WO2010046000A2 - Profil eines rotorsblatts und rotorblatt einer windenergieanlage - Google Patents

Profil eines rotorsblatts und rotorblatt einer windenergieanlage Download PDF

Info

Publication number
WO2010046000A2
WO2010046000A2 PCT/EP2009/006574 EP2009006574W WO2010046000A2 WO 2010046000 A2 WO2010046000 A2 WO 2010046000A2 EP 2009006574 W EP2009006574 W EP 2009006574W WO 2010046000 A2 WO2010046000 A2 WO 2010046000A2
Authority
WO
WIPO (PCT)
Prior art keywords
profile
rotor blade
thickness
profiles
skeleton line
Prior art date
Application number
PCT/EP2009/006574
Other languages
English (en)
French (fr)
Other versions
WO2010046000A3 (de
Inventor
Marc Petsche
Matthias Korjahn
Bert Gollnick
Original Assignee
Repower Systems Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42055006&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010046000(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Repower Systems Ag filed Critical Repower Systems Ag
Priority to CN2009801422900A priority Critical patent/CN102197215A/zh
Priority to ES09778455.7T priority patent/ES2541146T3/es
Priority to DK09778455.7T priority patent/DK2337950T3/en
Priority to US13/125,322 priority patent/US8814525B2/en
Priority to EP09778455.7A priority patent/EP2337950B1/de
Publication of WO2010046000A2 publication Critical patent/WO2010046000A2/de
Publication of WO2010046000A3 publication Critical patent/WO2010046000A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/02Formulas of curves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/05Variable camber or chord length

Definitions

  • the invention relates to a profile of a rotor blade of a wind turbine, a plurality of such profiles and a corresponding rotor blade of a wind turbine.
  • a corresponding profile of a rotor blade of a wind power plant and a corresponding family or a plurality of profiles is known.
  • the wing profiles or profiles disclosed in this document have a blunt trailing edge, a substantially oval suction side and a substantially S-shaped pressure side.
  • low-speed profiles are also known which are used in the vicinity of the rotor blade root or in the vicinity of the hub of the wind energy plant.
  • Low-speed profiles are also known which are used in the vicinity of the rotor blade root or in the vicinity of the hub of the wind energy plant.
  • a known profile of low relative thickness is made by adding a profile known per se by cutting the back edge or upscaling in thickness
  • the FX 77-W-500 disclosed on pages 162 to 163 of this referenced book may be cited Reynolds number of 2.75 million in the clean state a maximum lift coefficient of c a
  • the FX 77-W-500 has a relative profile thickness of 50%.
  • Angle of attack or angle of attack is understood in the context of the invention as an angle of the incoming apparent wind to the chord of the profile.
  • reference is made in particular to the textbook Erich Hau "Windkraftanlagen", 4th edition, 2008, especially page 126 f.
  • Design of the rotor blade is used in the calculation of the respective profile, the angle or a slightly smaller angle selects, in which the clean profile has the maximum lift coefficient, which makes sense, since the blade depths are to be kept small, the lift coefficient then decreases in the polluted state to a fraction of the clean value.
  • 83-W-500 has only moderate aerodynamic properties due to the thick trailing edge even with laminar flow. In turbulent flow, it still has high lift coefficients, but then has relatively poor glide numbers. In addition, the maximum thickness of this profile is about 80% of the profile length or chord length, which is structurally less conducive to good rotor blade tension. Thus, only a relatively small distance of the main straps can be made in a sheet with the profile of the FX 83-W-500, which causes corresponding reductions in the buildability and the blade weight of a rotor blade. 5
  • the sheet weight should be minimized.
  • This object is achieved by a profile of a rotor blade of a wind turbine with a top side (suction side) and an underside (pressure side) with a skeleton line and a chord between the front edge and the rear edge of the profile, wherein the skeleton line at least partially below the chord in Direction of the pressure side runs.
  • a high angle of attack can be selected in the profile according to the invention, with a high lift coefficient and a high glide ratio can be achieved. This can - A -
  • the torsion of a rotor blade provided with such a profile or a family or a plurality of profiles provided rotor blade are kept small, so that the largest possible distance of the main straps can be achieved without a rotation of the main straps and thus the rotor blade weight is reduced.
  • the skeleton line is preferably arranged at a distance of between 0% to 60%, in particular 0% to 50%, of the profile depth of the profile below the tendon.
  • the skeleton line is completely in a range between 5% to 50%, especially 2% to 60%, below the
  • the amount of maximum buckling is less than 0.015.
  • the curvature here is the distance of the skeleton line to the tendon as a percentage of the chord length.
  • the maximum curvature is thus for the given profile the largest distance of the skeleton line to the tendon as a percentage of the chord length.
  • the skeleton line in the context of the invention is the line of the centers of the circles inscribed between the profile top and bottom sides.
  • the tendon is in the context of
  • Invention defined as the line from the center of the trailing edge of the profile to the farthest profile point, which corresponds to the nose point.
  • the skeleton line curvature is defined in the context of the invention as the second derivative of the function of the skeleton line.
  • the maximum profile thickness or in the context of the invention also relative
  • Called profile thickness is the maximum thickness of a profile perpendicular to the chord relative to the chord length.
  • the relative thickness back Ge is defined in the context of the invention as the distance of the maximum profile thickness of the front nose point relative to the chord length, that is also given in percent.
  • the trailing edge thickness is defined in the context of the invention as the thickness of the trailing edge with respect to the chord length.
  • the second derivative of the skeleton line is from 10% to 40%, especially from 5% to 50%, especially from 2% to 60%, of the tread depth either 0 or positive.
  • This profile also has its own inventive content.
  • Particularly good aerodynamic properties have a profile according to the invention, when the profile has a relative profile thickness of more than 49%, in particular more than 55% or equal to 55%, wherein the thickness reserve is less than 35%.
  • This profile which has its own inventive content, is particularly suitable for ro- torblattwurzel workede profiles.
  • An inventive and preferred profile which also has its own inventive content, is characterized in that the
  • Profile has a relative profile thickness of more than 45%, in particular more than 50% or equal to 50%, wherein in turbulent flow around a glide greater than 6, in particular greater than 10, in particular greater than 15, is achieved.
  • this profile near the blade root near the rotor blade, despite the high relative profile thicknesses of more than 45%, even without extreme blade depth the energy contained in the flow is efficiently utilized. This effect is also largely achieved with contaminated profiles, ie with completely turbulent flow around the profiles.
  • the aforementioned profiles and also the following have been developed such that the working range is at high aerodynamic angles of attack, for example> 10 °. As a result, a production technically unfavorable high geometric blade twist is avoided.
  • the relative profile thickness is greater than 65%, in particular greater than or equal to 70%.
  • a particularly preferred profile of a rotor blade of a wind turbine, which has independent inventive content, is characterized in that the profile has a relative profile thickness of more than 45% with a thickness of less than 50%, wherein a lift coefficient with turbulent flow of more than 0 , 9, in particular more than 1, 4, is achieved.
  • the relative profile thickness is more than 65%, in particular greater than or equal to 70%.
  • the lift coefficients are preferably achieved at design flow angles or angles of attack of 6 ° to 15 °, in particular 8 ° to 14 °.
  • Another particularly preferred profile which has independent inventive content, provides a nose radius that is greater than 18% of the tread depth, the profile being asymmetrical in the nose area.
  • a ratio of the maximum lift coefficient for turbulent flow to the maximum lift coefficient for laminar flow of more than 0.75 is achieved.
  • the suction side and the pressure side of the profile in the rear region in each case at least in sections a concave contour.
  • a significant proportion of the total buoyancy of the profile is generated by a so-called "rear loading”.
  • a plurality of profiles according to the invention is provided, which are realized in at least one region of a rotor blade of a wind energy plant.
  • a rotor blade of a wind power plant is preferably provided with a plurality of profiles according to the invention.
  • the plurality of profiles is arranged in a transition region of the rotor blade in the vicinity of the blade root.
  • a turbulent flow or profile flow is considered to be present when the aerodynamically clean envelope of flow from laminar to turbulent is present.
  • a turbulent flow is in particular a flow state in which more than 90%, in particular more than 92%, of the surface is turbulent
  • An advantage of the profiles according to the invention lies in the high lift coefficients, both in the clean and in the polluted state, ie in laminar as well as in turbulent flow. Another advantage is that the operating points of the profiles according to the invention lie at high aerodynamic angles of attack, whereby the geometric distortion of the entire rotor blade can be significantly reduced, which is a great advantage in the process. production and also leads to lower rotor blade weights. It can also happen that the maximum sheet twisting is fixed in terms of production technology, so that it is achieved with the profiles according to the invention in the vicinity of the blade root that these
  • the profiles according to the invention can prevail so with known profiles in the blade tip angle at which an optimal buoyancy is generated and prevail at the same time ande-o re angle of attack near the blade root, there for the profiles still produce an optimal or at least acceptable buoyancy ,
  • a further advantage lies in the thickness reserve designed precisely for a good inner core 5 of the rotor blade. This allows a maximum Hauptgurtabstand in the range of relative profile thickness of 35% to the cylinder (on the rotor blade root) with minimal curvature in the nose and Schukantengurt. Of particular advantage are the comparatively far lying maximum profile thickness and / or the relatively large nose radius.
  • Fig. 2 shows an inventive profile compared to a
  • Fig. 6 is a schematic diagram concerning calculated
  • Fig. 7 is a schematic diagram of measured profile polar of a profile according to the invention.
  • Fig. 8 is a schematic diagram of measured profile polars of a prior art profile.
  • Fig. 1 shows schematically a rotor blade 5 of a wind turbine, which is not shown, wherein schematically some profiles 1-4 and 6 are shown.
  • transition region 13 in the vicinity of a rotor blade root 12 profiles 1 -4 are provided according to the invention.
  • the transition region 13 may be distinguished, for example, in that the
  • Trailing edge 11 is no longer expires as provided in the other profiles 6 pointed, but is blunt, for example, the duller the closer the profiles reach the rotor blade root 12.
  • the front edge 10 is also indicated and an upper side or suction side 7 and a
  • Fig. 2 shows an inventive profile compared to a profile of the prior art.
  • the profile 20 according to the invention which has the designation RE-W-50-B6, has a skeleton line 21 curved in the front profile region to 60% or 0.6 of the chord length to the pressure side 8. Only at about 0.63 chord length, the skeleton line 21 cuts the chord 18 and goes in the direction of the suction side 7.
  • the profile FX 83-W-500 see Althaus, op. Cit., Page 552, 553
  • the Reference numeral 22 carries, the maximum profile thickness relatively far forward. In profile 20, this is 34.4% or 0.344 of the tread depth or chord length.
  • the nose radius of profile 20, at 23.3% of the tread depth, is also significantly larger than the comparative profiles with values between 5.6% and 14.8%, whereby it has to be taken into account that the tread in the nose is also asymmetrical.
  • the comparison profile 22, namely the FX 83-W-500, also has a skeleton line 23 which is located completely above the chord 18 towards the suction side 7.
  • the relative profile thickness of the profile 22 is 50%. This lies at a tread depth of 78.7%. There is a maximum curvature of
  • the nose radius is 0.056 or 5.6%.
  • the profile 20 according to the invention has a relative profile thickness of 50% at a profile depth of 34.4% and a maximum curvature of 0.0123. The maximum curvature is at a profile depth of 82.5%.
  • the nose radius is 23.3%, the profile cross-sectional area 0.3927 and the trailing edge thickness is 25.7%.
  • Fig. 3 is again an inventive profile, namely the profile RE-W-70-B9, compared to a profile of the prior art, namely the profile FX 79-W-660A shown.
  • the associated skeleton lines 25 and 27 are also shown. Also in this case, the skeleton line 25 of the RE-W-70-B9 below the chord 18 to
  • the profile 24 according to the invention has a relative profile thickness of 70% at a profile depth of 47.7%.
  • the maximum positive curvature is 0.01 18 at 85% tread depth.
  • the nose radius is 23.87%.
  • the nose radius is 4.1%.
  • FIG. 4 shows four further profiles of a rotor blade 5 of a wind power plant, the profiles 28, 29 and 30 being profiles according to the invention and a profile, namely the profile 31, being a profile of the prior art.
  • the profile 31 corresponds to the FX 77-W-700 of the prior art. This is to be realized, for example, from the document "Dieter Althaus Low Speed Profiles" given above, so that the profile FX 77-W-500 indicated on pages 162 and 163 is further cut off at the back in such a way that A relative thickness or relative profile thickness of 70% is produced, which is naturally at a profile depth that is relatively far behind, in this case approximately 68%.
  • the profiles 28 according to the invention corresponding to RE-W-70-A1, 29 corresponding to RE-W-70-A2 and 30 corresponding to RE-W-70-B1 also have a relative profile thickness of 70% with a thickness reserve of approx. 34% for the profile 28, about 37% for the profile 29 and about 50% for the profile 30.
  • the trailing edge of the profile concave contours are provided, in particular are more pronounced on the pressure side 8.
  • FIG. 5 shows a schematic diagram concerning calculated profile polar of a profile according to the invention, namely the RE-W 70-B9.
  • the lift coefficient c a is shown above the angle of attack ⁇ (alpha) and the ratio of the lift coefficient to the drag coefficient c w . This ratio is the glide ratio.
  • the polar of FIG. 5 is a calculation of the profile polar numbers for a Reynolds number of 3 million. Corresponding calculations were made for a turbulent flow around and a laminar flow around.
  • the profile polar 32 represents a calculation of the lift coefficient c a for laminar flow and the profile polar 33 the corresponding value for turbulent flow.
  • the profile polarity for the glide ratio in the case of laminar flow is designated by the reference numeral 34 and corresponding to turbulent flow with the reference numeral 35 It can be seen that the lift coefficient has a maximum at about 14.8 ° of the angle of attack, namely at laminar flow, and a maximum at about 9 ° at turbulent
  • the glide ratio is provided with a laminar flow around 14.8 ° with a maximum and with turbulent flow around 11 °.
  • the corresponding profile polares 36, 37, 38 and 39 of a known profile namely the FW 79-W-660 A are indicated in FIG. It can be seen in particular that a local maximum of the lift coefficient for lamina around the profile polars 36 is given at approximately 7 °, and for a profile polarity concerning the glide ratio for laminar flow, which is designated by the reference numeral 38, also a corresponding maximum is present at 7 ° of the angle of attack ⁇ .
  • Fig. 7 shows a schematic diagram of measured profile polar of a profile according to the invention, namely the profile RE-W-50-B6, which has already been shown in FIG.
  • the profile polar 40 represents the lift coefficient for laminar flow at a Reynolds number of 3 million.
  • a maximum lift coefficient of approximately 1.84 at an angle of approximately 13 ° is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Die Erfindung betrifft ein Profil (1-4) eines Rotorblatts (5) einer Windenergieanlage. Das erfindungsgemäße Profil (1-4) zeichnet sich dadurch aus, dass die Skelettlinie wenigstens abschnittsweise unterhalb der Sehne in Richtung der Druckseite (8) verläuft. Außerdem zeichnet sich das erfindungsgemäße Profil dadurch aus, dass das Profil (1-4) eine relative Profildicke von mehr als 45 % bei einer Dickenrücklage von weniger als 50 % aufweist, wobei ein Auftriebsbeiwert (ca) bei turbulenter Umströmung von mehr als 0,9, insbesondere mehr als 1,4, erreicht wird.

Description

Profil eines Rotorblatts und Rotorblatt einer Windenergieanlage
Beschreibung
Die Erfindung betrifft ein Profil eines Rotorblatts einer Windenergieanlage, eine Mehrzahl derartiger Profile sowie ein entsprechendes Rotorblatt einer Windenergieanlage.
Aus DE 10 2008 003 41 1 A1 ist ein entsprechendes Profil eines Rotorblatts einer Windenergieanlage sowie eine entsprechende Familie bzw. eine Mehrzahl von Profilen bekannt. Die in dieser Schrift offenbarten Flügelprofile bzw. Profile weisen eine stumpfe Hinter- kante auf, eine im Wesentlichen ovale Saugseite und eine im Wesentlichen S-förmige Druckseite.
Es sind auch weitere Profile bekannt. Insbesondere sind auch Nied- riggeschwindigkeitsprofile bekannt, die in der Nähe der Rotorblatt- wurzel bzw. in der Nähe der Nabe der Windenergieanlage verwendet werden. Aus Dieter Althaus „Niedriggeschwindigkeitsprofile", Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1996, ist ein bekanntes Profil mit niedriger relativer Dicke dadurch hergestellt, dass ein an sich bekanntes Profil durch Abschneiden der Hin- terkante oder Hochskalieren in der Dicke auf die erforderlichen relativen Dickenwerte, die in der Nähe der Blattwurzel benötigt werden, erreicht wird. Als Beispiel kann hierzu das FX 77-W-500 genannt werden, das auf den Seiten 162 bis 163 in diesem genannten Buch offenbart ist. Dieses Profil erreicht bei einer Reynoldszahl von 2,75 Mio. im sauberen Zustand einen maximalen Auftriebsbeiwert von ca
= 1 ,6 bei einem Anstellwinkel von 10° und im verschmutzten, also turbulenten Zustand ein maximales ca von 0,8 bei einem Anstellwinkel von 4°. Das FX 77-W-500 hat eine relative Profildicke von 50%.
Unter Anstellwinkel bzw. Anströmwinkel wird im Rahmen der Erfindung ein Winkel des anströmenden scheinbaren Windes zu der Sehne des Profils verstanden. Für etwaige Definitionen wird insbesondere auf das Lehrbuch Erich Hau „Windkraftanlagen", 4. Auflage, 2008, insbesondere Seite 126 f., verwiesen.
Bekannte Profile mit hoher relativer Profildicke, wie beispielsweise das FX 77-W-500, besitzen zwar im sauberen Zustand einen akzeptablen Auftriebsbeiwert ca, der maximale Auftriebsbeiwert bricht aber deutlich bei turbulenter Umströmung, also im verschmutzten Zustand, ein. Auch ändert sich der aerodynamische Anstellwinkel, bei dem der maximale Auftriebsbeiwert im verschmutzten Zustand erreicht wird, deutlich. Dieses Verhalten, nämlich der kleine Auftrieb bei Verschmutzung mit einer großen Anstellwinkeländerung für den maximalen Auftriebsbeiwert ist für Windkraftanlagen sehr ungünstig. Wird als Auslegungsanstellwinkel, also der Anstellwinkel, der in der
Auslegung des Rotorblattes bei der Berechnung des jeweiligen Profils verwendet wird, der Winkel oder ein etwas kleinerer Winkel ge- wählt, bei dem das saubere Profil den maximalen Auftriebsbeiwert besitzt, was sinnvoll ist, da die Blatttiefen klein gehalten werden sollen, verringert sich der Auftriebsbeiwert dann im verschmutzten Zustand auf einen Bruchteil des sauberen Wertes. Das Profil des FX
5 83-W-500 hat durch die dicke Hinterkante schon bei laminarer Um- strömung nur mäßige aerodynamische Eigenschaften. Bei turbulenter Umströmung weist es noch hohe Auftriebsbeiwerte auf, hat dann aber relativ schlechte Gleitzahlen. Außerdem ist die maximale Dicke dieses Profils bei ungefähr 80% der Profillänge bzw. Sehnenlänge,o was strukturell für einen guten Straak des Rotorblatts weniger förderlich ist. Damit kann nur ein relativ geringer Abstand der Hauptgurte bei einem Blatt mit dem Profil des FX 83-W-500 hergestellt werden, was entsprechende Abstriche bei der Baubarkeit und dem Blattgewicht eines Rotorblatts hervorruft. 5
Es ist Aufgabe der vorliegenden Erfindung, ein Profil eines Rotorblatts einer Windenergieanlage anzugeben und entsprechend eine Mehrzahl von Profilen sowie ein entsprechendes Rotorblatt, das gute aerodynamische Eigenschaften sowohl bei laminaren als aucho turbulenten Strömungen erreicht. Hierbei soll insbesondere auch das Blattgewicht minimiert werden.
Gelöst wird diese Aufgabe durch ein Profil eines Rotorblatts einer Windenergieanlage mit einer Oberseite (Saugseite) und einer Un-5 terseite (Druckseite) mit einer Skelettlinie und einer Sehne zwischen der Vorderkante und der Hinterkante des Profils, wobei die Skelettlinie wenigstens abschnittsweise unterhalb der Sehne in Richtung der Druckseite verläuft. o Durch diese Maßnahme kann bei dem erfindungsgemäßen Profil ein hoher Anstellwinkel gewählt werden, wobei ein hoher Auftriebsbeiwert und eine hohe Gleitzahl erreicht werden kann. Hierdurch kann - A -
die Verwindung eines mit einem derartigen Profil versehenen Rotorblattes bzw. einer Familie oder einer Mehrzahl von Profilen versehenen Rotorblattes klein gehalten werden, so dass ein möglichst großer Abstand der Hauptgurte ohne eine Verdrehung der Haupt- gurte erreicht werden kann und damit das Rotorblattgewicht reduziert wird.
Vorzugsweise ist die Skelettlinie in einem Abstand zwischen 0 % bis 60 %, insbesondere 0 % bis 50 %, der Profiltiefe des Profils unter- halb der Sehne angeordnet. Hierdurch ist ein Profil mit sehr guten aerodynamischen Eigenschaften für eine Windenergieanlage möglich.
Wenn vorzugsweise die Skelettlinie vollständig in einem Abschnitt zwischen 5 % bis 50 %, insbesondere 2 % bis 60 %, unterhalb der
Sehne angeordnet ist, ist die Auslegung des Profils auch zu niedrigeren Reynoldszahlen relativ unproblematisch.
Vorzugsweise ist der Betrag der maximalen Wölbung kleiner als 0,015. Die Wölbung ist hierbei der Abstand der Skelettlinie zur Sehne in Prozent der Sehnenlänge. Die maximale Wölbung ist somit für das gegebene Profil der größte Abstand der Skelettlinie zur Sehne in Prozent der Sehnenlänge. Die Skelettlinie ist im Rahmen der Erfindung die Linie der Mittelpunkte der zwischen der Profilober- und -Unterseite eingeschriebenen Kreise. Die Sehne ist im Rahmen der
Erfindung definiert als die Linie von der Mitte der Hinterkante des Profils zum weitest entfernten Profilpunkt, was dem Nasenpunkt entspricht. Die Skelettlinienkrümmung ist im Rahmen der Erfindung definiert als die zweite Ableitung der Funktion der Skelettlinie. Die maximale Profildicke bzw. im Rahmen der Erfindung auch relative
Profildicke genannt, ist die maximale Dicke eines Profils senkrecht zur Sehne bezogen auf die Sehnenlänge. Die relative Dickenrückla- ge ist im Rahmen der Erfindung definiert als Abstand der maximalen Profildicke von dem vorderen Nasenpunkt bezogen auf die Sehnenlänge, also auch in Prozent angegeben. Die Hinterkantendicke ist im Rahmen der Erfindung definiert als Dicke der Hinterkante bezo- gen auf die Sehnenlänge.
Vorzugsweise ist die zweite Ableitung der Skelettlinie (Skelettlinienkrümmung) von 10 % bis 40 %, insbesondere von 5 % bis 50 %, insbesondere von 2 % bis 60 %, der Profiltiefe entweder 0 oder positiv. Dieses Profil hat auch eigenen erfinderischen Gehalt.
Besonders gute aerodynamische Eigenschaften hat ein erfindungsgemäßes Profil, wenn das Profil eine relative Profildicke von mehr als 49 %, insbesondere mehr als 55 % oder gleich 55 %, aufweist, wobei die Dickenrücklage kleiner als 35 % ist. Dieses Profil, das eigenen erfinderischen Gehalt hat, eignet sich insbesondere für ro- torblattwurzelseitige Profile.
Ein erfindungsgemäßes und bevorzugtes Profil, das auch eigenen erfinderischen Gehalt hat, ist dadurch gekennzeichnet, dass das
Profil eine relative Profildicke von mehr als 45 %, insbesondere mehr als 50 % oder gleich 50 %, aufweist, wobei bei turbulenter Umströmung eine Gleitzahl größer als 6, insbesondere größer als 10, insbesondere größer als 15, erreicht wird. Bei Verwendung die- ses Profils im Blattwurzel nahen Bereich des Rotorblattes wird trotz der hohen relativen Profildicken von mehr als 45% auch ohne extreme Blatttiefe die in der Anströmung enthaltene Energie effizient ausgenutzt. Dieser Effekt wird auch weitestgehend mit verschmutzten Profilen erreicht, also bei komplett turbulenter Umströmung der Profile. Außerdem sind die vorgenannten Profile und auch die folgenden dahingehend entwickelt worden, dass der Arbeitsbereich bei hohen aerodynamischen Anstellwinkeln, beispielsweise > 10° liegt. Hierdurch wird eine produktionstechnisch ungünstige hohe geometrische Blattverwindung vermieden. Vorzugsweise ist die relative Profildicke größer als 65 %, insbesondere größer oder gleich 70 %.
Ein besonders bevorzugtes Profil eines Rotorblatts einer Windenergieanlage, das eigenständigen erfinderischen Gehalt aufweist, ist dadurch gekennzeichnet, dass das Profil eine relative Profildicke von mehr als 45 % bei einer Dickenrücklage von weniger als 50 % aufweist, wobei ein Auftriebsbeiwert bei turbulenter Umströmung von mehr als 0,9, insbesondere mehr als 1 ,4, erreicht wird.
Vorzugsweise liegt die relative Profildicke bei mehr als 65 %, insbesondere größer oder gleich 70%. Vorzugsweise werden die Auftriebsbeiwerte bei Auslegungsanströmwinkeln bzw. Anstellwinkeln von 6° bis 15°, insbesondere 8° bis 14°, erreicht.
Ein weiteres besonders bevorzugtes Profil, das eigenständigen erfinderischen Gehalt aufweist, sieht einen Nasenradius vor, der größer als 18 % der Profiltiefe ist, wobei das Profil im Nasenbereich asymmetrisch ist.
Vorzugsweise wird ein Verhältnis des maximalen Auftriebsbeiwertes bei turbulenter Umströmung zu dem maximalen Auftriebsbeiwert bei laminarer Umströmung von mehr als 0,75 erreicht.
Vorzugsweise weist die Saugseite und die Druckseite des Profils im hinteren Bereich jeweils wenigstens abschnittsweise eine konkave Kontur auf. Hierdurch kommen deutlich kleinere Übergeschwindigkeiten auf der Saugseite zustande, während auf der Druckseite ein deutlicher Anteil des Gesamtauftriebs des Profils erzeugt wird, durch ein so genanntes „rear loading". Vorzugsweise ist eine Mehrzahl von erfindungsgemäßen Profilen vorgesehen, die in wenigstens einem Bereich eines Rotorblatts einer Windenergieanlage realisiert sind.
Ferner ist vorzugsweise ein Rotorblatt einer Windenergieanlage mit einer Mehrzahl erfindungsgemäßer Profile versehen. Insbesondere vorzugsweise ist die Mehrzahl von Profilen in einem Übergangsbereich des Rotorblatts in der Nähe der Blattwurzel angeordnet.
Im Rahmen der Erfindung wird eine turbulente Strömung bzw. Profilumströmung dann als vorliegend angesehen, wenn der aerodynamisch sauber definierte Umschlag der Strömung von laminar nach turbulent vorliegt. Eine turbulente Umströmung ist im Rahmen der Erfindung insbesondere ein Strömungszustand, bei dem mehr als 90%, insbesondere mehr als 92%, der Oberfläche eine turbulente
Grenzschicht aufweisen. Dieses wird im Versuch und auch bei den folgenden dargestellten Messungen durch Rauigkeiten simuliert, die gerade groß genug sind, um einen Umschlag von laminarer Grenzschicht zu turbulenter Grenzschicht zu bewirken. Hierzu wird bei- spielsweise ein Zackenband an der Saugseite bei 5% vom Nasenpunkt und auf der Druckseite bei 10% vom Nasenpunkt, manchmal auch bei 5% (Saugseite) und 5% (Druckseite) bzw. 3%/5% oder 3%/3% realisiert. Die genaue Lage des Zackenbandes hängt hierbei vom Nasenradius ab und dem zu vermessenden Anstellwinkel.
Ein Vorteil der erfindungsgemäßen Profile liegt in den hohen Auftriebsbeiwerten, sowohl im sauberen als auch im verschmutzten Zustand, also bei laminarer als auch bei turbulenter Strömung. Ein weiterer Vorteil liegt darin, dass die Arbeitspunkte der erfindungs- gemäßen Profile bei hohen aerodynamischen Anstellwinkeln liegen, wodurch die geometrische Verwindung des gesamten Rotorblattes deutlich verringert werden kann, was ein großer Vorteil in der Pro- duktion ist und auch zu niedrigeren Rotorblattgewichten führt. Es kann auch vorkommen, dass die maximale Blattverwindung produktionstechnisch fest vorgegeben ist, so dass mit den erfindungsgemäßen Profilen in der Nähe der Blattwurzel erreicht wird, dass diese
5 noch im optimalen Arbeitspunkt eingesetzt werden können, was bei den bisher bekannten Profilen in dem rotorblattwurzelnahen Bereich nicht möglich ist. Bei den erfindungsgemäßen Profilen können so mit bekannten Profilen in der Blattspitze Anstellwinkel vorherrschen, bei denen ein optimaler Auftrieb erzeugt wird und gleichzeitig ande-o re Anstellwinkel in der Nähe der Blattwurzel vorherrschen, die für die Profile dort noch einen optimalen oder zumindest noch akzeptablen Auftrieb erzeugen.
Ein weiterer Vorteil liegt in der genau auf einen guten Straak inner-5 halb des Rotorblattes ausgelegten Dickenrücklage. Dieses ermöglicht einen maximalen Hauptgurtabstand im Bereich von relativen Profildicken von 35% bis zum Zylinder (an der Rotorblattwurzel) bei möglichst geringen Krümmungen im Nasen- und Hinterkantengurt. o Insbesondere von Vorteil sind die im Vergleich weit vorne liegende maximale Profildicke und/oder der relativ große Nasenradius.
Alle genannten Merkmale, auch die den Zeichnungen allein zu entnehmenden sowie auch einzelne Merkmale, die in Kombination mit5 anderen Merkmalen offenbart sind, werden allein und in Kombination als erfindungswesentlich angesehen.
Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen untero Bezugnahme auf die Zeichnungen beschrieben, wobei bezüglich aller im Text nicht näher erläuterten erfindungsgemäßen Einzelheiten ausdrücklich auf die Zeichnungen verwiesen wird. Es zeigen: Fig. 1 eine schematische Darstellung eines Rotorblattes mit eingeschriebenen Profilen,
Fig. 2 ein erfindungsgemäßes Profil im Vergleich zu einem
Profil des Standes der Technik,
Fig. 3 ein weiteres erfindungsgemäßes Profil im Vergleich zu einem weiteren Profil des Standes der Technik,
Fig. 4 ein Profil des Standes der Technik im Vergleich zu drei erfindungsgemäßen Profilen,
Fig. 5 ein schematisches Diagramm betreffend berechnete Profilpolaren eines erfindungsgemäßen Profils,
Fig. 6 ein schematisches Diagramm betreffend berechnete
Profilpolaren eines Profils des Standes der Technik,
Fig. 7 ein schematisches Diagramm gemessener Profilpolaren eines Profils gemäß der Erfindung und
Fig. 8 ein schematisches Diagramm gemessener Profilpolaren eines Profils des Standes der Technik.
In den folgenden Figuren sind jeweils gleiche oder gleichartige Elemente bzw. entsprechende Teile mit denselben Bezugsziffern versehen, so dass von einer entsprechenden erneuten Vorstellung abgesehen wird.
Fig. 1 zeigt schematisch ein Rotorblatt 5 einer Windenergieanlage, die nicht dargestellt ist, wobei schematisch schon einige Profile 1-4 sowie 6 eingezeichnet sind.
In einem Übergangsbereich 13 in der Nähe einer Rotorblattwurzel 12 sind erfindungsgemäße Profile 1 -4 vorgesehen. Der Übergangs- bereich 13 kann sich beispielsweise dadurch auszeichnen, dass die
Hinterkante 11 nicht mehr wie bei den weiteren Profilen 6 vorgesehen spitz ausläuft, sondern stumpf ausgebildet ist, und zwar beispielsweise umso stumpfer je näher die Profile zur Rotorblattwurzel 12 gelangen. Zur besseren Veranschaulichung ist auch die Vorder- kante 10 angedeutet und eine Oberseite bzw. Saugseite 7 und eine
Unterseite bzw. Druckseite 8. Von besonderem Interesse im Rahmen der Erfindung sind die Profile 1-4, die sich im Übergangsbereich 13 befinden. Diese Profile 1 -4 sollen nun im Weiteren erläutert werden.
Fig. 2 zeigt ein erfindungsgemäßes Profil im Vergleich zu einem Profil des Standes der Technik. Das erfindungsgemäße Profil 20, das die Bezeichnung RE-W-50-B6 hat, weist eine im vorderen Profilbereich bis 60 % bzw. 0,6 der Sehnenlänge zur Druckseite 8 hin gekrümmte Skelettlinie 21 auf. Erst bei ca. 0,63 der Sehnenlänge schneidet die Skelettlinie 21 die Sehne 18 und geht in Richtung der Saugseite 7. Außerdem liegt im Vergleich zum Profil FX 83-W-500 (siehe Althaus, a.a.O., Seite 552, 553), das die Bezugsziffer 22 trägt, die maximale Profildicke relativ weit vorne. Bei dem Profil 20 liegt diese bei 34,4 % bzw. 0,344 der Profiltiefe bzw. Sehnenlänge.
Die bekannten Profile, die in dem vorne angegebenen Dokument von Althaus genannt sind, haben Dickenrücklagen von 37,4 % bis 78,7 %.
Auch der Nasenradius des Profils 20 ist mit 23,3 % der Profiltiefe deutlich größer als die Vergleichsprofile mit Werten zwischen 5,6 % bis 14,8%, wobei hier zu berücksichtigen ist, dass das Profil im Be- reich der Nase auch asymmetrisch ist. Das Vergleichsprofil 22, nämlich das FX 83-W-500, hat auch eine Skelettlinie 23, die vollständig oberhalb der Sehne 18 zur Saugseite 7 hin angeordnet ist. Die relative Profildicke des Profils 22 liegt bei 50 %. Diese liegt bei einer Profiltiefe von 78,7 %. Es liegt eine maximale Wölbung von
0,02539 vor bei einer Profiltiefe von 52,7 %. Der Nasenradius beträgt 0,056 bzw. 5,6 %. Es liegt eine Profilquerschnittsfläche von 0,4134 vor und eine Hinterkantendicke von 0,479 % bzw. 47,9 %. Das erfindungsgemäße Profil 20 weist eine relative Profildicke von 50 % bei einer Profiltiefe von 34,4 % und einer maximalen Wölbung von 0,0123 auf. Die maximale Wölbung liegt bei einer Profiltiefe von 82,5 %. Der Nasenradius beträgt 23,3 %, die Profilquerschnittsfläche 0,3927 und die Hinterkantendicke liegt bei 25,7 %. Es ist zu erkennen, dass insbesondere auf der Druckseite 8 im hinteren Bereich des Profils eine konkave Kontur des Profils gegeben ist. Diese ist auch auf der Saugseite 7 gegeben, allerdings nicht so stark und prominent ausgeprägt wie auf der Druckseite 8. Die Kontur des Profils 22 gemäß dem Stand der Technik ist im hinteren Bereich hingegen konvex.
In Fig. 3 ist wieder ein erfindungsgemäßes Profil, nämlich das Profil RE-W-70-B9, gegenüber einem Profil des Standes der Technik, nämlich dem Profil FX 79-W-660A, dargestellt. Es sind auch die zugehörigen Skelettlinien 25 und 27 dargestellt. Auch in diesem Fall ist die Skelettlinie 25 des RE-W-70-B9 unterhalb der Sehne 18 zur
Druckseite 8 angeordnet und die Skelettlinie 27 des FX 79-W-660A des Standes der Technik oberhalb der Sehne 18 zur Saugseite 7 hin angeordnet. Das erfindungsgemäße Profil 24 weist eine relative Profildicke von 70 % auf bei einer Profiltiefe von 47,7 %. Es ist eine minimale bzw. betragsmäßig maximale Wölbung von -0,014 bei einer Profiltiefe von 39,9 % vorgesehen. Die maximale positive Wölbung beträgt 0,01 18 bei 85 % Profiltiefe. Der Nasenradius beträgt 23,87 %.
Bei dem Profil 26 gemäß dem Stand der Technik liegt eine relative Profildicke von 66,4 % bei einer Profiltiefe von 46,7 % vor. Es liegt eine maximale Wölbung von 2,2 % vor bei einer Profiltiefe von 17,1
%. Der Nasenradius beträgt 4,1 %.
Fig. 4 zeigt vier weitere Profile eines Rotorblatts 5 einer Windenergieanlage, wobei die Profile 28, 29 und 30 erfindungsgemäße Profi- Ie sind und ein Profil, nämlich das Profil 31 , ein Profil des Standes der Technik ist.
Das Profil 31 entspricht dem FX 77-W-700 aus dem Stand der Technik. Dieses ist beispielsweise anhand des Dokuments Dieter Althaus „Niedriggeschwindigkeitsprofile", das oben angegeben ist, so zu realisieren, dass das Profil FX 77-W-500, das auf Seiten 162 und 163 angegeben ist, hinten weiter abgeschnitten wird, und zwar so, dass eine relative Dicke bzw. relative Profildicke von 70 % entsteht. Diese liegt dann naturgemäß bei einer relativ weit hinten Ne- genden Profiltiefe, in diesem Fall bei ungefähr 68 %.
Die erfindungsgemäßen Profile 28 entsprechend dem RE-W-70-A1 , 29 entsprechend dem RE-W-70-A2 und 30 entsprechend RE-W-70- B1 haben auch eine relative Profildicke von 70 % bei einer Dicken- rücklage von ca. 34 % für das Profil 28, ca. 37 % für das Profil 29 und ca. 50 % für das Profil 30. Auch hier ist bei den erfindungsgemäßen Profilen 28 bis 30 zu erkennen, dass zur Hinterkante des Profils konkave Konturen vorgesehen sind, die insbesondere auf der Druckseite 8 stärker ausgeprägt sind.
Fig. 5 zeigt ein schematisches Diagramm betreffend berechneter Profilpolaren eines erfindungsgemäßen Profils, nämlich des RE-W- 70-B9. Es ist der Auftriebsbeiwert ca über dem Anstellwinkel α (alpha) dargestellt und das Verhältnis des Auftriebsbeiwertes zum Widerstandsbeiwert cw. Bei diesem Verhältnis handelt es sich um die Gleitzahl. Bei den Polaren der Fig. 5 handelt es sich um eine Be- rechnung der Profilpolaren für eine Reynoldszahl von 3 Mio. Es wurden entsprechende Rechnungen für eine turbulente Umströmung und eine laminare Umströmung vorgenommen. Die Profilpolare 32 stellt eine Berechnung des Auftriebsbeiwertes ca bei laminarer Umströmung und die Profilpolare 33 den entsprechenden Wert bei tur- bulenter Umströmung dar. Die Profilpolare für die Gleitzahl bei laminarer Umströmung ist mit der Bezugsziffer 34 versehen und entsprechend bei turbulenter Umströmung mit der Bezugsziffer 35. Es ist zu erkennen, dass der Auftriebsbeiwert ein Maximum bei ca. 14,8° des Anstellwinkels aufweist, und zwar bei laminarer Umströmung, und ein Maximum bei ca. 9° bei turbulenter
Umströmung. Die Gleitzahl ist bei laminarer Umströmung auch bei ca. 14,8° mit einem Maximum versehen und bei turbulenter Umströmung bei ca. 11 °.
Im Vergleich zu den entsprechenden Profilpolaren eines erfindungsgemäßen Profils gemäß Fig. 5 sind in Fig. 6 die entsprechenden Profilpolaren 36, 37, 38 und 39 eines bekannten Profils, nämlich des FW 79-W-660 A angegeben. Es ist insbesondere zu erkennen, dass ein lokales Maximum des Auftriebsbeiwertes bei lamina- rer Umströmung bei der Profilpolaren 36 bei ungefähr 7° gegeben ist und bei einer Profilpolaren betreffend die Gleitzahl bei laminarer Umströmung, die mit der Bezugsziffer 38 versehen ist, auch ein entsprechendes Maximum bei 7° des Anstellwinkels α vorliegt.
Bei turbulenter Umströmung ist durch die Profilpolare 37, die auch den Auftriebsbeiwert ca betrifft, klar zu erkennen, dass der Auftrieb deutlich minimiert ist. Entsprechendes gilt auch für die Profilpolare 39 betreffend die Gleitzahl bei turbulenter Umströmung.
Fig. 7 zeigt ein schematisches Diagramm gemessener Profilpolaren eines Profils gemäß der Erfindung, nämlich des Profils RE-W-50-B6, das in der Fig. 2 schon dargestellt wurde. Die Profilpolare 40 stellt den Auftriebsbeiwert bei laminarer Umströmung bei einer Reynolds- zahl von 3 Mio. dar. Es wird ein maximaler Auftriebsbeiwert von ca. 1 ,84 bei einem Winkel von ca. 13° erreicht.
Gut zu erkennen ist, dass auch bei turbulenter Umströmung gemäß den Profilpolaren 41 der Auftriebsbeiwert sich nur gering verringert. Es ist ein Maximum von 1 ,4 bei einem Anstell- bzw. Anströmwinkel α von ca. 10° gegeben. Die Reynoldszahl hier betrug bei der Messung 3,1 Mio. Die Profilpolare 42 betreffend die Gleitzahl (ca/cw) bei laminarer Umströmung hat ein Maximum im Anstellwinkel von ca.
13°. Der Quotient ist hier ca. 22. Bei turbulenter Umströmung verringert sich die maximale Gleitzahl gemäß der Profilpolare 43 auf 15,5 bei einem Anstellwinkel von ca. 10°.
Zum Vergleich ist ein entsprechendes schematisches Diagramm in
Fig. 8 gezeigt, das gemessene Profilpolaren eines Profils des Standes der Technik, nämlich des Profils FX 77-W-500, darstellt. Im Vergleich zu den Profilpolaren des Auftriebsbeiwertes ca 44 bei laminarer Umströmung und der Profilpolare 46 betreffend die Gleit- zahl bei laminarer Umströmung, die an sich schon schlechtere Werte als gemäß der Erfindung bei laminarer Umströmung aufweisen, brechen die Profilpolaren bei turbulenter Umströmung vollständig zusammen. So ist hier auch der gemessene Profilpolare für den Auftriebsbeiwert ca bei turbulenter Umströmung mit 45 gekenn- zeichnet und die entsprechende gemessene Profilpolare 47 betreffend die Gleitzahl auch für turbulente Umströmung dargestellt. Bezugszeichenliste
1 - 4 Profil
5 Rotorblatt
6 Profil
7 Saugseite
8 Druckseite
10 Vorderkante
1 1 Hinterkante
12 Blattwurzel
13 Übergangsbereich
18 Sehne
20 Profil RE-W-50-B6
21 Skelettlinie des RE-W-50-B6
22 Profil FX 83-W-500
23 Skelettlinie des FX 83-W-500
24 Profil RE-W-70-B9
25 Skelettlinie des RE-W-70-B9
26 Profil FX 79-W-660 A
27 Skelettlinie des FX 79-W-660A
28 Profil RE-W-70-A1
29 Profil RE-W-70-A2
30 Profil RE-W-70-B1
31 Profil FX 77-W-700
32 Profilpolare ca laminar
33 Profilpolare ca turbulent
34 Profilpolare ca/cw laminar
35 Profilpolare ca/cw turbulent
36 Profilpolare ca laminar
37 Profilpolare ca turbulent
38 Profilpolare ca/cw laminar 39 Profilpolare ca/cw turbulent
40 Profilpolare ca laminar
41 Profilpolare ca turbulent
42 Profilpolare ca/cw laminar
5 43 Profilpolare ca/cw turbulent
44 Profilpolare ca laminar
45 Profilpolare ca turbulent
46 Profilpolare ca/cw laminar
47 Profilpolare ca/cw turbulent
10

Claims

Profil eines Rotorblatts und Rotorblatt einer WindenergieanlagePatentansprüche
1. Profil (1 -4) eines Rotorblatts (5) einer Windenergieanlage mit einer Oberseite (Saugseite) (7) und einer Unterseite (Druckseite) (8) mit einer Skelettlinie (21 , 25) und einer Sehne (18) zwischen der Vorderkante (10) und der Hinterkante (11 ) des
Profils (1 -4), dadurch gekennzeichnet, dass die Skelettlinie (21 , 25) wenigstens abschnittsweise unterhalb der Sehne (18) in Richtung der Druckseite (8) verläuft.
2. Profil (1 -4) nach Anspruch 1 , dadurch gekennzeichnet, dass die Skelettlinie (21 , 25) in einem Abschnitt zwischen 0 % bis 60 % der Profiltiefe des Profils (1-4) unterhalb der Sehne (18) angeordnet ist.
3. Profil (1 -4) nach Anspruch 2, dadurch gekennzeichnet, dass die Skelettlinie (21 , 25) vollständig in einem Abschnitt zwischen 5 % bis 50 %, insbesondere 2 % bis 60 %, unterhalb der Sehne (18) angeordnet ist.
4. Profil (1-4) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Betrag der maximalen Wölbung klei-
5 ner als 0,015 ist.
5. Profil (1-4) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zweite Ableitung der Skelettlinie (21 , 25) (Skelettlinienkrümmung) von 10 % bis 40 %, insbesonde-o re von 5 % bis 50%, insbesondere von 2 % bis 60 %, der Profiltiefe entweder 0 oder positiv ist.
6. Profil (1-4) eines Rotorblatts (5) einer Windenergieanlage, insbesondere nach einem der Ansprüche 1 bis 5, wobei das5 Profil (1 -4) eine relative Profildicke von mehr als 49 %, insbesondere mehr als 55 % oder gleich 55 %, aufweist, wobei die Dickenrücklage kleiner als 35 % ist.
7. Profil (1 -4) eines Rotorblatts (5) einer Windenergieanlage,o insbesondere nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Profil (1-4) eine relative Profildicke von mehr als 45 %, insbesondere mehr als 50 % oder gleich 50 %, aufweist, wobei bei turbulenter Umströmung eine Gleitzahl größer als 6, insbesondere größer als 10, insbesondere5 größer als 15, erreicht wird.
8. Profil (1-4) eines Rotorblatts (5) einer Windenergieanlage, insbesondere nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Profil (1-4) eine relative Profildicke von mehr als 45 % bei einer Dickenrücklage von weniger als
50 % aufweist, wobei ein Auftriebsbeiwert (ca) bei turbulenter Umströmung von mehr als 0,9, insbesondere mehr als 1 ,4, er- reicht wird.
9. Profil (1-4) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die relative Profildicke bei mehr als 65 % liegt, insbe- sondere größer oder gleich 70 % ist.
10. Profil (1-4) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Auftriebsbeiwerte bei Anstellwinkeln (α) von 6° bis 15°, insbesondere 8° bis 14°, erreicht werden.
11. Profil (1-4) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein Nasenradius vorgesehen ist, der größer als 18 % der Profiltiefe ist, wobei das Profil (1-4) im Nasenbereich asymmetrisch ist.
12. Profil (1-4) nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass ein Verhältnis des maximalen Auftriebsbeiwertes (Ca) bei turbulenter Umströmung zu dem maximalen Auftriebsbeiwert (ca) bei laminarer Umströmung von mehr als 0,75 erreicht wird.
13. Profil (1-4) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Saugseite (7) und die Druckseite (8) des Profils (1 -4) im hinteren Bereich jeweils wenigstens ab- schnittsweise eine konkave Kontur aufweisen.
14. Mehrzahl von Profilen (1 -4) nach einem der Ansprüche 1 bis 13, die in wenigstens einem Bereich eines Rotorblatts (5) einer Windenergieanlage realisiert sind.
15. Rotorblatt (5) einer Windenergieanlage mit einer Mehrzahl von Profilen (1 -4) nach Anspruch 14.
16. Rotorblatt (5) nach Anspruch 15, dadurch gekennzeichnet, dass die Mehrzahl von Profilen (1-4) in einem Übergangsbereich (13) des Rotorblatts (5) in der Nähe der Blattwurzel (12) angeordnet sind.
PCT/EP2009/006574 2008-10-23 2009-09-10 Profil eines rotorsblatts und rotorblatt einer windenergieanlage WO2010046000A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801422900A CN102197215A (zh) 2008-10-23 2009-09-10 转子叶片的轮廓和风力涡轮机的转子叶片
ES09778455.7T ES2541146T3 (es) 2008-10-23 2009-09-10 Perfil de una pala de rotor y pala de rotor de una instalación de energía eólica
DK09778455.7T DK2337950T3 (en) 2008-10-23 2009-09-10 Profile of a rotor blade and rotor blade for a wind turbine
US13/125,322 US8814525B2 (en) 2008-10-23 2009-09-10 Profile of a rotor blade and rotor blade of a wind power plant
EP09778455.7A EP2337950B1 (de) 2008-10-23 2009-09-10 Profil eines rotorsblatts und rotorblatt einer windenergieanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008052858.7A DE102008052858B9 (de) 2008-10-23 2008-10-23 Profil eines Rotorblatts und Rotorblatt einer Windenergieanlage
DE102008052858.7 2008-10-23

Publications (2)

Publication Number Publication Date
WO2010046000A2 true WO2010046000A2 (de) 2010-04-29
WO2010046000A3 WO2010046000A3 (de) 2011-03-24

Family

ID=42055006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/006574 WO2010046000A2 (de) 2008-10-23 2009-09-10 Profil eines rotorsblatts und rotorblatt einer windenergieanlage

Country Status (7)

Country Link
US (1) US8814525B2 (de)
EP (1) EP2337950B1 (de)
CN (1) CN102197215A (de)
DE (1) DE102008052858B9 (de)
DK (1) DK2337950T3 (de)
ES (1) ES2541146T3 (de)
WO (1) WO2010046000A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103883483A (zh) * 2014-04-17 2014-06-25 吉林大学 一种100w风力发电机叶片
CN106089569A (zh) * 2016-07-20 2016-11-09 湘潭大学 一种适用于低雷诺数流动的小型风力机叶片翼型
EP3763937A1 (de) 2019-07-11 2021-01-13 FlowGen Development & Management GmbH Rotorblatt für eine windenergieanlage und windenergieanlage
DE102022104017A1 (de) 2022-02-21 2023-08-24 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097722B (zh) * 2010-07-16 2016-04-20 Lm玻璃纤维制品有限公司 具有窄肩和相对厚的翼型型面的风力涡轮机叶片
EP2631474B1 (de) * 2010-10-22 2016-12-21 Mitsubishi Heavy Industries, Ltd. Windturbinenblatt, windturbinengenerator damit und entwurfsverfahren dafür
JP5479388B2 (ja) 2011-02-28 2014-04-23 三菱重工業株式会社 風車翼およびこれを備えた風力発電装置
US8786125B2 (en) * 2011-04-12 2014-07-22 Kim Christensen System, method and apparatus for capturing kinetic energy
DE102011050661A1 (de) * 2011-05-26 2012-11-29 L&L Rotorservice Gmbh Rotorblatt einer Windenergieanlage
GB201109412D0 (en) * 2011-06-03 2011-07-20 Blade Dynamics Ltd A wind turbine rotor
WO2013054404A1 (ja) * 2011-10-12 2013-04-18 三菱重工業株式会社 風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法
CN102400847B (zh) * 2011-11-29 2013-06-19 吉林大学 一种风力机叶片翼型
PL2834517T3 (pl) * 2012-03-13 2020-11-02 Wobben Properties Gmbh Zwichrzona nasada łopaty
CN103321852B (zh) * 2012-03-23 2015-06-24 沈阳风电设备发展有限责任公司 复合材料叠片式轻量化轮毂
DE102012206109C5 (de) 2012-04-13 2022-06-09 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage
DE102013006203B4 (de) 2012-04-30 2024-10-10 HKB Turbinen GmbH & Co. KG Rotorblatt für eine Windkraftanlage
DE102012013896A1 (de) 2012-07-13 2014-01-16 E.N.O. Energy Systems Gmbh Windenergieanlage
EP2713044B2 (de) * 2012-09-28 2022-12-07 Siemens Gamesa Renewable Energy A/S Windturbinenlaufschaufel
DE102013101351A1 (de) * 2013-02-12 2014-08-14 Airbus Operations Gmbh Verfahren und Einrichtung zum Ermitteln der Geschwindigkeit eines Luftfahrzeugs
DE102013202666A1 (de) 2013-02-19 2014-08-21 Senvion Se Rotorblatt einer Windenergieanlage
US9759068B2 (en) * 2013-02-28 2017-09-12 General Electric Company System and method for controlling a wind turbine based on identified surface conditions of the rotor blades
DE102013008145A1 (de) * 2013-05-14 2014-11-20 Man Diesel & Turbo Se Laufschaufel für einen Verdichter und Verdichter mit einer solchen Laufschaufel
CN103306907B (zh) * 2013-07-08 2015-09-02 国电联合动力技术有限公司 一种大型风机的大厚度钝尾缘翼型叶片
CN103629044B (zh) * 2013-12-18 2016-08-31 中国科学院工程热物理研究所 一种水平轴风力机叶片的叶根结构
PT2998572T (pt) 2014-09-22 2016-11-02 Best Blades Gmbh Pá de rotor para instalações de energia eólica
US10495056B2 (en) * 2015-09-03 2019-12-03 Siemens Gamesa Renewable Energy A/S Wind turbine blade with trailing edge tab
DE102016201114A1 (de) 2016-01-26 2017-07-27 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage und Windenergieanlage
DE102016110510A1 (de) * 2016-06-07 2017-12-07 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage
CN107757871B (zh) * 2017-09-20 2023-11-28 中国水利水电科学研究院 一种轻小型固定翼无人机用翼型
DE102017124861A1 (de) * 2017-10-24 2019-04-25 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage und Verfahren zu dessen Auslegung
CN108038259B (zh) * 2017-11-06 2021-05-28 中国商用飞机有限责任公司 基于曲率生成气动部件外形的方法
DE102019119027B4 (de) 2019-07-12 2022-04-28 Wobben Properties Gmbh Rotorblatt und Windenergieanlage
EP3981981A1 (de) 2020-10-09 2022-04-13 Wobben Properties GmbH Rotorblatt für eine windenergieanlage, windenergieanlage und verfahren zur auslegung eines rotorblatts
BR102023015288A2 (pt) 2022-07-29 2024-02-06 Weg Equipamentos Elétricos S/A Pá de rotor para uma turbina eólica e turbina eólica correspondente

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2829716A1 (de) * 1977-07-07 1979-01-25 Univ Gakko Hojin Tokai Windkraftmaschine mit vertikaler achse
DE3640780A1 (de) * 1986-11-28 1988-10-20 Blauer Miklos Zoltan Dipl Masc Ideales fluegelprofil fuer die fluegel der stroemungstechnischen anlagen
GB2265672A (en) * 1992-03-18 1993-10-06 Advanced Wind Turbines Inc Wind turbine blade
DE10307682A1 (de) * 2002-06-05 2004-01-08 Aloys Wobben Rotorblatt einer Windenergieanlage
EP1845258A1 (de) * 2006-04-10 2007-10-17 Siemens Aktiengesellschaft Rotorblatt einer Windenergieanlage
DE102008003411A1 (de) * 2007-01-09 2008-07-10 General Electric Company Windturbinenflügelprofilfamilie
WO2009068719A1 (es) * 2007-11-28 2009-06-04 Gamesa Innovation & Technology, S.L. Perfil aerodinámico para la raíz de una pala de aerogenerador con doble borde de ataque.

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1375191A (de) * 1971-01-08 1974-11-27
US3952971A (en) * 1971-11-09 1976-04-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Airfoil shape for flight at subsonic speeds
GB1554713A (en) * 1975-03-04 1979-10-24 Secr Defence Wings
NL184173B (nl) * 1977-02-19 1988-12-01 Univ Gakko Hojin Tokai Windenergieturbine van het type met vertikale as.
GB2016397B (en) * 1978-02-02 1982-03-24 Aerospatiale Aerofoil
US4519746A (en) * 1981-07-24 1985-05-28 United Technologies Corporation Airfoil blade
CN85202949U (zh) * 1985-07-19 1986-05-07 张志明 分段直形水平轴高速风力机桨叶
FR2628062B1 (fr) * 1988-03-07 1990-08-10 Aerospatiale Pale pour helice carenee a hautes performances, helice carenee multipale pourvue de telles pales et agencement de rotor de queue a helice carenee pour aeronef a voilure tournante
US5562420A (en) 1994-03-14 1996-10-08 Midwest Research Institute Airfoils for wind turbine
DE19857749A1 (de) * 1998-12-15 2000-06-21 Klaus Matjasic Tragflügelprofil und Bodeneffektfahrzeug
US6705838B1 (en) * 1999-08-25 2004-03-16 Forskningscenter Riso Modified wind turbine airfoil
DE102006017897B4 (de) * 2006-04-13 2008-03-13 Repower Systems Ag Rotorblatt einer Windenergieanlage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2829716A1 (de) * 1977-07-07 1979-01-25 Univ Gakko Hojin Tokai Windkraftmaschine mit vertikaler achse
DE3640780A1 (de) * 1986-11-28 1988-10-20 Blauer Miklos Zoltan Dipl Masc Ideales fluegelprofil fuer die fluegel der stroemungstechnischen anlagen
GB2265672A (en) * 1992-03-18 1993-10-06 Advanced Wind Turbines Inc Wind turbine blade
DE10307682A1 (de) * 2002-06-05 2004-01-08 Aloys Wobben Rotorblatt einer Windenergieanlage
EP1845258A1 (de) * 2006-04-10 2007-10-17 Siemens Aktiengesellschaft Rotorblatt einer Windenergieanlage
DE102008003411A1 (de) * 2007-01-09 2008-07-10 General Electric Company Windturbinenflügelprofilfamilie
WO2009068719A1 (es) * 2007-11-28 2009-06-04 Gamesa Innovation & Technology, S.L. Perfil aerodinámico para la raíz de una pala de aerogenerador con doble borde de ataque.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUGLSANG P ET AL: "DEVELOPMENT OF THE RISO WIND TURBINE AIRFOILS", WIND ENERGY, WILEY, CHICHESTER, GB, Bd. 7, Nr. 2, 1. Januar 2004 (2004-01-01), Seiten 145-162, XP008068651, ISSN: 1099-1824, DOI: DOI:10.1002/WE.117 *
STANDISH K J: "Aerodynamic Analysis of Blunt Trailing Edge Airfoils", JOURNAL OF SOLAR ENERGY ENGINEERING, ASME INTERNATIONAL, US, Bd. 125, 1. Oktober 2003 (2003-10-01), Seiten 479-488, XP008131212, ISSN: 0199-6231, DOI: DOI:10.1115/1.1629103 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103883483A (zh) * 2014-04-17 2014-06-25 吉林大学 一种100w风力发电机叶片
CN106089569A (zh) * 2016-07-20 2016-11-09 湘潭大学 一种适用于低雷诺数流动的小型风力机叶片翼型
EP3763937A1 (de) 2019-07-11 2021-01-13 FlowGen Development & Management GmbH Rotorblatt für eine windenergieanlage und windenergieanlage
WO2021004853A1 (de) 2019-07-11 2021-01-14 Flowgen Development & Management Gmbh Rotorblatt für eine windenergieanlage und windenergieanlage
US11913426B2 (en) 2019-07-11 2024-02-27 FlowGen Development & Management AG Rotor blade for a wind turbine and wind turbine
DE102022104017A1 (de) 2022-02-21 2023-08-24 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage

Also Published As

Publication number Publication date
DE102008052858B4 (de) 2013-04-18
ES2541146T3 (es) 2015-07-16
CN102197215A (zh) 2011-09-21
DE102008052858B9 (de) 2014-06-12
DK2337950T3 (en) 2015-07-27
US20110262281A1 (en) 2011-10-27
DE102008052858A1 (de) 2010-04-29
EP2337950B1 (de) 2015-05-13
EP2337950A2 (de) 2011-06-29
US8814525B2 (en) 2014-08-26
WO2010046000A3 (de) 2011-03-24

Similar Documents

Publication Publication Date Title
EP2337950B1 (de) Profil eines rotorsblatts und rotorblatt einer windenergieanlage
EP2959161B1 (de) Rotorblatt einer windenergieanlage
EP2929178B1 (de) Rotorblatthinterkante
EP2984334B1 (de) Rotorblatt einer windenergieanlage und windenergieanlage
AT507091B1 (de) Strömungsmaschine
EP3066337B1 (de) Rotorblatt einer windenergieanlage und windenergieanlage
WO2014060446A1 (de) Windenergieanlage
EP3147499B1 (de) Rotorblatt mit einem schalloptimierten profil sowie verfahren zum herstellen eines rotorblatts
EP3510275B1 (de) Windenergieanlagen-rotorblatt
EP3169898B1 (de) Windenergieanlagen-rotorblatt, windenergieanlagen-rotorblattspitzenhinterkante, verfahren zum herstellen eines windenergieanlagen-rotorblattes und windenergieanlage
EP3399183B1 (de) Rotorblatt einer windenergieanlage
DE202018006760U1 (de) Verwirbelungselement
EP2976524A1 (de) Rotorblatt einer windenergieanlage, windenergieanlage und verfahren zum betreiben einer windenergieanlage
EP3997330A1 (de) Rotorblatt und windenergieanlage
DE202013101386U1 (de) Rotorblatt mit einem Winglet, Windenergieanlage und Windenergieanlagenpark
DE102013202881A1 (de) Rotorblatthinterkante
DE102018121249A1 (de) Rotorblatt für eine Windenergieanlage und Windenergieanlage
EP3969741B1 (de) Rotorblatt und windenergieanlage
EP3280910A1 (de) Windenergieanlagen-rotorblatt
DE202014101384U1 (de) Hubschrauberrotorblatt
DE102010045080A1 (de) Flügelprofil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142290.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09778455

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009778455

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2925/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13125322

Country of ref document: US