WO2010046520A2 - Unidad de potencia auxiliar (apu) de una aeronave - Google Patents
Unidad de potencia auxiliar (apu) de una aeronave Download PDFInfo
- Publication number
- WO2010046520A2 WO2010046520A2 PCT/ES2009/070454 ES2009070454W WO2010046520A2 WO 2010046520 A2 WO2010046520 A2 WO 2010046520A2 ES 2009070454 W ES2009070454 W ES 2009070454W WO 2010046520 A2 WO2010046520 A2 WO 2010046520A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- pneumatic
- compressor
- apu
- mode
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 239000000446 fuel Substances 0.000 claims abstract description 6
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 230000009931 harmful effect Effects 0.000 abstract description 3
- 230000005611 electricity Effects 0.000 abstract 2
- 238000010248 power generation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002650 habitual effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D41/00—Power installations for auxiliary purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D41/00—Power installations for auxiliary purposes
- B64D2041/002—Mounting arrangements for auxiliary power units (APU's)
Definitions
- Auxiliary power units of the type that are conventionally included in aircraft to provide them with autonomy, have typical harmful effects on the environment such as pollution in both acoustic and gas emission airports. Additionally, the operation of the aircraft on the ground may require 3 types of external power sources: electrical, high or low pressure pneumatic and hydraulic.
- the object of the invention is to offer a versatility of use capable of reducing the harmful environmental effects while facilitating the operation of the aircraft on the ground by reducing the number and type of external power sources.
- the invention provides different modes of operation depending on the needs required of the auxiliary power unit and as described below.
- APU auxiliary power unit
- engine fuel-powered power module
- pneumatic compressor and / or a hydraulic pump
- gearbox and one or several electric generators, to provide electric, pneumatic, hydraulic power or a combination thereof.
- the main use of the APU is intended for when the aircraft is on the ground, the main engines turned off and the external, electrical, pneumatic or hydraulic power necessary for the desired use of the aircraft cannot be supplied.
- power sources is the power electric the one that is most readily available at airports today. On the other hand, it is the high pressure pneumatic power that is the most difficult available.
- the conventional configuration described previously has the disadvantage that its operation produces noise, while consuming fuel, discharging polluting gases into the environment, resulting in noise and air pollution.
- This mode of operation allows the total autonomy of the aircraft but implies a non-negligible operating cost for the airlines. Additionally, it is expected that in the future there may be greater restrictions or penalties in the use of the APU either by national, international or airport regulations, due to acoustic and / or environmental motivations.
- the invention provides a new architecture of the auxiliary power unit (APU) of an aircraft, which, like conventional ones, comprises a power module (engine) fueled by fuel, a pneumatic compressor and / or a hydraulic pump, a gearbox and an electric generator to allow providing a mode of operation of electric, pneumatic or hydraulic power production, or combine any combination thereof; but with the novelty that it also includes an electric motor, for which the electric generator can also function as an electric motor (thanks to the reversibility that electric machines can present), so that the electric generator / motor is connected to the module power through the gearbox and through a main clutch.
- APU auxiliary power unit
- the compressor and / or the hydraulic pump are connected to the power module through the gearbox and through the main clutch, which provides an architecture that allows to obtain different operating modes of electric power generation in combination with a power selected from pneumatic, hydraulic, and a combination thereof, in a similar way to conventionally, but also allows a mode of operation of production of only pneumatic and / or hydraulic power, without starting the power module (motor ) and by means of the electric motor that is powered by external electric power, unlike the state of the art in which said starting is required to supply pneumatic and / or hydraulic power.
- the main clutch remains engaged, but in the case of the mode of production operation only of pneumatic and / or hydraulic power, without Starting the power module, the main clutch remains uncoupled, feeding the pump and / or the compressor through external power and through the electric motor.
- the compressor and / or The hydraulic pump is connected to the power module through a secondary clutch of the gearbox and the main clutch, so that an architecture is provided that allows establishing a greater number of operating modes of electric, pneumatic power generation or hydraulic, or simultaneously combine any combination thereof, in a similar way to what is done conventionally, but in addition this architecture, apart from the described modes, also allows a power module start mode with internal or external power supply to the aircraft.
- both the main and the secondary clutch are kept coupled with the power module in operation. If you only want to generate electric power, the main clutch remains engaged and the secondary clutch disengaged, that way no power is lost because the pneumatic compressor and / or the hydraulic pump do not drag the power module.
- the APU is capable of generating pneumatic and / or hydraulic power, keeping the main clutch disengaged and the secondary clutch coupled, the power module off and the electric motor by dragging the pneumatic compressor and / or the hydraulic pump through the gearbox.
- the electric motor can be powered by internal power sources, such as batteries or other means of the aircraft or by external sources.
- the main clutch is coupled and the secondary can be coupled or uncoupled, although due to considerations of improved reliability, and necessary power, during start-up it will typically be disengaged.
- a power unit control module comprising means for establishing a mode of operation selected from a mode of simultaneous generation of pneumatic, electrical and hydraulic power, a mode of operation of simultaneous generation of pneumatic and electrical power, a mode of simultaneous generation of hydraulic and electrical power, a mode of production of electric power only by operating the electric generator by means of the power module, a mode of production of pneumatic power only or hydraulic with external power to the aircraft dragged the compressor or the hydraulic pump by means of the electric motor; and a starting mode of the power module by the electric motor and typically keeping the pneumatic compressor and / or the hydraulic pump uncoupled.
- the invention provides for the possibility of incorporating control modules independent of the clutches and the power module, in order to perform the aforementioned functionality.
- a possible configuration would include a gearbox with coaxial shafts integrated in concentric shafts comprising the elements selected from the electric motor, electric generator, main clutch, secondary clutch, pneumatic compressor, hydraulic pump and combination thereof. Consequently the coaxial axes can be combined with non-coaxial axes, that is to say some of the above elements can be mounted on coaxial axes and others in non-coaxial axes.
- the operating modes described above are intended for application when the aircraft is on the ground and the main engines are off, but it is also possible that they can be activated in flight, especially the mode of operation in which it is required to generate power electrical without generating pneumatic energy.
- the electric motor and the electric generator the same physical component, it is constituted as a source of electric power generation, or as a consumer of it.
- Figure 1. Shows a schematic representation of the architecture of a conventional APU.
- Figure 2. Shows a schematic representation of a possible embodiment of the APU of the invention that includes a main clutch and a secondary clutch, and which provides operation in the way in which electrical and pneumatic power is simultaneously generated.
- Figure 3. Shows a schematic representation equivalent to the previous figure but for the case in which the APU of the invention only generates pneumatic power through the use of external electrical power.
- Figure 4. Shows a schematic representation of the APU of the invention similar to that represented in Figures 2 and 3, but for the generation of electric power only by using the power module.
- Figure 5. Shows a schematic representation of the APU of the invention similar to that represented in Figures 2 to 4, but for the start-up mode of the power module. DESCRIPTION OF THE PREFERRED EMBODIMENT
- a conventional APU which has a power module 1 fueled by fuel 2, with smoke outlet 3 and an air inlet 13, which also applies to a compressor 4 to provide pneumatic power 7. It also comprises an electric generator 6 to generate electric power 8.
- the APU can generate hydraulic, pneumatic or electric power or any combination thereof, for which instead of the compressor 6 or parallel to it, it comprises a hydraulic pump that has not been represented, so as not to complicate figure and facilitate the explanation of the invention.
- This type of architecture has the disadvantage that noise and gas pollution is generated when the different powers are produced from the operation of the engine that constitutes the module of power, as previously described.
- the invention provides a new APU structure, which also incorporates a power module 1 fueled by fuel 2, with smoke outlet 3 and air inlet 13, but with the particularity that said module 1 joins the compressor 4 by means of a main clutch 10 and a secondary clutch 11, which in the exemplary embodiment are included in the gearbox 5a, but can also be outside it.
- the main clutch 10 constitutes the means of connection of the power module 1 with the electric generator 6 and with an electric motor 9, both with a common shaft and integrated in the same physical element, and both connected through the gears of the gearbox 5a to allow the production of energy (electric generator) and its consumption (electric motor), so that it can carry out the consumption and generation of power in a conventional manner, as is known in other applications.
- control module (not shown), it is possible to act on the different elements described to achieve different modes of operation.
- the described architecture also allows the generation of electric and pneumatic power 8 simultaneously, for which the main clutch 10 and secondary clutch 11 are coupled so that the power module 1 transmits its rotation, through the gearbox 5a, the electric generator 6 and the compressor 4, as shown in figure 2.
- control module it is possible to select a production operating mode only of pneumatic power, as shown in Figure 3, in which the main clutch 10 is disengaged and the secondary clutch 11 coupled, and so that in this case the electric motor 9 is powered by available electric power 12 at the airport, power that is more readily available at the airport than the pneumatic power (especially high pressure) so that in this case the pneumatic power 7 is generated using the compressor 4 electrically driven by the electric motor 9 through the gearbox 5a.
- the dashed lines show the flow of action of the different elements of the APU.
- control module allows to establish an operating mode for generating only electric power, as shown in Figure 4, for which the main clutch 10 is coupled and the secondary clutch 11 decoupled, so that the power unit 1 moves only the electric generator 6 providing the electric power 8.
- This configuration has the advantage that the compressor 4 is not operative in this mode of operation by eliminating the parasitic drag power of the compressor and reducing the necessary power that would require a Conventional APU.
- control module allows the selection of an operating mode to start the power module 1 by means of the electric motor 9 that is powered by electric power 12 from ground equipment provided at the airport.
- the main clutch 10 is coupled and the secondary clutch 11 disengaged, so that the electric motor 9 causes angular displacement and starting of the power module 1 through the gears and the main clutch 10 of the gearbox 5th.
- This configuration offers such versatility that it simplifies and optimizes the normal operating sequences of the APU.
- the control module allows the selection of an operating mode to start the power module 1 by means of the electric motor 9 that is powered by electric power 12 from ground equipment provided at the airport.
- the main clutch 10 is coupled and the secondary clutch 11 disengaged, so that the electric motor 9 causes angular displacement and starting of the power module 1 through the gears and the main clutch 10 of the gearbox 5th.
- This configuration offers such versatility that it simplifies and optimizes the normal operating sequences of the APU.
- the application of the parasitic resistance of the pneumatic compressor 4 during the start-up of the power module 1 is avoided
- the electric motor 9 can be powered by internal power sources, such as batteries or the like (not shown), and that the secondary clutch 11 can be coupled, although obviously by For the reasons stated, it is preferable that said secondary clutch 11 is disengaged.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
Unidad de potencia auxiliar (APU) de una aeronave comprende un módulo de potencia (1) alimentado por combustible (2), una caja de engranajes (5), un generador eléctrico (6), y un elemento seleccionado entre un compresor (4), una bomba hidráulica y combinación de los mismos, para proporcionar un modo de funcionamiento de producción de potencia seleccionada entre eléctrica (8), neumática (7), hidráulica y combinación de las mismas; presenta la novedad de comprender un motor eléctrico (9), integrado en el generador eléctrico (6), ambos conectados al módulo de potencia (1) a través de la caja de engranajes (5a) y de un embrague principal (10). Además el compresor (4) y/o bomba hidráulica, también se conectan con el módulo de potencia (1) a través de la caja de engranajes (5a), y del embrague principal (10). Esta arquitectura permite ampliar los modos de funcionamiento de la APU, aumentando sus prestaciones y reduciendo efectos perjudiciales medioambientales.
Description
UNIDAD DE POTENCIA AUXILIAR (APU) DE UNA AERONAVE OBJETO DE LA INVENCIÓN
Las unidades de potencia auxiliar (APU) del tipo de las que convencionalmente se incluyen en las aeronaves para dotarlas de autonomía, presentan típicos efectos perjudiciales en el medioambiente como es la contaminación en aeropuertos tanto acústica como de emisión de gases. Adicionalmente la operación de la aeronave en tierra puede requerir 3 tipos de fuentes de potencia externa: eléctrica, neumática de alta o baja presión e hidráulica.
El objeto de la invención es ofrecer una versatilidad de uso capaz de reducir los efectos perjudiciales medioambientales a la vez que facilita la operación de la aeronave en tierra reduciendo el numero y tipo de fuentes de potencia externa.
Para ello la invención proporciona diferentes modos de funcionamiento en función de las necesidades que se requieran de la unidad de potencia auxiliar y según se describe más adelante.
ANTECEDENTES DE LA INVENCIÓN
Las aeronaves actuales, principalmente las de gran tamaño, normalmente contienen una unidad de potencia auxiliar (APU) que comprenden un módulo de potencia (motor) alimentado por combustible, un compresor neumático y/o una bomba hidráulica, una caja de engranajes y uno o varios generadores eléctricos, para proporcionar potencia eléctrica, neumática, hidráulica o una combinación de las mismas. El uso principal del APU está previsto para cuando la aeronave se encuentra en tierra, los motores principales apagados y a la misma no se le puede suministrar la potencia externa, eléctrica, neumática o hidráulica necesaria para el uso deseado de la aeronave. De estas fuentes de potencia, es la potencia
eléctrica la que está más fácilmente disponible en los aeropuertos actualmente. Por otra parte, es la potencia neumática de alta presión la que está más difícilmente disponible. Cuando la aeronave está en tierra y se dan condiciones ambientales más extremas, tanto por temperaturas muy frías o calientes con o sin combinación de alta humedad, se hace más necesario el acondicionar la cabina (entendiéndose por cabina la zona que ha de mantenerse presurizada en vuelo) para el confort de los pasajeros, tripulación y operarios con el consiguiente incremento de demanda de potencia, y es habitual y más crítico el uso de la APU por la carencia arriba mencionada .
La configuración convencional descrita previamente presenta el inconveniente de que su funcionamiento produce ruido, al tiempo que consume combustible, descargándose gases contaminantes en el ambiente, con lo que se produce contaminación acústica y del aire.
Este modo de funcionamiento permite la total autonomía de la aeronave pero supone un coste de operación no despreciable para las aerolíneas. Adicionalmente se prevé que en el futuro puedan existir mayores restricciones o penalizaciones en el uso del APU bien por regulaciones nacionales, internacionales o aeroportuarias, por motivaciones acústicas y/o medioambientales .
DESCRIPCIÓN DE LA INVENCIÓN
Para resolver los inconvenientes anteriormente indicados, la invención proporciona una nueva arquitectura de la unidad de potencia auxiliar (APU) de una aeronave, que al igual que las convencionales comprende un módulo de potencia (motor) alimentado por combustible, un compresor neumático y/o una bomba hidráulica, una caja de engranajes y un generador eléctrico para permitir proporcionar un modo de
funcionamiento de producción de potencia eléctrica, neumática o hidráulica, o simultanear cualquier combinación de las mismas; pero con la novedad de que además comprende un motor eléctrico, para lo que el generador eléctrico puede también funcionar como motor eléctrico (gracias a la reversibilidad que pueden presentar las maquinas eléctricas), de forma que el generador/motor eléctrico se conecta al módulo de potencia a través de la caja de engranajes y a través de un embrague principal. Igualmente el compresor y/o la bomba hidráulica se conectan con el módulo de potencia a través de la caja de engranajes y a través del embrague principal, lo que proporciona una arquitectura que permite obtener diferentes modos de funcionamiento de generación de potencia eléctrica en combinación con una potencia seleccionada entre neumática, hidráulica, y una combinación de las mismas, de forma similar a como se realiza convencionalmente, pero además también permite un modo de funcionamiento de producción únicamente de potencia neumática y/o hidráulica, sin arrancar el módulo de potencia (motor) y mediante el motor eléctrico que se alimenta con potencia eléctrica externa, a diferencia del estado de la técnica en el que se requiere realizar dicho arranque para suministrar potencia neumática y/o hidráulica. Para el modo de funcionamiento autónomo convencional es decir, sin necesidad de suministro de potencia externa eléctrica, neumática o hidráulica, el embrague principal se mantiene acoplado, pero para el caso del modo de funcionamiento de producción únicamente de potencia neumática y/o hidráulica, sin arrancar el módulo de potencia, el embrague principal se mantiene desacoplado, alimentando a la bomba y/o al compresor a través de alimentación externa y mediante el motor eléctrico . En una realización de la invención el compresor y/o
la bomba hidráulica se conectan con el módulo de potencia a través de un embrague secundario de la caja de engranajes y del embrague principal, de manera que se proporciona una arquitectura que permite establecer una mayor cantidad de modos de funcionamiento de generación de potencia eléctrica, neumática o hidráulica, o simultanear cualquier combinación de las mismas, de forma similar a como se realiza convencionalmente, pero además esta arquitectura, a parte de los modos descritos, también permite un modo de arranque del módulo de potencia con alimentación eléctrica interna o externa a la aeronave.
Para el modo de funcionamiento convencional, es decir, sin necesidad de suministro de potencia externa eléctrica, neumática o hidráulica tanto el embrague principal como el secundario se mantienen acoplados con el módulo de potencia en funcionamiento. Si se quisiera únicamente generar potencia eléctrica el embrague principal se mantiene acoplado y el secundario desacoplado, de esa manera no se pierde potencia por no arrastrar el módulo de potencia el compresor neumático y/o la bomba hidráulica.
Para el modo de funcionamiento de generación de potencia neumática y/o hidráulica con alimentación eléctrica externa. La APU es capaz de generar potencia neumática y/o hidráulica, manteniendo el embrague principal desacoplado y el secundario acoplado, el módulo de potencia apagado y el motor eléctrico arrastrando el compresor neumático y/o la bomba hidráulica a través de la caja de engranajes.
Para el modo de funcionamiento de arranque del módulo de potencia, el motor eléctrico puede ser alimentado por fuentes de potencia internas, como baterías u otros medios de la aeronave o por fuentes externas. En este caso el embrague principal está
acoplado y el secundario puede estar acoplado o desacoplado, aunque por consideraciones de mejora de fiabilidad, y potencia necesaria, durante el arranque típicamente se encontrará desacoplado. Para conseguir toda la funcionalidad anteriormente comentada, la invención prevé la incorporación de un módulo de control de la unidad de potencia, que comprende medios de establecimiento de un modo de funcionamiento seleccionado entre un modo de generación simultánea de potencia neumática, eléctrica e hidráulica, un modo de funcionamiento de generación simultánea de potencia neumática y eléctrica, un modo de generación simultánea de potencia hidráulica y eléctrica, un modo de producción únicamente de potencia eléctrica actuando el generador eléctrico mediante el módulo de potencia, un modo de producción únicamente de potencia neumática o hidráulica con alimentación externa a la aeronave arrastrado el compresor o la bomba hidráulica mediante el motor eléctrico; y un modo de arranque del módulo de potencia mediante el motor eléctrico y manteniendo típicamente desacoplado el compresor neumático y/o la bomba hidráulica .
La invención prevé la posibilidad de incorporar módulos de control independientes de los embragues y del módulo de potencia, para realizar la funcionalidad anteriormente comentada.
Una posible configuración incluiría una caja de engranajes con ejes coaxiales integrados en ejes concéntricos que comprenden los elementos seleccionados entre el motor eléctrico, generador eléctrico, embrague principal, embrague secundario, el compresor neumático, la bomba hidráulica y combinación de los mismos. En consecuencia los ejes coaxiales pueden combinarse con ejes no coaxiales, es decir algunos de los elementos anteriores pueden estar montados sobre ejes coaxiales y
otros en ejes no coaxiales.
Los modos de funcionamiento descritos, están sobretodo previstos para su aplicación cuando la aeronave se encuentra en tierra y los motores principales apagados, pero también cabe la posibilidad de que puedan ser activados en vuelo, sobretodo el modo de funcionamiento en el que se requiera generar energía eléctrica sin generar energía neumática.
Al ser el motor eléctrico y el generador eléctrico el mismo componente físico, éste se constituye como fuente de generación de potencia eléctrica, o como consumidor de la misma.
Por otra parte, cabe señalar que los beneficios comentados se logran a costa de una caja de engranajes más compleja con un impacto potencial en peso y fiabilidad, que es más acusado en el caso en el que se incluyan los dos embragues en lugar de uno sólo.
A continuación para facilitar una mejor comprensión de esta memoria descriptiva y formando parte integrante de la misma, se acompañan una serie de figuras en las que con carácter ilustrativo y no limitativo se ha representado el objeto de la invención.
BREVE ENUNCIADO DE LAS FIGURAS
Figura 1.- Muestra una representación esquemática de la arquitectura de un APU convencional.
Figura 2.- Muestra una representación esquemática de un posible ejemplo de realización del APU de la invención que incluye un embrague principal y un embrague secundario, y que proporciona un funcionamiento en el modo en el que se genera simultáneamente potencia eléctrica y neumática.
Figura 3.- Muestra una representación esquemática equivalente a la figura anterior pero para el caso en el que el APU de la invención únicamente genera potencia neumática mediante el uso de potencia eléctrica externa.
Figura 4.- Muestra una representación esquemática del APU de la invención similar a la representada en las figuras 2 y 3, pero para la generación únicamente de potencia eléctrica mediante el uso del módulo de potencia.
Figura 5.- Muestra una representación esquemática del APU de la invención similar a la representada en las figuras 2 a 4, pero para el modo de funcionamiento de arranque del módulo de potencia. DESCRIPCIÓN DE LA FORMA DE REALIZACIÓN PREFERIDA
A continuación se realiza una descripción de la invención basada en las figuras anteriormente comentadas.
En primer lugar, y con ayuda de la figura 1, se describe brevemente la configuración de un APU convencional que cuenta con un módulo de potencia 1 alimentado por combustible 2, con salida de humos 3 y una entrada de aire 13, que también se aplica a un compresor 4 para proporcionar potencia neumática 7. Además comprende un generador eléctrico 6 para generar potencia eléctrica 8. En esta arquitectura es necesaria la incorporación de una caja de engranajes 5 para ajustar las diferentes velocidades de giro necesarias entre el módulo de potencia 1 y el generador eléctrico 6 para generar potencia eléctrica y/o neumática. Además, convencionalmente también se prevé que la APU pueda generar potencia hidráulica, neumática o eléctrica o cualquier combinación de ellas, para lo que en lugar del compresor 6 o en paralelo al mismo, comprende una bomba hidráulica que no ha sido representada, para no complicar la figura y facilitar la explicación de la invención .
Este tipo de arquitectura presenta el inconveniente de que se genera contaminación acústica y de gases al producirse las diferentes potencias a partir del funcionamiento del motor que constituye el módulo de
potencia, según fue descrito con anterioridad.
Para resolver dichos inconvenientes, la invención proporciona una nueva estructura de APU, que igualmente incorpora un módulo de potencia 1 alimentado por combustible 2, con salida de humos 3 y entrada de aire 13, pero con la particularidad de que dicho módulo 1 se une al compresor 4 mediante un embrague principal 10 y un embrague secundario 11, que en el ejemplo de realización están incluidos en la caja de engranajes 5a, pero igualmente pueden estar fuera de la misma.
Además, el embrague principal 10 constituye el medio de conexión del módulo de potencia 1 con el generador eléctrico 6 y con un motor eléctrico 9, ambos con un eje común e integrados en un mismo elemento físico, y ambos conectados a través de los engranajes de la caja de engranajes 5a para permitir la producción de energía (generador eléctrico) y el consumo de la misma (motor eléctrico) , de manera que puede realizar el consumo y generación de potencia de forma convencional, según se conoce en otras aplicaciones.
Sobre la base de la arquitectura descrita, se comprende fácilmente que mediante un módulo de control (no representado) , se permite actuar sobre los diferentes elementos descritos para conseguir diferentes modos de funcionamiento.
Así, la arquitectura descrita también permite efectuar la generación de potencia eléctrica 8 y neumática 7 de forma simultánea, para lo que el embrague principal 10 y embrague secundario 11 se encuentran acoplados de modo que el módulo de potencia 1 transmite su giro, a través de la caja de engranajes 5a, al generador eléctrico 6 y al compresor 4, tal y como se representa en la figura 2.
Además, mediante el módulo de control se permite seleccionar un modo de funcionamiento de producción
únicamente de potencia neumática, tal y como se muestra en la figura 3, en la que el embrague principal 10 se encuentra desacoplado y el embrague secundario 11 acoplado, y de forma que en este caso se alimenta el motor eléctrico 9 mediante potencia eléctrica 12 disponible en el aeropuerto, potencia que es más fácilmente disponible en el aeropuerto que la potencia neumática (especialmente la de alta presión) de forma que en este caso se genera la potencia neumática 7 usando el compresor 4 movido eléctricamente por el motor eléctrico 9 a través de la caja de engranajes 5a.
Las lineas de trazos muestran el flujo de actuación de los diferentes elementos de la APU.
Además, el módulo de control permite establecer un modo de funcionamiento de generación únicamente de potencia eléctrica, tal y como se muestra en la figura 4, para lo que el embrague principal 10 se encuentra acoplado y el embrague secundario 11 desacoplado, de forma que la unidad de potencia 1 mueve únicamente el generador eléctrico 6 proporcionando la potencia eléctrica 8. Esta configuración tiene la ventaja de que el compresor 4 no está operativo en este modo de funcionamiento eliminando la potencia parásita de arrastre del compresor y reduciendo la potencia necesaria que requeriría un APU convencional.
Además el módulo de control permite seleccionar un modo de funcionamiento para efectuar el arranque del módulo de potencia 1 mediante el motor eléctrico 9 que se alimenta de potencia eléctrica 12 de equipos de tierra previstos en el aeropuerto. En este caso el embrague principal 10 se encuentra acoplado y el embrague secundario 11 desacoplado, de manera que el motor eléctrico 9 provoca el desplazamiento angular y arranque del módulo de potencia 1 a través de los engranajes y del embrague principal 10 de la caja de engranajes 5a.
Esta configuración ofrece una versatilidad tal que simplifica y optimiza las secuencias normales de operación del APU. Asi, para arrancar el APU al encontrarse desacoplado el embrague secundario 11 y quedar el compresor 4 aislado, se evita la aplicación de la resistencia parásita del compresor neumático 4 durante el arranque del módulo de potencia 1, con lo que los gastos de energía para lograr el arranque son menores y la fiabilidad de arranque se ve incrementada. También se prevé la posibilidad de que para arrancar la unidad de potencia 1, el motor eléctrico 9 pueda ser alimentado por fuentes de potencia internas, como baterías o similares (no representadas), y que el embrague secundario 11 pueda estar acoplado, aunque obviamente por las razones expuestas es preferible que dicho embrague secundario 11 esté desacoplado.
Es obvio que el generador eléctrico 6 y el motor eléctrico 9 están dotados de los correspondientes medios de refrigeración de aceite que típicamente están integrados en la caja de engranajes 5a.
Claims
1.- UNIDAD DE POTENCIA AUXILIAR (APU) DE UNA AERONAVE, que comprende un módulo de potencia (1) alimentado por combustible (2), una caja de engranajes (5), un generador eléctrico (6), y un elemento seleccionado entre un compresor (4), una bomba hidráulica y combinación de los mismos, para proporcionar un modo de funcionamiento de producción de potencia seleccionada entre eléctrica (8), neumática (7), hidráulica y combinación de las mismas; caracterizada porque además comprende un motor eléctrico (9) que está integrado en el generador eléctrico (6), y se conectan al módulo de potencia (1) a través de la caja de engranajes (5a) y de un embrague principal (10); de forma que el elemento seleccionado entre el compresor (4), bomba hidráulica y combinación de los mismos se conecta, también con el módulo de potencia (1) a través de la caja de engranajes (5a), y del embrague principal (10) .
2.- UNIDAD DE POTENCIA AUXILIAR (APU) DE UNA AERONAVE, según reivindicación 1, caracterizada porque el elemento seleccionado entre el compresor (4), bomba hidráulica y combinación de los mismos se conecta con el módulo de potencia (1) a través de un embrague secundario (11), de la caja de engranajes (5a), y del embrague principal (10) .
3.- UNIDAD DE POTENCIA AUXILIAR (APU) DE UNA AERONAVE, según reivindicaciones 1 o 2, caracterizada porque comprende un módulo de control de la unidad de potencia auxiliar que está dotado de medios de establecimiento de un modo de funcionamiento seleccionado entre un modo de generación simultánea de potencia neumática, eléctrica e hidráulica, un modo de funcionamiento de generación simultánea de potencia neumática (7) y eléctrica (8), un modo de generación simultánea de potencia hidráulica y eléctrica (8), un modo de producción únicamente de potencia neumática (7) actuando el compresor (4) mediante el motor eléctrico (9), un modo de producción únicamente de potencia eléctrica (8) actuando el generador eléctrico (6) mediante el módulo de potencia (1), un modo de producción únicamente de potencia seleccionada entre neumática e hidráulica con alimentación externa a la aeronave arrastrado el compresor (4) o la bomba hidráulica mediante el motor eléctrico (9); y un modo de arranque del módulo de potencia mediante el motor eléctrico (9) y manteniendo desacoplado el elemento seleccionado entre el compresor (4), la bomba hidráulica y combinación de ambos.
4.- UNIDAD DE POTENCIA AUXILIAR (APU) DE UNA AERONAVE, según reivindicaciones 1 o 2, caracterizada porque la caja de engranajes comprende ejes coaxiales integrados en ejes concéntricos que comprenden los elementos seleccionados entre el motor eléctrico (9), generador eléctrico (6) embrague principal (10), embrague secundario (11), el compresor neumático (4), la bomba hidráulica y combinación de los mismos.
5.- UNIDAD DE POTENCIA AUXILIAR (APU) DE UNA AERONAVE, según reivindicaciones 1 o 4, caracterizada porque la caja de engranajes comprende ejes no coaxiales integrados en ejes separados que comprenden los elementos seleccionados entre el motor eléctrico (9), generador eléctrico (6) embrague principal (10), embrague secundario (11), el compresor neumático (4), la bomba hidráulica y combinación de los mismos.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL09821635T PL2347956T3 (pl) | 2008-10-24 | 2009-10-23 | Pomocnicza jednostka zasilająca (APU) statku powietrznego |
ES09821635.1T ES2540539T3 (es) | 2008-10-24 | 2009-10-23 | Unidad de potencia auxiliar (APU) de una aeronave |
EP09821635.1A EP2347956B1 (en) | 2008-10-24 | 2009-10-23 | Auxiliary power unit (apu) of an aircraft |
CN2009801400189A CN102177068B (zh) | 2008-10-24 | 2009-10-23 | 飞行器的备用动力装置(apu) |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200803020A ES2363897B1 (es) | 2008-10-24 | 2008-10-24 | Unidad de potencia auxiliar (apu) de una aeronave |
ESP200803020 | 2008-10-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010046520A2 true WO2010046520A2 (es) | 2010-04-29 |
WO2010046520A3 WO2010046520A3 (es) | 2010-11-04 |
Family
ID=42119745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2009/070454 WO2010046520A2 (es) | 2008-10-24 | 2009-10-23 | Unidad de potencia auxiliar (apu) de una aeronave |
Country Status (6)
Country | Link |
---|---|
US (1) | US8118253B1 (es) |
EP (1) | EP2347956B1 (es) |
CN (1) | CN102177068B (es) |
ES (2) | ES2363897B1 (es) |
PL (1) | PL2347956T3 (es) |
WO (1) | WO2010046520A2 (es) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2394913A1 (fr) | 2010-06-10 | 2011-12-14 | Messier-Bugatti-Dowty | Aéronef équipé d'un dispositif de déplacement autonome |
KR20140027395A (ko) * | 2011-05-20 | 2014-03-06 | 터보메카 | 항공기, 실행 아키텍처 및 해당 항공기의 전기 부품의 체인을 합리화하는 방법 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007013345B4 (de) * | 2007-03-20 | 2022-07-07 | Airbus Operations Gmbh | Energieregelvorrichtung für ein Flugzeug |
US8882028B2 (en) * | 2009-09-21 | 2014-11-11 | Aerion Corporation | Aircraft emergency and backup secondary power apparatus |
IT1404051B1 (it) * | 2011-02-08 | 2013-11-08 | Avio Spa | Gruppo per la generazione di potenza a bordo di un velivolo. |
FR2983319B1 (fr) * | 2011-11-25 | 2014-02-07 | Turbomeca | Procede et systeme de regulation de puissance en cas de defaillance d'au moins un moteur d'aeronef |
FR3001442B1 (fr) * | 2013-01-29 | 2016-05-20 | Microturbo | Architecture de fourniture de puissance electrique de secours amelioree dans un aeronef |
US9382910B2 (en) | 2013-02-28 | 2016-07-05 | Honeywell International Inc. | Auxiliary power units (APUs) and methods and systems for activation and deactivation of a load compressor therein |
CN104345273B (zh) * | 2013-07-24 | 2017-11-24 | 中国国际航空股份有限公司 | 飞机辅助动力单元起动机性能检测方法和装置 |
GB2518893B (en) * | 2013-10-07 | 2018-11-21 | Ge Aviat Systems Ltd | Method for predicting an auxiliary power unit fault |
US9815564B2 (en) | 2013-12-04 | 2017-11-14 | The Boeing Company | Non-propulsive utility power (NPUP) generation system for providing full-time secondary power during operation of an aircraft |
EP2886387A3 (en) | 2013-12-23 | 2015-12-23 | Rolls-Royce Corporation | Dual redundant motor/generator for an engine |
US10240521B2 (en) | 2015-08-07 | 2019-03-26 | Pratt & Whitney Canada Corp. | Auxiliary power unit with variable speed ratio |
FR3041607B1 (fr) * | 2015-09-24 | 2018-08-17 | Microturbo | Unite d'alimentation en air sous pression pour aeronef |
US10309303B2 (en) * | 2016-08-12 | 2019-06-04 | Hamilton Sundstrand Corporation | Systems and methods of generating electrical power |
FR3056194B1 (fr) * | 2016-09-21 | 2018-10-05 | Safran Electrical & Power | Unite d'alimentation en air sous pression pour aeronef |
GB202007576D0 (en) * | 2020-05-21 | 2020-07-08 | Rolls Royce Plc | Aircraft cabin blower system |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4043120A (en) * | 1973-10-25 | 1977-08-23 | Brown Boveri-Sulzer Turbomaschinen Ag | Starting arrangement for combined air and gas turbine power plant |
US4312179A (en) * | 1978-05-05 | 1982-01-26 | Bbc Brown, Boveri & Company, Ltd. | Gas turbine power plant with air reservoir and method of operation |
GB2076897B (en) * | 1980-06-02 | 1983-06-29 | Rockwell International Corp | Integrated auxiliary and environmental control unit |
US4494372A (en) * | 1983-06-10 | 1985-01-22 | Lockheed Corporation | Multi role primary/auxiliary power system with engine start capability for aircraft |
US4864812A (en) * | 1987-11-13 | 1989-09-12 | Sundstrand Corporation | Combined auxiliary and emergency power unit |
US5201798A (en) * | 1990-09-24 | 1993-04-13 | Allied-Signal Inc. | Multifunction integrated power unit and power transfer apparatus therefor |
US7210653B2 (en) * | 2002-10-22 | 2007-05-01 | The Boeing Company | Electric-based secondary power system architectures for aircraft |
US6834831B2 (en) * | 2002-12-31 | 2004-12-28 | The Boeing Company | Hybrid solid oxide fuel cell aircraft auxiliary power unit |
US7975465B2 (en) * | 2003-10-27 | 2011-07-12 | United Technologies Corporation | Hybrid engine accessory power system |
US7578136B2 (en) * | 2004-08-23 | 2009-08-25 | Honeywell International Inc. | Integrated power and pressurization system |
US7380749B2 (en) * | 2005-04-21 | 2008-06-03 | The Boeing Company | Combined fuel cell aircraft auxiliary power unit and environmental control system |
CN100448711C (zh) * | 2005-05-30 | 2009-01-07 | 比亚迪股份有限公司 | 机动车辆的变速装置及其变速方法 |
-
2008
- 2008-10-24 ES ES200803020A patent/ES2363897B1/es not_active Expired - Fee Related
-
2009
- 2009-01-08 US US12/318,796 patent/US8118253B1/en active Active
- 2009-10-23 PL PL09821635T patent/PL2347956T3/pl unknown
- 2009-10-23 ES ES09821635.1T patent/ES2540539T3/es active Active
- 2009-10-23 CN CN2009801400189A patent/CN102177068B/zh active Active
- 2009-10-23 EP EP09821635.1A patent/EP2347956B1/en active Active
- 2009-10-23 WO PCT/ES2009/070454 patent/WO2010046520A2/es active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of EP2347956A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2394913A1 (fr) | 2010-06-10 | 2011-12-14 | Messier-Bugatti-Dowty | Aéronef équipé d'un dispositif de déplacement autonome |
CN102328750A (zh) * | 2010-06-10 | 2012-01-25 | 梅西耶-布加蒂公司 | 配装有独立驱动装置的飞机 |
CN102328750B (zh) * | 2010-06-10 | 2014-10-01 | 梅西耶-布加蒂-道提公司 | 配装有独立驱动装置的飞机 |
KR20140027395A (ko) * | 2011-05-20 | 2014-03-06 | 터보메카 | 항공기, 실행 아키텍처 및 해당 항공기의 전기 부품의 체인을 합리화하는 방법 |
EP2710245A1 (fr) * | 2011-05-20 | 2014-03-26 | Turbomeca | Procédé de rationalisation de chaine de composants électriques d'un aéronef, architecture de mise en oeuvre et aéronef correspondant |
JP2014516004A (ja) * | 2011-05-20 | 2014-07-07 | ターボメカ | 航空機の一連の電気構成要素を合理化する方法、実施アーキテクチャ、および対応する航空機 |
KR101986856B1 (ko) * | 2011-05-20 | 2019-09-30 | 사프란 헬리콥터 엔진스 | 항공기, 실행 아키텍처 및 해당 항공기의 전기 부품의 체인을 합리화하는 방법 |
Also Published As
Publication number | Publication date |
---|---|
WO2010046520A3 (es) | 2010-11-04 |
CN102177068B (zh) | 2013-10-23 |
ES2363897A1 (es) | 2011-08-18 |
EP2347956B1 (en) | 2015-04-08 |
ES2363897B1 (es) | 2012-07-04 |
PL2347956T3 (pl) | 2015-10-30 |
EP2347956A2 (en) | 2011-07-27 |
EP2347956A4 (en) | 2013-10-23 |
US8118253B1 (en) | 2012-02-21 |
CN102177068A (zh) | 2011-09-07 |
ES2540539T3 (es) | 2015-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2540539T3 (es) | Unidad de potencia auxiliar (APU) de una aeronave | |
ES2698953T3 (es) | Procedimiento y arquitectura de transferencia optimizada de energía entre un motor auxiliar de potencia y los motores principales de un helicóptero | |
US10301035B2 (en) | Method and configuration for an auxiliary power engine to deliver propulsive and/or non-propulsive energy in a helicopter architecture | |
KR102302370B1 (ko) | 스탠바이 모드에서 작동할 수 있는 하나 이상의 터보샤프트 엔진을 포함하는 헬리콥터의 추진 시스템의 아키텍처 및 스탠바이 모드에서 멀티-엔진 헬리콥터의 터보샤프트 엔진을 보조하기 위한 방법 | |
EP3002435B1 (en) | Accessory drive system for a gas turbine engine | |
US9302775B2 (en) | Method and architecture for recovery of energy in an aircraft | |
US20170349293A1 (en) | Distributed propulsion systems | |
EP2636601B1 (en) | Rotary wing aircraft propulsion system with electric power generaton | |
CN110985215B (zh) | 用于微小型涡喷发动机的起发一体系统 | |
ES2644782T3 (es) | Motor híbrido de aeronave | |
US20180202356A1 (en) | High efficiency self-contained modular turbine engine power generator | |
ES2686682T3 (es) | Procedimiento de optimización del consumo específico de un helicóptero bimotor | |
US20200039657A1 (en) | Variable Cycle Hybrid Power and Propulsion System for Aircraft | |
EP3736423A1 (en) | Hybrid electric aircraft propulsion system | |
US20180003109A1 (en) | Power system for aircraft parallel hybrid gas turbine electric propulsion system | |
BR102019024239A2 (pt) | Motor de turbina a gás, e, método para operar um motor de turbina a gás | |
GB2469043A (en) | A reheated gas turbine system having a fuel cell | |
CA2663357A1 (en) | Propulsion device with a plurality of energy converters for an aircraft | |
ES2784693T3 (es) | Unidad de alimentación de aire a presión para aeronave | |
ES2822177T5 (es) | Dispositivo terrestre de arranque para el arranque y el mantenimiento de los motores a reacción de aviones | |
US11718408B2 (en) | Electric power system for powerplants of a multi-engine aircraft | |
US12110128B2 (en) | Transmission device for hybrid aircraft | |
CN105952538A (zh) | 一种微型涡喷发动机 | |
US11691742B1 (en) | Containment zone for an electric machine in a hybrid powerplant for an aircraft | |
US20230352760A1 (en) | Electrical heating system for hybrid powerplant electrical power source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980140018.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09821635 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009821635 Country of ref document: EP |