WO2010043639A2 - Mélanges pesticides - Google Patents

Mélanges pesticides Download PDF

Info

Publication number
WO2010043639A2
WO2010043639A2 PCT/EP2009/063383 EP2009063383W WO2010043639A2 WO 2010043639 A2 WO2010043639 A2 WO 2010043639A2 EP 2009063383 W EP2009063383 W EP 2009063383W WO 2010043639 A2 WO2010043639 A2 WO 2010043639A2
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
compound
mixtures
phenyl
compounds
Prior art date
Application number
PCT/EP2009/063383
Other languages
English (en)
Other versions
WO2010043639A3 (fr
Inventor
Laurent Jamet
Ralf Willi Gerhard
Ronald Wilhelm
Dirk Voeste
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2010043639A2 publication Critical patent/WO2010043639A2/fr
Publication of WO2010043639A3 publication Critical patent/WO2010043639A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/28Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N<
    • A01N47/34Ureas or thioureas containing the groups >N—CO—N< or >N—CS—N< containing the groups, e.g. biuret; Thio analogues thereof; Urea-aldehyde condensation products
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/24Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing the groups, or; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N51/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds having the sequences of atoms O—N—S, X—O—S, N—N—S, O—N—N or O-halogen, regardless of the number of bonds each atom has and with no atom of these sequences forming part of a heterocyclic ring

Definitions

  • the present invention relates to synergistic mixtures comprising, as active components,
  • fungicidal compound(s) Il selected from the group consisting of stro- bilurine fungicides Il comprising pyraclostrobin, azoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, pi- coxystrobin, pyribencarb, trifloxystrobin, 2-(2-(6-(3-chloro-2-methyl-phenoxy)-5- fluoro-pyrimidin-4-yloxy)-phenyl)-2-methoxyimino-N-methyl-acetamide, 3- methoxy-2-(2-(N-(4-methoxy-phenyl)-cyclopropane-carboximidoylsulfanylmethyl)- phenyl)-acrylic acid methyl ester, methyl (2-chloro-5-[1-(3-methylbenzyloxyimino)- e
  • the invention furthermore relates to ternary mixtures comprising in addition to compound I
  • an insecticidal compound IV selected from following nicotinic receptor ago- nists/antagonists compounds: clothianidin, dinotefuran, imidacloprid, thiameth- oxam, nitenpyram and acetamiprid; or
  • an insecticidal compound IV selected from fipronil and ethiprole; in synergistic effective amounts.
  • the invention furthermore relates to quarternary mixtures comprising comprising, as active compounds, the compound I, two fungicidal compounds Il and
  • an insecticidal compound IV selected from following nicotinic receptor agonists/antagonists compounds: clothianidin, dinotefuran, imidacloprid, thiameth- oxam, nitenpyram and acetamiprid; or
  • an insecticidal compound IV selected from fipronil and ethiprole; in synergistic effective amounts.
  • the invention furthermore relates to binary mixtures comprising two fungicidal compound ⁇ ) Il selected from the group consisting of strobilurine fungicides Il comprising pyraclostrobin, azoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim- methyl, metominostrobin, orysastrobin, picoxystrobin, pyribencarb, trifloxystrobin, 2-(2- (6-(3-chloro-2-methyl-phenoxy)-5-fluoro-py ⁇ midin-4-yloxy)-phenyl)-2-methoxyimino-N- methyl-acetamide, 3-methoxy-2-(2-(N-(4-methoxy-phenyl)-cyclopropane-carboximidoyl- sulfanylmethyl)-phenyl)-acrylic acid methyl ester, methyl (2-chloro-5-[1-(3- methylbenzy
  • the invention furthermore relates to ternary mixtures comprising two fungicidal com- pound(s) Il selected from the group consisting of strobilurine fungicides Il comprising pyraclostrobin, azoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim- methyl, metominostrobin, orysastrobin, picoxystrobin, pyribencarb, trifloxystrobin, 2-(2- (6-(3-chloro-2-methyl-phenoxy)-5-fluoro-pyrimidin-4-yloxy)-phenyl)-2-methoxyimino-N- methyl-acetamide, 3-methoxy-2-(2-(N-(4-methoxy-phenyl)-cyclopropane-carboximidoyl- sulfanylmethyl)-phenyl)-acrylic acid methyl ester, methyl (2-chloro-5-[1-(3
  • the invention relates to a method for controlling pests, this refers to includes phytopathogenic animal pests and phytopathogenic harmful fungi, using the inventive mixtures and to the use of compound I and compound Il (and optionally a further compound Il and/or [compound IV or V]) for preparing such mixtures, and also to compositions comprising such mixtures.
  • the present invention provides methods for the control of phytopathogenic animal pests (such as insects, acarids or nematodes) comprising contacting the animal pest (the insect, acarid or nematode) or their food supply, habitat, breeding grounds or their locus with a pesticidally effective amount of the inventive mixtures.
  • phytopathogenic animal pests such as insects, acarids or nematodes
  • the present invention also relates to a method of protecting plants from attack or infestation by phytopathogenic animal pests (insects, acarids or nematodes) comprising contacting the plant, or the soil or water in which the plant is growing, with a pesticidally effective amount of the inventive mixture.
  • phytopathogenic animal pests insects, acarids or nematodes
  • the present invention also comprises a method for protection of plant propagation material from phytopathogenic pests, such as phytopathogenic fungi or phytopathogenic animal pests (insects, arachnids or nematodes) comprising contacting the plant propagation materials with an inventive mixture in pesticidally effective amounts
  • phytopathogenic pests such as phytopathogenic fungi or phytopathogenic animal pests (insects, arachnids or nematodes) comprising contacting the plant propagation materials with an inventive mixture in pesticidally effective amounts
  • the present invention also comprises a method for protection of plant propagation material from phytopathogenic fungi comprising contacting the plant propagation materials with a mixture of two compounds Il in pesticidally effective amounts
  • plant propagation material is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germi- nation or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.
  • the term propagation material denotes seeds.
  • the invention relates to a method for controlling phytopathogenic harmful fungi using the inventive mixtures and to the use of the compound I and compound Il (and optionally a further compound Il and/or [compound IV or V]) for preparing such mixtures, and also to compositions comprising such mixtures.
  • the invention relates to a method for controlling phytopathogenic harmful fungi using a mixture of two compounds Il and to the use of two compounds Il for preparing such mixtures, and also to compositions comprising such mixtures.
  • the present invention further relates to plant-protecting active ingredient mixtures having synergistically enhanced action of improving the health of plants and to a method of applying such inventive mixtures to the plants.
  • WO 06/069654, WO06/089876 and WO 06/23899 disclose mixtures of neonicotiniods and strobilurins. WO 06/23899 also discloses mixtures of imidacloprid and other fungicides.
  • phytopathogenic pests embrace phytopa- thogenic animal pests, and phytopathogenic harmful fungi.
  • the term phytopathogenic animal pests is hereinbelow abbreviated as “animal pest” and the term phytopathogenic harmful fungi is hereinbelow abbreviated as “harmful fungi”.
  • compositions that improve plants a process which is commonly and hereinafter referred to as "plant health”.
  • plant health comprises various sorts of improvements of plants that are not connected to the control of pests.
  • advantageous properties are improved crop characteristics including: emergence, crop yields, protein content, oil content, starch content, more developed root system (improved root growth), improved stress tolerance (e.g.
  • tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, pigment content, photosynthetic activity, less input needed (such as fertilizers or water), less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, enhanced plant vigor, increased plant stand and early and better germination; or any other advantages familiar to a person skilled in the art.
  • the mixtures as defined in the outset show markedly enhanced action against pests compared to the control rates that are possible with the individual compounds and/or is suitable for improving the health of plants when applied to plants, parts of plants, plant propagation materials (preferably seeds), or at their locus of growth.
  • synergistic mixtures means pesticidal synergistic mixtures (fungicidal and/or insecticidal synergistic mixtures) and/or plant health synergistic mixtures.
  • the binary mixtures of compound I and compound Il according to the pre- sent invention comprise as compound Il pyraclostrobin, azoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxy- strobin, pyribencarb and trifloxystrobin, wherein pyraclostrobin, azoxystrobin, orysastrobin, picoxystrobin and trifloxystrobin are more preferred and pyraclostrobin, azoxystrobin and trifloxystrobin are most preferred. Utmost preference is given to pyraclos- trobin.
  • the ternary mixtures according to the present invention comprise two compounds Il selected from the group consisting of pyraclostrobin, azoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyribencarb and trifloxystrobin, wherein pyraclostrobin, azoxystrobin, orysastrobin, picoxystrobin and trifloxystrobin are more preferred and pyraclostrobin and orysastrobin are most preferred.
  • the ternary mixtures according to the present invention comprise as com- pound IV clothianidin, imidacloprid, thiamethoxam or acetamiprid, more preferably clothianidin, imidacloprid or thiamethoxam.
  • the most preferred compound I is clothianidin.
  • the quarternary mixtures according to the present invention comprise as compound IV clothianidin, imidacloprid, thiamethoxam or acetamiprid, more preferably clothianidin, imidacloprid or thiamethoxam.
  • the most preferred compound I is clothianidin.
  • the ratios by weight for the respective binary mixtures comprising metaflumizone compound I and the fungicidal compound Il are from 1 :100 to 100:1 , preferably from 50:1 to 1 :50, more preferably from 1 :20 to 20.
  • the ratios by weight for the respective ternary mixtures comprising metaflumizone compound I, and the two fungicidal compounds Il are from 1 :100:100 to 100:1 :1 , preferably from 50:1 :1 to 1 :50:50, more preferably from 1 :20:20 to 20:1 :1.
  • the ratios by weight for the respective ternary mixtures comprising metaflumizone compound I, the fungicidal compound Il and insecticidal compound IV are from 1 :100:100 to 100:1 :1 , preferably from 50:1 :1 to 1 :50:50, more preferably from 1 :20:20 to 20:1 :1.
  • the ratios by weight for the respective ternary mixtures comprising metaflumizone compound I, the fungicidal compound Il and insecticidal compound V are from 1 :100:100 to 100:1 :1 , preferably from 50:1 :1 to 1 :50:50, more preferably from 1 :20:20 to 20:1 :1.
  • the ratios by weight for the respective ternary mixtures comprising comprising two fungicidal compounds II, and insecticidal compound IV are from are from 1 :100:100:100 to 100:1:1:1, preferably from 50:1:1:1 to 1:50:50:50, more preferably from 1:20:20:20 to 20:1:1:1.
  • the ratios by weight for the respective quarternay mixtures comprising comprising metaflumizone compound I, two fungicidal compounds II, and insecticidal compound IV are from are from 1:100:100:100 to 100:1:1:1, preferably from 50:1:1:1 to 1:50:50:50, more preferably from 1:20:20:20 to 20:1:1:1.
  • the ratios by weight for the respective quarternay mixtures comprising comprising metaflumizone compound I, two fungicidal compounds Il and insecticidal compound V are from are from 1:100:100:100 to 100:1:1:1, preferably from 50:1:1:1 to 1:50:50:50, more preferably from 1:20:20:20 to 20:1:1:1.
  • the two fungicidal compounds Il are usually applied in a weight ratio of of from 1:200 to 200:1, more preferably from 1:100 to 100:1, in particular from 1:20 to 20:1.
  • Il (2) is the second compound
  • A Azoxystrobin C is clothianidin
  • F fipronil
  • R- 1 , R-3 and R- ' 4 more preferred is R- 1.
  • R-31 , R-33, R-34 and R-41 are most preferred. Utmost preference is given to R-6, R-7,
  • Il (1 ) is one compound
  • Il P Pyraclostrobin
  • Il T Trifloxystrobin
  • the mixtures 0-2, 0-3, 0-8, 0-9, 0-14 and 0-15 are preferred.
  • the binary mixtures of two compounds Il according to the present invention as defined at the outset comprise two compounds selected from pyraclostrobin, azox- ystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyribencarb and trifloxystrobin in synergistically effective amounts.
  • the binary mixtures of two compounds Il according to the present invention comprise two compounds selected from pyraclostrobin, azoxystrobin, orysas- trobin, picoxystrobin, kresoxim-methyl and trifloxystrobin.
  • Il (2) is the second compound
  • Il T Trifloxystrobin
  • the mixtures P-1 , P-2, P-3, P-4, P-7, P-8 and P-11 are preferred and the mixtures P-1 , P-2 and P-3 are more preferred and the mixtures P-1 is most preferred.
  • the inventive mixtures can further comprise one or more insecticides, fungicides, herbicides.
  • the mixtures according to the invention can be converted into the customary formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules.
  • the use form depends on the particular intended purpose; in each case, it should ensure a fine and even distribution of the mixtures according to the present invention.
  • the formulations are prepared in a known manner (cf. US 3,060,084, EP-A 707 445 (for liquid concentrates), Browning: "Agglomeration", Chemical Engineering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, S.
  • the agrochemical formulations may also comprise auxiliaries which are customary in agrochemical formulations.
  • the auxiliaries used depend on the particular application form and active substance, respectively.
  • auxiliaries are solvents, solid carriers, dispersants or emulsifiers (such as further solubilizers, protective colloids, surfactants and adhesion agents), organic and anorganic thickeners, bactericides, anti-freezing agents, anti-foaming agents, if appropriate colorants and tackifiers or binders (e. g. for seed treatment formulations).
  • Suitable solvents are water, organic solvents such as mineral oil fractions of medium to high boiling point, such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e. g.
  • Solid carriers are mineral earths such as silicates, silica gels, talc, kaolins, limestone, lime, chalk, bole, loess, clays, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, e. g., ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
  • mineral earths such as silicates, silica gels, talc, kaolins, limestone, lime, chalk, bole, loess, clays, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, e. g., ammonium sulfate, ammonium phosphat
  • Suitable surfactants are alkali metal, alkaline earth metal and ammonium salts of aromatic sulfonic acids, such as ligninsoulfonic acid (Borresperse® types, Borregard, Norway) phenolsulfonic acid, naphthalenesulfonic acid (Morwet® types, Akzo Nobel, U.S.A.), dibutylnaphthalene- sulfonic acid (Nekal® types, BASF, Germany), and fatty acids, alkylsulfonates, alkyl- arylsulfonates, alkyl sulfates, laurylether sulfates, fatty alcohol sulfates, and sulfated hexa-, hepta- and octadecanolates, sulfated fatty alcohol glycol ethers, furthermore con
  • methylcellulose g. methylcellulose
  • hydrophobically modified starches polyvinyl alcohols (Mowiol® types, Clariant, Switzerland), polycarboxylates (Sokolan® types, BASF, Germany), polyalkoxylates, polyvi- nylamines (Lupasol® types, BASF, Germany), polyvinylpyrrolidone and the copolymers therof.
  • thickeners i. e. compounds that impart a modified flowability to formulations, i. e. high viscosity under static conditions and low viscosity during agitation
  • thickeners are polysaccharides and organic and anorganic clays such as Xanthan gum (Kelzan®, CP Kelco, U.S.A.), Rhodopol® 23 (Rhodia, France), Veegum® (RT. Vanderbilt, U.S.A.) or Attaclay® (Engelhard Corp., NJ, USA).
  • Bactericides may be added for preservation and stabilization of the formulation.
  • suitable bactericides are those based on dichlorophene and benzylalcohol hemi formal (Proxel® from ICI or Acticide® RS from Thor Chemie and Kathon® MK from Rohm & Haas) and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones (Acticide® MBS from Thor Chemie).
  • Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
  • suitable anti-foaming agents are silicone emulsions (such as e. g. Silikon® SRE, Wacker, Germany or Rhodorsil®, Rhodia, France), long chain alcohols, fatty acids, salts of fatty acids, fluoroorganic compounds and mixtures thereof.
  • Suitable colorants are pigments of low water solubility and water-soluble dyes. Examples to be mentioned und the designations rhodamin B, C. I. pigment red 112, C. I.
  • solvent red 1 pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48:1 , pigment red 57:1 , pigment red 53:1 , pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.
  • tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols and cellulose ethers (Tylose®, Shin-Etsu, Japan).
  • Powders, materials for spreading and dusts can be prepared by mixing or concomitantly grinding the resepective active compounds present in the inventive mixtures and, if appropriate, further active substances, with at least one solid carrier.
  • Granules e. g. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active substances to solid carriers.
  • solid carriers examples include mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, e. g., ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
  • mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, e. g., ammonium sulf
  • formulation types are:
  • composition types for dilution with water i) Water-soluble concentrates (SL, LS) 10 parts by weight of compounds of the inventive mixtures are dissolved in 90 parts by weight of water or in a water-soluble solvent. As an alternative, wetting agents or other auxiliaries are added. The active substance dissolves upon dilution with water. In this way, a formulation having a content of 10% by weight of active substance is obtained, ii) Dispersible concentrates (DC) 20 parts by weight of compounds of the inventive mixtures are dissolved in 70 parts by weight of cyclohexanone with addition of 10 parts by weight of a dispersant, e. g. polyvinylpyrrolidone. Dilution with water gives a dispersion.
  • a dispersant e. g. polyvinylpyrrolidone
  • the active substance content is 20% by weight
  • Emulsifiable concentrates (EC) 15 parts by weight of compounds of the inventive mixtures are dissolved in 75 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil eth- oxylate (in each case 5 parts by weight). Dilution with water gives an emulsion.
  • the composition has an active substance content of 15% by weight
  • Emulsions (EW, EO, ES) 25 parts by weight of compounds of the inventive mixtures are dissolved in 35 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil eth- oxylate (in each case 5 parts by weight).
  • This mixture is introduced into 30 parts by weight of water by means of an emulsifying machine (Ultraturrax) and made into a homogeneous emulsion. Dilution with water gives an emulsion.
  • the composition has an active substance content of 25% by weight, v) Suspensions (SC, OD, FS)
  • Dilution with water gives a stable dispersion or solution of the active substance.
  • the composition has an active substance content of 50% by weight.
  • WP, SP, SS, WS water-soluble powders 75 parts by weight of compounds of the inventive mixtures are ground in a rotor-stator mill with addition of 25 parts by weight of dispersants, wetting agents and silica gel. Dilution with water gives a stable dispersion or solution of the active substance.
  • the active substance content of the composition is 75% by weight
  • Gel (GF) In an agitated ball mill, 20 parts by weight of compounds of the inventive mixtures are comminuted with addition of 10 parts by weight of dispersants, 1 part by weight of a gelling agent wetters and 70 parts by weight of water or of an organic solvent to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance, whereby a composition with 20% (w/w) of active substance is obtained.
  • Composition types to be applied undiluted ix Dustable powders (DP, DS)
  • the agrochemical formulations generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, most preferably between 0.5 and 90%, by weight of active substances.
  • the compounds of the inventive mixtures are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
  • the compounds of the inventive mixtures can be used as such or in the form of their compositions, e. g. in the form of directly sprayable solutions, powders, suspensions, dispersions, emulsions, oil dispersions, pastes, dustable products, materials for spreading, or granules, by means of spraying, atomizing, dusting, spreading, brushing, immersing or pouring.
  • the application forms depend entirely on the intended purposes; it is intended to ensure in each case the finest possible distribution of the compounds present in the inventive mixtures.
  • Aqueous application forms can be prepared from emulsion concentrates, pastes or wettable powders (sprayable powders, oil dispersions) by adding water.
  • the substances can be homogenized in water by means of a wetter, tackifier, dispersant or emulsifier.
  • a wetter, tackifier, dispersant or emulsifier it is possible to prepare concentrates composed of active substance, wetter, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and such concentrates are suitable for dilution with water.
  • the active substance concentrations in the ready-to-use preparations can be varied within relatively wide ranges. In general, they are from 0.0001 to 10%, preferably from 0.001 to 1 % by weight of compounds of the inventive mixtures .
  • the compounds of the inventive mixtures may also be used successfully in the ultra- low-volume process (ULV), it being possible to apply compositions comprising over 95% by weight of active substance, or even to apply the active substance without additives.
  • UUV ultra- low-volume process
  • oils, wetters, adjuvants, herbicides, fungicides, other pesticides, or bactericides may be added to the active compounds, if appropriate not until immediately prior to use (tank mix).
  • These agents can be admixed with the compounds of the inventive mixtures in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.
  • compositions of this invention may also contain fertilizers such as ammonium nitrate, urea, potash, and superphosphate, phytotoxicants and plant growth regulators and safeners. These may be used sequentially or in combination with the above-described compositions, if appropriate also added only immediately prior to use (tank mix). For example, the plant(s) may be sprayed with a composition of this invention either before or after being treated with the fertilizers.
  • fertilizers such as ammonium nitrate, urea, potash, and superphosphate, phytotoxicants and plant growth regulators and safeners.
  • the compounds contained in the mixtures as defined above can be applied simultaneously, that is jointly or separately, or in succession, the sequence, in the case of separate application, generally not having any effect on the result of the control measures.
  • the compound I and compound Il (and optionally a further compound Il and/or [compound IV or V]) is to be understood to denote, that at least the compound I and compound Il (and optionally a further compound Il and/or [compound IV or V]) occur simultaneously at the site of action (i.e. the pests, such as harmful fungi and anminal pests such as insects, arachinds or nematode to be controlled or their habitats such as infected plants, plant propagation materials, particularly seeds, sur- faces, materials or the soil as well as plants, plant propagation materials, particularly seeds, soil, surfaces, materials or rooms to be protected from fungal attack) in a effective amount.
  • the site of action i.e. the pests, such as harmful fungi and anminal pests such as insects, arachinds or nematode to be controlled or their habitats such as infected plants, plant propagation materials, particularly seeds, sur- faces, materials or the soil as well as plants, plant propagation materials, particularly seeds
  • the two compounds Il is to be understood to denote, that at least the first compound Il and second compound Il occur simultaneously at the site of action (i.e. the pests, such as harmful fungi and anminal pests such as insects, ara- chinds or nematode to be controlled or their habitats such as infected plants, plant propagation materials, particularly seeds, surfaces, materials or the soil as well as plants, plant propagation materials, particularly seeds, soil, surfaces, materials or rooms to be protected from fungal attack) in a effective amount.
  • the site of action i.e. the pests, such as harmful fungi and anminal pests such as insects, ara- chinds or nematode to be controlled or their habitats such as infected plants, plant propagation materials, particularly seeds, surfaces, materials or the soil as well as plants, plant propagation materials, particularly seeds, soil, surfaces, materials or rooms to be protected from fungal attack
  • the order of application is not essential for working of the present invention.
  • the weight ratio of the compounds generally depends from the properties of the compounds of the inventive mixtures.
  • the compounds of the inventive mixtures can be used individually or already partially or completely mixed with one another to prepare the composition according to the in- vention. It is also possible for them to be packaged and used further as combination composition such as a kit of parts.
  • kits may include one or more, including all, components that may be used to prepare a subject agrochemical composition.
  • kits may include the compound I and compound Il (and optionally a further compound Il and/or [compound IV or V]) and/or an adjuvant component and/or a further pesticidal compound (e.g. insecticide or herbicide) and/or a growth regulator component).
  • an adjuvant component and/or a further pesticidal compound e.g. insecticide or herbicide
  • a growth regulator component e.g. insecticide or herbicide
  • One or more of the components may already be combined together or pre-formulated. In those embodiments where more than two components are provided in a kit, the components may already be combined together and as such are packaged in a single container such as a vial, bottle, can, pouch, bag or canister.
  • kits may include one or more separate containers such as vials, cans, bottles, pouches, bags or canisters, each container containing a separate component for an agrochemi- cal composition.
  • a component of the kit may be applied separately from or together with the further components or as a component of a combination composition according to the invention for preparing the composition according to the invention.
  • the user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank or a spray plane.
  • the agrochemical composition is made up with water and/or buffer to the desired application concentra- tion, it being possible, if appropriate, to add further auxiliaries, and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained.
  • 50 to 500 liters of the ready-to-use spray liquor are applied per hectare of agricultural useful area, preferably 100 to 400 liters.
  • individual compounds of the inventive mixtures formulated as composition (or formulation) such as parts of a kit or parts of a binary or ternary or quaternary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate (tank mix).
  • either individual compounds of the inventive mixtures formulated as composition or partially premixed components e. g. components comprising the compound I and compound Il (and optionally a further compound Il and/or [compound IV or V]) may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate (tank mix).
  • either individual components of the composition according to the invention or partially premixed components e. g. components comprising the compound I and compound Il (and optionally a further compound Il and/or [compound IV or V]), can be applied jointly (e. .g. after tankmix) or consecutively.
  • the present invention comprises a method for controlling pests, that means animal pests and harmful fungi, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant propagation material (preferably seed) are treated with an pesticidally effective amount of a mixture.
  • inventive mixtures are suitable for controlling the following fungal plant diseases:
  • Albugo spp. white rust
  • vegetables e. g. A. Candida
  • sunflowers e. g. A. tragopogonis
  • Alternaria spp. Alternaria leaf spot) on vegetables, rape (A. brassicola or brassicae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e. g.
  • A. solani or A. alternata tomatoes (e. g. A. solani or A. alternata) and wheat; Aphano- myces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A. tritici (anthracnose) on wheat and A. hordei on barley; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis) or Northern leaf blight (B. zeicola) on corn, e. g. spot blotch (B. sorokiniana) on cereals and e.g.
  • Botrytis cinerea teleomorph: Botryotinia fuckeliana: grey mold
  • fruits and berries e. g. strawberries
  • vegetables e. g. lettuce, carrots, celery and cabbages
  • rape flowers, vine
  • Cercospora spp. (Cercospora leaf spots) on corn (e.g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e. g. C. beticola), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvum: leaf mold) and cereals, e. g. C.
  • herbarum black ear
  • Claviceps purpurea ergot
  • Cochliobolus anamorph: Helminthosporium of Bipolaris
  • spp. leaf spots
  • corn C. carbonum
  • cereals e. g. C. sativus, anamorph: B. sorokiniana
  • rice e. g. C. miy- abeanus, anamorph: H. oryzae
  • Colletotrichum teleomorph: Glomerella
  • spp. an- thracnose
  • cotton e. g. C. gossypii
  • corn e. g. C.
  • graminicola Anthracnose stalk rot
  • soft fruits e. g. C. coccodes: black dot
  • beans e. g. C. lindemuthianum
  • soybeans e. g. C. truncatum or C. gloeosporioides
  • Corticium spp. e. g. C. sa- sakii (sheath blight) on rice
  • Corynespora cassiicola leaf spots
  • Cycloconium spp. e. g. C. oleaginum on olive trees
  • Cylindrocarpon spp. e. g.
  • teleomorph Nectria or Neonectria spp.
  • vines e. g. C. liriodendri, teleomorph: Neonectria liriodendri: Black Foot Disease
  • Dematophora teleomorph: Rosellinia
  • necatrix root and stem rot
  • Diaporthe spp. e. g. D. phaseolorum (damping off) on soybeans
  • Drechslera ser. Helminthosporium, teleomorph: Pyrenophora
  • spp. on corn, cereals, such as barley e. g. D.
  • ampelina anthracnose
  • Entyloma oryzae leaf smut
  • Epicoccum spp. black mold
  • Erysiphe spp. potowdery mildew
  • sugar beets E. betae
  • vegetables e. g. E. pisi
  • cucurbits e. g. E. cichoracearum
  • cabbages e. g. E. cruciferarum
  • Eutypa lata Eutypa canker or dieback, anamorph: Cytosporina lata, syn.
  • Drechslera, teleomorph Cochliobolus) on corn, cereals and rice; Hemileia spp., e. g. H. vastatrix (coffee leaf rust) on coffee; lsariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M.
  • stem rot P. phaseoli, teleomorph: Diaporthe phaseolorum
  • Physoderma maydis brown spots
  • Phytophthora spp. wilt, root, leaf, fruit and stem root
  • paprika and cucurbits e. g. P. capsici
  • soybeans e. g. P. megasperma, syn. P. sojae
  • potatoes and tomatoes e. g. P. infestans: late blight
  • broad-leaved trees e. g. P.
  • Plasmodiophora brassicae club root
  • Plasmopara spp. e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers
  • Podosphaera spp. powdery mildew on rosaceous plants, hop, pome and soft fruits, e. g. P. leucotricha on apples
  • Polymyxa spp. e. g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P.
  • Pseudocercosporella herpotrichoides eyespot, teleomorph: Tapesia yallundae
  • Pseudoperonospora downy mildew
  • Pseudopezicula tracheiphila red fire disease or .rotbrenner', anamorph: Phialophora
  • Puccinia spp. rusts on various plants, e. g. P. triticina (brown or leaf rust), P.
  • striiformis stripe or yellow rust
  • P. hordei dwarf rust
  • P. graminis seed or black rust
  • P. recondita brown or leaf rust
  • cereals such as e. g. wheat, barley or rye, and asparagus (e. g. P. asparagi); Pyrenophora (anamorph: Drechslera) tritici-repentis (tan spot) on wheat or P. teres (net blotch) on barley; Pyricularia spp., e. g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P.
  • grisea on turf and cereals Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphani- dermatum); Ramularia spp., e. g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. R.
  • S. rolfsii or S. scle- rotiorum Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici (Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum (Stagono- spora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, ana- morph: Oidium tuckeri) on vines; Setospaeria spp. (leaf blight) on corn (e. g. S. turcicum, syn.
  • Sphacelotheca spp. (smut) on corn, (e. g. S. reiliana: head smut), sorghum und sugar cane; Sphaerotheca fuliginea (powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn.
  • Taphrina spp. e. g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums
  • Thielaviopsis spp. black root rot
  • controversa dwarf bunt
  • Typhula incarnata grey snow mold
  • Uro- cystis spp. e. g. U. occulta (stem smut) on rye
  • Uromyces spp. rust
  • vegetables such as beans (e. g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e. g. U. betae)
  • Ustilago spp. loose smut) on cereals (e. g. U. nuda and U. avaenae), corn (e. g. U. maydis: corn smut) and sugar cane; Venturia spp.
  • inventive mixturs are also suitable for controlling fungal diseases occouring in the protection of materials (e. g. wood, paper, paint dispersions, fiber or fabrics) and in the protection of stored products.
  • materials e. g. wood, paper, paint dispersions, fiber or fabrics
  • the particular attention is paid to the following fungal diseases: Ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Sclerophoma spp.,
  • the inventive mixtures exhibit also outstanding action against animal pests from the following orders:
  • insects from the order of the lepidopterans for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheima- tobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandi- osella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bou- liana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha mo- lesta, Heli
  • beetles Coldoptera
  • Agrilus sinuatus for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscu- rus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aphthona euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blasto- phagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata,
  • Leptinotarsa decemlineata Limonius californicus, Lissorhoptrus oryzophilus, Melanotus communis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Ortiorrhynchus sulcatus, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllobius pyri, Phyllotreta chrysocephala, Phyllophaga sp., Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus and Sito- philus granaria, flies, mosquitoes (Diptera), e.g.
  • thrips (Thysanoptera), e.g. Dichromothrips corbetti, Dichromothrips ssp , Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,
  • Isoptera e.g. Calotermes flavicollis, Leucotermes flavipes, Heterotermes aureus, Reticulitermes flavipes, Reticulitermes virginicus, Reticulitermes lucifugus, Termes natalensis, and Coptotermes formosanus,
  • cockroaches e.g. Blattella germanica, Blattella asahinae, Peri- planeta americana, Periplaneta japonica, Periplaneta brunnea, Periplaneta fuligginosa, Periplaneta australasiae, and Blatta orientalis,
  • Hemiptera true bugs
  • Hoplocampa minuta Hoplocampa testudinea, Monomorium pha- raonis, Solenopsis geminata, Solen
  • Vespula squamosa Paravespula vulgaris, Paraves- pula pennsylvanica, Paravespula germanica, Dolichovespula maculata, Vespa crabro, Polistes rubiginosa, Camponotus floridanus, and Linepithema humile,
  • crickets grasshoppers, locusts (Orthoptera), e.g. Acheta domestica, Gryllotalpa gryllo- talpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Schistocerca americana, Schistocerca gregaria, Dociostaurus maroccanus, Tachycines asynamorus, Oedaleus senegalensis, Zonozerus variegatus, Hieroglyphus daganensis, Kraussaria angulifera, Calliptamus italicus, Chortoicetes terminifera, and Locustana pardalina,
  • Arachnoidea such as arachnids (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Ambryomma maculatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Dermacentor andersoni, Dermacentor variabilis, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ixodes scapularis, Ixodes holocyclus, Ixodes pacificus, Ornithodorus moubata, Ornithodorus hermsi, Ornithodo- rus turicata, Ornithonyssus bacoti, Otobius megnini, Dermanyss
  • Aculus e.g. Aculus
  • Phyllocoptrata oleivora and Eriophyes sheldoni Tarsonemidae spp. such as Phytonemus pallidus and Polyphagotarsonemus latus
  • Tenuipalpidae spp. such as Brevipalpus phoenicis
  • Tetra- nychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panony- chus citri, and Oligonychus pratensis
  • Araneida e.g. Latrodectus mactans, and Loxos- celes reclusa
  • Latrodectus mactans e.g. Latrodectus mactans, and Loxos- cele
  • fleas e.g. Ctenocephalides felis, Ctenocephalides canis, Xenopsylla cheopis, Pulex irritans, Tunga penetrans, and Nosopsyllus fasciatus,
  • silverfish, firebrat e.g. Lepisma saccharina and Thermobia domestica
  • centipedes Chilopoda
  • Scutigera coleoptrata centipedes
  • Earwigs e.g. forficula auricularia
  • Pediculus humanus capitis e.g. Pediculus humanus capitis, Pediculus humanus corporis, Pthi- rus pubis, Haematopinus eurysternus, Haematopinus suis, Linognathus vituli, Bovicola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus,
  • plant parasitic nematodes such as root-knot nematodes, Meloidogyne arenaria, Meloi- dogyne chitwoodi, Meloidogyne exigua, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica and other Meloidogyne species; cyst nematodes, Globodera rostochiensis, Globodera pallida, Globodera tabacum and other Globodera species, Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; seed gall nematodes, Anguina funesta, Anguina tritici and other Anguina species; stem and foliar nematodes, Aphelenchoides besseyi, Aphelen- choides fragariae, Aphelen
  • the mixtures according to the invention can be applied to any and all developmental stages of pests, such as egg, larva, pupa, and adult.
  • the pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures.
  • Locus means a plant, plant propagation material (preferably seed), soil, area, material or environment in which a pest is growing or may grow.
  • pesticidally effective amount means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism.
  • the pesticidally effective amount can vary for the various mixtures / compositions used in the invention.
  • a pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
  • the present invention comprises a method for improving the health of plants, wherein the plant, the locus where the plant is growing or is expected to grow or plant propagation material, from which the plant grows, is treated with an plant health effective amount of an inventive mixture.
  • plant health effective amount denotes an amount of the inventive mixtures, which is sufficient for achieving plant health effects as defined hereinbelow. More exemplary information about amounts, ways of application and suitable ratios to be used is given below. Again, the skilled artisan is well aware of the fact that such an amount can vary in a broad range and is dependent on various factors, e.g. the treated cultivated plant or material and the climatic conditions.
  • effective amount comprises the terms "plant health effective amount” and/or "pesticidally effective amount” as the case may be.
  • plant health effective amount and/or “pesticidally effective amount” as the case may be.
  • active compounds such as insecticides, herbidices, fungicides or else herbicidal or growth-regulating active compounds or fertilizers can be added as further active components according to need.
  • inventive mixtures are employed by treating the fungi or the plants, plant propagation materials (preferably seeds), materials or soil to be protected from fungal attack with a pesticidally effective amount of the active compounds.
  • the application can be carried out both before and after the infection of the materials, plants or plant propagation materials (preferably seeds) by the pests.
  • the application rates of the mixtures according to the invention are from 0,3 g/ha to 2000 g/ha, preferably 5 g/ha to 2000 g/ha, more preferably from 50 to 900 g/ha, in particular from 50 to 750 g/ha.
  • the application rates of the mixtures according to the invention are from 0,3 g/ha to 2000 g/ha, preferably 5 g/ha to 2000 g/ha, more preferably from 50 to 900 g/ha, in particular from 50 to 750 g/ha.
  • inventive mixtures or compositions of these mixtures can also be employed for protecting plants from attack or infestation by animal pests (insects, acarids or nematodes) comprising contacting a plant, or soil or water in which the plant is growing.
  • animal pests insects, acarids or nematodes
  • the term plant refers to an entire plant, a part of the plant or the propagation material of the plant.
  • Plants and as well as the propagation material of said plants, which can be treated with the inventive mixtures include all genetically modified plants or transgenic plants, e.g. crops which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods, or plants which have modified char- acteristics in comparison with existing plants, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures.
  • mixtures according to the present invention can be applied (as seed treatment, spray treatment, in furrow or by any other means) also to plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://www.bio.org/speeches/pubs/er/agrLproducts.asp).
  • Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination.
  • one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant.
  • Such genetic modifications also include but are not limited to targeted post-transtional modification of protein(s), oligo- or polypeptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.
  • HPPD hydroxyphenylpyruvate dioxygenase
  • ALS acetolactate synthase
  • WO 05/20673, WO 03/14357, WO 03/13225, WO 03/14356, WO 04/16073) or imida- zolinones see e. g. US 6,222,100, WO 01/82685, WO 00/026390, WO 97/41218, WO 98/002526, WO 98/02527, WO 04/106529, WO 05/20673, WO 03/014357, WO 03/13225, WO 03/14356, WO 04/16073
  • EPSPS enolpyruvylshikimate-3-phosphate syn- thase
  • GS glutamine synthetase
  • GS glutamine synthetase
  • glufosinate see e.g. EP-A 242 236, EP-A 242 246) or oxynil herbicides (see e. g. US 5,559,024)
  • mutagenesis e.g. Clearfield® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e. g. imazamox.
  • plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as ⁇ - endotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bi) or Cry9c; vegetative insecticidal proteins (VIP), e. g. VIP1 , VIP2, Vl P3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e. g. Photorhabdus spp.
  • VIP1 , VIP2, Vl P3 or VIP3A vegetative insecticidal proteins
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins
  • toxins produced by fungi such Streptomy- cetes toxins, plant lectins, such as pea or barley lectins; agglutinins
  • proteinase inhibitors such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors
  • ribosome-inactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase
  • ion channel blockers such as blockers of sodium
  • these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins.
  • Hybrid proteins are characterized by a new combination of protein domains, (see, e. g. WO 02/015701 ).
  • Further examples of such toxins or genetically modified plants capa- ble of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073.
  • the methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e.
  • insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of athropods, especially to beetles (Coeloptera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda).
  • Genetically modified plants capable to synthesize one or more insecticidal proteins are, e.
  • WO 03/018810 MON 863 from Monsanto Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the CryiAc toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the Cry1 F toxin and PAT enzyme).
  • plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called "pathogenesis-related proteins" (PR proteins, see, e. g.
  • EP-A 392 225 plant disease resistance genes (e. g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the mexican wild potato Solanum bulbocastanum) or T4-lysozym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylvora).
  • plant disease resistance genes e. g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the mexican wild potato Solanum bulbocastanum
  • T4-lysozym e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylvora.
  • the methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above.
  • plants are also covered that are by the use of recombinant DNA tech- niques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.
  • plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health- promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera® rape, DOW Agro Sciences, Canada).
  • plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato, BASF SE, Germany).
  • a modified amount of substances of content or new substances of content specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato, BASF SE, Germany).
  • Water-soluble concentrates (LS), flowable concentrates (FS), powders for dry treat- ment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES) emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds.
  • the inventive mixtures are used for the pro- tection of the seed and the seedlings' roots and shoots, preferably the seeds.
  • Seed treatment can be made into the seedbox before planting into the field.
  • the weight ration in the binary, ternary and quaternary mixtures of the present invention generally depends from the properties of the compounds of the inventive mixtures.
  • compositions which are especially useful for seed treatment are e.g.:
  • a Soluble concentrates (SL, LS)
  • I Dustable powders (DP, DS) These compositions can be applied to plant propagation materials, particularly seeds, diluted or undiluted. These compositions can be applied to plant propagation materials, particularly seeds, diluted or undiluted.
  • the compositions in question give, after two-to- tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, pref- erably from 0.1 to 40% by weight, in the ready-to-use preparations. Application can be carried out before or during sowing.
  • Methods for applying or treating agrochemical compounds and compositions thereof, respectively, on to plant propagation material, especially seeds are known in the art, and include dressing, coating, pelleting, dusting and soaking application methods of the propagation material (and also in furrow treat- ment).
  • the compounds or the compositions thereof, respectively are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
  • the application rates of the inventive mixture are generally for the formulated product (which usually comprises from 10 to 750 g/l of the active(s)) .
  • the invention also relates to the propagation products of plants, and especially the seed comprising, that is, coated with and/or containing, a mixture as defined above or a composition containing the mixture of two or more active ingredients or a mixture of two or more compositions each providing one of the active ingredients.
  • the plant propagation material (preferably seed) comprises the inventive mixtures in an amount of from 0.1 g to 10 kg per 100 kg of plant propagation material (preferably seed) preferably 0.1 g to 1 kg per 100 kg of plant propagation material (preferably seed).
  • the ratio by weight of compound I is herein preferably between 1 - 1000 g/100kg plant propagation material (preferably seed), more prefered 10 to 1000 g/100kg plant propagation material (preferably seed) and most preferred 50 to 1000 g/100kg plant propagation material (preferably seed).
  • the ratio by weight for compound V is herein preferably between 1 - 1000 g/100kg plant propagation material (preferably seed), more prefered 10 to 1000 g/100kg plant propagation material (preferably seed) and most preferred 50 to 1000 g/100kg plant propagation material (preferably seed).
  • the ratio by weight of compound IV is herein preferably between 1 - 1000 g/100kg plant propagation material (preferably seed), more prefered 10 to 1000 g/100kg plant propagation material (preferably seed) and most preferred 50 to 1000 g/100kg plant propagation material (preferably seed).
  • the ratio by weight for compound Il is herein preferably between 1 - 200 g/100kg plant propagation material (preferably seed), more preferred 1 to 50 g/100kg plant propagation material (preferably seed) and most preferred 1 to 20 g/100kg plant propagation material (preferably seed).
  • the separate or joint application of the compounds of the inventive mixtures is carried out by spraying or dusting the seeds, the seedlings, the plants or the soils before or after sowing of the plants or before or after emergence of the plants.
  • the inventive mixtures are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part) and through trophallaxis and transfer.
  • Preferred application methods are into water bodies, via soil, cracks and crevices, pastures, manure piles, sewers, into water, on floor, wall, or by perimeter spray application and bait.
  • the inventive mixtures are prepared into a bait preparation.
  • the bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).
  • the bait employed in the composition is a product which is sufficiently attractive to incite insects such as ants, termites, wasps, flies, mosquitoes, crickets etc. or cockroaches to eat it.
  • This attractant may be chosen from feeding stimulants or para and / or sex phero- mones readily known in the art.
  • Methods to control infectious, non-phytopathogenic diseases transmitted by insects with the inventive mixtures and their respective compositions also comprise treating surfaces of huts and houses, air spraying and impregnation of curtains, tents, clothing items, bed nets, tsetse-fly trap or the like, lnsecticidal compositions for application to fibers, fabric, knitgoods, non-wovens, netting material or foils and tarpaulins preferably comprise a composition including the inventive mixtures, optionally a repellent and at least one binder.
  • inventive mixtures and the compositions comprising them can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities).
  • the quantity of active ingredient ranges from 0.0001 to 500 g per 100 m 2 , preferably from 0.001 to 2O g per 100 m 2 .
  • Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound per m 2 treated material, desirably from 0.1 g to 50 g per m 2 .
  • lnsecticidal compositions for use in the impregnation of materials typically contain from 0.001 to 95 weight %, preferably from 0.1 to 45 weight %, and more preferably from 1 to 25 weight % of at least one repellent and / or insecticide.
  • the typical content of active ingredient is from 0.0001 weight % to 15 weight %, desirably from 0.001 weight % to 5% weight % of active compound.
  • the composition used may also comprise other additives such as a solvent of the active material, a flavoring agent, a preserving agent, a dye or a bitter agent. Its attractiveness may also be enhanced by a special color, shape or texture.
  • the content of the mixture of the active ingredients is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %.
  • the active compounds were formulated separately as a stock solution having a concentration of 10000 ppm in dimethyl sulfoxide.
  • metaflumizone and orysastrobin were used as commercial finished formulations and diluted with water to the stated concentration of the active compound.
  • the measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds. These percentages were converted into efficacies.
  • An efficacy of 0 means that the growth level of the pathogens corresponds to that of the untreated control; an efficacy of 100 means that the pathogens were not growing.
  • Example 1 Activity against the late blight pathogen Phytophthora infestans in the mi- crotiter test (Phytin)
  • the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
  • MTP micro titer plate
  • a spore suspension of Phy- tophtora infestans containing a pea juice-based aqueous nutrient medium was then added.
  • the plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.
  • the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
  • MTP micro titer plate
  • a spore suspension of Botrci cinerea in an aqueous biomalt solution was then added.
  • the plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.
  • Example 4 Activity against leaf blotch on wheat caused by Septoria tritici
  • the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
  • a spore suspension of Septoria tritici in an aqueous biomalt solution was then added.
  • the plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.
  • Example 5 Activity against Fusarium graminum in the microtiterplate test
  • the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
  • a spore suspension of Fusarium graminum in an aqueous biomalt solution was then added.
  • the plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.

Abstract

La présente invention porte sur des mélanges synergiques comprenant, en tant que composants actifs, du métaflumizone; et un ou deux composés fongiques choisis dans le groupe constitué par des fongicides à base de strobilurine.
PCT/EP2009/063383 2008-10-16 2009-10-14 Mélanges pesticides WO2010043639A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08166775 2008-10-16
EP08166775.0 2008-10-16

Publications (2)

Publication Number Publication Date
WO2010043639A2 true WO2010043639A2 (fr) 2010-04-22
WO2010043639A3 WO2010043639A3 (fr) 2010-08-05

Family

ID=40513360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/063383 WO2010043639A2 (fr) 2008-10-16 2009-10-14 Mélanges pesticides

Country Status (2)

Country Link
AR (1) AR075649A1 (fr)
WO (1) WO2010043639A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013156331A1 (fr) * 2012-04-16 2013-10-24 Basf Se Compositions synergiques comprenant de la pyraclostrobine et un composé insecticide
CN104304292A (zh) * 2014-09-15 2015-01-28 浙江泰达作物科技有限公司 一种含啶氧菌酯和氰氟虫腙的农药组合物、制剂及其用途
CN107771816A (zh) * 2016-08-29 2018-03-09 南京华洲药业有限公司 一种含啶氧菌酯和乙嘧酚磺酸酯的杀菌组合物及其应用
US10219514B2 (en) 2010-10-01 2019-03-05 Syngenta Participations Ag Fungicidal compositions comprising a n-methoxy-(phenyl-ethyl)-pyrazole-4-carboxamide and a strobilurin

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015515A1 (fr) * 2001-08-16 2003-02-27 Bayer Cropscience Ag Combinaisons de principes actifs fongicides contenant de la trifloxystrobine
WO2004000022A1 (fr) * 2002-06-24 2003-12-31 Bayer Cropscience Aktiengesellschaft Combinaison de substances actives fongicides
WO2005002334A1 (fr) * 2003-07-02 2005-01-13 Bayer Cropscience Aktiengesellschaft Formulations agrochimiques
WO2006023899A1 (fr) * 2004-08-24 2006-03-02 Bayer Cropscience Lp Methode de lutte contre les champignons pathogenes dans l'herbe ou le gazon
WO2006069654A2 (fr) * 2004-12-24 2006-07-06 Bayer Cropscience Ag Insecticides a base de neonicotinoides et de strobilurines selectionnees
WO2008092759A2 (fr) * 2007-01-30 2008-08-07 Basf Se Mélanges pesticides à base de dérivés d'azolopyrimidinylamines et d'insecticides
WO2008092819A2 (fr) * 2007-02-01 2008-08-07 Basf Se Mélanges pesticides

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015515A1 (fr) * 2001-08-16 2003-02-27 Bayer Cropscience Ag Combinaisons de principes actifs fongicides contenant de la trifloxystrobine
WO2004000022A1 (fr) * 2002-06-24 2003-12-31 Bayer Cropscience Aktiengesellschaft Combinaison de substances actives fongicides
WO2005002334A1 (fr) * 2003-07-02 2005-01-13 Bayer Cropscience Aktiengesellschaft Formulations agrochimiques
WO2006023899A1 (fr) * 2004-08-24 2006-03-02 Bayer Cropscience Lp Methode de lutte contre les champignons pathogenes dans l'herbe ou le gazon
WO2006069654A2 (fr) * 2004-12-24 2006-07-06 Bayer Cropscience Ag Insecticides a base de neonicotinoides et de strobilurines selectionnees
WO2008092759A2 (fr) * 2007-01-30 2008-08-07 Basf Se Mélanges pesticides à base de dérivés d'azolopyrimidinylamines et d'insecticides
WO2008092819A2 (fr) * 2007-02-01 2008-08-07 Basf Se Mélanges pesticides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE CAPLUS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; September 2008 (2008-09), HENRICOT, B. ET AL: "Studies on the control of Cylindrocladium buxicola using fungicides and host resistance" XP002582796 retrieved from STN Database accession no. 2008:1111722 & PLANT DISEASE , 92(9), 1273-1279 CODEN: PLDIDE; ISSN: 0191-2917, 2008, *
SALGADO ET AL: "Metaflumizone is a novel sodium channel blocker insecticide" VETERINARY PARASITOLOGY, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 150, no. 3, 23 October 2007 (2007-10-23), pages 182-189, XP022348785 ISSN: 0304-4017 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10219514B2 (en) 2010-10-01 2019-03-05 Syngenta Participations Ag Fungicidal compositions comprising a n-methoxy-(phenyl-ethyl)-pyrazole-4-carboxamide and a strobilurin
US11570990B2 (en) 2010-10-01 2023-02-07 Syngenta Participations Ag Fungicidal compositions comprising 3-difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid methoxy-[1-methyl-2-(2,4,6-trichlorophenyl)-ethyl]-amide and an azole
WO2013156331A1 (fr) * 2012-04-16 2013-10-24 Basf Se Compositions synergiques comprenant de la pyraclostrobine et un composé insecticide
CN104304292A (zh) * 2014-09-15 2015-01-28 浙江泰达作物科技有限公司 一种含啶氧菌酯和氰氟虫腙的农药组合物、制剂及其用途
CN107771816A (zh) * 2016-08-29 2018-03-09 南京华洲药业有限公司 一种含啶氧菌酯和乙嘧酚磺酸酯的杀菌组合物及其应用

Also Published As

Publication number Publication date
WO2010043639A3 (fr) 2010-08-05
AR075649A1 (es) 2011-04-20

Similar Documents

Publication Publication Date Title
EP2482665B1 (fr) Mélanges pesticides
US20110055978A1 (en) Pesticidal Mixtures
US20120021905A1 (en) Pesticidal Mixtures
WO2009098210A2 (fr) Mélanges pesticides
WO2011144593A1 (fr) Mélanges pesticides comprenant des insecticides et de la pyraclostrobine
WO2009098225A2 (fr) Mélanges pesticides
US20120238447A1 (en) Pesticidal Mixtures of Triazamate with Strobilurines
WO2010092032A1 (fr) Mélanges pesticides
WO2009098228A2 (fr) Mélanges pesticides
WO2011067209A2 (fr) Mélanges pesticides
WO2010092031A2 (fr) Mélanges pesticides
US20120316062A1 (en) Pesticidal mixtures
US8748341B2 (en) Pesticidal mixtures
WO2010043639A2 (fr) Mélanges pesticides
WO2010043552A1 (fr) Mélanges pesticides comprenant de la métaflumizone et un fongicide azole
WO2010092014A2 (fr) Mélanges pesticides
WO2010043553A1 (fr) Mélanges pesticides comprenant de la métaflumizone et un composé fongicide
WO2011069930A2 (fr) Mélanges pesticides
WO2009098227A2 (fr) Mélanges pesticides
WO2010000791A1 (fr) Mélanges pesticides comprenant de la métaflumizone et un pyrazole-4-carboxamide fongicide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09783997

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09783997

Country of ref document: EP

Kind code of ref document: A2