WO2010046517A1 - Compounds promoting the activity of mutant glycosidases - Google Patents

Compounds promoting the activity of mutant glycosidases Download PDF

Info

Publication number
WO2010046517A1
WO2010046517A1 PCT/ES2009/070449 ES2009070449W WO2010046517A1 WO 2010046517 A1 WO2010046517 A1 WO 2010046517A1 ES 2009070449 W ES2009070449 W ES 2009070449W WO 2010046517 A1 WO2010046517 A1 WO 2010046517A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetrahydroxy
substituted
unsubstituted
group
thianedolizidine
Prior art date
Application number
PCT/ES2009/070449
Other languages
Spanish (es)
French (fr)
Inventor
José Manuel GARCÍA FERNÁNDEZ
Carmen Ortiz Mellet
M. Isabel GARCÍA MONCAYO
Yoshiyuki Suzuki
Kousaku Ohno
Matilde Aguilar Moreno
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad De Sevilla
International University Of Health And Welfare
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad De Sevilla, International University Of Health And Welfare, Tottori University filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2010046517A1 publication Critical patent/WO2010046517A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4355Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system having sulfur as a ring hetero atom, e.g. ticlopidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Definitions

  • the present invention relates to compounds with inhibitory activity of glycosidases enzymes and a method for the activation of mutant ⁇ -glucosidase ( ⁇ -glucocerebrosidase) and mutant ⁇ -galactosidase in patients suffering from lysosomal storage environments by administering said inhibitory compounds.
  • enzymes characterized by a very specific binding specificity and a favorable relationship between its concentration for pharmacological chaperone activity and its concentration for inhibitory activity.
  • the invention also relates to these compounds, their method of production and therapeutic compositions containing said compounds.
  • Lysosomal storage disorders are a group of diseases resulting from the abnormal metabolism of several substrates that do not degrade and accumulate in lysosomes, leading to a series of phenotypes that include megalovisceralia, neurological pathologies, skeletal injuries and premature death (AH Futerman, G. van Meer, N ature Rev. Mol. CeII Biol. 2004, 554-565). These diseases are the result of mutations in the genes that encode enzymes involved in the degradation process.
  • Current therapeutic strategies include the inhibition of substrate production using inhibitors of the enzymes involved in its biosynthesis (US2005 / 0075305). The increase of the defective enzyme could be achieved clinically by enzymatic replacement (R. J. Desnick, E. H. Schuchman, Nature Rev. Genet.
  • Gaucher disease is the most predominant lysosomal storage disorder, with an estimated incidence of approximately 1: 60,000 in the general population and 1: 100 in the population of Ashkenazi Jews (TD Butters, Curr. Opin. Chem. Biol. 2007 , 11, 412-418). It is the result of mutations in ⁇ -glucosidase acid ( ⁇ -glucocerebrosidase), a lysosomal membrane-associated glycoprotein of 497 residues that have as a consequence the accumulation of the corresponding substrate (glucosylceramide). More than 200 different point mutations have been identified in the gene encoding ⁇ -gluocerebrosidase (E. Sidransky, Mol. Genet. Metab. 2004, 83, 6-15). The mutations lead to significant defects in the folding of the protein during translation in the endoplasmic reticulum, resulting in a reduction of the transport of the enzyme to the lysosome.
  • ⁇ -galactosidosis Another pathology, the hereditary deficiency of lysosomal acid ⁇ -galactosidase ( ⁇ -galactosidosis), causes two clinically distinct diseases in humans, G MI gangliosidosis and Morquio B disease (Y. Suzuki, J ⁇ Inherit. Metab. Dis. 2006, 29, 471-476). Both are the result of mutations in the GLB1 gene that lead to an erroneous protein folding (S. Zhang, R. Bagshow, W. Hilson, Y. Oho, A. Hinek, JTR Clarke, A. Hinek, JW Callahan, Biochem. J. 2000, 348, 621-632). The mode of inheritance is autosomal recessive.
  • G M i gangliosidosis is a generalized neurosomatic disease that appears mainly in early childhood, and rarely in childhood or in young adults.
  • Disease Morquio B is a rare bone disease without involvement of the central nervous system.
  • glucoconjugates accumulate with terminal ⁇ -galactose residues in tissues and urine.
  • the ganglioside G M i and its Asian derivative G A i accumulate in the brain in the case of G MI gangliosidosis -
  • high amounts of oligosaccharides derived from keratane sulfate or glycoproteins in visceral organs and urine In both patients with G MI gangliosidosis and in patients suffering from Morquio B disease high amounts of oligosaccharides derived from keratane sulfate or glycoproteins in visceral organs and urine.
  • Morquio B disease high amounts of oligosaccharides derived from keratane sulfate or glycoprotein
  • these compounds used at subinhibitory concentrations have been shown to act as mutant ⁇ -glucocerebrosidase and mutant ⁇ -galactosidase chaperones (US 2006/0100241; WO2004 / 037373).
  • these types of compounds generally behave as broad-type glucosidase inhibitors, simultaneously inhibiting several glycosidases, which represented a serious inconvenience for clinical applications.
  • Simultaneous inhibition of ⁇ and ⁇ -glucosidases is particularly problematic. Therefore, there is a need to develop sugar-related molecules with a high ratio of chaperone to inhibitor activity that, at the same time, exhibit high anomeric selectivity for the corresponding ⁇ -glycosidases enzymes.
  • the present invention provides bicyclic compounds structurally related to sugars that incorporate at least one endocyclic nitrogen atom with a substantially sp 2 character (as of now, azaz ⁇ car sp 2 ) and behave as highly selective competitive inhibitors of the lysosomal ⁇ -glucocerebrosidase and ⁇ -galactosidase acid associated with Gaucher's disease and ⁇ -galactosidosis, respectively.
  • These compounds enhance the activity of said enzymes when they are administered at concentrations lower than those necessary to inhibit the intracellular enzymatic activity, acting as well as pharmacological chaperones. The effect is particularly significant in certain mutant enzymes, but it also appears in cells that contain the normal enzyme.
  • the present invention also provides a method for activating ⁇ -glucosidase or ⁇ -galactosidase and a method for treating patients suffering from Gaucher disease or ⁇ -galactosidosis, by using the compounds of the invention.
  • This method of the invention in addition to being useful in mammalian cells, is also useful in cells of another origin, such as, for example, insect cells and cultured CHO cells, used in the production of recombinant enzymes for enzyme replacement therapy.
  • cells of another origin such as, for example, insect cells and cultured CHO cells, used in the production of recombinant enzymes for enzyme replacement therapy.
  • a first aspect of the present invention refers to a compound of general formula (I) or any of its salts:
  • R is a substituent, the same or different in each case, and is selected from an H atom, a hydroxyl group (-OH) or an OR 2 group; wherein R 2 is selected from an acyl group, substituted or unsubstituted, a (C1-C18) alkyl group, substituted or unsubstituted, an aryl group, substituted or unsubstituted, an aralkyl group, substituted or unsubstituted, a group amino (NH 2 ), an acetamide group (NHAc), or an NHR 3 group, where R 3 is selected from an acyl group, substituted or unsubstituted, an alkyl group (CrCi 8 ), substituted or unsubstituted, an aryl group, substituted or unsubstituted, or an aralkyl group, substituted or unsubstituted.
  • R is the same in all cases and is OH
  • X is the group -NR 1 ; wherein R 1 is selected from an H atom, an alkyl group (CrCi 8 ), substituted or unsubstituted, an aryl group, substituted or unsubstituted or an aralkyl group, substituted or unsubstituted.
  • alkyl refers, in the present invention, to aliphatic, linear or branched chains, having 1 to 18 carbon atoms, for example, methyl, ethyl, n-propyl, / -propyl, n-butyl, tere-butyl, sec-butyl, n-pentyl, n-hexyl, etc.
  • the alkyl group has between 3 and 9 carbon atoms. More preferably n-butyl, n-pentyl, n-hexyl, n-heptyl or n-octyl.
  • the alkyl groups may be optionally substituted by one or more substituents such as halogen, hydroxyl, azide, carboxylic acid or a substituted or unsubstituted group selected from amino, amido, carboxylic ester, ether, thiol, acylamino or carboxamido.
  • substituents such as halogen, hydroxyl, azide, carboxylic acid or a substituted or unsubstituted group selected from amino, amido, carboxylic ester, ether, thiol, acylamino or carboxamido.
  • the alkyl group is substituted, it is preferably one or more amine, amide or ether groups, which in turn may or may not be substituted by alkyl, amide, cycloalkyl or ethers groups and these, in turn, may also be substituted or no.
  • Cycloalkyl refers to a stable monocyclic or bicyclic radical of 3 to 10 members, which is saturated or partially saturated, and which only consists of carbon and hydrogen atoms, such as cyclohexyl or adamantyl.
  • aryl refers, in the present invention, to single or multiple aromatic rings, which have between 5 and 18 links in which a proton has been removed from the ring.
  • the aryl group has 5 to 7 carbon atoms.
  • the aryl groups are for example, but not limited to phenyl, naphthyl, diphenyl, indenyl, phenanthryl or anthracil.
  • the aryl radicals may be optionally substituted by one or more substituents.
  • aralkyl refers, in the present invention, to an aliphatic chain in which at least one of the hydrogens has been substituted by an aryl group, with the above meanings. As for example, but not limited to, a benzyl or phenethyl group.
  • acyl refers, in the present invention, to a carboxylic acid derivative by elimination of a hydroxyl group.
  • the carboxylic acid derivatives have as general formula R 4 -CO-, where R 4 is an alkyl group with the above meanings and preferably refers to (C 3 -Ci 4 ) alkyl groups, linear or branched.
  • R 4 is an alkyl group with the above meanings and preferably refers to (C 3 -Ci 4 ) alkyl groups, linear or branched.
  • propionyl butanoyl, hexanoyl, pivaloyl, octanoyl or myristoyl.
  • the sugar mimetic compounds of the invention include condensed bicycles of six members / five members that have a bridgehead nitrogen atom that is part of a cyclic amide or pseudoamide functionality.
  • Preferred heteroatoms are nitrogen (N), oxygen (O) or sulfur (S).
  • Non-limiting examples of pseudoamide groups, according to the present invention are urea, thiourea, isourea, isothiourea, guanidine or amidine.
  • the term azaaz ⁇ cares sp 2 will be used to refer to the compounds of the invention.
  • the carbon atoms of the bicyclic nucleus of the azaaz ⁇ car sp 2 may be substituted with hydroxyls to closely mimic a sugar structure or they may be devoid of hydroxyls.
  • Preferred hydroxylation profiles are those that coincide with those of D-glucose and D-galactose in positions equivalent to C-2, C-3 and C-4 in the monosaccharide after superimposition of the six-membered ring of the bicycles with the ring of pyranose of the monosaccharide, with the bridgehead nitrogen atom in the position of the sugar oxygen atom (hereinafter, glucomimetics and galactomimetics, respectively).
  • the compounds of the invention can carry a hydroxyl group in the position equivalent to the anomeric position.
  • the presence of the neighboring nitrogen atom of the pseudoamide type with substantially sp 2 character favors the axial orientation of this hydroxyl and provides high stability to the reducing sugar mimetic. Consequently, the preferred pharmacological chaperones according to this invention respond to formulas Ia and Ib.
  • R, X and Y are defined above.
  • the invention provides a process for the chemical synthesis of the bicyclic core of the aforementioned compounds from readily available commercial carbohydrates and is particularly well adapted to generate molecular diversity, allowing to synthesize compounds with substitution patterns of structural complementarity with D-glucose and D-galactose
  • a battery of substituents can be introduced in different positions along the synthetic route, which is of great importance to optimize the activity Biological and pharmacodynamic properties.
  • Another aspect of the present invention relates to the process for obtaining the compounds of general formula (I) comprising: (i) the introduction of an amino group in C-5 position of the corresponding sugar in the form of furanose; (ii) the closure of a 5-member ring between positions C-5 and C-6 by a segment of the pseudoamide type; Y
  • Another aspect of the present invention relates to the use of the compounds of general formula (I) for the preparation of a pharmaceutical composition.
  • Another aspect of the present invention relates to the use of the compound of general formula (I) for the preparation of a pharmaceutical composition for the treatment of a disease related to human mutated ⁇ -glucosidase and / or ⁇ -galactosidase.
  • the diseases are Gaucher's disease, G M gangliosidosis, or Morquio B disease.
  • Another aspect of the present invention relates to a method of enhancing the bioavailability of chemical chaperones using therapeutic compositions containing a pharmacologically acceptable vehicle, preferably a commercial cyclodextrin such as ⁇ -, ⁇ - or y-cyclodextrin ( ⁇ CD, ⁇ CD or yCD ), a methylated ⁇ -cyclodextrin (TRIMEB, DIMEB or RAMEB), a hydroxypropylated ⁇ -cyclodextrin (HP- ⁇ CD) or a sulfobutylated ⁇ CD (Captisol®), or a chemically modified cyclodextrin such as a biorecognizable cyclodextrin derivative that carries oligosaccharides.
  • a commercial cyclodextrin such as ⁇ -, ⁇ - or y-cyclodextrin ( ⁇ CD, ⁇ CD or yCD ), a methylated ⁇ -cyclodextrin (
  • the present invention involves the use of bicyclic compounds that mimic D-glucose (glucomimetics) of the azaz ⁇ car sp 2 type, which carry hydrophobic substituents, such as chemical chaperones to enhance the residual activity in a fibroblast culture medium for several mutations that cause Gaucher disease.
  • This therapeutic strategy could be applied to G MI gangliosidosis using compounds that mimic D-galactose (galactomimetics) of the azaz ⁇ car sp 2 type that carry hydrophobic substituents.
  • a method of this invention can be used to treat a patient who has Gaucher disease or a patient suffering from ⁇ -galactosidosis.
  • an effective activating amount of ⁇ -glucocerebrosidase or ⁇ -galactosidase of a suitable sp 2 azaz ⁇ car or of a therapeutic composition of a suitable sp 2 azaz ⁇ car is administered to the patient.
  • the present invention implies that the compound that mimics the azaz ⁇ car sp 2 sugar mentioned above has, in addition to a high ratio of chaperone activity to inhibitory activity, a very high selectivity towards the target enzyme.
  • This represents a significant improvement compared, for example, with the use of conventional type azaz ⁇ cares in which a nitrogen atom with sp 3 hybridization replaces the endocyclic oxygen of a sugar, such as for example 1-deoxinojirimycin, which behave in general as broad spectrum glycosidase inhibitors.
  • the glycemic compounds of the azaz ⁇ car sp 2 type of the invention exhibit a very high ⁇ -anomeric selectivity when compared with the inhibitory activity towards ⁇ - and ⁇ -glucosidases or ⁇ - and ⁇ -galactosidases human.
  • compositions comprise a therapeutically effective amount of azaz ⁇ car sp 2 glycemic compound and a pharmaceutically acceptable carrier.
  • vehicle designates a diluent, adjuvant, excipient or carrier with which the therapeutic agent is administered.
  • Various administration systems are known and can be used to administer a compound of the invention, for example, liposomes, microparticles or microcapsules.
  • the administration system is a cycloomaltooligosaccharide (cyclodextrin, CD).
  • the inventors discovered that the use of native CDs or chemically modified CDs allows the hydrophobic moiety of the inhibitor to be masked, thereby increasing its solubility in aqueous media.
  • the resulting inclusion complexes maintain or even enhance the inhibitory and chaperone activities of the active agent.
  • another aspect of the present invention refers to a pharmaceutical composition
  • a pharmaceutical composition comprising at least one of the compounds of general formula (I) and a pharmaceutically acceptable carrier, as defined above.
  • Another aspect of the present invention relates to an in vitro process to enhance the activity of a glycosidase enzyme, which comprises contacting the protein with an effective amount of a compound of general formula (I).
  • the azaz ⁇ car sp 2- type glycemimetic compounds of the invention include six-member / five-member condensed bicycles having a bridgehead nitrogen atom that is part of a cyclic amide or pseudoamide functionality.
  • Preferred pharmacological chaperones in the context of this invention respond to formulas Ia (glucomimetics) and Ib (galactomimetics).
  • urea type intermediates of general formula (IV) was found advantageous.
  • the ureas can be prepared, for example, by reaction of 5-amino-5- deoxy-1, 2-O-isopropylidene- ⁇ -D-gluco-furanose (III), which can be obtained by reducing the IL as described (VM D ⁇ az Pérez et al., J. Org. Chem. 2000, 65, 136-143), by coupling reaction with the appropriate isocyanate of general formula R 1 NCO.
  • the ureas IV can be transformed into the corresponding cyclic isoureas V by treatment with a sulfonic acid anhydride or a sulfonyl chloride such as trifluoromethanesulfonic anhydride, methanesulfonic anhydride or p-toluenesulfonyl chloride.
  • a sulfonic acid anhydride or a sulfonyl chloride such as trifluoromethanesulfonic anhydride, methanesulfonic anhydride or p-toluenesulfonyl chloride.
  • Acid catalyzed hydrolysis of the acetal protecting group in compounds V provides compounds Vl (scheme 1).
  • the reaction sequence represented in scheme 3 can be followed.
  • the cyclic thiourea precursor X can be obtained from the azide derivative Il following the methodology outlined above (VM D ⁇ az Pérez et al., J. Orq. Chem. 2000, 65, 136-143).
  • the reaction of X with an alkylating reagent, such as methyl iodide, provides the corresponding S-alkylisothiouronium salt Xl.
  • the nucleophilic displacement of the alkylthio group by an amine of the general formula R 1 NH 2 provides cyclic guanidines of the general formula XII.
  • the bicyclic sp 2 azaz ⁇ car glucomimetic XIII can be obtained by acid catalyzed hydrolysis of the acetal protecting group followed by treatment with a base such as, for example, sodium hydroxide.
  • a base such as, for example, sodium hydroxide.
  • the compounds of general formula XIII can be stored and used in the context of the present invention as a free base or in the form of a guanidinium salt such as, for example, the corresponding guanidinium chloride.
  • the starting monosaccharide is D-galactose or a commercially available D-galactose derivative.
  • the final compound responds to the general formula Ib.
  • inhibitors of the glucomimetic (Ia) (compounds 1-14) and galactomimetic (Ib) (compounds 15-23) families chemically synthesized and used in this invention are shown below:
  • the preparation of said inclusion complexes involves the preparation of a solution in water of both the cyclodextrin and the inhibitor, in a relative proportion that can vary from 1: 9 to 9: 1, followed by lyophilization.
  • the cyclodextrin vehicle the native ⁇ , ⁇ or yCD, the commercially available methylated, hydroxypropylated or sulfobutylated derivatives (DIMEB, TRIMEB, RAMEB, HPBCD, Captisol®) or other chemically modified CDs such as those described in patent applications WO 9733919 can be used and WO2004087768.
  • the preferred cyclodextrin carrier according to this invention is ⁇ CD.
  • Dermal fibroblasts derived from a healthy person and from Gaucher disease patients (N370S / N370S, F213I / F213I, N188S / G193W and F213I / L444P mutations) at 37 0 C in 5% CO 2 atmosphere using Dulbecco-modified Eagle medium supplemented with antibiotics (streptomycin and penicillin) and 10% fetal bovine serum.
  • antibiotics streptomycin and penicillin
  • 10% fetal bovine serum 10% fetal bovine serum.
  • Insoluble materials were removed by centrifugation at 12,000 g for 10 min at 4 0 C. Protein concentrations were determined in those used with a BCA microprotein assay kit (Pierce).
  • ⁇ -Glucocerebrosidase activities in cell phones were determined using ⁇ -D-glucopyranoside conjugated with 4-methylumbelliferone as substrate (AM Vaccaro, M. Muschilli, M. Tatti, R. Salvioli, E. Gallozzi, K. Suzuki. Clin. Biochem. 20: 429-43, 1987). Briefly, 4 ul of cell lysates were incubated at 37 0 C with 8 .mu.l of substrate solution in 0.1 M citrate buffer, pH 5.2, supplemented with sodium taurocholate (0.8% w / v). The reaction was terminated by adding 1.0 ml of 0.2 M sodium glycine-hydroxide buffer (pH 10.7). One unit of enzymatic activity was defined as nmoles of A-methylumbelliferone released per hour.
  • mutant ⁇ -glucocerebrosidase healthy control cells and patients with Gaucher disease were cultured for 4 days in the absence or presence of increasing concentrations of compounds. After exposure, they were scratched in ice cold H 2 O (10 6 / ml) and used by sonication. Insoluble materials were removed by centrifugation at 12,000 g for 10 min at 4 0 C. The ⁇ -glucocerebrosidase activities in cellular used were measured.
  • ⁇ -galactosidase assay Intracellular ⁇ -galactosidase assay. Fibroblasts were cultured in Dulbecco-modified Eagle's medium supplemented with 10% fetal bovine serum and antibiotics, and collected by scratching. They were combined by centrifugation, washed once with phosphate buffered saline and suspended in water. The cell suspension was sonicated and used for enzymatic assay (enzymatic solution). The ⁇ -galactosidase assay was performed in 96-well plates.
  • the enzyme test mixture consisted of 10 ⁇ l of enzymatic solution, with or without active ingredient of the invention at a final concentration of up to 5 ⁇ M, and 10 ⁇ l of substrate solution containing 1 mM 4-methylumbelliferyl- ⁇ -galactoside (Sigma , St Louis, MO) in 0.1 M (pH 4.5) and 0.1M NaCI
  • the enzymatic reaction was terminated by adding buffer 0.2 M glycine-NaOH (pH 10.7) and the 4-methylumbelliferone released by fluorometry (355 nm excitation; 460 nm emission) was measured as described above (Sakuraba, Aoyagi T, Suzuki Y. Clin. Chim. Acta 1982; 125: 275-282).
  • the protein was determined with the BCA protein assay kit (Pierce, Rockford, IL).
  • IC 50 values selected for the inhibition of human ⁇ -glucosidase and ⁇ -galactosidase is shown in Table 1.
  • the sp 2 azaz ⁇ cares of the invention that have a hydroxylation profile of structural complementarity with D- Glucose are very potent inhibitors of human ⁇ -glucosidase.
  • Those who have a hydroxylation profile of structural complementarity with D-galactose are potent inhibitors of both ⁇ -glucosidase and ⁇ -galactosidase.
  • sp 2 azaz ⁇ cares of the invention did not significantly inhibit either ⁇ -glucosidase or ⁇ -galactosidase.
  • the inhibition of ⁇ -glucosidases was at least 1,000 times more effective, in terms of Cl 50 values, compared to the inhibition of ⁇ -glucosidases.
  • sp 2 azaz ⁇ cares of the invention as pharmacological chaperones for the treatment of diseases related to the malfunction of human ⁇ -glucosidase and / or ⁇ -galactosidase, such as Gaucher's disease or G MI gangliosidosis , avoid or minimize the side effects associated with interference in the functioning of ⁇ -glucosidase and / or ⁇ -galactosidase.
  • the ⁇ -glucosidase activity in used obtained from Gaucher fibroblasts with different mutations was increased by increasing the concentration of inhibitor in a certain range.
  • the summary of the data selected for some of the inhibitors is shown in Table 2.
  • Both the glucomimetics and the galactomimetics of the invention are active as pharmacological chaperones against mutants N370S / N370S, F213I / F213I and N188S / G193W in this test, with relative activity enhancements that go up to 3.4 times in the most favorable case.
  • the previous results support the therapeutic concept of the applicants that potent azaz ⁇ car sp 2 inhibitors can serve as effective pharmacological chaperones to enhance the mutant enzymatic activity of patients with Gaucher disease.
  • Residual activity refers to wild control cells.
  • the intracellular potentiation activity of the azaz ⁇ car sp 2 inhibitors of the invention with fibroblasts from patients with Gaucher with phenotypes N370S / N370S, F213I / F213I, N188S / G193W, N370S / 84GG, L444P / RecNcil and F213I was investigated ex vivo / L444P.
  • the data selected for some glucomimetics are collected in Table 3, which were found to be much more active than the galactomimetics in this assay.
  • the azaz ⁇ car sp 2 glucomimetics of the invention demonstrated a significant impact on the potentiation of intracellular enzymatic activity in Gaucher fibroblasts.
  • the residual enzyme activity in the mutants increased up to 3.5 times in the most favorable case.
  • the magnitude of the potentiation depended on the phenotype and the structure of the compound.
  • Compound 6 which has a cyclic isourea in the structure, was particularly effective against mutations N370S / N370S, F213I / F213I and L444P / RecNcil, with elevations of residual activity of 2.7, 3.5 and 1, 3 times , respectively, at a concentration of 30 ⁇ M.
  • the azaz ⁇ cares sp 2 inhibitors of the invention that have a hydroxylation profile of structural complementarity with D-galactose (galactomimetics; for example, compounds 15-23) enhance the ⁇ -galactosidase activity in control cell fibroblasts as well as in fibroblasts of patients with G M i gangliosidosis -
  • Table 4 collects the corresponding data of compound 17, which has a cyclic isourea functionality in its structure.
  • the intracellular ⁇ -galactosidase activity in the control was raised by 46% using a 50 ⁇ M concentration of 17.
  • the azaz ⁇ cares sp 2 inhibitors of the invention easily formed inclusion complexes with ⁇ CD in water at different relative proportions, as observed from the NMR experiments.
  • the resulting complexes allowed increasing the solubility of the inhibitor in water without observing harmful effects on the inhibitory activity against human glucosidases.
  • the enzymatic activity was elevated in Gaucher fibroblasts, both used as in intact cells, increasing the concentration of inclusion complexes azaz ⁇ cares sp 2: ⁇ CD. Selected data of some complexes are collected in Table 5. Applicants found this formulation particularly suitable for compounds that have low aqueous solubility, as is the case of compound 6. By using relative ratios 1: 1 of 6 and ⁇ CD at a concentration of 30 ⁇ M, increases of up to 3 times were achieved. of the residual activity of the mutant ⁇ -glucosidase for the N370S / N370S phenotype.

Abstract

Compounds promoting the activity of mutant glycosidases having inhibitory activity for glycosidase enzymes, furthermore relating to a procedure for activation of mutant β-glycosidase (β-glucocerebrosidase) and mutant β-galactosidase in patients suffering lysosomal storage disorders through administration of said enzyme competitor inhibitor compounds, characterised by very high bonding specificity and a favourable ratio between the concentration thereof for pharmacological chaperone activity and the concentration thereof for inhibitor activity.

Description

COMPUESTOS POTENCIADORES DE LA ACTIVIDAD DE GLICOSIDASAS MUTANTES POTENTIATING COMPOUNDS OF THE ACTIVITY OF MUTANT GLYCOSIDASES
La presente invención se refiere a unos compuestos con actividad inhibidoras de enzimas glicosidasas y a un procedimiento para Ia activación de β-glucosidasa muíante (β-glucocerebrosidasa) y β-galactosidasa muíante en pacientes que padecen írasíornos de almacenamienío lisosómico medianíe Ia adminisíración de dichos compuesíos inhibidores compeíiíivos de las enzimas, caracíerizados por una especificidad de unión muy alia y una relación favorable entre su concentración para actividad de chaperona farmacológica y su concentración para actividad inhibidora. La invención también se refiere a estos compuestos, a su procedimiento de obtención y a composiciones terapéuticas que contienen dichos compuestos.The present invention relates to compounds with inhibitory activity of glycosidases enzymes and a method for the activation of mutant β-glucosidase (β-glucocerebrosidase) and mutant β-galactosidase in patients suffering from lysosomal storage environments by administering said inhibitory compounds. enzymes, characterized by a very specific binding specificity and a favorable relationship between its concentration for pharmacological chaperone activity and its concentration for inhibitory activity. The invention also relates to these compounds, their method of production and therapeutic compositions containing said compounds.
ESTADO DE LA TÉCNICA ANTERIORSTATE OF THE PREVIOUS TECHNIQUE
Los trastornos de almacenamiento lisosómico son un grupo de enfermedades resultantes del metabolismo anormal de varios sustratos que no se degradan y se acumulan en los lisosomas, conduciendo a una serie de fenotipos que incluyen megalovisceralia, patologías neurológicas, lesiones esqueléticas y muerte prematura (A. H. Futerman, G. van Meer, N ature Rev. Mol. CeII Biol. 2004, 554-565). Estas enfermedades son el resultado de mutaciones en los genes que codifican enzimas implicadas en el proceso de degradación. Las estrategias terapéuticas actuales incluyen Ia inhibición de Ia producción de sustrato usando inhibidores de las enzimas implicadas en su biosíntesis (US2005/0075305). El aumento de Ia enzima defectiva podría conseguirse clínicamente mediante reemplazamiento enzimático (R. J. Desnick, E. H. Schuchman, Nature Rev. Genet. 2002, 954-966). Para el trastorno de almacenamiento lisosómico más predominante, Ia enfermedad de Gaucher, esta terapia cuesta entre 100.000 y 750.000 dólares al año, y no es muy eficaz para los casos que muestran implicación del sistema nervioso central. El transplante de médula ósea puede revertir también Ia enfermedad, pero hasta ahora las estrategias de terapia génica no han tenido éxito.Lysosomal storage disorders are a group of diseases resulting from the abnormal metabolism of several substrates that do not degrade and accumulate in lysosomes, leading to a series of phenotypes that include megalovisceralia, neurological pathologies, skeletal injuries and premature death (AH Futerman, G. van Meer, N ature Rev. Mol. CeII Biol. 2004, 554-565). These diseases are the result of mutations in the genes that encode enzymes involved in the degradation process. Current therapeutic strategies include the inhibition of substrate production using inhibitors of the enzymes involved in its biosynthesis (US2005 / 0075305). The increase of the defective enzyme could be achieved clinically by enzymatic replacement (R. J. Desnick, E. H. Schuchman, Nature Rev. Genet. 2002, 954-966). For the most predominant lysosomal storage disorder, Gaucher disease, this therapy costs between $ 100,000 and $ 750,000 a year, and is not very effective for cases that show involvement of the central nervous system. Bone marrow transplantation can also reverse the disease, but until now gene therapy strategies have not been successful.
Algunas de estas mutaciones perniciosas se manifiestan mediante proteínas mutantes que retienen actividad catalítica pero que presentan defectos de plegamiento y experimentan degradación mediada por Ia maquinaria celular de control de calidad. El uso de compuestos funcionales que pueden servir de molde para un plegado apropiado de proteínas con tendencia a un plegado erróneo está bien documentado. Así, se sabe que algunos inhibidores enzimáticos son capaces de unirse al sitio activo y estabilizar el plegamiento apropiado de Ia forma catalítica de Ia enzima. Dichos compuestos pueden actuar como "chaperonas farmacológicas" para estabilizar Ia proteína muíante en una conformación apropiada para su transporte a los lisosomas, donde permanece estable debido a Ia alta concentración de sustrato y al entorno de bajo pH.Some of these pernicious mutations are manifested by proteins mutants that retain catalytic activity but that present folding defects and experience degradation mediated by the cellular quality control machinery. The use of functional compounds that can serve as a template for proper protein folding with a tendency to misfold is well documented. Thus, it is known that some enzyme inhibitors are capable of binding to the active site and stabilizing the appropriate folding of the catalytic form of the enzyme. Said compounds can act as "pharmacological chaperones" to stabilize the mutant protein in a conformation suitable for transport to lysosomes, where it remains stable due to the high concentration of substrate and the low pH environment.
La enfermedad de Gaucher es el trastorno de almacenamiento lisosómico más predominante, con una incidencia estimada de aproximadamente 1 :60.000 en Ia población general y de 1 :100 en Ia población de judíos asquenazíes (T. D. Butters, Curr. Opin. Chem. Biol. 2007, 11 , 412-418). Es el resultado de mutaciones en Ia β-glucosidasa acida (β- glucocerebrosidasa), una glucoproteína lisosómica asociada a membrana de 497 restos que tienen como consecuencia Ia acumulación del correspondiente sustrato (glucosilceramida). Se han identificado más de 200 mutaciones puntuales diferentes en el gen que codifica Ia β- gluocerebrosidasa (E. Sidransky, Mol. Genet. Metab. 2004, 83, 6-15). Las mutaciones conducen a defectos significativos en el plegamiento de Ia proteína durante Ia traducción en el retículo endoplasmático, dando como resultado una reducción del transporte de Ia enzima al lisosoma.Gaucher disease is the most predominant lysosomal storage disorder, with an estimated incidence of approximately 1: 60,000 in the general population and 1: 100 in the population of Ashkenazi Jews (TD Butters, Curr. Opin. Chem. Biol. 2007 , 11, 412-418). It is the result of mutations in β-glucosidase acid (β-glucocerebrosidase), a lysosomal membrane-associated glycoprotein of 497 residues that have as a consequence the accumulation of the corresponding substrate (glucosylceramide). More than 200 different point mutations have been identified in the gene encoding β-gluocerebrosidase (E. Sidransky, Mol. Genet. Metab. 2004, 83, 6-15). The mutations lead to significant defects in the folding of the protein during translation in the endoplasmic reticulum, resulting in a reduction of the transport of the enzyme to the lysosome.
Otra patología, Ia deficiencia hereditaria de β-galactosidasa acida lisosómica (β-galactosidosis), causa dos enfermedades clínicamente distintas en seres humanos, Ia gangliosidosis GMI y Ia enfermedad de Morquio B (Y. Suzuki, J¿ Inherit. Metab. Dis. 2006, 29, 471-476). Ambas son el resultado de mutaciones en el gen GLB1 que conducen a un plegamiento proteico erróneo (S. Zhang, R. Bagshow, W. Hilson, Y. Oho, A. Hinek, J. T. R. Clarke, A. Hinek, J. W. Callahan, Biochem. J. 2000, 348, 621-632). El modo de herencia es recesivo autosómico. La gangliosidosis GMi es una enfermedad neurosomática generalizada que aparece principalmente en Ia primera infancia, y raramente en Ia niñez o en adultos jóvenes. La enfermedad de Morquio B es una rara enfermedad ósea sin implicación del sistema nervioso central. En pacientes con estos fenotipos clínicos se acumulan glucoconjugados con restos de β-galactosa terminales en los tejidos y orina. El gangliósido GMi y su derivado asiálico GAi se acumulan en el cerebro en el caso de Ia gangliosidosis GMI - Tanto en pacientes con gangliosidosis GMI como en pacientes que padecen Ia enfermedad de Morquio B se detectan altas cantidades de oligosacáridos derivados de sulfato de queratano o glucoproteínas en órganos viscerales y orina. Actualmente, sólo está disponible Ia terapia sintomática para pacientes con β-galactosidosis.Another pathology, the hereditary deficiency of lysosomal acid β-galactosidase (β-galactosidosis), causes two clinically distinct diseases in humans, G MI gangliosidosis and Morquio B disease (Y. Suzuki, J¿ Inherit. Metab. Dis. 2006, 29, 471-476). Both are the result of mutations in the GLB1 gene that lead to an erroneous protein folding (S. Zhang, R. Bagshow, W. Hilson, Y. Oho, A. Hinek, JTR Clarke, A. Hinek, JW Callahan, Biochem. J. 2000, 348, 621-632). The mode of inheritance is autosomal recessive. G M i gangliosidosis is a generalized neurosomatic disease that appears mainly in early childhood, and rarely in childhood or in young adults. Disease Morquio B is a rare bone disease without involvement of the central nervous system. In patients with these clinical phenotypes, glucoconjugates accumulate with terminal β-galactose residues in tissues and urine. The ganglioside G M i and its Asian derivative G A i accumulate in the brain in the case of G MI gangliosidosis - In both patients with G MI gangliosidosis and in patients suffering from Morquio B disease high amounts of oligosaccharides derived from keratane sulfate or glycoproteins in visceral organs and urine. Currently, only symptomatic therapy is available for patients with β-galactosidosis.
Por otro lado, algunos alcaloides polihidroxilados naturales y sintéticos estructuralmente relacionados con los azúcares (glicomiméticos) que incorporan un nitrógeno endocíclico de tipo amina (hibridación sp3) exhiben una actividad inhibidora significativa frente a glicosidasas. Análogamente, se ha demostrado que los carbociclos estructuralmente relacionados con los azúcares que portan sustituyentes de tipo amina se comportan como inhibidores de glicosidasas (S. Ogawa, M. Kanto, Y. Suzuki, Mini-Rev. Med. Chem. 2007, 7, 679-691 ). En algunos casos, se ha demostrado que estos compuestos usados a concentraciones subinhibidoras actúan como chaperonas de β-glucocerebrosidasa muíante y β-galactosidasa muíante (US 2006/0100241 ; WO2004/037373). Sin embargo, estos íipos de compuesíos se comportan en general como inhibidores de glucosidasa de amplio especíro, inhibiendo simulíáneameníe varias glicosidasas, Io que represenía un inconvenieníe serio para aplicaciones clínicas. La inhibición simulíánea de β y α-glucosidasas es paríicularmeníe problemáíica. Por Io íanío, exisíe Ia necesidad de desarrollar moléculas esírucíuralmeníe relacionadas con los azúcares con una alia relación de actividad chaperona a inhibidora que, al mismo tiempo, exhiban una alta selectividad anomérica por las correspondientes enzimas β-glicosidasas.On the other hand, some natural and synthetic polyhydroxylated alkaloids structurally related to sugars (glycemic) that incorporate an amine-type endocyclic nitrogen (sp 3 hybridization) exhibit significant inhibitory activity against glycosidases. Similarly, it has been shown that carbocycles structurally related to sugars that carry amine substituents behave as glycosidases inhibitors (S. Ogawa, M. Kanto, Y. Suzuki, Mini-Rev. Med. Chem. 2007, 7, 679-691). In some cases, these compounds used at subinhibitory concentrations have been shown to act as mutant β-glucocerebrosidase and mutant β-galactosidase chaperones (US 2006/0100241; WO2004 / 037373). However, these types of compounds generally behave as broad-type glucosidase inhibitors, simultaneously inhibiting several glycosidases, which represented a serious inconvenience for clinical applications. Simultaneous inhibition of β and α-glucosidases is particularly problematic. Therefore, there is a need to develop sugar-related molecules with a high ratio of chaperone to inhibitor activity that, at the same time, exhibit high anomeric selectivity for the corresponding β-glycosidases enzymes.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
La presente invención proporciona compuestos bicíclicos estructuralmente relacionados con los azúcares que incorporan al menos un átomo de nitrógeno endocíclico con un carácter sustancialmente sp2 (a partir de ahora, azazúcar sp2) y se comportan como inhibidores competitivos muy selectivos de las β-glucocerebrosidasa y β-galactosidasa acida lisosómicas asociadas a Ia enfermedad de Gaucher y Ia β-galactosidosis, respectivamente. Estos compuestos potencian Ia actividad de dichas enzimas cuando se administran a concentraciones menores de las necesarias para inhibir Ia actividad enzimática intracelular, actuando por Io tanto como chaperonas farmacológicas. El efecto es particularmente significativo en ciertas enzimas mutantes, pero aparece también en células que contienen Ia enzima normal.The present invention provides bicyclic compounds structurally related to sugars that incorporate at least one endocyclic nitrogen atom with a substantially sp 2 character (as of now, azazúcar sp 2 ) and behave as highly selective competitive inhibitors of the lysosomal β-glucocerebrosidase and β-galactosidase acid associated with Gaucher's disease and β-galactosidosis, respectively. These compounds enhance the activity of said enzymes when they are administered at concentrations lower than those necessary to inhibit the intracellular enzymatic activity, acting as well as pharmacological chaperones. The effect is particularly significant in certain mutant enzymes, but it also appears in cells that contain the normal enzyme.
En consecuencia, Ia presente invención también proporciona un procedimiento para activar β-glucosidasa o β-galactosidasa y un procedimiento para tratar pacientes que padecen enfermedad de Gaucher o β-galactosidosis, mediante Ia utilización de los compuestos de Ia invención.Consequently, the present invention also provides a method for activating β-glucosidase or β-galactosidase and a method for treating patients suffering from Gaucher disease or β-galactosidosis, by using the compounds of the invention.
Este procedimiento de Ia invención además de ser útil en células de mamífero, es también útil en células de otra procedencia, tales como, por ejemplo, células de insecto y células CHO cultivadas, usadas en Ia producción de enzimas recombinantes para terapia de reemplazamiento enzimático.This method of the invention, in addition to being useful in mammalian cells, is also useful in cells of another origin, such as, for example, insect cells and cultured CHO cells, used in the production of recombinant enzymes for enzyme replacement therapy.
De acuerdo con Io anterior, un primer aspecto de Ia presente invención se refiere a un compuesto de fórmula general (I) o cualquiera de sus sales:In accordance with the above, a first aspect of the present invention refers to a compound of general formula (I) or any of its salts:
Figure imgf000005_0001
donde: R es un sustituyente, igual o diferente en cada uno de los casos, y que se selecciona de entre un átomo de H, un grupo hidroxilo (-OH) ó un grupo OR2; donde R2 se selecciona de entre un grupo acilo, sustituido o no sustituido, un grupo alquilo (C1-C18), sustituido o no sustituido, un grupo arilo, sustituido o no sustituido, un grupo aralquilo, sustituido o no sustituido, un grupo amino (NH2), un grupo acetamido (NHAc), o un grupo NHR3, donde R3 se selecciona de entre un grupo acilo, sustituido o no sustituido, un grupo alquilo (CrCi8), sustituido o no sustituido, un grupo arilo, sustituido o no sustituido, o un grupo aralquilo, sustituido o no sustituido.
Figure imgf000005_0001
where: R is a substituent, the same or different in each case, and is selected from an H atom, a hydroxyl group (-OH) or an OR 2 group; wherein R 2 is selected from an acyl group, substituted or unsubstituted, a (C1-C18) alkyl group, substituted or unsubstituted, an aryl group, substituted or unsubstituted, an aralkyl group, substituted or unsubstituted, a group amino (NH 2 ), an acetamide group (NHAc), or an NHR 3 group, where R 3 is selected from an acyl group, substituted or unsubstituted, an alkyl group (CrCi 8 ), substituted or unsubstituted, an aryl group, substituted or unsubstituted, or an aralkyl group, substituted or unsubstituted.
Preferiblemente R es igual en todos los casos y es OH;Preferably R is the same in all cases and is OH;
Y se selecciona de entre un átomo de O, un grupo NH ó un átomo de S; yAnd it is selected from an O atom, an NH group or an S atom; Y
X es el grupo -NR1; donde R1 se selecciona de entre un átomo de H, un grupo alquilo (CrCi8), sustituido o no sustituido, un grupo arilo, sustituido o no sustituido o un grupo aralquilo, sustituido o no sustituido.X is the group -NR 1 ; wherein R 1 is selected from an H atom, an alkyl group (CrCi 8 ), substituted or unsubstituted, an aryl group, substituted or unsubstituted or an aralkyl group, substituted or unsubstituted.
El término "alquilo" se refiere, en Ia presente invención, a cadenas alifáticas, lineales o ramificadas, que tienen de 1 a 18 átomos de carbono, por ejemplo, metilo, etilo, n-propilo, /-propilo, n-butilo, tere-butilo, sec-butilo, n-pentilo, n- hexilo, etc. Preferiblemente el grupo alquilo tiene entre 3 y 9 átomos de carbono. Más preferiblemente n-butilo, n-pentilo, n-hexilo, n-heptilo o n- octilo. Los grupos alquilo pueden estar opcionalmente sustituidos por uno o más sustituyentes tales como halógeno, hidroxilo, azida, ácido carboxílico o un grupo sustituido o no sustituido seleccionado de entre amino, amido, áster carboxílico, éter, tiol, acilamino o carboxamido. Cuando el grupo alquilo está sustituido, Io está preferentemente por un o varios grupos amina, amida o éter, que a su vez pueden estar o no sustituidos por grupos alquilo, amida, cicloalquilo o éteres y estos a su vez, pueden estar igualmente sustituidos o no.The term "alkyl" refers, in the present invention, to aliphatic, linear or branched chains, having 1 to 18 carbon atoms, for example, methyl, ethyl, n-propyl, / -propyl, n-butyl, tere-butyl, sec-butyl, n-pentyl, n-hexyl, etc. Preferably the alkyl group has between 3 and 9 carbon atoms. More preferably n-butyl, n-pentyl, n-hexyl, n-heptyl or n-octyl. The alkyl groups may be optionally substituted by one or more substituents such as halogen, hydroxyl, azide, carboxylic acid or a substituted or unsubstituted group selected from amino, amido, carboxylic ester, ether, thiol, acylamino or carboxamido. When the alkyl group is substituted, it is preferably one or more amine, amide or ether groups, which in turn may or may not be substituted by alkyl, amide, cycloalkyl or ethers groups and these, in turn, may also be substituted or no.
"Cicloalquilo" se refiere a un radical estable monocíclico o bicíclico de 3 a 10 miembros, que está saturado o parcialmente saturado, y que sólo consiste en átomos de carbono e hidrógeno, tal como ciclohexilo o adamantilo."Cycloalkyl" refers to a stable monocyclic or bicyclic radical of 3 to 10 members, which is saturated or partially saturated, and which only consists of carbon and hydrogen atoms, such as cyclohexyl or adamantyl.
El término "arilo" se refiere, en Ia presente invención, a anillos aromáticos sencillos o múltiples, que tienen de entre 5 a 18 eslabones en los que se ha eliminado un protón del anillo. Preferentemente el grupo arilo tiene de 5 a 7 átomos de carbono. Los grupos arilo son por ejemplo, pero sin limitarse a fenilo, naftilo, difenilo, indenilo, fenantrilo o antracilo. Los radicales arilo pueden estar opcionalmente sustituidos por uno o más sustituyentes. El término "aralquilo" se refiere, en Ia presente invención, a una cadena alifática en el que al menos uno de los hidrógenos se ha sustituido por un grupo arilo, con las acepciones anteriores. Como por ejemplo, pero sin limitarse, un grupo bencilo o fenetilo.The term "aryl" refers, in the present invention, to single or multiple aromatic rings, which have between 5 and 18 links in which a proton has been removed from the ring. Preferably the aryl group has 5 to 7 carbon atoms. The aryl groups are for example, but not limited to phenyl, naphthyl, diphenyl, indenyl, phenanthryl or anthracil. The aryl radicals may be optionally substituted by one or more substituents. The term "aralkyl" refers, in the present invention, to an aliphatic chain in which at least one of the hydrogens has been substituted by an aryl group, with the above meanings. As for example, but not limited to, a benzyl or phenethyl group.
El término "acilo" se refiere, en Ia presente invención, a un derivado de ácido carboxílico por eliminación de un grupo hidroxilo. Los derivados de ácido carboxílico tienen como fórmula general R4-CO-, donde R4 es un grupo alquilo con las acepciones anteriores y preferiblemente se refiere a grupos alquilo (C3-Ci4), lineal o ramificado. Como por ejemplo, pero sin limitarse a propionilo, butanoilo, hexanoilo, pivaloilo, octanoilo o miristoilo.The term "acyl" refers, in the present invention, to a carboxylic acid derivative by elimination of a hydroxyl group. The carboxylic acid derivatives have as general formula R 4 -CO-, where R 4 is an alkyl group with the above meanings and preferably refers to (C 3 -Ci 4 ) alkyl groups, linear or branched. As for example, but not limited to propionyl, butanoyl, hexanoyl, pivaloyl, octanoyl or myristoyl.
Los compuestos miméticos de azúcar de Ia invención, según se representa en Ia fórmula general (I), incluyen biciclos condensados de seis miembros/cinco miembros que tienen un átomo de nitrógeno cabeza de puente que es parte de una funcionalidad amida cíclica o pseudoamida. Por "funcionalidad pseudoamida", se define un grupo de fórmula general N- C(=X)Y, en Ia que X representa un heteroátomo que porta, dado el caso, sustituyentes de naturaleza variada, Y es un heteroátomo, que porta dado el caso sustituyentes de naturaleza variada. Son heteroátomos preferidos el nitrógeno (N), oxígeno (O) ó azufre (S). Ejemplos no limitantes de grupos pseudoamida, según Ia presente invención son urea, tiourea, isourea, isotiourea, guanidina o amidina. En adelante, se utilizará el término azaazúcares sp2 para refererirse a los compuestos de Ia invención.The sugar mimetic compounds of the invention, as represented in the general formula (I), include condensed bicycles of six members / five members that have a bridgehead nitrogen atom that is part of a cyclic amide or pseudoamide functionality. By "pseudoamide functionality", a group of general formula N- C (= X) Y is defined, in which X represents a heteroatom that carries, if necessary, substituents of varied nature, Y is a heteroatom, which carries given the case substituents of varied nature. Preferred heteroatoms are nitrogen (N), oxygen (O) or sulfur (S). Non-limiting examples of pseudoamide groups, according to the present invention are urea, thiourea, isourea, isothiourea, guanidine or amidine. Hereinafter, the term azaazúcares sp 2 will be used to refer to the compounds of the invention.
Los átomos de carbono del núcleo bicíclico del azaazúcar sp2 pueden estar sustituidos con hidroxilos para imitar estrechamente una estructura de azúcar o pueden estar desprovistos de hidroxilos. Son perfiles de hidroxilación preferidos aquellos que coinciden con los de D-glucosa y D- galactosa en las posiciones equivalentes a C-2, C-3 y C-4 en el monosacárido tras superimposición del anillo de seis miembros del biciclo con el anillo de piranosa del monosacárido, con el átomo de nitrógeno cabeza de puente en Ia posición del átomo de oxígeno del azúcar (de aquí en adelante, glucomiméticos y galactomiméticos, respectivamente).The carbon atoms of the bicyclic nucleus of the azaazúcar sp 2 may be substituted with hydroxyls to closely mimic a sugar structure or they may be devoid of hydroxyls. Preferred hydroxylation profiles are those that coincide with those of D-glucose and D-galactose in positions equivalent to C-2, C-3 and C-4 in the monosaccharide after superimposition of the six-membered ring of the bicycles with the ring of pyranose of the monosaccharide, with the bridgehead nitrogen atom in the position of the sugar oxygen atom (hereinafter, glucomimetics and galactomimetics, respectively).
De forma interesante, los compuestos de Ia invención pueden portar un grupo hidroxilo en Ia posición equivalente a Ia posición anomérica. La presencia del átomo de nitrógeno vecino de tipo pseudoamida con carácter sustancialmente sp2 favorece Ia orientación axial de este hidroxilo y proporciona una alta estabilidad al mimético de azúcar reductor. En consecuencia, las chaperonas farmacológicas preferidas según esta invención responden a las fórmulas Ia y Ib.Interestingly, the compounds of the invention can carry a hydroxyl group in the position equivalent to the anomeric position. The presence of the neighboring nitrogen atom of the pseudoamide type with substantially sp 2 character favors the axial orientation of this hydroxyl and provides high stability to the reducing sugar mimetic. Consequently, the preferred pharmacological chaperones according to this invention respond to formulas Ia and Ib.
Figure imgf000008_0001
Figure imgf000008_0001
Ia IbIa Ib
Donde Y y X están definidos anteriormente.Where Y and X are defined above.
Otros compuestos adicionales a las fórmulas (Ia) y (Ib) incluyen aquellos en los que uno o más de los grupos hidroxilo están adiados, alquilados o reemplazados por un átomo de H o por otros grupos funcionales, preferiblemente por funcionalidades de nitrógeno, tal y como se recoge en Ia descripción de Ia fórmula general (I). Por tanto, otra realización preferida comprende los compuestos de fórmula general (Ia') y (Ib'):Other compounds additional to formulas (Ia) and (Ib) include those in which one or more of the hydroxyl groups are added, alkylated or replaced by an H atom or other functional groups, preferably nitrogen functionalities, such and as stated in the description of the general formula (I). Therefore, another preferred embodiment comprises the compounds of general formula (Ia ') and (Ib'):
Figure imgf000008_0002
Figure imgf000008_0002
'a' Ib1 'a' Ib 1
Donde: R, X e Y están definidos anteriormente.Where: R, X and Y are defined above.
Cuando Y es oxígeno el compuesto de Ia invención es de fórmula general (Ic): When Y is oxygen the compound of the invention is of general formula (Ic):
Figure imgf000009_0001
Figure imgf000009_0001
Cuando Y es un átomo de nitrógeno, el compuesto de Ia invención es de fórmula general (Id):When Y is a nitrogen atom, the compound of the invention is of general formula (Id):
Figure imgf000009_0002
Figure imgf000009_0002
(Id)(Id)
Cuando Y es un átomo de azufre, el compuesto de Ia invención es de fórmula general (Ie):When Y is a sulfur atom, the compound of the invention is of general formula (Ie):
Figure imgf000009_0003
Figure imgf000009_0003
(Ie)(Ie)
Adicionalmente Ia invención proporciona un procedimiento para Ia síntesis química del núcleo bicíclico de los compuestos anteriormente mencionados a partir de carbohidratos comerciales fácilmente disponibles y está particularmente bien adaptada para generar diversidad molecular, permitiendo sintetizar compuestos con patrones de sustitución de complementariedad estructural con D-glucosa y D-galactosa. Además, puede introducirse una batería de sustituyentes en diferentes posiciones a Io largo de Ia ruta sintética, que es de gran importancia para optimizar Ia actividad biológica y las propiedades farmacodinámicas.Additionally, the invention provides a process for the chemical synthesis of the bicyclic core of the aforementioned compounds from readily available commercial carbohydrates and is particularly well adapted to generate molecular diversity, allowing to synthesize compounds with substitution patterns of structural complementarity with D-glucose and D-galactose In addition, a battery of substituents can be introduced in different positions along the synthetic route, which is of great importance to optimize the activity Biological and pharmacodynamic properties.
Así, otro aspecto de Ia presente invención se refiere al procedimiento de obtención de los compuestos de fórmula general (I) que comprende: (i) Ia introducción de un grupo amino en posición C-5 del azúcar correspondiente en forma de furanosa; (ii) el cierre de un anillo de 5 miembros entre las posiciones C-5 y C-6 mediante un segmento de tipo pseudoamida; yThus, another aspect of the present invention relates to the process for obtaining the compounds of general formula (I) comprising: (i) the introduction of an amino group in C-5 position of the corresponding sugar in the form of furanose; (ii) the closure of a 5-member ring between positions C-5 and C-6 by a segment of the pseudoamide type; Y
(iii) Ia transposición del anillo de furanosa a un ciclo de piperidina fusionado con el anillo de pseudoamida cíclico de cinco miembros anteriormente construido.(iii) the transposition of the furanose ring to a piperidine cycle fused with the five-membered cyclic pseudoamide ring previously constructed.
Las características del procedimiento de preparación de Ia invención quedarán más claramente reflejadas en los ejemplos que se proporcionan más adelante.The characteristics of the process for preparing the invention will be more clearly reflected in the examples provided below.
Otro aspecto de Ia presente invención se refiere al uso de los compuestos de fórmula general (I) para Ia elaboración de una composición farmacéutica.Another aspect of the present invention relates to the use of the compounds of general formula (I) for the preparation of a pharmaceutical composition.
Otro aspecto más de Ia presente invención se refiere al uso del compuesto de fórmula general (I) para Ia elaboración de una composición farmacéutica para el tratamiento de una enfermedad relacionada con β-glucosidasa y/o β- galactosidasa mutadas humanas. Preferiblemente las enfermedades son Ia enfermedad de Gaucher, Ia gangliosidosis GMi o Ia enfermedad de Morquio B.Another aspect of the present invention relates to the use of the compound of general formula (I) for the preparation of a pharmaceutical composition for the treatment of a disease related to human mutated β-glucosidase and / or β-galactosidase. Preferably the diseases are Gaucher's disease, G M gangliosidosis, or Morquio B disease.
Otro aspecto de Ia presente invención se refiere a un procedimiento de potenciación de Ia biodisponibilidad de chaperonas químicas usando composiciones terapéuticas que contienen un vehículo farmacológicamente aceptable, preferiblemente una ciclodextrina comercial tal como α-, β- o y- ciclodextrina (αCD, βCD o yCD), una β-ciclodextrina metilada (TRIMEB, DIMEB o RAMEB), una β-ciclodextrina hidroxipropilada (HP-βCD) o una βCD sulfobutilada (Captisol®), o una ciclodextrina modificada químicamente tal como un derivado de ciclodextrina que porta oligosacáridos biorreconocibles.Another aspect of the present invention relates to a method of enhancing the bioavailability of chemical chaperones using therapeutic compositions containing a pharmacologically acceptable vehicle, preferably a commercial cyclodextrin such as α-, β- or y-cyclodextrin (αCD, βCD or yCD ), a methylated β-cyclodextrin (TRIMEB, DIMEB or RAMEB), a hydroxypropylated β-cyclodextrin (HP-βCD) or a sulfobutylated βCD (Captisol®), or a chemically modified cyclodextrin such as a biorecognizable cyclodextrin derivative that carries oligosaccharides.
La presente invención implica el uso de los compuestos bicíclicos que imitan D-glucosa (glucomiméticos) de tipo azazúcar sp2, que portan sustituyentes hidrófobos, como chaperonas químicas para potenciar Ia actividad residual en un medio de cultivo de fibroblastos para varias mutaciones que causan enfermedad de Gaucher. Esta estrategia terapéutica pudo aplicarse a Ia gangliosidosis GMI usando compuestos que imitan D-galactosa (galactomiméticos) de tipo azazúcar sp2 que portan sustituyentes hidrófobos.The present invention involves the use of bicyclic compounds that mimic D-glucose (glucomimetics) of the azazúcar sp 2 type, which carry hydrophobic substituents, such as chemical chaperones to enhance the residual activity in a fibroblast culture medium for several mutations that cause Gaucher disease. This therapeutic strategy could be applied to G MI gangliosidosis using compounds that mimic D-galactose (galactomimetics) of the azazúcar sp 2 type that carry hydrophobic substituents.
Por tanto, puede usarse un procedimiento de esta invención para tratar un paciente que tiene enfermedad de Gaucher o un paciente que padece β- galactosidosis. Según los procedimientos de Ia invención, se administra al paciente una cantidad activante eficaz de β-glucocerebrosidasa o β- galactosidasa de un azazúcar sp2 adecuado o de una composición terapéutica de un azazúcar sp2 adecuada.Thus, a method of this invention can be used to treat a patient who has Gaucher disease or a patient suffering from β-galactosidosis. According to the methods of the invention, an effective activating amount of β-glucocerebrosidase or β-galactosidase of a suitable sp 2 azazúcar or of a therapeutic composition of a suitable sp 2 azazúcar is administered to the patient.
En particular, Ia presente invención implica que el compuesto que imita el azúcar de tipo azazúcar sp2 mencionado tiene, además de una alta relación de actividad chaperona frente a actividad inhibidora, una muy alta selectividad hacia Ia enzima diana. Esto representa una mejora significativa en comparación, por ejemplo, con el uso de azazúcares de tipo convencional en los que un átomo de nitrógeno con hibridación sp3 reemplaza al oxígeno endocíclico de un azúcar, como por ejemplo Ia 1-desoxinojirimicina, que se comportan en general como inhibidores de glicosidasas de amplio espectro. Significativamente, los compuestos glicomiméticos de tipo azazúcar sp2 de Ia invención exhiben una selectividad β-anomérica muy alta cuando se comparan con Ia actividad inhibidora hacia α- y β-glucosidasas o α- y β- galactosidasas lisosómicas humanas.In particular, the present invention implies that the compound that mimics the azazúcar sp 2 sugar mentioned above has, in addition to a high ratio of chaperone activity to inhibitory activity, a very high selectivity towards the target enzyme. This represents a significant improvement compared, for example, with the use of conventional type azazúcares in which a nitrogen atom with sp 3 hybridization replaces the endocyclic oxygen of a sugar, such as for example 1-deoxinojirimycin, which behave in general as broad spectrum glycosidase inhibitors. Significantly, the glycemic compounds of the azazúcar sp 2 type of the invention exhibit a very high β-anomeric selectivity when compared with the inhibitory activity towards α- and β-glucosidases or α- and β-galactosidases human.
La presente invención proporciona también composiciones farmacéuticas. Dichas composiciones comprenden una cantidad terapéuticamente eficaz de compuesto glicomimético de tipo azazúcar sp2 y un vehículo farmacéuticamente aceptable. El término "vehículo" designa un diluyente, coadyuvante, excipiente o portador con el que se administra el agente terapéutico. Se conocen diversos sistemas de administración y pueden usarse para administrar un compuesto de Ia invención, por ejemplo, liposomas, micropartículas o microcápsulas. En una realización específica, el sistema de administración es un ciclomaltooligosacárido (ciclodextrina, CD). Los inventores descubrieron que el uso de CD nativas o CD modificadas químicamente permite enmascarar el resto hidrófobo del inhibidor, aumentando así su solubilidad en medios acuosos. Los complejos de inclusión resultantes mantienen o incluso potencian las actividades inhibidoras y chaperona del agente activo.The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of azazúcar sp 2 glycemic compound and a pharmaceutically acceptable carrier. The term "vehicle" designates a diluent, adjuvant, excipient or carrier with which the therapeutic agent is administered. Various administration systems are known and can be used to administer a compound of the invention, for example, liposomes, microparticles or microcapsules. In a specific embodiment, the administration system is a cycloomaltooligosaccharide (cyclodextrin, CD). The inventors discovered that the use of native CDs or chemically modified CDs allows the hydrophobic moiety of the inhibitor to be masked, thereby increasing its solubility in aqueous media. The resulting inclusion complexes maintain or even enhance the inhibitory and chaperone activities of the active agent.
Por tanto, otro aspecto de Ia presente invención ser refiere a una composición farmacéutica que comprende al menos uno de los compuestos de fórmula general (I) y un vehículo farmacéuticamente aceptable, tal y como se ha definido anteriormente.Therefore, another aspect of the present invention refers to a pharmaceutical composition comprising at least one of the compounds of general formula (I) and a pharmaceutically acceptable carrier, as defined above.
Además, otro aspecto de Ia presente invención se refiere a un procedimiento in vitro para potenciar Ia actividad de una enzima glicosidasa, que comprende poner en contacto Ia proteína con una cantidad eficaz de un compuesto de fórmula general (I).In addition, another aspect of the present invention relates to an in vitro process to enhance the activity of a glycosidase enzyme, which comprises contacting the protein with an effective amount of a compound of general formula (I).
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.Throughout the description and the claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge partly from the description and partly from the practice of the invention. The following examples are provided by way of illustration, and are not intended to be limiting of the present invention.
EJEMPLOSEXAMPLES
Los inventores ensayaron una serie de inhibidores de tipo azazúcar sp2 novedosos sintetizados químicamente frente a un panel de glicosidasas comercialmente disponibles de origen vegetal, de microorganismos y animal. Se evaluaron algunos compuestos de Ia invención en Ia inhibición in vitro de β-glucocerebrosidasa y β-galactosidasa humanas y Ia potenciación intracelular ex vivo de enzimas mutantes con fibroblastos de Gaucher y de gangliosidosis GMi -The inventors tested a series of novel sp 2 azazúcar inhibitors chemically synthesized against a panel of commercially available glycosidases of plant, microorganism and animal origin. Some compounds of the invention were evaluated in the in vitro inhibition of human β-glucocerebrosidase and β-galactosidase and the ex vivo intracellular potentiation of mutant enzymes with Gaucher fibroblasts and G M i - gangliosidosis.
EJEMPL0 1 1.1. Materiales y procedimientosEXAMPLE 1 1.1. Materials and procedures
Los compuestos glicomiméticos de tipo azazúcar sp2 de Ia invención, de fórmula general (I), incluyen biciclos condensados de seis miembros/cinco miembros que tienen un átomo de nitrógeno cabeza de puente que es parte de una funcionalidad amida cíclica o pseudoamida.The azazúcar sp 2- type glycemimetic compounds of the invention, of general formula (I), include six-member / five-member condensed bicycles having a bridgehead nitrogen atom that is part of a cyclic amide or pseudoamide functionality.
Figure imgf000013_0001
Figure imgf000013_0001
Las chaperonas farmacológicas preferidas en el contexto de esta invención responden a las fórmulas Ia (glucomiméticos) e Ib (galactomiméticos).Preferred pharmacological chaperones in the context of this invention respond to formulas Ia (glucomimetics) and Ib (galactomimetics).
Figure imgf000013_0002
Figure imgf000013_0002
Para Ia obtención de los compuestos que tienen Ia fórmula Ia, cuando Y es oxígeno y X es NR1 (véase Ia fórmula Vl) se siguió Ia siguiente síntesis: el monosacárido de partida es D-glucosa o un derivado de D-glucosa comercialmente disponible. La introducción de un grupo nitrogenado en posición C-5 puede conseguirse entonces vía Ia correspondiente 5-azida-5- desoxi-1 ,2-O-isopropiliden-α-D-glucofuranosa (II). Para Ia preparación de este intermedio sintético puede usarse el procedimiento reseñado por K. Dax y col. (J. Carbohvdr. Chem. 1990, 9, 479-499), partiendo de D- glucufuranurono-6,3-lactona comercial. Se encontró ventajosa una estrategia sintética que implica intermedios de tipo urea de formula general (IV). Las ureas pueden prepararse, por ejemplo, mediante reacción de 5-amino-5- desoxi-1 ,2-O-isopropiliden-α-D-glucofuranosa (III), que puede obtenerse mediante Ia reducción de Il como se ha reseñado (V. M. Díaz Pérez y col., J. Org. Chem. 2000, 65, 136-143), por reacción de acoplamiento con el isocianato apropiado de formula general R1NCO. Las ureas IV pueden transformarse en las isoureas cíclicas V correspondientes mediante tratamiento con un anhídrido de ácido sulfónico o un cloruro de sulfonilo tales como anhídrido trifluorometanosulfónico, anhídrido metanosulfónico o cloruro de p-toluenosulfonilo. La hidrólisis catalizada por ácido del grupo protector acetal en los compuestos V proporciona los compuestos Vl (esquema 1 ).To obtain the compounds having formula Ia, when Y is oxygen and X is NR 1 (see formula Vl) the following synthesis was followed: the starting monosaccharide is D-glucose or a commercially available D-glucose derivative . The introduction of a nitrogen group in position C-5 can then be achieved via the corresponding 5-azide-5- deoxy-1, 2-O-isopropylidene-α-D-glucofuranose (II). For the preparation of this synthetic intermediate, the procedure outlined by K. Dax et al. (J. Carbohvdr. Chem. 1990, 9, 479-499), starting from commercial D-glucufuranurono-6,3-lactone. A synthetic strategy involving urea type intermediates of general formula (IV) was found advantageous. The ureas can be prepared, for example, by reaction of 5-amino-5- deoxy-1, 2-O-isopropylidene-α-D-gluco-furanose (III), which can be obtained by reducing the IL as described (VM Díaz Pérez et al., J. Org. Chem. 2000, 65, 136-143), by coupling reaction with the appropriate isocyanate of general formula R 1 NCO. The ureas IV can be transformed into the corresponding cyclic isoureas V by treatment with a sulfonic acid anhydride or a sulfonyl chloride such as trifluoromethanesulfonic anhydride, methanesulfonic anhydride or p-toluenesulfonyl chloride. Acid catalyzed hydrolysis of the acetal protecting group in compounds V provides compounds Vl (scheme 1).
Figure imgf000014_0001
Figure imgf000014_0001
Esquema 1Scheme 1
Para Ia preparación de compuestos que tienen Ia formula Ia en Ia que Y es un átomo de S y X representa NR1 (véase Ia fórmula IX), puede seguirse Ia secuencia de reacción representada en el Esquema 2. La reacción de Ia amina III con isotiocianatos R1NCS proporciona aducios de tiourea VII. El tratamiento de VII con un derivado reactivo sulfonante, como se describe anteriormente para Ia preparación de isoureas cíclicas V, proporciona los precusores de isotiourea cíclicos VIII correspondientes, que después de desacetilación catalizada por ácido proporcionan los glucomiméticos bicíclicos IX.
Figure imgf000015_0001
For the preparation of compounds having the formula Ia in which Y is an atom of S and X represents NR 1 (see formula IX), the reaction sequence represented in Scheme 2 can be followed. The reaction of the amine III with R 1 NCS isothiocyanates provides thiourea VII adducts. The treatment of VII with a sulfonant reactive derivative, as described above for the preparation of cyclic isoureas V, provides the corresponding cyclic isothiourea precursors VIII, which after acid catalyzed deacetylation provide the bicyclic glucomimetics IX.
Figure imgf000015_0001
Esquema 2Scheme 2
Para Ia preparación de los compuestos que tienen Ia formula Ia, en Ia que Y representa NH y X representa NR1 (véase Ia fórmula XIII), puede seguirse Ia secuencia de reacción representada en el esquema 3. El precursor de tiourea cíclica X puede obtenerse a partir del derivado de azida Il siguiendo Ia metodología reseñada anteriormente (V. M. Díaz Pérez y col., J. Orq. Chem. 2000, 65, 136-143). La reacción de X con un reactivo alquilante, tal como yoduro de metilo, proporciona Ia correspondiente sal de S- alquilisotiouronio Xl. El desplazamiento nucleófilo del grupo alquiltio por una amina de formula general R1NH2 proporciona guanidinas cíclicas de fórmula general XII. El glucomimético de azazúcar sp2 bicíclico XIII puede obtenerse mediante hidrólisis catalizada por ácido del grupo protector acetal seguido de tratamiento con una base tal como, por ejemplo, hidróxido de sodio. Los compuestos de fórmula general XIII pueden almacenarse y usarse en el contexto de Ia presente invención como base libre o en forma de una sal de guanidinio tal como, por ejemplo, el cloruro de guanidinio correspondiente.For the preparation of the compounds having formula Ia, in which Y represents NH and X represents NR 1 (see formula XIII), the reaction sequence represented in scheme 3 can be followed. The cyclic thiourea precursor X can be obtained from the azide derivative Il following the methodology outlined above (VM Díaz Pérez et al., J. Orq. Chem. 2000, 65, 136-143). The reaction of X with an alkylating reagent, such as methyl iodide, provides the corresponding S-alkylisothiouronium salt Xl. The nucleophilic displacement of the alkylthio group by an amine of the general formula R 1 NH 2 provides cyclic guanidines of the general formula XII. The bicyclic sp 2 azazúcar glucomimetic XIII can be obtained by acid catalyzed hydrolysis of the acetal protecting group followed by treatment with a base such as, for example, sodium hydroxide. The compounds of general formula XIII can be stored and used in the context of the present invention as a free base or in the form of a guanidinium salt such as, for example, the corresponding guanidinium chloride.
Figure imgf000015_0002
Esquema 3
Figure imgf000015_0002
Scheme 3
En otra realización preferida adicional, el monosacárido de partida es D- galactosa o un derivado de D-galactosa comercialmente disponible. En este caso, el compuesto final responde a Ia fórmula general Ib.In another additional preferred embodiment, the starting monosaccharide is D-galactose or a commercially available D-galactose derivative. In this case, the final compound responds to the general formula Ib.
Para Ia preparación de galactomiméticos Ib en los que Y representa O ó S y X representa NR1 (véanse las fórmulas XV y XVI, respectivamente), puede seguirse una estrategia sintética idéntica a Ia descrita anteriormente para Ia preparación de los glucomiméticos Vl y IX análogos, usando 5-amino-5- desoxi-1 ,2-O-isopropiliden-α-D-galactofuranosa XIV como aminoazúcar precursor (esquema 4). El compuesto XIV puede obtenerse a partir de D- galactosa comercial mediante metodologías conocidas tales como, por ejemplo, las reseñadas por P. Díaz Pérez y col. en Eur. J. Org. Chem. 2005, 2903-2913.For the preparation of galactomimetics Ib in which Y represents O or S and X represents NR 1 (see formulas XV and XVI, respectively), a synthetic strategy identical to that described above for the preparation of analog Vl and IX glucomimetics can be followed , using 5-amino-5- deoxy-1,2-O-isopropylidene-α-D-galactofuranose XIV as the precursor amino sugar (scheme 4). Compound XIV can be obtained from commercial D-galactose by known methodologies such as, for example, those reviewed by P. Díaz Pérez et al. in Eur. J. Org. Chem. 2005, 2903-2913.
Figure imgf000016_0001
Figure imgf000016_0001
Esquema 4Scheme 4
Para Ia preparación del galactomimético Ib en el que Y representa NH y X representa NR1 (véase Ia formula XVIII), puede seguirse una estrategia sintética idéntica a Ia descrita anteriormente para Ia preparación del glucomimético XII análogo, partiendo de Ia tiourea cíclica XVII (esquema 5). El compuesto XVII puede obtenerse a partir de D-galactosa comercial vía el derivado conocido 3-O-benzoil-1 ,2-O-isopropiliden-α-D-galactofuranosa (H. Wang y J. Ning, J. Ora. Chem.. 2003, 68, 2521-2524) mediante una secuencia de reacción que implica: (i) trifenilmetilación en el grupo hidroxilo primario, (ii) introducción de un grupo azida en C-5 mediante doble inversión de Ia configuración en este centro, (iii) retirada catalizada por ácido del grupo trifenilmetilo, (iv) introducción de un segundo grupo azida en C-6, (v) retirada catalizada por base del grupo benzoílo seguido de reducción simultánea de los dos grupos azida, dando 5,6-diamino-5,6-didesoxi-1 ,2-O-isopropiliden-α- D-galactofuranosa, y (vi) tiocarbonilación de Ia diamina a Ia tiourea cíclica diana XVII. Todas las transformaciones mencionadas son estándar. Como ejemplo, pueden aplicarse los procedimientos reseñados en P. Díaz Pérez y col. en Eur. J. Orq. Chem. 2005, 2903-2913 y V. M. Díaz Pérez y col., J. Orq.For the preparation of the galactomimetic Ib in which Y represents NH and X represents NR 1 (see formula XVIII), a synthetic strategy identical to that described above for the preparation of the analogous glucomimetic XII can be followed, starting from the cyclic thiourea XVII (scheme 5). Compound XVII can be obtained from commercial D-galactose via the known derivative 3-O-benzoyl-1,2-O-isopropylidene-α-D-galactofuranose (H. Wang and J. Ning, J. Ora. Chem. 2003, 68, 2521-2524) through a reaction sequence that involves: (i) triphenylmethylation in the primary hydroxyl group, (ii) introduction of an azide group in C-5 by double inversion of the configuration in this center, ( iii) acid catalyzed removal of the triphenylmethyl group, (iv) introduction of a second C-6 azide group, (v) catalyzed removal based on the benzoyl group followed by simultaneous reduction of the two azide groups, giving 5,6-diamino-5,6-dideoxy-1, 2-O-isopropylidene-α-D-galactofuranose, and (vi) thiocarbonylation of the diamine to the cyclic target thiourea XVII. All the mentioned transformations are standard. As an example, the procedures outlined in P. Díaz Pérez et al. in Eur. J. Orq. Chem. 2005, 2903-2913 and VM Díaz Pérez et al., J. Orq.
Chem. 2000, 65, 136-143.Chem. 2000, 65, 136-143.
Figure imgf000017_0001
Figure imgf000017_0001
XVII XVIIIXVII XVIII
Esquema 5Scheme 5
En los esquemas 1-5, el sustituyente R1 en las fórmulas tiene el significado indicado anteriormente para Ia e Ib.In schemes 1-5, the substituent R 1 in the formulas has the meaning indicated above for Ia and Ib.
Algunos ejemplos de inhibidores de las familias glucomimética (Ia) (compuestos 1-14) y galactomimética (Ib) (compuestos 15-23) sintetizados químicamente y usados en esta invención se muestran a continuación: Some examples of inhibitors of the glucomimetic (Ia) (compounds 1-14) and galactomimetic (Ib) (compounds 15-23) families chemically synthesized and used in this invention are shown below:
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000018_0001
Figure imgf000019_0001
1.2. Caracterización estructural de algunos de los compuestos.1.2. Structural characterization of some of the compounds.
Se realizó Ia caracterización estructural de los compuestos preparados y usados en esta invención mediante espectrometría de masas, rotación óptica, espectroscopia RMN de 1H y 13C y análisis elemental. Se presentan a continuación algunos de los resultados.The structural characterization of the compounds prepared and used in this invention was carried out by mass spectrometry, optical rotation, 1 H and 13 C NMR spectroscopy and elemental analysis. Some of the results are presented below.
(5/?,6/?,7S,8/?,8a/?)-5,6,7,8-Tetrahidroxi-3-fenilimino-2-oxaindolizidina (1). [α]D -26,7 (c 0,75, piridina). RMN-1H (500 MHz, D2O) δ 7,44-7,27 (m, 5H, Ph), 5,73 (s a, 1 H, H-5), 4,96 (t, 1 H, J1a>1b = J8aM = 8,8 Hz, H-1a), 4,69 (t, 1 H, Jβa.ib = 8,8 Hz, H-1b), 4,28 (t d, 1 H, J8,8a = 9,4 Hz, H-8a), 3,81 (t, 1 H, J67 = J7,8 = 9,4 Hz, H-7), 3,73 (dd, 1 H, J5,6 = 3,7 Hz, H-6), 3,66 (t, 1 H, H-8); RMN- 13C (75,5 MHz, D2O) δ 157,4 (CN), 129,7-123,9 (Ph), 75,3 (C-5), 74,1 (C-6), 73,0 (C-8), 71 ,9 (C-7), 70,9 (C-1 ), 56,1 (C-8a). Anal. cale, para Ci3Hi6N2O5: C, 55,71 ; H, 5,75; N, 9,99. Encontrado: C, 55,70; H, 5,81 ; N, 9,97.(5 / ?, 6 / ?, 7S, 8 / ?, 8a /?) - 5,6,7,8-Tetrahydroxy-3-phenylimino-2-oxaindolizidine (1). [α] D -26.7 (c 0.75, pyridine). 1 H NMR (500 MHz, D 2 O) δ 7.44-7.27 (m, 5H, Ph), 5.73 (sa, 1 H, H-5), 4.96 (t, 1 H , J 1a> 1b = J 8aM = 8.8 Hz, H-1a), 4.69 (t, 1 H, Jβa.ib = 8.8 Hz, H-1b), 4.28 (td, 1 H , J 8 , 8a = 9.4 Hz, H-8a), 3.81 (t, 1 H, J 67 = J 7 , 8 = 9.4 Hz, H-7), 3.73 (dd, 1 H, J 5 , 6 = 3.7 Hz, H-6), 3.66 (t, 1 H, H-8); NMR- 13 C (75.5 MHz, D 2 O) δ 157.4 (CN), 129.7-123.9 (Ph), 75.3 (C-5), 74.1 (C-6) , 73.0 (C-8), 71, 9 (C-7), 70.9 (C-1), 56.1 (C-8a). Anal. cale, for Ci 3 Hi 6 N 2 O 5 : C, 55.71; H, 5.75; N, 9.99. Found: C, 55.70; H, 5.81; N, 9.97.
(5/?,6/?,7S,8/?,8a/?)-5,6,7,8-Tetrahidroxi-3-butilimino-2-oxaindolizidina(5 / ?, 6 / ?, 7S, 8 / ?, 8a /?) - 5,6,7,8-Tetrahydroxy-3-butylimino-2-oxaindolizidine
(2). [α]D +5,9 (c 1 ,0, H2O). RMN-1H (300 MHz, D2O) δ 5,53 (d, 1 H, J5,6 = 3,9 Hz, H-5), 5,01 (t, 1 H, J1a>1b = J8a,ia = 8,8 Hz, H-1a), 4,67 (t, 1 H, J8a,ib = 8,8 Hz, H-1 b), 4,24 (t d, 1 H, J8,8a = 9,4 Hz, H-8a), 3,74 (t, 1 H, J6,7 = J7,8 = 9,4 Hz, H-7), 3,62 (dd, 1 H, H-6), 3,61 (t, 1 H, H-8), 3,36 (d t, 2H, 2JH,H = 7,1 Hz, 3JH,H = 2,1 Hz, CH2N), 1 ,55 (c, 2 H, CH2CH2N), 1 ,30 (m, 2H, CH2CH3), 0,87 (t, 3H, CH3); RMN-13C (75,5 MHz, D2O) δ 158,7 (CN), 74,9 (C-5), 73,9 (C-6), 73,0 (C-8), 71 ,9 (C-7), 70,9 (C-1 ), 56,2 (C-8a), 42,9 (CH2N), 30,4 (CH2CH2N), 19,2 (CH2CH3), 12,9 (CH3). Anal. cale, para Ci3H22N2Oi0: C, 42,62; H, 6,05; N, 7,65. Encontrado: C, 42,75; H, 6,13; N, 7,69.(2). [α] D +5.9 (c 1.0, H 2 O). 1 H NMR (300 MHz, D 2 O) δ 5.53 (d, 1 H, J 5 , 6 = 3.9 Hz, H-5), 5.01 (t, 1 H, J 1a> 1b = J 8a, i a = 8.8 Hz, H-1a), 4.67 (t, 1 H, J 8a, i b = 8.8 Hz, H-1 b), 4.24 (td, 1 H, J 8.8a = 9.4 Hz, H-8a), 3.74 (t, 1 H, J 6.7 = J 7.8 = 9.4 Hz, H-7), 3.62 (dd, 1 H, H-6), 3.61 (t, 1 H, H-8), 3.36 (dt, 2H, 2 J H , H = 7.1 Hz, 3 J H , H = 2.1 Hz, CH 2 N), 1.55 (c, 2 H, CH 2 CH 2 N), 1, 30 (m, 2H, CH 2 CH 3 ), 0.87 (t, 3H, CH 3 ); NMR- 13 C (75.5 MHz, D 2 O) δ 158.7 (CN), 74.9 (C-5), 73.9 (C-6), 73.0 (C-8), 71 , 9 (C-7), 70.9 (C-1), 56.2 (C-8a), 42.9 (CH 2 N), 30.4 (CH 2 CH 2 N), 19.2 ( CH 2 CH 3 ), 12.9 (CH 3 ). Anal. cale, for Ci 3 H 22 N 2 Oi 0 : C, 42.62; H, 6.05; N, 7.65. Found: C, 42.75; H, 6.13; N, 7.69.
(5/?,6S,7/?,8/?,8a/?)-5,6,7,8-Tetrahidroxi-2-oxa-3-octilimino-indolizidina (3): [α]D +5,9 (c 1 ,0, H2O). RMN-1H (500 MHz, D2O) δ 5,74 (d, 1 H, J5,6 = 3,8 Hz, H-5), 5,22 (t, 1 H, J1a,1b = J8a,ia = 8,9 Hz, H-1a), 4,90 (t, 1 H, J8a,ib = 8,9 Hz, H-1 b), 4,45 (t d, 1 H, J8,8a = 9,5 Hz, H-8a), 3,95 (t, 1 H, J6,7 = J7,8 = 9,5 Hz, H-7), 3,83 (dd, 1 H, H-6), 3,80 (t, 1 H, H-8), 3,57 (d t, 2H, 2JH,H = 7,1 Hz, 3JH,H = 4,2 Hz, CH2N), 1 ,53 (m, 2H, CH2CH2N), 1 ,24 (m, 1OH, 5 CH2), 0,87 (t, 3H, CH3); RMN-13C (75,5 MHz, D2O) δ 158,7 (CN), 74,9 (C-5), 73,9 (C-6), 73,0 (C-8), 71 ,9 (C-7), 70,9 (C-1 ), 56,2 (C-8a), 43,2 (CH2N), 31 ,2, 28,4, 28,2, 25,8, (5 CH2), 28,3 (CH2CH2N), 22,1 (CH2CH3), 13,5 (CH3). Anal. cale, para Ci3H22N2Oi0: C, 42,62; H, 6,05; N, 7.65. Encontrado: C, 42,75; H, 6,13; N, 7,69.(5 / ?, 6S, 7 / ?, 8 / ?, 8a /?) - 5,6,7,8-Tetrahydroxy-2-oxa-3-octylimino-indolizidine (3) : [α] D +5, 9 (c 1, 0, H 2 O). 1 H NMR (500 MHz, D 2 O) δ 5.74 (d, 1 H, J 5.6 = 3.8 Hz, H-5), 5.22 (t, 1 H, J 1a, 1b = J 8a, i a = 8.9 Hz, H-1a), 4.90 (t, 1 H, J 8a, i b = 8.9 Hz, H-1 b), 4.45 (td, 1 H, J 8.8a = 9.5 Hz, H-8a), 3.95 (t, 1 H, J 6.7 = J 7.8 = 9.5 Hz, H-7), 3.83 ( dd, 1 H, H-6), 3.80 (t, 1 H, H-8), 3.57 (dt, 2H, 2 J H , H = 7.1 Hz, 3 J H , H = 4 , 2 Hz, CH 2 N), 1, 53 (m, 2H, CH 2 CH 2 N), 1.24 (m, 1OH, 5 CH 2 ), 0.87 (t, 3H, CH 3 ); NMR- 13 C (75.5 MHz, D 2 O) δ 158.7 (CN), 74.9 (C-5), 73.9 (C-6), 73.0 (C-8), 71 , 9 (C-7), 70.9 (C-1), 56.2 (C-8a), 43.2 (CH 2 N), 31, 2, 28.4, 28.2, 25.8 , (5 CH 2 ), 28.3 (CH 2 CH 2 N), 22.1 (CH 2 CH 3 ), 13.5 (CH 3 ). Anal. cale, for Ci 3 H 22 N 2 Oi 0 : C, 42.62; H, 6.05; N, 7.65. Found: C, 42.75; H, 6.13; N, 7.69.
(5/?,6/?,7S,8/?,8a/?)-5,6,7,8-Tetrahidroxi-3-fenilimino-2-tiaindolizidina (4). [α]D -38,0 (c 0,5, H2O). RMN-1H (500 MHz, CD3OD) δ 7,22 (t, 2H, Ph), 7,00 (t, 1 H, Ph), 6,88 (d, 2H, Ph), 5,72 (d, 1 H, J5,6 = 3,7 Hz, H-5), 3,82 (td, 1 H, Ja,aa = Jβa.ib = 9,5 Hz, J8a,ia = 6,5 Hz, H-8a), 3,71 (t, 1 H, J6,7 = J7,8 = 9,5 Hz, H-7), 3,45 (dd, 1 H, H-6), 3,35 (dd, 1 H, J1a>1b = 10,9 Hz, H-1a), 3,29 (t, 1 H, H- 8), 3,00 (dd, 1 H, H-1 b). RMN-13C (125,7 MHz, CD3OD) δ 162,3 (CN), 152,6- 123,0 (Ph), 77,8 (C-5), 76,3 (C-8), 74,8 (C-7), 73,4 (C-6), 61 ,1 (C-8a), 31 ,8 (C-1 ). FABMS: m/z 319 (75, [M + Na]+). Anal. cale, para Ci3Hi6N2O4S: C, 52,69; H, 5,44; N, 9,45. Encontrado: C, 52,50; H, 5,13; N, 9,29.(5 / ?, 6 / ?, 7S, 8 / ?, 8a /?) - 5,6,7,8-Tetrahydroxy-3-phenylimino-2-thianedolizidine (4). [α] D -38.0 (c 0.5, H 2 O). 1 H NMR (500 MHz, CD 3 OD) δ 7.22 (t, 2H, Ph), 7.00 (t, 1 H, Ph), 6.88 (d, 2H, Ph), 5.72 (d, 1 H, J 5.6 = 3.7 Hz, H-5), 3.82 (td, 1 H, Ja, aa = Jβa.ib = 9.5 Hz, J 8a , i a = 6 , 5 Hz, H-8a), 3.71 (t, 1 H, J 6 , 7 = J 7 , 8 = 9.5 Hz, H-7), 3.45 (dd, 1 H, H-6 ), 3.35 (dd, 1 H, J 1a> 1b = 10.9 Hz, H-1a), 3.29 (t, 1 H, H- 8), 3.00 (dd, 1 H, H -1 B). NMR- 13 C (125.7 MHz, CD 3 OD) δ 162.3 (CN), 152.6- 123.0 (Ph), 77.8 (C-5), 76.3 (C-8) , 74.8 (C-7), 73.4 (C-6), 61, 1 (C-8a), 31, 8 (C-1). FABMS: m / z 319 (75, [M + Na] + ). Anal. cale, for Ci 3 Hi 6 N 2 O 4 S: C, 52.69; H, 5.44; N, 9.45. Found: C, 52.50; H, 5.13; N, 9.29.
(5R,6R,7S,8R,8aR)-3-Butilimino-5,6,7,8-tetrahidroxi-2-tiaindolizidina (5). [α]D -22,9 (c 0,7, H2O). RMN-1H (500 MHz, D2O) δ 5,52 (d, 1 H, J5,6 = 3,7 Hz, H-5), 3,75 (d t, 1 H, J8,8a = J8a,ib = 9,5 Hz, J8a,ia = 6,4 Hz, H-8a), 3,71 (t, 1 H, Jβj = Jτ,8 = 9,5 Hz, H-7), 3,55 (dd, 1 H, H-6), 3,45 (dd, 1 H, J1a,1b = 10,5 Hz, H- 1a), 3,40 (t, 1 H, H-8), 3,18 (m, 2H, CH2N), 3,07 (dd, 1 H, H-1 b), 1 ,52 (m, 2H, CH2CH2N), 1 ,30 (m, 2H, CH2CH3), 0,87 (t, 3H, 3JH,H = 7,4 Hz, CH3). RMN-13C (125,7 MHz, D2O) δ 162,9 (CN), 76,0 (C-5), 74,3 (C-8), 72,8 (C-7), 71 ,4 (C- 6), 59,8 (C-8a), 53,9 (CH2N), 32,0 (C-1 ), 30,4 (CH2CH2N), 19,8 (CH2CH3), 13,2 (CH3). FABMS: m/z 299 (40, [M + Na]+), 277 (100, [M + H]+). Anal. cale, para CnH20N2O4S: C, 47,81 ; H, 7,29; N, 10,14. Encontrado: C, 47,65; H, 7,14; N, 9,99.(5R, 6R, 7S, 8R, 8aR) -3-Butylimino-5,6,7,8-tetrahydroxy-2-thianedolizidine (5). [α] D -22.9 (c 0.7, H 2 O). 1 H NMR (500 MHz, D 2 O) δ 5.52 (d, 1 H, J 5.6 = 3.7 Hz, H-5), 3.75 (dt, 1 H, J 8.8a = J 8a, i b = 9.5 Hz, J 8a, i a = 6.4 Hz, H-8a), 3.71 (t, 1 H, Jβj = Jτ , 8 = 9.5 Hz, H- 7), 3.55 (dd, 1 H, H-6), 3.45 (dd, 1 H, J 1a, 1b = 10.5 Hz, H-1a), 3.40 (t, 1 H, H-8), 3.18 (m, 2H, CH 2 N), 3.07 (dd, 1 H, H-1 b), 1.52 (m, 2H, CH 2 CH 2 N), 1, 30 (m, 2H, CH 2 CH 3 ), 0.87 (t, 3H, 3 J H, H = 7.4 Hz, CH 3 ). NMR- 13 C (125.7 MHz, D 2 O) δ 162.9 (CN), 76.0 (C-5), 74.3 (C-8), 72.8 (C-7), 71, 4 (C - 6), 59.8 (C-8a), 53.9 (CH 2 N), 32.0 (C-1), 30.4 (CH 2 CH 2 N), 19.8 (CH 2 CH 3 ), 13.2 (CH 3 ). FABMS: m / z 299 (40, [M + Na] + ), 277 (100, [M + H] + ). Anal. cale, for CnH 20 N 2 O 4 S: C, 47.81; H, 7.29; N, 10.14. Found: C, 47.65; H, 7.14; N, 9.99.
(5R,6R,7S,8R,8aR)-5,6,7,8-Tetrahidroxi-3-octilimino-2-tiaindolizidina (6).(5R, 6R, 7S, 8R, 8aR) -5,6,7,8-Tetrahydroxy-3-octylimino-2-thianedolizidine (6).
[α]D -24,5 (c 0,5, MeOH). RMN-1H (300 MHz, D2O) δ 5,50 (d, 1 H, J5,6 = 3,7 Hz, H-5), 4,20 (m, 1 H, H-8a), 3,66 (m, 2H, H-7, H-1a), 3,52 (dd, 1 H, J67 = 10,0, H-6), 3,45 (t, 1 H, J7,8 = J8,8a = 9,5 Hz, H-8), 3,32 (m, 3H, H-1 b, CH2N), 1 ,56 (m, 2H, CH2CH2N), 1 ,18 (m, 1OH, CH2), 0,74 (t, 3H, 3JH,H = 6,9 Hz, CH3). RMN-13C (75,5 MHz, D2O) δ 162,5 (CN), 76,6 (C-5), 73,5 (C-8), 72,0 (C-7), 70,9 (C-6), 63,6 (C-8a), 49,4 (CH2N), 31 ,5 (C-1 ), 31 ,3, 28,6, 28,5, 28,3, 26,0 (CH2), 22,3 (CH2CH3), 13,7 (CH3). FABMS: m/z 355 (30, [M + Na]+), 333 (100, [M + H]+). Anal. cale, para Ci5H28N2O4S: C, 54,19; H, 8,49; N, 8,43. Encontrado: C, 53,94; H, 8,42; N, 8,29.[α] D -24.5 (c 0.5, MeOH). 1 H NMR (300 MHz, D 2 O) δ 5.50 (d, 1 H, J 5.6 = 3.7 Hz, H-5), 4.20 (m, 1 H, H-8a) , 3.66 (m, 2H, H-7, H-1a), 3.52 (dd, 1 H, J 67 = 10.0, H-6), 3.45 (t, 1 H, J 7 , 8 = J 8.8a = 9.5 Hz, H-8), 3.32 (m, 3H, H-1 b, CH 2 N), 1.56 (m, 2H, CH 2 CH 2 N) , 1, 18 (m, 1OH, CH 2 ), 0.74 (t, 3H, 3 J H, H = 6.9 Hz, CH 3 ). NMR- 13 C (75.5 MHz, D 2 O) δ 162.5 (CN), 76.6 (C-5), 73.5 (C-8), 72.0 (C-7), 70 , 9 (C-6), 63.6 (C-8a), 49.4 (CH 2 N), 31, 5 (C-1), 31, 3, 28.6, 28.5, 28.3 , 26.0 (CH 2 ), 22.3 (CH 2 CH 3 ), 13.7 (CH 3 ). FABMS: m / z 355 (30, [M + Na] + ), 333 (100, [M + H] + ). Anal. cale, for Ci 5 H 28 N 2 O 4 S: C, 54.19; H, 8.49; N, 8.43. Found: C, 53.94; H, 8.42; N, 8.29.
(5/?,6/?,7S,8/?,8a/?)-3-[2'-(Λ/,Λ/-Bis-(2-hexanamidoetil)aminoetil)-imino]- 5,6,7,8-tetrahidroxi-2-tiaindolizidina (7). [α]D -5,0 (c 1 ,0, H2O). FR 0,41 (CH2CI2-MeOH-H2O 40:10:1 ). RMN-1H (500 MHz, D2O) δ 5,62 (d, 1 H, J5,6 = 3,8 Hz, H-5), 3,85 (m, 1 H, H-8a), 3,74 (t, 1 H, J6,7 = J7,β = 9,5 Hz, H-7), 3,57 (dd, 1 H, H-6), 3,56 (dd, 1 H, J1a,1 b = 10,5 Hz, J8a,1a = 6,5 Hz, H-1a), 3,45 (m, 6H, CH2NCS, CH2NHCO), 3,44 (t, 1 H, J88a = 9,5 Hz, H-8), 3,25 (m, 2H, CH2NCS), 3,18 (m, 4H, CH2CH2NHCO), 3,17 (t, 1 H, J8a 1 b = 10,5 Hz, H-1 b), 2,16 (t, 4H, 3JH,H = 7,5 Hz, CH2CONH), 1 ,47 (m, 4H, CH2CH2CONH), 1 ,18 (m, 8H, CH2), 0,76 (t, 6H, 3JH,H = 7,0 Hz, CH3). RMN-13C (125,7 MHz, D2O) δ 178,3 (CO), 162,9 (CN), 75,9 (C-5), 74,3 (C-8), 72,6 (C-7), 71 ,3 (C-6), 60,5 (C-8a), 54,4 (CH2CH2NCS), 54,0 (CH2CH2NHCO), 48,0 (CH2NCS), 35,7 (CH2NHCO), 35,6 (CH2CONH), 31 ,1 (C-1 ), 30,6 (CH2), 25,0 (CH2CH2CONH), 21 ,7 (CH2CH3), 13,2 (CH3). FABMS: m/z 568 (30, [M + Na]+), 546 (40, [M + H]+). Anal. cale, para C25H47N5O6S: C, 55,02; H, 8,68; N, 12,83. Encontrado: C, 55,09; H, 8,66; N, 12,86.(5 / ?, 6 / ?, 7S, 8 / ?, 8a /?) - 3- [2 '- (Λ /, Λ / -Bis- (2-hexanamidoethyl) aminoethyl) -imino] - 5,6, 7,8-tetrahydroxy-2-thianedolizidine (7). [α] D -5.0 (c 1.0, H 2 O). F R 0.41 (CH 2 CI 2 -MeOH-H 2 O 40: 10: 1). 1 H NMR (500 MHz, D 2 O) δ 5.62 (d, 1 H, J 5.6 = 3.8 Hz, H-5), 3.85 (m, 1 H, H-8a) , 3.74 (t, 1 H, J 6.7 = J 7, β = 9.5 Hz, H-7), 3.57 (dd, 1 H, H-6), 3.56 (dd, 1 H, J 1a, 1 b = 10.5 Hz, J 8a, 1a = 6.5 Hz, H-1a), 3.45 (m, 6H, CH 2 NCS, CH 2 NHCO), 3.44 ( t, 1 H, J 88a = 9.5 Hz, H-8), 3.25 (m, 2H, CH 2 NCS), 3.18 (m, 4H, CH 2 CH 2 NHCO), 3.17 ( t, 1 H, J 8a 1 b = 10.5 Hz, H-1 b), 2.16 (t, 4H, 3 J H, H = 7.5 Hz, CH 2 CONH), 1.47 (m , 4H, CH 2 CH 2 CONH), 1, 18 (m, 8H, CH 2 ), 0.76 (t, 6H, 3 J H, H = 7.0 Hz, CH 3 ). NMR- 13 C (125.7 MHz, D 2 O) δ 178.3 (CO), 162.9 (CN), 75.9 (C-5), 74.3 (C-8), 72.6 (C-7), 71, 3 (C-6), 60.5 (C-8a), 54.4 (CH 2 CH 2 NCS), 54.0 (CH 2 CH 2 NHCO), 48.0 ( CH 2 NCS), 35.7 (CH 2 NHCO), 35.6 (CH 2 CONH), 31, 1 (C-1), 30.6 (CH 2 ), 25.0 (CH 2 CH 2 CONH) , 21, 7 (CH 2 CH 3 ), 13.2 (CH 3 ). FABMS: m / z 568 (30, [M + Na] + ), 546 (40, [M + H] + ). Anal. cale, for C 25 H 47 N 5 O 6 S: C, 55.02; H, 8.68; N, 12.83. Found: C, 55.09; H, 8.66; N, 12.86.
Clorhidrato de (5R,6R,7S,8R,8aR)-3-(8-aminooctil)imino-5,6,7,8- tetrahidroxi-2-tiaindolizidina (8). [α]D -7,0 (c 1 ,0, H2O). RMN-1H (500 MHz,Hydrochloride (5R, 6R, 7S, 8R, 8aR) -3- (8-aminooctyl) imino-5,6,7,8-tetrahydroxy-2-thianedolizidine (8). [α] D -7.0 (c 1.0, H 2 O). 1 H NMR (500 MHz,
D2O, 313 K) δ 5,76 (d, 1 H, J56 = 4,0 Hz, H-5), 4,46 (m, 1 H, H-8a), 3,92 (m, 2H, H-7, H-1a), 3,78 (dd, 1 H, J6,7 = 9,5 Hz, H-6), 3,71 (t, 1 H, J7,8 = J8,8a = 9,5 Hz, H-8), 3,61 (t, 1 H, J1a,1b = J8a,1 b = 10,0 Hz, H-1b), 3,57 (t, 2H, 3JH,H = 7,0 Hz, CH2N), 3,12 (t, 2H, 3JH,H = 7,5 Hz, CH2NH2), 1 ,79 (m, 4H, CH2), 1 ,48 (m, 8H, CH2). RMN-13C (125,7 MHz, D2O, 313 K) δ 173,0 (CN), 76,6 (C-5), 73,3 (C-8), 71 ,9 (C-7), 70,8 (C-6), 63,6 (C-8a), 49,2 (CH2N), 39,8 (CH2NH2), 31 ,4 (C-1 ), 28,2, 28,1 , 28,0, 26,9, 27,8, 25,7 (CH2). FABMS: m/z 348 (30, [M + H]+). HRFABMS: m/z 348,194640; cale, para Ci5H30N3O4S: 348,195704. Anal. cale, para Ci5H30CIN3O4S: C, 46,92; H, 7,88; N, 10,94; S, 8,35. Encontrado: C, 46,57; H, 7,69; N, 10,61 ; S, 8,04.D 2 O, 313 K) δ 5.76 (d, 1 H, J 56 = 4.0 Hz, H-5), 4.46 (m, 1 H, H-8a), 3.92 (m, 2H, H-7, H-1a), 3.78 (dd, 1 H, J 6.7 = 9.5 Hz, H-6), 3.71 (t, 1 H, J 7.8 = J 8.8a = 9.5 Hz, H-8), 3.61 (t, 1 H, J 1a, 1b = J 8a, 1 b = 10.0 Hz, H-1b), 3.57 (t, 2H, 3 J H, H = 7.0 Hz, CH 2 N), 3.12 (t, 2H, 3 J H, H = 7.5 Hz, CH 2 NH 2 ), 1.79 (m, 4H , CH 2 ), 1, 48 (m, 8H, CH 2 ). NMR- 13 C (125.7 MHz, D 2 O, 313 K) δ 173.0 (CN), 76.6 (C-5), 73.3 (C-8), 71, 9 (C-7 ), 70.8 (C-6), 63.6 (C-8a), 49.2 (CH 2 N), 39.8 (CH 2 NH 2 ), 31, 4 (C-1), 28, 2, 28.1, 28.0, 26.9, 27.8, 25.7 (CH 2 ). FABMS: m / z 348 (30, [M + H] + ). HRFABMS: m / z 348.194640; cale, for Ci 5 H 30 N 3 O 4 S: 348,195704. Anal. cale, for Ci 5 H 30 CIN 3 O 4 S: C, 46.92; H, 7.88; N, 10.94; S, 8.35. Found: C, 46.57; H, 7.69; N, 10.61; S, 8.04.
(5R,6R,7S,8R,8aR)-3-(4-Adamantano-1-ilcarboxamidobutil)imino-5,6,7,8- tetrahidroxi-2-tiaindolizidina (9). [α]D -7,1 (c 1 ,0, H2O). FR 0,28 (CH2CI2- H2O-MeOH 40:10:1 ). RMN-1H (500 MHz, D2O, 313 K) δ 5,73 (d, 1 H, J56 = 3,7 Hz, H-5), 4,38 (m, 1 H, H-8a), 3,91 (t, 1 H, J6,7 = J7,β = 9,5 Hz, H-7), 3,87 (dd, 1 H, Jia,ib = 11 ,3 Hz, J8a,ia = 7,5 Hz, H-1a), 3,74 (dd, 1 H, J6,7 = 9,5 Hz, H- 6), 3,67 (t, 1 H, J8,8a = 9,5 Hz, H-8), 3,53 (m, 3H, H-1 b, CH2N), 3,33 (t, 2H, 3JH,H = 6,7 Hz, CH2NHCO), 2,14 (s a, 3H, CH), 1 ,92 (m, 6H, CCH2), 1 ,83 (m, 6H, CHCH2), 1 ,67 (m, 2H, CH2). RMN-13C (125,7 MHz, D2O, 313 K) δ 182,0 (CO), 173,0 (CN), 76,6 (C-5), 73,5 (C-8), 72,0 (C-7), 70,9 (C-6), 63,1 (C-8a), 49,3 (CH2N), 40,8 (CCONH), 38,8 (CH), 38,6 (CH2NHCO), 36,1 (CCH2), 31 ,4 (C-1 ), 28,0 (CHCH2), 25,9, 25,6 (CH2). FABMS: m/z 476 (20, [M + Na]+), 454 (10, [M + H]+). Anal. cale, para C22H35CIN3O5S: C, 58,25; H, 7,78; N, 9,26; S, 7,07.(5R, 6R, 7S, 8R, 8aR) -3- (4-Adamantane-1-ylcarboxamidobutyl) imino-5,6,7,8-tetrahydroxy-2-thianedolizidine (9). [α] D -7.1 (c 1.0, H 2 O). F R 0.28 (CH 2 CI 2 - H 2 O-MeOH 40: 10: 1). 1 H NMR (500 MHz, D 2 O, 313 K) δ 5.73 (d, 1 H, J 56 = 3.7 Hz, H-5), 4.38 (m, 1 H, H-8a ), 3.91 (t, 1 H, J 6.7 = J 7, β = 9.5 Hz, H-7), 3.87 (dd, 1 H, Ji a, i b = 11, 3 Hz , J 8a, i a = 7.5 Hz, H-1a), 3.74 (dd, 1 H, J 6.7 = 9.5 Hz, H- 6), 3.67 (t, 1 H, J 8.8a = 9.5 Hz, H-8), 3.53 (m, 3H, H-1 b, CH 2 N), 3.33 (t, 2H, 3 J H, H = 6.7 Hz, CH 2 NHCO), 2.14 (sa, 3H, CH), 1.92 (m, 6H, CCH 2 ), 1.83 (m, 6H, CHCH 2 ), 1.67 (m, 2H, CH 2 ). NMR- 13 C (125.7 MHz, D 2 O, 313 K) δ 182.0 (CO), 173.0 (CN), 76.6 (C-5), 73.5 (C-8), 72.0 (C-7), 70.9 (C-6), 63.1 (C-8a), 49.3 (CH 2 N), 40.8 (CCONH), 38.8 (CH), 38.6 (CH 2 NHCO), 36.1 (CCH 2 ), 31, 4 (C-1), 28.0 (CHCH 2 ), 25.9, 25.6 (CH 2 ). FABMS: m / z 476 (20, [M + Na] + ), 454 (10, [M + H] + ). Anal. cale, for C 22 H 35 CIN 3 O 5 S: C, 58.25; H, 7.78; N, 9.26; S, 7.07.
(5R,6R,7S,8R,8aR)-3-(11 -Azida-3,6,9-trioxaundecil)imino-5,6,7,8- tetrahidroxi-2-tiaindolizidina (10). [α]D -13,0 (c 1 ,0, H2O). RMN-1H (500 MHz, D2O) δ 5,55 (d, 1 H, J5 6 = 3,7 Hz, H-5), 3,73 (m, 14H, H-7, H-8a, OCH2), 3,54 (dd, 1 H, J6 7 = 9,8 Hz, H-6), 3,45 (m, 2H, CH2N), 3,45 (dd, 1 H, Jia.ib = 10,7 Hz, J8a,ia = 6,3 Hz, H-1a), 3,39 (t, 1 H, J8,8a = 9,7 Hz, H-8), 3,35 (m, 2H, CH2N3), 3,05 (t, 1 H, J8a,ib = 10,7 Hz, H-1b). RMN-13C (125,7 MHz, D2O) δ 166,1 (CN), 78,3 (C-5), 77,0 (C-8), 75,3 (C-7), 73,9 (C-6), 73,4, 73,1 , 72,1 , 72,0, 71 ,8 (OCH2), 62,1 (C-8a), 56,0 (CH2N3), 52,7 (CH2N), 45,7 (CH2CH2N3), 33,1 (C-1 ). FABMS: m/z 444 (15, [M + Na]+). HRFABMS: m/z 444,154344; cale, para Ci5H27N5O7NaS: 444,152890. Anal. cale, para Ci5H27N5O7S: C, 42,75; H, 6,46; N, 16,62; S, 7,61. Encontrado: C, 42,51 ; H, 6,55; N, 16,46; S, 7,39. (5R,6R,7S,8R,8aR)-3-(A 1 -Adamantano-1 -ilcarboxamido-3,6,9- trioxaundecil)imino-5,6,7,8-tetrahidroxi-2-tiaindolizidina (11). [α]D -6,2 (c 1 ,0, H2O). FR 0,51 (CH2CI2-H2O-MeOH 40:10:1 ). RMN-1H (500 MHz, D2O, 313 K) δ 5,76 (d, 1 H, J5,6 = 3,7 Hz, H-5), 4,21 (m, 1 H, H-8a), 3,90 (t, 1 H, J67 = J7,8 = 9,5 Hz, H-7), 3,84 (m, 12H, OCH2), 3,79 (dd, 1 H, J1a,1b = 11 ,2 Hz, J8a,1a = 7,1 Hz, H-1a), 3,73 (dd, 1 H, H-6), 3,67 (m, 2H, CH2N), 3,63 (t, 1 H, J8,8a = 9,5 Hz, H-8), 3,52 (t, 2H, 3JH,H = 5,5 Hz, CH2NHCO), 3,42 (t, 1 H, J8a,1 b = 11 ,2 Hz, H-1 b), 2,15 (s a, 3H, CH), 1 ,94 (m, 6H, CCH2) 1 ,85 (m, 6H, CH2). RMN-13C (125,7 MHz, D2O, 313 K) δ 182,0 (CO), 163,0 (CN), 76,4 (C-5), 74,0 (C-8), 72,5 (C-7), 71 ,2 (C-6), 69,9, 69,8, 69,7, 69,3, 69,2 (OCH2), 61 ,9 (C-8a), 51 ,1 (CH2N), 40,8 (CCONH), 39,1 (CH2NHCO), 38,7 (CH), 36,1 (CCH2), 31 ,2 (C-1 ), 27,9 (CH2). FABMS: m/z 580 (100, [M + Na]+), 558 (5, [M + H]+). Anal. cale, para C26H43N3O8S: C, 55,99; H, 7,77; N, 7,53; S, 5,75. Encontrado: C, 55,68; H, 7,58; N, 7,32; S, 5,39.(5R, 6R, 7S, 8R, 8aR) -3- (11-Azide-3,6,9-trioxaundecyl) imino-5,6,7,8-tetrahydroxy-2-thianedolizidine (10). [α] D -13.0 (c 1.0, H 2 O). 1 H NMR (500 MHz, D 2 O) δ 5.55 (d, 1 H, J 5 6 = 3.7 Hz, H-5), 3.73 (m, 14H, H-7, H- 8a, OCH 2 ), 3.54 (dd, 1 H, J 6 7 = 9.8 Hz, H-6), 3.45 (m, 2H, CH 2 N), 3.45 (dd, 1 H , Ji a .i b = 10.7 Hz, J 8a, i a = 6.3 Hz, H-1a), 3.39 (t, 1 H, J 8.8a = 9.7 Hz, H-8 ), 3.35 (m, 2H, CH 2 N 3 ), 3.05 (t, 1 H, J 8a, i b = 10.7 Hz, H-1b). NMR- 13 C (125.7 MHz, D 2 O) δ 166.1 (CN), 78.3 (C-5), 77.0 (C-8), 75.3 (C-7), 73 , 9 (C-6), 73.4, 73.1, 72.1, 72.0, 71, 8 (OCH 2 ), 62.1 (C-8a), 56.0 (CH 2 N 3 ) , 52.7 (CH 2 N), 45.7 (CH 2 CH 2 N 3 ), 33.1 (C-1). FABMS: m / z 444 (15, [M + Na] + ). HRFABMS: m / z 444.154344; cale, for Ci 5 H 27 N 5 O 7 NaS: 444.152890. Anal. cale, for Ci 5 H 27 N 5 O 7 S: C, 42.75; H, 6.46; N, 16.62; S, 7.61. Found: C, 42.51; H, 6.55; N, 16.46; S, 7.39. (5R, 6R, 7S, 8R, 8aR) -3- (A 1 -Adamantane-1-ylcarboxamido-3,6,9-trioxaundecyl) imino-5,6,7,8-tetrahydroxy-2-thianedolizidine (11) . [α] D -6.2 (c 1.0, H 2 O). F R 0.51 (CH 2 CI 2 -H 2 O-MeOH 40: 10: 1). 1 H NMR (500 MHz, D 2 O, 313 K) δ 5.76 (d, 1 H, J 5.6 = 3.7 Hz, H-5), 4.21 (m, 1 H, H -8a), 3.90 (t, 1 H, J 67 = J 7.8 = 9.5 Hz, H-7), 3.84 (m, 12H, OCH 2 ), 3.79 (dd, 1 H, J 1a, 1b = 11, 2 Hz, J 8a, 1a = 7.1 Hz, H-1a), 3.73 (dd, 1 H, H-6), 3.67 (m, 2H, CH 2 N), 3.63 (t, 1 H, J 8.8a = 9.5 Hz, H-8), 3.52 (t, 2H, 3 J H, H = 5.5 Hz, CH 2 NHCO ), 3.42 (t, 1 H, J 8a, 1 b = 11, 2 Hz, H-1 b), 2.15 (sa, 3H, CH), 1.94 (m, 6H, CCH 2 ) 1.85 (m, 6H, CH 2 ). NMR- 13 C (125.7 MHz, D 2 O, 313 K) δ 182.0 (CO), 163.0 (CN), 76.4 (C-5), 74.0 (C-8), 72.5 (C-7), 71, 2 (C-6), 69.9, 69.8, 69.7, 69.3, 69.2 (OCH 2 ), 61, 9 (C-8a) , 51, 1 (CH 2 N), 40.8 (CCONH), 39.1 (CH 2 NHCO), 38.7 (CH), 36.1 (CCH 2 ), 31, 2 (C-1), 27.9 (CH 2 ). FABMS: m / z 580 (100, [M + Na] + ), 558 (5, [M + H] + ). Anal. cale, for C 26 H 43 N 3 O 8 S: C, 55.99; H, 7.77; N, 7.53; S, 5.75. Found: C, 55.68; H, 7.58; N, 7.32; S, 5.39.
Clorhidrato de (5R,6R,7S,8R,8aR)-2-aza-3-bencilimino-5,6,7,8- tetrahidroxindolizidina (12). [α]D +4,0 (c 1 ,0, H2O). RMN-1H (400 MHz, D2O) δ 7,34 (m, 5H, Ph), 5,40 (d, 1 H, J5,6 = 3,8 Hz, H-5), 4,40 (s, 2H, CH2Ph), 3,93 (m, 1 H, H-8a), 3,76 (t, 1 H, J1a,1b = J8a,1a = 9,5 Hz, H-1a), 3,66 (t, 1 H, J6j = J7,8 = 9,5 Hz, H-7), 3,57 (dd, 1 H, H-6), 3,46 (t, 1 H, J8,8a = 9,5 Hz, H- 8), 3,42 (dd, 1 H, J8a,1 b = 9,5 Hz, H-1 b). RMN-13C (75,5 MHz, D2O) δ 156,5 (CN), 136,3-127,0 (Ph), 74,4 (C-5), 73,3 (C-8), 72,4 (C-7), 71 ,4 (C-6), 56,2 (C-8a), 46,1 (C-1 , CH2Ph). FABMS: m/z 294 (60, [M - Cl]+). Anal. cale, para Ci4H22CIN3O5: C, 48,35; H, 6,38; N, 12,08. Encontrado: C, 48,19; H, 6,20; N, 11 ,92.Hydrochloride (5R, 6R, 7S, 8R, 8aR) -2-aza-3-benzylimino-5,6,7,8-tetrahydroxindolizidine (12). [α] D +4.0 (c 1.0, H 2 O). 1 H NMR (400 MHz, D 2 O) δ 7.34 (m, 5H, Ph), 5.40 (d, 1 H, J 5.6 = 3.8 Hz, H-5), 4, 40 (s, 2H, CH 2 Ph), 3.93 (m, 1 H, H-8a), 3.76 (t, 1 H, J 1a, 1b = J 8a, 1a = 9.5 Hz, H -1a), 3.66 (t, 1 H, J 6 j = J 7.8 = 9.5 Hz, H-7), 3.57 (dd, 1 H, H-6), 3.46 ( t, 1 H, J 8.8a = 9.5 Hz, H- 8), 3.42 (dd, 1 H, J 8a, 1 b = 9.5 Hz, H-1 b). NMR- 13 C (75.5 MHz, D 2 O) δ 156.5 (CN), 136.3-127.0 (Ph), 74.4 (C-5), 73.3 (C-8) , 72.4 (C-7), 71, 4 (C-6), 56.2 (C-8a), 46.1 (C-1, CH 2 Ph). FABMS: m / z 294 (60, [M - Cl] + ). Anal. cale, for Ci 4 H 22 CIN 3 O 5 : C, 48.35; H, 6.38; N, 12.08. Found: C, 48.19; H, 6.20; N, 11, 92.
Clorhidrato de (5R,6R,7S,8R,8aR)-2-aza-3-butilimino-5,6,7,8- tetrahidroxindolizidina (13). [α]D +7,7 (c 0,8, H2O). FR 0,53 (CH3CN-H2O- AcOH6:3:1 ). RMN-1H (300 MHz, D2O) δ 5,42 (d, 1 H, J5,6 = 3,7 Hz, H-5), 3,95 (m, 1 H, H-8a), 3,86 (t, 1 H, J1a,1b = J8a,1a = 9,5 Hz, H-1a), 3,72 (t, 1 H, J6,7 = J7,8 = 9,5 Hz, H-7), 3,60 (dd, 1 H, H-6), 3,52 (t, 1 H, J88a = 9,5 Hz, H-8), 3,50 (t, 1 H, J8a,1 b = 9,5 Hz, H-1 b), 3,23 (t, 2H, 3JH,H = 7,1 Hz, CH2N), 1 ,57 (m, 2H, CH2CH2N), 1 ,35 (m, 2H, CH2CH3), 0,92 (t, 3H, 3JH,H = 7,3 Hz, CH3). RMN-13C (75,5 MHz, D2O) δ 156,6 (CN), 74,6 (C-5), 73,5 (C-8), 72,6 (C-7), 71 ,7 (C-6), 56,3 (C-8a), 46,3 (C-1 ), 42,8 (CH2N), 30,3 (CH2CH2N), 19,3 (CH2CH3), 12,9 (CH3). FABMS: m/z 260 (100, [M - Cl]+). Anal. cale, para CnH24CIN3O5: C, 42,11 ; H, 7,71 ; N, 13,39. Encontrado: C, 42,21 ; H, 7,81 ; N, 13,31. Clorhidrato de (5R,6R,7S,8R,8aR)-2-aza-5,6,7,8-tetrahidroxi-3- octiliminoindolizidina (14). [α]D +6,6 (c 0,97, H2O). RMN-1H (300 MHz, D2O) δ 5,31 (d, 1 H, J5,6 = 3,8 Hz, H-5), 3,85 (m, 1 H, H-8a), 3,75 (t, 1 H, J1a,1b = J8a,ia = 9,7 Hz, H-1a), 3,64 (t, 1 H, J6,7 = J7,8 = 9,7 Hz, H-7), 3,49 (dd, 1 H, H- 6), 3,42 (t, 1 H, J8,8a = 9,7 Hz, H-8), 3,39 (t, 1 H, J8a,1b = 9,7 Hz, H-1 b), 3,21 (t, 2H, 3JH,H = 7,1 Hz, CH2N), 1 ,50 (m, 2H, CH2CH2N), 1 ,23 (m, 1OH, CH2), 0,79 (t, 3H, 3JH,H = 6,9 Hz, CH3). RMN-13C (75,5 MHz, D2O) δ 156,6 (CN), 74,7 (C- 5), 73,5 (C-8), 72,6 (C-7), 71 ,8 (C-6), 56,3 (C-8a), 46,3 (C-1 ), 43,0 (CH2N), 31 ,0, 28,3, 28,2, 25,8 (CH2), 22,0 (CH2CH3), 13,4 (CH3). FABMS: m/z 316 (100, [M - Cl]+). Anal. cale, para Ci5H32CIN3O5: C, 48,71 ; H, 8,72; N, 11 ,36. Encontrado: C, 48,58; H, 8,61 ; N, 11 ,23.Hydrochloride (5R, 6R, 7S, 8R, 8aR) -2-aza-3-butylimino-5,6,7,8-tetrahydroxindolizidine (13). [α] D +7.7 (c 0.8, H 2 O). F R 0.53 (CH 3 CN-H 2 O- AcOH6: 3: 1). 1 H NMR (300 MHz, D 2 O) δ 5.42 (d, 1 H, J 5.6 = 3.7 Hz, H-5), 3.95 (m, 1 H, H-8a) , 3.86 (t, 1 H, J 1a, 1b = J 8a, 1a = 9.5 Hz, H-1a), 3.72 (t, 1 H, J 6.7 = J 7.8 = 9 , 5 Hz, H-7), 3.60 (dd, 1 H, H-6), 3.52 (t, 1 H, J 88a = 9.5 Hz, H-8), 3.50 (t , 1 H, J 8a, 1 b = 9.5 Hz, H-1 b), 3.23 (t, 2H, 3 J H, H = 7.1 Hz, CH 2 N), 1.57 (m , 2H, CH 2 CH 2 N), 1.35 (m, 2H, CH 2 CH 3 ), 0.92 (t, 3H, 3 J H, H = 7.3 Hz, CH 3 ). NMR- 13 C (75.5 MHz, D 2 O) δ 156.6 (CN), 74.6 (C-5), 73.5 (C-8), 72.6 (C-7), 71 , 7 (C-6), 56.3 (C-8a), 46.3 (C-1), 42.8 (CH 2 N), 30.3 (CH 2 CH 2 N), 19.3 ( CH 2 CH 3 ), 12.9 (CH 3 ). FABMS: m / z 260 (100, [M - Cl] + ). Anal. cale, for CnH 24 CIN 3 O 5 : C, 42.11; H, 7.71; N, 13.39. Found: C, 42.21; H, 7.81; N, 13.31. Hydrochloride (5R, 6R, 7S, 8R, 8aR) -2-aza-5,6,7,8-tetrahydroxy-3- octyliminoindolizidine (14). [α] D +6.6 (c 0.97, H 2 O). 1 H NMR (300 MHz, D 2 O) δ 5.31 (d, 1 H, J 5.6 = 3.8 Hz, H-5), 3.85 (m, 1 H, H-8a) , 3.75 (t, 1 H, J 1a, 1b = J 8a , ia = 9.7 Hz, H-1a), 3.64 (t, 1 H, J 6 , 7 = J 7 , 8 = 9 , 7 Hz, H-7), 3.49 (dd, 1 H, H- 6), 3.42 (t, 1 H, J 8.8a = 9.7 Hz, H-8), 3.39 (t, 1 H, J 8a, 1b = 9.7 Hz, H-1 b), 3.21 (t, 2H, 3 J H, H = 7.1 Hz, CH 2 N), 1.50 ( m, 2H, CH 2 CH 2 N), 1, 23 (m, 1OH, CH 2 ), 0.79 (t, 3H, 3 J H, H = 6.9 Hz, CH 3 ). NMR- 13 C (75.5 MHz, D 2 O) δ 156.6 (CN), 74.7 (C-5), 73.5 (C-8), 72.6 (C-7), 71 , 8 (C-6), 56.3 (C-8a), 46.3 (C-1), 43.0 (CH 2 N), 31, 0, 28.3, 28.2, 25.8 (CH 2 ), 22.0 (CH 2 CH 3 ), 13.4 (CH 3 ). FABMS: m / z 316 (100, [M-Cl] + ). Anal. cale, for Ci 5 H 32 CIN 3 O 5 : C, 48.71; H, 8.72; N, 11, 36. Found: C, 48.58; H, 8.61; N, 11, 23.
(5/?,6/?,7S,8S,8a/?)-5,6,7,8-Tetrahidroxi-3-fenilimino-2-oxaindolizidina (15). [α]D -5,2 (c 0,58, H2O ). RMN-1H (500 MHz, D2O) δ 7,23-6,91 (m, 5H, Ph), 5,44 (d, 1 H, J5i6 = 4,0 Hz, H-5), 4,36 (t, 1 H, J8a,1a = J1a,1b = 8,3 Hz, H-1a), 4,20 (t, 1 H, J8a 1 b = 7,8 Hz, H-1 b), 4,11 (m, 1 H, H-8a), 3,93 (m, 1 H, H-8), 3,82 (dd, 1 H, J6,7 = 10,2 Hz, J7,8 = 2,6 Hz, H-7), 3,77 (dd, 1 H, H-6). RMN-13C (125,7 MHz, D2O) δ 153,5 (CN), 146,1-123,4 (Ph), 78,3 (C-5), 69,5 (C-7), 68,2 (C-8), 67,7 (C-6), 66,4 (C-1 ), 53,6 (C-8a). FABMS: m/z 303 (60, [M + Na]+), 281 (30, [M + H]+). Anal. cale, para Ci3H16N2O5: C, 55,71 ; H, 5,75; N, 9,99. Encontrado: C, 55,74; H, 5,64; N, 9,87.(5 / ?, 6 / ?, 7S, 8S, 8a /?) - 5,6,7,8-Tetrahydroxy-3-phenylimino-2-oxaindolizidine (15). [α] D -5.2 (c 0.58, H 2 O). 1 H NMR (500 MHz, D 2 O) δ 7.23-6.91 (m, 5H, Ph), 5.44 (d, 1 H, J 5i6 = 4.0 Hz, H-5), 4.36 (t, 1 H, J 8a, 1a = J 1a, 1b = 8.3 Hz, H-1a), 4.20 (t, 1 H, J 8a 1 b = 7.8 Hz, H- 1 b), 4.11 (m, 1 H, H-8a), 3.93 (m, 1 H, H-8), 3.82 (dd, 1 H, J 6.7 = 10.2 Hz , J 7.8 = 2.6 Hz, H-7), 3.77 (dd, 1 H, H-6). NMR- 13 C (125.7 MHz, D 2 O) δ 153.5 (CN), 146.1-123.4 (Ph), 78.3 (C-5), 69.5 (C-7) , 68.2 (C-8), 67.7 (C-6), 66.4 (C-1), 53.6 (C-8a). FABMS: m / z 303 (60, [M + Na] + ), 281 (30, [M + H] + ). Anal. cale, for Ci 3 H 16 N 2 O 5 : C, 55.71; H, 5.75; N, 9.99. Found: C, 55.74; H, 5.64; N, 9.87.
(5R,6R,7S,8S,8aR)-3-Butilimino-5,6,7,8-tetrahidroxi-2-oxaindolizidina (16). [α]D -4,1 (c 1 ,0, H2O). RMN-1H (500 MHz, D2O) δ 5,52 (d, 1 H, J5 6 = 4,0 Hz, H-5), 4,82 (t, 1 H, J8a,1a = J1a,1b = 9,0 Hz, H-1a), 4,69 (dd, 1 H, J8a,1b = 7,0 Hz, H-1 b), 4,49 (ddd, 1 H, J88a = 2,5 Hz, H-8a), 4,02 (t, 1 H, J78 = 2,5 Hz, H- 8), 3,87 (dd, 1 H, J67 = 10,5, H-7), 3,77 (dd, 1 H, H-6), 3,30 (t, 2H, 3JH,H = 7,0 Hz, CH2N), 1 ,48 (m, 2H, CH2CH2N), 1 ,25 (m, 2H, CH2CH3), 0,81 (t, 3H, 3JH,H = 7,0 Hz, CH3). RMN-13C (125,7 MHz, D2O) δ 158,5 (CN), 74,9 (C-5), 70,6 (C-1 ), 68,8 (C-7), 68,0 (C-8), 67,3 (C-6), 56,2 (C-8a), 42,3 (CH2N), 30,3 (CH2CH2N), 19,1 (CH2CH3), 12,8 (CH3). FABMS: m/z 283 (20, [M + Na]+), 261 (100, [M + H]+). Anal. cale, para CnH20N2O5: C, 50,78; H, 7,75; N, 10,77. Encontrado: C, 50,66; H, 8,04; N, 10,71.(5R, 6R, 7S, 8S, 8aR) -3-Butylimino-5,6,7,8-tetrahydroxy-2-oxaindolizidine (16). [α] D -4.1 (c 1.0, H 2 O). 1 H NMR (500 MHz, D 2 O) δ 5.52 (d, 1 H, J 5 6 = 4.0 Hz, H-5), 4.82 (t, 1 H, J 8a, 1a = J 1a, 1b = 9.0 Hz, H-1a), 4.69 (dd, 1 H, J 8a, 1b = 7.0 Hz, H-1 b), 4.49 (ddd, 1 H, J 88a = 2.5 Hz, H-8a), 4.02 (t, 1 H, J 78 = 2.5 Hz, H- 8), 3.87 (dd, 1 H, J 67 = 10.5, H-7), 3.77 (dd, 1 H, H-6), 3.30 (t, 2H, 3 J H, H = 7.0 Hz, CH 2 N), 1.48 (m, 2H , CH 2 CH 2 N), 1.25 (m, 2H, CH 2 CH 3 ), 0.81 (t, 3H, 3 J H, H = 7.0 Hz, CH 3 ). NMR- 13 C (125.7 MHz, D 2 O) δ 158.5 (CN), 74.9 (C-5), 70.6 (C-1), 68.8 (C-7), 68 , 0 (C-8), 67.3 (C-6), 56.2 (C-8a), 42.3 (CH 2 N), 30.3 (CH 2 CH 2 N), 19.1 ( CH 2 CH 3 ), 12.8 (CH 3 ). FABMS: m / z 283 (20, [M + Na] + ), 261 (100, [M + H] + ). Anal. cale, for CnH 20 N 2 O 5 : C, 50.78; H, 7.75; N, 10.77. Found: C, 50.66; H, 8.04; N, 10.71.
(5/?,6/?,7S,8S,8a/?)-5,6,7,8-Tetrahidroxi-3-octilimino-2-oxaindolizidina (17). [α]D .9,8 (c 0,5, H2O ). RMN-1H (500 MHz, D2O) δ 5,52 (d, 1 H, J5,6 = 4,0 Hz, H-5), 4,83 (t, 1 H, J8a,1a = J1a,1b = 8,5 Hz, H-1a), 4,71 (dd, 1 H, J8a,1b = 8,5 Hz, H-1 b), 4,50 (t, 1 H, H-8a), 4,02 (m, 1 H, H-8), 3,87 (dd, 1 H, J67 = 10,0 Hz, J7,8 = 2,5 Hz, H-7), 3,78 (dd, 1 H, H-6), 3,30 (t, 2H, 3JH,H = 6,5 Hz, CH2N), 1 ,52 (m, 2H, CH2CH2N), 1 ,21 (m, 1OH, CH2), 0,78 (t, 3H, 3JH,H = 6,5 Hz, CH3). RMN-13C (125,7 MHz, D2O) δ 158,5 (CN), 74,9 (C-5), 70,6 (C-1 ), 68,8 (C-7), 68,1 (C-8), 67,4 (C-6), 56,2 (C-8a), 43,0 (CH2N), 31 ,1 , 28,5, 28,3, 28,2, 25,7 (CH2), 22,0 (CH2CH3), 13,4 (CH3). FABMS: m/z 317 (100, [M + H]+). Anal. cale, para Ci5H28N2O5: C, 56,94; H, 8,92; N, 8,85. Encontrado: C, 56,78; H, 8,56; N, 8,76.(5 / ?, 6 / ?, 7S, 8S, 8a /?) - 5,6,7,8-Tetrahydroxy-3-octylimino-2-oxaindolizidine (17). [α] D .9.8 (c 0.5, H 2 O). 1 H NMR (500 MHz, D 2 O) δ 5.52 (d, 1 H, J 5.6 = 4.0 Hz, H-5), 4.83 (t, 1 H, J 8a, 1a = J 1a, 1b = 8.5 Hz, H-1a), 4.71 (dd, 1 H, J 8a, 1b = 8.5 Hz, H-1 b), 4.50 (t, 1 H, H-8a), 4.02 (m, 1 H, H-8), 3.87 (dd, 1 H, J 67 = 10.0 Hz, J 7 , 8 = 2.5 Hz, H-7) , 3.78 (dd, 1 H, H-6), 3.30 (t, 2H, 3 J H , H = 6.5 Hz, CH 2 N), 1.52 (m, 2H, CH 2 CH 2 N), 1, 21 (m, 1OH, CH 2 ), 0.78 (t, 3H, 3 J H, H = 6.5 Hz, CH 3 ). NMR- 13 C (125.7 MHz, D 2 O) δ 158.5 (CN), 74.9 (C-5), 70.6 (C-1), 68.8 (C-7), 68 , 1 (C-8), 67.4 (C-6), 56.2 (C-8a), 43.0 (CH 2 N), 31, 1, 28.5, 28.3, 28.2 , 25.7 (CH 2 ), 22.0 (CH 2 CH 3 ), 13.4 (CH 3 ). FABMS: m / z 317 (100, [M + H] + ). Anal. cale, for Ci 5 H 28 N 2 O 5 : C, 56.94; H, 8.92; N, 8.85. Found: C, 56.78; H, 8.56; N, 8.76.
(5/?,6/?,7S,8S,8a/?)-5,6,7,8-Tetrahidroxi-3-fenilimino-2-tiaindolizidina (18). [α]D -25,5 (c 0,5, H2O). RMN-1H (500 MHz, D2O) δ 7,38-7,01 (m, 5H, Ph), 5,74 (s a, 1 H, H-5), 4,23 (t a, 1 H, J8a,1a = J8a,1 b = 9,0 Hz, 6,5 Hz, H-8a), 4,04 (s a, 1 H, H-8), 3,95 (d a, 1 H, J6,7 = 9,3 Hz, H-7), 3,88 (d a, 1 H, H-6), 3,30 (t a, 1 H, J1a,1b = 9,0 Hz, H-1a), 3,20 (t a, 1 H, H-1b). RMN-13C (125,7 MHz, D2O) δ 173,9 (CN), 149,0-122,5 (Ph), 75,8 (C-5), 69,7 (C-7), 68,8 (C- 8), 67,9 (C-6), 59,2 (C-8a), 26,7 (C-1 ). FABMS: m/z 322 (100, [M + Na + 3H]+), 297 (10, [M + H]+). Anal. cale, para Ci3H16N2O4S: C, 52,69; H, 5,44; N, 9,45. Encontrado: C, 52,69; H, 5,38; N, 9,38.(5 / ?, 6 / ?, 7S, 8S, 8a /?) - 5,6,7,8-Tetrahydroxy-3-phenylimino-2-thianedolizidine (18). [α] D -25.5 (c 0.5, H 2 O). 1 H NMR (500 MHz, D 2 O) δ 7.38-7.01 (m, 5H, Ph), 5.74 (sa, 1 H, H-5), 4.23 (ta, 1 H , J 8a, 1a = J 8a, 1 b = 9.0 Hz, 6.5 Hz, H-8a), 4.04 (sa, 1 H, H-8), 3.95 (da, 1 H, J 6.7 = 9.3 Hz, H-7), 3.88 (da, 1 H, H-6), 3.30 (ta, 1 H, J 1a, 1b = 9.0 Hz, H- 1a), 3.20 (ta, 1 H, H-1b). NMR- 13 C (125.7 MHz, D 2 O) δ 173.9 (CN), 149.0-122.5 (Ph), 75.8 (C-5), 69.7 (C-7) , 68.8 (C-8), 67.9 (C-6), 59.2 (C-8a), 26.7 (C-1). FABMS: m / z 322 (100, [M + Na + 3H] + ), 297 (10, [M + H] + ). Anal. cale, for Ci 3 H 16 N 2 O 4 S: C, 52.69; H, 5.44; N, 9.45. Found: C, 52.69; H, 5.38; N, 9.38.
(5/?,6/?,7S,8S,8a/?)-3-Butilimino-5,6,7,8-tetrahidroxi-2-tiaindolizidina (19).(5 / ?, 6 / ?, 7S, 8S, 8a /?) - 3-Butylimino-5,6,7,8-tetrahydroxy-2-thianedolizidine (19).
[α]D -5,5 (c 0,6, H2O). [α]546 -7,3 (c 0,6, H2O). RMN-1H (500 MHz, D2O) δ 5,61 (d, 1 H, J5,6 = 3,2 Hz, H-5), 4,51 (t, 1 H, J8^ = 9,0 Hz, H-8a), 4,05 (s a, 1 H, H- 8), 3,93 (dd, 1 H, J6,7 = 10,2 Hz, J78 = 1 ,8 Hz, H-7), 3,83 (dd, 1 H, H-6), 3,49 (d, 2H, H-1a, H-1 b), 3,34 (t, 2H, 3JH,H = 6,8 Hz, CH2N), 1 ,61 (m, 2H, CH2CH2N), 1 ,33 (m, 2H, CH2CH3), 0,89 (t, 3H, 3JH,H = 7,3 Hz, CH3). RMN-13C (125,7 MHz, D2O) δ 170,4 (CN), 76,0 (C-5), 69,1 (C-7), 68,9 (C-8), 67,4 (C- 6), 61 ,8 (C-8a), 50,0 (CH2N), 30,6 (CH2CH2N), 27,4 (C-1 ), 19,3 (CH2CH3), 12,9 (CH3). FABMS: m/z 299 (55, [M + Na]+), 277 (100, [M + H]+). Anal. cale, para CnH20N2O4S: C, 47,81 ; H, 7,29; N, 10,14. Encontrado: C, 47,69; H, 7,17; N, 9,94 .[α] D -5.5 (c 0.6, H 2 O). [α] 546 -7.3 (c 0.6, H 2 O). 1 H NMR (500 MHz, D 2 O) δ 5.61 (d, 1 H, J 5.6 = 3.2 Hz, H-5), 4.51 (t, 1 H, J 8 ^ = 9.0 Hz, H-8a), 4.05 (sa, 1 H, H- 8), 3.93 (dd, 1 H, J 6.7 = 10.2 Hz, J 78 = 1, 8 Hz , H-7), 3.83 (dd, 1 H, H-6), 3.49 (d, 2H, H-1a, H-1 b), 3.34 (t, 2H, 3 J H, H = 6.8 Hz, CH 2 N), 1.61 (m, 2H, CH 2 CH 2 N), 1.33 (m, 2H, CH 2 CH 3 ), 0.89 (t, 3H, 3 J H, H = 7.3 Hz, CH 3 ). NMR- 13 C (125.7 MHz, D 2 O) δ 170.4 (CN), 76.0 (C-5), 69.1 (C-7), 68.9 (C-8), 67 , 4 (C- 6), 61, 8 (C-8a), 50.0 (CH 2 N), 30.6 (CH 2 CH 2 N), 27.4 (C-1), 19.3 ( CH 2 CH 3 ), 12.9 (CH 3 ). FABMS: m / z 299 (55, [M + Na] + ), 277 (100, [M + H] + ). Anal. cale, for CnH 20 N 2 O 4 S: C, 47.81; H, 7.29; N, 10.14. Found: C, 47.69; H, 7.17; N, 9.94.
(5/?,6/?,7S,8S,8a/?)-5,6,7,8-Tetrahidroxi-3-octilimino-2-tiaindolizidina (20). [α]D -14,3 (c 0,6, MeOH). RMN-1H (300 MHz, DMSO) δ 5,44 (d, 1 H, J5 6 = 3,4 Hz, H-5), 4,67 (t a, J8a,1a = J8a,1 b = 8,5 Hz, 1 H, H-8a), 4,03 (t a, 1 H, J1a,1 b = 8,5 Hz, H-1a), 3,69 (s a, 1 H, H-8), 3,64 (d a, 1 H, J67 = 9,6, H-7), 3,52 (dd, 1 H, H-6), 3,25 (m, 1 H, H-1 b), 3,09 (m, 2H, CH2N), 1 ,49 (m, 2H, CH2CH2N), 1 ,24 (m, 1OH, CH2), 0,84 (t, 3H, 3JH,H = 6,9 Hz, CH3). RMN-13C (75,5 MHz, DMSO) δ 170,9 (CN), 76,7 (C-5), 70,0 (C-7), 69,4 (C-8), 68,3 (C-6), 60,2 (C- 8a), 52,6 (CH2N), 31 ,7, 30,5, 29,2, 29,1 (CH2), 27,4 (C-1 ), 22,5 (CH2CH3), 14,4 (CH3). FABMS: m/z 355 (65, [M + Na]+), 333 (100, [M + H]+). Anal. cale, para Ci5H28N2O4S: C, 54,19; H, 8,49; N, 8,43. Encontrado: C, 53,83; H, 8,39; N, 8,30.(5 / ?, 6 / ?, 7S, 8S, 8a /?) - 5,6,7,8-Tetrahydroxy-3-octylimino-2-thianedolizidine (20). [α] D -14.3 (c 0.6, MeOH). 1 H NMR (300 MHz, DMSO) δ 5.44 (d, 1 H, J 5 6 = 3.4 Hz, H-5), 4.67 (ta, J 8a, 1a = J 8a, 1 b = 8.5 Hz, 1 H, H-8a), 4.03 (ta, 1 H, J 1a, 1 b = 8.5 Hz, H-1a), 3.69 (sa, 1 H, H-8), 3.64 (da, 1 H, J 67 = 9.6, H-7), 3.52 ( dd, 1 H, H-6), 3.25 (m, 1 H, H-1 b), 3.09 (m, 2H, CH 2 N), 1.49 (m, 2H, CH 2 CH 2 N), 1.24 (m, 1OH, CH 2 ), 0.84 (t, 3H, 3 J H, H = 6.9 Hz, CH 3 ). NMR- 13 C (75.5 MHz, DMSO) δ 170.9 (CN), 76.7 (C-5), 70.0 (C-7), 69.4 (C-8), 68.3 (C-6), 60.2 (C- 8a), 52.6 (CH 2 N), 31, 7, 30.5, 29.2, 29.1 (CH 2 ), 27.4 (C- 1), 22.5 (CH 2 CH 3 ), 14.4 (CH 3 ). FABMS: m / z 355 (65, [M + Na] + ), 333 (100, [M + H] + ). Anal. cale, for Ci 5 H 28 N 2 O 4 S: C, 54.19; H, 8.49; N, 8.43. Found: C, 53.83; H, 8.39; N, 8.30.
Clorhidrato de (5R,6R,7S,8S,8aR)-2-aza-3-bencilimino-5,6,7,8- tetrahidroxindolizidina (21). [α]D +7,0 (c 0,8, H2O). FR 0,32 (CH3CN-H2O- AcOH 20:2:1 ). RMN-1H (300 MHz, D2O) δ 7,39-7,27 (m, 5H, Ph), 5,45 (d, 1 H, J5,6 = 3,8 Hz, H-5), 4,41 (s, 2H, CH2Ph), 4,28 (td, 1 H, J8a,1a = J8a,1b = 9,8 Hz, J8,8a = 1 ,4 Hz, H-8a), 3,99 (dd, 1 H, J7,8 = 2,7 Hz, H-8), 3,84 (dd, 1 H, J6,7 = 10,2 Hz, H-7), 3,77 (dd, 1 H, H-6), 3,68 (t, 1 H, J1a 1b = 9,8 Hz, H-1a), 3,55 (t, 1 H, H-1 b). RMN-13C (75,5 MHz, D2O) δ 156,7 (CN), 136,1-127,6 (Ph), 74,8 (C-5), 69,7 (C-7), 68,7 (C-8), 68,4 (C-6), 56,4 (C-8a), 46,4 (CH2Ph), 42,5 (C- 1 ). FABMS: m/z 294 (100, [M - Cl]+). HRFABMS: m/z 294,144663; cale, para Ci4H20N3O4: 294,145381.Hydrochloride (5R, 6R, 7S, 8S, 8aR) -2-aza-3-benzylimino-5,6,7,8-tetrahydroxindolizidine (21). [α] D +7.0 (c 0.8, H 2 O). F R 0.32 (CH 3 CN-H 2 O- AcOH 20: 2: 1). 1 H NMR (300 MHz, D 2 O) δ 7.39-7.27 (m, 5H, Ph), 5.45 (d, 1 H, J 5.6 = 3.8 Hz, H-5 ), 4.41 (s, 2H, CH 2 Ph), 4.28 (td, 1 H, J 8a, 1a = J 8a, 1b = 9.8 Hz, J 8.8a = 1, 4 Hz, H -8a), 3.99 (dd, 1 H, J 7.8 = 2.7 Hz, H-8), 3.84 (dd, 1 H, J 6.7 = 10.2 Hz, H-7 ), 3.77 (dd, 1 H, H-6), 3.68 (t, 1 H, J 1a 1b = 9.8 Hz, H-1a), 3.55 (t, 1 H, H- 1 B). NMR- 13 C (75.5 MHz, D 2 O) δ 156.7 (CN), 136.1-127.6 (Ph), 74.8 (C-5), 69.7 (C-7) , 68.7 (C-8), 68.4 (C-6), 56.4 (C-8a), 46.4 (CH 2 Ph), 42.5 (C-1). FABMS: m / z 294 (100, [M - Cl] + ). HRFABMS: m / z 294,144663; cale, for Ci 4 H 20 N 3 O 4 : 294,145381.
Clorhidrato de (5R,6R,7S,8S,8aR)-2-aza-3-butilimino-5,6,7,8- tetrahidroxindolizidina (22). [α]D +8,0 (c 1 ,0, H2O). RMN-1H (500 MHz, D2O) δ 5,40 (d, 1 H, J5,6 = 4,0 Hz, H-5), 4,25 (t, 1 H, J8a,ia = J8a,ib = 9,7 Hz, H- 8a), 3,98 (m, 1 H, H-8), 3,82 (dd, 1 H, J6,7 = 9,8 Hz, J78 = 2,5 Hz, H-7), 3,74 (dd, 1 H, H-6), 3,69 (t, 1 H, J1a>1 b = 9,7 Hz, H-1a), 3,56 (t, 1 H, H-1 b), 3,15 (t, 2H, 3JH,H = 7,0 Hz, CH2N), 1 ,48 (m, 2H, CH2CH2N), 1 ,26 (m, 2H, CH2CH3), 0,81 (t, 3H, 3JH,H = 7,3 Hz, CH3). RMN-13C (125,7 MHz, D2O) δ 155,9 (CN), 74,0 (C-5), 69,2 (C-7), 68,1 (C-8), 67,8 (C-6), 55,7 (C-8a), 42,7 (CH2N), 41 ,7 (C-1 ), 30,1 (CH2CH2N), 19,2 (CH2CH3), 12,9 (CH3). FABMS: m/z 260 (100, [M - Cl]+). HRFABMS: m/z 260.160864; cale, for CnH22N3O4: 260.161031. Anal. cale, para CnH22CIN3O4: C, 44,67; H, 7,50; N, 14,21. Encontrado: C, 44,29; H, 7,35; N, 13,93.Hydrochloride (5R, 6R, 7S, 8S, 8aR) -2-aza-3-butylimino-5,6,7,8-tetrahydroxindolizidine (22). [α] D +8.0 (c 1.0, H 2 O). 1 H NMR (500 MHz, D 2 O) δ 5.40 (d, 1 H, J 5.6 = 4.0 Hz, H-5), 4.25 (t, 1 H, J 8a, i a = J 8a, i b = 9.7 Hz, H- 8a), 3.98 (m, 1 H, H-8), 3.82 (dd, 1 H, J 6.7 = 9.8 Hz , J 78 = 2.5 Hz, H-7), 3.74 (dd, 1 H, H-6), 3.69 (t, 1 H, J 1a> 1 b = 9.7 Hz, H- 1a), 3.56 (t, 1 H, H-1 b), 3.15 (t, 2H, 3 J H, H = 7.0 Hz, CH 2 N), 1.48 (m, 2H, CH 2 CH 2 N), 1, 26 (m, 2H, CH 2 CH 3 ), 0.81 (t, 3H, 3 J H, H = 7.3 Hz, CH 3 ). NMR- 13 C (125.7 MHz, D 2 O) δ 155.9 (CN), 74.0 (C-5), 69.2 (C-7), 68.1 (C-8), 67 , 8 (C-6), 55.7 (C-8a), 42.7 (CH 2 N), 41, 7 (C-1), 30.1 (CH 2 CH 2 N), 19.2 ( CH 2 CH 3 ), 12.9 (CH 3 ). FABMS: m / z 260 (100, [M - Cl] + ). HRFABMS: m / z 260.160864; cale, for CnH 22 N 3 O 4 : 260.161031. Anal. cale, for CnH 22 CIN 3 O 4 : C, 44.67; H, 7.50; N, 14.21. Found: C, 44.29; H, 7.35; N, 13.93.
Clorhidrato de (5R,6R,7S,8S,8aR)-2-aza-5,6,7,8-tetrahidroxi-3- octiliminoindolizidina (23). [α]D -1 ,9 (c 1 ,0, H2O), [α]578 -3,9 (c 1 ,0, H2O).Hydrochloride (5R, 6R, 7S, 8S, 8aR) -2-aza-5,6,7,8-tetrahydroxy-3- octyliminoindolizidine (23). [α] D -1, 9 (c 1, 0, H 2 O), [α] 57 8 -3.9 (c 1, 0, H 2 O).
RMN-1H (500 MHz, D2O) δ 5,42 (d, 1 H, J5,6 = 4,0 Hz, H-5), 4,28 (t, 1 H, J8a,ia = J8a,1b = 9,8 Hz, H-8a), 4,01 (s a, 1 H, H-8), 3,85 (dd, 1 H, J6,7 = 10,3 Hz, J7,8 = 2,8 Hz, H-7), 3,77 (dd, 1 H, H-6), 3,72 (t, 1 H, J1a,1b = 9,8 Hz, H-1a), 3,59 (t, 1 H, H-1 b), 3,18 (t, 2H, 3JH,H = 7,0 Hz, CH2N), 1 ,53 (m, 2H, CH2CH2N), 1 ,23 (m, 10H, CH2), 0,80 (t, 3H, 3JH,H = 7,0 Hz, CH3). RMN-13C (125,7 MHz, D2O) δ 155,9 (CN), 74,1 (C-5), 69,2 (C-7), 68,1 (C-8), 67,8 (C-6), 55,7 (C-8a), 42,9 (CH2N), 41 ,7 (C-1 ), 31 ,0, 28,3, 28,2, 28,0, 25,7 (CH2), 22,0 (CH2CH3), 13,4 (CH3). FABMS: m/z 316 (100, [M + H - Cl]+). Anal. cale, para Ci5H30CIN3O4 H2O: C, 48,71 ; H, 8,72; N, 11 ,36. Encontrado: C, 48,84; H, 8,72; N, 11 ,25. 1 H NMR (500 MHz, D 2 O) δ 5.42 (d, 1 H, J 5.6 = 4.0 Hz, H-5), 4.28 (t, 1 H, J 8a, i to = J 8a, 1b = 9.8 Hz, H-8a), 4.01 (sa, 1 H, H-8), 3.85 (dd, 1 H, J 6.7 = 10.3 Hz, J 7.8 = 2.8 Hz, H-7), 3.77 (dd, 1 H, H-6), 3.72 (t, 1 H, J 1a, 1b = 9.8 Hz, H-1a ), 3.59 (t, 1 H, H-1 b), 3.18 (t, 2H, 3 J H, H = 7.0 Hz, CH 2 N), 1.53 (m, 2H, CH 2 CH 2 N), 1, 23 (m, 10H, CH 2 ), 0.80 (t, 3H, 3 J H, H = 7.0 Hz, CH 3 ). NMR- 13 C (125.7 MHz, D 2 O) δ 155.9 (CN), 74.1 (C-5), 69.2 (C-7), 68.1 (C-8), 67 , 8 (C-6), 55.7 (C-8a), 42.9 (CH 2 N), 41, 7 (C-1), 31, 0, 28.3, 28.2, 28.0 , 25.7 (CH 2 ), 22.0 (CH 2 CH 3 ), 13.4 (CH 3 ). FABMS: m / z 316 (100, [M + H - Cl] + ). Anal. cale, for Ci 5 H 30 CIN 3 O 4 H 2 O: C, 48.71; H, 8.72; N, 11, 36. Found: C, 48.84; H, 8.72; N, 11, 25.
EJEMPLO 2EXAMPLE 2
2.1. Preparación de complejos de inclusión entre azazúcares sp2 y ciclodextrinas. La presencia de un resto hidrófobo en los inhibidores de tipo azazúcar sp2 de Ia invención da como resultado, en algunos casos, solubilidades limitadas en medios acuosos. Para superar dicha limitación, los solicitantes encontraron particularmente útil Ia preparación de complejos de inclusión con ciclodextrinas o ciclodextrinas modificadas químicamente. Las ciclodextrinas son oligosacáridos cíclicos que conforman una cavidad que puede aceptar moléculas huésped complementarias de tamaño apropiado. La preparación de dichos complejos de inclusión implica Ia preparación de una disolución en agua tanto de Ia ciclodextrina como del inhibidor, en una proporción relativa que puede variar de 1 :9 a 9:1 , seguido de liofilización. Como vehículo ciclodextrina pueden usarse las α, β o yCD nativas, los derivados metilados, hidroxipropilados o sulfobutilados comercialmente disponibles (DIMEB, TRIMEB, RAMEB, HPBCD, Captisol®) u otras CD modificadas químicamente tales como las reseñadas en las solicitudes de patente WO 9733919 y WO2004087768. El vehículo ciclodextrina preferido según esta invención es βCD. Tras Ia formación de los complejos de inclusión correspondientes, aumentó significativamente Ia solubilidad acuosa de los inhibidores de Ia invención, con potenciaciones de Ia solubilidad de hasta 100 veces.2.1. Preparation of inclusion complexes between azazúcares sp 2 and cyclodextrins. The presence of a hydrophobic moiety in the azazúcar sp 2 inhibitors of the invention results in, in some cases, limited solubilities in aqueous media. To overcome this limitation, applicants found the preparation of inclusion complexes with chemically modified cyclodextrins or cyclodextrins particularly useful. Cyclodextrins are cyclic oligosaccharides that make up a cavity that can accept complementary host molecules of appropriate size. The preparation of said inclusion complexes involves the preparation of a solution in water of both the cyclodextrin and the inhibitor, in a relative proportion that can vary from 1: 9 to 9: 1, followed by lyophilization. As the cyclodextrin vehicle, the native α, β or yCD, the commercially available methylated, hydroxypropylated or sulfobutylated derivatives (DIMEB, TRIMEB, RAMEB, HPBCD, Captisol®) or other chemically modified CDs such as those described in patent applications WO 9733919 can be used and WO2004087768. The preferred cyclodextrin carrier according to this invention is βCD. After the formation of the corresponding inclusion complexes, the aqueous solubility of the inhibitors of the invention increased significantly, with solubility enhancements of up to 100 times.
2.2. Cultivo celular.2.2. Cell culture.
Se cultivaron fibroblastos cutáneos derivados de una persona sana y de pacientes con enfermedad de Gaucher (mutaciones N370S/N370S, F213I/F213I, N188S/G193W y F213I/L444P) a 370C en atmósfera de CO2 al 5% usando medio de Eagle modificado por Dulbecco suplementado con antibióticos (estreptomicina y penicilina) y suero bovino fetal al 10%. Cuando las células se volvieron confluentes al 80%, se rascaron en H2O enfriada con hielo (106/ml) y se usaron mediante sonicación. Se retiraron los materiales insolubles mediante centrifugación a 12.000 g durante 10 min a 40C. Se determinaron las concentraciones de proteína en los usados con un kit de ensayo de microproteína BCA (Pierce).Dermal fibroblasts derived from a healthy person and from Gaucher disease patients (N370S / N370S, F213I / F213I, N188S / G193W and F213I / L444P mutations) at 37 0 C in 5% CO 2 atmosphere using Dulbecco-modified Eagle medium supplemented with antibiotics (streptomycin and penicillin) and 10% fetal bovine serum. When cells became confluent at 80%, they were scraped in H 2 O cooled with ice (10 6 / ml) and used by sonication. Insoluble materials were removed by centrifugation at 12,000 g for 10 min at 4 0 C. Protein concentrations were determined in those used with a BCA microprotein assay kit (Pierce).
2.3. Ensayo enzimático en usados.2.3. Enzymatic assay in used.
Se determinaron las actividades de β-glucocerebrosidasa en usados celulares usando β-D-glucopiranósido conjugado con 4-metilumbeliferona como sustrato (A.M. Vaccaro, M. Muschilli, M. Tatti, R. Salvioli, E. Gallozzi, K. Suzuki. Clin. Biochem. 20: 429-43, 1987). Brevemente, se incubaron 4 μl de usados celulares a 370C con 8 μl de disolución sustrato en tampón citrato 0,1 M, pH 5,2, suplementada con taurocolato de sodio (0,8% p/v). Se terminó Ia reacción añadiendo 1 ,0 mi de tampon de glicina-hidróxido de sodio 0,2 M (pH 10,7). Se definió una unidad de actividad enzimática como nmoles de A- metilumbeliferona liberados por hora.Β-Glucocerebrosidase activities in cell phones were determined using β-D-glucopyranoside conjugated with 4-methylumbelliferone as substrate (AM Vaccaro, M. Muschilli, M. Tatti, R. Salvioli, E. Gallozzi, K. Suzuki. Clin. Biochem. 20: 429-43, 1987). Briefly, 4 ul of cell lysates were incubated at 37 0 C with 8 .mu.l of substrate solution in 0.1 M citrate buffer, pH 5.2, supplemented with sodium taurocholate (0.8% w / v). The reaction was terminated by adding 1.0 ml of 0.2 M sodium glycine-hydroxide buffer (pH 10.7). One unit of enzymatic activity was defined as nmoles of A-methylumbelliferone released per hour.
2.4. Ensayo enzimático en usados para Ia determinación de las actividades inhibidoras frente a β-glucocerebrosidasa humana.2.4. Enzymatic assay in used for the determination of inhibitory activities against human β-glucocerebrosidase.
Para explorar los efectos de los compuestos sobre β-glucocerebrosidasa muíante, se cultivaron células de controles sanos y pacientes con enfermedad de Gaucher durante 4 días en ausencia o presencia de concentraciones crecientes de compuestos. Después de Ia exposición, se rascaron en H2O enfriada con hielo (106/ml) y se usaron mediante sonicación. Se retiraron los materiales insolubles mediante centrifugación a 12.000 g durante 10 min a 40C. Se midieron las actividades β- glucocerebrosidasa en usados celulares.To explore the effects of the compounds on mutant β-glucocerebrosidase, healthy control cells and patients with Gaucher disease were cultured for 4 days in the absence or presence of increasing concentrations of compounds. After exposure, they were scratched in ice cold H 2 O (10 6 / ml) and used by sonication. Insoluble materials were removed by centrifugation at 12,000 g for 10 min at 4 0 C. The β-glucocerebrosidase activities in cellular used were measured.
2.5. Ensayo de β-glucocerebrosidasa intacta para Ia determinación de actividades inhibidoras frente a β-glucocerebrosidasa humana. El ensayo enzimático ex vivo no indicaba si Ia actividad de enzima lisosómica estaba potenciada por estos compuestos. Para compensar esto, se empleó un "ensayo de enzima intacta" descrito por Sawkar y col. (A. R. Sawkar, W.C. Cheng, E. Beutler, CH. Wong, W.E. Balch, J.W. Kelly. Proc. Nati. Acad. Sci. USA 99: 15428-15433, 2002) en el que se estimó Ia actividad enzimática celular mediante Ia aplicación del sustrato (β-D- glucopiranósido conjugado con 4-metilumbeliferona) a células intactas seguido de cuantificación de Ia 4-metilumbeliferona liberada. En este ensayo se pretrataron las células con o sin una alta concentración (0,5 mM) de conduritol-B-epóxido (CBE), un inhibidor irreversible de Ia β-glucosidasa lisosómica, antes de exposición al sustrato.2.5 Intact β-glucocerebrosidase assay for the determination of inhibitory activities against human β-glucocerebrosidase. The ex vivo enzyme assay did not indicate whether the lysosomal enzyme activity was enhanced by these compounds. To compensate for this, an "intact enzyme assay" described by Sawkar et al. (AR Sawkar, WC Cheng, E. Beutler, CH. Wong, WE Balch, JW Kelly. Proc. Nati. Acad. Sci. USA 99: 15428-15433, 2002) in which the cellular enzymatic activity was estimated by the application from the substrate (β-D-glucopyranoside conjugated with 4-methylumbelliferone) to intact cells followed by quantification of the released 4-methylumbelliferone. In this assay, cells were pretreated with or without a high concentration (0.5 mM) of chonduritol-B-epoxide (CBE), an irreversible inhibitor of lysosomal β-glucosidase, before exposure to the substrate.
Brevemente, se trataron placas de 24 pocilios con ingredientes activos de Ia presente invención durante 4 días. Después de lavar con disolución salina tamponada con fosfato (PBS), se incubaron las células en 80 μl de PBS y 80 μl de tampón acetato 0,2 M (pH 4,0). Se inició Ia reacción mediante Ia adición de 100 μl de β-D-glucopiranósido conjugado con 4-metilumbeliferona (5 mM), seguido de incubación a 370C durante 1 h. Se detuvo Ia reacción usando las células mediante Ia adición de 2 mi de tampón de glicina 0,2 M (pH 10,7) y se cuantificó Ia liberación de 4-metilumbeliferona. Se realizó cada experimento en paralelo con células preincubadas con o sin CBE 0,5 mM durante 1 h. Se asignó el componente sensible a CBE a Ia β- glucosidasa lisosómica, mientras que se asignó el componente insensible a CBE a Ia β-glucosidasa no lisosómica.Briefly, 24-well plates were treated with active ingredients of the present invention for 4 days. After washing with phosphate buffered saline (PBS), the cells were incubated in 80 μl of PBS and 80 μl of 0.2 M acetate buffer (pH 4.0). Ia reaction was initiated by the addition of 100 .mu.l of β-D-glucopyranoside 4-methylumbelliferone conjugated (5 mM), followed by incubation at 37 0 C for 1 h. The reaction was stopped using the cells by the addition of 2 ml of 0.2 M glycine buffer (pH 10.7) and the release of 4-methylumbelliferone was quantified. Each experiment was performed in parallel with pre-incubated cells with or without 0.5 mM CBE for 1 h. The CBE sensitive component was assigned to lysosomal β-glucosidase, while the CBE insensitive component was assigned to non-lysosomal β-glucosidase.
2.6 Ensayo de β-galactosidasa intracelular. Se cultivaron fibroblastos en medio de Eagle modificado por Dulbecco suplementado con suero bovino fetal al 10% y antibióticos, y se recogieron por rascado. Se reunieron mediante centrifugación, se lavaron una vez con disolución salina tamponada con fosfato y se suspendieron en agua. Se sometió a sonicación Ia suspensión celular y se usó para ensayo enzimático (disolución enzimática). Se realizó el ensayo de β-galactosidasa en placas de 96 pocilios. La mezcla de ensayo enzimático consistía en 10 μl de disolución enzimática, con o sin ingrediente activo de Ia invención a una concentración final de hasta 5 μM, y 10 μl de disolución de sustrato que contenía 4-metilumbeliferil-β-galactósido 1 mM (Sigma, St Louis, MO) en tampón citrato 0,1 M (pH 4,5) y NaCI 0,1 M. Después de Ia incubación durante 1 h a 370C, se terminó Ia reacción enzimática añadiendo tampón glicina-NaOH 0,2 M (pH 10,7) y se midió Ia 4-metilumbeliferona liberada mediante fluorometría (excitación 355 nm; emisión 460 nm) como se describe anteriormente (Sakuraba, Aoyagi T, Suzuki Y. Clin. Chim. Acta 1982; 125: 275-282). Se determinó Ia proteína con el kit de ensayo de proteína BCA (Pierce, Rockford, IL).2.6 Intracellular β-galactosidase assay. Fibroblasts were cultured in Dulbecco-modified Eagle's medium supplemented with 10% fetal bovine serum and antibiotics, and collected by scratching. They were combined by centrifugation, washed once with phosphate buffered saline and suspended in water. The cell suspension was sonicated and used for enzymatic assay (enzymatic solution). The β-galactosidase assay was performed in 96-well plates. The enzyme test mixture consisted of 10 μl of enzymatic solution, with or without active ingredient of the invention at a final concentration of up to 5 μM, and 10 μl of substrate solution containing 1 mM 4-methylumbelliferyl-β-galactoside (Sigma , St Louis, MO) in 0.1 M (pH 4.5) and 0.1M NaCI After the incubation citrate buffer for 1 h at 37 0 C, the enzymatic reaction was terminated by adding buffer 0.2 M glycine-NaOH (pH 10.7) and the 4-methylumbelliferone released by fluorometry (355 nm excitation; 460 nm emission) was measured as described above (Sakuraba, Aoyagi T, Suzuki Y. Clin. Chim. Acta 1982; 125: 275-282). The protein was determined with the BCA protein assay kit (Pierce, Rockford, IL).
EJEMPLO 3EXAMPLE 3
Inhibición in vitro de β-glucosidasa y β-galactosidasa humanas por azazúcares sp2.In vitro inhibition of human β-glucosidase and β-galactosidase by azazúcares sp 2 .
Se recoge el resumen de los valores de CI50 seleccionados para Ia inhibición de β-glucosidasa y β-galactosidasa humanas en Ia Tabla 1. En general, los azazúcares sp2 de Ia invención que tienen un perfil de hidroxilación de complementariedad estructural con D-glucosa (glucomiméticos; por ejemplo, 3, 6 y 14) son inhibidores muy potentes de Ia β-glucosidasa humana. Aquellos que tienen un perfil de hidroxilación de complementariedad estructural con D-galactosa (galactomiméticos; por ejemplo 17, 20 y 23) son potentes inhibidores tanto de β-glucosidasa como de β-galactosidasa. Es destacable que los azazúcares sp2 de Ia invención no inhibían significativamente ni α-glucosidasa ni α-galactosidasa. La inhibición de las β- glucosidasas era al menos 1.000 veces más eficaz, en términos de valores de Cl50, en comparación con Ia inhibición de α-glucosidasas. Los resultados sugieren a los solicitantes que el uso de azazúcares sp2 de Ia invención como chaperonas farmacológicas para el tratamiento de enfermedades relacionadas con el mal funcionamiento de β-glucosidasa y/o β- galactosidasa humanas, tales como enfermedad de Gaucher o gangliosidosis GMI , evitará o reducirá al mínimo los efectos secundarios asociados a interferencias en el funcionamiento de α-glucosidasa y/o α- galactosidasa.The summary of the IC 50 values selected for the inhibition of human β-glucosidase and β-galactosidase is shown in Table 1. In general, the sp 2 azazúcares of the invention that have a hydroxylation profile of structural complementarity with D- Glucose (glucomimetics; for example, 3, 6 and 14) are very potent inhibitors of human β-glucosidase. Those who have a hydroxylation profile of structural complementarity with D-galactose (galactomimetics; for example 17, 20 and 23) are potent inhibitors of both β-glucosidase and β-galactosidase. It is remarkable that the sp 2 azazúcares of the invention did not significantly inhibit either α-glucosidase or α-galactosidase. The inhibition of β-glucosidases was at least 1,000 times more effective, in terms of Cl 50 values, compared to the inhibition of α-glucosidases. The results suggest to the applicants that the use of sp 2 azazúcares of the invention as pharmacological chaperones for the treatment of diseases related to the malfunction of human β-glucosidase and / or β-galactosidase, such as Gaucher's disease or G MI gangliosidosis , avoid or minimize the side effects associated with interference in the functioning of α-glucosidase and / or α-galactosidase.
Tabla 1. Actividad inhibidora de algunos de los inhibidores sobre β- glucosidasa y β-galactosidasa humanas en fibroblastosTable 1. Inhibitory activity of some of the inhibitors on human β-glucosidase and β-galactosidase in fibroblasts
Figure imgf000030_0001
Figure imgf000031_0001
aLos datos representan valores medios a partir de tres líneas celulares de control independientes
Figure imgf000030_0001
Figure imgf000031_0001
aThe data represents average values from three independent control cell lines
EJEMPLO 4EXAMPLE 4
Potenciación in vitro de Ia actividad de β-glucosidasa mutante por azazúcares sp2.In vitro potentiation of the activity of mutant β-glucosidase by azazúcares sp 2 .
La actividad β-glucosidasa en usados obtenidos a partir de fibroblastos de Gaucher con diferentes mutaciones se incrementó al aumentar Ia concentración de inhibidor en un cierto intervalo. Se recoge el resumen de los datos seleccionados para algunos de los inhibidores en Ia Tabla 2. Tanto los glucomiméticos como los galactomiméticos de Ia invención son activos como chaperonas farmacológicas frente a mutantes N370S/N370S, F213I/F213I y N188S/G193W en este ensayo, con potenciaciones de actividad relativa que van hasta 3,4 veces en el caso más favorable. Los resultados anteriores apoyan el concepto terapéutico de los solicitantes de que los inhibidores de tipo azazúcar sp2 potentes pueden servir como chaperonas farmacológicas eficaces para potenciar Ia actividad enzimática mutante de pacientes con enfermedad de Gaucher.The β-glucosidase activity in used obtained from Gaucher fibroblasts with different mutations was increased by increasing the concentration of inhibitor in a certain range. The summary of the data selected for some of the inhibitors is shown in Table 2. Both the glucomimetics and the galactomimetics of the invention are active as pharmacological chaperones against mutants N370S / N370S, F213I / F213I and N188S / G193W in this test, with relative activity enhancements that go up to 3.4 times in the most favorable case. The previous results support the therapeutic concept of the applicants that potent azazúcar sp 2 inhibitors can serve as effective pharmacological chaperones to enhance the mutant enzymatic activity of patients with Gaucher disease.
Tabla 2. Potenciaciones de actividad sobre Ia actividad β-glucosidasa en fibroblastos de Gaucher (usados) inducidos en presencia de algunas chaperonas farmacológicas de Ia invención 3 μM (arriba) y 30 μM (abajo) para diferentes mutaciones. SP indica sin potenciaciónTable 2. Activity enhancements on β-glucosidase activity in Gaucher fibroblasts (used) induced in the presence of some pharmacological chaperones of the invention 3 µM (above) and 30 µM (below) for different mutations. SP indicates no enhancement
Figure imgf000031_0002
Figure imgf000031_0002
Figure imgf000032_0001
Figure imgf000032_0001
3La actividad residual se refiere a las células control silvestres. 3 Residual activity refers to wild control cells.
EJEMPLO 5EXAMPLE 5
Potenciación intracelular de Ia actividad de β-qlucosidasa en fibroblastos de pacientes con Gaucher por azazúcares sp2.Intracellular potentiation of the activity of β-qlucosidase in fibroblasts of patients with Gaucher by azazúcares sp 2 .
Se investigó ex vivo Ia actividad de potenciación intracelular de los inhibidores de tipo azazúcar sp2 de Ia invención con fibroblastos procedentes de pacientes con Gaucher con fenotipos N370S/N370S, F213I/F213I, N188S/G193W, N370S/84GG, L444P/RecNcil y F213I/L444P. Se recogen en Ia Tabla 3 los datos seleccionados para algunos glucomiméticos (compuestos 3, 6 y 14), que se encontró que eran mucho más activos que los galactomiméticos en este ensayo.The intracellular potentiation activity of the azazúcar sp 2 inhibitors of the invention with fibroblasts from patients with Gaucher with phenotypes N370S / N370S, F213I / F213I, N188S / G193W, N370S / 84GG, L444P / RecNcil and F213I was investigated ex vivo / L444P. The data selected for some glucomimetics (compounds 3, 6 and 14) are collected in Table 3, which were found to be much more active than the galactomimetics in this assay.
Los compuestos 3 y 6 a baja concentración (3 μM) potenciaban Ia actividad de fibroblastos de tipo silvestre (control) en un 23,6 y un 6,5%, respectivamente. Concentraciones mayores de 30 μM anulaban el efecto de potenciación en el control. En contraposición, aumentar Ia concentración de 3 a 30 mM causaba generalmente una mayor potenciación de Ia actividad en el caso de β-glucosidasas mutantes, apoyando una alta relación de actividad chaperona frente a inhibidora para esta familia de derivados.Compounds 3 and 6 at low concentration (3 μM) enhanced the activity of wild-type fibroblasts (control) by 23.6 and 6.5%, respectively. Concentrations greater than 30 μM nullified the effect of control enhancement. In contrast, increasing the concentration from 3 to 30 mM generally caused a greater potentiation of the activity in the case of mutant β-glucosidases, supporting a high ratio of chaperone to inhibitor activity for this family of derivatives.
Los glucomiméticos de azazúcar sp2 de Ia invención demostraron un impacto significativo sobre Ia potenciación de Ia actividad enzimática intracelular en fibroblastos de Gaucher. La actividad enzimática residual en los mutantes aumentaba hasta 3,5 veces en el caso más favorable. La magnitud de Ia potenciación dependía del fenotipo y de Ia estructura del compuesto. El compuesto 3, que tiene una isourea cíclica en Ia estructura, era particularmente eficaz frente a mutaciones N370S/N370S y F213I/F213I, con elevaciones de actividad residual de 2,7 y 3,5 veces, respectivamente, a una concentración 30 μM. El compuesto 6, que tiene una isourea cíclica en Ia estructura, era particularmente eficaz frente a las mutaciones N370S/N370S, F213I/F213I y L444P/RecNcil, con elevaciones de actividad residual de 2,7, 3,5 y 1 ,3 veces, respectivamente, a una concentración 30 μM. El compuesto 6, que tiene una isotiourea cíclica en Ia estructura, era el más eficaz de Ia serie frente a Ia mutación N370S/84GG (potenciación de actividad residual elevada en 1 ,8 veces a una concentración 30 μM), mientras que el compuesto 14, que tiene una guanidina cíclica en Ia estructura, era el más eficaz frente a las mutaciones N188S/G193W y F213I/L444P (potenciaciones de Ia actividad residual elevada en 2,2 veces a una concentración 30 μM en ambos casos). Se cree que Ia biodisponibilidad de estos compuestos mejora significativamente por Ia naturaleza anfifílica de las moléculas, Io que posiblemente facilita su paso a través de las membranas celular y del RE, aumentando así Ia concentración intracelular de estos compuestos.The azazúcar sp 2 glucomimetics of the invention demonstrated a significant impact on the potentiation of intracellular enzymatic activity in Gaucher fibroblasts. The residual enzyme activity in the mutants increased up to 3.5 times in the most favorable case. The magnitude of the potentiation depended on the phenotype and the structure of the compound. Compound 3, which has a cyclic isourea in the structure, was particularly effective against N370S / N370S and F213I / F213I mutations, with elevations of residual activity of 2.7 and 3.5 times, respectively, at a concentration of 30 μM. Compound 6, which has a cyclic isourea in the structure, was particularly effective against mutations N370S / N370S, F213I / F213I and L444P / RecNcil, with elevations of residual activity of 2.7, 3.5 and 1, 3 times , respectively, at a concentration of 30 μM. Compound 6, which has a cyclic isothiourea in the structure, was the most effective of the series against the N370S / 84GG mutation (potentiation of residual activity elevated at 1.8 times at a concentration of 30 μM), while compound 14 , which has a cyclic guanidine in the structure, was the most effective against the N188S / G193W and F213I / L444P mutations (enhancements of the residual activity increased 2.2 times at a concentration of 30 μM in both cases). It is believed that the bioavailability of these compounds is significantly improved by the amphiphilic nature of the molecules, which possibly facilitates their passage through the cell membranes and ER, thus increasing the intracellular concentration of these compounds.
Tabla 3. Potenciaciones de Ia actividad sobre Ia actividad de β-glucosidasa en fibroblastos de Gaucher intactos inducidas en presencia de ciertas chaperonas farmacológicas de Ia invención a 3 μM (arriba) y 30 μM (abajo) para diferentes mutaciones. SP indica sin potenciación.Table 3. Enhancements of the activity on the activity of β-glucosidase in intact Gaucher fibroblasts induced in the presence of certain pharmacological chaperones of the invention at 3 μM (above) and 30 μM (below) for different mutations. SP indicates no enhancement.
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000033_0001
Figure imgf000034_0001
EJEMPLO 6EXAMPLE 6
Potenciación intracelular de Ia actividad de β-galactosidasa en fibroblastos de pacientes con ganqliosidosis GM1 por azazúcares sp2 Intracellular potentiation of β-galactosidase activity in fibroblasts of patients with GM 1 ganqliosidosis by azazúcares sp 2
Los azazúcares sp2 inhibidores de Ia invención que tienen un perfil de hidroxilación de complementariedad estructural con D-galactosa (galactomiméticos; por ejemplo, los compuestos 15-23) potencian Ia actividad β-galactosidasa en fibroblastos de células de control así como en fibroblastos de pacientes con gangliosidosis GMi - Como ejemplo, Ia Tabla 4 recoge los datos correspondientes del compuesto 17, que tiene una funcionalidad isourea cíclica en su estructura. La actividad intracelular β- galactosidasa en el control se elevó un 46% usando una concentración 50 μM de 17. La actividad β-galactosidasa intracelular en fibroblastos de gangliosidosis GMi se elevó un 17% usando una concentración 50 μM de 17. Tabla 4. Potenciaciones de Ia actividad sobre Ia actividad β-galactosidasa en fibroblastos silvestres (control) y de gangliosidosis GMi intactos inducidas por Ia presencia del compuesto 17 a diferentes concentraciones.The azazúcares sp 2 inhibitors of the invention that have a hydroxylation profile of structural complementarity with D-galactose (galactomimetics; for example, compounds 15-23) enhance the β-galactosidase activity in control cell fibroblasts as well as in fibroblasts of patients with G M i gangliosidosis - As an example, Table 4 collects the corresponding data of compound 17, which has a cyclic isourea functionality in its structure. The intracellular β-galactosidase activity in the control was raised by 46% using a 50 μM concentration of 17. The intracellular β-galactosidase activity in G M gangliosidosis fibroblasts was raised 17% using a 50 μM concentration of 17. Table 4. Enhancements of the activity on β-galactosidase activity in wild (control) fibroblasts and intact G M i gangliosidosis induced by the presence of compound 17 at different concentrations.
Figure imgf000035_0001
Figure imgf000035_0001
EJEMPLO 7EXAMPLE 7
Potenciación in vitro y ex vivo de Ia actividad de β-qlucosidasa mutante por complejos de inclusión de azazúcares sp2:βCD.In vitro and ex vivo potentiation of the activity of mutant β-qlucosidase by inclusion complexes of azazúcares sp 2 : βCD.
Los inhibidores azazúcares sp2 de Ia invención formaban fácilmente complejos de inclusión con βCD en agua a diferentes proporciones relativas, como se observa a partir de los experimentos de RMN. Los complejos resultantes permitieron aumentar Ia solubilidad del inhibidor en agua sin observar efectos perjudiciales sobre Ia actividad inhibidora frente a las glucosidasas humanas.The azazúcares sp 2 inhibitors of the invention easily formed inclusion complexes with βCD in water at different relative proportions, as observed from the NMR experiments. The resulting complexes allowed increasing the solubility of the inhibitor in water without observing harmful effects on the inhibitory activity against human glucosidases.
Se elevó Ia actividad enzimática en fibroblastos de Gaucher, tanto en usados como en células intactas, aumentando Ia concentración de complejos de inclusión de azazúcares sp2:βCD. Se recogen en Ia Tabla 5 datos seleccionados de algunos complejos. Los solicitantes encontraron esta formulación particularmente apropiada para compuestos que tienen una baja solubilidad acuosa, tal como es el caso del compuesto 6. Al usar proporciones relativas 1 :1 de 6 y βCD a una concentración de 30 μM, se consiguieron aumentos de hasta 3 veces de Ia actividad residual de Ia β- glucosidasa mutante para el fenotipo N370S/N370S.The enzymatic activity was elevated in Gaucher fibroblasts, both used as in intact cells, increasing the concentration of inclusion complexes azazúcares sp 2: βCD. Selected data of some complexes are collected in Table 5. Applicants found this formulation particularly suitable for compounds that have low aqueous solubility, as is the case of compound 6. By using relative ratios 1: 1 of 6 and βCD at a concentration of 30 μM, increases of up to 3 times were achieved. of the residual activity of the mutant β-glucosidase for the N370S / N370S phenotype.
Tabla 5. Potenciaciones de Ia actividad β-glucosidasa en fibroblastos de Gaucher (usados) o células intactas inducidas en presencia de algunos complejos de sp2-azazúcares:βCD para diferentes mutaciones. SP indica sin potenciación.Table 5. Enhancements of β-glucosidase activity in Gaucher fibroblasts (used) or intact cells induced in the presence of some complexes of sp 2 -azazúcares: βCD for different mutations. SP indicates without potentiation
Figure imgf000036_0001
aLas concentraciones se refieren al componente azazúcar sp activo. En usados. cEn células intactas
Figure imgf000036_0001
aThe concentrations refer to the active sp azazúcar component. In used. c In intact cells

Claims

REIVINDICACIONES
1. Compuesto de fórmula general (I), o cualquiera de sus sales,1. Compound of general formula (I), or any of its salts,
Figure imgf000037_0001
donde: R es un sustituyente, igual o diferente, y que se selecciona de entre un átomo de H, un grupo hidroxilo (-OH) o un grupo OR2; donde
Figure imgf000037_0001
where: R is a substituent, the same or different, and which is selected from an H atom, a hydroxyl group (-OH) or an OR 2 group; where
R2 es un grupo seleccionado de entre acilo, sustituido o no sustituido, alquilo (C1-C18), sustituido o no sustituido, arilo, sustituido o no sustituido, aralquilo, sustituido o no sustituido, amino (NH2), acetamido (NHAc), o un NHR3; donde R3 es un grupo seleccionado de entre acilo, sustituido o no sustituido, alquilo (C1-C18), sustituido o no sustituido, arilo, sustituido o no sustituido o aralquilo, sustituido o no sustituido.R 2 is a group selected from acyl, substituted or unsubstituted, (C1-C18) alkyl, substituted or unsubstituted, aryl, substituted or unsubstituted, aralkyl, substituted or unsubstituted, amino (NH 2 ), acetamido (NHAc ), or an NHR 3 ; where R 3 is a group selected from acyl, substituted or unsubstituted, (C1-C18) alkyl, substituted or unsubstituted, aryl, substituted or unsubstituted or aralkyl, substituted or unsubstituted.
Y se selecciona de entre un O, NH ó S; yAnd it is selected from an O, NH or S; Y
X es el grupo -NR1. Donde R1 se selecciona del entre un grupo alquilo (C1-C18), sustituido o no sustituido, un grupo arilo (C5-C18), sustituido o no sustituido, o un grupo aralquilo, sustituido o no sustituido.X is the group -NR 1 . Where R 1 is selected from a (C1-C18) alkyl group, substituted or unsubstituted, an aryl (C5-C18) group, substituted or unsubstituted, or an aralkyl group, substituted or unsubstituted.
2. Compuesto según Ia reivindicación 1 , donde Y es un átomo de oxígeno.2. Compound according to claim 1, wherein Y is an oxygen atom.
3. Compuesto según Ia reivindicación 1 donde Y es NH.3. Compound according to claim 1 wherein Y is NH.
4. Compuesto según Ia reivindicación 1 , donde Y es un átomo de azufre.4. Compound according to claim 1, wherein Y is a sulfur atom.
5. Compuesto según cualquiera de las reivindicaciones 1 a 4, de fórmula general (Ia'): 5. Compound according to any of claims 1 to 4, of general formula (Ia '):
Figure imgf000038_0001
Figure imgf000038_0001
6. Compuesto según cualquiera de las reivindicaciones 1 a 4, de fórmula general (Ib'):6. Compound according to any of claims 1 to 4, of general formula (Ib '):
Figure imgf000038_0002
Figure imgf000038_0002
Ib1 Ib 1
7. Compuesto según cualquiera de las reivindicaciones 1 a 6, donde R es OH.7. Compound according to any of claims 1 to 6, wherein R is OH.
8. Compuesto según cualquiera de las reivindicaciones 1 a 7, donde R1 es un grupo alquilo (C3-C9).8. A compound according to any one of claims 1 to 7, wherein R 1 is a (C 3 -C 9 ) alkyl group.
9. Compuesto según cualquiera de las reivindicaciones 1 a 7, donde R1 es un grupo arilo (C5-C7).9. A compound according to any one of claims 1 to 7, wherein R 1 is an aryl group (C 5 -C 7 ).
10. Compuesto según cualquiera de las reivindicaciones 1 a 9, donde dicho compuesto es una sal de un clorhidrato.10. A compound according to any one of claims 1 to 9, wherein said compound is a salt of a hydrochloride.
11. Compuesto según Ia reivindicación 1 , de fórmula: a. (5R,6R,7S,8R,8aR)-5,6,7,8-Tetrahidroxi-3-fenilimino-2-oxaindolizidina b. (5R,6R,7S,8R,8aR)-5,6,7,8-Tetrahidroxi-3-butilimino-2-oxaindolizidina c. (5R,6S,7R,8R,8aR)-5,6,7,8-Tetrahidroxi-2-oxa-3-octilimino- indolizidina. d. (5R,6R,7S,8R,8aR)-5,6,7,8-Tetrahidroxi-3-fenilimino-2-tiaindolizidina. e. (5R,6R,7S,8R,8aR)-3-Butilimino-5,6,7,8-tetrahidroxi-2-tiaindolizidina f. (5R,6R,7S,8R,8aR)-5,6,7,8-Tetrahidroxi-3-octilimino-2-tiaindolizidina g. (5R,6R,7S,8R,8aR)-3-[2'-(Λ/,Λ/-Bis-(2-hexanamidoetil)aminoetil)- imino]-5,6,7,8-tetrahidroxi-2-tiaindolizidina h. Clorhidrato de (5R,6R,7S,8R,8aR)-3-(8-aminooctil)imino-5,6,7,8- tetrahidroxi-2-tiaindolizidina i. (5R,6R,7S,8R,8aR)-3-(4-Adamantano-1-ilcarboxamidobutil)imino-11. Compound according to claim 1, of formula: a. (5R, 6R, 7S, 8R, 8aR) -5,6,7,8-Tetrahydroxy-3-phenylimino-2-oxaindolizidine b. (5R, 6R, 7S, 8R, 8aR) -5,6,7,8-Tetrahydroxy-3-butylimino-2-oxaindolizidine c. (5R, 6S, 7R, 8R, 8aR) -5,6,7,8-Tetrahydroxy-2-oxa-3-octylimino-indolizidine. d. (5R, 6R, 7S, 8R, 8aR) -5,6,7,8-Tetrahydroxy-3-phenylimino-2-thianedolizidine. and. (5R, 6R, 7S, 8R, 8aR) -3-Butylimino-5,6,7,8-tetrahydroxy-2-thianedolizidine F. (5R, 6R, 7S, 8R, 8aR) -5,6,7,8-Tetrahydroxy-3-octylimino-2-thianedolizidine g. (5R, 6R, 7S, 8R, 8aR) -3- [2 '- (Λ /, Λ / -Bis- (2-hexanamidoethyl) aminoethyl) -imino] -5,6,7,8-tetrahydroxy-2- thiaindolizidine h. (5R, 6R, 7S, 8R, 8aR) -3- (8-aminooctyl) imino-5,6,7,8-tetrahydroxy-2-thianedolizidine hydrochloride i. (5R, 6R, 7S, 8R, 8aR) -3- (4-Adamantane-1-ylcarboxamidobutyl) imino-
5,6,7,8-tetrahidroxi-2-tiaindolizidina. j. (5R,6R,7S,8R,8aR)-3-(11 -Azida-3,6,9-trioxaundecil)imino-5,6,7,8- tetrahidroxi-2-tiaindolizidina k. (5R,6R,7S,8R,8aR)-3-(11-Adamantano-1-ilcarboxamido-3,6,9- trioxaundecil)imino-5,6,7,8-tetrahidroxi-2-tiaindolizidina. I. Clorhidrato de (5R,6R,7S,8R,8aR)-2-aza-3-bencilimino-5,6,7,8- tetrahidroxindolizidina. m. Clorhidrato de (5R,6R,7S,8R,8aR)-2-aza-3-butilimino-5,6,7,8- tetrahidroxindolizidina. n. Clorhidrato de (5R,6R,7S,8R,8aR)-2-aza-5,6,7,8-tetrahidroxi-3- octiliminoindolizidina. o. (5R,6R,7S,8S,8aR)-5,6,7,8-Tetrahidroxi-3-fenilimino-2-oxaindolizidina. p. (5R,6R,7S,8S,8aR)-3-Butilimino-5,6,7,8-tetrahidroxi-2-oxaindolizidina. q. (5R,6R,7S,8S,8aR)-5,6,7,8-Tetrahidroxi-3-octilimino-2-oxaindolizidina. r. (5R,6R,7S,8S,8aR)-5,6,7,8-Tetrahidroxi-3-fenilimino-2-tiaindolizidina. s. (5R,6R,7S,8S,8aR)-3-Butilimino-5,6,7,8-tetrahidroxi-2-tiaindolizidina. t. (5R,6R,7S,8S,8aR)-5,6,7,8-Tetrahidroxi-3-octilimino-2-tiaindolizidina. u. Clorhidrato de (5R,6R,7S,8S,8aR)-2-aza-3-bencilimino-5,6,7,8- tetrahidroxindolizidina. v. Clorhidrato de (5R,6R,7S,8S,8aR)-2-aza-3-butilimino-5,6,7,8- tetrahidroxindolizidina; o w. Clorhidrato de (5R,6R,7S,8S,8aR)-2-aza-5,6,7,8-tetrahidroxi-3- octiliminoindolizidina.5,6,7,8-tetrahydroxy-2-thianedolizidine. j. (5R, 6R, 7S, 8R, 8aR) -3- (11-Azide-3,6,9-trioxaundecyl) imino-5,6,7,8-tetrahydroxy-2-thianedolizidine k. (5R, 6R, 7S, 8R, 8aR) -3- (11-Adamantane-1-ylcarboxamido-3,6,9-trioxaundecyl) imino-5,6,7,8-tetrahydroxy-2-thianedolizidine. I. (5R, 6R, 7S, 8R, 8aR) -2-aza-3-benzylimino-5,6,7,8-tetrahydroxindolizidine hydrochloride. m. Hydrochloride (5R, 6R, 7S, 8R, 8aR) -2-aza-3-butylimino-5,6,7,8-tetrahydroxindolizidine. n. Hydrochloride (5R, 6R, 7S, 8R, 8aR) -2-aza-5,6,7,8-tetrahydroxy-3- octyliminoindolizidine. or. (5R, 6R, 7S, 8S, 8aR) -5,6,7,8-Tetrahydroxy-3-phenylimino-2-oxaindolizidine. p. (5R, 6R, 7S, 8S, 8aR) -3-Butylimino-5,6,7,8-tetrahydroxy-2-oxaindolizidine. q. (5R, 6R, 7S, 8S, 8aR) -5,6,7,8-Tetrahydroxy-3-octylimino-2-oxaindolizidine. r. (5R, 6R, 7S, 8S, 8aR) -5,6,7,8-Tetrahydroxy-3-phenylimino-2-thianedolizidine. s. (5R, 6R, 7S, 8S, 8aR) -3-Butylimino-5,6,7,8-tetrahydroxy-2-thianedolizidine. t. (5R, 6R, 7S, 8S, 8aR) -5,6,7,8-Tetrahydroxy-3-octylimino-2-thianedolizidine. or. Hydrochloride (5R, 6R, 7S, 8S, 8aR) -2-aza-3-benzylimino-5,6,7,8-tetrahydroxindolizidine. v. (5R, 6R, 7S, 8S, 8aR) -2-aza-3-butylimino-5,6,7,8-tetrahydroxindolizidine hydrochloride; or w. Hydrochloride (5R, 6R, 7S, 8S, 8aR) -2-aza-5,6,7,8-tetrahydroxy-3- octyliminoindolizidine.
12. Procedimiento de obtención de los compuestos de fórmula general (I) que comprende: a. introducir un grupo amino en Ia posición C-5 del correspondiente azúcar en forma de furanosa; b. cerrar un anillo de cinco miembros entre las posiciones C-5 y C-6 mediante un segmento de tipo pseudoamida del compuesto obtenido en el paso (a); y c. transposición del anillo de furano a un ciclo de piperidina fusionado con el anillo de pseudoamida cíclico de cinco miembros obtenido en el paso (b).12. Method of obtaining the compounds of general formula (I) comprising: a. introducing an amino group in the C-5 position of the corresponding furanosa sugar; b. close a five-member ring between positions C-5 and C-6 using a pseudoamide type segment of the compound obtained in step (a); and c. Transposition of the furan ring to a piperidine cycle fused with the five-membered cyclic pseudoamide ring obtained in step (b).
13. Uso del compuesto de fórmula general (I) para Ia elaboración de una composición farmacéutica.13. Use of the compound of general formula (I) for the preparation of a pharmaceutical composition.
14. Uso del compuesto de fórmula general (I) para Ia elaboración de una composición farmacéutica para el tratamiento de una enfermedad relacionada con β-glucosidasa y/o β-galactosidasa mutadas humanas.14. Use of the compound of general formula (I) for the preparation of a pharmaceutical composition for the treatment of a disease related to human mutated β-glucosidase and / or β-galactosidase.
15. Uso del compuesto según Ia reivindicación 14, donde las enfermedades son enfermedad de Gaucher, gangliosidosis GM1 o enfermedad de Morquio B.15. Use of the compound according to claim 14, wherein the diseases are Gaucher disease, GM1 gangliosidosis or Morquio B disease.
16. Composición farmacéutica que comprende al menos uno de los compuestos de fórmula general (I).16. Pharmaceutical composition comprising at least one of the compounds of general formula (I).
17. Composición farmacéutica según Ia reivindicación 16, que además comprende otro componente activo y/o un vehículo farmacéuticamente aceptable.17. Pharmaceutical composition according to claim 16, which further comprises another active component and / or a pharmaceutically acceptable carrier.
18. Composición farmacéutica según Ia reivindicación 17, donde el vehículo es una ciclodextrina o cualquiera de sus derivados.18. Pharmaceutical composition according to claim 17, wherein the vehicle is a cyclodextrin or any of its derivatives.
19. Composición farmacéutica según Ia reivindicación 18, donde el vehículo es β-ciclodextrina.19. Pharmaceutical composition according to claim 18, wherein the vehicle is β-cyclodextrin.
20. Procedimiento in vitro para potenciar Ia actividad de una enzima glicosidasa, que comprende poner en contacto Ia proteína con una cantidad eficaz de un compuesto de fórmula general (I). 20. In vitro method to enhance the activity of a glycosidase enzyme, which comprises contacting the protein with an effective amount of a compound of general formula (I).
PCT/ES2009/070449 2008-10-22 2009-10-21 Compounds promoting the activity of mutant glycosidases WO2010046517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200802988 2008-10-22
ES200802988A ES2337435B8 (en) 2008-10-22 2008-10-22 POTENTIATING COMPOUNDS OF THE ACTIVITY OF MUTANT GLYCOSIDASES.

Publications (1)

Publication Number Publication Date
WO2010046517A1 true WO2010046517A1 (en) 2010-04-29

Family

ID=42082773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070449 WO2010046517A1 (en) 2008-10-22 2009-10-21 Compounds promoting the activity of mutant glycosidases

Country Status (2)

Country Link
ES (1) ES2337435B8 (en)
WO (1) WO2010046517A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151493A1 (en) * 2010-06-04 2011-12-08 Consejo Superior De Investigaciones Científicas (Csic) Sp2 iminosugar derivatives as alfa-glycosidase inhibitors
WO2016120808A1 (en) 2015-01-28 2016-08-04 Minoryx Therapeutics S.L. Heteroarylaminoisoquinolines, methods for their preparation and therapeutic uses thereof
WO2018122746A1 (en) 2016-12-28 2018-07-05 Minoryx Therapeutics S.L. Isoquinoline compounds, methods for their preparation, and therapeutic uses thereof in conditions associated with the alteration of the activity of beta galactosidase
WO2020023390A1 (en) 2018-07-25 2020-01-30 Modernatx, Inc. Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders
CN111006928A (en) * 2019-12-26 2020-04-14 武汉三鹰生物技术有限公司 Sealing liquid applied to immunohistochemistry and using method thereof
WO2022064429A1 (en) * 2020-09-25 2022-03-31 David Vocadlo Glycosidase inhibitors and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440319A1 (en) * 1990-01-25 1991-08-07 Schering Aktiengesellschaft Process and intermediates for the preparation of annelated iminothiazoles
US5131946A (en) * 1987-07-07 1992-07-21 Schering Aktiengesellschaft Anilino iminoazoles and iminoazines, process for their preparation and their uses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131946A (en) * 1987-07-07 1992-07-21 Schering Aktiengesellschaft Anilino iminoazoles and iminoazines, process for their preparation and their uses
EP0440319A1 (en) * 1990-01-25 1991-08-07 Schering Aktiengesellschaft Process and intermediates for the preparation of annelated iminothiazoles

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AGUILAR-MONCAYO M. ET AL: "Glycosidase inhibition by ring -modified castanospermine analogues: tackling inzyme selectivity by inhibitor tailoring", ORG. BIOMOL. CHEM., vol. 7, 2009, pages 2738 - 2747 *
ARYA V. ET AL: "Synthesis of new heterocycles: part XVI- Synthesis of thiazolo (3,4 alfa) pyridines, pyrido (1,3)thiazines & related heterocycles", INDIAN JOURNAL OF CHEMISTRY, vol. 14B, 1976, pages 770 - 772 *
BRUMSHTEIN B. ET AL: "6-amino-6-deoxy-5,6- di-N- (N'octyliminomethylidene) nojirimycin: synthesis, biological evaluation, and crystal structure in complex with acid beta glucosidase", CHEMBIOCHEM, vol. 10, 2009, pages 1480 - 1485 *
GARCIA MORENO M.I.: "Castanospermine-trehazolin hybrids: a new family of glycomimetics with tuneable glycosidase inhibitory properties", CHEM. COMM., no. 8, 2002, pages 848 - 849 *
GARCIA MORENO M.I.: "Synthesis and evaluation of isourea-type glycomimetics related to the indolizidine and trehazolin glycosidase inhibitor families", J. ORG. CHEM, vol. 68, 2003, pages 8890 - 8901 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151493A1 (en) * 2010-06-04 2011-12-08 Consejo Superior De Investigaciones Científicas (Csic) Sp2 iminosugar derivatives as alfa-glycosidase inhibitors
ES2370852A1 (en) * 2010-06-04 2011-12-23 Consejo Superior De Investigaciones Científicas (Csic) Sp2 iminosugar derivatives as alfa-glycosidase inhibitors
WO2016120808A1 (en) 2015-01-28 2016-08-04 Minoryx Therapeutics S.L. Heteroarylaminoisoquinolines, methods for their preparation and therapeutic uses thereof
WO2018122746A1 (en) 2016-12-28 2018-07-05 Minoryx Therapeutics S.L. Isoquinoline compounds, methods for their preparation, and therapeutic uses thereof in conditions associated with the alteration of the activity of beta galactosidase
US11440898B2 (en) 2016-12-28 2022-09-13 Minoryx Therapeutics S.L. Isoquinoline compounds, methods for their preparation, and therapeutic uses thereof in conditions associated with the alteration of the activity of beta galactosidase
WO2020023390A1 (en) 2018-07-25 2020-01-30 Modernatx, Inc. Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders
CN111006928A (en) * 2019-12-26 2020-04-14 武汉三鹰生物技术有限公司 Sealing liquid applied to immunohistochemistry and using method thereof
CN111006928B (en) * 2019-12-26 2023-08-08 武汉三鹰生物技术有限公司 Sealing liquid applied to immunohistochemistry and application method thereof
WO2022064429A1 (en) * 2020-09-25 2022-03-31 David Vocadlo Glycosidase inhibitors and uses thereof

Also Published As

Publication number Publication date
ES2337435B8 (en) 2011-07-19
ES2337435A1 (en) 2010-04-23
ES2337435B2 (en) 2011-01-25

Similar Documents

Publication Publication Date Title
ES2337435B2 (en) POTENTIATING COMPOUNDS OF THE ACTIVITY OF MUTANT GLYCOSIDASES.
EP0493622B1 (en) Phospholipid- or lipid-combining glycosaminoglycan, production thereof, and cancer metastasis inhibitor
Aguilar-Moncayo et al. Bicyclic (galacto) nojirimycin analogues as glycosidase inhibitors: effect of structural modifications in their pharmacological chaperone potential towards β-glucocerebrosidase
US5733892A (en) Metastasis inhibitor composition comprising a phospholipid-linked glycosaminoglycan and method for inhibiting metastasis employing the same
US9925271B2 (en) Targeted pharmacological chaperones
AU2013276480B2 (en) N-substituted second generation derivatives of antifungal antibiotic Amphotericin B and methds of their preparation and application
AU2896600A (en) Dimeric compounds and their use as inhibitors of neuraminidase
AU713466B2 (en) Carbohydrate-modified cytostatics
US20180311321A1 (en) Assisted enzyme replacement therapy
US8492352B2 (en) Polysaccharides with antithrombotic activity, including a covalent bond and an amino chain
Rondanin et al. Arylamidonaphtalene sulfonate compounds as a novel class of heparanase inhibitors
Kooij et al. Glycosidase inhibition by novel guanidinium and urea iminosugar derivatives
IE881284L (en) Piperidine derivatives
ES2436378B1 (en) USE OF A FORMULA COMPOUND (I) FOR THE MANUFACTURE OF A MEDICINAL PRODUCT FOR THE TREATMENT OF GAUCHER'S DISEASE, PHARMACEUTICAL COMPOSITION, A FORMULA COMPOUND (Ib) AND OBTAINING PROCEDURE.
US10543282B2 (en) Targeted peptide conjugates
US20070191400A1 (en) Pharmaceutical compositions comprising anti-inflammatory quinazolinecarboxamide derivatives
ES2472115B1 (en) USE OF BICYCLIC DERIVATIVES OF 1-DEOXIGALACTONOJIRIMYCIN IN THE PREPARATION OF A MEDICINAL PRODUCT FOR THE TREATMENT OF DISEASES RELATED TO HUMAN MUTANT LYSOSOMIC GALACTOSIDASE ILLNESSES
US20140094429A1 (en) Fgf receptor-activating 3-o-alkyl oligosaccharides, preparation thereof and therapeutic use thereof
TWI832678B (en) Inhibitors of cysteine proteases and use thereof
BR102013002260A2 (en) SYNTHESIS OF NEW BERGENINE-DERIVATIVE 1,2,3-TRIZOES, COMPOSITIONS AND USE AS INHIBITORS OF ENZYME GLYCOSIDASES
ES2694202T3 (en) Deuterated Idebenone
Blériot et al. Sugar-Derived Amidines and Congeners: Structures, Glycosidase Inhibition and Applications
US20110212907A1 (en) Hexadecasaccharides with antithrombotic activity, including a covalent bond and an amino chain
Olgen et al. Structure-Activity Evaluation of N-benzyl-5-substituted Indole-3-imine Derivatives and their Amine Congeners as Bovine Testicular Hyaluronidase (BTH) Inhibitor
CN1350535A (en) Purine derivative dihydrate, drugs containing the same as the active ingredient and intermediate in the production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821632

Country of ref document: EP

Kind code of ref document: A1