length ratio between the X direction and the Y direction is outside a predetermined range is blackened as a blood flow shadow.
 ノイズ等が除去された画像は、モルフォロジー処理により膨張伸縮処理されて、白色部分の隙間が塗り潰される(ステップS34)。そして、ここまで残った白色部分が血球滞留部として判定される(ステップS35)。 The image from which noise or the like has been removed is expanded and contracted by morphological processing, and the gaps in the white portion are filled (step S34). And the white part which remained so far is determined as a blood cell retention part (step S35).
 こうして血球滞留部が検出され、当該血球滞留部のあるゲート25aが、閉塞しているゲート25aとして検知される。 Thus, the blood cell retention part is detected, and the gate 25a having the blood cell retention part is detected as the closed gate 25a.
 次に、図13に示すように、演算処理部70Eにより血球滞留部の体積Vが算出される(ステップS40)。ここでは、例えば特開平5-79970号公報に記載の公知の方法を用いてゲート25a内の血球滞留部の面積を算出し、この面積にゲート25aの高さhを乗じることで、ゲート25aを閉塞させている血球滞留部の体積Vが算出される。 Next, as shown in FIG. 13, the volume V of the blood cell retention part is calculated by the arithmetic processing part 70E (step S40). Here, for example, the area of the blood cell retention portion in the gate 25a is calculated using a known method described in JP-A-5-79970, and this area is multiplied by the height h of the gate 25a, whereby the gate 25a is The volume V of the blood cell retention part being obstructed is calculated.
 次に、演算処理部70Eにより、血球滞留部の血球種が判別される(ステップS50)。赤血球Rは赤の色相範囲にある白色部分として判別する。白血球Wは、輝度を利用して判別してもよいし、他の血球種より大きいことを利用し、穴の少ない白色部分や単位面積当たりのエッジ数が少ない白色部分として判別してもよい。 Next, the blood cell type of the blood cell retention part is determined by the arithmetic processing unit 70E (step S50). The red blood cell R is determined as a white portion in the red hue range. The white blood cells W may be discriminated using luminance, or may be discriminated as white portions with few holes or white portions with a small number of edges per unit area using the fact that they are larger than other blood cell types.
 なお、計測対象の血液が赤血球R及び白血球Wのいずれか一方のみを含むものであれば、この血球種判別ステップは省略される。 If the blood to be measured contains only one of red blood cells R and white blood cells W, this blood cell type discrimination step is omitted.
 次に、演算処理部70Eによりゲート25aの閉塞割合Cが算出される(ステップS60)。ここでは、血球滞留部の体積V別に当該体積Vの血球滞留部で閉塞されたゲート25aの割合が、閉塞割合Cとして算出される。なお、閉塞割合Cはゲート25aの総数に対する割合とするのが好ましいが、血流画像に全てのゲート25aが含まれていない場合には、血流画像に含まれているゲート25a数に対する割合としてもよい。 Next, the blockage rate C of the gate 25a is calculated by the arithmetic processing unit 70E (step S60). Here, the ratio of the gate 25a blocked by the blood cell retention part of the volume V is calculated as the blockage ratio C for each volume V of the blood cell retention part. The occlusion ratio C is preferably a ratio with respect to the total number of gates 25a. However, when all the gates 25a are not included in the blood flow image, the ratio is as a ratio with respect to the number of gates 25a included in the blood flow image. Also good.
 また、このステップでは、閉塞割合Cを所定範囲の体積V別に算出してもよいし、体積V別に算出せずに全ての血球滞留部についての平均を算出してもよい。後者の場合において、例えば図16に示すように、18個のゲート25aのうちの8個が白血球Wに閉塞されているときには、閉塞割合C=8/18=0.44と算出される。 In this step, the occlusion ratio C may be calculated for each volume V in a predetermined range, or an average for all blood cell retention portions may be calculated without calculating for each volume V. In the latter case, for example, as shown in FIG. 16, when eight of the eighteen gates 25a are blocked by the white blood cells W, the blocking ratio C = 8/18 = 0.44 is calculated.
 次に、演算処理部70Eにより血球の変形能が算出される(ステップS70)。ここでは、ステップS40及びステップS60で算出された血球滞留部の体積V及び閉塞割合Cから、それぞれを横軸及び縦軸とした図17に示すようなグラフが描かれ、当該グラフの閉塞割合Cを積分した値の逆数に所定の係数を乗じることにより血球の変形能が算出される。つまり、以下の式(3)を満たすDが血球の変形能として算出される。 Next, the deformability of the blood cell is calculated by the arithmetic processing unit 70E (step S70). Here, a graph as shown in FIG. 17 is drawn with the horizontal axis and the vertical axis respectively from the volume V and the blockage rate C of the blood cell retention portion calculated in step S40 and step S60, and the blockage rate C of the graph is shown. The deformability of the blood cell is calculated by multiplying the reciprocal of the integrated value by a predetermined coefficient. That, D 1 satisfies the following equation (3) is calculated as a deformability of blood cells.
  D=α2/∫CdV              …(3)
 ここで、α2は、予め行われた計測試験で設定された所定の係数であり、より詳細には、他の装置で計測された赤血球の変形能を正として、血球変形能計測装置1Eで算出された赤血球の体積V及び閉塞割合Cから当該変形能が算出されるよう設定された係数である。なお、予め行われた計測試験において、体積Vに関する閉塞割合Cの積分値に対してα2が一定とならない場合には、当該積分値に対するルックアップテーブルとすればよい。
D 1 = α2 / ∫CdV (3)
Here, α2 is a predetermined coefficient set in a measurement test performed in advance. More specifically, α2 is calculated by the blood cell deformability measuring apparatus 1E with the red blood cell deformability measured by another apparatus as positive. The coefficient is set so that the deformability is calculated from the volume V and the occlusion ratio C of the erythrocytes. In the measurement test performed in advance, if α2 is not constant with respect to the integral value of the blocking ratio C with respect to the volume V, a lookup table for the integral value may be used.
 また、ステップS60で、全ての血球滞留部について平均した閉塞割合Cを算出していた場合には、以下の式(3a)を満たすD1Aを血球の変形能として算出してもよい。 Moreover, when the blockage ratio C averaged about all the blood cell retention parts was calculated by step S60, you may calculate D1A which satisfy | fills the following formula | equation (3a) as a deformability of a blood cell.
  D1A=α2/C                 …(3a)
 ここで、α2は、予め行われた計測試験で設定された所定の係数であり、上述の式(3)におけるα2と同様に設定された係数である。
D 1A = α2 A / C (3a)
Here, α2 A is a predetermined coefficient set in a measurement test performed in advance, and is a coefficient set in the same manner as α2 in the above equation (3).
 ここで、変形能として算出されたD又はD1Aは、その値が大きいほど血球が柔らかく変形能が高いことを示す。 Here, D 1 or D 1A calculated as the deformability indicates that the larger the value, the softer the blood cell and the higher the deformability.
 以上のように、血球変形能計測装置1Eによれば、ゲート25aの閉塞割合Cと血球滞留部の体積Vとから血球の変形能を算出するので、楕円形状を保持する赤血球Rに限定されず、アメーバ状の白血球Wであってもその変形能を計測することができる。また、血球径より狭い幅のゲート25aを通過する血球の変形能が算出されるので、ゲート25aによって毛細血管を模擬して血球が毛細血管を通過するときの変形能を計測することができる。更に、血球径より狭い幅のゲート25aを通過する血液の流れがディスプレイ8に表示されるので、ゲート25aにより速度が低下した血球を確認することができ、画像上は血球が一様な速度で流れていた従来に比べて、血球が変形しつつ移動する様子を視覚的に捉え易くすることができる。 As described above, according to the blood cell deformability measuring apparatus 1E, the deformability of the blood cells is calculated from the blockage ratio C of the gate 25a and the volume V of the blood cell retention portion. Therefore, the blood cell deformability measuring device 1E is not limited to the red blood cells R having an elliptical shape. Even if it is an amoeba-like leukocyte W, its deformability can be measured. Further, since the deformability of the blood cells passing through the gate 25a having a width smaller than the blood cell diameter is calculated, the deformability when the blood cells pass through the capillaries can be measured by simulating the capillaries by the gate 25a. Furthermore, since the flow of blood passing through the gate 25a having a narrower width than the blood cell diameter is displayed on the display 8, the blood cells whose speed has been reduced by the gate 25a can be confirmed, and the blood cells are displayed at a uniform speed on the image. Compared to the conventional flow, it is possible to visually grasp how the blood cells move while deforming.
 [第3の変形例]
 続いて、上記実施の形態に係る血球変形能計測装置1Eの第3の変形例としての血球変形能計測装置1Fについて説明する。なお、上記実施の形態と同様の構成要素には同一の符号を付し、その説明を省略する。
[Third Modification]
Subsequently, a blood cell deformability measuring apparatus 1F as a third modification of the blood cell deformability measuring apparatus 1E according to the above embodiment will be described. In addition, the same code | symbol is attached | subjected to the component similar to the said embodiment, and the description is abbreviate | omitted.
 血球変形能計測装置1Fは、図1に示すように、上記実施の形態におけるフィルタ2Eに代えてフィルタ2Fを備えており、フィルタ2Fは、図2に示すように、流路部25Eに代えて流路部25Fを備えている。 As shown in FIG. 1, the blood cell deformability measuring apparatus 1F includes a filter 2F instead of the filter 2E in the above embodiment, and the filter 2F is replaced with a flow path portion 25E as shown in FIG. A flow path portion 25F is provided.
 流路部25Fは、図18に示すように、配列間隔が異なる複数の土手部22bF,…に挟まれて形成される複数のゲート25aFを有している。この複数のゲート25aFの幅は、血球径よりも狭いとともに互いに異なっており、本第3の変形例においては、土手部22bFの配列方向に徐々に変化している。 As shown in FIG. 18, the flow path portion 25F has a plurality of gates 25aF formed between a plurality of bank portions 22bF,. The widths of the plurality of gates 25aF are narrower than the blood cell diameter and are different from each other. In the third modification, the width is gradually changed in the arrangement direction of the bank portions 22bF.
 続いて、血球変形能計測装置1Fの動作について、主に図19を参照して説明する。 Subsequently, the operation of the blood cell deformability measuring apparatus 1F will be described mainly with reference to FIG.
 図19は、血球変形能計測装置1Fによる変形能計測のフローチャートである。 FIG. 19 is a flowchart of deformability measurement by the blood cell deformability measuring apparatus 1F.
 まず、図19に示すように、計測対象の血液がフィルタ2Fへ流され(ステップT1)、流路部25Eの血流画像が採取される(ステップT2)。これらのステップは、上記実施の形態におけるステップS10及びステップS20と同様に行われる。 First, as shown in FIG. 19, blood to be measured is flowed to the filter 2F (step T1), and a blood flow image of the flow path portion 25E is collected (step T2). These steps are performed in the same manner as steps S10 and S20 in the above embodiment.
 次に、演算処理部70Eにより血流画像が処理され、異なる幅ごとにゲート25aFの血流画像を抽出する(ステップT3)。本第3の変形例においては、各ゲート25aFで血流画像を分割して抽出する。 Next, the blood flow image is processed by the arithmetic processing unit 70E, and the blood flow image of the gate 25aF is extracted for each different width (step T3). In the third modification, the blood flow image is divided and extracted by each gate 25aF.
 次に、演算処理部70Eにより、血球滞留部で閉塞されているゲート25aFが検知された後(ステップT4)、当該血球滞留部の体積Vが算出され(ステップT5)、次いで、当該血球滞留部の血球種が判別される(ステップT6)。これらのステップは、上記実施の形態におけるステップS30~S50と同様に行われる。 Next, after the gate 25aF closed by the blood cell retention part is detected by the arithmetic processing unit 70E (step T4), the volume V of the blood cell retention part is calculated (step T5), and then the blood cell retention part Are determined (step T6). These steps are performed in the same manner as steps S30 to S50 in the above embodiment.
 次に、演算処理部70Eにより、血球滞留部で閉塞されているゲート25aFの幅のうち最大のものが最大閉塞幅Lとして検出される(ステップT7)。 Next, the arithmetic processing unit 70E detects the maximum width of the gate 25aF blocked by the blood cell retention part as the maximum blocking width L (step T7).
 次に、演算処理部70Eにより血球の変形能が算出される(ステップT8)。ここでは、ステップT7で算出された血球滞留部の最大閉塞幅L、及び当該最大閉塞幅Lに対応するゲート25aFを閉塞させた血液滞留部の体積Vから、以下の式(4)を満たすDが血球の変形能として算出される。 Next, the deformability of the blood cell is calculated by the arithmetic processing unit 70E (step T8). Here, D satisfying the following equation (4) from the maximum occlusion width L of the blood cell retention portion calculated in step T7 and the volume V of the blood retention portion that occludes the gate 25aF corresponding to the maximum occlusion width L: 2 is calculated as the deformability of blood cells.
  D=β×L/V               …(4)
 ここで、βは、予め行われた計測試験で設定された所定の係数であり、上述の式(3)におけるα2と同様に設定された係数である。
D 2 = β × L / V (4)
Here, β is a predetermined coefficient set in a measurement test performed in advance, and is a coefficient set in the same manner as α2 in the above equation (3).
 また、このステップでは、以下の式(5)を満たすDを血球の変形能として算出してもよい。 Further, in this step, the D 3 that satisfies the following equation (5) may be calculated as a deformability of blood cells.
  D=L/L                …(5)
 ここで、Lは、所定の基準血液をゲート25aFへ通過させたときに、当該血液中の血球で閉塞されたゲート25aFにおける当該血球の体積別の最大閉塞幅Lのうち、血球の体積が式(4)におけるVであるときの値であり、所定の基準血液とは、標準的な健康度の血液である。
D 3 = L / L 0 (5)
Here, L 0 is the volume of the blood cell in the maximum occlusion width L for each volume of the blood cell in the gate 25aF blocked by the blood cell in the blood when a predetermined reference blood is passed to the gate 25aF. It is a value when it is V in Formula (4), and the predetermined reference blood is blood of a standard health level.
 ここで、変形能として算出されたDは、その値が大きいほど血球が硬いことを示す。また、Dは、その値が1のときに血球が標準的な硬さであることを示し、1より大きいほど硬く、小さいほど柔らかいことを示す。Dが算出された場合には、標準的な健康度の血球に対する相対値として変形能が示されるので、血球滞留部の体積Vによらず一意に変形能の程度を理解することができる。 Here, D 2 calculated as deformability, shows that blood cells stiff greater the value. Further, D 3 indicates that the blood cell has a standard hardness when the value is 1, and indicates that the blood cell is harder as it is larger than 1 and softer as it is smaller. If the D 3 is calculated, since deformability is shown as a relative value with respect to blood cells of the standard health, it is possible to understand the degree of uniquely deformability regardless of the volume V of the blood cell trapping portion.
 以上のように、血球変形能計測装置1Fによれば、上記実施の形態と同様の効果を奏することができる。 As described above, according to the blood cell deformability measuring apparatus 1F, the same effects as those of the above embodiment can be obtained.
 なお、本第3の変形例においては、ゲート25aFは、土手部22bFの配列方向に徐々に変化する幅を有するものとして記載したが、例えば図20(a),(b)に示すように、血流方向(図中のY方向)に徐々に狭くなる各幅を有する複数段のゲート25a,…を設けてもよい。図20(a),(b)に示す例では、各段で配列間隔の異なる4段の土手部22b~22bにそれぞれ挟まれて形成されるゲート25a~25aが、血流方向への段毎に徐々に狭くなる幅をそれぞれ有している。このようなゲート25a~25aを用いた場合には、より上流で多くの血球を滞留させている方が硬い血球を多く有する血液として評価することができる。なお、図20(a)は、柔らかい血球を多く含む血液が流された状態を示す図であり、図20(b)は、硬い血球を多く含む血液が流された状態を示す図である。 In the third modified example, the gate 25aF is described as having a width that gradually changes in the arrangement direction of the bank portion 22bF. However, for example, as shown in FIGS. A plurality of stages of gates 25a 1 ,... Having respective widths gradually narrowing in the blood flow direction (Y direction in the figure) may be provided. In the example shown in FIGS. 20 (a) and 20 (b), the gates 25a 1 to 25a 4 formed between the four bank portions 22b 1 to 22b 4 having different arrangement intervals at each stage are provided in the direction of blood flow. Each step has a width that gradually decreases. When such gates 25a 1 to 25a 4 are used, it is possible to evaluate as a blood having a lot of hard blood cells if more blood cells are retained more upstream. 20A is a diagram showing a state in which blood containing a lot of soft blood cells is flowed, and FIG. 20B is a diagram showing a state in which blood containing a lot of hard blood cells is flowed.
 [第4の変形例]
 続いて、上記実施の形態に係る血球変形能計測装置1Eの第4の変形例としての血球変形能計測装置1Bについて説明する。なお、上記実施の形態と同様の構成要素には同一の符号を付し、その説明を省略する。
[Fourth Modification]
Subsequently, a blood cell deformability measuring apparatus 1B as a fourth modification of the blood cell deformability measuring apparatus 1E according to the above embodiment will be described. In addition, the same code | symbol is attached | subjected to the component similar to the said embodiment, and the description is abbreviate | omitted.
 血球変形能計測装置1Bは、図1に示すように、上記実施の形態におけるフィルタ2Eに代えてフィルタ2Bを備えており、フィルタ2Bは、図2に示すように、流路部25Eに代えて流路部25Bを備えている。 As shown in FIG. 1, the blood cell deformability measuring apparatus 1B includes a filter 2B instead of the filter 2E in the above embodiment, and the filter 2B is replaced with a flow path portion 25E as shown in FIG. A flow path portion 25B is provided.
 流路部25Bは、図21に示すように、一定個数毎に配列間隔が変わる複数の土手部22bB,…に挟まれて形成される複数のゲート25aBを有している。この複数のゲート25aBは、血球径より狭い幅に形成されるとともに幅毎に複数の組を形成しており、本第4の変形例においては、3個で組を構成して土手部22bBの配列方向に徐々に変化している。 As shown in FIG. 21, the flow path portion 25B has a plurality of gates 25aB formed between a plurality of bank portions 22bB,. The plurality of gates 25aB are formed to have a width narrower than the blood cell diameter and form a plurality of sets for each width. In the fourth modified example, three gates 25aB constitute a set of the bank portion 22bB. It is gradually changing in the arrangement direction.
 以上の構成を具備する血球変形能計測装置1Bは、上記第3の変形例における血球変形能計測装置1Fと同様の動作によって、血球の変形能を算出することができる。但し、最大閉塞幅Lを検出するとき(ステップT7)には、図22に示すように、ゲート25aBの閉塞割合Cをゲート25aBの幅別に求め、当該閉塞割合Cが最大となるゲート25aBの幅を最大閉塞幅Lとして検出するのが好ましい。 The blood cell deformability measuring apparatus 1B having the above configuration can calculate the deformability of blood cells by the same operation as the blood cell deformability measuring apparatus 1F in the third modified example. However, when the maximum blocking width L is detected (step T7), as shown in FIG. 22, the blocking ratio C of the gate 25aB is obtained for each width of the gate 25aB, and the width of the gate 25aB at which the blocking ratio C is maximized. Is preferably detected as the maximum closing width L.
 また、図23に示すように、ゲート25aBの閉塞個数をゲート25aBの幅別に求め、当該閉塞個数で平均を取ったゲート25aBの幅、又は当該閉塞個数が最大となるゲート25aBの幅を最大閉塞幅Lとして検出してもよい。なお図22、図23においてはゲート25aBを流す血液に含まれる血球の大きさは均一ではなく分布ばらつきを持っているために、中間のゲート幅で分布のピークを生じている。 Further, as shown in FIG. 23, the number of gates 25aB closed is determined according to the width of the gate 25aB, and the gate 25aB width obtained by averaging the blockage numbers or the width of the gate 25aB having the maximum blockage number is maximum blocked. The width L may be detected. In FIGS. 22 and 23, the size of blood cells contained in the blood flowing through the gate 25aB is not uniform but has a distribution variation, so that a distribution peak occurs at an intermediate gate width.
 以上のように、血球変形能計測装置1Bによれば、上記実施の形態と同様の効果を奏するのは勿論のこと、幅毎に複数の組を形成しているゲート25aBを有し、当該ゲート25aBの幅別の閉塞割合Cが最大となるゲート25aBの幅として求めた最大閉塞幅Lから血球の変形能を算出できるので、より多くのゲート25aBを用いて変形能が算出され、より安定した算出結果が得られる。 As described above, according to the blood cell deformability measuring apparatus 1B, it has the gate 25aB that forms a plurality of sets for each width as well as the same effect as that of the above-described embodiment. Since the deformability of blood cells can be calculated from the maximum occlusion width L obtained as the width of the gate 25aB where the occlusion ratio C by width of 25aB is the maximum, the deformability is calculated using more gates 25aB, and is more stable. A calculation result is obtained.
 [第5の変形例]
 続いて、上記実施の形態に係る血球変形能計測装置1Eの第5の変形例としての血球変形能計測装置1Cについて説明する。なお、上記実施の形態と同様の構成要素には同一の符号を付し、その説明を省略する。
[Fifth Modification]
Subsequently, a blood cell deformability measuring apparatus 1C as a fifth modification of the blood cell deformability measuring apparatus 1E according to the above embodiment will be described. In addition, the same code | symbol is attached | subjected to the component similar to the said embodiment, and the description is abbreviate | omitted.
 血球変形能計測装置1Cは、図1に示すように、上記実施の形態におけるフィルタ2Eに代えてフィルタ2Cを備えており、フィルタ2Cは、図2に示すように、流路部25Eに代えて流路部25Cを備えている。 As shown in FIG. 1, the blood cell deformability measuring apparatus 1C includes a filter 2C instead of the filter 2E in the above embodiment, and the filter 2C is replaced with a flow path portion 25E as shown in FIG. A flow path portion 25C is provided.
 流路部25Cは、図24に示すように、血流方向(図中のY方向)に先太りする複数の土手部22bC,…に挟まれて形成される複数のゲート25aCを有している。この複数のゲート25aCの幅は、血流方向に徐々に狭くなるとともに血球径よりも狭く形成されている。 As shown in FIG. 24, the flow path portion 25C has a plurality of gates 25aC formed between a plurality of bank portions 22bC,... Which are tapered in the blood flow direction (Y direction in the drawing). . The width of the plurality of gates 25aC is gradually narrowed in the blood flow direction and narrower than the blood cell diameter.
 以上の構成を具備する血球変形能計測装置1Cは、上記第3の変形例における血球変形能計測装置1Fと同様の動作によって、血球の変形能を算出することができる。但し、最大閉塞幅Lを検出するとき(ステップT7)には、血球滞留部で閉塞されたゲート25aCにおいて、当該血球滞留部が滞留している位置での当該ゲート25aCの幅を最大閉塞幅Lとして検出する。 The blood cell deformability measuring apparatus 1C having the above configuration can calculate the deformability of blood cells by the same operation as the blood cell deformability measuring apparatus 1F in the third modified example. However, when detecting the maximum occlusion width L (step T7), in the gate 25aC occluded by the blood cell retention portion, the width of the gate 25aC at the position where the blood cell retention portion is retained is the maximum occlusion width L. Detect as.
 以上のように、血球変形能計測装置1Cによれば、上記実施の形態と同様の効果を奏するのは勿論のこと、血流方向に狭くなる幅に形成されたゲート25aC内の血流画像がディスプレイ8に表示されるので、血球滞留部で閉塞されているゲート25aCの幅が視覚的に捉え易い。 As described above, according to the blood cell deformability measuring apparatus 1C, the blood flow image in the gate 25aC formed with a width narrowing in the blood flow direction can be obtained as well as the same effect as the above embodiment. Since it is displayed on the display 8, it is easy to visually grasp the width of the gate 25aC blocked by the blood cell retention portion.
 なお、本実施の形態及びその変形例においては、赤血球R及び/又は白血球Wの変形能が算出されるものとして記載したが、白血球Wのうち顆粒球、リンパ球及び単球を更に判別し、これらの各変形能が算出されるようにしてもよい。このようにすれば、より詳細の血液診断を行うことができる。顆粒球、リンパ球及び単球の判別は、例えば特開2001-174456号公報に記載の公知の方法を用いればよい。 In the present embodiment and its modifications, it is described that the deformability of red blood cells R and / or white blood cells W is calculated, but among leukocytes W, granulocytes, lymphocytes and monocytes are further discriminated, Each of these deformability may be calculated. In this way, more detailed blood diagnosis can be performed. For discrimination between granulocytes, lymphocytes and monocytes, a known method described in, for example, JP-A-2001-174456 may be used.
 また、その他の点についても、本発明は上記実施の形態及びその変形例に限定されるものではなく、適宜変更可能であるのは勿論である。 Also, with respect to other points, the present invention is not limited to the above-described embodiment and its modifications, and can of course be changed as appropriate.
 1、1A、1B、1C、1E、1F 血球変形能計測装置
 3 TVカメラ(撮影手段)
 7、7A、7E パソコン(血流画像表示手段)
 8 ディスプレイ(表示画面)
 25、25A、25B、25C、25E、25F 流路部
 25a ゲート
 25b 上流テラス
 70、70A 演算処理部(速度算出手段、体積算出手段、変形能算出手段)
 70E 演算処理部(速度算出手段、体積算出手段、変形能算出手段、閉塞状態算出手段、閉塞割合算出手段、閉塞幅検出手段)
 S 血球の速度
 T 通過時間
 V 血球の体積
 C 閉塞割合
 L 最大閉塞幅
1, 1A, 1B, 1C, 1E, 1F Blood cell deformability measuring device 3 TV camera (photographing means)
7, 7A, 7E PC (blood flow image display means)
8 Display (display screen)
25, 25A, 25B, 25C, 25E, 25F Channel portion 25a Gate 25b Upstream terrace 70, 70A Arithmetic processing section (speed calculation means, volume calculation means, deformability calculation means)
70E arithmetic processing unit (speed calculation means, volume calculation means, deformability calculation means, blockage state calculation means, blockage ratio calculation means, blockage width detection means)
S Blood cell velocity T Passing time V Blood cell volume C Blockage ratio L Maximum blockage width

Claims (17)

  1.  血球径よりも広い幅の上流テラスから血球径よりも狭い幅のゲートへ向けて血液を流し、当該血液中の血球の変形能を計測する血球変形能計測装置であって、
     前記上流テラス及び前記ゲートを通過する血液の流れを撮影する撮影手段と、
     前記撮影手段によって得られた血流画像から、前記上流テラス又は前記ゲートを通過する血球の速度を算出する速度算出手段と、
     前記撮影手段によって得られた血流画像から、前記ゲートを通過する血球の体積を算出する体積算出手段と、
     前記血球の速度及び前記血球の体積から、前記血球の変形能を算出する変形能算出手段と、
     を備えることを特徴とする血球変形能計測装置。
    A blood cell deformability measuring device for flowing blood from an upstream terrace having a width wider than the blood cell diameter toward a gate having a width narrower than the blood cell diameter, and measuring the deformability of the blood cells in the blood,
    Imaging means for imaging the flow of blood passing through the upstream terrace and the gate;
    From the blood flow image obtained by the imaging means, speed calculation means for calculating the speed of blood cells passing through the upstream terrace or the gate;
    From the blood flow image obtained by the imaging means, volume calculating means for calculating the volume of blood cells passing through the gate;
    Deformability calculating means for calculating the deformability of the blood cell from the velocity of the blood cell and the volume of the blood cell;
    A blood cell deformability measuring apparatus comprising:
  2.  前記変形能算出手段は、前記血球の変形能として、以下の式(1)又は式(2)を満たすD又はDを算出することを特徴とする請求項1に記載の血球変形能計測装置。
      D=α/(S×V)                …(1)
      D=1/(S×V)/(1/(S×V))     …(2)
    (但し、
     α:所定の係数
     S:前記上流テラス又は前記ゲートを通過する血球の速度
     V:前記ゲートを通過する血球の体積
     S:所定の基準血液を前記上流テラス又は前記ゲートへ通過させたときの当該血液中の血球の速度
     V:所定の基準血液を前記ゲートへ通過させたときの当該血液中の血球の体積)
    2. The blood cell deformability measurement according to claim 1, wherein the deformability calculation means calculates D 1 or D 2 satisfying the following formula (1) or formula (2) as the deformability of the blood cell. apparatus.
    D 1 = α / (S × V) (1)
    D 2 = 1 / (S × V) / (1 / (S 0 × V 0 )) (2)
    (However,
    α: a predetermined coefficient S: velocity of blood cells passing through the upstream terrace or the gate V: volume of blood cells passing through the gate S 0 : the time when a predetermined reference blood is passed through the upstream terrace or the gate Velocity of blood cells in blood V 0 : volume of blood cells in the blood when a predetermined reference blood is passed through the gate)
  3.  前記速度算出手段は、前記血球の速度として、前記血球が前記ゲートを通過するのに要する通過時間の逆数を算出することを特徴とする請求項1又は2に記載の血球変形能計測装置。 The blood cell deformability measuring apparatus according to claim 1 or 2, wherein the speed calculation means calculates the reciprocal of the transit time required for the blood cells to pass through the gate as the speed of the blood cells.
  4.  前記撮影手段によって得られた血流画像を表示画面に表示する血流画像表示手段を有することを特徴とする請求項1から3の何れか一項に記載の血球変形能計測装置。 4. The blood cell deformability measuring apparatus according to claim 1, further comprising blood flow image display means for displaying a blood flow image obtained by the imaging means on a display screen.
  5.  前記ゲートは複数であり、
     前記速度算出手段により得られた血球の速度がゼロである前記血球で閉塞された前記ゲートの閉塞割合を算出する閉塞状態算出手段を備え
     前記変形能算出手段は、前記ゲートの閉塞割合及び前記体積算出手段が算出した前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする請求項1から4の何れか一項に記載の血球変形能計測装置。
    A plurality of the gates;
    A blockage state calculating unit that calculates a blockage rate of the gate blocked by the blood cell, wherein the blood cell velocity obtained by the velocity calculation unit is zero, the deformability calculation unit including the blockage rate of the gate and the volume The blood cell deformability measuring apparatus according to any one of claims 1 to 4, wherein the deformability of the blood cell is calculated from the volume of the blood cell with the gate closed by the calculation means.
  6.  前記閉塞状態算出手段は、前記血球の体積別に当該体積の血球で閉塞された前記ゲートの閉塞割合を算出し、
     前記変形能算出手段は、前記血球の変形能として、以下の式(3)を満たすDを算出することを特徴とする請求項5に記載の血球変形能計測装置。
      D=α2/∫CdV              …(3)
    (但し、
     α2:所定の係数
     C:前記ゲートの閉塞割合
     V:前記ゲートを閉塞させた前記血球の体積)
    The occlusion state calculating means calculates the occlusion ratio of the gate that is occluded by blood cells of the volume according to the volume of the blood cells,
    The deformability calculation means, blood cell deformability measurement apparatus described as deformability of the blood cells, to claim 5, characterized in that to calculate the D 1 satisfies the following equation (3).
    D 1 = α2 / ∫CdV (3)
    (However,
    α2: Predetermined coefficient C: Blocking ratio of the gate V: Volume of the blood cell blocking the gate)
  7.  複数の前記ゲートは、血流方向に複数配設されるとともに血流方向上流側から下流側に向けて除々に狭くなるように複数の異なる幅に形成されるか、或いは血流方向に直交する方向に複数配設されるとともに複数の異なる幅で形成されており、
     前記閉塞状態算出手段は、前記撮影手段によって得られた血流画像から、前記血球で閉塞された前記ゲートの幅のうち最大のものを最大閉塞幅として検出し、
     前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積算出手段が算出した前記最大閉塞幅に対応する前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする請求項5又は6に記載の血球変形能計測装置。
    The plurality of gates are arranged in the blood flow direction and are formed in a plurality of different widths so as to gradually narrow from the upstream side to the downstream side in the blood flow direction, or orthogonal to the blood flow direction. It is formed with a plurality of different widths and a plurality of different widths in the direction,
    The occlusion state calculating means detects, as a maximum occlusion width, the largest one of the widths of the gates occluded by the blood cells, from the blood flow image obtained by the imaging means,
    The deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means. The blood cell deformability measuring apparatus according to claim 5 or 6, characterized by the above.
  8.  複数の前記ゲートは幅毎に複数の組を形成しており、
     前記閉塞状態算出手段は、前記血球で閉塞された前記ゲートの閉塞割合を前記ゲートの幅別に求め、当該閉塞割合が最大となる前記ゲートの幅を最大閉塞幅として検出し、
     前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積算出手段が算出した前記最大閉塞幅に対応する前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする請求項5又は6に記載の血球変形能計測装置。
    The plurality of gates form a plurality of sets for each width,
    The blockage state calculating means obtains the blockage rate of the gate blocked by the blood cells according to the width of the gate, and detects the width of the gate that maximizes the blockage rate as the maximum blockage width,
    The deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means. The blood cell deformability measuring apparatus according to claim 5 or 6, characterized by the above.
  9.  前記ゲートは血流方向下流側に向けて狭くなる幅に形成されており、
     前記閉塞状態算出手段は、前記撮影手段によって得られた血流画像から、前記血球で閉塞された前記ゲートにおける当該血球の閉塞位置での当該ゲートの幅を最大閉塞幅として検出し、
     前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積手段が算出した前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする請求項5又は6に記載の血球変形能計測装置。
    The gate is formed in a width that narrows toward the downstream side in the blood flow direction,
    The occlusion state calculating means detects, as a maximum occlusion width, the width of the gate at the occlusion position of the blood cell in the gate occluded with the blood cell from the blood flow image obtained by the imaging means,
    7. The deformability calculating means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that has closed the gate calculated by the volume means. The blood cell deformability measuring apparatus according to 1.
  10.  前記変形能算出手段は、前記血球の変形能として、以下の式(4)又は式(5)を満たすD又はDを算出することを特徴とする請求項7から9のいずれか一項に記載の血球変形能計測装置。
      D=β×L/V               …(4)
      D=L/L                …(5)
    (但し、
     β:所定の係数
     L:前記ゲートの最大閉塞幅
     L:所定の基準血液を前記ゲートへ通過させたときに、当該血液中の血球で閉塞されたゲートにおける当該血球の体積別の最大閉塞幅のうち、血球の体積が式(4)におけるVであるときの値
     V:前記ゲートを閉塞させた前記血球の体積)
    10. The deformability calculating means calculates D 2 or D 3 satisfying the following formula (4) or formula (5) as the deformability of the blood cell: 10. The blood cell deformability measuring apparatus according to 1.
    D 2 = β × L / V (4)
    D 3 = L / L 0 (5)
    (However,
    β: Predetermined coefficient L: Maximum occlusion width of the gate L 0 : Maximum occlusion width for each blood cell volume at the gate occluded with blood cells in the blood when a predetermined reference blood is passed through the gate Value when the volume of blood cells is V in the formula (4) V: volume of the blood cells with the gate blocked)
  11.  血球径より狭い幅に形成された複数のゲートへ血液を流し、当該血液中の血球の変形能を計測する血球変形能計測装置であって、
     前記ゲートを通過する血液の流れを撮影する撮影手段と、
     前記撮影手段によって得られた血流画像から、前記血球で閉塞された前記ゲートの閉塞割合を算出する閉塞状態算出手段と、
     前記撮影手段によって得られた血流画像から、前記ゲートを閉塞させた前記血球の体積を算出する体積算出手段と、
     前記ゲートの閉塞割合及び前記血球の体積から、前記血球の変形能を算出する変形能算出手段と、
     を備えることを特徴とする血球変形能計測装置。
    A blood cell deformability measuring apparatus for flowing blood to a plurality of gates formed with a narrower width than the blood cell diameter and measuring the deformability of the blood cells in the blood,
    Photographing means for photographing the flow of blood passing through the gate;
    From the blood flow image obtained by the imaging means, an occlusion state calculation means for calculating the occlusion ratio of the gate occluded by the blood cells,
    From the blood flow image obtained by the imaging means, a volume calculation means for calculating the volume of the blood cell with the gate blocked,
    Deformability calculating means for calculating the deformability of the blood cell from the blockage ratio of the gate and the volume of the blood cell;
    A blood cell deformability measuring apparatus comprising:
  12.  前記閉塞状態算出手段は、前記血球の体積別に当該体積の血球で閉塞された前記ゲートの閉塞割合を算出し、
     前記変形能算出手段は、前記血球の変形能として、以下の式(3)を満たすDを算出することを特徴とする請求項11に記載の血球変形能計測装置。
      D=α2/∫CdV              …(3)
    (但し、
     α2:所定の係数
     C:前記ゲートの閉塞割合
     V:前記ゲートを閉塞させた前記血球の体積)
    The occlusion state calculating means calculates the occlusion ratio of the gate that is occluded by blood cells of the volume according to the volume of the blood cells,
    The deformability calculation means, blood cell deformability measurement apparatus described as deformability of the blood cells, to claim 11, characterized in that to calculate the D 1 satisfies the following equation (3).
    D 1 = α2 / ∫CdV (3)
    (However,
    α2: Predetermined coefficient C: Blocking ratio of the gate V: Volume of the blood cell blocking the gate)
  13.  前記撮影手段によって得られた血流画像を表示画面に表示する血流画像表示手段を有することを特徴とする請求項11又は12に記載の血球変形能計測装置。 The blood cell deformability measuring device according to claim 11 or 12, further comprising blood flow image display means for displaying a blood flow image obtained by the imaging means on a display screen.
  14.  複数の前記ゲートは、血流方向に複数配設されるとともに血流方向上流側から下流側に向けて除々に狭くなるように複数の異なる幅に形成されるか、或いは血流方向に直交する方向に複数配設されるとともに複数の異なる幅で形成されており、
     前記閉塞状態算出手段は、前記撮影手段によって得られた血流画像から、前記血球で閉塞された前記ゲートの幅のうち最大のものを最大閉塞幅として検出し、
     前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積算出手段が算出した前記最大閉塞幅に対応する前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出すことを特徴とする請求項11から13のいずれか一項に記載の血球変形能計測装置。
    The plurality of gates are arranged in the blood flow direction and are formed in a plurality of different widths so as to gradually narrow from the upstream side to the downstream side in the blood flow direction, or orthogonal to the blood flow direction. It is formed with a plurality of different widths and a plurality of different widths in the direction,
    The occlusion state calculating means detects, as a maximum occlusion width, the largest one of the widths of the gates occluded by the blood cells, from the blood flow image obtained by the imaging means,
    The deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means. The blood cell deformability measuring apparatus according to any one of claims 11 to 13, characterized in that
  15.  複数の前記ゲートは幅毎に複数の組を形成しており、
     前記閉塞状態算出手段は、前記血球で閉塞された前記ゲートの閉塞割合を前記ゲートの幅別に求め、当該閉塞割合が最大となる前記ゲートの幅を最大閉塞幅として検出し、
     前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積算出手段が算出した前記最大閉塞幅に対応する前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする請求項11から13のいずれか一項に記載の血球変形能計測装置。
    The plurality of gates form a plurality of sets for each width,
    The blockage state calculating means obtains the blockage rate of the gate blocked by the blood cells according to the width of the gate, and detects the width of the gate that maximizes the blockage rate as the maximum blockage width,
    The deformability calculation means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that occludes the gate corresponding to the maximum occlusion width calculated by the volume calculation means. The blood cell deformability measuring apparatus according to any one of claims 11 to 13, characterized in that
  16.  前記ゲートは血流方向下流側に向けて狭くなる幅に形成されており、
     前記閉塞状態算出手段は、前記撮影手段によって得られた血流画像から、前記血球で閉塞された前記ゲートにおける当該血球の閉塞位置での当該ゲートの幅を最大閉塞幅として検出し、
     前記変形能算出手段は、前記ゲートの最大閉塞幅及び前記体積手段が算出した前記ゲートを閉塞させた前記血球の体積から、前記血球の変形能を算出することを特徴とする請求項11から13のいずれか一項に記載の血球変形能計測装置。
    The gate is formed in a width that narrows toward the downstream side in the blood flow direction,
    The occlusion state calculating means detects, as a maximum occlusion width, the width of the gate at the occlusion position of the blood cell in the gate occluded with the blood cell from the blood flow image obtained by the imaging means,
    The deformability calculating means calculates the deformability of the blood cell from the maximum occlusion width of the gate and the volume of the blood cell that has closed the gate calculated by the volume means. The blood cell deformability measuring device according to any one of the above.
  17.  前記変形能算出手段は、前記血球の変形能として、以下の式(4)又は式(5)を満たすD又はDを算出することを特徴とする請求項14~16のいずれか一項に記載の血球変形能計測装置。
      D=β×L/V               …(4)
      D=L/L                …(5)
    (但し、
     β:所定の係数
     L:前記ゲートの最大閉塞幅
     L:所定の基準血液を前記ゲートへ通過させたときに、当該血液中の血球で閉塞されたゲートにおける当該血球の体積別の最大閉塞幅のうち、血球の体積が式(4)におけるVであるときの値
     V:前記ゲートを閉塞させた前記血球の体積)
    The deformability calculating means calculates D 2 or D 3 satisfying the following formula (4) or formula (5) as the deformability of the blood cell: The blood cell deformability measuring apparatus according to 1.
    D 2 = β × L / V (4)
    D 3 = L / L 0 (5)
    (However,
    β: Predetermined coefficient L: Maximum occlusion width of the gate L 0 : Maximum occlusion width for each blood cell volume at the gate occluded with blood cells in the blood when a predetermined reference blood is passed through the gate Value when the volume of blood cells is V in the formula (4) V: volume of the blood cells with the gate blocked)
PCT/JP2009/065813 2008-10-24 2009-09-10 Device for measuring blood cell deformability WO2010047191A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980141499.5A CN102187217B (en) 2008-10-24 2009-09-10 Device for measuring blood cell deformability
JP2010534755A JP5093357B2 (en) 2008-10-24 2009-09-10 Blood cell deformability measuring device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-274207 2008-10-24
JP2008-274223 2008-10-24
JP2008274207 2008-10-24
JP2008274223 2008-10-24

Publications (1)

Publication Number Publication Date
WO2010047191A1 true WO2010047191A1 (en) 2010-04-29

Family

ID=42119238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065813 WO2010047191A1 (en) 2008-10-24 2009-09-10 Device for measuring blood cell deformability

Country Status (3)

Country Link
JP (1) JP5093357B2 (en)
CN (1) CN102187217B (en)
WO (1) WO2010047191A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137470A1 (en) * 2009-05-29 2010-12-02 コニカミノルタオプト株式会社 Device for measuring deformability and method for measuring deformability
US20190114790A1 (en) * 2017-10-13 2019-04-18 University Of Rochester Rapid assessment and visual reporting of local particle velocity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918898A (en) * 2018-05-16 2018-11-30 南方医科大学 The method and its application that vitro detection lipopolysaccharides influences red cell deformability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685544B2 (en) * 1988-11-11 1997-12-03 株式会社日立製作所 Blood filter, blood test method, and blood test apparatus
JP2720161B2 (en) * 1988-02-01 1998-02-25 株式会社アドバンス Cell deformability measuring device
JP2001507122A (en) * 1996-11-26 2001-05-29 コールター インターナショナル コーポレイション Apparatus and method for determining the shape of individual red blood cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2720161B2 (en) * 1988-02-01 1998-02-25 株式会社アドバンス Cell deformability measuring device
JP2685544B2 (en) * 1988-11-11 1997-12-03 株式会社日立製作所 Blood filter, blood test method, and blood test apparatus
JP2001507122A (en) * 1996-11-26 2001-05-29 コールター インターナショナル コーポレイション Apparatus and method for determining the shape of individual red blood cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137470A1 (en) * 2009-05-29 2010-12-02 コニカミノルタオプト株式会社 Device for measuring deformability and method for measuring deformability
US20190114790A1 (en) * 2017-10-13 2019-04-18 University Of Rochester Rapid assessment and visual reporting of local particle velocity
US10803601B2 (en) * 2017-10-13 2020-10-13 University Of Rochester Rapid assessment and visual reporting of local particle velocity

Also Published As

Publication number Publication date
CN102187217B (en) 2014-03-19
JP5093357B2 (en) 2012-12-12
JPWO2010047191A1 (en) 2012-03-22
CN102187217A (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP5146462B2 (en) Blood fluidity measurement system
US20150098626A1 (en) Blood fluidity measurement apparatus and blood fluidity measurement method
JP2013527424A (en) Phase behavior analysis using a microfluidic platform
JP5093357B2 (en) Blood cell deformability measuring device
KR100902093B1 (en) Optical Measurement Method of Size and Number of Liquid Droplet/Plug or Micro-particle Using Visible Range Light in Microchannel
JP5353900B2 (en) Blood test equipment
JP5387689B2 (en) Blood cell trajectory display device
WO2009133769A1 (en) Device for measuring blood coagulation ability
JP5541280B2 (en) Deformability measuring device and deformability measuring method
JP5655779B2 (en) Aggregation amount measuring apparatus and aggregation amount measuring method
JP2012247205A (en) Blood examination apparatus
WO2011010570A1 (en) Apparatus for measuring amount of aggregates, and method for measuring amount of aggregates
JP5182373B2 (en) Microchip, blood characteristic analysis system, and blood characteristic analysis method
WO2010007856A1 (en) Blood property analysis system
CN111504406B (en) Flow detection chip and detection method for ultramicro small-flow liquid
JP2009276271A (en) Blood fluidity measurement device
WO2011065195A1 (en) Microchip and film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141499.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821890

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534755

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821890

Country of ref document: EP

Kind code of ref document: A1