WO2010045844A1 - 测量网络性能参数的方法和装置 - Google Patents

测量网络性能参数的方法和装置 Download PDF

Info

Publication number
WO2010045844A1
WO2010045844A1 PCT/CN2009/074404 CN2009074404W WO2010045844A1 WO 2010045844 A1 WO2010045844 A1 WO 2010045844A1 CN 2009074404 W CN2009074404 W CN 2009074404W WO 2010045844 A1 WO2010045844 A1 WO 2010045844A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
network performance
extended bfd
monitoring
extended
Prior art date
Application number
PCT/CN2009/074404
Other languages
English (en)
French (fr)
Inventor
国辛纯
李鉴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09821565.0A priority Critical patent/EP2339784B1/en
Publication of WO2010045844A1 publication Critical patent/WO2010045844A1/zh
Priority to US13/093,438 priority patent/US8570893B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss

Definitions

  • the present invention relates to the field of network communications, and in particular, to a method and apparatus for measuring network performance parameters.
  • BFD Bidirectional Forwarding Detection
  • LSP Label Switched Path
  • BFD can detect faults on any type of channel between systems, including direct physical links, virtual circuits, tunnels, MPLS (Multiprotocol Label Switching) LSPs, multi-hop routing channels, and indirect Channel.
  • MPLS Multiprotocol Label Switching
  • the BFD protocol describes the mechanism for implementing bidirectional detection. It can be divided into two types: asynchronous mode and query mode. There is also an auxiliary function echo function, which can be used in combination with these two modes. The difference between the asynchronous mode and the queried mode is that the location of the detection is different.
  • the local device sends BFD control packets at a certain interval.
  • the remote device detects the BFD control packets sent by the local system.
  • the BFD control packet sent by the local end is detected by the local system.
  • MPLS-TP Multi-Protocol Label Switching Transport Profile
  • T-MPLS Transport Multi-Protocol Label Switching
  • IETF Internet Engineering Task Force
  • MPLS-TP Multi-Protocol Label Switching Transport Profile
  • the requirements of the MPLS-TP network include OAM (Operation, Administration, Maintenance, Operation, Management, and Maintenance), forwarding, control, management, and survivability.
  • OAM is a transport-oriented MPLS-TP network. Very important aspect.
  • the MPLS-TP network imposes strict requirements on the OAM tool: It measures the performance parameters such as packet loss, delay, and jitter of the network, and monitors the service quality of the network through these parameters.
  • the existing technology cannot provide network performance. The parameters are measured.
  • the purpose of the embodiments of the present invention is to provide a method and an apparatus for extending BFD measurement network performance parameters, which solves the problem that network performance parameter measurement cannot be performed in the prior art solution.
  • a method of measuring network performance parameters including:
  • the extended BFD packet includes a packet loss monitoring TLV (Type-Length-Value) and/or a delay monitoring TLV;
  • the network performance parameter is calculated according to the received packet monitoring TLV and/or the delay monitoring TLV in the extended BFD packet.
  • a device for measuring network performance parameters comprising:
  • the extended BFD packet receiving module is configured to receive the extended BFD packet, where the extended BFD packet includes a packet loss monitoring TLV and/or a delay monitoring TLV.
  • the network performance parameter calculation module is configured to calculate network performance parameters according to the packet loss monitoring TLV and/or the delay monitoring TLV in the extended BFD packet.
  • the extended network BFD packet carries the packet loss monitoring TLV or the delay monitoring TLV, and can calculate various network performance parameters, and solves the problem that the network performance parameter cannot be measured in the prior art solution. problem.
  • FIG. 1 is a flowchart of a method for measuring network performance parameters according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for monitoring packet loss according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for monitoring a delay according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of a device for measuring network performance parameters according to an embodiment of the present invention.
  • FIG. 5 is another flowchart of a method for measuring network performance parameters according to an embodiment of the present invention
  • FIG. 6 is another block diagram of an apparatus for measuring network performance parameters according to an embodiment of the present invention.
  • the fields of the BFD packet have different meanings, such as the P field (Poll field, detection field).
  • P field Policy field, detection field
  • the sending system requests to confirm the connection, or confirms the parameter change.
  • the sending system does not request confirmation.
  • a (Authentication Field) field when set, indicates that the control message contains the verification field, and the session needs to be verified.
  • the control message does not contain the verification field, and the session does not need to be verified.
  • the value can be from 0 to 31.
  • the existing BFD packet defines the meaning of the Diag field as 0 ⁇ 8, and 9 ⁇ 31 is the reserved field for further extension.
  • FIG. 1 is a flowchart of a method for measuring network performance parameters according to an embodiment of the present invention. The method includes:
  • the first network performance parameter measuring device receives the extension sent by the second network performance parameter measuring device
  • the BFD packet includes the packet loss monitoring type-length-value TLV and/or the delay monitoring TLV.
  • the first network performance parameter measuring device calculates the network performance parameter according to the received packet loss monitoring TLV and/or the delay monitoring TLV in the extended BFD packet.
  • the method for measuring network performance parameters specifically includes:
  • BFD BitTorrent
  • the network performance parameters include near-end packet loss, remote packet loss, one-way delay, two-way delay, one-way delay jitter, or two-way delay jitter. If BFD is executed in periodic mode 02, if BFD is executed in request mode, if it is sent in periodic mode or in request mode Send BFD, 02 and 03 are executed;
  • the first network performance parameter measuring device and the second network performance parameter measuring device periodically send extended BFD packets including a packet loss monitoring TLV and/or a delay monitoring TLV.
  • the first network performance parameter measuring device sends the BFD packet including the request information
  • the second network performance parameter measuring device sends the BFD packet including the request information.
  • the BFD packet includes the response information.
  • the second network performance parameter measurement device may also send the BFD packet including the request information
  • the first network performance parameter measurement device receives the BFD packet including the request information.
  • the BFD packet including the response information is sent in the text.
  • the extended BFD packet carries the packet loss monitoring TLV or the delay monitoring TLV, and both of them can be used.
  • the value field of the packet loss monitoring TLV includes the transmission sequence number (Sequence), the transmission count, the reception count, and the extended BFD packet. Returns the count.
  • the sending count is specifically the number of preset type packets (TxPacketCounter_L) that has been sent when the extended BFD packet is sent.
  • the preset type of message includes all sent messages; or all transmitted data messages; or a message including a specified feature; or a message sent at a specified time.
  • the statistics of the number of the packets of the preset type can be set to count all the sent packets, or all the data packets sent, or only the packets including the specified features, or only the specified time.
  • the receiving count is the number of received preset type packets (RxPacketCounter_L) when the extended BFD packet is received last time; the return count is the transmission count value (TxPacketCounter_F) in the extended BFD packet received last time.
  • the sending sequence number (Sequence) can be set to 0 when the serial number is not required to be checked. When the remote packet loss is not required to be monitored, the receiving count (RxPacketCounter_L) and the return count (TxPacketCounter_F) can be set to zero.
  • the value field of the delay monitoring TLV includes: a transmission sequence number of the extended BFD message (Sequence); a transmission timing; a reception timing;
  • the sending timing is specifically the local time (TxTimeStamp_L) when the extended BFD packet is sent;
  • the receiving timing is specifically the local time (RxTimeStamp_L) when the extended BFD packet is received last time;
  • the return timing is specifically the last received
  • the transmission sequence number (Sequence) can be set to 0; when there is no need to monitor the round trip delay, the receiving meter
  • the time ( RxTimeStamp_L ) and return timing ( TxTimeStamp_F ) can be set to 0.
  • the extended BFD packet field is set to include the packet loss monitoring TLV and/or the delay monitoring TLV in the extended BFD packet, which is specifically:
  • the P field of the extended BFD packet may be set, for example, the P field is set to 1, and the extended BFD packet includes a packet loss monitoring TLV and/or a delay monitoring TLV; or
  • the extended BFD packet includes the packet loss monitoring TLV and/or the delay monitoring TLV.
  • the extended BFD packet includes the packet loss monitoring TLV and/or the delay monitoring TLV.
  • the extended BFD packet needs to be encapsulated, that is, the universal joint channel defined by the extended BFD encapsulated multi-protocol label switching transmission prototype (MPLS-TP) before transmission. Head (GE-ACH). If it is to measure the network performance parameters of the MPLS LSP,
  • the first network performance parameter measuring device calculates the network according to the received packet monitoring TLV and/or the delay monitoring TLV in the extended BFD packet. Performance parameters.
  • the network performance parameter is calculated according to the received packet monitoring TLV and/or the delay monitoring TLV in the extended BFD packet, which includes:
  • determine the network performance parameters choose to monitor the packet loss or monitor the delay or both the monitoring packet loss and the monitoring delay.
  • the monitoring of the packet loss, the first network performance parameter measuring device or the second network performance parameter measuring device calculates the number of packets of the preset type of the extended BFD packet, and the two extended BFD packets may be adjacent.
  • the two extended BFD packets can be any two extended BFD packets.
  • Figure 2 is a flow chart of the method for monitoring packet loss in 05.
  • the method specifically includes:
  • the packet loss monitoring near-end calculation calculates the near-end packet loss, and the near-end packet loss indicates the number of lost packets between the extended BFD packets BFD1 and BFD2 received by the device for calculation.
  • Packet Loss[near-end] ITxPacketCounter_L[BFD1] - TxPacketCounter_L [BFD2] I - IRxPacketCounterL [BFD1] - RxPacketCounterL [BFD2]I , where RxPacketCounterL is the received BFD packet BFD1 or BFD2 The number of packets that have been received by the device that performs the calculation;
  • the remote packet loss monitoring is performed to calculate the remote packet loss.
  • the remote packet loss indicates the number of lost packets between the extended BFD packets BFD1 and BFD2.
  • Packet Loss[far-end] ITxPacketCounter_F [BFD1] - TxPacketCounter_F [BFD2] I - IRxPacketCounter_L [BFD1]- RxPacketCounter_L [BFD2]I, when the sequence number is not verified, the sequence number is set to 0. At this time, as in the packet loss monitoring TLV, there is no transmission sequence number, and it is impossible to determine whether the extended BFD packet is lost.
  • Figure 3 is a flow chart of the method for monitoring the delay of 06.
  • the method specifically includes:
  • the network performance parameters to be monitored may be only one-way delay monitoring calculation or only two-way delay monitoring calculation, or both one-way delay monitoring calculation and two-way delay monitoring calculation.
  • the network performance parameters to be monitored may be only one-way delay monitoring calculation or only two-way delay monitoring calculation, or both one-way delay monitoring calculation and two-way delay monitoring calculation.
  • the one-way delay monitoring calculation calculates the one-way delay of the extended BFD packet, and the one-way delay indicates the delay that the packet is sent from the opposite end to the local end.
  • the one-way delay is equal to the difference between the local time when the extended BFD packet is received and the transmission timing (TxTimeStamp_i) of the extended BFD packet plus the time difference between the transmitting end and the receiving end.
  • TxTimeStamp_i transmission timing
  • the two-way delay monitoring calculation calculates the two-way delay of the extended BFD packet.
  • the two-way delay in the Query mode indicates the delay between the packet sent from the local end and the delay received by the peer to the local end.
  • the two-way delay in the asynchronous mode indicates the sum of the delay from the sending of the local packet to the peer and the delay of the first packet sent by the peer to the local end.
  • the two-way delay Packet Delay [two-way] (RxTimea-TxTimeStamp_L)-(TxTimeStamp_F-RxTimeStamp_L), where RxTimea is the local time when the extended BFD packet is received.
  • delay jitter monitoring you can choose to perform single- or two-way jitter calculation, that is, you can only do one-way delay jitter monitoring calculation or only two-way delay jitter monitoring calculation or both, when both are done,
  • the one-way delay jitter monitoring calculation can be performed first, then the two-way delay jitter monitoring calculation can be performed, or the two-way delay jitter monitoring calculation can be performed first and then the one-way delay jitter monitoring calculation is performed:
  • the one-way delay jitter monitoring calculation is specifically the difference between the two one-way delay monitoring calculation results
  • Two-way delay jitter monitoring calculation specifically the difference between the two two-way delay monitoring calculation results.
  • the network is The parameter can be compared with the preset condition to determine whether the preset condition is met. If the preset condition is met, it is considered that the network performance needs to be alarmed or managed, and execution 10; otherwise, the process ends. Reason.
  • the preset condition may be set according to a single item in the network performance parameter:
  • packet loss when the packet loss rate rises to a certain threshold, it is judged that the packet loss is abnormal, and the impact of the tube performance can be reported. Within the range allowed by the demand, the packet loss rate may be higher than the threshold for several consecutive times. Value, the time when the segment is fixed several times, when the packet loss rate is higher than the threshold, it is reported to the network management system for protection switching or visual management of link abnormal curve drawing.
  • the preset conditions for delay or delay jitter can also be determined according to this principle.
  • the preset condition may also be set according to some or all of the network performance parameters, for example:
  • the total performance parameter value of the link may be accumulated over a set period of time to exceed the set threshold, or the calculation may exceed the set threshold for several consecutive times or several times above a threshold for a fixed period of time. (Each time, the total performance parameter value of the link is cleared after the threshold is cleared.)
  • the calculation of the overall performance parameters of the link mentioned above may be considered as follows: packet loss rate and delay for each parameter. , jitter, etc. set the maximum range of normal allowable change, that is, the maximum normal threshold. When the parameter changes within this range, the quality is not considered abnormal, followed by each parameter. Setting the maximum allowable performance monitoring abnormal range abnormality i.e.
  • the maximum threshold value when the parameter exceeds the maximum threshold value is considered abnormal link failure has occurred or has been within the performance range of the mass is not normal.
  • packet loss rate, delay, jitter, etc. When each parameter is between the maximum normal threshold and the maximum abnormal threshold, each parameter will be scored according to the set deviation function according to its deviation from the normal range. The principle is that the deviation from the normal range is larger. The score must also reflect the more serious the anomaly.
  • the scores obtained by scoring each parameter of performance monitoring such as packet loss, delay, and jitter are multiplied by the measured specific gravity values for each specific service and accumulated to obtain the overall performance parameters of the link.
  • FIG. 4 is a block diagram of a device for measuring network performance parameters according to an embodiment of the present invention.
  • the device includes: an extended BFD packet sending module 1 configured to send an extended BFD packet including a packet loss monitoring TLV and/or a delay monitoring TLV;
  • the extended BFD packet receiving module 2 is configured to receive the extended BFD packet, or notify the extended BFD packet sending module when receiving the extended BFD packet including the request information;
  • the network performance parameter calculation module 3 is configured to calculate network performance parameters according to the packet loss monitoring TLV and/or the delay monitoring TLV in the extended BFD packet.
  • the extended BFD packet sending module 1 includes:
  • the message sending counter 101 is configured to count the number of sent packets of the preset type. In the embodiment of the present invention, each time a preset type of message is sent, the value of the sent message maintained by the message sending counter 101 is increased by one. When the extended BFD packet is sent, the sending count (TxPacketCounter_L) is read from the packet sending counter 101;
  • the extended BFD packet sequence number setting unit 102 is configured to set the sequence number of the extended BFD packet.
  • each extension is sent.
  • the BFD packet is sent by the extended BFD packet sequence number setting device 102, and the sequence number of the extended BFD packet is set to be the extended BFD packet sequence number setter 102.
  • the value of the extended BFD packet is the value of the extended BFD packet.
  • the serial number of the BFD packet containing the request information is included in the serial number.
  • the extended BFD packet receiving module 2 includes:
  • the message receiving counter 201 is configured to count the received number of the preset type of the message. In the embodiment of the present invention, the received value of the message received by the message receiving counter 201 is incremented by one for each preset type of message received, and received. The count (RxPacketCounter_L) is read from the message receiving counter 201;
  • a message receiving state memory 202 configured to store a local time when the extended BFD packet is received And the statistical value of the message receiving counter 201; the number of received messages (RxPacketCounterL) and the receiving timing (RxTimeStamp_L) of the device calculated when receiving the extended BFD message are read from the message receiving state memory 202 .
  • FIG. 5 is another flowchart of a method for measuring network performance parameters according to an embodiment of the present invention.
  • the method described in the embodiment of the present invention specifically includes:
  • BFD to implement bidirectional detection. If BFD is sent in periodic mode 12, if BFD is sent in request mode, if BFD is sent in periodic mode and in request mode, 12 and 13 are executed.
  • the extended BFD packet carries the packet loss monitoring TLV or the delay monitoring TLV, and both of them can be used.
  • the value field of the packet loss monitoring TLV includes the sending count. Specifically, when the extended BFD packet is sent, the preset type report is sent. The number of texts (TxPacketCounter_L).
  • the preset type of message includes all sent messages; or all transmitted data messages; or a message including a specified feature; or a message sent at a specified time.
  • the statistics of the number of the preset type of packets can be set to count all the sent packets, or all the data packets sent, or only the packets with the specified features, or only the specified time. Message.
  • the value field of the delay monitoring TLV includes:
  • the sending timing is specifically the local time (TxTimeStamp_L) when the extended BFD packet is sent.
  • TxTimeStamp_L the local time
  • the extended BFD packet needs to be processed by the software.
  • the extended BFD packet needs to be encapsulated before the extended BFD packet is sent.
  • the first network performance parameter measuring device receives the extension sent by the second network performance parameter measuring device
  • the network performance parameter is calculated according to the received packet monitoring TLV and/or the delay monitoring TLV in the extended BFD packet.
  • the network performance parameter is calculated according to the packet loss monitoring TLV and/or the delay monitoring TLV in the extended BFD packet, which includes: 14. According to the negotiation, it is necessary to monitor the network performance parameters, choose to monitor the packet loss or monitor the delay or both the monitoring packet loss and the monitoring delay. When both the monitoring packet loss and the monitoring delay, the monitoring packet loss can be performed first. Monitoring delay, you can also perform monitoring delay and then monitor and lose packets; if monitoring packet loss, execute 15, if monitoring delay, execute 16, if both monitoring and monitoring delays, then 15 and 16 are executed;
  • the packet loss monitoring is performed at the near end, and the packet loss at the near end is calculated.
  • the packet loss at the near end indicates the number of packets lost between the extended BFD packets BFD1 and BFD2 received by the device.
  • the two extended BFD packets may be two adjacent extended BFD packets or any two extended BFD packets.
  • Packet Loss[near-end] ITxPacketCounter_L[BFD1] - TxPacketCounter_L [BFD2] I - IRxPacketCounterL [BFD1] - RxPacketCounterL [BFD2]I , where RxPacketCounterL is the received BFD packet BFD1 or BFD2 The number of packets that have been received by the device that performs the calculation;
  • the one-way delay monitoring calculation calculates the one-way delay of the extended BFD packet, and the one-way delay indicates the delay that the packet is sent from the peer to the local end.
  • the one-way delay is equal to the time difference between the received BFD reporter and the receiver.
  • the time difference between the sender and the receiver is zero, and the one-way delay is equal to the receipt.
  • the one-way delay jitter monitoring calculation is specifically the difference between the two one-way delay monitoring calculation results.
  • the preset condition After calculating the network performance parameter (that is, calculating the packet loss and/or the delay parameter), comparing the network performance parameter with the preset condition, determining whether the preset condition is met, and the preset condition may be according to the network performance parameter. A single item may also be set according to some or all of the network performance parameters. If the preset condition is met, it is considered that the network performance needs to be alarmed or managed, and execution 20; otherwise, the process ends. Reason.
  • FIG. 6 is a block diagram of a device for measuring network performance parameters according to an embodiment of the present invention.
  • the device includes:
  • the extended BFD packet sending module 1 is configured to send an extended BFD packet including a packet loss monitoring TLV and/or a delay monitoring TLV;
  • the extended BFD packet receiving module 2 is configured to receive the extended BFD packet, or notify the extended BFD packet sending module when receiving the extended BFD packet including the request information;
  • the network performance parameter calculation module 3 is configured to perform the packet loss monitoring according to the extended BFD packet.
  • TLV and/or delay monitoring TLV calculates network performance parameters.
  • the extended BFD packet sending module 1 includes:
  • the message sending counter 101 is configured to count the number of sent packets of the preset type. In the embodiment of the present invention, each time a preset type of message is sent, the value of the sent message maintained by the message sending counter 101 is increased by one. When the extended BFD packet is sent, the sending count (TxPacketCounter_L) is read from the packet sending counter 101;
  • the extended BFD packet receiving module 2 includes:
  • the message receiving counter 201 is configured to count the received number of the preset type of the message. In the embodiment of the present invention, the received value of the message received by the message receiving counter 201 is incremented by one for each preset type of message;
  • the text receiving state memory 202 is configured to store the local time when the extended BFD packet is received and the count value of the packet receiving counter 201, and the device that has received the packet when the extended BFD packet is received is received. The number (RxPacketCounterL) is read from the message reception status memory 202.
  • the technical solution provided by the embodiment of the present invention can calculate various network performance parameters by carrying the packet loss monitoring TLV or the delay monitoring TLV in the extended BFD packet, and solve the problem that the parameter measurement of the network performance cannot be performed in the prior art solution. . And reporting the result of the network performance monitoring according to the preset condition.
  • a person skilled in the art can understand that all or part of the steps of the foregoing embodiment can be completed by a program to instruct the related forwarding plane, and the program can be stored in the computer.
  • the storage medium may be a ROM/RAM, a magnetic disk or an optical disk, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

测量网络性能参数的方法和装置 本申请要求于 2008 年 10 月 25 日提交中国专利局、 申请号为 200810216973.3、 发明名称为"测量网络性能参数的方法和装置"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及网络通信领域, 尤其涉及一种测量网络性能参数的方法和装 置。
背景技术
BFD ( Bidirectional Forwarding Detection, 双向转发检测)是一套用来 实现快速检测的国际标准协议, 提供一种轻负荷、 持续时间短的检测。 BFD通 过在双向链路两端同时发送检测报文,检测两个方向上的链路状态, 实现毫秒 级别的链路故障检测。 双向链路的一种特殊情况是单向链路, 例如 LSP ( Label Switched Path, 标签交换路径) , 这时只需在一个方向发送 BFD控制报文, 对 端通过其他路径艮告链路状况。
BFD能够在系统之间的任何类型通道上进行故障检测,这些通道包括直 接的物理链路、 虚电路、 隧道、 MPLS ( Multiprotocol Label Switching , 多协 议标签交换) LSP、 多跳路由通道, 以及非直接的通道。 同时正是由于 BFD 实现故障检测的筒单、 单一性, 致使 BFD能够专注于转发故障的快速检测, 帮 助网络以良好 QoS ( Quality of Service, 服务质量 )实现语音、 视频及其它点播 业务的传输, 从而帮助服务提供商基于 IP ( Internet Protocol, 网络互连协议) 网的实现, 为客户提供所需的高可靠性、 高适用性 VoIP ( Voice over IP, IP^ 载语音)及其它实时业务。
BFD协议描述了实现双向检测的机制,可分为两种:异步模式、查询模式, 另外还有一种辅助功能回声功能, 它可以与这两种模式结合起来使用。异步模 式和查询模式的本质区别在于检测的位置不同,异步模式下本端按一定的发送 周期发送 BFD控制报文, 需要在远端检测本端系统发送的 BFD控制报文; 而在 查询模式下的检测, 本端发送的 BFD控制报文是在本端系统进行检测的。 BFD检测虽然可以检测链路的连通状况, 但对于链路质量问题无法检测 到。
MPLS-TP ( Multi-Protocol Label Switching Transport Profile, 多协议标签交 换传输原型)是基于 T-MPLS ( Transport Multi-Protocol Label Switching, 传输 多协议标签交换 )和 IETF ( Internet Engineering Task Force,因特网工程任务组 ) MPLS的新型 MPLS协议原型。 MPLS-TP网络的需求, 包括 OAM ( Operation、 Administration, Maintenance, 操作、 管理和维护) 、 转发、 控制、 管理、 可 生存性等各个方面的内容, 其中 OAM是面向传输的 MPLS-TP网络的一个很重 要的方面。 MPLS-TP网络对 OAM工具提出了严格的要求: 要对网络的丢包、 时延、 抖动等性能参数进行测量, 通过这些参数监控网络的服务质量, 然而现 有的技术还无法对网络性能的参数进行测量。
发明内容
本发明实施例的目的是提供一种扩展 BFD测量网络性能参数的方法和装 置, 解决现有技术方案中无法进行网络性能参数测量的问题。
本发明实施例的目的是通过以下技术方案实现的:
一种测量网络性能参数的方法, 包括:
接收扩展 BFD报文, 所述扩展 BFD报文包括丢包监测 TLV ( Type-Length-Value , 类型 -长度-值 )和 /或时延监测 TLV;
根据接收的所述扩展 BFD报文中的丢包监测 TLV和 /或时延监测 TLV计算 网络性能参数。
一种测量网络性能参数的装置, 包括:
扩展 BFD报文接收模块, 用于接收扩展 BFD报文, 所述扩展 BFD报文包括 丢包监测 TLV和 /或时延监测 TLV;
网络性能参数计算模块, 用于根据所述扩展 BFD报文中的所述丢包监测 TLV和 /或时延监测 TLV计算网络性能参数。
采用本发明实施例提供的技术方案, 因为扩展 BFD报文中携带丢包监测 TLV或时延监测 TLV, 可以计算各项网络性能参数, 解决了现有技术方案中无 法对网络性能的参数测量的问题。
附图说明 图 1为本发明实施例所述一种测量网络性能参数的方法流程图; 图 2为本发明实施例所述监测丢包的方法流程图;
图 3为本发明实施例所述监测时延的方法流程图;
图 4为本发明实施例所述一种测量网络性能参数的装置框图;
图 5为本发明实施例所述一种测量网络性能参数的方法的另一流程图; 图 6为本发明实施例所述一种测量网络性能参数的装置的另一框图。
具体实施方式
Figure imgf000005_0001
BFD报文各字段有不同的含义, 例如 P字段(Poll字段, 检测字段) , 置 1 时表示发送系统请求对连接进行确认, 或者对参数改变进行确认, 置 0时表示 发送系统不请求确认。 A ( Authentication Present, 验证字段) 字段, 置 1时表 示控制报文包含验证字段, 会话需要被验证, 置 0时表示控制报文不包含验证 字段, 会话不需要验证。 Diag ( Diagnostic, 诊断)部分, 取值可以从 0~31 , 现有 BFD报文定义了 Diag字段取值为 0~8的含义, 9~31为预留字段用于进一步 扩展。
以下结合图 1到图 4提供本发明的一个实施例:
图 1为本发明实施例所述一种测量网络性能参数的方法流程图。 该方法包 括:
第一网络性能参数测量装置接收第二网络性能参数测量装置发送的扩展
BFD报文, 所述扩展 BFD报文包括丢包监测类型-长度-值 TLV和 /或时延监测 TLV;
第一网络性能参数测量装置根据接收的所述扩展 BFD报文中的丢包监测 TLV和 /或时延监测 TLV计算网络性能参数。
所述测量网络性能参数的方法, 具体包括:
01、 选择 BFD实现双向检测的机制, 协商确定周期方式或请求方式发送 BFD及需监测的网络性能参数。 所述网络性能参数包括近端丢包、 远端丢包、 单向时延、 双向时延、 单向时延抖动或双向时延抖动。 如果以周期方式发送 BFD执行 02, 如果以请求方式发送 BFD执行 03, 如果以周期方式和请求方式发 送 BFD, 02和 03都执行;
02、如果以周期方式发送 BFD, 则第一网络性能参数测量装置和第二网络 性能参数测量装置周期性的发送包括丢包监测 TLV和 /或时延监测 TLV的扩展 BFD报文;
03、如果以请求方式发送 BFD, 即第一网络性能参数测量装置根据需要发 送包括请求信息的 BFD报文,第二网络性能参数测量装置在收到包括所述请求 信息的 BFD报文时, 发送包括响应信息的所述 BFD报文; 同样, 第二网络性能 参数测量装置也可以根据需要发送包括请求信息的 BFD报文,第一网络性能参 数测量装置在收到包括所述请求信息的 BFD报文时发送包括响应信息的所述 BFD报文。
扩展 BFD报文携带丢包监测 TLV或时延监测 TLV,也可以两者都有,其中: 丢包监测 TLV的值字段包括扩展 BFD报文的发送序列号(Sequence ) 、 发 送计数、接收计数和返回计数。 所述发送计数具体为发送扩展 BFD报文时, 已 发送预设类型报文的个数(TxPacketCounter_L )。 所述预设类型报文包括所有 发送的报文; 或所有发送的数据报文; 或包括指定特征的报文; 或指定时间发 送的报文。发送预设类型报文个数的统计方式可以是根据需要设置为统计所有 发送的报文, 或统计所有发送的数据报文, 或也可以仅统计包括指定特征的报 文,或仅统计指定时间发送的报文。接收计数为最近一次接收扩展 BFD报文时, 已接收预设类型报文的个数( RxPacketCounter_L ) ; 返回计数为最近一次接 收的所述扩展 BFD报文中的发送计数值(TxPacketCounter_F )。 其中, 在不需 要校验序列号时, 发送序列号 (Sequence )可以置 0; 在不需要监测远端丢包 时, 接收计数 ( RxPacketCounter_L )和返回计数 ( TxPacketCounter_F ) 可以 置 0。
时延监测 TLV的值字段包括: 扩展 BFD报文的发送序列号 (Sequence ) ; 发送计时; 接收计时; 返回计时。 所述发送计时具体为发送扩展 BFD报文时的 本地时间 ( TxTimeStamp_L ); 所述接收计时具体为最近一次接收扩展 BFD报 文时的本地时间( RxTimeStamp_L ); 所述返回计时具体为最近一次接收的所 述扩展 BFD报文中的发送计时(TxTimeStamp_F ) 。 其中, 在不需要校验序列 号时, 发送序列号 (Sequence )可以置 0; 在不需要监测往返时延时, 接收计 时( RxTimeStamp_L )和返回计时 ( TxTimeStamp_F )可以置 0。
在本发明实施例中, 通过设置扩展 BFD报文字段, 标志所述扩展 BFD报文 中包括丢包监测 TLV和 /或时延监测 TLV, 具体为:
可以设置扩展 BFD报文的 P字段, 例如将该 P字段置 1 , 标志所述扩展 BFD 报文中包括丢包监测 TLV和 /或时延监测 TLV; 或者
设置扩展 BFD报文的 A字段, 例如将 A字段置 1 , 标志扩展 BFD报文中包括 丢包监测 TLV和 /或时延监测 TLV; 或者
设置 BFD报文中 diag部分的预留字段, 例如对 diag部分的预留字段进行定 义, 标志扩展 BFD报文中包括丢包监测 TLV和 /或时延监测 TLV。
在 MPLS-TP网络中,在发送扩展 BFD报文之前,还需要对扩展 BFD报文进 行封装, 即发送前对所述扩展 BFD封装多协议标签交换传输原型 (MPLS-TP ) 定义的通用联合通道头(GE-ACH )。 如果是测量 MPLS LSP的网络性能参数,
' '、第一网络性能参数测量装置接收第二网络性能参数测量装置发送的扩展 BFD报文后, 根据接收的所述扩展 BFD报文中的丢包监测 TLV和 /或时延监测 TLV计算网络性能参数。
根据接收的所述扩展 BFD报文中的丢包监测 TLV和 /或时延监测 TLV计算 网络性能参数, 具体包括:
04、根据协商确定的需监测网络性能参数,选择进行监测丢包或监测时延 或者既监测丢包也监测时延,在既监测丢包也监测时延时, 可以先进行监测丢 包再进行监测时延, 也可以先进行监测时延再进行监测丢包; 如果监测丢包, 执行 05; 如果监测时延, 执行 06; 如果既监测丢包也监测时延, 则 05和 06都执 行。
05、监测丢包, 第一网络性能参数测量装置或第二网络性能参数测量装置 计算两个扩展 BFD报文间预设类型报文的丢包数,所述两扩展 BFD报文可以是 相邻两个扩展 BFD报文也可以是任意两个扩展 BFD报文;
图 2为 05监测丢包的方法流程图。 该方法具体包括:
51、确定采用丢包监测近端计算和 /或丢包监测远端计算来进行监测丢包, 如果采用丢包监测近端计算, 执行 52, 如果采用丢包监测远端计算, 执行 53; 如果既做丢包监测近端计算也做丢包监测远端计算, 则 52和 53都执行; 根据协商确定的需监测网络性能参数,可以仅做丢包监测近端计算或仅做 丢包监测远端计算,也可以既做丢包监测近端计算也做丢包监测远端计算,在 既做丢包监测近端计算也做丢包监测远端计算时,可以先进行丢包监测近端计 算再进行丢包监测远端计算,也可以先进行丢包监测远端计算再进行包监测近 端计算:
52、丢包监测近端计算, 计算近端丢包, 所述近端丢包表示进行计算的设 备收到的两个扩展 BFD报文 BFD1和 BFD2之间的丢包数。 近端丢包 Packet Loss[near-end]= ITxPacketCounter_L[BFD 1 ] - TxPacketCounter_L [BFD2] I - IRxPacketCounterL [BFDl] - RxPacketCounterL [BFD2]I , 其 中 的 RxPacketCounterL是收到扩展 BFD报文 BFDl或 BFD2时, 进行计算的设备已接 收报文的个数;
53、丢包监测远端计算, 计算远端丢包, 所述远端丢包表示进行计算的设 备发出的两扩展 BFD报文 BFD1和 BFD2之间的丢包数。 远端丢包 Packet Loss[far-end]= ITxPacketCounter_F [BFDl] - TxPacketCounter_F [BFD2] I - IRxPacketCounter_L [BFDl]- RxPacketCounter_L [BFD2]I, 在不校验序列号时, 发送序列号 (Sequence ) 置 0, 此时如同丢包监测 TLV中不存在发送序列号, 不能判断所述扩展 BFD报文是否丢失,从而不能利用序列号判别两扩展 BFD报 文的返回计数( TxPacketCounter_F )是否接收自同一扩展 BFD报文, 因此若两 个扩展 BFD报文 BFD1和 BFD2的返回计数(TxPacketCounter_F )相等, 则认为 在此时间段内对端未发送报文或对端发送的性能监测报文发生丢失,为了避免 此次计算产生的错误, 放弃此次计算。
06、 监测时延, 计算扩展 BFD报文的时延;
图 3为 06监测时延的方法流程图。 该方法具体包括:
61、 确定采用单向延监测计算和 /或双向时延监测计算来进行监测时延, 如果采用单向时延监测计算, 执行 62, 如果采用双向时延监测计算, 执行 63; 如果既做单向时延监测计算也做双向时延监测计算, 则 62和 63都执行。
根据协商确定的需监测网络性能参数,可以仅做单向时延监测计算或仅做 双向时延监测计算,也可以既做单向时延监测计算也做双向时延监测计算,在 既做单向时延监测计算也做双向时延监测计算时,可以先进行单向时延监测计 算再进行双向时延监测计算,也可以先进行双向时延监测计算再进行单向时延 监测计算;
62、 单向时延监测计算, 计算所述扩展 BFD报文的单向时延, 所述单向时 延表示报文从对端发送到本端接收的时延。所述单向时延等于收到扩展 BFD报 文时的本地时刻与扩展 BFD报文的发送计时 ( TxTimeStamp_ i )之差加上 发送端与接收端的时差。 当网络支持时钟严格同步时,发送端与接收端的时差 时之差。
63、 双向时延监测计算, 计算所述扩展 BFD报文的双向时延。 查询模式下 的所述双向时延表示报文从本端发送到对端的时延加上对端响应报文返回本 端接收的时延之和。异步模式下的所述双向时延表示从本端报文发送到对端的 时延加上对端接到本端发送的报文后发出的第一个报文到达本端的时延之和。 所 述 双 向 时 延 Packet Delay [two-way] = (RxTimea-TxTimeStamp_L)-(TxTimeStamp_F-RxTimeStamp_L) ,其中 RxTimea 是收到扩展 BFD报文时的本地时刻。
07、 根据协商确定的需监测网络性能参数, 判断是否进行监测时延抖动, 如果进行监测时延抖动, 执行 08; 否则执行 09;
08、 采用单向时延抖动监测计算和 /或双向时延抖动监测计算来进行监测 时延抖动, 如果采用单向时延抖动监测计算, 执行 81 , 如果采用双向时延抖动 监测计算, 执行 82; 如果既做单向时延监测计算也做双向时延监测计算, 则 81 和 82都执行。
在做时延抖动监测计算时可以选择做单项或双向抖动计算,即可以仅做单 向时延抖动监测计算或仅做双向时延抖动监测计算或者两者都做,在两者都做 时, 可以先进行单向时延抖动监测计算再进行双向时延抖动监测计算,也可以 先进行双向时延抖动监测计算再进行单向时延抖动监测计算:
81、 单向时延抖动监测计算, 具体为两次单向时延监测计算结果之差;
82、 双向时延抖动监测计算, 具体为两次双向时延监测计算结果之差。
09、 计算网络性能参数(即计算丢包和 /或时延参数)后, 将所述网络性 能参数与预设条件比较, 判断是否满足预设条件, 若满足预设条件则认为需要 对网络性能进行告警或管理, 执行 10; 否则结束流程。 理。
所述预设条件可以根据网络性能参数中的单独一项设定:
以丢包为例, 当丢包率上升到一定的门限, 判断发送丢包异常, 可上报管 性能的影响, 在需求允许的范围内, 也可以在连续几次丢包率均高于门限值, 段固定的时间发生几次丢包率均高于门限的事件时,上报网管系统或进行保护 倒换或进行链路异常曲线绘制的可视化管理。时延或时延抖动的预设条件也可 按照这一原则确定。
或者, 所述预设条件也可以根据所述网络性能参数中的某几项或全部设 定, 例如:
当丢包、时延、抖动等性能一起测量时,可以考虑针对不同业务,对丢包、 时延、 抖动等性能参数要求的严格程度, 从总体上把握链路的整体性能。 同时 要照顾各种业务对性能的各种额外需求,比如语音业务对时延要求比较严格对 丢包要求相对次要, 则此时在参数处理上可以将时延的衡量比重设置大些,丢 包衡量比重相对小些,通过各种业务需求对各个参数设置不同的衡量比重,对 各个方面有侧重但又能从整体上把握链路的性能,将链路性能参数设定在一定 范围内,可以当一段设定的时间内累加得到链路总体性能参数值超过设定的门 限值,或者连续几次计算均超过设定门限值或者在一段固定的时间发生几次高 于门限的事件(每次高于门限值后将链路总体性能参数值清零 )等认为链路异 以上提到链路总体性能参数的计算具体可以通过如下方式:为每种参数丢 包率、 时延、 抖动等设置正常允许变化的最大范围也即最大正常门限值, 当参 数在此范围内变化时将不认为此项质量异常,其次为每项参数设置性能监测允 许的最大异常范围即最大异常门限值,当参数超过最大异常门限值则认为链路 已经发生故障或已经不在正常质量性能范围之内了。 当丢包率、 时延、抖动等 每项参数处于最大正常门限值和最大异常门限值之间时,将分别根据其与正常 范围的偏离程度按照设定的评分函数给每项参数打分,原则为偏离正常范围越 大则相应分数也必须体现其异常情况越严重。 丢包、 时延、 抖动等性能监测的 每项参数经打分得到的分数值将分别乘以针对具体业务各自预设的衡量比重 值并进行累加从而得到链路的总体性能参数。
图 4为本发明实施例所述一种测量网络性能参数的装置框图。该装置包括: 扩展 BFD报文发送模块 1 , 用于发送包括丢包监测 TLV和 /或时延监测 TLV 的扩展 BFD^艮文;
扩展 BFD报文接收模块 2, 用于接收所述扩展 BFD报文, 或者在收到包括 请求信息的所述扩展 BFD报文时通知所述扩展 BFD报文发送模块;
网络性能参数计算模块 3, 用于根据所述扩展 BFD报文中的所述丢包监测 TLV和 /或时延监测 TLV计算网络性能参数。
扩展 BFD报文发送模块 1包括:
报文发送计数器 101 , 用于统计预设类型报文的发送数, 在本发明实施例 中, 每发送一个预设类型报文, 报文发送计数器 101维护的已发送报文的个数 值加一, 发送扩展 BFD报文时, 发送计数( TxPacketCounter_L )从报文发送计 数器 101读取;
扩展 BFD报文序列号设置器 102, 用于设置所述扩展 BFD报文的序列号, 在本发明实施例中, 以周期方式发送 BFD或发送包括请求信息的 BFD报文时, 每发送一个扩展 BFD报文, 所述扩展 BFD报文序列号设置器 102维护的扩展 BFD报文发送值加一, 并设置发送的扩展 BFD报文的序列号(Sequence )为扩 展 BFD报文序列号设置器 102维护的扩展 BFD报文发送值, 所述发送的扩展 送包括响应信息的 BFD报文时, 序列号中包括请求信息的 BFD报文的序列号。
扩展 BFD报文接收模块 2包括:
报文接收计数器 201 , 用于统计预设类型报文的接收数, 在本发明实施例 中,每接收一个预设类型报文所述报文接收计数器 201维护的报文接收值加一, 接收计数( RxPacketCounter_L )从报文接收计数器 201读取;
报文接收状态存储器 202, 用于存储接收到所述扩展 BFD报文时的本地时 间和所述报文接收计数器 201的统计值; 收到扩展 BFD报文时进行计算的设备 已接收 4艮文的个数 ( RxPacketCounterL ) 、 接收计时 ( RxTimeStamp_L )从报 文接收状态存储器 202读取。
以下结合图 5和图 6提供本发明的另一个实施例:
图 5为本发明实施例所述一种测量网络性能参数的方法的另一流程图。 本 发明实施例所述的方法具体包括 :
11、 选择 BFD实现双向检测的机制, 如果以周期方式发送 BFD执行 12, 如 果以请求方式发送 BFD执行 13, 如果以周期方式和请求方式发送 BFD, 12和 13 都执行;
12、 以周期方式发送 BFD;
13、 以请求方式发送 BFD;
扩展 BFD报文携带丢包监测 TLV或时延监测 TLV,也可以两者都有,其中: 丢包监测 TLV的值字段包括发送计数, 具体为发送扩展 BFD报文时, 已发 送预设类型报文的个数(TxPacketCounter_L )。 所述预设类型报文包括所有发 送的报文; 或所有发送的数据报文; 或包括指定特征的报文; 或指定时间发送 的报文。发送预设类型报文个数的统计方式可以根据需要设置为统计所有发送 的报文, 或统计所有发送的数据报文, 或也可以仅统计包括指定特征的报文, 或仅统计指定时间发送的报文。
时延监测 TLV的值字段包括: 发送计时, 具体为发送扩展 BFD报文时的本 地时间 ( TxTimeStamp_L ) 。 报文的情况下, 需要将扩展 BFD报文交由软件处理;
在 MPLS-TP网络中,在发送扩展 BFD报文之前,还需要对扩展 BFD报文进 行封装;
第一网络性能参数测量装置接收第二网络性能参数测量装置发送的扩展
BFD报文后, 根据接收的所述扩展 BFD报文中的丢包监测 TLV和 /或时延监测 TLV计算网络性能参数。
根据接收的所述扩展 BFD报文中的丢包监测 TLV和 /或时延监测 TLV计算 网络性能参数, 具体包括: 14、根据协商确定的需监测网络性能参数,选择进行监测丢包或监测时延 或者既监测丢包也监测时延,在既监测丢包也监测时延时, 可以先进行监测丢 包再进行监测时延, 也可以先进行监测时延再进行监测丢包; 如果监测丢包, 执行 15, 如果监测时延, 执行 16, 如果既监测丢包也监测时延, 则 15和 16都执 行;
15、丢包监测近端计算, 计算近端丢包, 所述近端丢包表示进行计算的设 备收到的两扩展 BFD报文 BFD1和 BFD2之间的丢包数。 所述两扩展 BFD报文可 以是相邻两扩展 BFD报文也可以是任意两扩展 BFD报文。 近端丢包 Packet Loss[near-end]= ITxPacketCounter_L[BFD 1 ] - TxPacketCounter_L [BFD2] I - IRxPacketCounterL [BFDl] - RxPacketCounterL [BFD2]I , 其 中 的 RxPacketCounterL是收到扩展 BFD报文 BFDl或 BFD2时, 进行计算的设备已接 收报文的个数;
16、 单向时延监测计算, 计算所述扩展 BFD报文的单向时延, 所述单向时 延表示报文从对端发送到本端接收的时延。所述单向时延等于收到扩展 BFD报 端与接收端的时差。当网络支持时钟严格同步时,发送端与接收端的时差为零, 单向时延等于收 ^
17、 根据协商确定的需监测网络性能参数, 判断是否进行监测时延抖动, 如果进行监测时延抖动, 执行 18, 否则执行 19;
18、 单向时延抖动监测计算, 具体为两次单向时延监测计算结果之差。
19、 计算网络性能参数(即计算丢包和 /或时延参数)后, 将所述网络性 能参数与预设条件比较, 判断是否满足预设条件, 所述预设条件可以根据网络 性能参数中的单独一项也可以根据所述网络性能参数中的某几项或全部设定, 若满足预设条件则认为需要对网络性能进行告警或管理,执行 20; 否则结束流 程。 理。
图 6为本发明实施例所述一种测量网络性能参数的装置框图。该装置包括: 扩展 BFD报文发送模块 1 , 用于发送包括丢包监测 TLV和 /或时延监测 TLV 的扩展 BFD^艮文;
扩展 BFD报文接收模块 2, 用于接收所述扩展 BFD报文, 或者在收到包括 请求信息的所述扩展 BFD报文时通知所述扩展 BFD报文发送模块;
网络性能参数计算模块 3, 用于根据所述扩展 BFD报文中的所述丢包监测
TLV和 /或时延监测 TLV计算网络性能参数。
扩展 BFD报文发送模块 1包括:
报文发送计数器 101 , 用于统计预设类型报文的发送数, 在本发明实施例 中, 每发送一个预设类型报文, 报文发送计数器 101维护的已发送报文的个数 值加一, 发送扩展 BFD报文时, 发送计数( TxPacketCounter_L )从报文发送计 数器 101读取;
扩展 BFD报文接收模块 2包括:
报文接收计数器 201 , 用于统计预设类型报文的接收数, 在本发明实施例 中,每接收一个预设类型报文所述报文接收计数器 201维护的报文接收值加一; 报文接收状态存储器 202, 用于存储接收到所述扩展 BFD报文时的本地时 间和所述报文接收计数器 201的计数值, 收到扩展 BFD报文时进行计算的设备 已接收报文的个数( RxPacketCounterL )从报文接收状态存储器 202读取。
采用本发明实施例提供的技术方案因为扩展 BFD报文中携带丢包监测 TLV或时延监测 TLV, 可以计算各项网络性能参数, 解决了现有技术方案中无 法对网络性能的参数测量的问题。并根据预设条件将网络性能监控的结果上报 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的转发平面完成,所述的程序可以存储于计算机可 读存储介质中, 所述存储介质可以是 ROM/RAM, 磁盘或光盘等。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围 应该以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种测量网络性能参数的方法, 其特征在于, 包括:
接收扩展双向转发检测 BFD报文, 所述扩展 BFD报文包括丢包监测类型 - 长度-值 TLV和 /或时延监测 TLV;
根据接收的所述扩展 BFD报文中的丢包监测 TLV和 /或时延监测 TLV计算 网络性能参数。
2、根据权利要求 1所述测量网络性能参数的方法, 其特征在于, 所述接收 扩展双向转发检测 BFD报文, 包括:
接收周期性的发送的所述扩展 BFD报文; 和 /或
接收请求方式发送的扩展 BFD报文;
所述接收请求方式发送的扩展 BFD报文具体为:接收根据需要发送的包括 请求信息的所述扩展 BFD报文,或者接收在收到包括所述请求信息的所述扩展 BFD^ L时发送的包括响应信息的所述扩展 BFD^艮文。
3、根据权利要求 1所述测量网络性能参数的方法, 其特征在于, 所述丢包 监测 TLV的值字段,包括发送计数,所述发送计数为发送所述扩展 BFD报文时, 已发送预设类型报文的个数。
4、根据权利要求 3所述测量网络性能参数的方法, 其特征在于, 所述丢包 监测 TLV的值字段, 还包括接收计数和返回计数, 其中:
接收计数是最近一次接收所述扩展 BFD报文时已接收预设类型报文的个 数;
返回计数是最近一次接收的所述扩展 BFD报文中的所述发送计数的值。
5、 根据权利要求 3或 4所述测量网络性能参数的方法, 其特征在于, 所述 丢包监测 TLV的值字段, 还包括:
所述扩展 BFD>¾文的发送序列号 Sequence。
6、根据权利要求 1所述测量网络性能参数的方法, 其特征在于, 所述时延 监测 TLV的值字段包括发送计时,所述发送计时为发送所述扩展 BFD报文时的 本地时间。
7、根据权利要求 6所述测量网络性能参数的方法, 其特征在于, 所述时延 监测 TLV的值字段还包括接收计时和返回计时, 其中: 接收计时是最近一次接收所述扩展 BFD报文时的本地时间;
返回计时是最近一次接收的所述扩展 BFD报文中的所述发送计时值。
8、 根据权利要求 6或 7所述测量网络性能参数的方法, 其特征在于, 所述 时延监测 TLV的值字段, 还包括:
所述扩展 BFD报文的发送序列号 Sequence。
9、根据权利要求 1所述测量网络性能参数的方法, 其特征在于, 所述接收 扩展 BFD报文,所述扩展 BFD报文包括丢包监测 TLV和 /或时延监测 TLV,包括: 接收设置了检测字段 Poll的所述扩展 BFD报文, 标志所述扩展 BFD报文中 包括丢包监测 TLV和 /或时延监测 TLV; 或
接收设置了验证字段的所述扩展 BFD报文,标志所述扩展 BFD报文中包括 丢包监测 TLV和 /或时延监测 TLV; 或
接收设置了诊断部分 Diagnostic的预留字段的所述扩展 BFD报文, 标志所 述扩展 BFD报文中包括的丢包监测 TLV和 /或时延监测 TLV。
10、 根据权利要求 1-9中任一所述测量网络性能参数的方法, 其特征在于, 接收的所述扩展 BFD报文经过封装, 具体为:
对所述扩展 BFD报文封装多协议标签交换传输原型 MPLS-TP定义的通用 联合通道头 GE-ACH;
如果是测量 MPLS LSP的网络性能参数, 还包括: 对所述扩展 BFD封装 MPLS-TP定义的标签 LFU。
11、 根据权利要求 3-5中任一所述测量网络性能参数的方法, 其特征在于, 所述计算网络性能参数包括丢包监测近端计算, 所述丢包监测近端计算具体 为:
近 端 丢 包 Packet Loss [near-end] = ITxPacketCounter_L[BFD 1 ] - TxPacketCounter_L [BFD2] I - IRxPacketCounterL [BFD1] - RxPacketCounterL [BFD2]I;
其中的 TxPacketCounter_I^^示收到的所述扩展 BFD报文 BFD1或 BFD2的 发送计数;
其中的 RxPacketCounterL表示收到所述扩展 BFD报文 BFD1或 BFD2时, 进 行计算的设备已接收报文的个数。
12、根据权利要求 4或 5所述测量网络性能参数的方法, 其特征在于, 所述 计算网络性能参数包括丢包监测远端计算, 所述丢包监测远端计算具体为: 返回计数不相等时, 远端丢包 Packet Loss[far-end]= ITxPacketCounter_F [BFDl] - TxPacketCounter_F [BFD2] I - IRxPacketCounter_L [BFD1]- RxPacketCounter_L [BFD2]I;
其中的丁 ?&01¾1( 011111^_?表示收到的所述扩展 BFD报文 BFDl或 BFD2的 返回计数;
其中的 RxPacketCounter_I^^示收到的所述扩展 BFD报文 BFD1或 BFD2的 接收计数。
13、 根据权利要求 6-8中任一所述测量网络性能参数的方法, 其特征在于, 所述计算网络性能参数包括单向时延监测计算, 所述单向时延监测计算具体 加上发送端与接收端的时差。
14、根据权利要求 13所述测量网络性能参数的方法, 其特征在于, 所述计 算网络性能参数,还包括单向时延抖动监测计算, 所述单向时延抖动监测计算 为计算两次单向时延监测计算结果之差。
15、根据权利要求 7或 8所述测量网络性能参数的方法, 其特征在于, 所述 计算网络性能参数包括双向时延监测计算, 所述双向时延监测计算具体为: 双 向 时 延 Packet Delay [two-way] =
(RxTimea-TxTimeStamp_L)-(TxTimeStamp_F-RxTimeStamp_L);
其中 RxTimea表示收到所述扩展 BFD报文时的本地时刻;
其中 TxTimeStamp_L表示收到的所述扩展 BFD报文的所述发送计时; 其中丁 1¾11681&11^_?表示收到的所述扩展 BFD报文的所述返回计时; 其中 RxTimeStamp_L表示收到的所述扩展 BFD报文的所述接收计时;
16、根据权利要求 15所述测量网络性能参数的方法, 其特征在于, 所述计 算网络性能参数,还包括双向时延抖动监测计算, 所述双向时延抖动监测计算 具体为计算两次所述双向时延监测计算结果之差。
17、根据权利要求 1所述测量网络性能参数的方法, 其特征在于, 还包括: 将所述网络性能参数与预设条件比较,若满足所述预设条件则上报网管系
18、 一种测量网络性能参数的装置, 其特征在于, 包括:
扩展 BFD报文接收模块, 用于接收扩展 BFD报文, 所述扩展 BFD报文包括 丢包监测 TLV和 /或时延监测 TLV;
网络性能参数计算模块, 用于根据所述扩展 BFD报文中的所述丢包监测 TLV和 /或时延监测 TLV计算网络性能参数。
19、根据权利要求 18所述测量网络性能参数的装置,其特征在于,还包括: 扩展 BFD报文发送模块, 用于发送包括丢包监测 TLV和 /或时延监测 TLV 的扩展 BFD^艮文;
所述扩展 BFD报文接收模块还用于:在收到包括请求信息的所述扩展 BFD 报文时通知所述扩展 BFD报文发送模块;
20、根据权利要求 18或 19所述测量网络性能参数的装置, 其特征在于, 所 述扩展 BFD报文发送模块包括:
报文发送计数器, 用于统计预设类型报文的发送数;
21、根据权利要求 20所述测量网络性能参数的装置, 其特征在于, 所述扩 展 BFD报文发送模块还包括:
扩展 BFD报文序列号设置器, 用于设置所述扩展 BFD报文的序列号。
22、根据权利要求 18或 19所述测量网络性能参数的装置, 其特征在于, 所 述扩展 BFD报文接收模块包括:
报文接收计数器, 用于统计预设类型报文的接收数;
报文接收状态存储器, 用于存储接收到所述扩展 BFD报文时的本地时间 和所述报文接收计数器的统计值。
PCT/CN2009/074404 2008-10-25 2009-10-12 测量网络性能参数的方法和装置 WO2010045844A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09821565.0A EP2339784B1 (en) 2008-10-25 2009-10-12 Method and device for measuring network performance parameters
US13/093,438 US8570893B2 (en) 2008-10-25 2011-04-25 Method and device for measuring network performance parameters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810216973.3 2008-10-25
CN2008102169733A CN101729303B (zh) 2008-10-25 2008-10-25 测量网络性能参数的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/093,438 Continuation US8570893B2 (en) 2008-10-25 2011-04-25 Method and device for measuring network performance parameters

Publications (1)

Publication Number Publication Date
WO2010045844A1 true WO2010045844A1 (zh) 2010-04-29

Family

ID=42118949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074404 WO2010045844A1 (zh) 2008-10-25 2009-10-12 测量网络性能参数的方法和装置

Country Status (4)

Country Link
US (1) US8570893B2 (zh)
EP (1) EP2339784B1 (zh)
CN (1) CN101729303B (zh)
WO (1) WO2010045844A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843274A (zh) * 2012-08-31 2012-12-26 杭州华三通信技术有限公司 一种多链路故障检测的方法及装置
CN113508557A (zh) * 2019-01-29 2021-10-15 意大利电信股份公司 在分组交换通信网络中启用往返分组丢失测量

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552703B (zh) * 2009-04-10 2011-07-27 中国联合网络通信集团有限公司 服务质量参数测量方法和设备及服务质量判定方法和设备
CN102487338B (zh) * 2010-12-01 2014-11-05 中兴通讯股份有限公司 根据网络抖动调整bfd发送间隔的方法及装置
JP2012129868A (ja) * 2010-12-16 2012-07-05 Nec Corp 通信システム
CN102064981A (zh) * 2010-12-29 2011-05-18 中兴通讯股份有限公司 双向转发检测方法和系统
CN102158371A (zh) * 2011-04-12 2011-08-17 杭州华三通信技术有限公司 一种基于bfd的链路性能检测方法及其装置
CN102932318A (zh) * 2011-08-10 2013-02-13 华为技术有限公司 一种双向转发检测会话的验证方法及节点
CN103024326A (zh) * 2011-09-22 2013-04-03 中兴通讯股份有限公司 一种基于安防型家庭网关的视频备份方法及系统
KR102026266B1 (ko) * 2012-01-26 2019-09-27 한국전자통신연구원 부호화된 미디어 데이터를 전송하는 장치에서의 네트워크 지터 추정 방법
CN102724086B (zh) * 2012-06-21 2018-05-04 中兴通讯股份有限公司 检测传输链路质量的方法及装置
CN102984032A (zh) * 2012-12-12 2013-03-20 中国联合网络通信集团有限公司 传输时延测试方法、装置及系统
CN103067220B (zh) * 2012-12-19 2016-02-10 中兴通讯股份有限公司 参数更新情况下双向链路转发检测方法及装置
CN103152223B (zh) 2013-03-15 2016-08-03 华为技术有限公司 网络性能监测方法及装置
CN104104644A (zh) * 2013-04-01 2014-10-15 中兴通讯股份有限公司 双向转发检测系统及双向转发检测的检测时间配置方法
CN103581021B (zh) * 2013-10-23 2016-10-26 华为技术有限公司 软件定义网络下业务检测的方法及设备
CN104639362A (zh) * 2013-11-15 2015-05-20 中兴通讯股份有限公司 Oam性能监控方法及装置
EP2961113B1 (en) * 2014-06-24 2017-05-24 Alcatel Lucent Control of protection switching in a communication network
US9729439B2 (en) 2014-09-26 2017-08-08 128 Technology, Inc. Network packet flow controller
US10277506B2 (en) 2014-12-08 2019-04-30 128 Technology, Inc. Stateful load balancing in a stateless network
US9736184B2 (en) 2015-03-17 2017-08-15 128 Technology, Inc. Apparatus and method for using certificate data to route data
US9729682B2 (en) 2015-05-18 2017-08-08 128 Technology, Inc. Network device and method for processing a session using a packet signature
US9762485B2 (en) 2015-08-24 2017-09-12 128 Technology, Inc. Network packet flow controller with extended session management
US9871748B2 (en) 2015-12-09 2018-01-16 128 Technology, Inc. Router with optimized statistical functionality
US10015066B2 (en) * 2016-02-04 2018-07-03 Ciena Corporation Propagation of frame loss information by receiver to sender in an ethernet network
US9985883B2 (en) 2016-02-26 2018-05-29 128 Technology, Inc. Name-based routing system and method
CN105656781B (zh) * 2016-03-17 2019-06-21 华为技术有限公司 一种链路状态数据包的传输方法及网络设备
US10205651B2 (en) 2016-05-13 2019-02-12 128 Technology, Inc. Apparatus and method of selecting next hops for a session
US10298616B2 (en) 2016-05-26 2019-05-21 128 Technology, Inc. Apparatus and method of securing network communications
US10257061B2 (en) 2016-05-31 2019-04-09 128 Technology, Inc. Detecting source network address translation in a communication system
US11075836B2 (en) 2016-05-31 2021-07-27 128 Technology, Inc. Reverse forwarding information base enforcement
US10091099B2 (en) 2016-05-31 2018-10-02 128 Technology, Inc. Session continuity in the presence of network address translation
US10200264B2 (en) 2016-05-31 2019-02-05 128 Technology, Inc. Link status monitoring based on packet loss detection
US9832072B1 (en) 2016-05-31 2017-11-28 128 Technology, Inc. Self-configuring computer network router
US10841206B2 (en) 2016-05-31 2020-11-17 128 Technology, Inc. Flow modification including shared context
US10009282B2 (en) 2016-06-06 2018-06-26 128 Technology, Inc. Self-protecting computer network router with queue resource manager
CN107769848B (zh) * 2016-08-19 2020-02-11 国网江苏省电力公司南京供电公司 一种检测光纤通道质量的方法及装置
US9985872B2 (en) 2016-10-03 2018-05-29 128 Technology, Inc. Router with bilateral TCP session monitoring
CN106571959A (zh) * 2016-10-26 2017-04-19 广西瀚特信息产业股份有限公司 一种基于云服务的网络分析方法及系统
CN106452969A (zh) * 2016-10-26 2017-02-22 广西瀚特信息产业股份有限公司 一种基于云服务检测网络性能的方法及系统
CN106685757B (zh) * 2016-12-16 2019-12-17 烟台中科网络技术研究所 一种评估网络性能的方法及装置
US10425511B2 (en) 2017-01-30 2019-09-24 128 Technology, Inc. Method and apparatus for managing routing disruptions in a computer network
US10833980B2 (en) 2017-03-07 2020-11-10 128 Technology, Inc. Router device using flow duplication
US10432519B2 (en) 2017-05-26 2019-10-01 128 Technology, Inc. Packet redirecting router
US11165863B1 (en) 2017-08-04 2021-11-02 128 Technology, Inc. Network neighborhoods for establishing communication relationships between communication interfaces in an administrative domain
CN109889398B (zh) * 2017-12-06 2020-12-04 中国移动通信有限公司研究院 一种检测媒体流业务质量的方法及装置、设备、存储介质
CN110166311B (zh) * 2018-02-14 2022-09-23 华为技术有限公司 测量网络性能的方法、设备和网络系统
US20190253341A1 (en) 2018-02-15 2019-08-15 128 Technology, Inc. Service Related Routing Method and Apparatus
CN108390797A (zh) * 2018-02-27 2018-08-10 盛科网络(苏州)有限公司 一种基于芯片实现主动测量协议的方法
US10659983B2 (en) * 2018-03-09 2020-05-19 FG Innovation Company Limited Beam failure detection and recovery
CN111480364B (zh) * 2018-05-25 2021-09-14 华为技术有限公司 接入控制方法、装置和可读存储介质
CN110233765B (zh) * 2019-06-23 2022-08-12 何梓菁 一种低时延网络切片方法和设备
US11646956B2 (en) * 2019-07-24 2023-05-09 Cisco Technology, Inc. Systems and methods for providing bidirectional forwarding detection with performance routing measurements
WO2021051418A1 (en) * 2019-09-21 2021-03-25 Huawei Technologies Co., Ltd. Methods and network nodes for reliability measurement
CN112787881A (zh) * 2019-11-11 2021-05-11 中兴通讯股份有限公司 通信链路检测方法、通信装置、存储介质
CN115428411B (zh) 2020-04-23 2024-05-28 瞻博网络公司 使用会话建立度量的会话监测
CN113507394B (zh) * 2021-06-10 2023-03-10 广州虎牙科技有限公司 网络性能检测方法、装置、电子设备及存储介质
CN114884839B (zh) * 2022-06-10 2023-05-16 中煤科工重庆设计研究院(集团)有限公司 一种可检测单向链路质量的检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933431A (zh) * 2006-09-29 2007-03-21 华为技术有限公司 一种检测QoS的方法
CN101247288A (zh) * 2008-03-14 2008-08-20 华为技术有限公司 链路质量检测方法和链路质量检测设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2804808B1 (fr) 2000-02-03 2002-03-15 Ipanema Technologies Procede d'optimisation dynamique de la qualite de service dans un reseau de transmission de donnees
US7031264B2 (en) * 2003-06-12 2006-04-18 Avaya Technology Corp. Distributed monitoring and analysis system for network traffic
CN100502324C (zh) * 2005-08-31 2009-06-17 华为技术有限公司 一种获取链路评价参数的方法
US8208372B2 (en) * 2006-06-02 2012-06-26 Cisco Technology, Inc. Technique for fast activation of a secondary head-end node TE-LSP upon failure of a primary head-end node TE-LSP
KR100872453B1 (ko) 2006-08-31 2008-12-08 영남대학교 산학협력단 차등화 서비스 엠피엘에스망에서 비에프디/오에이엠을기반으로 장애를 감지하고 성능을 측정하기 위한 시스템 및방법
US7860981B1 (en) * 2006-09-29 2010-12-28 Juniper Networks, Inc. Systems and methods for IP session keepalive using BFD protocols
US20080159287A1 (en) * 2006-12-29 2008-07-03 Lucent Technologies Inc. EFFICIENT PERFORMANCE MONITORING USING IPv6 CAPABILITIES
US8374164B2 (en) * 2007-04-06 2013-02-12 Cisco Technology, Inc. Detection of specific BFD path failures
US8111611B2 (en) * 2008-06-30 2012-02-07 Cisco Technology, Inc. Bidirectional forwarding detection on multilink bundled interfaces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933431A (zh) * 2006-09-29 2007-03-21 华为技术有限公司 一种检测QoS的方法
CN101247288A (zh) * 2008-03-14 2008-08-20 华为技术有限公司 链路质量检测方法和链路质量检测设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2339784A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843274A (zh) * 2012-08-31 2012-12-26 杭州华三通信技术有限公司 一种多链路故障检测的方法及装置
CN102843274B (zh) * 2012-08-31 2016-06-22 杭州华三通信技术有限公司 一种多链路故障检测的方法及装置
CN113508557A (zh) * 2019-01-29 2021-10-15 意大利电信股份公司 在分组交换通信网络中启用往返分组丢失测量
US12107745B2 (en) 2019-01-29 2024-10-01 Telecom Italia S.P.A. Enabling a round-trip packet loss measurement in a packet-switched communication network

Also Published As

Publication number Publication date
EP2339784B1 (en) 2018-08-08
CN101729303B (zh) 2012-12-12
CN101729303A (zh) 2010-06-09
US20110199929A1 (en) 2011-08-18
US8570893B2 (en) 2013-10-29
EP2339784A4 (en) 2012-01-11
EP2339784A1 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
WO2010045844A1 (zh) 测量网络性能参数的方法和装置
US7200111B2 (en) Method for improving TCP performance over wireless links
US7835290B2 (en) Method for measuring end-to-end delay in asynchronous packet transfer network, and asynchronous packet transmitter and receiver
US8780731B2 (en) Ethernet performance monitoring
EP2234333B1 (en) System and method for estimation of round trip times within a tcp based data network
US7773611B2 (en) Method and apparatus for packet loss detection
EP1983688B1 (en) Method for detecting qos
US8867364B2 (en) Method and apparatus for multi-homing path selection of stream control transmission protocol
WO2006102840A1 (fr) Procede de surveillance du taux de perte de paquets
WO2011079702A1 (zh) 丢包检测方法和装置及路由器
Ha et al. Hybrid slow start for high-bandwidth and long-distance networks
WO2009046644A1 (fr) Procédé et dispositif pour la commutation de flux de trafic
WO2007006194A1 (fr) Procédé et dispositif de détection de la qualité de service dans un réseau de communication
CN101399769A (zh) 路径测试和切换
WO2012088843A1 (zh) 双向转发检测方法和系统
WO2007056929A1 (fr) Procede et appareil pour mettre en oeuvre la protection de groupes au sein d'un reseau mpls
US12047263B2 (en) Packet loss measurement in a packet-switched communication network
WO2012071851A1 (zh) 根据网络抖动调整bfd发送间隔的方法及装置
WO2011020257A1 (zh) 故障lsp信息通告的方法和装置
WO2011124184A2 (zh) 丢包处理方法、目的网络节点设备及移动传输网络系统
Asmaa et al. EC-elastic an explicit congestion control mechanism for named data networking
Ramadža et al. Network performance monitoring within MPLS traffic engineering enabled networks
WO2011157108A2 (zh) 一种网络传输特性分析方法、装置及系统
JP2008236709A (ja) 通信品質制御方法と通信品質制御装置および通信システムとプログラム
WO2011124182A2 (zh) 控制器与基站间传输检测方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE