WO2010043730A1 - Silica and larnite powder aerogel composite material and use thereof in the storage and fixing of gases - Google Patents

Silica and larnite powder aerogel composite material and use thereof in the storage and fixing of gases Download PDF

Info

Publication number
WO2010043730A1
WO2010043730A1 PCT/ES2009/000308 ES2009000308W WO2010043730A1 WO 2010043730 A1 WO2010043730 A1 WO 2010043730A1 ES 2009000308 W ES2009000308 W ES 2009000308W WO 2010043730 A1 WO2010043730 A1 WO 2010043730A1
Authority
WO
WIPO (PCT)
Prior art keywords
larnite
powder
gas
composite material
aminopropyl
Prior art date
Application number
PCT/ES2009/000308
Other languages
Spanish (es)
French (fr)
Inventor
Alberto SANTOS SÁNCHEZ
Luis María ESQUIVIAS FEDRIANI
Mohamed Ajbari
Manuel PIÑERO DE LOS RÍOS
Original Assignee
Universidad De Cádiz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Cádiz filed Critical Universidad De Cádiz
Publication of WO2010043730A1 publication Critical patent/WO2010043730A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • B01J20/3259Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulfur with at least one silicon atom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2045Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4525Gas separation or purification devices adapted for specific applications for storage and dispensing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a composite material of silica airgel and larnite powder, a process for obtaining it and its applications; in particular, with its use in the storage and fixation of gases, especially CO 2 .
  • the inventors' research group (Santos et al. Ind. Eng. Chem. 2007, 46: 103), has synthesized a composite material with a CaO content of 40% by weight, consisting of synthetic wollastonite powders (CaSiO 3 ) chemically modified with 3-aminopropyltrimethoxysilane (APTMS) encapsulated in a silica airgel matrix.
  • the composite material introduced in a reactor at atmospheric pressure and temperature, allows to obtain values in the wollastonite / calcite conversion rate greater than 80%, in an approximate period of time 40 minutes of CO 2 flow.
  • the attacked samples were allowed to stand in the reactor until they were analyzed.
  • the relevant factor in the process was the nanometric grain size of the powder and the reactive surface of the composite material, wollastonite powders acting as the active phase to trigger the reaction.
  • Ahmed et al. 1998 cited supra
  • Santos et al. 2007 (quoted above) is that the material synthesized for the reaction with CO 2 is different.
  • the airgel is synthesized directly, while in the second, synthetic wollastonite powders were used, which were subsequently added to a previously prepared polymerizing silica sol, and, as a final result, a composite material was obtained in which the Powders are encapsulated in a silica airgel matrix.
  • the difference with respect to the first works cited (Wu et al. 2001, Tai et al. 2005, Zevenhoven et al. 2006 and O'Connor et al.
  • the process comprises obtaining a gel from the mixture of different reagents or tetraethoxysilane (TEOS) and calcium nitrate tetrahydrate or a 30% silica sol in water and calcium nitrate tetrahydrate and subsequent heating at 1000 0 C for larnite amorphous gel.
  • TEOS tetraethoxysilane
  • latitude refers to dicalcium silicate (Ca 2 SiO 4 ), also known as bellite, a mineral scarce in natural media and, together with tricalcium silicate, the fundamental components of Portland cement.
  • airgel refers to a mesoporous material obtained by a sol-gel process followed by drying under supercritical conditions.
  • supercritical conditions refers to conditions of pressure and temperature above the critical point of a given substance, such that said substance acquires intermediate properties between a liquid and a gas;
  • a supercritical fluid has a high diffusivity like gases and a high solvation power like liquids.
  • the supercritical conditions for extracting the ethanol according to the present invention correspond to a temperature greater than 243 ° C and a pressure greater than 63.6 bar (63.6 x 5 Pa).
  • the supercritical conditions used to form the composite material of the invention correspond to 255 0 C and 90 bar (9OxIO 5 Pa) (Example 2).
  • TEOS tetraethoxysilane polycondensation and polycondensation product
  • the invention relates to a material composed of silica airgel and larnite powder, hereinafter "composite material of the invention", obtainable by mixing larnite powder whose surface has been chemically modified with an aminosilane selected from (3-aminopropyl) -triethoxysilane (APTES), (3-aminopropyl) -dimethyl-ethoxy silane (APMES), (3-aminopropyl) -trimethoxy-silane (APTMS), (3-aminopropyl) -diethoxymethylsilane (APDEMS) and mixtures thereof, with a sol obtained by hydrolysis and polycondensation of tetraethoxysilane (TEOS).
  • APTES (3-aminopropyl) -triethoxysilane
  • APMES (3-aminopropyl) -dimethyl-ethoxy silane
  • APITMS (3-aminopropyl) -trimethoxy-s
  • said aminosilane is selected from APTES, APMES and mixtures thereof; preferably, said aminosilane is APTES.
  • said composite material of the invention has the following composition:
  • the invention provides a composite material of the invention in which "x" is 0.34.
  • the invention provides a composite material of the invention in which "x" is 0.44.
  • the invention provides a composite material of the invention in which "x" is 0.62.
  • Illustrative, non-limiting examples of composite materials of the invention include: a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises between 62% and 61% by weight of CaO and between 38% and 39% by weight of SiO 2 ; a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 44% by weight of CaO and 54.98% by weight of SiO 2 ; - a composite material of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose Chemical composition comprises 40.48% by weight of CaO and 58.38% by weight of SiO 2 ; and a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 34.33% by weight of CaO and 64.70% by weight of SiO 2 .
  • the invention relates to a process for obtaining the composite material of the invention, hereinafter "process of the invention ", which comprises contacting larnite powder, the surface of which is chemically modified with an aminosilane selected from (3-ammopropyl) - triethoxysilane (APTES), (3-aminopropyl) -dimethyl-ethoxy silane (APMES), (3- aminopropyl) -trimethoxysilane (APTMS), (3-aminopropyl) -diethoxymethylsilane (APDEMS) and mixtures thereof, with a sol obtained by hydrolysis and polycondensation of tetraethoxysilane (TEOS).
  • APTES (3-ammopropyl) - triethoxysilane
  • APMES (3-aminopropyl) -dimethyl-ethoxy silane
  • APITMS (3- aminopropyl) -trimethoxysilane
  • APIDEMS 3-a
  • the larnite powder used in the implementation of the process of the invention is a synthetic larnite powder, that is, a powder obtained from the synthesis of larnite, since this mineral is Scarce in nature.
  • Synthetic larnite powder can be obtained by different methods (Hong et al. J. Am. Ceram. Soc. 1999, 82: 1681; Chrysafi et al. J Eur Ceram Soc 2007, 27: 1707).
  • the synthetic larnite powder is obtained by a process comprising: a) mixing a source of silicon with a source of calcium, in the presence of a solvent; b) remove the solvent used in step a); c) drying the product obtained in step b); d) crush the product obtained in step c); Y e) subject the product obtained in step d) to a heat treatment to obtain synthetic larnite powder.
  • a source of silicon is mixed with a source of calcium, in the presence of a solvent.
  • a source of silicon is silicon dioxide (silica), typically in the form of a colloidal solution, such as an aqueous colloidal silica solution.
  • concentration of silica present in said colloidal solution may vary within a wide range, typically between 25% and 40% by weight. In a specific embodiment, a 30% aqueous silica colloidal solution is used (Example
  • the source of silicon is a product resulting from the hydrolysis of an alkoxysilane.
  • any suitable calcium source can be used to obtain synthetic larnite powder according to the above procedure.
  • Illustrative, non-limiting examples of calcium sources include calcium salts, e.g., calcium nitrate, calcium chloride, etc.
  • an aqueous solution of calcium nitrate tetrahydrate is used as the source of calcium.
  • the sources of silicon and calcium are mixed, in appropriate stoichiometric amounts, depending on the synthetic larnite powder to be obtained, generally choosing molar relationships between said silica and calcium sources that allow obtaining synthetic larnite powders with a chemical composition close to that of the natural phase.
  • the synthetic larnite powder has a Si / Ca molar ratio between 0.5 and 1.
  • a synthetic larnite powder with a molar ratio is obtained.
  • the mixing of said sources of silicon and calcium is carried out in the presence of an appropriate solvent, optionally, with the help of ultrasound.
  • an appropriate solvent include ethylene glycol (EG) 5 polyvinyl alcohol (PVA), polyethylene glycol (PEG), etc., and mixtures thereof with water, preferably in aqueous solution EG.
  • the mixture of Sources of silica and calcium are carried out in the presence of an aqueous solution of ethylene glycol.
  • the use of such solvents is intended to ensure the presence of hydroxyl groups in order to inhibit contact between cations and prevent agglomeration and precipitation.
  • ultrasound can be used in order to reduce, to some extent, the use of said solvent.
  • EG allows to obtain larnite powders with less amorphous component which is indicative that the reaction between the source of silicon and the source of calcium is more complete.
  • the solvent used is removed [step b)].
  • the removal of said solvent which can be carried out by conventional methods, for example, by evaporation under suitable conditions, results in a product that is typically a gel.
  • solvent removal is conducted by heating at a temperature of 100 0 C, with stirring, to evaporate all the solvent.
  • step c) the product (gel) obtained after removal of the solvent in step b) is dried.
  • drying is carried out in conventional equipment under conditions that do not alter the product.
  • said gel is dried in an oven at a temperature of about 100 0 C for about 48 h.
  • the product obtained after drying the gel is crushed [step d)] to obtain an amorphous powder with a particle size of the order of tens of microns, for example, between 10 and 100 microns, and, finally, said material (amorphous powder) It undergoes a heat treatment to remove organic residues that are present and obtain the crystalline phase of larnite.
  • said heat treatment comprises heating said material (amorphous powder) with a heating rate of 5 ° C / min to a temperature of 600 0 approximately C and hold at that temperature for about 1 hour, thereby a powder is obtained whose characterization both at the level of composition and at the mineralogical level shows that it is synthetic larnite powders (Example 1).
  • the larnite powder is subjected to a treatment intended to chemically modify its surface with a surface modifying agent, such as an aminosilane commonly used in this sector of the art, for example, APTES, APMES, APTMS, APDEMS 5 etc., or their mixtures in order to stabilize their dispersion on a colloidal scale.
  • a surface modifying agent such as an aminosilane commonly used in this sector of the art, for example, APTES, APMES, APTMS, APDEMS 5 etc., or their mixtures in order to stabilize their dispersion on a colloidal scale.
  • said aminosilane is selected from APTES, APMES and mixtures thereof; preferably, said aminosilane is APTES.
  • the larnite powder is contacted with said aminosilane in the presence of a solvent, such as an alcohol, for example, methanol or ethanol.
  • a solvent such as an alcohol, for example, methanol or ethanol.
  • the mixing of the aminosilane with the larnite powder is carried out under conditions that facilitate their intimate contact, for example, by the use of ultrasound or by the use of a mechanical stirring device, a high speed disperser (10,000 rpm), etc.
  • the mixing of the aminosilane with the larnite powder is carried out by means of the use of ultrasound, for example, providing a power of approximately 0.6 W-cm "3 , during a soundproofing time of approximately 10 minutes (Example 2).
  • a surface modifying agent such as an aminosilane (eg, APTES, APMES, APTMS, APDEMS, etc., or mixtures thereof)
  • Said product obtainable by chemical modification of the surface of the larnite powder with an aminosilane selected from APTES, APMES, APTMS, APDEMS and mixtures thereof, constitutes a further aspect of the present invention.
  • said aminosilane is selected from APTES, APMES and mixtures thereof; preferably, said aminosilane is APTES.
  • Larnite powder whose surface has been chemically modified with said surface modifying agent such as an aminosilane commonly used in this sector of the art, for example, APTES, APMES, APTMS, APDEMS, etc., or mixtures thereof, is put in contact with a sun obtained by controlled hydrolysis and polycondensation of TEOS.
  • Hydrolysis consists in the rupture of the TEOS molecule by the action of water, followed by polymerization of resulting units to give rise to a three-dimensional network of silica, the basis of the colloidal particle structure.
  • the hydrolysis and polycondensation of TEOS is carried out in the presence of an acid, such as an inorganic acid, eg, nitric acid (since it acts as a reaction catalyst), etc., and a solvent, such as a alcohol, eg, ethanol (since it favors the mixture between alkoxide and water, initially immiscible), etc., under conditions that allow the formation of said sun, for example, by the use of ultrasound, or, alternatively, in the absence of ultrasound, by mechanical agitation, although in this case the reaction time is usually longer.
  • the hydrolysis and polycondensation of TEOS is carried out with the help of ultrasound, for example, providing a power of approximately 0.6 W-cm " , during a soundproofing time of approximately 20 minutes (Example 2).
  • the hydrolysis and polycondensation of TEOS is carried out in basic medium, in the presence of a solvent, such as an alcohol, eg, methanol.
  • the hydrolysis and polycondensation of TEOS can be performed using ultrasound, without the need to use any solvent.
  • the mixture of the larnite powder whose surface is chemically modified with a surface modifying agent, such as an aminosilane commonly used in this sector of the art, for example, APTES 5 APMES, APTMS, APDEMS, etc., or mixtures thereof, with the sun resulting from the controlled hydrolysis and polycondensation of TEOS is carried out under the action of ultrasound, advantageously, high power ultrasound (ultrasonic radiation in the frequency range of 20 KHz) so that the gelation time is short enough to prevent the decantation of the dispersed solid phase.
  • a wet gel is obtained which is suitably treated to remove the solvent used in the production of the sun in order to obtain the airgel.
  • the removal of said solvent can be carried out by conventional methods depending on the solvent to be removed.
  • solvent removal is carried out in an autoclave under supercritical conditions for solvent extraction.
  • the solvent is ethanol and the supercritical conditions comprise heating at 255 0 C and 90 bar (9OxIO 5 Pa).
  • the material resulting from the removal of the solvent (eg, the material extracted from the autoclave), is subjected to an appropriate heat treatment to obtain the composite material of the invention.
  • said heat treating comprises heating said material resulting from removal of the solvent at a temperature of 600 0 C, with a heating rate of 5 ° C / min and maintaining it at that temperature (600 0 C) for about 1 hour, whereby the composite material of the invention is obtained, that is, a composite of silica airgel and larnite powder.
  • larnite powder with the chemically modified surface with said surface modifying agent such as an aminosilane commonly used in this sector of the art, for example, APTES, APMES, APTMS, APDEMS, etc., or mixtures thereof , added to the sun resulting from controlled hydrolysis and polycondensation of TEOS, composite materials of the invention of different composition are obtained.
  • said amounts (2.5 g; 5 g and 10 g), respectively, of synthetic larnite powder have been added with a Si / Ca molar ratio of 1, whose surface had been modified with APTES, to said sun obtained by controlled hydrolysis and polycondensation of TEOS (Example 2.1).
  • Synthetic larnite powders and composite materials of the invention thus obtained can be characterized at the textural, compositional and mineralogical level, by using conventional techniques, such as, for example, X-ray Fluorescence (FRX), Ray Diffraction X (DRX), Brunauer-Emmet-Teller (BET) method and X-ray dispersive energy analysis (EDX) coupled to a Scanning Electron Microscope (MEB).
  • FRX X-ray Fluorescence
  • DRX Ray Diffraction X
  • BET Brunauer-Emmet-Teller
  • EDX X-ray dispersive energy analysis
  • Illustrative, non-limiting examples of composite materials of the invention include: - a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 62-61% by weight of CaO and 38- 39% by weight of SiO 2 ; a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 44% by weight of CaO and 54.98% by weight of SiO 2 ; a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 40.48% by weight of CaO and 58.38% by weight of SiO 2 ; and a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 34.33% by weight of CaO and 64.70% by weight of SiO 2 . 4. Applications of the composite material of the invention
  • the composite material of the invention can be obtained to fix, store or remove gases, for example, CO 2 , by a carbonation reaction.
  • gases for example, CO 2
  • Other types of gases emitted into the atmosphere such as SO 2 , NOx, CO and H 2 S could also be fixed, stored or disposed of by said composite material of the invention.
  • the invention relates to a process for the storage of a gas, hereinafter gas storage method (A) of the invention, which comprises the use of the composite material of the invention. More specifically, the gas storage process (A) of the invention comprises contacting a gas stream comprising said gas with the composite material of the invention under conditions that allow said gas to be fixed by the composite material of the invention.
  • the gas storage process (A) of the invention comprises contacting a stream of said gas with an aqueous suspension (dispersion) of the composite material of the invention under appropriate temperature and pressure conditions.
  • gases that can be stored according to the gas storage method (A) of the invention include gases emitted into the atmosphere such as CO 2 , SO 2 , NOx, CO, H 2 S, etc., as well as their mixtures.
  • gases emitted into the atmosphere such as CO 2 , SO 2 , NOx, CO, H 2 S, etc., as well as their mixtures.
  • the characteristics of the composite material of the invention have already been previously defined.
  • the temperature and pressure conditions will be chosen from those that are appropriate to facilitate the fixation of the gas by the composite material of the invention; although said temperature and pressure conditions may vary over a wide range, in a particular embodiment, said appropriate temperature and pressure conditions consist of ambient temperature and atmospheric pressure.
  • the gas storage process (A) of the invention is carried out while maintaining the stirring.
  • the gas fixing reaction by the composite material of the invention according to the gas storage method (A) of the invention can be carried out in an appropriate reactor, for example, in a reactor comprising a valve for the inlet of gas and another for the gas outlet, controlling the time and pH of the reaction.
  • the products resulting from subjecting the composite materials of the invention to said gas fixation reaction can be analyzed immediately after the end of the process, without having to be kept at rest in the reactor for a period of time.
  • the analysis of said products by appropriate techniques, for example, DRX 5 allows to verify the effectiveness of the gas fixation reaction, that is, of the transformation of larnite (Ca 2 SiO 4 ) into the corresponding product as a function of the fixed gas.
  • the product resulting from subjecting a composite material of the invention to a gas fixation reaction constitutes a further aspect of the present invention.
  • the gas storage process (A) of the invention allows to store and, consequently, eliminate, gases emitted into the atmosphere potentially harmful to the environment, such as CO 2 , SO 2 , NOx, CO, H 2 S 5 etc.
  • the gas to be stored according to the gas storage method (A) of the invention due to its special relevance, is CO 2 .
  • the invention provides a process for the storage of CO 2 (A) comprising the use of the composite material of the invention. More specifically, said method comprises contacting a stream of a gas comprising CO 2 with the composite material of the invention. To do this, briefly, a stream of a gas comprising CO 2 is contacted with an aqueous suspension (dispersion) of the composite material of the invention under appropriate temperature and pressure conditions.
  • said gas comprising CO 2 is a gas composed mostly, that is, almost entirely, of CO 2 ;
  • said gas comprising CO 2 is a gas containing CO 2 together with other gases in different relative proportions. The characteristics of the composite material of the invention have already been previously defined.
  • the temperature and pressure conditions will be chosen from those that are appropriate to facilitate the fixation of CO 2 by the material compound of the invention; although said temperature and pressure conditions may vary over a wide range, in a particular embodiment, said appropriate temperature and pressure conditions consist of ambient temperature and atmospheric pressure.
  • said CO 2 (A) storage procedure provided by this invention is carried out while maintaining the stirring.
  • the carbonation reaction of the CO 2 storage process (A) provided by this invention can be carried out in an appropriate reactor, for example, in a reactor comprising a valve for the gas inlet and another for the gas outlet, controlling the time and the pH of the reaction.
  • the carbonated products that is, the products resulting from subjecting the composite materials of the invention to said carbonation reaction, can be analyzed immediately after the end of the process, without having to keep them at rest in the reactor for A period of time.
  • the analysis of said carbonated products by DRX allows to verify the effectiveness of the carbonation reaction, that is, of the transformation of larnite (Ca 2 SiO 4 ) into CaCO 3 (see Example 3).
  • the invention in another aspect, relates to a process for recovering larnite (A) from a carbonated product obtainable by the CO 2 (A) storage method of the invention, which comprises subjecting said carbonated product to an appropriate heat treatment. in order to obtain a material comprising larnite.
  • the carbonated product obtainable by the CO 2 (A) storage process of the invention can be obtained by subjecting a composite material of the invention to a carbonation reaction, as previously described.
  • the heat treatment to be applied will be chosen based on various factors, including the nature of the product to be treated, although it will be aimed at obtaining a material comprising larnite.
  • said heat treating comprises heating said obtainable carbonated product by the method of storing CO 2 (A) of the invention, at a temperature of 900 0 C at a rate of heating 5 ° C / min and maintaining it at that temperature (900 0 C) for 1 hour, to obtain a material comprising larnite.
  • said carbonated product resulting from subjecting a composite material of the invention to a carbonation reaction is dried and the components of the obtained by-product (eg, calcite and silica) are mixed and the resulting mixture is heat treated in an oven to about 900 0 C, with a heating rate of 5 ° C / minute and held at that temperature for about 1 hour to obtain a material which, analyzed by XRD, mostly results to be constituted by larnite and minor amounts of other minerals, eg, wollastonite (Example 4).
  • the invention allows a cycle to be closed since starting with larnite as a raw material, a material composed of airgel and larnite powder (whose surface has been chemically modified) is first obtained, which is subsequently subjected to a fixing reaction of a gas (CO 2 ) (eg, by a carbonation reaction) to give rise to a product (eg, a carbonated product) that, after heat treatment, gives rise to a material comprising mostly larnite, that is, the material initial.
  • a gas CO 2
  • a product eg, a carbonated product
  • larnite powder can also be used to fix, store or remove gases, for example, CO 2 , by a carbonation reaction (Example 3).
  • gases for example, CO 2
  • Other types of gases emitted to the atmosphere such as SO 2 , NOx, CO and H 2 S could also be fixed, stored or disposed of by said larnite powder.
  • the carbonated product resulting from subjecting the larnite powder to a carbonation reaction can also be used to recover larnite (Example 4).
  • the invention relates to a process for the storage of a gas, hereinafter gas storage method (B) of the invention, which comprises the use of larnite powder. More specifically, the gas storage process (B) of the invention comprises contacting a gas stream comprising said gas with larnite powder under conditions that allow said gas to be fixed by the larnite powder.
  • the gas storage process of the invention comprises contacting a stream of said gas with an aqueous suspension (dispersion) of larnite powder under appropriate temperature and pressure conditions.
  • gases that can be stored according to the gas storage method of the invention include gases emitted into the atmosphere such as CO 2 , SO 2 , NOx, CO, H 2 S, etc., as well as their mixtures
  • gases potentially harmful to the environment can be stored and, consequently, eliminated.
  • the larnite powder to be used can be natural larnite powder or synthetic larnite powder, which can be obtained as previously indicated. Also, the characteristics of the larnite powder have already been previously defined.
  • the temperature and pressure conditions will be chosen among those that are appropriate to facilitate the fixation of the gas by the larnite powder; although said temperature and pressure conditions may vary over a wide range, in a particular embodiment, said appropriate temperature and pressure conditions consist of ambient temperature and atmospheric pressure.
  • the gas storage process (B) of the invention is carried out while maintaining the stirring.
  • the reaction of fixing the gas by the larnite powder according to the gas storage process (B) of the invention can be carried out in an appropriate reactor, for example, in a reactor comprising a valve for the inlet of gas and another for the exit of the gas, controlling the time and the pH of the reaction.
  • the products resulting from subjecting the larnite powder to said gas fixation reaction can be analyzed immediately after the end of the process, without having to be kept at rest in the reactor for a period of time.
  • the analysis of said products by appropriate techniques, for example, DRX, allows to verify the effectiveness of the gas fixation reaction, that is, of the transformation of larnite (Ca 2 SiO 4 ) into the corresponding product as a function of the fixed gas.
  • the product resulting from subjecting larnite powder to a gas fixation reaction constitutes a further aspect of the present invention.
  • the gas storage process (B) of the invention allows storage and, consequently, eliminating, gases emitted into the atmosphere potentially harmful to the environment, such as CO 2 , SO 2 , NOx, CO, H 2 S, etc.
  • the gas to be stored according to the gas storage procedure (B) of the invention due to its special relevance, is CO 2 .
  • the invention provides a process for the storage of CO 2 (B) comprising the use of larnite powder. More specifically, said method comprises contacting a stream of a gas comprising CO 2 with larnite powder. To do this, briefly, a stream of a gas comprising CO 2 is contacted with an aqueous suspension (dispersion) of larnite powder under appropriate temperature and pressure conditions.
  • said gas comprising CO 2 is a gas composed mostly, that is, almost entirely, of CO 2 ;
  • said gas comprising CO 2 is a gas containing CO 2 together with other gases in different relative proportions.
  • the characteristics of larnite powder have been previously defined.
  • the conditions of temperature and pressure will be chosen among those that are appropriate to facilitate the fixation of CO 2 by larnite powder; although said temperature and pressure conditions may vary over a wide range, in one embodiment. in particular, said appropriate temperature and pressure conditions consist of ambient temperature and atmospheric pressure.
  • the CO 2 (B) storage process provided by this invention is carried out while maintaining the stirring.
  • the carbonation reaction of the alternative CO 2 storage process provided by this invention (based on the use of larnite powder) can be carried out in an appropriate reactor, for example, in a reactor comprising a gas inlet valve. and another for the exit of the gas, controlling the time and the pH of the reaction.
  • the carbonated products that is, the products resulting from subjecting the larnite powder to said carbonation reaction
  • the analysis of said carbonated products by DRX allows to verify the effectiveness of the carbonation reaction, that is, of the transformation of larnite (Ca 2 SiO 4 ) into CaCO 3 (see Example 3).
  • very high carbonation rates are observed, since in only a period of time of approximately 15 minutes no larnite is detected but only calcium carbonate minerals (eg, vaterite and calcite).
  • SiO 2 cannot be determined by DRX due to its amorphous character, so other techniques are used, for example, EDX-MEB; In this sense, the analysis of said carbonated product by EDX-MEB reveals the presence of Si, an element that in the EDX analysis (for any type of material used) is expressed as an oxide, SiO 2 .
  • the ratio of silica to CaCO 3 is variable depending on the Si / Ca ratio present in the raw material (larnite powder). Said carbonated product, resulting from subjecting larnite powder to a carbonation reaction, constitutes an additional aspect of the present invention.
  • the invention in another aspect, relates to a process for recovering larnite (B) from a carbonated product obtainable by the CO 2 (B) storage method of the invention, which comprises subjecting said carbonated product to an appropriate heat treatment. in order to obtain a material comprising larnite.
  • the carbonated product obtainable by the CO 2 (B) storage process of the invention can be obtained by subjecting larnite powder to a carbonation reaction, as previously described.
  • the heat treatment to be applied will be chosen based on various factors, including the nature of the product to be treated, although it will be aimed at obtaining a material comprising larnite.
  • said heat treating comprises heating said obtainable carbonated product by the method of storing CO 2 (B) of the invention, at a temperature of 900 0 C 3 at a speed of heating 5 ° C / min and maintaining it at that temperature (900 0 C) for 1 hour, to obtain a material comprising larnite.
  • said carbonated product resulting from subjecting larnite powder to a carbonation reaction is dried and the components of the obtained by-product (eg, calcite and silica) are mixed and the resulting mixture is heat treated in an oven at approximately 900 0 C, with a heating rate of approximately 5 ° C / minute, and is maintained at that temperature for approximately 1 hour, obtaining a material that, analyzed by DRX, turns out to consist mostly of larnite and smaller amounts of other minerals, eg , wollastonite (Example 4).
  • the components of the obtained by-product eg, calcite and silica
  • the invention allows a cycle to be closed since starting from larnite powder which is subsequently subjected to a gas fixation reaction (CO 2 ) (eg, by a carbonation reaction) to give rise to a product (eg, a carbonated product) which, after heat treatment, gives rise to a material comprising mostly larnite, that is, the initial material.
  • a gas fixation reaction CO 2
  • a product eg, a carbonated product
  • This mode of operation involves obtaining a gel with a Si / Ca molar ratio of 0.5 in the product obtained.
  • the gel obtained was dried in an oven at 100 0 C for 48 h, then triturated, and then the powder obtained was heat treated at 600 0 C (heating rate of 5 ° C / min) for 1 h.
  • the powder obtained (identified in Table 1 as "Si / Ca larnite powder (molar): 0.5") was characterized both at the level of its composition and at the mineralogical level.
  • composition determined by X-ray Fluorescence (FRX): 65-67% by weight of CaO and 34-32% by weight of SiO 2 ; and mineralogical characterization [determined by X-ray Diffraction (DRX)]: larnite (dicalcium silicate).
  • Example 1.1 Operating in a manner similar to that described in Example 1.1 but varying the proportion of calcium nitrate tetrahydrate (dissolution of 7.07 g of calcium nitrate tetrahydrate in 60 ml of distilled water) and of the aqueous solution of ethylene glycol at 5 % (67 ml), a gel was obtained in which the Si / Ca molar ratio is 1. Next, the gel was dried, crushed and the powder obtained was heat treated as indicated in Example 1.1.
  • composition by FRX: 55-50% by weight of CaO and 45-50% SiO 2 weight
  • - mineralogical characterization by DRX: larnite (dicalcium silicate).
  • APTES 3-aminopropyltriethoxysilane
  • Composite material 1 To obtain this "composite material 1" (the number indicates the Si / Ca molar ratio of the synthetic starting larnite powder), the starting point was the "Si / Ca (molar) larnite powder: 1" (Example 1.2). Different composite materials 1 were obtained, depending on the amount of synthetic larnite powder used with a Si / Ca molar ratio of 1, the surface of which had been modified with APTES according to the procedure previously described.
  • the cycle is closed, that is, from a raw material (larnite), whose processing allows obtaining a composite material of airgel and larnite powders, which undergoes a flow of CO 2 and through a carbonation reaction After 15 minutes, it generates a by-product (calcite and silica) that, heat treated, yields a final material in which the majority part is the initial product (larnite).
  • a raw material Larnite
  • calcite and silica calcite and silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Silicon Compounds (AREA)

Abstract

A silica and larnite powder aerogel composite material is described, obtainable through mixing larnite powder (the surface whereof is chemically modified by an aminosilane) with a sol obtained through hydrolysis and polycondensation of a silane. Said material may be utilised in the storage and fixing of gases, particularly CO2.

Description

MATERIAL COMPUESTO DE AEROGEL DE SÍLICE Y POLVO DE LARNITA Y SU USO EN EL ALMACENAMIENTO Y FIJACIÓN DE GASES AEROGEL COMPOSITE MATERIAL OF SILICA AND DUST OF LARNITA AND ITS USE IN THE STORAGE AND FIXATION OF GASES
CAMPO DE LA INVENCIÓN La presente invención se relaciona con un material compuesto de aerogel de sílice y de polvo de larnita, un procedimiento para su obtención y sus aplicaciones; en particular, con su empleo en el almacenamiento y fijación de gases, especialmente, CO2.FIELD OF THE INVENTION The present invention relates to a composite material of silica airgel and larnite powder, a process for obtaining it and its applications; in particular, with its use in the storage and fixation of gases, especially CO 2 .
ANTECEDENTES DE LA INVENCIÓN En el almacenamiento y fijación del dióxido de carbono (CO2), una de las tecnologías más prometedoras es la relacionada con la fijación de dicho gas en forma de carbonatos inorgánicos e insolubles. Esa fijación se consigue mediante una reacción química, conocida como carbonatación mineral.BACKGROUND OF THE INVENTION In the storage and fixation of carbon dioxide (CO 2 ), one of the most promising technologies is related to the fixation of said gas in the form of inorganic and insoluble carbonates. This fixation is achieved through a chemical reaction, known as mineral carbonation.
En las reacciones de carbonatación, el CO2 reacciona con materiales (mayoritariamente silicatos) que tienen óxidos metálicos (típicamente de metales alcalino-térreos) en su composición, formando así el correspondiente carbonato y sílice (SiO2) como sub-producto. Sin embargo, estas reacciones son muy lentas cuando transcurren en ambientes naturales, de tal manera que los estudios que implementan actualmente dichas reacciones requieren la adición de una energía intensiva (de activación), para conseguir que los minerales sean más reactivos. En definitiva, la adición de energía de activación persigue que esta tecnología de almacenamiento evolucione desde una etapa de estudio o desarrollo, a otra etapa que tenga como fin la fijación del CO2 a una escala masiva y viable económicamente.In carbonation reactions, CO 2 reacts with materials (mostly silicates) that have metal oxides (typically alkaline earth metals) in their composition, thus forming the corresponding carbonate and silica (SiO 2 ) as a by-product. However, these reactions are very slow when they occur in natural environments, so that the studies that currently implement these reactions require the addition of an intensive energy (activation), to make the minerals more reactive. Ultimately, adding activation energy pursues this storage technology evolves from a study or development stage to another stage that is intended to fixation of CO 2 to a massive scale economically feasible.
Dentro de esa evolución, destacan ciertos trabajos publicados recientemente (Wu et al. Ind. Eng. Chem. Res. 2001, 40:3902 y Tai et al. AIChE J. 2005, 52:292). En ellos se puede destacar, para diferentes protocolos experimentales, los valores obtenidos en la velocidad de conversión wollastonita (CaSiθ3)/calcita (CaCO3), donde wollastonita y calcita son fases minerales. Estos valores se deben interpretar como una medida de la eficacia en la fijación del CO2 por parte de los minerales, a partir de la conversión del Ca del silicato en Ca del carbonato, después de ocurrida la reacción de carbonatación. Así, Wu et al. (citado suprά), partiendo de una muestra de mineral wollastonita, pulverizada en un reactor a presión atmosférica y temperatura ambiente, han obtenido unos valores de conversión (reacción de carbonatación) del 14% en 22 días de duración del experimento.Within this evolution, certain recently published works stand out (Wu et al. Ind. Eng. Chem. Res. 2001, 40: 3902 and Tai et al. AIChE J. 2005, 52: 292). In them it is possible to highlight, for different experimental protocols, the values obtained in the conversion rate wollastonite (CaSiθ 3 ) / calcite (CaCO 3 ), where wollastonite and calcite are mineral phases. These values should be interpreted as a measure of the efficiency in the fixation of CO 2 by minerals, from the conversion of Ca from silicate to Ca from carbonate, after the carbonation reaction has occurred. Thus, Wu et al. (quoted above), based on a sample of wollastonite ore, pulverized in a reactor at atmospheric pressure and room temperature, have obtained Conversion values (carbonation reaction) of 14% in 22 days of the experiment.
Posteriormente, se han realizado estudios comparativos analizando diferentes tipos de muestras y condiciones experimentales (Zevenhoven et al. Catal. Today 2006, 115:206), obteniéndose unos resultados más esperanzadores. Entre ellos, destacan los obtenidos a partir del silicato de magnesio (O' Connor et al. Proceeding of the 27th Int. Conf. on Coal utilization and Fuel system 2002, 819) con muestra también pulverizada, y en reactores con unas condiciones de alta presión y temperatura, llegando a valores del 80% en la reacción de conversión durante 1 h de duración del experimento. Las variables experimentales que han posibilitado que dichos protocolos obtengan tan prometedores resultados incluyen la pulverización de la muestra, las especies químicas presentes en la solución acuosa donde ocurre la reacción con el CO2, así como las condiciones de alta presión y temperatura.Subsequently, comparative studies have been carried out analyzing different types of samples and experimental conditions (Zevenhoven et al. Catal. Today 2006, 115: 206), obtaining more promising results. Among them, those obtained from magnesium silicate (O 'Connor et al. Proceeding of the 27th Int. Conf. On Coal utilization and Fuel system 2002, 819) with sample also pulverized, and in reactors with high conditions pressure and temperature, reaching 80% values in the conversion reaction for 1 hour of the experiment. The experimental variables that have allowed such protocols to obtain such promising results include the spraying of the sample, the chemical species present in the aqueous solution where the reaction with CO 2 occurs, as well as the conditions of high pressure and temperature.
También se han realizado ensayos con muestras sintetizadas. Estudios previos (Ahmed et al. App. Thermal. Eng. 1998, 18:787) han demostrado la utilidad de los aerogeles en la fijación del CO2. Para ello han seguido la preparación de alcogeles (geles cuya hidrólisis se produce en medio alcohólico) mediante procesado sol-gel (procesado de soluciones que suponen la polimerización a través de reacciones de hidrólisis y policondensación de silicatos), conteniendo CaO5 MgO y SiO2, y posterior secado supercrítico (método de extracción del solvente contenido en los poros del gel, que aprovecha las condiciones supercríticas donde desaparece la interfaz gas-líquido y las consiguientes tensiones sobre las paredes del poro). En ese artículo, sólo se hace referencia a que los aerogeles (geles generalmente de sílice secados en las condiciones anteriormente descritas) son adsorbentes eficaces en la captura de una mezcla de gases a partir de un sistema simulado de flujo de emisión.Tests have also been carried out with synthesized samples. Previous studies (Ahmed et al App Thermal Eng 1998, 18:.... 787) have demonstrated the usefulness of aerogels in CO 2 fixation. For this, they have followed the preparation of alcogels (gels whose hydrolysis occurs in alcoholic medium) by sol-gel processing (processing of solutions that involve polymerization through reactions of hydrolysis and polycondensation of silicates), containing CaO 5 MgO and SiO 2 , and subsequent supercritical drying (solvent extraction method contained in the pores of the gel, which takes advantage of the supercritical conditions where the gas-liquid interface disappears and the resulting tensions on the pore walls). In that article, reference is only made to the fact that aerogels (generally silica gels dried under the conditions described above) are adsorbents effective in capturing a mixture of gases from a simulated emission flow system.
Posteriormente, el grupo de investigación de los inventores (Santos et al. Ind. Eng. Chem. 2007, 46:103), ha sintetizado un material compuesto con un contenido de CaO del 40% en peso, que consiste en polvos sintéticos de wollastonita (CaSiO3) modificados químicamente con 3-aminopropiltrimetoxisilano (APTMS) encapsulados en una matriz de aerogel de sílice. El material compuesto, introducido en un reactor a presión y temperatura atmosférica, permite obtener unos valores en la velocidad de conversión wollastonita/calcita superiores al 80%, en un periodo de tiempo aproximado de 40 minutos de flujo de CO2. Posteriormente, las muestras atacadas se dejaron en reposo en el reactor hasta que fueron analizadas. El factor relevante del proceso fue el tamaño de grano nanométrico del polvo y la superficie reactiva del material compuesto, actuando los polvos de wollastonita como fase activa para desencadenar la reacción. Aparte de los resultados aportados y obtenidos, la diferencia entre los trabajos deSubsequently, the inventors' research group (Santos et al. Ind. Eng. Chem. 2007, 46: 103), has synthesized a composite material with a CaO content of 40% by weight, consisting of synthetic wollastonite powders (CaSiO 3 ) chemically modified with 3-aminopropyltrimethoxysilane (APTMS) encapsulated in a silica airgel matrix. The composite material, introduced in a reactor at atmospheric pressure and temperature, allows to obtain values in the wollastonite / calcite conversion rate greater than 80%, in an approximate period of time 40 minutes of CO 2 flow. Subsequently, the attacked samples were allowed to stand in the reactor until they were analyzed. The relevant factor in the process was the nanometric grain size of the powder and the reactive surface of the composite material, wollastonite powders acting as the active phase to trigger the reaction. Apart from the results provided and obtained, the difference between the works of
Ahmed et al. 1998 (citado supra) y Santos et al. 2007 (citado supra) radica en que el material sintetizado para la reacción con el CO2 es diferente. En el primero se sintetiza directamente el aerogel, mientras que en el segundo, se utilizaron polvos sintéticos de wollastonita, que posteriormente se añadieron a un sol de sílice polimerizante previamente preparado, y, como resultado final, se obtuvo un material compuesto en el que los polvos están encapsulados en una matriz de aerogel de sílice. Por su parte, la diferencia con respecto a los primeros trabajos citados (Wu et al. 2001, Tai et al. 2005, Zevenhoven et al. 2006 y O' Connor et al. 2002, citados supra), reside en que dichos estudios se realizaron con muestras naturales pulverizadas y en condiciones de alta presión y temperatura. Sin embargo, en el caso de Santos et al. 2007 (citado supra), todos los componentes de las muestras son sintéticos, de tal forma que permite actuar sobre la características texturales (porosidad, superficie específica del compuesto y tamaño de grano de los polvos del mineral) y la reacción de carbonatación transcurre a presión atmosférica y temperatura ambiente. En otro trabajo publicado por el grupo de investigación de los inventores (Santos et al. J. Sol-Gel Sci. Tech. 2008, 45:261), cuyo objetivo consiste en la optimización de los costes en el procesado del material compuesto, se describe la obtención de unos materiales compuestos añadiendo a un sol de sílice, polvos de wollastonita modificados con APTMS. No obstante, en ese procedimiento experimental se siguió una doble ruta; en la primera, se añadieron polvos de wollastonita natural modificados con APTMS al sol de sílice, obteniéndose un material compuesto cuyo contenido en CaO era del 29% en peso; y, en la segunda, se añadieron polvos sintéticos de wollastonita modificados con APTMS a dicho sol de sílice, obteniéndose un material compuesto con un contenido en CaO del 19% en peso. En ambos casos se han obtenido resultados equivalentes en la velocidad de la reacción para un tiempo de flujo de CO2 de 30 minutos. Las muestras también fueron dejadas en el reactor en reposo durante unas horas hasta ser analizadas. Finalmente en un trabajo posterior a los anteriores, y aún en versión digital (Santos et al. J. Sol-Gel Sci. Tech. 2008, DOI: 10.1007/sl0971-008-1719-y), se matizan algunos detalles que complementan los estudios anteriores. Las muestras son equivalentes a las ya descritas. Solamente se explica la variación de la velocidad de la reacción durante el tiempo que las muestras fueron sometidas a un flujo de CO2 de 15, 30 y 40 min. En este estudio, se obtienen valores de velocidad comparables a los estudios anteriores, pero se detalla que la mayor velocidad se obtiene en los primeros 15 minutos de flujo, y cuando las muestras atacadas permanecen en el reactor en condiciones de reposo durante unas horas (12 horas), antes de ser analizadas. Aunque en los artículos publicados por el grupo de investigación de los inventores se hace mención al subproducto obtenido en la reacción de carbonatación, identificando sus componentes, no se hace referencia a ningún tratamiento posterior aplicado sobre dicho subproducto ni al resultado obtenido con ese tratamiento.Ahmed et al. 1998 (cited supra) and Santos et al. 2007 (quoted above) is that the material synthesized for the reaction with CO 2 is different. In the first one, the airgel is synthesized directly, while in the second, synthetic wollastonite powders were used, which were subsequently added to a previously prepared polymerizing silica sol, and, as a final result, a composite material was obtained in which the Powders are encapsulated in a silica airgel matrix. On the other hand, the difference with respect to the first works cited (Wu et al. 2001, Tai et al. 2005, Zevenhoven et al. 2006 and O'Connor et al. 2002, cited above), is that these studies are performed with natural samples sprayed and under conditions of high pressure and temperature. However, in the case of Santos et al. 2007 (cited above), all the components of the samples are synthetic, so that it allows to act on the textural characteristics (porosity, specific surface of the compound and grain size of the ore powders) and the carbonation reaction takes place under pressure atmospheric and ambient temperature. In another work published by the research group of the inventors (Santos et al. J. Sol-Gel Sci. Tech. 2008, 45: 261), whose objective is to optimize costs in the processing of composite material, describes the obtaining of composite materials by adding to a silica sol, Wollastonite powders modified with APTMS. However, in this experimental procedure a double route was followed; in the first, natural Wollastonite powders modified with APTMS were added to the silica sol, obtaining a composite material whose CaO content was 29% by weight; and, in the second, synthetic powders of Wollastonite modified with APTMS were added to said silica sol, obtaining a composite material with a CaO content of 19% by weight. In both cases equivalent results have been obtained in the reaction rate for a CO 2 flow time of 30 minutes. Samples were also left in the reactor at rest for a few hours until analyzed. Finally, in a post-previous work, and still in digital version (Santos et al. J. Sol-Gel Sci. Tech. 2008, DOI: 10.1007 / sl0971-008-1719-y), some details that complement the previous studies. The samples are equivalent to those already described. Only the variation of the reaction rate during the time that the samples were subjected to a CO 2 flow of 15, 30 and 40 min is explained. In this study, velocity values comparable to previous studies are obtained, but it is detailed that the highest velocity is obtained in the first 15 minutes of flow, and when the attacked samples remain in the reactor in rest conditions for a few hours (12 hours), before being analyzed. Although the articles published by the inventors' research group mention the by-product obtained in the carbonation reaction, identifying its components, there is no reference to any subsequent treatment applied to said by-product or to the result obtained with that treatment.
Por otra parte, el empleo de silicato dicálcico (Ca2SiO4), conocido como larnita o bellita (fase mineral) según distintos autores, en la fijación de gases tipo CO2, está referenciado por diferentes autores. Dichos estudios de fijación de gases (Young et al. J. Am. Ceram. Soc. 1974, 57:394; Bukowski et al. Cem. Conc. Res. 1979, 9:57; Goodbrake et al. J. Am. Ceram. Soc. 1979, 62:168; Goto et al. J. Am. Ceram. Soc. 1995, 78:2867; Shtepenko et al. Chem. Eng. J. 2006, 118:107) fueron realizados con ese mineral (larnita o bellita), bien como un componente más del cemento o bien como componente mineral individual. En el último artículo citado, la síntesis se realiza a partir de la mezcla en grado reactivo de sílice y carbonato, posteriormente sinterizada a 1.400-1.5000C, esto es, densificada por tratamiento térmico; dicha mezcla, en presencia de agua, es colocada en una cámara de carbonatación a una presión de 2 bares (2x105 Pa), y durante 60 minutos es sometida a un flujo de CO2. El material resultante es secado y molido. Este procedimiento es repetido 5 veces hasta conseguir que la totalidad de la muestra de toda la mezcla haya reaccionado.On the other hand, the use of dicalcium silicate (Ca 2 SiO 4 ), known as larnite or bellite (mineral phase) according to different authors, in the fixation of gases type CO 2 , is referenced by different authors. Such gas fixation studies (Young et al. J. Am. Ceram. Soc. 1974, 57: 394; Bukowski et al. Cem. Conc. Res. 1979, 9:57; Goodbrake et al. J. Am. Ceram Soc. 1979, 62: 168; Goto et al. J. Am. Ceram. Soc. 1995, 78: 2867; Shtepenko et al. Chem. Eng. J. 2006, 118: 107) were made with that mineral (larnite or bellita), either as a component of cement or as an individual mineral component. In the last article cited, the synthesis is carried out from the reactive grade mixture of silica and carbonate, subsequently sintered to 1,400-1,500 0 C, that is, densified by heat treatment; said mixture, in the presence of water, is placed in a carbonation chamber at a pressure of 2 bar (2x10 5 Pa), and for 60 minutes it is subjected to a flow of CO 2 . The resulting material is dried and ground. This procedure is repeated 5 times until the entire sample of the entire mixture has reacted.
Además de esto, y de cara a un método de síntesis alternativo al método convencional de fabricación a alta temperatura de los componentes del cemento, existen varias referencias sobre síntesis de larnita (Hong et al. J. Am. Ceram. Soc. 1999, 82:1681; Chrysafi et al. J. Eur. Ceram. Soc. 2007, 27:1707). En ambas y en relación a la sintésis, sólo se describe el procedimiento experimental y el producto obtenido. En concreto, en la más reciente, el procedimiento comprende la obtención de un gel a partir de la mezcla de diferentes reactivos o bien de tetraetoxisilano (TEOS) y nitrato de calcio tetrahidrato o de un sol de sílice al 30% en agua y nitrato de calcio tetrahidrato y posterior calentamiento a 1.0000C del gel amorfo para obtener larnita.In addition to this, and in view of an alternative synthesis method to the conventional method of high temperature manufacturing of cement components, there are several references on synthesis of larnite (Hong et al. J. Am. Ceram. Soc. 1999, 82 : 1681; Chrysafi et al. J. Eur. Ceram. Soc. 2007, 27: 1707). In both and in relation to the synthesis, only the experimental procedure and the product obtained are described. In Specifically, in the most recent, the process comprises obtaining a gel from the mixture of different reagents or tetraethoxysilane (TEOS) and calcium nitrate tetrahydrate or a 30% silica sol in water and calcium nitrate tetrahydrate and subsequent heating at 1000 0 C for larnite amorphous gel.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
1. Definiciones1. Definitions
El término "larnita", tal como aquí se utiliza, se refiere a silicato dicálcico (Ca2SiO4), también conocido como bellita, un mineral escaso en medios naturales y, junto con el silicato tricálcico, los componentes fundamentales del cemento Portland.The term "larnite", as used herein, refers to dicalcium silicate (Ca 2 SiO 4 ), also known as bellite, a mineral scarce in natural media and, together with tricalcium silicate, the fundamental components of Portland cement.
El término "aerogel", tal como aquí se utiliza, se refiere a un material mesoporoso obtenido mediante un proceso sol-gel seguido de secado en condiciones supercríticas. ,The term "airgel", as used herein, refers to a mesoporous material obtained by a sol-gel process followed by drying under supercritical conditions. ,
El término "condiciones supercríticas", tal como aquí se utiliza, se refiere a unas condiciones de presión y temperatura superiores al punto crítico de una sustancia dada, de tal modo que dicha sustancia adquiere propiedades intermedias entre un líquido y un gas; así, por ejemplo, un fluido supercrítico tiene una difusividad alta como los gases y un elevado poder de solvatación como los líquidos. Las condiciones supercríticas para extraer el etanol según la presente invención corresponden a una temperatura superior a 243°C y una presión superior a 63,6 bares (63,6xlO5 Pa). En una realización particular, las condiciones supercríticas utilizadas para formar el material compuesto de la invención corresponden a 2550C y 90 bares (9OxIO5 Pa) (Ejemplo 2).The term "supercritical conditions", as used herein, refers to conditions of pressure and temperature above the critical point of a given substance, such that said substance acquires intermediate properties between a liquid and a gas; Thus, for example, a supercritical fluid has a high diffusivity like gases and a high solvation power like liquids. The supercritical conditions for extracting the ethanol according to the present invention correspond to a temperature greater than 243 ° C and a pressure greater than 63.6 bar (63.6 x 5 Pa). In a particular embodiment, the supercritical conditions used to form the composite material of the invention correspond to 255 0 C and 90 bar (9OxIO 5 Pa) (Example 2).
El término "sol", tal como aquí se utiliza, se refiere a un sistema coloidal cuyo medio de dispersión es un líquido o un gas; concretamente, en la presente invención, el producto de hidrólisis y policondensación de tetraetoxisilano (TEOS) se dispersa en un medio líquido de hidrólisis.The term "sun", as used herein, refers to a colloidal system whose dispersion medium is a liquid or a gas; specifically, in the present invention, the tetraethoxysilane polycondensation and polycondensation product (TEOS) is dispersed in a liquid hydrolysis medium.
2. Material compuesto de aerogel de sílice v polvo de larnita2. Composite material of silica airgel v larnite powder
En un aspecto, la invención se relaciona con un material compuesto por aerogel de sílice y polvo de larnita, en adelante "material compuesto de la invención", obtenible mediante la mezcla de polvo de larnita cuya superficie ha sido modificada químicamente con un aminosilano seleccionado entre (3-aminopropil)-trietoxisilano (APTES), (3-aminopropil)-dimetil-etoxisilano (APMES), (3-aminopropil)-trimetoxi- silano (APTMS), (3-aminopropil)-dietoximetilsilano (APDEMS) y sus mezclas, con un sol obtenido mediante hidrólisis y policondensación de tetraetoxisilano (TEOS).In one aspect, the invention relates to a material composed of silica airgel and larnite powder, hereinafter "composite material of the invention", obtainable by mixing larnite powder whose surface has been chemically modified with an aminosilane selected from (3-aminopropyl) -triethoxysilane (APTES), (3-aminopropyl) -dimethyl-ethoxy silane (APMES), (3-aminopropyl) -trimethoxy-silane (APTMS), (3-aminopropyl) -diethoxymethylsilane (APDEMS) and mixtures thereof, with a sol obtained by hydrolysis and polycondensation of tetraethoxysilane (TEOS).
En una realización particular, dicho aminosilano se selecciona entre APTES, APMES y sus mezclas; preferentemente, dicho aminosilano es APTES.In a particular embodiment, said aminosilane is selected from APTES, APMES and mixtures thereof; preferably, said aminosilane is APTES.
En una realización particular, dicho material compuesto de la invención presenta la siguiente composición:In a particular embodiment, said composite material of the invention has the following composition:
(1-X) SiO2 - X CaO donde x es un número comprendido entre 0,34 y 0,62. El valor superior de dicho intervalo ("x" = 0,62) indica una composición química que se encuentra dentro del rango de la fase mineral natural. En este sentido, un mayor porcentaje en peso de CaO implica una mayor cantidad del catión divalente disponible a reaccionar con el CO2, y, por tanto, un mayor consumo (fijación) de dicho gas por kg de material. En una realización particular, la invención proporciona un material compuesto de la invención en el que "x" es 0,34. En otra realización particular, la invención proporciona un material compuesto de la invención en el que "x" es 0,44. En otra realización particular, la invención proporciona un material compuesto de la invención en el que "x" es 0,62. Ejemplos ilustrativos, no limitativos de materiales compuestos de la invención incluyen: un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende entre 62% y 61% en peso de CaO y entre 38% y 39% en peso de SiO2; un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende 44% en peso de CaO y 54,98% en peso de SiO2; - un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende 40,48% en peso de CaO y 58,38% en peso de SiO2; y un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende 34,33% en peso de CaO y 64,70% en peso de SiO2.(1-X) SiO 2 - X CaO where x is a number between 0.34 and 0.62. The higher value of said range ("x" = 0.62) indicates a chemical composition that is within the range of the natural mineral phase. In this sense, a greater percentage by weight of CaO implies a greater amount of the available divalent cation to react with CO 2 , and, therefore, a greater consumption (fixation) of said gas per kg of material. In a particular embodiment, the invention provides a composite material of the invention in which "x" is 0.34. In another particular embodiment, the invention provides a composite material of the invention in which "x" is 0.44. In another particular embodiment, the invention provides a composite material of the invention in which "x" is 0.62. Illustrative, non-limiting examples of composite materials of the invention include: a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises between 62% and 61% by weight of CaO and between 38% and 39% by weight of SiO 2 ; a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 44% by weight of CaO and 54.98% by weight of SiO 2 ; - a composite material of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose Chemical composition comprises 40.48% by weight of CaO and 58.38% by weight of SiO 2 ; and a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 34.33% by weight of CaO and 64.70% by weight of SiO 2 .
3. Procedimiento para la obtención de material compuesto de aerogel de sílice y polvo de larnita (material compuesto de la invención) En otro aspecto, la invención se relaciona con un procedimiento para la obtención del material compuesto de la invención, en adelante "procedimiento de la invención", que comprende poner en contacto polvo de larnita, cuya superficie está modificada químicamente con un aminosilano seleccionado entre (3-ammopropil)- trietoxisilano (APTES), (3-aminopropil)-dimetil-etoxisilano (APMES), (3- aminopropil)-trimetoxisilano (APTMS), (3-aminopropil)-dietoximetilsilano (APDEMS) y sus mezclas, con un sol obtenido mediante hidrólisis y policondensación de tetraetoxisilano (TEOS).3. Procedure for obtaining composite material of silica airgel and larnite powder (composite material of the invention) In another aspect, the invention relates to a process for obtaining the composite material of the invention, hereinafter "process of the invention ", which comprises contacting larnite powder, the surface of which is chemically modified with an aminosilane selected from (3-ammopropyl) - triethoxysilane (APTES), (3-aminopropyl) -dimethyl-ethoxy silane (APMES), (3- aminopropyl) -trimethoxysilane (APTMS), (3-aminopropyl) -diethoxymethylsilane (APDEMS) and mixtures thereof, with a sol obtained by hydrolysis and polycondensation of tetraethoxysilane (TEOS).
3.1 Polvo de larnita En una realización particular, el polvo de larnita utilizado en la puesta en práctica del procedimiento de la invención es un polvo de larnita sintética, es decir, un polvo obtenido a partir de la síntesis de larnita, ya que este mineral es escaso en la naturaleza.3.1 Larnite powder In a particular embodiment, the larnite powder used in the implementation of the process of the invention is a synthetic larnite powder, that is, a powder obtained from the synthesis of larnite, since this mineral is Scarce in nature.
El polvo de larnita sintética puede obtenerse mediante diferentes métodos (Hong et al. J. Am. Ceram. Soc. 1999, 82:1681; Chrysafi et al. J Eur Ceram Soc 2007, 27:1707). No obstante, en una realización particular, el polvo de larnita sintético se obtiene mediante un procedimiento que comprende: a) mezclar una fuente de silicio con una fuente de calcio, en presencia de un disolvente; b) eliminar el disolvente utilizado en la etapa a); c) secar el producto obtenido en la etapa b); d) triturar el producto obtenido en la etapa c); y e) someter al producto obtenido en la etapa d) a un tratamiento térmico para obtener polvo de larnita sintética.Synthetic larnite powder can be obtained by different methods (Hong et al. J. Am. Ceram. Soc. 1999, 82: 1681; Chrysafi et al. J Eur Ceram Soc 2007, 27: 1707). However, in a particular embodiment, the synthetic larnite powder is obtained by a process comprising: a) mixing a source of silicon with a source of calcium, in the presence of a solvent; b) remove the solvent used in step a); c) drying the product obtained in step b); d) crush the product obtained in step c); Y e) subject the product obtained in step d) to a heat treatment to obtain synthetic larnite powder.
En la etapa a) una fuente de silicio se mezcla con una fuente de calcio, en presencia de un disolvente. Prácticamente cualquier fuente de silicio apropiada puede ser utilizada para obtener polvo de larnita sintética según el procedimiento anterior. En una realización particular, dicha fuente de silicio es dióxido de silicio (sílice), típicamente en forma de una solución coloidal, tal como una solución coloidal acuosa de sílice. La concentración de sílice presente en dicha solución coloidal puede variar dentro de un amplio intervalo, típicamente entre el 25% y el 40% en peso. En una realización concreta, se utiliza una solución coloidal acuosa de sílice al 30% (EjemploIn step a) a source of silicon is mixed with a source of calcium, in the presence of a solvent. Virtually any source of suitable silicon can be used to obtain synthetic larnite powder according to the above procedure. In a particular embodiment, said source of silicon is silicon dioxide (silica), typically in the form of a colloidal solution, such as an aqueous colloidal silica solution. The concentration of silica present in said colloidal solution may vary within a wide range, typically between 25% and 40% by weight. In a specific embodiment, a 30% aqueous silica colloidal solution is used (Example
1). Alternativamente, la fuente de silicio es un producto resultante de la hidrólisis de un alcoxisilano.one). Alternatively, the source of silicon is a product resulting from the hydrolysis of an alkoxysilane.
Asimismo, cualquier fuente de calcio apropiada puede ser utilizada para obtener polvo de larnita sintética según el procedimiento anterior. Ejemplos ilustrativos, no limitativos de fuentes de calcio incluyen las sales calcicas, e.g., nitrato calcico, cloruro calcico, etc. En una realización particular, como fuente de calcio se utiliza una solución acuosa de nitrato calcico tetrahidrato.Likewise, any suitable calcium source can be used to obtain synthetic larnite powder according to the above procedure. Illustrative, non-limiting examples of calcium sources include calcium salts, e.g., calcium nitrate, calcium chloride, etc. In a particular embodiment, an aqueous solution of calcium nitrate tetrahydrate is used as the source of calcium.
Las fuentes de silicio y de calcio se mezclan, en las cantidades estequiométricas apropiadas, en función del polvo de larnita sintética a obtener, eligiéndose, en general, relaciones molares entre dichas fuentes de sílice y de calcio que permitan obtener polvos de larnita sintética con una composición química próxima a la de la fase natural.The sources of silicon and calcium are mixed, in appropriate stoichiometric amounts, depending on the synthetic larnite powder to be obtained, generally choosing molar relationships between said silica and calcium sources that allow obtaining synthetic larnite powders with a chemical composition close to that of the natural phase.
En este sentido, aunque la relación molar Si/Ca en el polvo de larnita sintética puede variar dentro de un amplio intervalo, en una realización particular, el polvo de larnita sintética tiene una relación molar Si/Ca comprendida entre 0,5 y 1. Así, en una realización particular, se obtiene un polvo de larnita sintética con una relación molarIn this sense, although the Si / Ca molar ratio in the synthetic larnite powder can vary over a wide range, in a particular embodiment, the synthetic larnite powder has a Si / Ca molar ratio between 0.5 and 1. Thus, in a particular embodiment, a synthetic larnite powder with a molar ratio is obtained.
Si/Ca de 0,5; en otra realización particular, se obtiene un polvo de larnita sintética con una relación molar Si/Ca de 1.Si / Ca of 0.5; In another particular embodiment, a synthetic larnite powder with a Si / Ca molar ratio of 1 is obtained.
La mezcla de dichas fuentes de silicio y de calcio se lleva a cabo en presencia de un disolvente apropiado, opcionalmente, con la ayuda de ultrasonidos. Ejemplos ilustrativos, no limitativos, de dichos disolventes incluyen etilenglicol (EG)5 polivinil alcohol (PVA), un polietilenglicol (PEG), etc., y sus mezclas con agua, preferentemente, EG en solución acuosa. En una realización particular, la mezcla de las fuentes de sílice y de calcio se lleva a cabo en presencia de una solución acuosa de etilenglicol. En general, el empleo de dichos disolventes tiene como finalidad garantizar la presencia de grupos hidroxilo con el fin de inhibir el contacto entre cationes y evitar la aglomeración y precipitación. Opcionalmente, si se desea, pueden utilizarse ultrasonidos con el fin de reducir, en cierta medida, el empleo de dicho disolvente. El empleo de EG permite obtener polvos de larnita con menor componente amorfo lo que es indicativo de que la reacción entre la fuente de silicio y la fuente de calcio es más completa.The mixing of said sources of silicon and calcium is carried out in the presence of an appropriate solvent, optionally, with the help of ultrasound. Illustrative, non - limiting examples of such solvents include ethylene glycol (EG) 5 polyvinyl alcohol (PVA), polyethylene glycol (PEG), etc., and mixtures thereof with water, preferably in aqueous solution EG. In a particular embodiment, the mixture of Sources of silica and calcium are carried out in the presence of an aqueous solution of ethylene glycol. In general, the use of such solvents is intended to ensure the presence of hydroxyl groups in order to inhibit contact between cations and prevent agglomeration and precipitation. Optionally, if desired, ultrasound can be used in order to reduce, to some extent, the use of said solvent. The use of EG allows to obtain larnite powders with less amorphous component which is indicative that the reaction between the source of silicon and the source of calcium is more complete.
Una vez efectuada la mezcla entre la fuente de sílice y la fuente de calcio se procede a eliminar el disolvente utilizado [etapa b)]. La eliminación de dicho disolvente, que se puede llevar a cabo por métodos convencionales, por ejemplo, mediante evaporación bajo condiciones adecuadas, da lugar a un producto que, típicamente, es un gel. En una realización particular, cuando el disolvente comprende una solución acuosa de EG, la eliminación del disolvente se realiza calentando a una temperatura de 1000C aproximadamente, con agitación, con el fin de evaporar todo el disolvente.Once the mixture between the silica source and the calcium source has been carried out, the solvent used is removed [step b)]. The removal of said solvent, which can be carried out by conventional methods, for example, by evaporation under suitable conditions, results in a product that is typically a gel. In a particular embodiment, when the solvent comprises an aqueous solution of EG, solvent removal is conducted by heating at a temperature of 100 0 C, with stirring, to evaporate all the solvent.
A continuación, en la etapa c), se procede a secar el producto (gel) obtenido tras la eliminación del disolvente en la etapa b). En general, el secado se realiza en un equipo convencional bajo condiciones que no alteran al producto. En una realización particular, dicho gel se seca en estufa a una temperatura de aproximadamente 1000C durante 48 h aproximadamente.Then, in step c), the product (gel) obtained after removal of the solvent in step b) is dried. In general, drying is carried out in conventional equipment under conditions that do not alter the product. In a particular embodiment, said gel is dried in an oven at a temperature of about 100 0 C for about 48 h.
Seguidamente, el producto obtenido tras secar el gel se tritura [etapa d)] hasta obtener un polvo amorfo con una granulometría del orden de decenas de mieras, por ejemplo, entre 10 y 100 mieras, y, finalmente, dicho material (polvo amorfo) se somete a un tratamiento térmico para eliminar residuos orgánicos eventualmente presentes y obtener la fase cristalina de larnita. En una realización particular, dicho tratamiento térmico comprende calentar dicho material (polvo amorfo), con una velocidad de calentamiento de 5°C/min, hasta una temperatura de 6000C aproximadamente y mantenerlo a dicha temperatura durante 1 hora aproximadamente, con lo que se obtiene un polvo cuya caracterización tanto a nivel de composición como a nivel mineralógico pone de manifiesto que se trata de polvos de larnita sintética (Ejemplo 1). 3.2 Modificación química de la superficie del polvo de larnitaThen, the product obtained after drying the gel is crushed [step d)] to obtain an amorphous powder with a particle size of the order of tens of microns, for example, between 10 and 100 microns, and, finally, said material (amorphous powder) It undergoes a heat treatment to remove organic residues that are present and obtain the crystalline phase of larnite. In a particular embodiment, said heat treatment comprises heating said material (amorphous powder) with a heating rate of 5 ° C / min to a temperature of 600 0 approximately C and hold at that temperature for about 1 hour, thereby a powder is obtained whose characterization both at the level of composition and at the mineralogical level shows that it is synthetic larnite powders (Example 1). 3.2 Chemical modification of the surface of the larnite powder
Para su empleo en el procedimiento de la invención, el polvo de larnita se somete a un tratamiento destinado a modificar químicamente su superficie con un agente modificador de superficie, tal como un aminosilano habitualmente utilizado en este sector de la técnica, por ejemplo, APTES, APMES, APTMS, APDEMS5 etc., o sus mezclas con el fin de estabilizar su dispersión a escala coloidal. En una realización particular, dicho aminosilano se selecciona entre APTES, APMES y sus mezclas; preferentemente, dicho aminosilano es APTES.For use in the process of the invention, the larnite powder is subjected to a treatment intended to chemically modify its surface with a surface modifying agent, such as an aminosilane commonly used in this sector of the art, for example, APTES, APMES, APTMS, APDEMS 5 etc., or their mixtures in order to stabilize their dispersion on a colloidal scale. In a particular embodiment, said aminosilane is selected from APTES, APMES and mixtures thereof; preferably, said aminosilane is APTES.
Para modificar químicamente la superficie del polvo de larnita, este se pone en contacto con dicho aminosilano en presencia de un disolvente, tal como un alcohol, por ejemplo, metanol o etanol. La mezcla del aminosilano con el polvo de larnita se lleva a cabo bajo condiciones que facilitan su contacto íntimo, por ejemplo, mediante el empleo de ultrasonidos o mediante el empleo de un dispositivo de agitación mecánica, un dispersor de alta velocidad (10.000 rpm), etc. En una realización particular, la mezcla del aminosilano con el polvo de larnita se lleva a cabo mediante el empleo de ultrasonidos, por ejemplo, suministrando una potencia de 0,6 W-cm"3 aproximadamente, durante un tiempo de insonación de 10 minutos aproximadamente (Ejemplo 2).To chemically modify the surface of the larnite powder, it is contacted with said aminosilane in the presence of a solvent, such as an alcohol, for example, methanol or ethanol. The mixing of the aminosilane with the larnite powder is carried out under conditions that facilitate their intimate contact, for example, by the use of ultrasound or by the use of a mechanical stirring device, a high speed disperser (10,000 rpm), etc. In a particular embodiment, the mixing of the aminosilane with the larnite powder is carried out by means of the use of ultrasound, for example, providing a power of approximately 0.6 W-cm "3 , during a soundproofing time of approximately 10 minutes (Example 2).
La suspensión de partículas sólidas (slurry) obtenida tras la mezcla del aminosilano con el polvo de larnita se centrifuga y se seca en condiciones apropiadas, por ejemplo, a 1000C durante 48 horas en un equipo convencional (e.g., estufa), condiciones que permiten obtener polvo de larnita cuya superficie ha sido químicamente modificada con un agente modificador de superficie, tal como un aminosilano (e.g, APTES, APMES, APTMS, APDEMS, etc., o sus mezclas), es decir, a una reacción entre los grupos hidroxilo presentes en la superficie del polvo de larnita y los grupos alcoxi, e.g., etoxi (APTES, APMES, APDEMS) o metoxi (APTMS) para dar lugar a modificaciones superficiales que impiden estéricamente el acercamiento a otras partículas de polvo, estabilizando el tamaño coloidal de éstas. Dicho producto obtenible mediante la modificación química de la superficie del polvo de larnita con un aminosilano seleccionado entre APTES, APMES, APTMS, APDEMS y sus mezclas, constituye un aspecto adicional de la presente invención. En una realización particular, dicho aminosilano se selecciona entre APTES, APMES y sus mezclas; preferentemente, dicho aminosilano es APTES. 3.3 Procedimiento de la invenciónThe suspension of solid particles (slurry) obtained after mixing the aminosilane with powder larnite centrifuged and dried under suitable conditions, for example, 100 0 C for 48 hours in conventional equipment (eg, wood), conditions they allow to obtain larnite powder whose surface has been chemically modified with a surface modifying agent, such as an aminosilane (eg, APTES, APMES, APTMS, APDEMS, etc., or mixtures thereof), that is, to a reaction between the groups hydroxyl present on the surface of the larnite powder and the alkoxy, eg, ethoxy (APTES, APMES, APDEMS) or methoxy (APTMS) groups to give rise to surface modifications that sterically prevent the approach to other dust particles, stabilizing the colloidal size of this. Said product obtainable by chemical modification of the surface of the larnite powder with an aminosilane selected from APTES, APMES, APTMS, APDEMS and mixtures thereof, constitutes a further aspect of the present invention. In a particular embodiment, said aminosilane is selected from APTES, APMES and mixtures thereof; preferably, said aminosilane is APTES. 3.3 Procedure of the invention
El polvo de larnita cuya superficie ha sido modificada químicamente con dicho agente modificador de superficie, tal como un aminosilano habitualmente utilizado en este sector de la técnica, por ejemplo, APTES, APMES, APTMS, APDEMS, etc., o sus mezclas, se pone en contacto con un sol obtenido por hidrólisis y policondensación controladas de TEOS. La hidrólisis consiste en la ruptura de la molécula de TEOS por la acción del agua, seguida de polimerización de unidades resultantes para dar lugar a una red tridimensional de sílice, base de la estructura de la partícula coloidal. En una realización particular, la hidrólisis y policondensación de TEOS se realiza en presencia de un ácido, tal como un ácido inorgánico, e.g., ácido nítrico (ya que actúa como catalizador de la reacción), etc., y un disolvente, tal como un alcohol, e.g., etanol (ya que favorece la mezcla entre el alcóxido y el agua, inicialmente inmiscibles), etc., bajo condiciones que permiten la formación de dicho sol, por ejemplo, mediante el empleo de ultrasonidos, o, alternativamente, en ausencia de ultrasonidos, mediante agitación mecánica, aunque en este caso el tiempo de reacción suele ser más largo. En una realización particular, la hidrólisis y policondensación de TEOS se realiza con la ayuda de ultrasonidos, por ejemplo, suministrando una potencia de aproximadamente 0,6 W-cm" , durante un tiempo de insonación de 20 minutos aproximadamente (Ejemplo 2).Larnite powder whose surface has been chemically modified with said surface modifying agent, such as an aminosilane commonly used in this sector of the art, for example, APTES, APMES, APTMS, APDEMS, etc., or mixtures thereof, is put in contact with a sun obtained by controlled hydrolysis and polycondensation of TEOS. Hydrolysis consists in the rupture of the TEOS molecule by the action of water, followed by polymerization of resulting units to give rise to a three-dimensional network of silica, the basis of the colloidal particle structure. In a particular embodiment, the hydrolysis and polycondensation of TEOS is carried out in the presence of an acid, such as an inorganic acid, eg, nitric acid (since it acts as a reaction catalyst), etc., and a solvent, such as a alcohol, eg, ethanol (since it favors the mixture between alkoxide and water, initially immiscible), etc., under conditions that allow the formation of said sun, for example, by the use of ultrasound, or, alternatively, in the absence of ultrasound, by mechanical agitation, although in this case the reaction time is usually longer. In a particular embodiment, the hydrolysis and polycondensation of TEOS is carried out with the help of ultrasound, for example, providing a power of approximately 0.6 W-cm " , during a soundproofing time of approximately 20 minutes (Example 2).
En una realización particular, la hidrólisis y policondensación de TEOS se realiza en presencia de una solución acuosa de ácido nítrico y etanol; en una realización concreta, se obtiene un sol que mantiene una relación estequiométrica TEOSrH2OrHNO3IEtOH = 1:4:0,03:1,6. En otra realización particular, la hidrólisis y policondensación de TEOS se realiza en medio básico, en presencia de un disolvente, tal como un alcohol, e.g., metanol.In a particular embodiment, the hydrolysis and polycondensation of TEOS is carried out in the presence of an aqueous solution of nitric acid and ethanol; In a specific embodiment, a sun is obtained that maintains a stoichiometric ratio TEOSrH 2 OrHNO 3 IEtOH = 1: 4: 0.03: 1.6. In another particular embodiment, the hydrolysis and polycondensation of TEOS is carried out in basic medium, in the presence of a solvent, such as an alcohol, eg, methanol.
Alternativamente, la hidrólisis y policondensación de TEOS se puede realizar utilizando ultrasonidos, sin necesidad de tener que utilizar ningún disolvente. En una realización particular y preferida, la mezcla del polvo de larnita cuya superficie está modificada químicamente con un agente modificador de superficie, tal como un aminosilano habitualmente utilizado en este sector de la técnica, por ejemplo, APTES5 APMES, APTMS, APDEMS, etc., o sus mezclas, con el sol resultante de la hidrólisis y policondensación controladas de TEOS se realiza bajo la acción de ultrasonidos, ventajosamente, ultrasonidos de alta potencia (radiación ultrasonora en el rango de frecuencias de 20 KHz) con el fin de que el tiempo de gelificación sea lo suficientemente corto como para evitar la decantación de la fase sólida dispersa.Alternatively, the hydrolysis and polycondensation of TEOS can be performed using ultrasound, without the need to use any solvent. In a particular and preferred embodiment, the mixture of the larnite powder whose surface is chemically modified with a surface modifying agent, such as an aminosilane commonly used in this sector of the art, for example, APTES 5 APMES, APTMS, APDEMS, etc., or mixtures thereof, with the sun resulting from the controlled hydrolysis and polycondensation of TEOS is carried out under the action of ultrasound, advantageously, high power ultrasound (ultrasonic radiation in the frequency range of 20 KHz) so that the gelation time is short enough to prevent the decantation of the dispersed solid phase.
Tras la mezcla del polvo de larnita cuya superficie ha sido modificada químicamente con dicho agente modificador de superficie, tal como un aminosilano habitualmente utilizado en este sector de la técnica, por ejemplo, APTES, APMES, APTMS, APDEMS, etc., o sus mezclas, con el sol obtenido por hidrólisis y policondensación controladas de TEOS, se obtiene un gel húmedo que se trata adecuadamente para eliminar el disolvente utilizado en la producción del sol con el fin de obtener el aerogel. La eliminación de dicho disolvente puede llevarse a cabo por métodos convencionales en función del disolvente a eliminar. En una realización particular, la eliminación del disolvente se realiza en un autoclave bajo condiciones supercríticas para la extracción del disolvente. En una realización concreta, el disolvente es etanol y las condiciones supercríticas comprenden calentamiento a 2550C y 90 bares (9OxIO5 Pa).After mixing the larnite powder whose surface has been chemically modified with said surface modifying agent, such as an aminosilane commonly used in this sector of the art, for example, APTES, APMES, APTMS, APDEMS, etc., or mixtures thereof With the sun obtained by controlled hydrolysis and polycondensation of TEOS, a wet gel is obtained which is suitably treated to remove the solvent used in the production of the sun in order to obtain the airgel. The removal of said solvent can be carried out by conventional methods depending on the solvent to be removed. In a particular embodiment, solvent removal is carried out in an autoclave under supercritical conditions for solvent extraction. In a specific embodiment, the solvent is ethanol and the supercritical conditions comprise heating at 255 0 C and 90 bar (9OxIO 5 Pa).
El material resultante de la eliminación del disolvente (e.g., el material extraído del autoclave), es sometido a un tratamiento térmico apropiado para obtener el material compuesto de la invención. En una realización particular, dicho tratamiento térmico comprende calentar dicho material resultante de la eliminación del disolvente a una temperatura de 6000C, con una velocidad de calentamiento de 5°C/min, y mantenerlo a dicha temperatura (6000C) durante aproximadamente 1 hora, con lo que se obtiene el material compuesto de la invención, es decir, un material compuesto de aerogel de sílice y de polvo de larnita.The material resulting from the removal of the solvent (eg, the material extracted from the autoclave), is subjected to an appropriate heat treatment to obtain the composite material of the invention. In a particular embodiment, said heat treating comprises heating said material resulting from removal of the solvent at a temperature of 600 0 C, with a heating rate of 5 ° C / min and maintaining it at that temperature (600 0 C) for about 1 hour, whereby the composite material of the invention is obtained, that is, a composite of silica airgel and larnite powder.
Dependiendo de la cantidad de polvo de larnita con la superficie modificada químicamente con dicho agente modificador de superficie, tal como un aminosilano habitualmente utilizado en este sector de la técnica, por ejemplo, APTES, APMES, APTMS, APDEMS, etc., o sus mezclas, añadido al sol resultante de la hidrólisis y policondensación controladas de TEOS se obtienen materiales compuestos de la invención de distinta composición. En una realización particular, se han añadido distintas cantidades (2,5 g; 5 g y 10 g), respectivamente, de polvo de larnita sintética con una relación molar Si/Ca de 1, cuya superficie había sido modificada con APTES, a dicho sol obtenido por hidrólisis y policondensación controladas de TEOS (Ejemplo 2.1). En otra realización particular, se han añadido 15 g de polvo de larnita sintética con una relación molar Si/Ca de 0,5, cuya superficie había sido modificada con APTES, a dicho sol obtenido por hidrólisis y policondensación controladas de TEOS (Ejemplo 2.2).Depending on the amount of larnite powder with the chemically modified surface with said surface modifying agent, such as an aminosilane commonly used in this sector of the art, for example, APTES, APMES, APTMS, APDEMS, etc., or mixtures thereof , added to the sun resulting from controlled hydrolysis and polycondensation of TEOS, composite materials of the invention of different composition are obtained. In a particular embodiment, different amounts (2.5 g; 5 g and 10 g), respectively, of synthetic larnite powder have been added with a Si / Ca molar ratio of 1, whose surface had been modified with APTES, to said sun obtained by controlled hydrolysis and polycondensation of TEOS (Example 2.1). In another particular embodiment, 15 g of synthetic larnite powder with a Si / Ca molar ratio of 0.5, whose surface had been modified with APTES, has been added to said sol obtained by controlled hydrolysis and polycondensation of TEOS (Example 2.2) .
Los polvos de larnita sintéticos y los materiales compuestos de la invención así obtenidos se pueden caracterizar a nivel textural, de composición y mineralógico, mediante el empleo de técnicas convencionales, tales como, por ejemplo, Fluorescencia de Rayos X (FRX), Difracción de Rayos X (DRX), método Brunauer-Emmet-Teller (BET) y análisis por energía dispersiva de rayos X (EDX) acoplado a un Microscopio Electrónico de Barrido (MEB).Synthetic larnite powders and composite materials of the invention thus obtained can be characterized at the textural, compositional and mineralogical level, by using conventional techniques, such as, for example, X-ray Fluorescence (FRX), Ray Diffraction X (DRX), Brunauer-Emmet-Teller (BET) method and X-ray dispersive energy analysis (EDX) coupled to a Scanning Electron Microscope (MEB).
Ejemplos ilustrativos, no limitativos de materiales compuestos de la invención incluyen: - un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende 62-61% en peso de CaO y 38-39% en peso de SiO2; un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende 44% en peso de CaO y 54,98% en peso de SiO2; un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende 40,48% en peso de CaO y 58,38% en peso de SiO2; y un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende 34,33% en peso de CaO y 64,70% en peso de SiO2. 4. Aplicaciones del material compuesto de la invenciónIllustrative, non-limiting examples of composite materials of the invention include: - a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 62-61% by weight of CaO and 38- 39% by weight of SiO 2 ; a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 44% by weight of CaO and 54.98% by weight of SiO 2 ; a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 40.48% by weight of CaO and 58.38% by weight of SiO 2 ; and a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 34.33% by weight of CaO and 64.70% by weight of SiO 2 . 4. Applications of the composite material of the invention
El material compuesto de la invención puede ser obtenido para fijar, almacenar o eliminar gases, por ejemplo, CO2, mediante una reacción de carbonatación. Otros tipos de gases emitidos a la atmósfera tales como SO2, NOx, CO y H2S también podrían ser fijados, almacenados o eliminados por dicho material compuesto de la invención.The composite material of the invention can be obtained to fix, store or remove gases, for example, CO 2 , by a carbonation reaction. Other types of gases emitted into the atmosphere such as SO 2 , NOx, CO and H 2 S could also be fixed, stored or disposed of by said composite material of the invention.
Por tanto, en otro aspecto, la invención se relaciona con un procedimiento para el almacenamiento de un gas, en adelante procedimiento de almacenamiento de gas (A) de la invención, que comprende el empleo del material compuesto de la invención. De forma más concreta, el procedimiento de almacenamiento de gas (A) de la invención, comprende poner en contacto una corriente gaseosa que comprende dicho gas con el material compuesto de la invención bajo condiciones que permiten la fijación de dicho gas por el material compuesto de la invención.Therefore, in another aspect, the invention relates to a process for the storage of a gas, hereinafter gas storage method (A) of the invention, which comprises the use of the composite material of the invention. More specifically, the gas storage process (A) of the invention comprises contacting a gas stream comprising said gas with the composite material of the invention under conditions that allow said gas to be fixed by the composite material of the invention.
En una realización particular, el procedimiento de almacenamiento de gas (A) de la invención, comprende, poner en contacto una corriente de dicho gas con una suspensión (dispersión) acuosa del material compuesto de la invención bajo condiciones de temperatura y presión apropiadas.In a particular embodiment, the gas storage process (A) of the invention comprises contacting a stream of said gas with an aqueous suspension (dispersion) of the composite material of the invention under appropriate temperature and pressure conditions.
Ejemplos ilustrativos, no limitativos, de gases que pueden ser almacenados según el procedimiento de almacenamiento de gas (A) de la invención incluyen gases emitidos a la atmósfera tales como CO2, SO2, NOx, CO, H2S, etc., así como sus mezclas. De este modo, mediante el procedimiento de almacenamiento de gas (A) de la invención pueden almacenarse y, en consecuencia, eliminarse, gases potencialmente nocivos para el medio ambiente.Illustrative, non-limiting examples of gases that can be stored according to the gas storage method (A) of the invention include gases emitted into the atmosphere such as CO 2 , SO 2 , NOx, CO, H 2 S, etc., as well as their mixtures. Thus, by means of the gas storage method (A) of the invention, gases potentially harmful to the environment can be stored and, consequently, eliminated.
Las características del material compuesto de la invención ya han sido previamente definidas. Las condiciones de temperatura y presión se elegirán entre aquellas que resulten apropiadas para facilitar la fijación del gas por el material compuesto de la invención; aunque dichas condiciones de temperatura y presión pueden variar dentro de un amplio intervalo, en una realización particular, dichas condiciones de temperatura y presión apropiadas consisten en temperatura ambiente y presión atmosférica. Ventajosamente, el procedimiento de almacenamiento de gas (A) de la invención se lleva a cabo manteniendo la agitación. La reacción de fijación del gas por el material compuesto de la invención según el procedimiento de almacenamiento de gas (A) de la invención puede llevarse a cabo en un reactor apropiado, por ejemplo, en un reactor que- comprende una válvula para la entrada de gas y otra para la salida del gas, controlando el tiempo y el pH de la reacción. Si se desea, los productos resultantes de someter los materiales compuestos de la invención a dicha reacción de fijación de gas pueden ser analizados inmediatamente después de finalizado el procedimiento, sin necesidad de tener que ser mantenidos en reposo en el reactor durante un periodo tiempo. El análisis de dichos productos mediante técnicas apropiadas, por ejemplo, DRX5 permite comprobar la eficacia de la reacción de fijación del gas, es decir, de la transformación de larnita (Ca2SiO4) en el producto correspondiente en función del gas fijado. El producto resultante de someter un material compuesto de la invención a una reacción de fijación de un gas, tal como se ha descrito previamente, constituye un aspecto adicional de la presente invención.The characteristics of the composite material of the invention have already been previously defined. The temperature and pressure conditions will be chosen from those that are appropriate to facilitate the fixation of the gas by the composite material of the invention; although said temperature and pressure conditions may vary over a wide range, in a particular embodiment, said appropriate temperature and pressure conditions consist of ambient temperature and atmospheric pressure. Advantageously, the gas storage process (A) of the invention is carried out while maintaining the stirring. The gas fixing reaction by the composite material of the invention according to the gas storage method (A) of the invention can be carried out in an appropriate reactor, for example, in a reactor comprising a valve for the inlet of gas and another for the gas outlet, controlling the time and pH of the reaction. If desired, the products resulting from subjecting the composite materials of the invention to said gas fixation reaction can be analyzed immediately after the end of the process, without having to be kept at rest in the reactor for a period of time. The analysis of said products by appropriate techniques, for example, DRX 5 allows to verify the effectiveness of the gas fixation reaction, that is, of the transformation of larnite (Ca 2 SiO 4 ) into the corresponding product as a function of the fixed gas. The product resulting from subjecting a composite material of the invention to a gas fixation reaction, as previously described, constitutes a further aspect of the present invention.
Aunque el procedimiento de almacenamiento de gas (A) de la invención permite almacenar y, en consecuencia, eliminar, gases emitidos a la atmósfera potencialmente nocivos para el medio ambiente, tales como CO2, SO2, NOx, CO, H2S5 etc., en una realización particular, el gas a almacenar según el procedimiento de almacenamiento de gas (A) de la invención, debido a su especial relevancia, es el CO2.Although the gas storage process (A) of the invention allows to store and, consequently, eliminate, gases emitted into the atmosphere potentially harmful to the environment, such as CO 2 , SO 2 , NOx, CO, H 2 S 5 etc., in a particular embodiment, the gas to be stored according to the gas storage method (A) of the invention, due to its special relevance, is CO 2 .
Por tanto, en una realización concreta, la invención proporciona un procedimiento para el almacenamiento de CO2 (A) que comprende el empleo del material compuesto de la invención. De forma más concreta, dicho procedimiento comprende poner en contacto una corriente de un gas que comprende CO2 con el material compuesto de la invención. Para ello, brevemente, se pone en contacto una corriente de un gas que comprende CO2 con una suspensión (dispersión) acuosa del material compuesto de la invención bajo condiciones de temperatura y presión apropiadas. En una realización concreta, dicho gas que comprende CO2 es un gas compuesto mayoritariamente, es decir, prácticamente en su totalidad, por CO2; en otra una realización concreta, dicho gas que comprende CO2 es un gas que contiene CO2 junto con otros gases en diferentes proporciones relativas. Las características del material compuesto de la invención ya han sido previamente definidas. Las condiciones de temperatura y presión se elegirán entre aquellas que resulten apropiadas para facilitar la fijación del CO2 por el material compuesto de la invención; aunque dichas condiciones de temperatura y presión pueden variar dentro de un amplio intervalo, en una realización particular, dichas condiciones de temperatura y presión apropiadas consisten en temperatura ambiente y presión atmosférica. Ventajosamente, el procedimiento de almacenamiento de CO2 (A) proporcionado por esta invención se lleva a cabo manteniendo la agitación.Therefore, in a specific embodiment, the invention provides a process for the storage of CO 2 (A) comprising the use of the composite material of the invention. More specifically, said method comprises contacting a stream of a gas comprising CO 2 with the composite material of the invention. To do this, briefly, a stream of a gas comprising CO 2 is contacted with an aqueous suspension (dispersion) of the composite material of the invention under appropriate temperature and pressure conditions. In a specific embodiment, said gas comprising CO 2 is a gas composed mostly, that is, almost entirely, of CO 2 ; In another specific embodiment, said gas comprising CO 2 is a gas containing CO 2 together with other gases in different relative proportions. The characteristics of the composite material of the invention have already been previously defined. The temperature and pressure conditions will be chosen from those that are appropriate to facilitate the fixation of CO 2 by the material compound of the invention; although said temperature and pressure conditions may vary over a wide range, in a particular embodiment, said appropriate temperature and pressure conditions consist of ambient temperature and atmospheric pressure. Advantageously, the CO 2 (A) storage procedure provided by this invention is carried out while maintaining the stirring.
La reacción de carbonatación del procedimiento de almacenamiento de CO2 (A) proporcionado por esta invención puede llevarse a cabo en un reactor apropiado, por ejemplo, en un reactor que comprende una válvula para la entrada de gas y otra para la salida del gas, controlando el tiempo y el pH de la reacción. Si se desea, los productos carbonatados, es decir, los productos resultantes de someter los materiales compuestos de la invención a dicha reacción de carbonatación, pueden ser analizados inmediatamente después de finalizado el procedimiento, sin necesidad de tener que mantenerlos en reposo en el reactor durante un periodo de tiempo. El análisis de dichos productos carbonatados mediante DRX permite comprobar la eficacia de la reacción de carbonatación, es decir, de la transformación de larnita (Ca2SiO4) en CaCO3 (véase el Ejemplo 3). Utilizando esa técnica se observan velocidades de carbonatación muy elevadas, ya que en tan sólo un periodo de tiempo de 15 minutos aproximadamente no se detecta larnita sino únicamente minerales de carbonato calcico (e.g., vaterita y calcita). La presencia de SiO2 no puede ser determinada mediante DRX debido a su carácter amorfo, por lo que se recurre a otros técnicas, por ejemplo, EDX-MEB; en este sentido, el análisis de dicho producto carbonatado mediante EDX-MEB revela la presencia de Si, elemento que en el análisis EDX (para cualquier tipo de material utilizado) se expresa en forma de óxido, SiO2. La proporción de sílice frente a CaCO3 es variable en función de la relación Si/Ca presente en la materia prima (polvo de larnita). Dicho producto carbonatado, resultante de someter un material compuesto de la invención a una reacción de carbonatación, constituye un aspecto adicional de la presente invención.The carbonation reaction of the CO 2 storage process (A) provided by this invention can be carried out in an appropriate reactor, for example, in a reactor comprising a valve for the gas inlet and another for the gas outlet, controlling the time and the pH of the reaction. If desired, the carbonated products, that is, the products resulting from subjecting the composite materials of the invention to said carbonation reaction, can be analyzed immediately after the end of the process, without having to keep them at rest in the reactor for A period of time. The analysis of said carbonated products by DRX allows to verify the effectiveness of the carbonation reaction, that is, of the transformation of larnite (Ca 2 SiO 4 ) into CaCO 3 (see Example 3). Using this technique, very high carbonation rates are observed, since in only a period of time of approximately 15 minutes no larnite is detected but only calcium carbonate minerals (eg, vaterite and calcite). The presence of SiO 2 cannot be determined by DRX due to its amorphous character, so other techniques are used, for example, EDX-MEB; In this sense, the analysis of said carbonated product by EDX-MEB reveals the presence of Si, an element that in the EDX analysis (for any type of material used) is expressed as an oxide, SiO 2 . The ratio of silica to CaCO 3 is variable depending on the Si / Ca ratio present in the raw material (larnite powder). Said carbonated product, resulting from subjecting a composite material of the invention to a carbonation reaction, constitutes an additional aspect of the present invention.
En otro aspecto, la invención se relaciona con un procedimiento para recuperar larnita (A) a partir de un producto carbonatado obtenible mediante el procedimiento de almacenamiento de CO2 (A) de la invención, que comprende someter dicho producto carbonatado a un tratamiento térmico apropiado con el fin de obtener un material que comprende larnita. El producto carbonatado obtenible mediante el procedimiento de almacenamiento de CO2 (A) de la invención puede ser obtenido sometiendo un material compuesto de la invención a una reacción de carbonatación, tal como se ha descrito previamente. El tratamiento térmico a aplicar se elegirá en función de diversos factores, incluyendo la naturaleza del producto a tratar, aunque estará dirigido a obtener un material que comprende larnita. Aunque dicho tratamiento térmico puede variar, en una realización particular, dicho tratamiento térmico comprende el calentamiento de dicho producto carbonatado obtenible mediante el procedimiento de almacenamiento de CO2 (A) de la invención, a una temperatura de 9000C, con una velocidad de calentamiento de 5°C/min, y mantenerlo a dicha temperatura (9000C) durante 1 hora, con el fin de obtener un material que comprende larnita.In another aspect, the invention relates to a process for recovering larnite (A) from a carbonated product obtainable by the CO 2 (A) storage method of the invention, which comprises subjecting said carbonated product to an appropriate heat treatment. in order to obtain a material comprising larnite. The carbonated product obtainable by the CO 2 (A) storage process of the invention can be obtained by subjecting a composite material of the invention to a carbonation reaction, as previously described. The heat treatment to be applied will be chosen based on various factors, including the nature of the product to be treated, although it will be aimed at obtaining a material comprising larnite. Although such heat treatment can vary, in a particular embodiment, said heat treating comprises heating said obtainable carbonated product by the method of storing CO 2 (A) of the invention, at a temperature of 900 0 C at a rate of heating 5 ° C / min and maintaining it at that temperature (900 0 C) for 1 hour, to obtain a material comprising larnite.
En una realización particular, dicho producto carbonatado resultante de someter un material compuesto de la invención a una reacción de carbonatación, se seca y los componentes del subproducto obtenido (e.g., calcita y sílice) se mezclan y la mezcla resultante se trata térmicamente en una estufa a aproximadamente 9000C, con una velocidad de calentamiento de 5°C/minuto aproximadamente, y se mantiene a dicha temperatura durante aproximadamente 1 hora, obteniéndose un material que, analizado por DRX, resulta estar constituido mayoritariamente por larnita y cantidades menores de otros minerales, e.g., wollastonita (Ejemplo 4).In a particular embodiment, said carbonated product resulting from subjecting a composite material of the invention to a carbonation reaction, is dried and the components of the obtained by-product (eg, calcite and silica) are mixed and the resulting mixture is heat treated in an oven to about 900 0 C, with a heating rate of 5 ° C / minute and held at that temperature for about 1 hour to obtain a material which, analyzed by XRD, mostly results to be constituted by larnite and minor amounts of other minerals, eg, wollastonite (Example 4).
Como puede apreciarse, la invención permite cerrar un ciclo ya que partiendo de larnita como materia prima se obtiene en primer lugar un material compuesto de aerogel y polvo de larnita (cuya superficie ha sido modificada químicamente), que posteriormente se somete a una reacción de fijación de un gas (CO2) (e.g., mediante una reacción de carbonatación) para dar lugar a un producto (e.g., un producto carbonatado) que, tras tratamiento térmico, da lugar a un material que comprende mayoritariamente larnita, es decir, el material inicial.As can be seen, the invention allows a cycle to be closed since starting with larnite as a raw material, a material composed of airgel and larnite powder (whose surface has been chemically modified) is first obtained, which is subsequently subjected to a fixing reaction of a gas (CO 2 ) (eg, by a carbonation reaction) to give rise to a product (eg, a carbonated product) that, after heat treatment, gives rise to a material comprising mostly larnite, that is, the material initial.
5. Aplicaciones del polvo de larnita Ensayos realizados por los inventores han puesto de manifiesto que el polvo de larnita también puede ser utilizado para fijar, almacenar o eliminar gases, por ejemplo, CO2, mediante una reacción de carbonatación (Ejemplo 3). Otros tipos de gases emitidos a la atmósfera tales como SO2, NOx, CO y H2S también podrían ser fijados, almacenados o eliminados por dicho polvo de larnita. Asimismo, otros ensayos realizados por los inventores han puesto de manifiesto que el producto carbonatado resultante de someter el polvo de larnita a una reacción de carbonatación también puede ser utilizado para recuperar larnita (Ejemplo 4).5. Applications of larnite powder Tests carried out by the inventors have shown that larnite powder can also be used to fix, store or remove gases, for example, CO 2 , by a carbonation reaction (Example 3). Other types of gases emitted to the atmosphere such as SO 2 , NOx, CO and H 2 S could also be fixed, stored or disposed of by said larnite powder. Likewise, other tests carried out by the inventors have shown that the carbonated product resulting from subjecting the larnite powder to a carbonation reaction can also be used to recover larnite (Example 4).
Por tanto, en otro aspecto, la invención se relaciona con un procedimiento para el almacenamiento de un gas, en adelante procedimiento de almacenamiento de gas (B) de la invención, que comprende el empleo de polvo de larnita. De forma más concreta, el procedimiento de almacenamiento de gas (B) de la invención, comprende poner en contacto una corriente gaseosa que comprende dicho gas con polvo de larnita bajo condiciones que permiten la fijación de dicho gas por el polvo de larnita.Therefore, in another aspect, the invention relates to a process for the storage of a gas, hereinafter gas storage method (B) of the invention, which comprises the use of larnite powder. More specifically, the gas storage process (B) of the invention comprises contacting a gas stream comprising said gas with larnite powder under conditions that allow said gas to be fixed by the larnite powder.
En una realización particular, el procedimiento de almacenamiento de gas de la invención, comprende, poner en contacto una corriente de dicho gas con una suspensión (dispersión) acuosa de polvo de larnita bajo condiciones de temperatura y presión apropiadas.In a particular embodiment, the gas storage process of the invention comprises contacting a stream of said gas with an aqueous suspension (dispersion) of larnite powder under appropriate temperature and pressure conditions.
Ejemplos ilustrativos, no limitativos, de gases que pueden ser almacenados según el procedimiento de almacenamiento de gas de la invención incluyen gases emitidos a la atmósfera tales como CO2, SO2, NOx, CO, H2S, etc., así como sus mezclas. De este modo, mediante el procedimiento de almacenamiento de gas (B) de la invención pueden almacenarse y, en consecuencia, eliminarse, gases potencialmente nocivos para el medio ambiente.Illustrative, non-limiting examples of gases that can be stored according to the gas storage method of the invention include gases emitted into the atmosphere such as CO 2 , SO 2 , NOx, CO, H 2 S, etc., as well as their mixtures Thus, by means of the gas storage method (B) of the invention, gases potentially harmful to the environment can be stored and, consequently, eliminated.
El polvo de larnita a utilizar puede ser polvo de larnita natural o bien polvo de larnita sintética, el cual puede obtenerse según como se ha indicado previamente. Asimismo, las características del polvo de larnita ya han sido previamente definidas. Las condiciones de temperatura y presión se elegirán entre aquellas que resulten apropiadas para facilitar la fijación del gas por el polvo de larnita; aunque dichas condiciones de temperatura y presión pueden variar dentro de un amplio intervalo, en una realización particular, dichas condiciones de temperatura y presión apropiadas consisten en temperatura ambiente y presión atmosférica. Ventajosamente, el procedimiento de almacenamiento de gas (B) de la invención se lleva a cabo manteniendo la agitación. La reacción de fijación del gas por el polvo de larnita según el procedimiento de almacenamiento de gas (B) de la invención puede llevarse a cabo en un reactor apropiado, por ejemplo, en un reactor que comprende una válvula para la entrada de gas y otra para la salida del gas, controlando el tiempo y el pH de la reacción. Si se desea, los productos resultantes de someter el polvo de larnita a dicha reacción de fijación de gas pueden ser analizados inmediatamente después de finalizado el procedimiento, sin necesidad de tener que ser mantenidos en reposo en el reactor durante un periodo tiempo. El análisis de dichos productos mediante técnicas apropiadas, por ejemplo, DRX, permite comprobar la eficacia de la reacción de fijación del gas, es decir, de la transformación de larnita (Ca2SiO4) en el producto correspondiente en función del gas fijado. El producto resultante de someter polvo de larnita a una reacción de fijación de un gas, tal como se ha descrito previamente, constituye un aspecto adicional de la presente invención.The larnite powder to be used can be natural larnite powder or synthetic larnite powder, which can be obtained as previously indicated. Also, the characteristics of the larnite powder have already been previously defined. The temperature and pressure conditions will be chosen among those that are appropriate to facilitate the fixation of the gas by the larnite powder; although said temperature and pressure conditions may vary over a wide range, in a particular embodiment, said appropriate temperature and pressure conditions consist of ambient temperature and atmospheric pressure. Advantageously, the gas storage process (B) of the invention is carried out while maintaining the stirring. The reaction of fixing the gas by the larnite powder according to the gas storage process (B) of the invention can be carried out in an appropriate reactor, for example, in a reactor comprising a valve for the inlet of gas and another for the exit of the gas, controlling the time and the pH of the reaction. If desired, the products resulting from subjecting the larnite powder to said gas fixation reaction can be analyzed immediately after the end of the process, without having to be kept at rest in the reactor for a period of time. The analysis of said products by appropriate techniques, for example, DRX, allows to verify the effectiveness of the gas fixation reaction, that is, of the transformation of larnite (Ca 2 SiO 4 ) into the corresponding product as a function of the fixed gas. The product resulting from subjecting larnite powder to a gas fixation reaction, as previously described, constitutes a further aspect of the present invention.
Aunque el procedimiento de almacenamiento de gas (B) de la invención permite almacenar y, en consecuencia, eliminar, gases emitidos a la atmósfera potencialmente nocivos para el medio ambiente, tales como CO2, SO2, NOx, CO, H2S, etc., en una realización particular, el gas a almacenar según el procedimiento de almacenamiento de gas (B) de la invención, debido a su especial relevancia, es el CO2.Although the gas storage process (B) of the invention allows storage and, consequently, eliminating, gases emitted into the atmosphere potentially harmful to the environment, such as CO 2 , SO 2 , NOx, CO, H 2 S, etc., in a particular embodiment, the gas to be stored according to the gas storage procedure (B) of the invention, due to its special relevance, is CO 2 .
Por tanto, en una realización concreta, la invención proporciona un procedimiento para el almacenamiento de CO2 (B) que comprende el empleo de polvo de larnita. De forma más concreta, dicho procedimiento comprende poner en contacto una corriente de un gas que comprende CO2 con polvo de larnita. Para ello, brevemente, se pone en contacto una corriente de un gas que comprende CO2 con una suspensión (dispersión) acuosa de polvo de larnita bajo condiciones de temperatura y presión apropiadas. En una realización concreta, dicho gas que comprende CO2 es un gas compuesto mayoritariamente, es decir, prácticamente en su totalidad, por CO2; en otra una realización concreta, dicho gas que comprende CO2 es un gas que contiene CO2 junto con otros gases en diferentes proporciones relativas.Therefore, in a specific embodiment, the invention provides a process for the storage of CO 2 (B) comprising the use of larnite powder. More specifically, said method comprises contacting a stream of a gas comprising CO 2 with larnite powder. To do this, briefly, a stream of a gas comprising CO 2 is contacted with an aqueous suspension (dispersion) of larnite powder under appropriate temperature and pressure conditions. In a specific embodiment, said gas comprising CO 2 is a gas composed mostly, that is, almost entirely, of CO 2 ; In another specific embodiment, said gas comprising CO 2 is a gas containing CO 2 together with other gases in different relative proportions.
Las características del polvo de larnita ya han sido previamente definidas. Las condiciones de temperatura y presión se elegirán entre aquellas que resulten apropiadas para facilitar la fijación del CO2 por el polvo de larnita; aunque dichas condiciones de temperatura y presión pueden variar dentro de un amplio intervalo, en una realización particular, dichas condiciones de temperatura y presión apropiadas consisten en temperatura ambiente y presión atmosférica. Ventajosamente, el procedimiento de almacenamiento de CO2 (B) proporcionado por esta invención se lleva a cabo manteniendo la agitación. La reacción de carbonatación del procedimiento alternativo de almacenamiento de CO2 proporcionado por esta invención (basado en el empleo de polvo de larnita) puede llevarse a cabo en un reactor apropiado, por ejemplo, en un reactor que comprende una válvula para la entrada de gas y otra para la salida del gas, controlando el tiempo y el pH de la reacción. Si se desea, los productos carbonatados, es decir, los productos resultantes de someter el polvo de larnita a dicha reacción de carbonatación, pueden ser analizados inmediatamente después de finalizado el procedimiento, sin necesidad de tener que mantenerlos en reposo en el reactor durante un periodo de tiempo. El análisis de dichos productos carbonatados mediante DRX permite comprobar la eficacia de la reacción de carbonatación, es decir, de la transformación de larnita (Ca2SiO4) en CaCO3 (véase el Ejemplo 3). Utilizando esa técnica se observan velocidades de carbonatación muy elevadas, ya que en tan sólo un periodo de tiempo de 15 minutos aproximadamente no se detecta larnita sino únicamente minerales de carbonato calcico (e.g., vaterita y calcita). La presencia de SiO2 no puede ser determinada mediante DRX debido a su carácter amorfo, por lo que se recurre a otros técnicas, por ejemplo, EDX-MEB; en este sentido, el análisis de dicho producto carbonatado mediante EDX-MEB revela la presencia de Si, elemento que en el análisis EDX (para cualquier tipo de material utilizado) se expresa en forma de óxido, SiO2. La proporción de sílice frente a CaCO3 es variable en función de la relación Si/Ca presente en la materia prima (polvo de larnita). Dicho producto carbonatado, resultante de someter polvo de larnita a una reacción de carbonatación, constituye un aspecto adicional de la presente invención.The characteristics of larnite powder have been previously defined. The conditions of temperature and pressure will be chosen among those that are appropriate to facilitate the fixation of CO 2 by larnite powder; although said temperature and pressure conditions may vary over a wide range, in one embodiment. in particular, said appropriate temperature and pressure conditions consist of ambient temperature and atmospheric pressure. Advantageously, the CO 2 (B) storage process provided by this invention is carried out while maintaining the stirring. The carbonation reaction of the alternative CO 2 storage process provided by this invention (based on the use of larnite powder) can be carried out in an appropriate reactor, for example, in a reactor comprising a gas inlet valve. and another for the exit of the gas, controlling the time and the pH of the reaction. If desired, the carbonated products, that is, the products resulting from subjecting the larnite powder to said carbonation reaction, can be analyzed immediately after the end of the process, without having to keep them at rest in the reactor for a period of time. of time. The analysis of said carbonated products by DRX allows to verify the effectiveness of the carbonation reaction, that is, of the transformation of larnite (Ca 2 SiO 4 ) into CaCO 3 (see Example 3). Using this technique, very high carbonation rates are observed, since in only a period of time of approximately 15 minutes no larnite is detected but only calcium carbonate minerals (eg, vaterite and calcite). The presence of SiO 2 cannot be determined by DRX due to its amorphous character, so other techniques are used, for example, EDX-MEB; In this sense, the analysis of said carbonated product by EDX-MEB reveals the presence of Si, an element that in the EDX analysis (for any type of material used) is expressed as an oxide, SiO 2 . The ratio of silica to CaCO 3 is variable depending on the Si / Ca ratio present in the raw material (larnite powder). Said carbonated product, resulting from subjecting larnite powder to a carbonation reaction, constitutes an additional aspect of the present invention.
En otro aspecto, la invención se relaciona con un procedimiento para recuperar larnita (B) a partir de un producto carbonatado obtenible mediante el procedimiento de almacenamiento de CO2 (B) de la invención, que comprende someter dicho producto carbonatado a un tratamiento térmico apropiado con el fin de obtener un material que comprende larnita. El producto carbonatado obtenible mediante el procedimiento de almacenamiento de CO2 (B) de la invención puede ser obtenido sometiendo polvo de larnita a una reacción de carbonatación, tal como se ha descrito previamente.In another aspect, the invention relates to a process for recovering larnite (B) from a carbonated product obtainable by the CO 2 (B) storage method of the invention, which comprises subjecting said carbonated product to an appropriate heat treatment. in order to obtain a material comprising larnite. The carbonated product obtainable by the CO 2 (B) storage process of the invention can be obtained by subjecting larnite powder to a carbonation reaction, as previously described.
El tratamiento térmico a aplicar se elegirá en función de diversos factores, incluyendo la naturaleza del producto a tratar, aunque estará dirigido a obtener un material que comprende larnita. Aunque dicho tratamiento térmico puede variar, en una realización particular, dicho tratamiento térmico comprende el calentamiento de dicho producto carbonatado obtenible mediante el procedimiento de almacenamiento de CO2 (B) de la invención, a una temperatura de 9000C3 con una velocidad de calentamiento de 5°C/min, y mantenerlo a dicha temperatura (9000C) durante 1 hora, con el fin de obtener un material que comprende larnita.The heat treatment to be applied will be chosen based on various factors, including the nature of the product to be treated, although it will be aimed at obtaining a material comprising larnite. Although such heat treatment can vary, in a particular embodiment, said heat treating comprises heating said obtainable carbonated product by the method of storing CO 2 (B) of the invention, at a temperature of 900 0 C 3 at a speed of heating 5 ° C / min and maintaining it at that temperature (900 0 C) for 1 hour, to obtain a material comprising larnite.
En una realización particular, dicho producto carbonatado resultante de someter polvo de larnita a una reacción de carbonatación, se seca y los componentes del subproducto obtenido (e.g., calcita y sílice) se mezclan y la mezcla resultante se trata térmicamente en una estufa a aproximadamente 9000C, con una velocidad de calentamiento de 5°C/minuto aproximadamente, y se mantiene a dicha temperatura durante aproximadamente 1 hora, obteniéndose un material que, analizado por DRX, resulta estar constituido mayoritariamente por larnita y cantidades menores de otros minerales, e.g., wollastonita (Ejemplo 4). Como puede apreciarse, alternativamente, la invención permite cerrar un ciclo ya que partiendo de polvo de larnita que posteriormente se somete a una reacción de fijación de un gas (CO2) (e.g., mediante una reacción de carbonatación) para dar lugar a un producto (e.g., un producto carbonatado) que, tras tratamiento térmico, da lugar a un material que comprende mayoritariamente larnita, es decir, el material inicial. Los siguientes ejemplos ilustran la invención y no deben ser considerados en sentido limitativo del alcance de la misma. EJEMPLO 1 Producción de polvos de larnita sintéticaIn a particular embodiment, said carbonated product resulting from subjecting larnite powder to a carbonation reaction is dried and the components of the obtained by-product (eg, calcite and silica) are mixed and the resulting mixture is heat treated in an oven at approximately 900 0 C, with a heating rate of approximately 5 ° C / minute, and is maintained at that temperature for approximately 1 hour, obtaining a material that, analyzed by DRX, turns out to consist mostly of larnite and smaller amounts of other minerals, eg , wollastonite (Example 4). As can be seen, alternatively, the invention allows a cycle to be closed since starting from larnite powder which is subsequently subjected to a gas fixation reaction (CO 2 ) (eg, by a carbonation reaction) to give rise to a product (eg, a carbonated product) which, after heat treatment, gives rise to a material comprising mostly larnite, that is, the initial material. The following examples illustrate the invention and should not be considered in a limiting sense of the scope thereof. EXAMPLE 1 Production of synthetic larnite powders
Se sintetizaron distintos polvos de larnita con 2 relaciones molares Si/Ca diferentes.Different larnite powders with 2 different Si / Ca molar ratios were synthesized.
1.1 Polvos de larnita sintética con una relación molar Si/Ca de 0.5 A una solución 0,46 M de Ludox® [solución coloidal acuosa de sílice al 30%] (disolución de 6 g de Ludox® en 56 mi de agua destilada) se añadió una solución acuosa de de nitrato de calcio tetrahidrato 1 M (disolución de 14,152 g de nitrato de calcio tetrahidrato en 60 mi de agua destilada). Tras 10 minutos de agitación, se añadieron 104 mi de una solución acuosa de etilenglicol al 5%. Bajo condiciones de agitación magnética, la mezcla se calentó a 1000C hasta la evaporación total del disolvente. Este modo de operación implica la obtención de un gel con una relación molar Si/Ca de 0,5 en el producto obtenido. El gel obtenido se secó en estufa a 1000C durante 48 h, posteriormente se trituró, y, a continuación, el polvo obtenido fue tratado térmicamente a 6000C (velocidad de calentamiento de 5°C/min) durante 1 h. Una vez tratado, el polvo obtenido (identificado en la Tabla 1 como "polvo de larnita Si/Ca (molar): 0,5") fue caracterizado tanto a nivel de su composición como a nivel mineralógico. Los resultados obtenidos fueron los siguientes: composición [determinada mediante Fluorescencia de Rayos X (FRX)]: 65-67% en peso de CaO y 34-32 % en peso de SiO2; y caracterización mineralógica [determinada mediante Difracción de Rayos X (DRX)]: larnita (silicato dicálcico).1.1 Synthetic larnite powders with a Si / Ca molar ratio of 0.5 A 0.46 M solution of Ludox® [30% aqueous colloidal silica solution] (solution of 6 g of Ludox® in 56 ml of distilled water) is added an aqueous solution of 1M calcium nitrate tetrahydrate (solution of 14,152 g of calcium nitrate tetrahydrate in 60 ml of distilled water). After 10 minutes of stirring, 104 ml of a 5% ethylene glycol aqueous solution was added. Under magnetic stirring, the mixture was heated to 100 0 C until total evaporation of the solvent. This mode of operation involves obtaining a gel with a Si / Ca molar ratio of 0.5 in the product obtained. The gel obtained was dried in an oven at 100 0 C for 48 h, then triturated, and then the powder obtained was heat treated at 600 0 C (heating rate of 5 ° C / min) for 1 h. Once treated, the powder obtained (identified in Table 1 as "Si / Ca larnite powder (molar): 0.5") was characterized both at the level of its composition and at the mineralogical level. The results obtained were the following: composition [determined by X-ray Fluorescence (FRX)]: 65-67% by weight of CaO and 34-32% by weight of SiO 2 ; and mineralogical characterization [determined by X-ray Diffraction (DRX)]: larnite (dicalcium silicate).
1.2 Polvos de larnita sintética con una relación molar Si/Ca de 11.2 Synthetic larnite powders with a Si / Ca molar ratio of 1
Operando de forma similar a como se ha descrito en el Ejemplo 1.1 pero variando la proporción de nitrato de calcio tetrahidrato (disolución de 7,07 g de nitrato de calcio tetrahidrato en 60 mi de agua destilada) y de la solución acuosa de etilenglicol al 5% (67 mi), se obtuvo un gel en el que la relación molar Si/Ca es 1. A continuación, el gel se secó, se trituró y el polvo obtenido fue tratado térmicamente tal como se ha indicado en el Ejemplo 1.1. La caracterización tanto a nivel de la composición como mineralógico del polvo obtenido (identificado en la Tabla 1 como "polvo de larnita Si/Ca (molar): 1") proporcionó los siguientes resultados: composición (mediante FRX): 55-50% en peso de CaO y en 45-50% peso de SiO2; y - caracterización mineralógica (mediante DRX): larnita (silicato dicálcico).Operating in a manner similar to that described in Example 1.1 but varying the proportion of calcium nitrate tetrahydrate (dissolution of 7.07 g of calcium nitrate tetrahydrate in 60 ml of distilled water) and of the aqueous solution of ethylene glycol at 5 % (67 ml), a gel was obtained in which the Si / Ca molar ratio is 1. Next, the gel was dried, crushed and the powder obtained was heat treated as indicated in Example 1.1. The characterization both at the level of the composition and Mineralogical of the obtained powder (identified in Table 1 as "Si / Ca larnite powder (molar): 1") provided the following results: composition (by FRX): 55-50% by weight of CaO and 45-50% SiO 2 weight; and - mineralogical characterization (by DRX): larnite (dicalcium silicate).
EJEMPLO 2 Síntesis de material compuesto de aerogel de sílice y polvo de larnita Se sintetizaron dos tipos de materiales compuestos de aerogel de sílice y polvo de larnita según los polvos de larnita sintética utilizados como fase activa; en concreto, dichos polvos de larnita sintética utilizados fueron (i) "polvo de larnita Si/Ca (molar): 0,5" y (ii) "polvo de larnita Si/Ca (molar): 1" (Ejemplos 1.1 y 1.2, respectivamente).EXAMPLE 2 Synthesis of composite material of silica airgel and larnite powder Two types of composite materials of silica airgel and larnite powder were synthesized according to the synthetic larnite powders used as active phase; in particular, said synthetic larnite powders used were (i) "Si / Ca (molar) larnite powder: 0.5" and (ii) "Si / Ca (molar) larnite powder: 1" (Examples 1.1 and 1.2 , respectively).
No obstante, previamente, la superficie de ambos tipos de polvos de larnita, independientemente, fue modificada con 3-aminopropiltrietoxisilano (APTES). La mezcla APTES/polvo de larnita se dispersó en etanol (EtOH) en una proporción de 17 mi de EtOH y 1 mi de APTES por cada gramo de polvo de larnita sintética con la asistencia de ultrasonidos (la potencia suministrada fue de 0,6 W-cm"3 y el tiempo de insonación fue de aproximadamente 10 min). A continuación, se procedió a centrifugar la suspensión de partículas sólidas (slurry) y después a su secado a 1000C durante 48 horas en un equipo convencional (estufa).However, previously, the surface of both types of larnite powders, independently, was modified with 3-aminopropyltriethoxysilane (APTES). The mixture APTES / larnite powder was dispersed in ethanol (EtOH) in a proportion of 17 ml of EtOH and 1 ml of APTES for each gram of synthetic larnite powder with the assistance of ultrasound (the power supplied was 0.6 W -cm "3 and time insonation was about 10 min). then we proceeded to centrifugation of the suspension of solid particles (slurry) and then drying at 100 0 C for 48 hours in conventional equipment (oven) .
2.1 Material compuesto 1 Para la obtención de este "material compuesto 1" (el número indica la relación molar Si/Ca del polvo de larnita sintética de partida) se partió del "polvo de larnita Si/Ca (molar): 1" (Ejemplo 1.2). Se obtuvieron distintos materiales compuestos 1, dependiendo de la cantidad utilizada de polvo de larnita sintética con una relación molar Si/Ca de 1, cuya superficie había sido modificada con APTES según el procedimiento descrito previamente. Para ello, procesándose por separado, se pesaron 3 cantidades diferentes (2,5 g; 5 g y 10 g, respectivamente) de dicho polvo de larnita sintética con una relación molar Si/Ca de 1, cuya superficie había sido modificada con APTES, y se añadieron bajo condiciones de ultrasonidos (potencia suministrada: 0,6 W-cm"3 y tiempo de insolación: 18 minutos aproximadamente) a un sol, que previamente se había preparado mediante hidrólisis en medio ácido (HNO3) y policondensación de tetraetoxisilano (TEOS) (1,66 mi de ácido nítrico 0,5 N y 5 mi de TEOS, en 2 mi de etanol). Los geles húmedos resultantes se introdujeron en un autoclave a 2550C y 90 bar (9OxIO5 Pa) para extraer el disolvente (etanol) en condiciones supercríticas. A continuación, los materiales obtenidos se calentaron a 6000C (con una velocidad de calentamiento de 5°C/min) y se mantuvieron a dicha temperatura (6000C) durante 1 h. Se obtuvieron tres tipos de materiales compuestos 1 (identificados como "material compuesto la", "material compuesto Ib" y "material compuesto Ic", en la Tabla 1), que fueron caracterizados mediante FRX (composición química) y el método BET (superficie específica), tal como se recoge en la Tabla 1.2.1 Composite material 1 To obtain this "composite material 1" (the number indicates the Si / Ca molar ratio of the synthetic starting larnite powder), the starting point was the "Si / Ca (molar) larnite powder: 1" (Example 1.2). Different composite materials 1 were obtained, depending on the amount of synthetic larnite powder used with a Si / Ca molar ratio of 1, the surface of which had been modified with APTES according to the procedure previously described. For this, being processed separately, 3 different amounts (2.5 g; 5 g and 10 g, respectively) of said synthetic larnite powder with a Si / Ca molar ratio of 1, whose surface had been modified with APTES, and were added under ultrasound conditions (power supplied: 0.6 W-cm "3 and time of insolation: approximately 18 minutes) to a sun, which had previously been prepared by acid medium hydrolysis (HNO 3 ) and tetraethoxysilane polycondensation (TEOS) (1.66 ml of 0.5 N nitric acid and 5 ml of TEOS, in 2 ml of ethanol). The resulting wet gels were placed in an autoclave at 255 0 C and 90 bar (9OxIO 5 Pa) to extract the solvent (ethanol) under supercritical conditions. Then, the materials obtained were heated to 600 0 C (with a heating rate of 5 ° C / min) and maintained at this temperature (600 0 C) for 1 h. Three types of composite materials 1 (identified as "composite material", "composite material Ib" and "composite material Ic", in Table 1) were obtained, which were characterized by FRX (chemical composition) and the BET method (surface specific), as shown in Table 1.
2.2 Material compuesto 0,5 Para la obtención de este "material compuesto 0,5" (el número indica la relación molar Si/Ca del polvo de larnita sintética de partida) se partió del "polvo de larnita Si/Ca (molar): 0,5" (Ejemplo 1.1). En este caso, se obtuvo un único tipo de material compuesto 0,5 mediante la adición de 15 g de dicho polvo de larnita sintética con una relación molar Si/Ca de 0,5, cuya superficie había sido modificada con APTES según el procedimiento previamente descrito, a dicho sol previamente preparado mediante hidrólisis en medio ácido y policondensación de TEOS (1,66 mi de ácido nítrico 0,5 N y 5 mi de TEOS, en 2 mi de etanol). Las condiciones de preparación del material compuesto 0,5 son iguales a las descritas previamente en relación con el material compuesto 1. El material compuesto obtenido (identificado como "material compuesto 0,5" en la Tabla 1), que fue caracterizado mediante FRX y el método BET, tal y como se recoge en Tabla 1. 2.2 Composite material 0.5 To obtain this "composite material 0.5" (the number indicates the Si / Ca molar ratio of the synthetic starting larnite powder), the starting point was "Si / Ca larnite powder (molar): 0.5 "(Example 1.1). In this case, a single type of 0.5 composite material was obtained by adding 15 g of said synthetic larnite powder with a Si / Ca molar ratio of 0.5, the surface of which had been modified with APTES according to the procedure previously described, to said sun previously prepared by hydrolysis in acid medium and polycondensation of TEOS (1.66 ml of 0.5 N nitric acid and 5 ml of TEOS, in 2 ml of ethanol). The preparation conditions of the composite 0.5 are equal to those previously described in relation to the composite 1. The composite obtained (identified as "composite 0.5" in Table 1), which was characterized by FRX and the BET method, as shown in Table 1.
Tabla 1Table 1
ComposiciónComposition
Características Texturales QuímicaTextural Characteristics Chemistry
CaO SiO2 CaO SiO 2
Muestra Superficie específica área (mz/g)Sample Specific surface area (m z / g)
% %%%
Polvo de larnitaLarnite powder
65-67 34-32 3965-67 34-32 39
Si/Ca (molar): 0,5Si / Ca (molar): 0.5
Material compuesto 0,5 61-62 39-38 40Composite material 0.5 61-62 39-38 40
Polvo de larnitaLarnite powder
50-55 50-45 -50-55 50-45 -
Si/Ca(molar):lSi / Ca (molar): l
Material compuesto la 44,0 54,98 53Composite material 44.0 54.98 53
Material compuesto Ib 40,48 58,38 115Composite material Ib 40.48 58.38 115
Material compuesto Ic 34,33 64,7 258Composite material Ic 34.33 64.7 258
EJEMPLO 3 Procedimiento de carbonataciónEXAMPLE 3 Carbonation procedure
Para monitorizar la fijación de CO2 (carbonatación) se ensayaron 2 tipos de muestras: a) polvos de larnita sintética (67% en peso de CaO, relación molar Si/Ca de 0,5); y b) material compuesto la (44% en peso de CaO).To monitor the fixation of CO 2 (carbonation), 2 types of samples were tested: a) synthetic larnite powders (67% by weight of CaO, Si / Ca molar ratio of 0.5); and b) composite material (44% by weight of CaO).
El procedimiento de carbonatación se realizó en experimentos por separado para cada muestra. La descripción del procedimiento y los resultados obtenidos que sigue es común para los 2 tipos de muestras. Brevemente, se introdujeron 0,5 g de cada muestra en un reactor que contenía 25 mi de agua destilada. El pH de la dispersión obtenida era superior a 10,5. A continuación, dicha dispersión se sometió a un flujo de CO2 durante 15 minutos bajo agitación permanente. En ese periodo de tiempo, el pH descendió hasta un valor de 6,5-7. El producto resultante de la reacción ocurrida en el reactor se analizó e identificó. La identificación de los carbonatos fue realizada mediante DRX, que reveló sólo la presencia de vaterita y calcita, dos minerales de carbonato de calcio (CaCO3) que pertenecen a la misma familia estructural. La sílice (SiO2) se identificó mediante la detección de Si por análisis EDX-MEB ya que mediante DRX no es posible debido a su carácter amorfo. No se identificó larnita en las muestras analizadas. Por tanto, la ausencia (no presencia) de larnita, por DRX, en dichas muestras analizadas tras el procedimiento de carbonatación conduce a la conclusión de que la eficacia de la reacción de transformación del silicato en carbonato fue del 100%, para un periodo de tiempo de flujo y de reacción con el CO2 de 15 minutos. Estos resultados ponen de manifiesto la gran eficacia de los 2 tipos de muestras ensayadas, sin diferencias apreciables entre ellas durante el periodo de tiempo estudiado. Aunque no se desea estar vinculado a ninguna hipótesis, esta elevada eficacia puede justificarse en base a que las muestras analizadas en estos experimentos, a diferencia de otros protocolos ya descritos con materiales compuestos de polvos de wollastonita, son analizadas inmediatamente después de haber finalizado el experimento, sin necesidad de tener que mantenerlas en reposo en el reactor.The carbonation procedure was performed in separate experiments for each sample. The description of the procedure and the results obtained that follows is common for the 2 types of samples. Briefly, 0.5 g of each sample was introduced into a reactor containing 25 ml of distilled water. The pH of the dispersion obtained was greater than 10.5. Then, said dispersion was subjected to a flow of CO 2 for 15 minutes under permanent stirring. In that period of time, the pH dropped to a value of 6.5-7. The product resulting from the reaction in the reactor was analyzed and identified. The identification of carbonates was carried out by DRX, which revealed only the presence of vaterite and calcite, two calcium carbonate minerals (CaCO 3 ) that belong to the same structural family. Silica (SiO 2 ) was identified by the detection of Si by EDX-MEB analysis since DRX is not possible due to its amorphous character. No larnite was identified in the samples analyzed. Therefore, the absence (non-presence) of larnite, by DRX, in said samples analyzed after the carbonation procedure leads to the conclusion that the efficiency of the reaction of transformation of silicate into carbonate was 100%, for a period of flow time and reaction with CO 2 of 15 minutes. These results show the great efficacy of the 2 types of samples tested, with no appreciable differences between them during the period of time studied. Although it is not desired to be linked to any hypothesis, this high efficiency can be justified on the basis that the samples analyzed in these experiments, unlike other protocols already described with materials composed of wollastonite powders, are analyzed immediately after the end of the experiment. , without having to keep them at rest in the reactor.
EJEMPLO 4EXAMPLE 4
Recuperación de la larnitaLarnite recovery
Se realizó este ensayo de tratamiento térmico por separado para cada uno de los experimentos descritos en el procedimiento de carbonatación (Ejemplo 3), de acuerdo con el protocolo que se describe a continuación. Una vez secados los componentes del subproducto obtenido (calcita y sílice) en cada experimento, se mezclaron y la mezcla se trató térmicamente en una estufa a 9000C (velocidad de calentamiento de 5°C/min) durante 3 horas. La muestra se analizó por DRX, identificando mayoritariamente larnita y cantidades menores de wollastonita.This heat treatment test was performed separately for each of the experiments described in the carbonation procedure (Example 3), according to the protocol described below. Once dried product obtained components (calcite and silica) in each experiment, mixed and the mixture was heat treated in an oven at 900 0 C (heating rate of 5 ° C / min) for 3 hours. The sample was analyzed by DRX, mostly identifying larnite and smaller amounts of wollastonite.
De este modo, se cierra el ciclo, es decir, a partir de una materia prima (larnita), cuyo procesado permite obtener un material compuesto de aerogel y polvos de larnita, que sometido a un flujo de CO2 y mediante una reacción de carbonatación de 15 minutos, genera un subproducto (calcita y sílice) que, tratado térmicamente, rinde un material final en el que la parte mayoritaria es el producto inicial (larnita). In this way, the cycle is closed, that is, from a raw material (larnite), whose processing allows obtaining a composite material of airgel and larnite powders, which undergoes a flow of CO 2 and through a carbonation reaction After 15 minutes, it generates a by-product (calcite and silica) that, heat treated, yields a final material in which the majority part is the initial product (larnite).

Claims

REIVINDICACIONES
1. Un material compuesto de aerogel de sílice y de polvo de larnita, obtenible mediante la mezcla de polvo de larnita cuya superficie está modificada químicamente con un aminosilano seleccionado entre (3-aminopropil)-trietoxisilano (APTES), (3- aminopropil)-dimetil-etoxisilano (APMES), (3-aminopropil)-trimetoxisilano (APTMS), (3-aminopropil)-dietoximetilsilano (APDEMS) y sus mezclas, con un sol obtenido mediante hidrólisis y policondensación de tetraetoxisilano (TEOS).1. A composite material of silica airgel and larnite powder, obtainable by mixing larnite powder whose surface is chemically modified with an aminosilane selected from (3-aminopropyl) -triethoxysilane (APTES), (3- aminopropyl) - dimethyl-ethoxy silane (APMES), (3-aminopropyl) -trimethoxysilane (APTMS), (3-aminopropyl) -diethoxymethylsilane (APDEMS) and mixtures thereof, with a sol obtained by hydrolysis and polycondensation of tetraethoxysilane (TEOS).
2. Material compuesto según la reivindicación 1, que comprende la siguiente composición2. Composite material according to claim 1, comprising the following composition
(l-x) SiO2 - x CaO en donde x es un número comprendido entre 0,34 y 0,62(lx) SiO 2 - x CaO where x is a number between 0.34 and 0.62
3. Material compuesto según la reivindicación 2, en el que "x" es 0,34, 0,44 ó3. Composite material according to claim 2, wherein "x" is 0.34, 0.44 or
0,62.0.62.
4. Material compuesto según la reivindicación 1, seleccionado del grupo formado por: - un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende entre 62% y 61% en peso de CaO y entre 38% y 39% en peso de SiO2; un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende 44% en peso de CaO y 54,98% en peso de SiO2; un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende 40,48% en peso de CaO y 58,38% en peso de SiO2; un material compuesto de aerogel de sílice y de polvo de larnita cuya superficie está modificada químicamente con APTES, y cuya composición química comprende 34,33% en peso de CaO y 64,70% en peso de SiO2; y - sus mezclas.4. Composite material according to claim 1, selected from the group consisting of: - a composite material of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises between 62% and 61% by weight of CaO and between 38% and 39% by weight of SiO 2 ; a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 44% by weight of CaO and 54.98% by weight of SiO 2 ; a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 40.48% by weight of CaO and 58.38% by weight of SiO 2 ; a composite of silica airgel and larnite powder whose surface is chemically modified with APTES, and whose chemical composition comprises 34.33% by weight of CaO and 64.70% by weight of SiO 2 ; and - their mixtures.
5. Un procedimiento para la obtención de un material compuesto de aerogel de sílice y polvo de larnita según la reivindicación I9 que comprende poner en contacto polvo de larnita, cuya superficie está modificada químicamente con un aminosilano seleccionado entre (3-aminopropil)-trietoxisilano (APTES), (3-aminopropil)-dimetil- etoxisilano (APMES), (3-aminopropil)-trimetoxisilano (APTMS), (3-aminopropil)- dietoximetilsilano (APDEMS) y sus mezclas, con un sol obtenido mediante hidrólisis y policondensación de tetraetoxisilano (TEOS).5. A process for obtaining a composite of silica and larnite powder airgel according to claim I 9 comprising contacting larnite powder, the surface of which is chemically modified with an aminosilane selected from (3-aminopropyl) -triethoxysilane (APTES), (3-aminopropyl) -dimethyl-ethoxy silane (APMES), (3-aminopropyl) -trimethoxysilane (APTMS), (3-aminopropyl) - diethoxymethylsilane (APDEMS) and mixtures thereof, with a sol obtained by hydrolysis and polycondensation of tetraethoxysilane (TEOS).
6. Procedimiento según la reivindicación 5, en el que la mezcla de dicho polvo de larnita cuya superficie está modificada químicamente con dicho sol resultante de la hidrólisis y policondensación controladas de TEOS se realiza bajo la acción de ultrasonidos.Method according to claim 5, wherein the mixture of said larnite powder whose surface is chemically modified with said sol resulting from the controlled hydrolysis and polycondensation of TEOS is carried out under the action of ultrasound.
7. Procedimiento según la reivindicación 5 ó 6, que comprende, además, la eliminación del disolvente utilizado en la producción del sol.7. Method according to claim 5 or 6, further comprising removing the solvent used in the production of the sun.
8. Procedimiento según la reivindicación 7, que comprende, además, someter el material resultante de la eliminación del disolvente a un tratamiento térmico para obtener dicho material compuesto de aerogel de sílice y polvo de larnita.Method according to claim 7, further comprising subjecting the material resulting from the removal of the solvent to a heat treatment to obtain said composite of silica airgel and larnite powder.
9. Procedimiento según la reivindicación 8, en el que dicho tratamiento térmico comprende calentar dicho material resultante de la eliminación del disolvente a una temperatura de 6000C, con una velocidad de calentamiento de 5°C/min, y mantenerlo a dicha temperatura durante aproximadamente 1 hora. 9. Method according to claim 8, wherein said heat treatment comprises heating said material resulting from removal of the solvent at a temperature of 600 0 C, with a heating rate of 5 ° C / min and maintaining it at that temperature for about 1 hour.
10. Un procedimiento para el almacenamiento de un gas que comprende poner en contacto una corriente gaseosa que comprende dicho gas con un material compuesto de aerogel de sílice y de polvo de larnita según la reivindicación 1 bajo condiciones que permiten la fijación de dicho gas por dicho material compuesto.10. A process for the storage of a gas comprising contacting a gas stream comprising said gas with a composite material of silica airgel and larnite powder according to claim 1 under conditions that allow said gas to be fixed by said gas. composite material.
11. Procedimiento según la reivindicación 10, en el que dicho gas se selecciona del grupo formado por CO2, SO2, NOx, CO, H2S, y sus mezclas.11. The method according to claim 10, wherein said gas is selected from the group consisting of CO 2 , SO 2 , NOx, CO, H 2 S, and mixtures thereof.
12. Procedimiento según la reivindicación 10, que comprende poner en contacto una corriente gaseosa que comprende CO2 con una suspensión acuosa de dicho material compuesto de aerogel de sílice y de polvo de larnita, a temperatura ambiente y presión atmosférica.12. A method according to claim 10, comprising contacting a gaseous stream comprising CO 2 with an aqueous suspension of said silica airgel composite and larnite powder, at room temperature and atmospheric pressure.
13. Un procedimiento para la recuperación de larnita a partir de un producto carbonatado obtenible mediante carbonatación de un material compuesto de aerogel de sílice y de polvo de larnita según la reivindicación 1, que comprende someter dicho producto carbonatado a un tratamiento térmico adecuado para obtener un material que comprende larnita.13. A process for recovering larnite from a carbonated product obtainable by carbonation of a composite material of silica airgel and larnite powder according to claim 1, which comprises subjecting said carbonated product to a suitable heat treatment to obtain a material comprising larnite.
14. Procedimiento según la reivindicación 13, en el que dicho tratamiento térmico comprende calentar dicho producto carbonatado a una temperatura de 9000C, con una velocidad de calentamiento de 5°C/min, y mantenerlo a dicha temperatura durante 1 hora aproximadamente.14. Method according to claim 13, wherein said heat treatment comprises heating said carbonated product at a temperature of 900 0 C, with a heating rate of 5 ° C / min and maintaining it at that temperature for about 1 hour.
15. Empleo de un material compuesto de aerogel de sílice y de polvo de larnita según la reivindicación 1, para el almacenamiento de un gas.15. Use of a composite material of silica airgel and larnite powder according to claim 1, for the storage of a gas.
16. Empleo según la reivindicación 15, en el que dicho gas se selecciona del grupo formado por CO2, SO2, NOx, CO, H2S, y sus mezclas. 16. Use according to claim 15, wherein said gas is selected from the group consisting of CO 2 , SO 2 , NOx, CO, H 2 S, and mixtures thereof.
17. Un producto obtenible mediante la modificación química de la superficie del polvo de larnita con un aminosilano seleccionado entre (3-aminopropil)-trietoxisilano (APTES), (3-aminopropil)-dimetil-etoxisilano (APMES), (3-aminopropil)- trimetoxisilano (APTMS), (3-aminopropil)-dietoximetilsilano (APDEMS) y sus mezclas.17. A product obtainable by chemical modification of the surface of the larnite powder with an aminosilane selected from (3-aminopropyl) -triethoxysilane (APTES), (3-aminopropyl) -dimethyl-ethoxy silane (APMES), (3-aminopropyl) - trimethoxysilane (APTMS), (3-aminopropyl) -diethoxymethylsilane (APDEMS) and mixtures thereof.
18. Un procedimiento para el almacenamiento de un gas que comprende poner en contacto una corriente gaseosa que comprende dicho gas con polvo de larnita bajo condiciones que permiten la fijación de dicho gas por dicho polvo de larnita.18. A process for the storage of a gas comprising contacting a gas stream comprising said gas with larnite powder under conditions that allow said gas to be fixed by said larnite powder.
19. Procedimiento según la reivindicación 18, en el que dicho gas se selecciona del grupo formado por CO2, SO2, NOx, CO, H2S, y sus mezclas.19. The method of claim 18, wherein said gas is selected from the group consisting of CO 2 , SO 2 , NOx, CO, H 2 S, and mixtures thereof.
20. Procedimiento según la reivindicación 19, que comprende poner en contacto una corriente gaseosa que comprende CO2 con una suspensión acuosa de polvo de larnita, a temperatura ambiente y presión atmosférica.20. A method according to claim 19, comprising contacting a gas stream comprising CO 2 with an aqueous suspension of larnite powder, at room temperature and atmospheric pressure.
21. Empleo de polvo de larnita para el almacenamiento de un gas.21. Use of larnite powder for the storage of a gas.
22. Empleo según la reivindicación 21, en el que dicho gas se selecciona del grupo formado por CO2, SO2, NOx, CO, H2S, y sus mezclas.22. Use according to claim 21, wherein said gas is selected from the group consisting of CO 2 , SO 2 , NOx, CO, H 2 S, and mixtures thereof.
23. Un procedimiento para la recuperación de larnita a partir de un producto carbonatado obtenible mediante carbonatación de polvo de larnita, que comprende someter dicho producto carbonatado a un tratamiento térmico adecuado para obtener un material que comprende larnita.23. A process for the recovery of larnite from a carbonated product obtainable by carbonation of larnite powder, which comprises subjecting said carbonated product to a suitable heat treatment to obtain a material comprising larnite.
24. Procedimiento según la reivindicación 23, en el que dicho tratamiento térmico comprende calentar dicho producto carbonatado, a una temperatura de 9000C, con una velocidad de calentamiento de 5°C/min, y mantenerlo a dicha temperatura durante 1 hora aproximadamente. 24. The method of claim 23, wherein said heat treatment comprises heating said carbonated product, at a temperature of 900 0 C, with a heating rate of 5 ° C / min and maintaining it at that temperature for about 1 hour.
PCT/ES2009/000308 2008-10-16 2009-06-02 Silica and larnite powder aerogel composite material and use thereof in the storage and fixing of gases WO2010043730A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200802914A ES2336996B2 (en) 2008-10-16 2008-10-16 AEROGEL COMPOSITE MATERIAL OF SILICE AND LARNITA POWDER AND ITS USE IN THE STORAGE AND SETTING OF GASES.
ESP200802914 2008-10-16

Publications (1)

Publication Number Publication Date
WO2010043730A1 true WO2010043730A1 (en) 2010-04-22

Family

ID=42063595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000308 WO2010043730A1 (en) 2008-10-16 2009-06-02 Silica and larnite powder aerogel composite material and use thereof in the storage and fixing of gases

Country Status (2)

Country Link
ES (1) ES2336996B2 (en)
WO (1) WO2010043730A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973558A (en) * 2010-09-30 2011-02-16 南京工业大学 Amino modified SiO2Aerogel materials and uses thereof
CN102795631A (en) * 2012-06-19 2012-11-28 刘相红 Method for preparing silicon dioxide aerogel
CN109607553A (en) * 2019-01-22 2019-04-12 吉林大学 A kind of preparation method of monodisperse large scale silicon dioxide granule
WO2020082782A1 (en) * 2018-10-22 2020-04-30 天津摩根坤德高新科技发展有限公司 Silica aerogel preparation method and aerogel prepared using said method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AHMED ET AL.: "Multi-metal oxide aerogthe for capture of pollution gases from air", APPLIED THERMAL ENGINEERING, vol. 18, 1998, pages 787 - 797 *
SANTOS ET AL.: "Chemically active silica aerogel- Wollastonite composites for CO2 fixation by carbonation reactions", IND. ENG. CHEM., vol. 46, 2007, pages 103 - 107 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973558A (en) * 2010-09-30 2011-02-16 南京工业大学 Amino modified SiO2Aerogel materials and uses thereof
CN102795631A (en) * 2012-06-19 2012-11-28 刘相红 Method for preparing silicon dioxide aerogel
CN102795631B (en) * 2012-06-19 2013-11-20 中亨新型材料科技有限公司 Method for preparing silicon dioxide aerogel
WO2020082782A1 (en) * 2018-10-22 2020-04-30 天津摩根坤德高新科技发展有限公司 Silica aerogel preparation method and aerogel prepared using said method
CN109607553A (en) * 2019-01-22 2019-04-12 吉林大学 A kind of preparation method of monodisperse large scale silicon dioxide granule

Also Published As

Publication number Publication date
ES2336996A1 (en) 2010-04-19
ES2336996B2 (en) 2010-09-20

Similar Documents

Publication Publication Date Title
Vinoba et al. Biomimetic sequestration of CO2 and reformation to CaCO3 using bovine carbonic anhydrase immobilized on SBA-15
Sutradhar et al. Controlled synthesis of different morphologies of MgO and their use as solid base catalysts
Chang et al. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed
Bénézeth et al. Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: Implications for mineral trapping of CO2
CN101172639B (en) Method of producing mesoporous rare-earth oxide
Pérez-Villarejo et al. Synthesis of vaterite CaCO3 as submicron and nanosized particles using inorganic precursors and sucrose in aqueous medium
CN102131734B (en) Amorphous aluminum silicate salt manufacturing method, aluminum silicate salt obtained with said method, and adsorption agent using same
Yoo et al. Morphology control of magnesium carbonate for CO2 utilization using Mg2+ ions in industrial wastewater depending on length of alkyl chain of primary alkanolamine, reaction temperature, CO2 concentration, and Mg2+/Na+ ratio
AU2009268397A1 (en) Production of carbonate-containing compositions from material comprising metal silicates
ES2336996B2 (en) AEROGEL COMPOSITE MATERIAL OF SILICE AND LARNITA POWDER AND ITS USE IN THE STORAGE AND SETTING OF GASES.
Ettahiri et al. Pyrophyllite clay-derived porous geopolymers for removal of methylene blue from aqueous solutions
WO2010097451A2 (en) A process for carbon dioxide sequestration
Vinoba et al. Harvesting CaCO3 polymorphs from in situ CO2 capture process
Zhang et al. Highly ordered periodic mesoporous ethanesilica synthesized under neutral conditions
Lee et al. Fast synthesis of spherical silica aerogel powders by emulsion polymerization from water glass
Ravi et al. Novel hierarchically dispersed mesoporous silica spheres: effective adsorbents for mercury from wastewater and a thermodynamic study
Chen et al. Spherical porous ZnAl2O4: Eu3+ phosphors: PEG-assisted hydrothermal growth and photoluminescence
Bernard Magnesium silicate hydrate (MSH) characterization: temperature, calcium, aluminium and alkali
WO2014102404A1 (en) Optimised method for producing calcium silicates that are capable of capturing co2, silicates obtained in this way, and use of same
Gao et al. Architected mesoporous crystalline magnesium silicates with ordered pore structures
US11352264B2 (en) Method for preparing synthetic mineral particles
CN110496589B (en) Hydrotalcite, preparation method thereof and application of hydrotalcite in PFOS (Perfluorooctane sulfonate) pollutant adsorption in water body
Bembli et al. Mechanochemical synthesis of strontium oxybritholites (Sr10-xLax (PO4) 6− x (SiO4) xO): Characterization, structural refinement, and adsorption characteristics toward Basic Blue 41
Radha et al. Manganese carbonate formation from amorphous and nanocrystalline precursors: Thermodynamics and geochemical relevance
Santos et al. Fast CO 2 sequestration by aerogel composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09820288

Country of ref document: EP

Kind code of ref document: A1