WO2010042433A1 - Combination of cd137 antibody and ctla-4 antibody for the treatment of proliferative diseases - Google Patents

Combination of cd137 antibody and ctla-4 antibody for the treatment of proliferative diseases Download PDF

Info

Publication number
WO2010042433A1
WO2010042433A1 PCT/US2009/059518 US2009059518W WO2010042433A1 WO 2010042433 A1 WO2010042433 A1 WO 2010042433A1 US 2009059518 W US2009059518 W US 2009059518W WO 2010042433 A1 WO2010042433 A1 WO 2010042433A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
ctla
mab
agonistic
treatment
Prior art date
Application number
PCT/US2009/059518
Other languages
French (fr)
Inventor
Maria Jure-Kunkel
Original Assignee
Bristol-Myers Squibb Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristol-Myers Squibb Company filed Critical Bristol-Myers Squibb Company
Priority to US13/122,630 priority Critical patent/US8475790B2/en
Publication of WO2010042433A1 publication Critical patent/WO2010042433A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/22Immunoglobulins specific features characterized by taxonomic origin from camelids, e.g. camel, llama or dromedary
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/74Inducing cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • This invention relates to the fields of oncology and improved therapy regimens.
  • Such agonistic or antagonistic mAbs bind to key receptors in cells of the immune system acting to enhance antigen presentation (e.g., anti-CD40), to provide costimulation (e.g., anti-CD 137), or to counteract immunoregulation ⁇ e.g., anti-CTLA-4).
  • Ipilimumab is a human anti-human CTLA-4 antibody which blocks the binding of CTLA-4 to CD80 and CD86 expressed on antigen presenting cells and thereby, blocking the negative downregulation of the immune responses elicited by the interaction of these molecules.
  • CD 137 also called 4- IBB
  • CD 137 is a T-cell costimulatory receptor induced on TCR activation (Nam et al., Curr.
  • CDl 37 is also expressed on CD4'CD25" regulatory T cells, natural killer (NK) and NK-T cells, monocytes, neutrophils, and dendritic cells. Its natural ligand, CDl 37L, has been described on antigen-presenting cells including B cells, monocyte/macrophages, and dendritic cells (Watts et al., Annu. Rev. Immunol, 23:23-68 (2005)).
  • CD 137 On interaction with its ligand, CD 137 leads to increased TCR- induced T-cell proliferation, cytokine production, functional maturation, and prolonged CD8 + T-cell survival (Nam et at, Curr. Cancer Drug Targets, 5:357-363 (2005), Watts et al., Annu. Rev. Immunol, 23:23-68 (2005)).
  • mice treated with multiple doses of CTLA-4 blocking antibodies did not develop clinical signs of colitis (Koraian et al., Adv. Immunol, 90:297-339 (2006)).
  • TNBS Trinitrobenzene sulfonic acid
  • ThI ThI -mediated model of chronic intestinal inflammation that resembles Crohn's disease.
  • the mouse model for ulcerative colitis is based on the application of oxazolone, a haptenating agent, which after intrarectal challenge, induces colitis in the distal portion of the colon with histopathological and immunological features that resemble the human disease (Strober et al., Annu. Rev. Immunol., 20:495-549 (2002); Kojima et al., J Pharmacol.
  • the model of Crohn's disease is based on the intrarectal delivery of trinitrobenzene sulfonic acid (TNBS).
  • TNBS trinitrobenzene sulfonic acid
  • the intestinal inflammation is driven by IL- 12 and is mediated by activation of macrophages and CD4+ T cell infiltration in the lamina propria (LP).
  • LP lamina propria
  • the present inventors have discovered for the first time, a treatment regimen involving the combination of an agonistic CD 137 antibody with an anti- CTLA-4 inhibitor that results in a significant, and synergistic, benefit for the treatment of colitis. It is an object of the invention to provide efficacious combination treatment regimens wherein an agonistic CD 137 antibody agent is combined with one or more anti-CTLA4 agents for the treatment of colitis diseases.
  • the present invention provides a method for the treatment of proliferative disease comprising first administering to a mammal in need thereof an agonistic CD 137 (4- IBB) antibody followed by a CTLA-4 antibody.
  • the proliferative disease is one or more cancerous solid tumors.
  • the proliferative disease is one or more refractory tumors.
  • the proliferative disease is an inflammatory disorder, particularly colitis.
  • the CTLA-4 antibody is ipilimumab or tremelimumab.
  • the agonistic CD137 antibody is BMS-663513 (Bristol-Myers Squibb) or XmAb-5592 (Xencor).
  • the present invention provides a method for the treatment or prevention of drug-induced inflammatory conditions or immu ⁇ otherapy-dependent inflammatory conditions, comprising first administering to a mammal in need thereof an agonistic CD 137 (4- IBB) antibody followed by a CTLA-4 antibody.
  • the inflammatory condition is colitis.
  • the inflammatory condition is dermatitis, hepatitis, hypophysitis, enterocolitis, immunotherapy-dependent enterocolitis.
  • the inflammatory condition is associated with modulation of the immune system, particularly modulation of the co-stimulatory pathway, and preferably inhibition of CTLA4, [0012]
  • the present invention provides a method for the treatment or prevention of drag-associated weight loss or immunotherapy-dependent weight loss, comprising first administering to a mammal in need thereof an agonistic CD137 (4- IBB) antibody followed by a CTLA-4 antibody.
  • the inflammatory condition is colitis.
  • the inflammatory condition is dermatitis, hepatitis, hypophysitis, and enterocolitis.
  • the weight loss is associated with modulation of 4- IBB.
  • the weight loss is associated with modulation of the immune system, particularly modulation of the co-stimulatory pathway, and preferably inhibition of CTLA4.
  • the present invention provides a therapeutic regimen comprising: (i) the first administration of an agonistic CDl 37 antibody to a patient in need, and (ii) the subsequent administration of an anti-CTLA4 antibody; optionally comprising an interstitial period in-between said first and second administrations.
  • the present invention also provides a method of treatment comprising: (i) the sequential administration of an agonistic CD 137 antibody to a patient in need, and (ii) the administration of an anti-CTLA4 antibody; optionally comprising an interstitial period in-between said first and second administrations.
  • the present invention also provides an alternative method of treatment comprising: (i) the administration of an anti-CTLA4 antibody, and (ii) the sequential administration of an agonistic CD 137 antibody to a patient in need; optionally comprising an interstitial period in-between said first and second administrations.
  • the present invention also provides another alternative method of treatment comprising the simultaneous administration of: (i) an agonistic CD 137 antibody to a patient in need, and (ii) the administration of an anti-CTLA4 antibody; optionally comprising an interstitial period in-between said first and second administrations.
  • Suitable anti ⁇ CTLA4 antagonist agents for use in the methods of the invention include, without limitation, anti-CTLA4 antibodies, human anti-CTLA4 antibodies, mouse anti-CTLA4 antibodies, mammalian anti-CTLA4 antibodies, humanized anti-CTLA4 antibodies, monoclonal anti-CTLA4 antibodies, polyclonal anti-CTLA4 antibodies, chimeric anti-CTLA4 antibodies, MDX-010 (ipilimumab), tremelimumab, anti ⁇ CD28 antibodies, anti-CTLA4 adnectins, anti-CTLA4 domain antibodies, single chain anti-CTLA4 fragments, heavy chain anti-CTLA4 fragments, light chain anti-CTLA4 fragments, inhibitors of CTLA4 that agonize the co- stimulatory pathway, the antibodies disclosed in PCT Publication No, WO 2001/014424, the antibodies disclosed in PCT Publication No.
  • WO 2004/035607 the antibodies disclosed in U.S. Published Application No. US 2005/0201994, and the antibodies disclosed in granted European Patent No. EP1212422B1.
  • Additional CTLA-4 antibodies are described in U.S. Patent Nos. 5,81 1,097, 5,855,887, 6,051,227, and 6,984,720; in PCT Publication Nos. WO 01/14424 and WO 00/37504; and in U.S. Publication Nos. US 2002/0039581 and US 2002/086014.
  • Other anti- CTLA-4 antibodies that can be used in a method of the present invention include, for example, those disclosed in: WO 98/42752; U.S. Patent Nos.
  • Additional anti-CTLA4 antagonists include, but are not limited to, the following: any inhibitor that is capable of disrupting the ability of CD28 antigen to bind to its cognate Hgand, to inhibit the ability of CTLA4 to bind to its cognate ligand, to augment T cell responses via the co-stimulatory pathway, to disrupt the ability of B7 to bind to CD28 and/or CTLA4, to disrupt the ability of B7 to activate the co- stimulatory pathway, to disrupt the ability of CD80 to bind to CD28 and/or CTLA4, to disrupt the ability of CD80 to activate the co-stimulatory pathway, to disrupt the ability of CD86 to bind to CD28 and/or CTLA4, to disrupt the ability of CD86 to activate the co-stimulatory pathway, and to disrupt the co-stimulatory pathway, in general from being activated.
  • CTLA-4 antibodies are specifically incorporated herein by reference for purposes of description of CTLA-4 antibodies.
  • a preferred clinical CTLA-4 antibody is human monoclonal antibody 10Dl (also referred to as MDX-OlO and ipilimumab and available from Medarex, Inc., Bloomsbury, NJ) is disclosed in WO 01/14424.
  • Suitable CD 137 agonistic agents for use in the methods of the invention include, without limitation, anti-CD137 antibodies, human anti-CD137 antibodies, mouse anti-CD 137 antibodies, mammalian anti-CD 137 antibodies, humanized anti- anti-CD137 antibodies, monoclonal anti-CD137 antibodies, polyclonal anti-CD 137 antibodies, chimeric anti-CD137 antibodies, anti-4-lBB antibodies, anti-CD137 adnectins, anti ⁇ CD137 domain antibodies, single chain anti-CD137 fragments, heavy chain. anti-CD137 fragments, light chain anti-CD137 fragments, the antibodies disclosed in U.S. Published Application No. US 2005/0095244, the antibodies disclosed in issued U.S. Patent No.
  • 7,288,638 (such as 20H4.9-IgG4 [10C7 or BMS- 663513] or 20H4.9-IgGl [BMS-663031]); the antibodies disclosed in issued U.S. Patent No. 6,887,673 [4E9 or BMS-554271]; the antibodies disclosed in issued U.S. Patent No. 7,214,493; the antibodies disclosed in issued U.S. Patent No. 6,303,121 ; the antibodies disclosed in issued U.S. Patent No. 6,569,997; the antibodies disclosed in issued U.S. Patent No. 6,905,685; the antibodies disclosed in issued U.S. Patent No, 6,355,476; the antibodies disclosed in issued U.S. Patent No.
  • Each of the anti-CTLA4 antagonist agents referenced herein may be administered either alone or in combination with a peptide antigen (e.g., gplOO), either alone or in addition to an antiproliferative agent disclosed herein.
  • the present invention further provides a pharmaceutical composition for the synergistic treatment of colitis which comprises a therapeutically effective amount of at least one (1) CD 137 agonistic antibody and (2) an anti-CTLA4 antagonist.
  • the anti-CTLA4 agent is administered simultaneously, concurrently, or preferably, subsequent to, the administration of an CDl 37 agonistic antibody or analogs thereof.
  • Figure 1 shows the resulting colon morphology following treatment with anti ⁇ CTLA-4 mAb. Representative histological section of a control untreated mouse is provided in plate (A) and a representative histological section of a CTLA-4-treated mouse is provided in plate (B). Colon sections are shown with 1OX magnification.
  • Figure 2 shows the effect of simultaneous treatment with an agonistic CD 137 mAb and CTLA-4 mAb in an oxazolone-induced murine colitis model.
  • CD 137 mAb (5 mg/kg, q3dx3) and CTLA-4 mAb (UClO, 20 mg/kg, q3dx3) were administered intraperitoneally on days 0, 3, and 6 after epicutaneous challenge with oxazolone (day 0) alone or in combination. On day 5, animals were re-challenged with 0.75% oxazolone intrarectally. ETOH (ethanol)-treated group did not receive oxazolone. Survival was monitored daily. As shown, mice that received anti-CD 137 mAb alone showed improved survival compared with animals treated with CTLA-4 mAb alone (pO.Ol).
  • Figure 3 shows the effect of treatment with CTLA-4 mAb, CD 137 mAb, or their combination in an oxazolone-induced colitis murine model when CD 137 mAb was administered prior to CTLA-4 mAb.
  • mice were administered intraperitoneally with CD 137 mAb (5 mg/kg, days -1, 2, 5) and CTLA-4 mAb (UClO, 20 mg/kg, days 0, 3, 6).
  • CTLA-4 mAb ULO, 20 mg/kg, days 0, 3, 6
  • mice were dosed with CTLA-4 mAb at 10 mg/kg following the same schedule. Epicutaneous sensitization with oxazolone was performed on day 0 (3%) while intrarectal challenge was done on day 5 (0.75%). ETOH (ethanol) treated group did not receive oxazolone.
  • FIG. 4 shows the effect of treatment with CTLA-4 mAb, CDl 37 mAb or their combination in a TNBS-induced murine colitis model. Mice were treated with CDl 37 mAb (5 mg/kg) on days -1, 2, and 5, whereas CTLA-4 mAb (20 mg/kg) was administered on days 0, 3, and 6. Intra-rectal injections of TNBS (2 mg/mouse in 35% ethanol) were administered on Day 0 after CTLA-4 mAb treatment. Combination groups followed the same dose and schedule as single agent groups.
  • mice treated with CTLA-4 mAb produced significant body weight loss compared with control vehicle ( ⁇ .05, days 1-6), whereas CD137 mAb did not. Furthermore, administration of CD 137 mAb prior to CTLA-4 mAb prevented the rate of body weight loss observed with CTLA-4 mAb (p ⁇ 0.05, days 2-6). Animals treated with CTLA-4 mAb, represented by an asterisk ("*"), showed higher % body weight loss compared with animals treated with CD137 mAb + CTLA-4 mAb and CDl 37 mAb alone (p ⁇ 0.05, Student's t-test). Data shows mean ⁇ SEM of 8 mice/group. Thus, as observed in the oxazolone-based colitis model, CD 137 mAb modulated and improved the clinical signs associated with treatment with CTLA-4 mAb in the TNBS-induced colitis model.
  • Optimal T cell activation requires interaction between the T cell receptor and specific antigen (Bretscher, P. et al, Science, 169:1042-1049 (1970)) (the first signal) and engagement of costitmilatory receptors on the surface of the T cell with costimulatory ligands expressed by the antigen-presenting cell (APC) (the second signal), Failure of the T cell to receive a second signal can lead to clonal anergy (Schwartz, R.H., Science, 248:1349-1356 (1990)).
  • CD28 and CTLA-4 are cytotoxic T lymphocyte-associated antigen 4 (CTLA-4, CDl 52) whose ligands on APC are B7-1 and B7-2 (Linsley, P.S. et al., J Exp. Med,, 173:721-730 (1991); Linsley, P.S. et al., J Exp. Med., 174:561-569 (1991)).
  • CTLA-4 cytotoxic T lymphocyte-associated antigen 4
  • CD28 and CTLA-4 are closely related members of the Ig superfamily (Brunet, J. F. et al., Nature, 328:267-270 (1987)), they function antagonistically.
  • CD28 is constitutively expressed on the surface of T cells (Gross, J.A.
  • CTLA-4 is not found on resting T cells but is up-regulated for 2-3 days after T cell activation (Lindsten, T. et al., J. Immunol., 151:3489-3499 (1993), Walunas, TX.
  • CTLA-4 also binds to B7-1 and B7-2 but with greater affinity than CD28 (Linsley, P.S. et al., Immunity, 1:793-801 (1994)) and antagonizes T cell activation, interferes with IL-2 production and IL-2 receptor expression, and interrupts cell cycle progression of activated T cells (Walunas, TX. et al., J, Exp, Med, , 183:2541-2550 (1996); Krummel, M.F. et al., J Exp. Med., 183:2533-2540 (1996); Brunner, M.C.
  • the overall T cell response is determined by the integration of all signals, stimulatory and inhibitory.
  • CTLA-4 appears to undermine T cell activation, attempts have been made to block CTLA-4 activity in murine models of cancer immunotherapy.
  • administration of anti-CTLA-4 Ab enhanced tumor rejection (Leach, D. R. et al., Science, 271 :1734-1736 (1996)), although little effect was seen with poorly immunogenic tumors such as SMl mammary carcinoma or B16 melanoma.
  • GM-CSF granulocyte-macrophage colony- stimulating factor
  • An emerging approach for the treatment of cancer involves modulation of antitumor immune responses by treatment with monoclonal antibodies (mAb) to T cell costimulatory/co-inhibitory receptors, such as BMS-663513 (agonistic CD 137 mAb), ipilimumab or tremelimumab (antagonistic CTLA-4 mAbs). While the studies described herein demonstrate the combination of CD 137 and CTLA-4 antibodies results in synergistic efficacy in preclinical tumor models, it has been unknown whether such a combinatorial approach may result in exacerbation of immune- mediated adverse events.
  • mAb monoclonal antibodies
  • CD137 mAb prior Xo CTLA-4 mAb markedly improved survival and prevented, body weight loss compared to mice treated with CTLA-4 mAb alone (p ⁇ 0.05).
  • the therapeutic method of the invention comprises the combination of an agonistic CD 137 antibody followed by the combination of one or more anti-CTLA4 agent(s) for the treatment of cancer, the treatment of cancer with diminished incidence of colitis and/or anti-CTLA4 agent induced colitis, and the treatment of colitis.
  • the anti-CTLA4 agent(s) disclosed herein when administered in combination with the administration of an agonistic CD 137 antibody, demonstrated anti- tumor activity with no significant increase in the incidence of colitis in two murine colitis models.
  • the therapeutic method of the invention comprises the first administration of an agonistic CDl 37 antibody followed by the combination of one or more anti-CTLA4 agent(s) for the treatment of cancer, the treatment of cancer with diminished incidence of colitis and/or anti-CTLA4 agent induced colitis, and the treatment of colitis.
  • the anti-CTLA4 agent(s) disclosed herein when administered following the administration of an agonistic CDl 37 antibody, demonstrated superior anti-tumor activity with significantly diminished incidence of colitis in two murine colitis models.
  • the present invention also provides methods for reducing drug-associated weight loss, immune-mediated weight loss, weight loss associated with colitis, weight loss associated with immune-mediated colitis, and weight loss associated with anti- CTL A4 induced colitis.
  • the present invention also provides methods for the synergistic treatment of a variety of cancers, including, but not limited to, the following: carcinoma including that of the bladder (including accelerated and metastatic bladder cancer), breast, colon (including colorectal cancer), kidney, liver, lung (including small and non-small cell lung cancer and lung adenocarcinoma), ovary, prostate, testes, genitourinary tract s lymphatic system, rectum, larynx, pancreas (including exocrine pancreatic carcinoma), esophagus, stomach, gall bladder, cervix, thyroid, and skin (including squamous cell carcinoma); hematopoietic tumors of lymphoid lineage including leukemia, acute lymphocytic leukemia,
  • disorders include urticaria pigmentosa, mastocytosises such as diffuse cutaneous mastocytosis, solitary mastocytoma in human, as well as dog mastocytoma and some rare subtypes like bullous, erythrodermic and teleangiectatic mastocytosis, mastocytosis with an associated hematological disorder, such as a myeloproliferative or myelodysplasia syndrome, or acute leukemia, myeloproliferative disorder associated with mastocytosis, mast cell leukemia, in addition to other cancers.
  • mastocytosises such as diffuse cutaneous mastocytosis, solitary mastocytoma in human, as well as dog mastocytoma and some rare subtypes like bullous, erythrodermic and teleangiectatic mastocytosis
  • mastocytosis with an associated hematological disorder such as a myeloproliferative or myelodysplasia syndrome, or acute
  • carcinoma including that of the bladder, urothelial carcinoma, breast, colon, kidney, liver, lung, ovary, pancreas, stomach, cervix, thyroid, testis, particularly testicular seminomas, and skin; including squamous cell carcinoma; gastrointestinal stromal tumors ("GIST"); hematopoietic tumors of lymphoid lineage, including leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B- cell lymphoma, T-cell lymphoma, Hodgkins lymphoma, non-Hodgkins lymphoma, hairy cell lymphoma and Burketts lymphoma; hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias and promyelocytic leukemia; tumors of mesenchymal origin, including fibrosarcoma and rhab
  • co-stimulatory pathway modulators of the present invention that may be used alone or in combination with other co-stimulatory pathway modulators disclosed herein, or in combination with other compounds disclosed herein include, but are not limited to, the following: agatolimod, belatacept, blinatumomab, CD40 ligand, anti-B7-l antibody, anti-B7-2 antibody, anti-B7-H4 antibody, AG4263, eritoran, anti-OX40 antibody, ISF-154, and SGN-70; B7-1 , B7-2, ICAM-I, ICAM-2, ICAM-3, CD48, LFA-3, CD30 ligand, CD40 ligand, heat stable antigen, B7h, OX40 ligand, LIGHT, CD70 and CD24.
  • the invention is used to treat colitis, Crohn's disease, anti- CTLA agent-induced colitis, and cancer.
  • a method is provided for the synergistic treatment of cancerous tumors.
  • the synergistic method of this invention reduces the development of tumors, reduces tumor burden, or produces tumor regression in a mammalian host, with a concomitant decrease in the incidence of colitis and/or anti-CTLA agent-induced colitis or Crohn's disease.
  • agonistic CD 137 antibody refers to anti-CD 137 antibodies that bind mammalian 4- IBB and which result in an enhancement and stimulation of mammalian 4- IBB mediated, immune responses.
  • such antibodies bind to and agonize human 4- IBB.
  • such antibodies preferably bind to mammalian 4- IBB and do not block the binding of the ligand for mammalian 4- IBB to H4-1BBL, thus permitting the binding of both an antibody and the ligand to mammalian 4- 1 BB .
  • colitis refers generally to a gastrointestinal inflammatory condition that results from activation, of the immune system.
  • colitis may be acute or chronic, ulcerative in nature or resulting from enterococcal or some other infection, or may be induced as a consequence of drug administration, including, but not limited to immune-mediated treatment, co- stimulatory pathway modulation, and CTLA4 inhibition.
  • anti-CTLA agent-induced colitis refers to a specific type of colitis that is caused, either directly or indirectly, by the inhibition of CTLA4.
  • Ipilimumab refers to an anti-CTLA-4 antibody, and is a fully human IgGi ⁇ antibody derived from transgenic mice having human genes encoding heavy and light chains to generate a functional human repertoire. Ipilimumab can also be referred to by its CAS Registry No. 477202-00-9, and is disclosed as antibody IODI in PCT Publication No, WO 01/14424, incorporated herein by reference in its entirety and for all purposes.
  • Ipilimumab describes a human monoclonal antibody or antigen-binding portion thereof that specifically binds to CTLA4, comprising a light chain variable region and a heavy chain variable region having a light chain variable region comprised of SEQ ID NO:5, and comprising a heavy chain region comprised of SEQ ID NO:6,
  • Pharmaceutical compositions of Ipilimumab include all pharmaceutically acceptable compositions comprising Ipilimumab and one or more diluents, vehicles and/or excipients. Examples of a pharmaceutical composition comprising Ipilimumab are provided in PCT Publication No. WO2007/67959. Ipilimumab may be administered by LV.
  • BMS-663513 refers to an anti-CD 137 antibody, and is a fully human IgG 4 antibody derived from transgenic mice having human genes encoding heavy and light chains to generate a functional human repertoire.
  • BMS- 663513 is disclosed as antibody 10C7 in U.S. Patent No. 7,288,638, incorporated herein by reference in its entirety and for all purposes.
  • BMS-663513 describes a human monoclonal antibody or antigen-binding portion thereof that specifically binds to 4- IBB, comprising a light chain variable region and a heavy chain variable region, wherein: said light chain variable region comprises a CDRl having amino acids 44-54 of SEQ ID NO:3, a CDR2 having amino acids 70-76 of SEQ ID NO:3, and a CDR3 having amino acids 109-119 of SEQ ID NO:3; and said heavy chain variable region comprises a CDRl having amino acids 50-54 of SEQ ID NO:4, a CDR2 having amino acids 69-84 of SEQ ID NO:4, and a CDR3 having amino acids 117-129 of SEQ ID NO:4.
  • Pharmaceutical compositions of BMS- 663513 include all pharmaceutically acceptable compositions comprising BMS- 663513 and one or more diluents, vehicles and/or excipients. BMS-663513 may be administered by LV.
  • the administration of one or more anti-CTLA4 antagonists may be administered either alone or in combination with a peptide antigen (e.g., gplOO), in addition to an antiproliferative agent disclosed herein.
  • a peptide antigen e.g., gplOO
  • a non- limiting example of a peptide antigen would be a gplOO peptide comprising, or alternatively consisting of, the sequence selected from the group consisting of: IMDQVPFSV (SEQ ID NCU), and YLEPGPVTV (SEQ ID NO:2).
  • Such a peptide may be administered orally, or preferably by injection s.c. at 1 mg emulsified in incomplete Freund's adjuvant (IFA) injected s.c. in one extremity, and 1 mg of either the same or a different peptide emulsified in IFA may be injected in another extremity.
  • IFA incomplete Freund's adjuvant
  • the present invention also encompasses a pharmaceutical composition useful in the treatment of colitis, anti-CTLA agent-induced colitis, and cancer, comprising the sequential administration of a therapeutically effective amount of the combinations of this invention, with or without pharmaceutically acceptable carriers or diluents.
  • the synergistic pharmaceutical compositions of this invention comprise the first administration of an agonistic CDl 37 agent and a pharmaceutically acceptable carrier, followed by an anti-CTLA4 agent or agents and a pharmaceutically acceptable carrier.
  • the synergistic pharmaceutical compositions of this invention may also comprise an anti-CTLA4 agent or agents, an agonistic CD 137 agent, and a pharmaceutically acceptable carrier.
  • the methods entail the first administration of an agonistic CD 137 agent and a pharmaceutically acceptable carrier, followed by an anti- CTLA4 agent or agents and a pharmaceutically acceptable carrier.
  • the methods of this invention may also entail the use of an anti-CTLA4 agent or agents, an agonistic CD 137 agent, and a pharmaceutically acceptable carrier.
  • compositions of the present invention may further comprise one or more pharmaceutically acceptable additional ingredient(s) such as alum, stabilizers, antimicrobial agents, buffers, coloring agents, flavoring agents, adjuvants, and the like.
  • additional ingredient(s) such as alum, stabilizers, antimicrobial agents, buffers, coloring agents, flavoring agents, adjuvants, and the like.
  • the pharmaceutical compositions of the present invention may be administered orally or parenterally including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.
  • the pharmaceutical compositions of the present invention may be administered, for example, in the form of tablets or capsules, powders, dispersible granules, or cachets, or as aqueous solutions or suspensions.
  • carriers which are commonly used include lactose, corn starch, magnesium carbonate, talc, and sugar, and lubricating agents such as magnesium stearate are commonly added.
  • useful carriers include lactose, corn starch, magnesium carbonate, talc, and sugar.
  • emulsifying and/or suspending agents are commonly added.
  • sweetening and/or flavoring agents may be added to the oral compositions.
  • sterile solutions of the active ingredient(s) are usually employed, and the pH of the solutions should be suitably adjusted and buffered.
  • the total concentration of the solute(s) should be controlled in order to render the preparation isotonic.
  • a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted, and the active ingredient is dispersed homogeneously in the wax, for example by stirring. The molten homogeneous mixture is then poured into conveniently sized molds and allowed to cool and thereby solidify.
  • Liquid preparations include solutions, suspensions and emulsions. Such preparations are exemplified by water or water/propylene glycol solutions for parenteral injection. Liquid preparations may also include solutions for intranasal administration.
  • Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas.
  • solid preparations which are intended for conversion, shortly before use, to liquid preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.
  • the pharmaceutical compositions of the present invention may also be delivered transdermally.
  • the transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.
  • the combinations of the present invention may also be used in conjunction with other well known therapies that are selected for their particular usefulness against the condition that is being treated.
  • the active ingredients of the pharmaceutical combination compositions of the present invention are employed within the dosage ranges described below.
  • the anti ⁇ CTLA4 agent, and the agonistic CD 137 agent may be administered separately in the dosage ranges described below.
  • the anti-CTLA4 agent is administered in the dosage range described below following the administration of the CD 137 agonistic agent in the dosage range described below.
  • the clinician may utilize preferred dosages as warranted by the condition of the patient being treated.
  • the anti-CTLA4 antibody may preferably be administered at about 3 - 10 mg/kg, or the maximum tolerated dose.
  • the anti-CTLA4 antibody may preferably be administered at about 0.3 - 10 mg/kg, or the maximum tolerated dose.
  • a dosage of CTLA-4 antibody is administered about every three weeks, about every four weeks, about every five weeks, or about every six weeks.
  • the CTLA-4 antibody may be administered by an escalating dosage regimen including administering a first dosage of CTLA-4 antibody at about 3 mg/kg, a second dosage of CTLA-4 antibody at about 5 mg/kg, and a third dosage of CTLA-4 antibody at about 9 mg/kg.
  • the agonistic CD 137 antibody may preferably be administered at about 0.1 - 1 mg/kg, or the maximum tolerated dose.
  • the agonistic CD137 antibody may preferably be administered at about 0.1 - 10 mg/kg, or the maximum tolerated dose.
  • a dosage of agonistic CD 137 antibody is administered about every three weeks, about every four weeks, about every five weeks, or about every six weeks.
  • the agonistic CD 137 antibody may be administered by an escalating dosage regimen including administering a first dosage of agonistic CD 137 antibody at about 0.1 mg/kg to about 1 mg/kg, a second dosage of agonistic CD 137 antibody at about 3 mg/kg, and a third dosage o ' f agonistic CD 137 antibody at about 9 mg/kg.
  • the CDl 37 antibody may be administered at about 0.1 mg/kg to about 1 mg/kg every 3 weeks
  • the CD 137 antibody may be administered at about 0.1 mg/kg to about 1 mg/kg every 6 weeks.
  • the CD 137 antibody may be administered at about 5 mg/kg every 6 weeks.
  • a preferred therapeutic regimen comprises (i) the first administration of an agonistic CDl 37 antibody to a patient in need, (ii) the subsequent administration of an anti-CTLA4 antibody; and optionally comprising an interstitial period in-between said first and second administrations.
  • the interstitial period may be sequential.
  • the interstitial period may be immediately sequential.
  • the interstitial period may be about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 55, or even about 60 minutes.
  • the term "about” is construed to mean ⁇ 1 , 2, 3, 4, 5, 6, 1, 8, 9, or 10 minutes more or less than the stated amount.
  • the interstitial period may be about 12 to about 18 hours, or about 18 to about 24 hours.
  • the interstitial period may be about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, or even about 24 hours.
  • the term "about” is construed to mean ⁇ 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 hours more or less than the stated amount.
  • the interstitial period may be about 1, about 2, about 3, about 4, about 5, about 6, or about 7 days.
  • the term "about” is construed to mean ⁇ 1 , 2, 3, 4, 5, 6, or 7 days more or less than the stated amount.
  • the escalating dosage regimen includes administering a first dosage of CTLA-4 antibody at about 3 or 5 mg/kg and a second dosage of CTLA-4 antibody at about 5 or 9 mg/kg.
  • the present invention provides an escalating dosage regimen, which includes administering an increasing dosage of CTLA-4 antibody about every six weeks.
  • the escalating dosage regimen includes administering a first dosage of agonistic CD 137 antibody at about 3 or 5 mg/kg and a second dosage of agonistic CD 137 antibody at about 5 or 9 mg/kg.
  • the present invention provides an escalating dosage regimen, which includes administering an increasing dosage of agonistic CD 137 antibody about every six weeks.
  • a stepwise escalating dosage regimen which includes administering a first CTLA-4 antibody dosage of about 3 mg/kg, a second CTLA-4 antibody dosage of about 3 mg/kg, a third CTLA-4 antibody dosage of about 5 mg/kg, a fourth CTLA-4 antibody dosage of about 5 mg/kg, and a fifth CTLA-4 antibody dosage of about 9 mg/kg.
  • a stepwise escalating dosage regimen is provided, which includes administering a first dosage of 5 mg/kg, a second dosage of 5 mg/kg, and a third dosage of 9 mg/kg.
  • all recited doses and/or escalating dosing regimens individually listed for an anti-CTLA-4 antibody or individually listed for an agonistic CD 137 antibody are intended to follow a regimen comprising the sequential administration of a first administration of an agonistic CD 137 antibody, an interstitial period, followed by the administration of an anti-CTLA-4 antibody.
  • the actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated, Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small amounts until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired. Intermittent therapy (e.g., one week out of three weeks or three out of four weeks) may also be used.
  • Certain cancers can be treated effectively with one or more CD 137 agonistic agents and a one or more anti-CTLA4 agents, preferably with the first administration of a CD 137 agonistic agent followed by one or more anti-CTLA4 agents.
  • Such triple and quadruple combinations can provide greater efficacy.
  • the dosages set forth above can be utilized.
  • the present invention encompasses a method for the synergistic treatment of colitis, anti-CTLA agent-induced colitis, and cancer wherein a CDl 37 agonistic agent and an anti-CTLA4 agent are administered sequentially or simultaneously.
  • a pharmaceutical formulation comprising a CDl 37 agonistic and an anti- CTL A4 agent(s) may be advantageous for administering the combination for one particular treatment
  • prior administration of the anti ⁇ CTLA4 agent(s) may be advantageous in another treatment
  • the simultaneous administration of the anti- CTLA4 agent(s) may be advantageous in another treatment.
  • CD 137 agonistic agents may be used in conjunction with other methods of treating colitis and cancer (preferably cancerous tumors) including, but not limited to, radiation therapy and surgery.
  • a cytostatic or quiescent agent if any, may be administered sequentially or simultaneously with any or all of the other synergistic therapies.
  • the combinations of the instant invention may also be co-administered with other well known therapeutic agents that are selected for their particular usefulness against the condition that is being treated. Combinations of the instant invention may alternatively be used sequentially with known pharmaceutically acceptable agent(s) when a multiple combination formulation is inappropriate.
  • the CD 137 agonistic agent(s) and anti-CTLA4 agent(s) can be administered according to therapeutic protocols well known in the art. It will be apparent to those skilled in the art that the administration of the CD 137 agonistic agent(s) and anti-CTLA4 agent(s) can be varied depending on the disease being treated and the known effects of the agent(s) on that disease.
  • the therapeutic protocols e.g., dosage amounts and times of administration
  • the administered therapeutic agents i.e., anti-CTLA4 agent(s), CD137 agonistic agent(s)
  • the therapeutic protocols can be varied in view of the observed effects of the administered therapeutic agents (i.e., anti-CTLA4 agent(s), CD137 agonistic agent(s)) on the patient, and in view of the observed responses of the disease to the administered therapeutic agents.
  • one or more CD 137 agonistic agent(s) is administered simultaneously or sequentially with one or more anti-CTLA4 agent(s).
  • the anti-CTLA4 therapeutic agent(s) and CD 137 agonistic agent be administered simultaneously or essentially simultaneously.
  • the advantage of a simultaneous or essentially simultaneous administration is well within the determination of the skilled clinician.
  • the one or more CD 137 agonistic agent(s) is administered first followed by the administration of one or more anti-CTLA4 agent(s).
  • the one or more CDl 37 agonistic agent(s), and anti- CTLA4 age ⁇ t(s) do not have to be administered in the same pharmaceutical composition, and may, because of different physical and chemical characteristics, have to be administered by different routes.
  • the one or more CD 137 agonistic agent(s) may be administered intravenously to generate and maintain good blood levels thereof, while the anti-CTLA4 agent(s) may also be administered intravenously.
  • the one or more CDl 37 agonistic agent(s) may be administered orally to generate and maintain good blood levels thereof, while the anti- CTLA4 agent(s) may also be administered intravenously, Alternatively, the one or more CDl 37 agonistic agent(s) may be administered intravenously to generate and maintain good blood levels thereof, while the anti-CTLA4 agent(s) may be administered orally. Alternatively, the one or more CDl 37 agonistic agent(s) may be administered orally to generate and maintain good blood levels thereof, while the anti- CTLA4 agent(s) may be administered orally.
  • the determination of the mode of administration and the advisability of administration, where possible, in the same pharmaceutical composition, is well within the knowledge of the skilled clinician.
  • the initial administration can be made according to established protocols known in the art, and then, based upon the observed effects, the dosage, modes of administration and times of administration can be modified by the skilled clinician.
  • the particular choice of one or more CDl 37 agonistic agent(s) and anti- CTLA4 agent(s) will depend upon the diagnosis of the attending physicians and their judgment of the condition of the patient and the appropriate treatment protocol.
  • the initial order of administration of the one or more CDl 37 agonistic agent(s) and the anti-CTLA4 agent(s) may be varied.
  • the one or more CD 137 agonistic agent(s) may be administered first followed by the administration of the anti-CTLA4 agent(s); or the anti-CTLA4 agent(s) may be administered first followed by the administration of the one or more CD 137 agonistic agent(s). This alternate administration may be repeated during a single treatment protocol.
  • the anti-CTLA4 agent(s) may be administered initially.
  • the one or more CD 137 agonistic agent(s) may be administered initially.
  • the treatment is then continued with the administration of the anti-CTLA4 agent(s) or CD 137 agonistic agent(s), as the case may be, and thereof and optionally followed by administration of a cancer vaccine alone or in combination with a cytostatic agent, if desired, until the treatment protocol is complete.
  • the administration of the one or more CD 137 agonistic agent(s) thereof and optionally followed by administration of a cytostatic agent may be administered initially.
  • the treatment is then continued with the administration of the anti-CTLA4 agertt(s), until the treatment protocol is complete.
  • the practicing physician can modify each protocol for the administration of a component (therapeutic agent - i.e., one or more CDl 37 agonistic agent(s), anti-CTLA4 agent(s),) of the treatment according to the individual patient's needs, as the treatment proceeds.
  • the attending clinician in judging whether treatment is effective at the dosage administered, will consider the general well-being of the patient as well as more definite signs such as relief of disease-related symptoms, inhibition of tumor growth, actual shrinkage of the tumor, or inhibition of metastasis. Size of the tumor can be measured by standard methods such as radiological studies, e.g., CAT or MRI scan, and successive measurements can be used to judge whether or not growth of the tumor has been retarded or even reversed. Relief of disease-related symptoms such as pain, and improvement in overall condition can also be used to help judge effectiveness of treatment.
  • An emerging approach for the treatment of cancer involves modulation of antitumor immune responses by treatment with monoclonal antibodies to T cell co- stimulatory/ co-inhibitory receptors, CD 137 agonistic mAb, and ipilimumab (CTLA-4 blocking mAb).
  • CD 137 agonistic mAb monoclonal antibodies to T cell co- stimulatory/ co-inhibitory receptors
  • ipilimumab CTLA-4 blocking mAb
  • BMS-469492 (clone 1D8) is a rat IgG 2a with specificity to mouse CD137 (Shuford et al., J Exp Med., 186(l):47-55 (JuI. 7, 1997)).
  • Both antibodies were produced and purified by BMS (Protein Therapeutics Division, Hopewell, New Jersey, USA), and certified to have ⁇ 0.5 EU/mg endotoxin levels, > 95% purity and ⁇ 5 % high molecular weight species.
  • Stock solutions of both antibodies were kept at -80° C and were thawed out at 4 0 C prior to use.
  • Control antibodies consisted of a polyclonal hamster IgG or rat immunoglobulins (Jackson ImmunoResearch, West Grove, PA). Dosing solutions of antibodies were prepared per study in sterile phosphate buffered saline (pH 7.0).
  • mice had a 2 x 2 cm field of abdominal skin shaved and were pre- sensitized by epicutaneous application of 150 ⁇ l of 3% oxazolone (4- ethoxymethylene-2-phenyl-2oxazolin-5 ⁇ one, Sigma, St Louis > MO) in 100% ethanol, on day 0,
  • mice were placed under general anesthesia with isofluorane (Halocarbon Labs, River Edge, NJ) and rechallenged with intrarectal administration of 100 ⁇ l of 0.75 % oxazolone in 50% ethanol or 50% ethanol vehicle alone (as a procedural control), through a 3.5 F catheter (Braintree Scientific, Braintree, MA) inserted 4 cm proximal to the anal verge. Disease progression was evaluated daily by monitoring survival and body weight. At the end of each study mice were sacrificed and the colons excised. Colon lengths were then recorded. Treatments were administered as described in Section 3 (Results).
  • CD 137 agonistic mAb can prevent or ameliorate the development of autoimmunity in many experimental mouse models of autoimmune disease (Foell et al., Ann. NY Acad. ScL, 987:230-235 (Apr. 2003); Sun et al., Nat. Med., 8:1405-1413
  • CD 137 mAb BMS-469492, 5 mg/kg s q3dx3) and CTLA-4 mAb (UClO 5 20 mg/kg, q3dx3) were administered intraperitoneally on days 0, 3, and 6 after epicutaneous challenge with oxazolone (day 0) alone or in combination. On day 5, animals were re-challenged with 0.75% oxazolone intrarectally. ETOH (ethanol) - treated group did not receive oxazolone. Survival was monitored daily.
  • mice were sacrificed on Day 9 post skin sensitization and colons were removed and measured as an indication of disease severity. As shown in Table 2, colons from animals treated with the combination of CD 137 mAb and CTLA-4 mAb were markedly longer than mice treated with CTLA-4 mAb (Table 1).
  • mice were treated with CD 137 mAb (5 mg/kg) on days -1 , 2, and 5, whereas CTLA-4 mAb (20 mg/kg) was administered on days 0, 3, and 6.
  • Intra-rectal injections of TNBS (2 mg/mouse in 35% ethanol) were administered on Day 0 after CTLA-4 mAb treatment.
  • Combination groups followed the same dose and schedule as single agent groups.
  • mice treated with CTLA-4 mAb produced significant body weight loss compared with control vehicle (p ⁇ 0.05, days 1-6), whereas CD137 mAb did not. Furthermore, administration of CD 137 mAb prior to CTLA-4 mAb prevented the rate of body weight loss observed with CTLA-4 mAb (p ⁇ 0.05, days 2-6). [00116] Thus, as observed in the oxazolone-based colitis model, CDl 37 mAb modulated and improved the clinical signs associated with treatment with CTLA-4 mAb in the TNB S -induced colitis model.
  • mice were sacrificed on Day 4 following intrarectal administration of TNBS and colons were removed and their length measured as an indication of disease severity. Day 4 was selected since it was expected to coincide with disease progression.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Compositions and methods are disclosed which are useful of the treatment and prevention of proliferative disorders.

Description

COMBINATION OF CDl 37 ANTIBODY AND CTLA-4 ANTIBODY FOR THE
TREATMENT OF PROLIFERATIVE DISEASES
This application claims benefit to provisional application U.S. Serial No. 61/103,023 filed October 6, 2008; and to provisional application U.S. Serial No. 61/200,678, filed December 2, 2008; under 35 U.S.C. 1 19(e). The entire teachings of the referenced applications are incorporated herein by reference.
FIELD OF THE INVENTION [0001] This invention relates to the fields of oncology and improved therapy regimens.
BACKGROUND OF THE INVENTION [0002] The National Cancer Institute has estimated that in the United States alone, 1 in 3 people will be struck with cancer during their lifetime. Moreover, approximately 50% to 60% of people contracting cancer will eventually succumb to the disease. The widespread occurrence of this disease underscores the need for improved anticancer regimens for the treatment of malignancy. [0003] Immunostimulatory monoclonal antibodies (mAb) represent a new and exciting strategy in cancer immunotherapy to potentiate the immune responses of the host against the malignancy (Melero et al., Nat, Rev, Cancer, 7:95-106 (2007)). Such agonistic or antagonistic mAbs bind to key receptors in cells of the immune system acting to enhance antigen presentation (e.g., anti-CD40), to provide costimulation (e.g., anti-CD 137), or to counteract immunoregulation {e.g., anti-CTLA-4). [0004] Ipilimumab is a human anti-human CTLA-4 antibody which blocks the binding of CTLA-4 to CD80 and CD86 expressed on antigen presenting cells and thereby, blocking the negative downregulation of the immune responses elicited by the interaction of these molecules. [0005] CD 137 (also called 4- IBB) is a T-cell costimulatory receptor induced on TCR activation (Nam et al., Curr. Cancer Drug Targets, 5:357-363 (2005); Watts et al, Annu. Rev. Immunol., 23:23-68 (2005)). In addition to its expression on activated CD4"1 and CD8+ T cells, CDl 37 is also expressed on CD4'CD25" regulatory T cells, natural killer (NK) and NK-T cells, monocytes, neutrophils, and dendritic cells. Its natural ligand, CDl 37L, has been described on antigen-presenting cells including B cells, monocyte/macrophages, and dendritic cells (Watts et al., Annu. Rev. Immunol, 23:23-68 (2005)). On interaction with its ligand, CD 137 leads to increased TCR- induced T-cell proliferation, cytokine production, functional maturation, and prolonged CD8+ T-cell survival (Nam et at, Curr. Cancer Drug Targets, 5:357-363 (2005), Watts et al., Annu. Rev. Immunol, 23:23-68 (2005)).
[0006] Many of the adverse events associated with ipilimumab treatment are a consequence of the intrinsic biological activity of ipilimumab, and its effects on T lymphocytes, The most common severe ( > grade 3) immune-related adverse events (irAE) are gastrointestinal-related (12%). In general, these adverse immune events have been associated with clinical response (Phan et al, Proc. Natl. Acad. Sd. USA, 100:8372-8377 (2003), Beck et al.? J. Clin. Oncol, 24:2283-2289 (2006)), even in the absence of vaccination, suggesting that CTLA-4 blockade may be expanding autoreactive T cells. It has also been proposed that specific chemokme receptors expressed in the induced T cells may direct them to the intestine. Even though enterocolitis has been reported in melanoma subjects, administration of ipilimumab to healthy cynomolgus monkeys failed to detect this adverse event even after administration of multiple doses (unpublished results). Similarly, mice treated with multiple doses of CTLA-4 blocking antibodies did not develop clinical signs of colitis (Koraian et al., Adv. Immunol, 90:297-339 (2006)).
[0007] In the studies reported herein, mouse colitis models for ulcerative colitis and Crohn's-like disease were used to investigate the effect of CTLA-4 blockade in animals prone to develop immune-mediated colitis. The ultimate goal of these studies was to determine how treatment with CD 137 agonist mAb could modulate the course of immune-mediated colitis in animals treated with CTLA-4 blocking mAb. [0008] Two models were used in these studies: a) Oxazolone-induced colitis, a mixed Thl/Th2. colitis model that has a histological and cytokine-pattern similar to human ulcerative colitis; and b) Trinitrobenzene sulfonic acid (TNBS)-induced colitis, a ThI -mediated model of chronic intestinal inflammation that resembles Crohn's disease. The mouse model for ulcerative colitis is based on the application of oxazolone, a haptenating agent, which after intrarectal challenge, induces colitis in the distal portion of the colon with histopathological and immunological features that resemble the human disease (Strober et al., Annu. Rev. Immunol., 20:495-549 (2002); Kojima et al., J Pharmacol. ScL, 96:307-313 (2004)), The model of Crohn's disease is based on the intrarectal delivery of trinitrobenzene sulfonic acid (TNBS). The intestinal inflammation is driven by IL- 12 and is mediated by activation of macrophages and CD4+ T cell infiltration in the lamina propria (LP). [0009] The present inventors have discovered for the first time, a treatment regimen involving the combination of an agonistic CD 137 antibody with an anti- CTLA-4 inhibitor that results in a significant, and synergistic, benefit for the treatment of colitis. It is an object of the invention to provide efficacious combination treatment regimens wherein an agonistic CD 137 antibody agent is combined with one or more anti-CTLA4 agents for the treatment of colitis diseases.
SUMMARY OF THE INVENTION [0010] The present invention provides a method for the treatment of proliferative disease comprising first administering to a mammal in need thereof an agonistic CD 137 (4- IBB) antibody followed by a CTLA-4 antibody. In one aspect, the proliferative disease is one or more cancerous solid tumors. In another aspect, the proliferative disease is one or more refractory tumors. In another aspect, the proliferative disease is an inflammatory disorder, particularly colitis. In another aspect, the CTLA-4 antibody is ipilimumab or tremelimumab. In yet another aspect, the agonistic CD137 antibody is BMS-663513 (Bristol-Myers Squibb) or XmAb-5592 (Xencor). [0011] The present invention provides a method for the treatment or prevention of drug-induced inflammatory conditions or immuαotherapy-dependent inflammatory conditions, comprising first administering to a mammal in need thereof an agonistic CD 137 (4- IBB) antibody followed by a CTLA-4 antibody. In one aspect, the inflammatory condition is colitis. In another aspect, the inflammatory condition is dermatitis, hepatitis, hypophysitis, enterocolitis, immunotherapy-dependent enterocolitis. In another respect, the inflammatory condition is associated with modulation of the immune system, particularly modulation of the co-stimulatory pathway, and preferably inhibition of CTLA4, [0012] The present invention provides a method for the treatment or prevention of drag-associated weight loss or immunotherapy-dependent weight loss, comprising first administering to a mammal in need thereof an agonistic CD137 (4- IBB) antibody followed by a CTLA-4 antibody. In one aspect, the inflammatory condition is colitis. In another aspect, the inflammatory condition is dermatitis, hepatitis, hypophysitis, and enterocolitis. In one respect, the weight loss is associated with modulation of 4- IBB. In another respect, the weight loss is associated with modulation of the immune system, particularly modulation of the co-stimulatory pathway, and preferably inhibition of CTLA4. [0013] The present invention provides a therapeutic regimen comprising: (i) the first administration of an agonistic CDl 37 antibody to a patient in need, and (ii) the subsequent administration of an anti-CTLA4 antibody; optionally comprising an interstitial period in-between said first and second administrations. [0014] The present invention also provides a method of treatment comprising: (i) the sequential administration of an agonistic CD 137 antibody to a patient in need, and (ii) the administration of an anti-CTLA4 antibody; optionally comprising an interstitial period in-between said first and second administrations. [0015] The present invention also provides an alternative method of treatment comprising: (i) the administration of an anti-CTLA4 antibody, and (ii) the sequential administration of an agonistic CD 137 antibody to a patient in need; optionally comprising an interstitial period in-between said first and second administrations. [0016] The present invention also provides another alternative method of treatment comprising the simultaneous administration of: (i) an agonistic CD 137 antibody to a patient in need, and (ii) the administration of an anti-CTLA4 antibody; optionally comprising an interstitial period in-between said first and second administrations.
[0017] Suitable anti~CTLA4 antagonist agents for use in the methods of the invention, include, without limitation, anti-CTLA4 antibodies, human anti-CTLA4 antibodies, mouse anti-CTLA4 antibodies, mammalian anti-CTLA4 antibodies, humanized anti-CTLA4 antibodies, monoclonal anti-CTLA4 antibodies, polyclonal anti-CTLA4 antibodies, chimeric anti-CTLA4 antibodies, MDX-010 (ipilimumab), tremelimumab, anti~CD28 antibodies, anti-CTLA4 adnectins, anti-CTLA4 domain antibodies, single chain anti-CTLA4 fragments, heavy chain anti-CTLA4 fragments, light chain anti-CTLA4 fragments, inhibitors of CTLA4 that agonize the co- stimulatory pathway, the antibodies disclosed in PCT Publication No, WO 2001/014424, the antibodies disclosed in PCT Publication No. WO 2004/035607, the antibodies disclosed in U.S. Published Application No. US 2005/0201994, and the antibodies disclosed in granted European Patent No. EP1212422B1. Additional CTLA-4 antibodies are described in U.S. Patent Nos. 5,81 1,097, 5,855,887, 6,051,227, and 6,984,720; in PCT Publication Nos. WO 01/14424 and WO 00/37504; and in U.S. Publication Nos. US 2002/0039581 and US 2002/086014. Other anti- CTLA-4 antibodies that can be used in a method of the present invention include, for example, those disclosed in: WO 98/42752; U.S. Patent Nos. 6,682,736 and 6,207,156; Hurwitz et a!., Proc. Natl. Acad. ScL USA, 95(17):10067-10071 (1998); Camacho et al., J. CHn. Oncology, 22(145):Abstract No. 2505 (2004) (antibody CP- 675206); Mokyr et al., Cancer Res., 58:5301-5304 (1998), and U.S. Patent Nos. 5,977,318, 6,682,736, 7,109,003, and 7,132,281.
[0018] Additional anti-CTLA4 antagonists include, but are not limited to, the following: any inhibitor that is capable of disrupting the ability of CD28 antigen to bind to its cognate Hgand, to inhibit the ability of CTLA4 to bind to its cognate ligand, to augment T cell responses via the co-stimulatory pathway, to disrupt the ability of B7 to bind to CD28 and/or CTLA4, to disrupt the ability of B7 to activate the co- stimulatory pathway, to disrupt the ability of CD80 to bind to CD28 and/or CTLA4, to disrupt the ability of CD80 to activate the co-stimulatory pathway, to disrupt the ability of CD86 to bind to CD28 and/or CTLA4, to disrupt the ability of CD86 to activate the co-stimulatory pathway, and to disrupt the co-stimulatory pathway, in general from being activated. This necessarily includes small molecule inhibitors of CD28, CD80, CD86, CTLA4, among other members of the co-stimulatory pathway; antibodies directed to CD28, CD80, CD86, CTLA4, among other members of the co- stimulatory pathway; antisense molecules directed against CD28, CD80, CD86, CTLA4, among other members of the co- stimulatory pathway; adnectins directed against CD28, CD80, CD86, CTLA4, among other members of the co -stimulatory pathway, RNAi inhibitors (both single and double stranded) of CD28, CD80, CD86, CTLA4, among other members of the co-stimulatory pathway, among other anti- CTLA4 antagonists.
[0019] Each of these references is specifically incorporated herein by reference for purposes of description of CTLA-4 antibodies. A preferred clinical CTLA-4 antibody is human monoclonal antibody 10Dl (also referred to as MDX-OlO and ipilimumab and available from Medarex, Inc., Bloomsbury, NJ) is disclosed in WO 01/14424. [0020] Suitable CD 137 agonistic agents for use in the methods of the invention, include, without limitation, anti-CD137 antibodies, human anti-CD137 antibodies, mouse anti-CD 137 antibodies, mammalian anti-CD 137 antibodies, humanized anti- anti-CD137 antibodies, monoclonal anti-CD137 antibodies, polyclonal anti-CD 137 antibodies, chimeric anti-CD137 antibodies, anti-4-lBB antibodies, anti-CD137 adnectins, anti~CD137 domain antibodies, single chain anti-CD137 fragments, heavy chain. anti-CD137 fragments, light chain anti-CD137 fragments, the antibodies disclosed in U.S. Published Application No. US 2005/0095244, the antibodies disclosed in issued U.S. Patent No. 7,288,638 (such as 20H4.9-IgG4 [10C7 or BMS- 663513] or 20H4.9-IgGl [BMS-663031]); the antibodies disclosed in issued U.S. Patent No. 6,887,673 [4E9 or BMS-554271]; the antibodies disclosed in issued U.S. Patent No. 7,214,493; the antibodies disclosed in issued U.S. Patent No. 6,303,121 ; the antibodies disclosed in issued U.S. Patent No. 6,569,997; the antibodies disclosed in issued U.S. Patent No. 6,905,685; the antibodies disclosed in issued U.S. Patent No, 6,355,476; the antibodies disclosed in issued U.S. Patent No. 6,362,325 [1D8 or BMS-469492; 3H3 or BMS-469497; or 3El]; the antibodies disclosed in issued U.S. Patent No. 6,974,863 (such as 53A2); or the antibodies disclosed in issued U.S. Patent No. 6,210,669 (such as 1D8, 3B8, or 3El). [0021] Additional CD137 agonistic antibodies are described in U.S. Patent Nos, 5,928,893, 6,303,121 and 6,569,997.
[0022] Each of the anti-CTLA4 antagonist agents referenced herein may be administered either alone or in combination with a peptide antigen (e.g., gplOO), either alone or in addition to an antiproliferative agent disclosed herein. [0023] The present invention further provides a pharmaceutical composition for the synergistic treatment of colitis which comprises a therapeutically effective amount of at least one (1) CD 137 agonistic antibody and (2) an anti-CTLA4 antagonist. [0024] In a preferred embodiment of the invention the anti-CTLA4 agent is administered simultaneously, concurrently, or preferably, subsequent to, the administration of an CDl 37 agonistic antibody or analogs thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
[0025] Figure 1 shows the resulting colon morphology following treatment with anti~CTLA-4 mAb. Representative histological section of a control untreated mouse is provided in plate (A) and a representative histological section of a CTLA-4-treated mouse is provided in plate (B). Colon sections are shown with 1OX magnification. [0026] Figure 2 shows the effect of simultaneous treatment with an agonistic CD 137 mAb and CTLA-4 mAb in an oxazolone-induced murine colitis model. CD 137 mAb (5 mg/kg, q3dx3) and CTLA-4 mAb (UClO, 20 mg/kg, q3dx3) were administered intraperitoneally on days 0, 3, and 6 after epicutaneous challenge with oxazolone (day 0) alone or in combination. On day 5, animals were re-challenged with 0.75% oxazolone intrarectally. ETOH (ethanol)-treated group did not receive oxazolone. Survival was monitored daily. As shown, mice that received anti-CD 137 mAb alone showed improved survival compared with animals treated with CTLA-4 mAb alone (pO.Ol). As previously observed, anti- CTLA-4 treatment accelerated disease onset and most of the animals died in the first days after antigen challenge, When anti-CD 137 mAb was administered at the same time as CTLA-4 mAb, it did not exacerbate the disease state compared to the experimental animal group receiving CTLA-4 mAb alone.
[0027] Figure 3 shows the effect of treatment with CTLA-4 mAb, CD 137 mAb, or their combination in an oxazolone-induced colitis murine model when CD 137 mAb was administered prior to CTLA-4 mAb. For graph (A), mice were administered intraperitoneally with CD 137 mAb (5 mg/kg, days -1, 2, 5) and CTLA-4 mAb (UClO, 20 mg/kg, days 0, 3, 6). For graph (B), mice were dosed with CTLA-4 mAb at 10 mg/kg following the same schedule. Epicutaneous sensitization with oxazolone was performed on day 0 (3%) while intrarectal challenge was done on day 5 (0.75%). ETOH (ethanol) treated group did not receive oxazolone. Survival was monitored daily. In both studies, dosing of CD 137 mAb prior to CTLA-4 mAb improved survival compared to CTLA-4 mAb alone (ρ<0.05). [0028] Figure 4 shows the effect of treatment with CTLA-4 mAb, CDl 37 mAb or their combination in a TNBS-induced murine colitis model. Mice were treated with CDl 37 mAb (5 mg/kg) on days -1, 2, and 5, whereas CTLA-4 mAb (20 mg/kg) was administered on days 0, 3, and 6. Intra-rectal injections of TNBS (2 mg/mouse in 35% ethanol) were administered on Day 0 after CTLA-4 mAb treatment. Combination groups followed the same dose and schedule as single agent groups. Mice treated with CTLA-4 mAb produced significant body weight loss compared with control vehicle (ρθ.05, days 1-6), whereas CD137 mAb did not. Furthermore, administration of CD 137 mAb prior to CTLA-4 mAb prevented the rate of body weight loss observed with CTLA-4 mAb (p<0.05, days 2-6). Animals treated with CTLA-4 mAb, represented by an asterisk ("*"), showed higher % body weight loss compared with animals treated with CD137 mAb + CTLA-4 mAb and CDl 37 mAb alone (p<0.05, Student's t-test). Data shows mean ±SEM of 8 mice/group. Thus, as observed in the oxazolone-based colitis model, CD 137 mAb modulated and improved the clinical signs associated with treatment with CTLA-4 mAb in the TNBS-induced colitis model.
DETAILED DESCRIPTION OF THE INVENTION [0029] In accordance with the present invention, methods for the scheduled administration of one or more agonistic CD 137 antibody agents in synergistic combination(s) with at least one anti-CTLA4 agent for the treatment and prevention of colitis diseases are provided.
[0030] Optimal T cell activation requires interaction between the T cell receptor and specific antigen (Bretscher, P. et al, Science, 169:1042-1049 (1970)) (the first signal) and engagement of costitmilatory receptors on the surface of the T cell with costimulatory ligands expressed by the antigen-presenting cell (APC) (the second signal), Failure of the T cell to receive a second signal can lead to clonal anergy (Schwartz, R.H., Science, 248:1349-1356 (1990)). Two important T cell costimulatory receptors are CD28 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4, CDl 52) whose ligands on APC are B7-1 and B7-2 (Linsley, P.S. et al., J Exp. Med,, 173:721-730 (1991); Linsley, P.S. et al., J Exp. Med., 174:561-569 (1991)). Although CD28 and CTLA-4 are closely related members of the Ig superfamily (Brunet, J. F. et al., Nature, 328:267-270 (1987)), they function antagonistically. CD28 is constitutively expressed on the surface of T cells (Gross, J.A. et al., J. Immunol, 149:380-388 (1992)), and upon engagement with B7-1 or B7-2, enhances the T cell receptor-peptide-MHC signal to promote T cell activation, proliferation, and IL-2 production (Linsley, P.S. et al., J. Exp, Med., 173:721-730 (1991); Aiegre, MX. et al., Nat. Rev. Immunol., 1 :220-228 (2001)). CTLA-4 is not found on resting T cells but is up-regulated for 2-3 days after T cell activation (Lindsten, T. et al., J. Immunol., 151:3489-3499 (1993), Walunas, TX. et al., Immunity, 1, 405-413 (1994)). CTLA-4 also binds to B7-1 and B7-2 but with greater affinity than CD28 (Linsley, P.S. et al., Immunity, 1:793-801 (1994)) and antagonizes T cell activation, interferes with IL-2 production and IL-2 receptor expression, and interrupts cell cycle progression of activated T cells (Walunas, TX. et al., J, Exp, Med, , 183:2541-2550 (1996); Krummel, M.F. et al., J Exp. Med., 183:2533-2540 (1996); Brunner, M.C. et al., J Immunol, 162:5813-5820 (1999); Greenwald, R.J. et al., Eur. J. Immunol, 32:366- 373 (2002)). The overall T cell response is determined by the integration of all signals, stimulatory and inhibitory.
[0031] Because CTLA-4 appears to undermine T cell activation, attempts have been made to block CTLA-4 activity in murine models of cancer immunotherapy. In mice implanted with immunogenic tumors, administration of anti-CTLA-4 Ab enhanced tumor rejection (Leach, D. R. et al., Science, 271 :1734-1736 (1996)), although little effect was seen with poorly immunogenic tumors such as SMl mammary carcinoma or B16 melanoma. Enhanced antitumor immunity was seen when anti-CTLA-4 Ab was given with granulocyte-macrophage colony- stimulating factor (GM-CSF)-transduced B16 cell vaccine and was associated with depigmentation, suggesting that at least part of the antitumor response was antigen- specific against "self melanocyte differentiation antigens (van Elsas, A. et al., J. Exp. Med., 190:355-366 (1999); van Elsas, A. et al., J. Exp. Med., 194:481-489 (2001)). In a transgenic murine model of primary prostate cancer, administrating anti-CTLA-4 Ab plus GM-CSF-expressing prostate cancer cells reduced the incidence and histological severity of prostate cancer and led to prostatitis in normal mice, again suggesting an antigen-specific immune response against self-antigens in tumor rejection (Hurwitz, A. A. et al,, Cancer Res., 60:2444-2448 (2000)). Furthermore, because many human tumor antigens are normal self-antigens, breaking tolerance against self may be critical to the success of cancer immunotherapy. The favorable tumor responses from CTLA- 4 blockade in conjunction with tumor vaccines in murine models led to interest in using CTLA-4 blockade in human cancer immunotherapy.
[0032] An emerging approach for the treatment of cancer involves modulation of antitumor immune responses by treatment with monoclonal antibodies (mAb) to T cell costimulatory/co-inhibitory receptors, such as BMS-663513 (agonistic CD 137 mAb), ipilimumab or tremelimumab (antagonistic CTLA-4 mAbs). While the studies described herein demonstrate the combination of CD 137 and CTLA-4 antibodies results in synergistic efficacy in preclinical tumor models, it has been unknown whether such a combinatorial approach may result in exacerbation of immune- mediated adverse events. [0033] In clinical trials, the most common adverse effect elicited by treatment with ipilimumab is immune-related colitis. The purpose of the studies presented herein was to examine the effect of the combination of an agonistic CDl 37 mAb (1D8) and an antagonistic CTLA-4 mAb (UClO) in several murine tumor models, and in T-cell dependent experimental murine colitis models. In murine tumor models sensitive to one or both antibodies (P815 mastocytoma, SAlN fibrosarcoma and EMT-6 mammary carcinoma), simultaneous treatment with CTLA-4 and CDl 37 mAbs resulted in enhanced antitumor activity when compared to the activity of each agent alone. However, in models where neither mAb showed efficacy, the combination of both agents was ineffective (B 16 melanoma). The potentiation of the antitumor activity was achieved when sub optimal doses of either agent were used in order to evaluate the effect of the combination in a setting in which maximal antitumor responses were not achievable by each agent alone. The effect of the combination in murine models of colitis was evaluated in the oxazolone-induced colitis, a mixed T helper 1 (ThI) and 2 (Th2) colitis model, and in the trinitrobenzene sulfonic acid (TNBS)-induced colitis, which is mainly driven by a ThI response. CTLA-4 blockade elicited by mAb UClO at doses shown to be active in tumor models (10-20 mg/kg) exacerbated the onset and severity of colitis in both models. Conversely, treatment with CD137 agonist 1D8 (5 mg/kg) ameliorated the symptoms and improved survival. Surprisingly, while concurrent treatment of CDl 37 and CTLA-4 mAbs did ' not improve or increase the detrimental effect of CTLA-4 blockade, treatment with CD 137 mAb prior Xo CTLA-4 mAb markedly improved survival and prevented, body weight loss compared to mice treated with CTLA-4 mAb alone (p<0.05). Tims, first treatment with an agonistic CD 137 mAb, combined with the subsequent administration of an antagonistic CTLA-4 mAb improves the antitumor efficacy, reduces drug associated weight loss, and has beneficial effects in immune-mediated colitis. [0034] Thus, in one embodiment, the therapeutic method of the invention comprises the combination of an agonistic CD 137 antibody followed by the combination of one or more anti-CTLA4 agent(s) for the treatment of cancer, the treatment of cancer with diminished incidence of colitis and/or anti-CTLA4 agent induced colitis, and the treatment of colitis. The anti-CTLA4 agent(s) disclosed herein, when administered in combination with the administration of an agonistic CD 137 antibody, demonstrated anti- tumor activity with no significant increase in the incidence of colitis in two murine colitis models.
[0035] Thus, in a preferred embodiment, the therapeutic method of the invention comprises the first administration of an agonistic CDl 37 antibody followed by the combination of one or more anti-CTLA4 agent(s) for the treatment of cancer, the treatment of cancer with diminished incidence of colitis and/or anti-CTLA4 agent induced colitis, and the treatment of colitis. The anti-CTLA4 agent(s) disclosed herein, when administered following the administration of an agonistic CDl 37 antibody, demonstrated superior anti-tumor activity with significantly diminished incidence of colitis in two murine colitis models. [0036] The present invention also provides methods for reducing drug-associated weight loss, immune-mediated weight loss, weight loss associated with colitis, weight loss associated with immune-mediated colitis, and weight loss associated with anti- CTL A4 induced colitis. [0037] The present invention also provides methods for the synergistic treatment of a variety of cancers, including, but not limited to, the following: carcinoma including that of the bladder (including accelerated and metastatic bladder cancer), breast, colon (including colorectal cancer), kidney, liver, lung (including small and non-small cell lung cancer and lung adenocarcinoma), ovary, prostate, testes, genitourinary tracts lymphatic system, rectum, larynx, pancreas (including exocrine pancreatic carcinoma), esophagus, stomach, gall bladder, cervix, thyroid, and skin (including squamous cell carcinoma); hematopoietic tumors of lymphoid lineage including leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B- cell lymphoma, T~cell lymphoma, Hodgkins lymphoma, non-Hodgkins lymphoma, hairy cell lymphoma, histiocytic lymphoma, and Burketts lymphoma; hematopoietic tumors of myeloid lineage including acute and chronic myelogenous leukemias, myelodysplastic syndrome, myeloid leukemia, and promyelocytic leukemia; tumors of the central and peripheral nervous system including astrocytoma, neuroblastoma, glioma, and schwannomas; tumors of mesenchymal origin including fibrosarcoma, rhabdomyosarcoma, and osteosarcoma; other tumors including melanoma, xenoderma pigmentosum, keratoactanthoma, seminoma, thyroid follicular cancer, and teratocarcinoma; melanoma, unresectable stage III or IV malignant melanoma, squamous cell carcinoma, small-cell lung cancer, non-small cell lung cancer, glioma, gastrointestinal cancer, renal cancer, ovarian cancer, liver cancer, colorectal cancer, endometrial cancer, kidney cancer, prostate cancer, thyroid cancer, neuroblastoma, pancreatic cancer, glioblastoma multiforme, cervical cancer, stomach cancer, bladder cancer, hepatoma, breast cancer, colon carcinoma, and head and neck cancer, gastric cancer, germ cell tumor, bone cancer, bone tumors, adult malignant fibrous histiocytoma of bone; childhood malignant fibrous histiocytoma of bone, sarcoma, pediatric sarcoma, sinonasal natural killer, neoplasms, plasma cell neoplasm; myelodysplastic syndromes; neuroblastoma; testicular germ cell tumor, intraocular melanoma, myelodysplastic syndromes; myelodysplastic/myeloproliferative diseases, synovial sarcoma, chronic myeloid leukemia, acute lymphoblastic leukemia, Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL), multiple myeloma, acute myelogenous leukemia, chronic lymphocytic leukemia, mastocytosis and any symptom associated with mastocytosis, and any metastasis thereof. In addition, disorders include urticaria pigmentosa, mastocytosises such as diffuse cutaneous mastocytosis, solitary mastocytoma in human, as well as dog mastocytoma and some rare subtypes like bullous, erythrodermic and teleangiectatic mastocytosis, mastocytosis with an associated hematological disorder, such as a myeloproliferative or myelodysplasia syndrome, or acute leukemia, myeloproliferative disorder associated with mastocytosis, mast cell leukemia, in addition to other cancers. Other cancers are also included within the scope of disorders including, but are not limited to, the following: carcinoma, including that of the bladder, urothelial carcinoma, breast, colon, kidney, liver, lung, ovary, pancreas, stomach, cervix, thyroid, testis, particularly testicular seminomas, and skin; including squamous cell carcinoma; gastrointestinal stromal tumors ("GIST"); hematopoietic tumors of lymphoid lineage, including leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B- cell lymphoma, T-cell lymphoma, Hodgkins lymphoma, non-Hodgkins lymphoma, hairy cell lymphoma and Burketts lymphoma; hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias and promyelocytic leukemia; tumors of mesenchymal origin, including fibrosarcoma and rhabdomyosarcoma; other tumors, including melanoma, seminoma, tetratocarcinoma, neuroblastoma and glioma; tumors of the central and peripheral nervous system, including astrocytoma, neuroblastoma, glioma, and schwannomas; tumors of mesenchymal origin, including fibrosarcoma, rhabdomyosarcomas and osteosarcoma; and other tumors, including melanoma, xenoderma pigmentosum, keratoactanthoma, seminoma, thyroid follicular cancer, teratocarcinoma, chemotherapy refractory non- seminomatous germ-cell tumors, and Kaposi's sarcoma, and any metastasis thereof. Preferably, such methods of treating cancer with the treatment regimens of the present invention will result in a diminished incidence of anti-CTLA agent-induced colitis. [0038] Other co-stimulatory pathway modulators of the present invention that may be used alone or in combination with other co-stimulatory pathway modulators disclosed herein, or in combination with other compounds disclosed herein include, but are not limited to, the following: agatolimod, belatacept, blinatumomab, CD40 ligand, anti-B7-l antibody, anti-B7-2 antibody, anti-B7-H4 antibody, AG4263, eritoran, anti-OX40 antibody, ISF-154, and SGN-70; B7-1 , B7-2, ICAM-I, ICAM-2, ICAM-3, CD48, LFA-3, CD30 ligand, CD40 ligand, heat stable antigen, B7h, OX40 ligand, LIGHT, CD70 and CD24. [0039] Most preferably, the invention is used to treat colitis, Crohn's disease, anti- CTLA agent-induced colitis, and cancer. [0040] In a preferred embodiment of this invention, a method is provided for the synergistic treatment of cancerous tumors. Advantageously, the synergistic method of this invention reduces the development of tumors, reduces tumor burden, or produces tumor regression in a mammalian host, with a concomitant decrease in the incidence of colitis and/or anti-CTLA agent-induced colitis or Crohn's disease.
[0041] Methods for the safe and effective administration of CD 137 agonistic antibodies on one hand, or anti-CTLA4 antagonistic antibodies on the other, are individually known to those skilled in the art, but not in combination, and not in sequential combination in which an agonistic CD 137 antibody is administered first, followed by the administration of an anti-CTLA4 antagonistic antibody. As one skilled in the art would appreciate, the individual administration of an agonistic CD 137 antibody or an anti-CTLA4 antagonistic antibody is described in the standard literature. [0042] The phrase "agonistic CD 137 antibody" refers to anti-CD 137 antibodies that bind mammalian 4- IBB and which result in an enhancement and stimulation of mammalian 4- IBB mediated, immune responses. Preferably, such antibodies bind to and agonize human 4- IBB. In addition, such antibodies preferably bind to mammalian 4- IBB and do not block the binding of the ligand for mammalian 4- IBB to H4-1BBL, thus permitting the binding of both an antibody and the ligand to mammalian 4- 1 BB .
[0043] The term "colitis" refers generally to a gastrointestinal inflammatory condition that results from activation, of the immune system. For the purposes of the present invention, colitis may be acute or chronic, ulcerative in nature or resulting from enterococcal or some other infection, or may be induced as a consequence of drug administration, including, but not limited to immune-mediated treatment, co- stimulatory pathway modulation, and CTLA4 inhibition.
[0044] The phrase "anti-CTLA agent-induced colitis" refers to a specific type of colitis that is caused, either directly or indirectly, by the inhibition of CTLA4. [0Θ45] As is known in the art, Ipilimumab refers to an anti-CTLA-4 antibody, and is a fully human IgGi^ antibody derived from transgenic mice having human genes encoding heavy and light chains to generate a functional human repertoire. Ipilimumab can also be referred to by its CAS Registry No. 477202-00-9, and is disclosed as antibody IODI in PCT Publication No, WO 01/14424, incorporated herein by reference in its entirety and for all purposes. Specifically, Ipilimumab describes a human monoclonal antibody or antigen-binding portion thereof that specifically binds to CTLA4, comprising a light chain variable region and a heavy chain variable region having a light chain variable region comprised of SEQ ID NO:5, and comprising a heavy chain region comprised of SEQ ID NO:6, Pharmaceutical compositions of Ipilimumab include all pharmaceutically acceptable compositions comprising Ipilimumab and one or more diluents, vehicles and/or excipients. Examples of a pharmaceutical composition comprising Ipilimumab are provided in PCT Publication No. WO2007/67959. Ipilimumab may be administered by LV.
Light chain variable region for Ipilimumab:
EIVLTQSPGTLSLSPGERATLSCRASQSVGSSYLAWYQQKPGQAPRLLIYGAFS RATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIK (SEQ ID NO:5)
Heavy chain variable region for Ipilimumab: QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYTMHWVRQAPGKGLEWVTFIS
YDGNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAIYYCARTGWLG PFDYWGQGTLVTVSS (SEQ ID NO:6)
[0046] As is known in the art, BMS-663513 refers to an anti-CD 137 antibody, and is a fully human IgG4 antibody derived from transgenic mice having human genes encoding heavy and light chains to generate a functional human repertoire. BMS- 663513 is disclosed as antibody 10C7 in U.S. Patent No. 7,288,638, incorporated herein by reference in its entirety and for all purposes. Specifically, BMS-663513 describes a human monoclonal antibody or antigen-binding portion thereof that specifically binds to 4- IBB, comprising a light chain variable region and a heavy chain variable region, wherein: said light chain variable region comprises a CDRl having amino acids 44-54 of SEQ ID NO:3, a CDR2 having amino acids 70-76 of SEQ ID NO:3, and a CDR3 having amino acids 109-119 of SEQ ID NO:3; and said heavy chain variable region comprises a CDRl having amino acids 50-54 of SEQ ID NO:4, a CDR2 having amino acids 69-84 of SEQ ID NO:4, and a CDR3 having amino acids 117-129 of SEQ ID NO:4. Pharmaceutical compositions of BMS- 663513 include all pharmaceutically acceptable compositions comprising BMS- 663513 and one or more diluents, vehicles and/or excipients. BMS-663513 may be administered by LV.
Light chain variable region for BMS-663513:
MEAPAQLLFLLLLWLPDTTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLA WYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC QQRSNWPPALTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK VYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:3)
Heavy chain variable region for BMS-663513: MKHLWFFLLLVAAPRWVLSQVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY YWSWIRQSPEKGLEWIGEINHGGYVTYNPSLESRVTISVDTSKNQFSLKLSSVT AADTAVYYCARDYGPGNYDWYFDLWGRGTLVTVSSASTKGPSVFPLAPCSR STSESTAALGCLVKD YFPEPVTVSWNSGALTSGVHTFP A VLQSSGLYSLSSVV TVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFL FPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRWSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREP QVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK (SEQ ID NO:4)
[0047] As noted elsewhere herein, the administration of one or more anti-CTLA4 antagonists may be administered either alone or in combination with a peptide antigen (e.g., gplOO), in addition to an antiproliferative agent disclosed herein. A non- limiting example of a peptide antigen would be a gplOO peptide comprising, or alternatively consisting of, the sequence selected from the group consisting of: IMDQVPFSV (SEQ ID NCU), and YLEPGPVTV (SEQ ID NO:2). Such a peptide may be administered orally, or preferably by injection s.c. at 1 mg emulsified in incomplete Freund's adjuvant (IFA) injected s.c. in one extremity, and 1 mg of either the same or a different peptide emulsified in IFA may be injected in another extremity.
[0048] The present invention also encompasses a pharmaceutical composition useful in the treatment of colitis, anti-CTLA agent-induced colitis, and cancer, comprising the sequential administration of a therapeutically effective amount of the combinations of this invention, with or without pharmaceutically acceptable carriers or diluents. The synergistic pharmaceutical compositions of this invention comprise the first administration of an agonistic CDl 37 agent and a pharmaceutically acceptable carrier, followed by an anti-CTLA4 agent or agents and a pharmaceutically acceptable carrier. The synergistic pharmaceutical compositions of this invention may also comprise an anti-CTLA4 agent or agents, an agonistic CD 137 agent, and a pharmaceutically acceptable carrier. The methods entail the first administration of an agonistic CD 137 agent and a pharmaceutically acceptable carrier, followed by an anti- CTLA4 agent or agents and a pharmaceutically acceptable carrier. The methods of this invention may also entail the use of an anti-CTLA4 agent or agents, an agonistic CD 137 agent, and a pharmaceutically acceptable carrier.
[0049] The compositions of the present invention may further comprise one or more pharmaceutically acceptable additional ingredient(s) such as alum, stabilizers, antimicrobial agents, buffers, coloring agents, flavoring agents, adjuvants, and the like. The pharmaceutical compositions of the present invention may be administered orally or parenterally including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration. [0050] For oral use, the pharmaceutical compositions of the present invention, may be administered, for example, in the form of tablets or capsules, powders, dispersible granules, or cachets, or as aqueous solutions or suspensions. In the case of tablets for oral use, carriers which are commonly used include lactose, corn starch, magnesium carbonate, talc, and sugar, and lubricating agents such as magnesium stearate are commonly added. For oral administration in capsule form, useful carriers include lactose, corn starch, magnesium carbonate, talc, and sugar. When aqueous suspensions are used for oral administration, emulsifying and/or suspending agents are commonly added. [0051] In addition, sweetening and/or flavoring agents may be added to the oral compositions. For intramuscular, intraperitoneal, subcutaneous and intravenous use, sterile solutions of the active ingredient(s) are usually employed, and the pH of the solutions should be suitably adjusted and buffered. For intravenous use, the total concentration of the solute(s) should be controlled in order to render the preparation isotonic.
[Θ052] For preparing suppositories according to the invention, a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted, and the active ingredient is dispersed homogeneously in the wax, for example by stirring. The molten homogeneous mixture is then poured into conveniently sized molds and allowed to cool and thereby solidify.
[0053] Liquid preparations include solutions, suspensions and emulsions. Such preparations are exemplified by water or water/propylene glycol solutions for parenteral injection. Liquid preparations may also include solutions for intranasal administration.
[0054] Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas. [0055] Also included are solid preparations which are intended for conversion, shortly before use, to liquid preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions. [0056] The pharmaceutical compositions of the present invention may also be delivered transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.
[0057] The combinations of the present invention may also be used in conjunction with other well known therapies that are selected for their particular usefulness against the condition that is being treated. [0058] If formulated as a fixed dose, the active ingredients of the pharmaceutical combination compositions of the present invention are employed within the dosage ranges described below. Alternatively, the anti~CTLA4 agent, and the agonistic CD 137 agent may be administered separately in the dosage ranges described below. In a preferred embodiment of the present invention, the anti-CTLA4 agent is administered in the dosage range described below following the administration of the CD 137 agonistic agent in the dosage range described below.
[0059] The following sets forth preferred therapeutic combinations and exemplary dosages for use in the methods of the present invention.
Figure imgf000020_0001
[0060] While this table provides exemplary dosage ranges of the agonistic CD 137, anti-CTLA4, and anti-cancer vaccine agents, when formulating the pharmaceutical compositions of the invention the clinician may utilize preferred dosages as warranted by the condition of the patient being treated. The anti-CTLA4 antibody may preferably be administered at about 3 - 10 mg/kg, or the maximum tolerated dose. The anti-CTLA4 antibody may preferably be administered at about 0.3 - 10 mg/kg, or the maximum tolerated dose. In an embodiment of the invention, a dosage of CTLA-4 antibody is administered about every three weeks, about every four weeks, about every five weeks, or about every six weeks. Alternatively, the CTLA-4 antibody may be administered by an escalating dosage regimen including administering a first dosage of CTLA-4 antibody at about 3 mg/kg, a second dosage of CTLA-4 antibody at about 5 mg/kg, and a third dosage of CTLA-4 antibody at about 9 mg/kg. Likewise, the agonistic CD 137 antibody may preferably be administered at about 0.1 - 1 mg/kg, or the maximum tolerated dose. Alternatively, the agonistic CD137 antibody may preferably be administered at about 0.1 - 10 mg/kg, or the maximum tolerated dose. In an embodiment of the invention, a dosage of agonistic CD 137 antibody is administered about every three weeks, about every four weeks, about every five weeks, or about every six weeks. Alternatively, the agonistic CD 137 antibody may be administered by an escalating dosage regimen including administering a first dosage of agonistic CD 137 antibody at about 0.1 mg/kg to about 1 mg/kg, a second dosage of agonistic CD 137 antibody at about 3 mg/kg, and a third dosage o'f agonistic CD 137 antibody at about 9 mg/kg. Alternatively, the CDl 37 antibody may be administered at about 0.1 mg/kg to about 1 mg/kg every 3 weeks, Alternatively, the CD 137 antibody may be administered at about 0.1 mg/kg to about 1 mg/kg every 6 weeks. Alternatively, the CD 137 antibody may be administered at about 5 mg/kg every 6 weeks.
[0061] According to the present invention, a preferred therapeutic regimen comprises (i) the first administration of an agonistic CDl 37 antibody to a patient in need, (ii) the subsequent administration of an anti-CTLA4 antibody; and optionally comprising an interstitial period in-between said first and second administrations. In one aspect of the present invention, the interstitial period may be sequential. In another aspect of the present invention, the interstitial period may be immediately sequential. In another aspect of the present invention, the interstitial period may be about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 55, or even about 60 minutes. In this context, the term "about" is construed to mean ±1 , 2, 3, 4, 5, 6, 1, 8, 9, or 10 minutes more or less than the stated amount. . In another aspect of the present invention, the interstitial period may be about 12 to about 18 hours, or about 18 to about 24 hours. In another aspect of the present invention, the interstitial period may be about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, or even about 24 hours. In this context, the term "about" is construed to mean ±1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 hours more or less than the stated amount. In another aspect of the present invention, the interstitial period may be about 1, about 2, about 3, about 4, about 5, about 6, or about 7 days. In this context, the term "about" is construed to mean ±1 , 2, 3, 4, 5, 6, or 7 days more or less than the stated amount.
[0062] Additional dosing and therapeutic regimens for CD137 agonistic antibodies are disclosed in U.S. Patent No. 6,210,669 and are incorporated herein in their entirety for all purposes. [0063] In another specific embodiment, the escalating dosage regimen includes administering a first dosage of CTLA-4 antibody at about 3 or 5 mg/kg and a second dosage of CTLA-4 antibody at about 5 or 9 mg/kg.
[0064] Further, the present invention provides an escalating dosage regimen, which includes administering an increasing dosage of CTLA-4 antibody about every six weeks. [0065] In another specific embodiment, the escalating dosage regimen includes administering a first dosage of agonistic CD 137 antibody at about 3 or 5 mg/kg and a second dosage of agonistic CD 137 antibody at about 5 or 9 mg/kg. [0066] Further, the present invention provides an escalating dosage regimen, which includes administering an increasing dosage of agonistic CD 137 antibody about every six weeks.
[0067] In an aspect of the present invention, a stepwise escalating dosage regimen is provided, which includes administering a first CTLA-4 antibody dosage of about 3 mg/kg, a second CTLA-4 antibody dosage of about 3 mg/kg, a third CTLA-4 antibody dosage of about 5 mg/kg, a fourth CTLA-4 antibody dosage of about 5 mg/kg, and a fifth CTLA-4 antibody dosage of about 9 mg/kg. In another aspect of the present invention, a stepwise escalating dosage regimen is provided, which includes administering a first dosage of 5 mg/kg, a second dosage of 5 mg/kg, and a third dosage of 9 mg/kg. [0068] According to the present invention, all recited doses and/or escalating dosing regimens individually listed for an anti-CTLA-4 antibody or individually listed for an agonistic CD 137 antibody are intended to follow a regimen comprising the sequential administration of a first administration of an agonistic CD 137 antibody, an interstitial period, followed by the administration of an anti-CTLA-4 antibody. [0069] The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated, Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small amounts until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired. Intermittent therapy (e.g., one week out of three weeks or three out of four weeks) may also be used.
[0070] Certain cancers can be treated effectively with one or more CD 137 agonistic agents and a one or more anti-CTLA4 agents, preferably with the first administration of a CD 137 agonistic agent followed by one or more anti-CTLA4 agents. Such triple and quadruple combinations can provide greater efficacy. When used in such triple and quadruple combinations the dosages set forth above can be utilized.
[0071] When employing the methods or compositions of the present invention, other agents used in the modulation of tumor growth or metastasis in a clinical setting, such as antiemetics, can also be administered as desired.
[0072] The present invention encompasses a method for the synergistic treatment of colitis, anti-CTLA agent-induced colitis, and cancer wherein a CDl 37 agonistic agent and an anti-CTLA4 agent are administered sequentially or simultaneously. Thus, while a pharmaceutical formulation comprising a CDl 37 agonistic and an anti- CTL A4 agent(s) may be advantageous for administering the combination for one particular treatment, prior administration of the anti~CTLA4 agent(s) may be advantageous in another treatment, or the simultaneous administration of the anti- CTLA4 agent(s) may be advantageous in another treatment. It is also understood that the instant combination of one or more CD 137 agonistic agents with one or more anti- CTLA4 agent(s) may be used in conjunction with other methods of treating colitis and cancer (preferably cancerous tumors) including, but not limited to, radiation therapy and surgery. It is further understood that a cytostatic or quiescent agent, if any, may be administered sequentially or simultaneously with any or all of the other synergistic therapies.
[0073] The combinations of the instant invention may also be co-administered with other well known therapeutic agents that are selected for their particular usefulness against the condition that is being treated. Combinations of the instant invention may alternatively be used sequentially with known pharmaceutically acceptable agent(s) when a multiple combination formulation is inappropriate. [0074] The CD 137 agonistic agent(s) and anti-CTLA4 agent(s) can be administered according to therapeutic protocols well known in the art. It will be apparent to those skilled in the art that the administration of the CD 137 agonistic agent(s) and anti-CTLA4 agent(s) can be varied depending on the disease being treated and the known effects of the agent(s) on that disease. Also, in accordance with the knowledge of the skilled clinician, the therapeutic protocols (e.g., dosage amounts and times of administration) can be varied in view of the observed effects of the administered therapeutic agents (i.e., anti-CTLA4 agent(s), CD137 agonistic agent(s)) on the patient, and in view of the observed responses of the disease to the administered therapeutic agents.
[0075] In the methods of this invention, one or more CD 137 agonistic agent(s) is administered simultaneously or sequentially with one or more anti-CTLA4 agent(s). Thus, it is not necessary that the anti-CTLA4 therapeutic agent(s) and CD 137 agonistic agent be administered simultaneously or essentially simultaneously. The advantage of a simultaneous or essentially simultaneous administration is well within the determination of the skilled clinician. Preferably, the one or more CD 137 agonistic agent(s) is administered first followed by the administration of one or more anti-CTLA4 agent(s).
[0076] Also, in general, the one or more CDl 37 agonistic agent(s), and anti- CTLA4 ageπt(s) do not have to be administered in the same pharmaceutical composition, and may, because of different physical and chemical characteristics, have to be administered by different routes. For example, the one or more CD 137 agonistic agent(s) may be administered intravenously to generate and maintain good blood levels thereof, while the anti-CTLA4 agent(s) may also be administered intravenously. Alternatively, the one or more CDl 37 agonistic agent(s) may be administered orally to generate and maintain good blood levels thereof, while the anti- CTLA4 agent(s) may also be administered intravenously, Alternatively, the one or more CDl 37 agonistic agent(s) may be administered intravenously to generate and maintain good blood levels thereof, while the anti-CTLA4 agent(s) may be administered orally. Alternatively, the one or more CDl 37 agonistic agent(s) may be administered orally to generate and maintain good blood levels thereof, while the anti- CTLA4 agent(s) may be administered orally. The determination of the mode of administration and the advisability of administration, where possible, in the same pharmaceutical composition, is well within the knowledge of the skilled clinician. The initial administration can be made according to established protocols known in the art, and then, based upon the observed effects, the dosage, modes of administration and times of administration can be modified by the skilled clinician. [0077] The particular choice of one or more CDl 37 agonistic agent(s) and anti- CTLA4 agent(s) will depend upon the diagnosis of the attending physicians and their judgment of the condition of the patient and the appropriate treatment protocol.
[0078] If the compound of one or more CD 137 agonistic agent(s) and the anti- CTLA4 agent(s) are not administered simultaneously or essentially simultaneously, then the initial order of administration of the one or more CDl 37 agonistic agent(s) and the anti-CTLA4 agent(s) may be varied. Thus, for example, the one or more CD 137 agonistic agent(s) may be administered first followed by the administration of the anti-CTLA4 agent(s); or the anti-CTLA4 agent(s) may be administered first followed by the administration of the one or more CD 137 agonistic agent(s). This alternate administration may be repeated during a single treatment protocol. The determination of the order of administration, and the number of repetitions of administration of each therapeutic agent during a treatment protocol, is well within the knowledge of the skilled physician after evaluation of the disease being treated and the condition of the patient. For example, the anti-CTLA4 agent(s) may be administered initially. Preferably, for example, the one or more CD 137 agonistic agent(s) may be administered initially. The treatment is then continued with the administration of the anti-CTLA4 agent(s) or CD 137 agonistic agent(s), as the case may be, and thereof and optionally followed by administration of a cancer vaccine alone or in combination with a cytostatic agent, if desired, until the treatment protocol is complete. Alternatively, the administration of the one or more CD 137 agonistic agent(s) thereof and optionally followed by administration of a cytostatic agent may be administered initially. The treatment is then continued with the administration of the anti-CTLA4 agertt(s), until the treatment protocol is complete. [0079] Thus, in accordance with experience and knowledge, the practicing physician can modify each protocol for the administration of a component (therapeutic agent - i.e., one or more CDl 37 agonistic agent(s), anti-CTLA4 agent(s),) of the treatment according to the individual patient's needs, as the treatment proceeds. [0080] The attending clinician, in judging whether treatment is effective at the dosage administered, will consider the general well-being of the patient as well as more definite signs such as relief of disease-related symptoms, inhibition of tumor growth, actual shrinkage of the tumor, or inhibition of metastasis. Size of the tumor can be measured by standard methods such as radiological studies, e.g., CAT or MRI scan, and successive measurements can be used to judge whether or not growth of the tumor has been retarded or even reversed. Relief of disease-related symptoms such as pain, and improvement in overall condition can also be used to help judge effectiveness of treatment.
[0081] In order to facilitate a further understanding of the invention, the following examples are presented primarily for the purpose of illustrating more specific details thereof. The scope of the invention should not be deemed limited by the examples, but to encompass the entire subject matter defined by the claims.
REFERENCES
[0082] Phan, G.Q. et al., "Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma", Proc. Natl. Acad. ScL USA, 100:8372-8377 (2003).
[0083] Beck, K.E. et al, "Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4", J. Clin. Oncol, 24:2283-
2289 (2006). [0084] Ipilimumab Nonclinical Toxicology Written Summary, Bristol-Myers
Squibb Research and Development, Aug. 2008, BMS Document Control Number
930023101. [0085] Korman, A.J. et al., "Checkpoint blockade in cancer immunotherapy",
Adv. Immunol, 90:297-339 (2006), Review.
[0086] Strober, W. et al., "The immunology of mucosal models of inflammation",
Annu, Rev, Immunol., 20:495-549 (2002). [0087] Kojima, R. et al., "Oxazolone-induced colitis in BALB/C mice: a new method to evaluate the efficacy of therapeutic agents for ulcerative colitis", J.
Pharmacol. ScL, 96:307-313 (2004).
[0088] Walunas, T.L. et al., "CTLA-4 can function as a negative regulator of T cell activation", Immunity, l(5):405-413 (Aug. 1994). [0089] Shuford, W.W. et al., "RS.4-1BB costimulatory signals preferentially induce CD 8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses", J. Exp. Med., 186(l):47-55 (M. 7, 1997).
[0090] Foell, J. et al., "CD137-mediated T cell co-stimulation terminates existing autoimmune disease in SLE-prone NZB/NZW Fl mice", Ann. NY Acad. ScL, 987:230-235 (Apr. 2003).
[0091] Sun, Y. et al., "Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease", Nat. Med., 8: 1405-1413 (2002).
[0092] Foell, J.L. et al., "Engagement of the CD137 (4-1 BB) costimulatory molecule inhibits and reverses the autoimmune process in collagen-induced arthritis and establishes lasting disease resistance", Immunology, 113(l):89-98 (Sept. 2004).
[0093] Seo, S.K. et al., "4-lBB-mediated immunotherapy of rheumatoid arthritis",
Nat. Med., 10:1088-1094 (2004).
EXAMPLE 1 - METHOD OF ASSESSING THE EFFECT OF THE COMBINATION OF CD 137 AGONISTIC ANTIBODIES WITH ANTI-CTLA4
BLOCKADE ON TUMOR GROWH IN MURINE COLITIS MODELS
Background
[0094] The antitumor activity of a homolog of ipilimumab, a CTLA-4 blocking agent, was investigated in combination with CD 137 agonistic antibodies, in preclinical studies. CD 137 agonism can ameliorate the development of autoimmunity in many experimental mouse models of autoimmune disease, whereas CTLA-4 blocking mAb promotes expansion and infiltration of tumor-primed cytolytic T cells. [0095] The inventors hypothesized that this combinatorial approach may produce therapeutic synergy based on their unique mechanism of action and cellular targets in preclinical tumor models.
[0096] An emerging approach for the treatment of cancer involves modulation of antitumor immune responses by treatment with monoclonal antibodies to T cell co- stimulatory/ co-inhibitory receptors, CD 137 agonistic mAb, and ipilimumab (CTLA-4 blocking mAb). In some preclinical models, combination of CD 137 and CTLA-4 antibodies resulted in improved efficacy. However, it is unknown whether this combinatorial approach may result in exacerbation of immune-mediated adverse events. In clinical trials, the most common adverse effect elicited by treatment with ipilimumab is immune-related colitis. The purpose of the studies presented here was to examine the effect of the combination of a CD 137 agonistic mAb and an aiiti- CTLA-4 mAb in T-cell dependent experimental murine colitis models.
Methods
[0097] Two models were evaluated: a) oxazolone-induced colitis, a mixed T helper (Th)l/Th2 colitis model; and b) trinitrobenzene sulfonic acid (TNBS)-induced colitis, which is mainly driven by a ThI response. Since ipilimumab and BMS- 663513 do not recognize mouse CTLA-4 and CD 137 respectively, evaluation of their preclinical activity in mouse models has been conducted with anti-mouse CTLA-4 and anti-mouse CD 137 antibodies.
Results
[0098] Results from these studies showed that CTLA-4 blockade elicited by mAb UClO at doses shown to be active in tumor models (10-20 mg/kg) exacerbated the onset and severity of the disease. Conversely, treatment with CDl 37 agonist BMS- 469492 (5 mg/kg) ameliorated the symptoms and improved survival. Furthermore, while concurrent treatment of CD 137 and CTLA-4 mAbs did not improve or increase the detrimental effect of CTLA-4 blockade, treatment with CD 137 mAb prior to CTLA-4 mAb markedly improved survival and prevented body weight loss compared to mice treated with CTLA-4 blocking mAb alone (p<0.05).
Conclusions [0099] Thus, treatment with a CD 137 mAb prior to CTLA-4 blockade reduces the severity of immune-mediated colitis elicited by a CTLA-4 blocking mAb.
EXAMPLE 2 - METHOD OF ASSESSING WHETHER A MURINE OXAZOLONE-INDUCED COLITIS COULD BE USED AS A MODEL TO STUDY THE EFFECT OF IMMUNOMODULATORY AGENTS
Materials and Methods Antibodies [00100] The hybridoma for the anti-CTLA-4 monoclonal antibody (mAb), clone 4F10-UC10 (hamster IgG anti-mouse CTLA-4) (Walunas et al., Immunity, l(5):405- 413 (Aug. 1994)) was obtained from the American Tissue Type Collection (Manassas, VA), and assigned as BMS-863019. BMS-469492 (clone 1D8) is a rat IgG2a with specificity to mouse CD137 (Shuford et al., J Exp Med., 186(l):47-55 (JuI. 7, 1997)). Both antibodies were produced and purified by BMS (Protein Therapeutics Division, Hopewell, New Jersey, USA), and certified to have < 0.5 EU/mg endotoxin levels, > 95% purity and < 5 % high molecular weight species. Stock solutions of both antibodies were kept at -80° C and were thawed out at 40C prior to use. Control antibodies consisted of a polyclonal hamster IgG or rat immunoglobulins (Jackson ImmunoResearch, West Grove, PA). Dosing solutions of antibodies were prepared per study in sterile phosphate buffered saline (pH 7.0).
Animals
[00101] Six-week old (18-22 g) SJL/J male mice were purchased from Charles River Labs, (Wilmington, MA). AU animal test protocols were subjected to IACUC approval and conform to USDA requirements. Food and water were supplied ad libitum. In vivo Oxazolone-induced Colitis
[00102] SJL/J mice had a 2 x 2 cm field of abdominal skin shaved and were pre- sensitized by epicutaneous application of 150 μl of 3% oxazolone (4- ethoxymethylene-2-phenyl-2oxazolin-5~one, Sigma, St Louis> MO) in 100% ethanol, on day 0, Five days after skin sensitization, mice were placed under general anesthesia with isofluorane (Halocarbon Labs, River Edge, NJ) and rechallenged with intrarectal administration of 100 μl of 0.75 % oxazolone in 50% ethanol or 50% ethanol vehicle alone (as a procedural control), through a 3.5 F catheter (Braintree Scientific, Braintree, MA) inserted 4 cm proximal to the anal verge. Disease progression was evaluated daily by monitoring survival and body weight. At the end of each study mice were sacrificed and the colons excised. Colon lengths were then recorded. Treatments were administered as described in Section 3 (Results).
Statistics
[00103] Unpaired Student's T test and Kaplan Meier survival curves were applied using GraphPad Prism software,
Results [00104] The effect of CTLA-4 blockade by mAb UClO (BMS-863019) in the oxazolone-induced colitis model was evaluated at 2 different dose levels: 20 mg/kg, representing an efficacious dose in mouse tumor models, and at 40 mg/kg. Antibody was administered LP. every 3 days for 3 doses following epicutaneous delivery of oxazolone. At both dose levels, CTLA-4 mAb exacerbated disease progression as determined by a significant weight loss that resulted in 4 and 6 deaths out of 8 mice for the 20 and 40 mg/kg groups, respectively. At necropsy, the colons of animals treated with CTLA-4 showed hemorrhagic lesions and inflammation, with a severity significantly greater than control mice. Histopathological evaluation showed that CTLA-4-treated mice showed disruption of the normal morphology of the colon with high infiltration of monocytic cells and tissue injury (figure 1). Results from this study indicated that oxazolone-induced colitis could be used as a model to study the effect of immunomodulatory agents. TABLE 1 Effect of CTLA-4 mAb in the Oxazolone-induced Colitis Model
Figure imgf000031_0001
EXAMPLE 3 - METHOD OF ASSESSING THE EFFECT OF THE
COMBINATION OF CD 137 AGONISTIC ANTIBODIES WITH ANTI-CTLA4 BLOCKADE ON TUMOR GROWH IN A MURINE OXAZOLONE-INDUCED
COLITIS MODEL
[0Θ10S] Since CD 137 agonistic mAb can prevent or ameliorate the development of autoimmunity in many experimental mouse models of autoimmune disease (Foell et al., Ann. NY Acad. ScL, 987:230-235 (Apr. 2003); Sun et al., Nat. Med., 8:1405-1413
(2002); Foell et al., Immunology, 113(l):89-98 (Sept. 2004); Seo et al., Nat. Med.,
10:1088-1094 (2004)), it was of interest to determine if a CD137 agonist antibody
(BMS-469492) could modulate the effect of CTLA-4 blockade in immune-mediated colitis models.
Methods [00106] CD 137 mAb (BMS-469492, 5 mg/kgs q3dx3) and CTLA-4 mAb (UClO5 20 mg/kg, q3dx3) were administered intraperitoneally on days 0, 3, and 6 after epicutaneous challenge with oxazolone (day 0) alone or in combination. On day 5, animals were re-challenged with 0.75% oxazolone intrarectally. ETOH (ethanol) - treated group did not receive oxazolone. Survival was monitored daily.
Results
[00107] In the first study, BMS-469492 (CD 137 agonist, 5 mg/kg, administered every 3 days for 3 doses) and mAb CTLA-4 (CTLA-4 blocking mAb, 20 mg/kg, administered every 3 days for 3 doses) were administered alone or concomitantly on days 0, 3, and 6 post-epicutaneous challenge with oxazolone (3 %). Mice that received anti-CD 137 mAb alone showed improved survival compared with animals treated with CTLA-4 mAb alone (p<0.01). As previously observed, anti-CTLA-4 treatment accelerated disease onset and most of the animals died in the first days after antigen challenge. When anti-CD 137 mAb was administered at the same time than CTLA-4 mAb, treatments did not exacerbate the disease state compared to the experimental animal group receiving CTLA-4 mAb alone (Figure 2).
EXAMPLE 4 - METHOD OF ASSESSING WHETHER THE ORDER IN WHICH CDl 37 AGONISTIC ANTIBODIES ARE ADMINISTERED IN COMBINATION WITH ANTI-CTLA4 BLOCKADE HAS AN EFFECT ON TUMOR GROWH IN A
MURINE OXAZOLONE-INDUCED COLITIS MODEL
[00108] The results summarized in Figure 2 showed that the CDl 37 agonistic mAb improved survival compared to the control group. As a consequence, the data suggested that CD 137 signaling modulated the severity of the disease. Thus, in the next studies we investigated the effect of CD 137 mAb administered prior (18-24 hours earlier) to CTLA-4 mAb.
Methods [00109] Two studies were performed as follows: A) CDl 37 mAb (BMS-469492, 5 mg/kg, days -1, 2, 5) and CTLA-4 mAb (UClO, 20 mg/kg, days 0, 3, 6) were administered intraperitoneal Iy; B) CTLA-4 mAb was dosed at 10 mg/kg following the same schedule.
[00110] For each study, epicutaneous sensitization with oxazolone was performed on day 0 (3%) while intrarectal challenge was done on day 5 (0.75%). ETOH (ethanol) -treated group did not receive oxazolone. Survival was monitored daily.
Results
[00111] In these studies, animals treated with CTLA-4 mAb alone, at either 10 or 20 mg/kg, consistently showed poorer survival compared to control animals, while treatment with the CD 137 mAb resulted in a survival rate similar to animals not challenged with oxazolone (ethanol only control group, Figure 3 A and B). In the combination groups, mice treated with CD 137 mAb prior to CTLA-4 mAb (18-24 hours earlier) showed markedly improved survival compared to single agent anti- CTLA-4-treated group (Figures A and B; p<0.05). These results indicate that CD 137 mAb modulated the severity of the disease induced by CTLA-4 blockade.
EXAMPLE 5 - METHOD OF ASSESSING THE EFFECT OF COMBINATION OF CD 137 AGONISTIC ANTIBODIES WITH ANTI-CTLA4 BLOCKADE ON COLON
LENGTH IN A MURINE OXAZOLONE-INDUCED COLITIS MODEL [00112] In an additional study, mice were sacrificed on Day 9 post skin sensitization and colons were removed and measured as an indication of disease severity. As shown in Table 2, colons from animals treated with the combination of CD 137 mAb and CTLA-4 mAb were markedly longer than mice treated with CTLA-4 mAb (Table 1).
TABLE 2
Effect of CD 137 mAb, CTLA-4 mAb or their Combination on Colon Length in the
Oxazolone Colitis Model
Figure imgf000033_0001
Figure imgf000034_0001
Values represent mean ± SD. Groups consisted of 4 mice, except for CTLA-4 mAb group which had 3 mice. One mouse from this group died before day 9.
p<0,05 compared to control vehicle
C.
"p=0.07 compared to CTLA-4 mAb-treated group. In the combination group CDl 37 mAb was administered 18h-24h prior to CTLA-4 mAb.
EXAMPLE 6 - METHOD OF ASSESSING THE EFFECT OF THE COMBINATION OF CD 137 AGONISTIC ANTIBODIES WITH ANTI-CTLA4 BLOCKADE ON TUMOR GROWH IN A MURINE TNBS-INDUCED COLITIS MODEL
[00113] The effect of CD 137 agonistic mAb in animals treated with CTLA-4 blocking mAb was also evaluated in the TNBS-induced colitis model. Unlike the oxazolone-induced colitis model, mucosal inflammation induced by TNBS results from a ThI response, mainly driven by IL42 production. It affects most of the colon, while in the oxazolone-based model inflammation is mainly observed in the distal half of the colon (Strober et at, Λnnu. Rev. Immunol, 20:495-549 (2002)). Methods
[00114] Mice were treated with CD 137 mAb (5 mg/kg) on days -1 , 2, and 5, whereas CTLA-4 mAb (20 mg/kg) was administered on days 0, 3, and 6. Intra-rectal injections of TNBS (2 mg/mouse in 35% ethanol) were administered on Day 0 after CTLA-4 mAb treatment. Combination groups followed the same dose and schedule as single agent groups.
Results [00115] Mice treated with CTLA-4 mAb produced significant body weight loss compared with control vehicle (p<0.05, days 1-6), whereas CD137 mAb did not. Furthermore, administration of CD 137 mAb prior to CTLA-4 mAb prevented the rate of body weight loss observed with CTLA-4 mAb (p<0.05, days 2-6). [00116] Thus, as observed in the oxazolone-based colitis model, CDl 37 mAb modulated and improved the clinical signs associated with treatment with CTLA-4 mAb in the TNB S -induced colitis model.
EXAMPLE 7 - METHOD OF ASSESSING THE EFFECT OF COMBINATION OF
CD 137 AGONISTIC ANTIBODIES WITH ANTI-CTLA4 BLOCKADE ON COLON
LENGTH IN A MURINE TNBS-INDUCED COLITIS MODEL [00117] In another study, mice were sacrificed on Day 4 following intrarectal administration of TNBS and colons were removed and their length measured as an indication of disease severity. Day 4 was selected since it was expected to coincide with disease progression.
[00118] As shown in Table 3, colons from animals treated with the combination of CDl 37 mAb and CTLA-4 mAb were markedly longer than mice treated with CTLA-4 mAb.
TABLE 3
Effect of CD 137 mAb, CTLA-4 mAb or their Combination on Colon Length in the TNBS Colitis Model
Figure imgf000036_0001
a Values represent mean ± SD. Groups consisted of 3-4 mice as shown.
b ρ=0.08 compared to CTLA-4 mAb alone
Conclusion [00119] In both models of immune-mediated colitis, treatment with an anti-CD137 agonistic mAb prior to treatment with CTLA-4 mAb significantly reduced the clinical signs associated with CTLA-4 mAb treatment. Further studies will be necessary to dissect the immune events responsible for the modulatory effect of CD 137 mAb. [00120] The present invention is not limited to the embodiments specifically described above, but is capable of variation and modification without departure from the scope of the appended claims.
[00121] It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.
[00122] The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, GENBANK® Accession numbers, SWISS-PROT© Accession numbers, or other disclosures) in the Background of the Invention, Detailed Description, Brief Description of the Figures, and Examples is hereby incorporated herein by reference in their entirety. Further, the hard copy of the Sequence Listing submitted herewith, in addition to its corresponding Computer Readable Form, are incorporated herein by reference in their entireties.

Claims

WHAT IS CLAIMED IS:
1. A method for the treatment of colitis comprising administering to a mammal in need thereof a synergistic combination comprising the sequential administration of a therapeutically effective amount of an agonistic CDl 37 antibody, followed by the administration of a therapeutically effective amount of an antagonistic CTLA-4 antibody.
2. The method according to claim 1 optionally comprising an interstitial period in between said administrations.
3. The method according to claim 1 for the treatment of anti-CTLA4 induced colitis.
4. The method according to claim 1 wherein the antagonistic CTL A-4 antibody is ipilirøiimab or tremelimumab.
5. The method according to claim 1 wherein the agonistic CD 137 antibody is BMS-663513 or XmAb-5592.
6. A method for the treatment of a proliferative disease comprising administering to a mammal in need thereof a synergistic combination comprising the sequential administration of a therapeutically effective amount of an agonistic CDl 37 antibody, followed by the administration of a therapeutically effective amount of an antagonistic CTLA-4 antibody.
7. The method according to claim 6 optionally comprising an interstitial period in between said administrations.
8. The method according to claim 6 for the treatment of cancerous solid tumors.
9. The method according to claim 6 for the treatment of refractory tumors.
10. The method according to claim 6 wherein the antagonistic CTLA-4 antibody is ipilimumab or tremelimumab.
11. The method according to claim 6 wherein the agonistic CD 137 antibody is BMS-663513 or XmAb-5592.
12. A method for the treatment of drug-associated weight loss comprising administering to a mammal in need thereof a synergistic combination comprising the sequential administration of a therapeutically effective amount of an agonistic CD 137 antibody, followed by the administration of a therapeutically effective amount of an antagonistic CTLA-4 antibody.
13, A method for the prevention of immunotherapy-dependent colitis comprising administering to a mammal in need thereof a synergistic combination comprising the sequential administration of a therapeutically effective amount of an agonistic CD 137 antibody, followed by the administration of a therapeutically effective amount of an antagonistic CTLA-4 antibody,
PCT/US2009/059518 2008-10-06 2009-10-05 Combination of cd137 antibody and ctla-4 antibody for the treatment of proliferative diseases WO2010042433A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/122,630 US8475790B2 (en) 2008-10-06 2009-10-05 Combination of CD137 antibody and CTLA-4 antibody for the treatment of proliferative diseases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10302308P 2008-10-06 2008-10-06
US61/103,023 2008-10-06
US20067808P 2008-12-02 2008-12-02
US61/200,678 2008-12-02

Publications (1)

Publication Number Publication Date
WO2010042433A1 true WO2010042433A1 (en) 2010-04-15

Family

ID=42100910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/059518 WO2010042433A1 (en) 2008-10-06 2009-10-05 Combination of cd137 antibody and ctla-4 antibody for the treatment of proliferative diseases

Country Status (2)

Country Link
US (1) US8475790B2 (en)
WO (1) WO2010042433A1 (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046746A1 (en) 2015-09-15 2017-03-23 Acerta Pharma B.V. Therapeutic combinations of a btk inhibitor and a gitr binding molecule, a 4-1bb agonist, or an ox40 agonist
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
WO2018129332A1 (en) 2017-01-06 2018-07-12 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with tumor necrosis factor receptor superfamily (tnfrsf) agonists and therapeutic combinations of tils and tnfrsf agonists
WO2018160536A1 (en) 2017-02-28 2018-09-07 Bristol-Myers Squibb Company Use of anti-ctla-4 antibodies with enhanced adcc to enhance immune response to a vaccine
WO2018226714A1 (en) 2017-06-05 2018-12-13 Iovance Biotherapeutics, Inc. Methods of using tumor infiltrating lymphocytes in double-refractory melanoma
WO2019100023A1 (en) 2017-11-17 2019-05-23 Iovance Biotherapeutics, Inc. Til expansion from fine needle aspirates and small biopsies
WO2019136456A1 (en) 2018-01-08 2019-07-11 Iovance Biotherapeutics, Inc. Processes for generating til products enriched for tumor antigen-specific t-cells
WO2019136459A1 (en) 2018-01-08 2019-07-11 Iovance Biotherapeutics, Inc. Processes for generating til products enriched for tumor antigen-specific t-cells
WO2019160829A1 (en) 2018-02-13 2019-08-22 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with adenosine a2a receptor antagonists and therapeutic combinations of tils and adenosine a2a receptor antagonists
US10415015B2 (en) 2016-10-31 2019-09-17 Iovance Biotherapeutics, Inc. Engineered artificial antigen presenting cells for tumor infiltrating lymphocyte expansion
WO2019190579A1 (en) 2018-03-29 2019-10-03 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2019210131A1 (en) 2018-04-27 2019-10-31 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2019217753A1 (en) 2018-05-10 2019-11-14 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2019241730A2 (en) 2018-06-15 2019-12-19 Flagship Pioneering Innovations V, Inc. Increasing immune activity through modulation of postcellular signaling factors
WO2020061429A1 (en) 2018-09-20 2020-03-26 Iovance Biotherapeutics, Inc. Expansion of tils from cryopreserved tumor samples
WO2020096682A2 (en) 2018-08-31 2020-05-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients refractory for anti-pd-1 antibody
WO2020096988A2 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2020096927A1 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Expansion of tils utilizing akt pathway inhibitors
WO2020096986A2 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
WO2020096989A1 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients refractory for anti-pd-1 antibody
WO2020131547A1 (en) 2018-12-19 2020-06-25 Iovance Biotherapeutics, Inc. Methods of expanding tumor infiltrating lymphocytes using engineered cytokine receptor pairs and uses thereof
WO2020205662A1 (en) 2019-03-29 2020-10-08 Myst Therapeutics, Inc. Ex vivo methods for producing a t cell therapeutic and related compositions and methods
WO2020227159A2 (en) 2019-05-03 2020-11-12 Flagship Pioneering Innovations V, Inc. Methods of modulating immune activity
WO2020232029A1 (en) 2019-05-13 2020-11-19 Iovance Biotherapeutics, Inc. Methods and compositions for selecting tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2021081378A1 (en) 2019-10-25 2021-04-29 Iovance Biotherapeutics, Inc. Gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2021108727A1 (en) 2019-11-27 2021-06-03 Myst Therapeutics, Inc. Method of producing tumor-reactive t cell composition using modulatory agents
WO2021118990A1 (en) 2019-12-11 2021-06-17 Iovance Biotherapeutics, Inc. Processes for the production of tumor infiltrating lymphocytes (tils) and methods of using the same
WO2021127217A1 (en) 2019-12-17 2021-06-24 Flagship Pioneering Innovations V, Inc. Combination anti-cancer therapies with inducers of iron-dependent cellular disassembly
WO2021174208A1 (en) 2020-02-27 2021-09-02 Myst Therapeutics, Llc Methods for ex vivo enrichment and expansion of tumor reactive t cells and related compositions thereof
WO2021226061A1 (en) 2020-05-04 2021-11-11 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2021226085A1 (en) 2020-05-04 2021-11-11 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
WO2022006179A1 (en) 2020-06-29 2022-01-06 Flagship Pioneering Innovations V, Inc. Viruses engineered to promote thanotransmission and their use in treating cancer
WO2022076606A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022076952A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022125941A1 (en) 2020-12-11 2022-06-16 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with braf inhibitors and/or mek inhibitors
WO2022133149A1 (en) 2020-12-17 2022-06-23 Iovance Biotherapeutics, Inc. Treatment of cancers with tumor infiltrating lymphocytes
WO2022133140A1 (en) 2020-12-17 2022-06-23 Iovance Biotherapeutics, Inc. Treatment with tumor infiltrating lymphocyte therapies in combination with ctla-4 and pd-1 inhibitors
US11401506B2 (en) 2014-04-10 2022-08-02 H. Lee Moffitt Cancer Center And Research Institute, Inc. Enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy
WO2022170219A1 (en) 2021-02-05 2022-08-11 Iovance Biotherapeutics, Inc. Adjuvant therapy for cancer
WO2022187741A2 (en) 2021-03-05 2022-09-09 Iovance Biotherapeutics, Inc. Tumor storage and cell culture compositions
WO2022212784A1 (en) 2021-03-31 2022-10-06 Flagship Pioneering Innovations V, Inc. Thanotransmission polypeptides and their use in treating cancer
WO2022225981A2 (en) 2021-04-19 2022-10-27 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
WO2022245754A1 (en) 2021-05-17 2022-11-24 Iovance Biotherapeutics, Inc. Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2023278641A1 (en) 2021-06-29 2023-01-05 Flagship Pioneering Innovations V, Inc. Immune cells engineered to promote thanotransmission and uses thereof
WO2023009716A1 (en) 2021-07-28 2023-02-02 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with kras inhibitors
WO2023049862A1 (en) 2021-09-24 2023-03-30 Iovance Biotherapeutics, Inc. Expansion processes and agents for tumor infiltrating lymphocytes
WO2023077015A2 (en) 2021-10-27 2023-05-04 Iovance Biotherapeutics, Inc. Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy
WO2023086803A1 (en) 2021-11-10 2023-05-19 Iovance Biotherapeutics, Inc. Methods of expansion treatment utilizing cd8 tumor infiltrating lymphocytes
US11713446B2 (en) 2018-01-08 2023-08-01 Iovance Biotherapeutics, Inc. Processes for generating TIL products enriched for tumor antigen-specific T-cells
WO2023147486A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Tumor infiltrating lymphocytes engineered to express payloads
WO2024030758A1 (en) 2022-08-01 2024-02-08 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
WO2024077191A1 (en) 2022-10-05 2024-04-11 Flagship Pioneering Innovations V, Inc. Nucleic acid molecules encoding trif and additionalpolypeptides and their use in treating cancer
US11981921B2 (en) 2022-04-15 2024-05-14 Iovance Biotherapeutics, Inc. TIL expansion processes using specific cytokine combinations and/or AKTi treatment
US12024718B2 (en) 2022-07-01 2024-07-02 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE037464T2 (en) 2005-12-02 2018-08-28 Icahn School Med Mount Sinai Chimeric newcastle disease viruses presenting non-native surface proteins and uses thereof
ES2550179T3 (en) 2009-02-05 2015-11-05 Icahn School Of Medicine At Mount Sinai Chimeric Newcastle disease viruses and uses thereof
SG10201501784YA (en) 2009-12-07 2015-05-28 Univ Leland Stanford Junior Methods for enhancing anti-tumor antibody therapy
WO2012149540A1 (en) 2011-04-28 2012-11-01 The Broad Institute Inc Inhibitors of histone deacetylase
US20140234320A1 (en) * 2011-06-20 2014-08-21 La Jolla Institute For Allergy And Immunology Modulators of 4-1bb and immune responses
EP2877444B1 (en) 2012-07-27 2020-09-02 The Broad Institute, Inc. Inhibitors of histone deacetylase
GEP20196976B (en) * 2013-03-14 2019-06-10 Sloan Kettering Cancer Center Memorial Newcastle disease viruses and uses thereof
SG10201801562PA (en) 2014-02-27 2018-04-27 Viralytics Ltd Combination method for treatment of cancer
US11215616B2 (en) 2015-04-10 2022-01-04 National Institutes Of Health (Nih), (Dhhs), U.S. Government Methods of determining patient populations amenable to immunomodulatory treatment of cancer
AU2016303489B2 (en) 2015-07-31 2023-02-16 University Of Florida Research Foundation, Inc. Hematopoietic stem cells in combinatorial therapy with immune checkpoint inhibitors against cancer
US20170199176A1 (en) * 2016-01-11 2017-07-13 Nodality, Inc. T cell populations in diagnosis, prognosis, prediction, and monitoring
WO2017165742A1 (en) 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Methods of treating gastrointestinal immune-related adverse events in anti-ctla4 anti-pd-1 combination treatments
EP3433275A1 (en) 2016-03-24 2019-01-30 Millennium Pharmaceuticals, Inc. Methods of treating gastrointestinal immune-related adverse events in immune oncology treatments
US11104739B2 (en) * 2016-04-14 2021-08-31 Bristol-Myers Squibb Company Combination therapy using an anti-fucosyl-GM1 antibody and an anti-CD137 antibody
MA46721A (en) * 2016-11-07 2019-09-11 Advaxis Inc COMBINATION OF LISTERIA-BASED VACCINE WITH ANTI-CTLA-4 OR ANTI-CD137 ANTIBODIES
US11512134B2 (en) 2017-08-01 2022-11-29 Eli Lilly And Company Anti-CD137 antibodies
SG11201906961UA (en) 2017-02-10 2019-08-27 Genmab Bv Polypeptide variants and uses thereof
AU2018253176B2 (en) 2017-04-13 2023-02-02 Agenus Inc. Anti-CD137 antibodies and methods of use thereof
IL312337A (en) 2017-05-19 2024-06-01 Wuxi Biologics Shanghai Co Ltd Monoclonal antibodies to cytotoxic t-lymphocyte-associated protein 4 (ctla-4), compositions containing same and uses thereof
SG10201913147WA (en) 2017-07-11 2020-02-27 Compass Therapeutics Llc Agonist antibodies that bind human cd137 and uses thereof
WO2019089753A2 (en) 2017-10-31 2019-05-09 Compass Therapeutics Llc Cd137 antibodies and pd-1 antagonists and uses thereof
US11851497B2 (en) 2017-11-20 2023-12-26 Compass Therapeutics Llc CD137 antibodies and tumor antigen-targeting antibodies and uses thereof
JP2021510733A (en) 2018-01-12 2021-04-30 ケーディーエーシー セラピューティクス,インコーポレーテッドKdac Therapeutics, Inc. Combination of selective histone deacetylase 3 (HDAC3) inhibitor and immunotherapeutic agent for the treatment of cancer
WO2020216947A1 (en) 2019-04-24 2020-10-29 Heidelberg Pharma Research Gmbh Amatoxin antibody-drug conjugates and uses thereof
AU2020278465A1 (en) 2019-05-20 2021-12-09 Dana-Farber Cancer Institute, Inc. Boronic ester prodrugs and uses thereof
CN113842456B (en) * 2020-06-28 2022-07-26 上海齐鲁制药研究中心有限公司 Anti-human 4-1BB monoclonal antibody preparation and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241169A1 (en) * 2003-05-30 2004-12-02 Medarex, Inc. Surrogate therapeutic endpoint for anti-CTLA4-based immunotherapy of disease
US20060171949A1 (en) * 2004-10-29 2006-08-03 Alan Epstein Combination cancer immunotherapy with co-stimulatory molecules
US7288638B2 (en) * 2003-10-10 2007-10-30 Bristol-Myers Squibb Company Fully human antibodies against human 4-1BB
US20080118501A1 (en) * 2005-10-21 2008-05-22 Gtc Biotherapeutics, Inc. Antibodies with enhanced antibody-dependent cellular cytotoxicity activity, methods of their production and use

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362325B1 (en) 1988-11-07 2002-03-26 Advanced Research And Technology Institute, Inc. Murine 4-1BB gene
US20060002904A9 (en) 1988-11-07 2006-01-05 Kwon Byoung S Receptor and related products and methods
US6303121B1 (en) 1992-07-30 2001-10-16 Advanced Research And Technology Method of using human receptor protein 4-1BB
US6355476B1 (en) 1988-11-07 2002-03-12 Advanced Research And Technologyinc Nucleic acid encoding MIP-1α Lymphokine
US6887471B1 (en) * 1991-06-27 2005-05-03 Bristol-Myers Squibb Company Method to inhibit T cell interactions with soluble B7
US5851795A (en) 1991-06-27 1998-12-22 Bristol-Myers Squibb Company Soluble CTLA4 molecules and uses thereof
US20060063923A1 (en) 1992-07-30 2006-03-23 Kwon Byoung S 4-1BB peptides and methods for use
US5674704A (en) 1993-05-07 1997-10-07 Immunex Corporation Cytokine designated 4-IBB ligand
US7138500B1 (en) 1993-05-07 2006-11-21 Immunex Corporation Antibodies to human 4-1BB
US7211259B1 (en) 1993-05-07 2007-05-01 Immunex Corporation 4-1BB polypeptides and DNA encoding 4-1BB polypeptides
CA2429027C (en) 1993-09-16 2011-04-05 Indiana University Foundation Antibodies against human receptor h4-1bb
AU5369996A (en) 1995-03-23 1996-10-08 Indiana University Foundation Monoclonal antibody against human receptor protein 4-1bb and methods of its use for treatment of diseases
EP0766745B1 (en) 1995-04-08 2002-10-23 LG Chemical Limited Monoclonal antibody specific for human 4-1bb and cell line producing same
US5855887A (en) 1995-07-25 1999-01-05 The Regents Of The University Of California Blockade of lymphocyte down-regulation associated with CTLA-4 signaling
US6051227A (en) 1995-07-25 2000-04-18 The Regents Of The University Of California, Office Of Technology Transfer Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
US5811097A (en) 1995-07-25 1998-09-22 The Regents Of The University Of California Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
IL129138A0 (en) 1996-10-11 2000-02-17 Bristol Myers Squibb Co Methods and compositions for immunomodulation
JP2001523958A (en) 1997-03-21 2001-11-27 ブライハム アンド ウィミンズ ホスピタル,インコーポレイテッド CTLA-4 binding peptides for immunotherapy
US6235740B1 (en) 1997-08-25 2001-05-22 Bristol-Myers Squibb Co. Imidazoquinoxaline protein tyrosine kinase inhibitors
KR20000034847A (en) 1998-11-17 2000-06-26 성재갑 Humanized Antibody Specific for Human 4-1BB Molecule and Pharmaceutical Composition Comprising Same
AU774076C (en) 1998-12-09 2005-04-14 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The A recombinant vector expressing multiple costimulatory molecules and uses thereof
CZ303703B6 (en) 1998-12-23 2013-03-20 Pfizer Inc. Monoclonal antibody or fragment-binding antigen thereof, pharmaceutical composition in which the antibody or fragment is comprised, a cell line producing the antibody or fragment, process for preparing the antibody, isolated nucleic acid encoding hea
US6682736B1 (en) 1998-12-23 2004-01-27 Abgenix, Inc. Human monoclonal antibodies to CTLA-4
US7109003B2 (en) 1998-12-23 2006-09-19 Abgenix, Inc. Methods for expressing and recovering human monoclonal antibodies to CTLA-4
US20030118588A1 (en) 1999-05-22 2003-06-26 Linda Diehl Induction of anti-tumor CTL immunity through in vivo triggering of 4-1BB and/or CD40
WO2001000207A1 (en) 1999-06-30 2001-01-04 Merck & Co., Inc. Src kinase inhibitor compounds
EP1206265B1 (en) 1999-06-30 2003-11-12 Merck & Co., Inc. Src kinase inhibitor compounds
CA2376951A1 (en) 1999-06-30 2001-01-04 Peter J. Sinclair Src kinase inhibitor compounds
EP1792991A1 (en) 1999-08-24 2007-06-06 Medarex, Inc. Human CTLA-4 antibodies and their uses
US7605238B2 (en) 1999-08-24 2009-10-20 Medarex, Inc. Human CTLA-4 antibodies and their uses
US20030153015A1 (en) * 2000-01-20 2003-08-14 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
AU2001233027A1 (en) 2000-01-27 2001-08-07 Genetics Institute, Llc Antibodies against ctla4 (cd152), conjugates comprising same, and uses thereof
WO2001089567A1 (en) 2000-05-22 2001-11-29 Idec Pharmaceuticals Corporation Identification of unique binding interactions between certain antibodies and the human b7.1 and b7.2 co-stimulatory antigens
US20020039577A1 (en) 2000-06-09 2002-04-04 Townsend Robert M. Methods for regulating a lymphocyte-mediated immune response by blocking costimulatory signals and blocking LFA-1 mediated adhesion in lymphocytes
MXPA02012603A (en) 2000-07-03 2003-05-14 Squibb Bristol Myers Co Methods for treating rheumatic diseases using a soluble ctla4 molecule.
US20030133939A1 (en) 2001-01-17 2003-07-17 Genecraft, Inc. Binding domain-immunoglobulin fusion proteins
JP2004536786A (en) 2001-03-02 2004-12-09 メディミューン,インコーポレイテッド Method for preventing or treating inflammatory disease or autoimmune disease by administering an integrin αvβ3 antagonist in combination with another prophylactic or therapeutic agent
US20030068320A1 (en) 2001-03-02 2003-04-10 Christine Dingivan Methods of administering/dosing CD2 antagonists for the prevention and treatment of autoimmune disorders or inflammatory disorders
TW200301698A (en) 2001-12-21 2003-07-16 Bristol Myers Squibb Co Acridone inhibitors of IMPDH enzyme
AR039209A1 (en) 2002-04-03 2005-02-09 Novartis Ag INDOLILMALEIMIDA DERIVATIVES
CA2482042A1 (en) 2002-04-19 2003-10-30 Bristol-Myers Squibb Company Methods for treating an autoimmune disease using a soluble ctla4 molecule and a dmard or nsaid
DE10232697A1 (en) 2002-07-15 2004-02-05 Universitätsklinikum Charité, Medizinische Fakultät der Humboldt-Universität zu Berlin Use of CD152 for the treatment of autoimmune diseases and inflammation
CA2492561A1 (en) * 2002-07-15 2004-01-22 Mayo Foundation For Medical Education And Research Treatment and prophylaxis with 4-1bb-binding agents
EP1539237A4 (en) 2002-07-30 2006-05-24 Bristol Myers Squibb Co Humanized antibodies against human 4-1bb
EP2330130B1 (en) 2002-10-17 2014-08-27 Genmab A/S Human monoclonal antibodies against CD20
US20060270730A1 (en) 2003-08-07 2006-11-30 Andreas Katopodis Histone deacetylase inhibitors as immunosuppressants
WO2005051321A2 (en) 2003-11-25 2005-06-09 Washington University Treatment of inflammatory bowel disease through induction of indoleamine 2,3-dioxygenase
US7850962B2 (en) 2004-04-20 2010-12-14 Genmab A/S Human monoclonal antibodies against CD20
EP1793857A4 (en) 2004-09-08 2008-09-03 Univ Ohio State Res Found Combination therapy with anti-ctla4 and anti-4-1bb antibodies
WO2006063067A2 (en) 2004-12-09 2006-06-15 La Jolla Institute For Allergy And Immunology Novel tnf receptor regulatory domain
DE102004063494A1 (en) 2004-12-23 2006-07-13 Tegenero Ag antibody
WO2006074399A2 (en) 2005-01-05 2006-07-13 Biogen Idec Ma Inc. Multispecific binding molecules comprising connecting peptides
US20060182744A1 (en) 2005-02-15 2006-08-17 Strome Scott E Anti-CD137 antibody as an agent in the treatment of cancer and glycosylation variants thereof
EP2399935A3 (en) 2005-02-15 2012-02-22 GTC Biotherapeutics, Inc. An anti-CD137 antibody as an agent in the treatment of cancer and glycosylation variants thereof
JP2006280307A (en) 2005-04-01 2006-10-19 Kyoto Univ Method for producing controllable t cell
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
AU2006311475A1 (en) 2005-11-08 2007-05-18 Medarex, Inc. TNF-alpha blocker treatment for enterocolitis associated with immunostimulatory therapeutic antibody therapy
WO2007056539A2 (en) 2005-11-08 2007-05-18 Medarex, Inc. Prophylaxis and treatment of enterocolitis associated with anti-ctla-4 antibody therapy
WO2007067959A2 (en) 2005-12-07 2007-06-14 Medarex, Inc. Ctla-4 antibody dosage escalation regimens
CA2647282A1 (en) 2006-04-05 2007-10-11 Pfizer Products Inc. Ctla4 antibody combination therapy
US8449886B2 (en) 2008-01-08 2013-05-28 Bristol-Myers Squibb Company Combination of anti-CTLA4 antibody with tubulin modulating agents for the treatment of proliferative diseases
US8119129B2 (en) 2008-08-01 2012-02-21 Bristol-Myers Squibb Company Combination of anti-CTLA4 antibody with dasatinib for the treatment of proliferative diseases
PL2769737T3 (en) 2009-07-20 2017-08-31 Bristol-Myers Squibb Company Combination of an anti-CTLA4 antibody with etoposide for the synergistic treatment of proliferative diseases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241169A1 (en) * 2003-05-30 2004-12-02 Medarex, Inc. Surrogate therapeutic endpoint for anti-CTLA4-based immunotherapy of disease
US7288638B2 (en) * 2003-10-10 2007-10-30 Bristol-Myers Squibb Company Fully human antibodies against human 4-1BB
US20060171949A1 (en) * 2004-10-29 2006-08-03 Alan Epstein Combination cancer immunotherapy with co-stimulatory molecules
US20080118501A1 (en) * 2005-10-21 2008-05-22 Gtc Biotherapeutics, Inc. Antibodies with enhanced antibody-dependent cellular cytotoxicity activity, methods of their production and use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU ET AL.: "B7 interactions with CD28 and CTLA-4 control tolerance or induction of mucosa 1 inflammation in chronic experimental colitis.", J IMMUNOLOGY, vol. 167, no. 3, 1 August 2001 (2001-08-01), pages 1830 - 1838 *

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401506B2 (en) 2014-04-10 2022-08-02 H. Lee Moffitt Cancer Center And Research Institute, Inc. Enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy
WO2017046746A1 (en) 2015-09-15 2017-03-23 Acerta Pharma B.V. Therapeutic combinations of a btk inhibitor and a gitr binding molecule, a 4-1bb agonist, or an ox40 agonist
US10415015B2 (en) 2016-10-31 2019-09-17 Iovance Biotherapeutics, Inc. Engineered artificial antigen presenting cells for tumor infiltrating lymphocyte expansion
US11667890B2 (en) 2016-10-31 2023-06-06 Iovance Biotherapeutics, Inc. Engineered artificial antigen presenting cells for tumor infiltrating lymphocyte expansion
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
WO2018129332A1 (en) 2017-01-06 2018-07-12 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with tumor necrosis factor receptor superfamily (tnfrsf) agonists and therapeutic combinations of tils and tnfrsf agonists
WO2018160536A1 (en) 2017-02-28 2018-09-07 Bristol-Myers Squibb Company Use of anti-ctla-4 antibodies with enhanced adcc to enhance immune response to a vaccine
US11433097B2 (en) 2017-06-05 2022-09-06 Iovance Biotherapeutics, Inc. Methods of using tumor infiltrating lymphocytes in double-refractory melanoma
WO2018226714A1 (en) 2017-06-05 2018-12-13 Iovance Biotherapeutics, Inc. Methods of using tumor infiltrating lymphocytes in double-refractory melanoma
US11819517B2 (en) 2017-06-05 2023-11-21 Iovance Biotherapeutics, Inc. Methods of using tumor infiltrating lymphocytes in double-refractory melanoma
WO2020117233A1 (en) 2017-06-05 2020-06-11 Iovance Biotherapeutics, Inc. Methods of using tumor infiltrating lymphocytes in double-refractory melanoma
WO2019100023A1 (en) 2017-11-17 2019-05-23 Iovance Biotherapeutics, Inc. Til expansion from fine needle aspirates and small biopsies
WO2019136456A1 (en) 2018-01-08 2019-07-11 Iovance Biotherapeutics, Inc. Processes for generating til products enriched for tumor antigen-specific t-cells
WO2019136459A1 (en) 2018-01-08 2019-07-11 Iovance Biotherapeutics, Inc. Processes for generating til products enriched for tumor antigen-specific t-cells
US11713446B2 (en) 2018-01-08 2023-08-01 Iovance Biotherapeutics, Inc. Processes for generating TIL products enriched for tumor antigen-specific T-cells
WO2019160829A1 (en) 2018-02-13 2019-08-22 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with adenosine a2a receptor antagonists and therapeutic combinations of tils and adenosine a2a receptor antagonists
WO2019190579A1 (en) 2018-03-29 2019-10-03 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
EP4386080A2 (en) 2018-03-29 2024-06-19 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2019210131A1 (en) 2018-04-27 2019-10-31 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11384337B2 (en) 2018-04-27 2022-07-12 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
US11866688B2 (en) 2018-04-27 2024-01-09 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2019217753A1 (en) 2018-05-10 2019-11-14 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2019241730A2 (en) 2018-06-15 2019-12-19 Flagship Pioneering Innovations V, Inc. Increasing immune activity through modulation of postcellular signaling factors
WO2020096682A2 (en) 2018-08-31 2020-05-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients refractory for anti-pd-1 antibody
EP4378530A2 (en) 2018-08-31 2024-06-05 Iovance Biotherapeutics, Inc. Use of tumor infiltrating lymphocytes for treating nsclc patients refractory for anti-pd-1 antibody
WO2020061429A1 (en) 2018-09-20 2020-03-26 Iovance Biotherapeutics, Inc. Expansion of tils from cryopreserved tumor samples
WO2020096986A2 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
WO2020096989A1 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients refractory for anti-pd-1 antibody
WO2020096927A1 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Expansion of tils utilizing akt pathway inhibitors
WO2020096988A2 (en) 2018-11-05 2020-05-14 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2020131547A1 (en) 2018-12-19 2020-06-25 Iovance Biotherapeutics, Inc. Methods of expanding tumor infiltrating lymphocytes using engineered cytokine receptor pairs and uses thereof
WO2020205662A1 (en) 2019-03-29 2020-10-08 Myst Therapeutics, Inc. Ex vivo methods for producing a t cell therapeutic and related compositions and methods
WO2020227159A2 (en) 2019-05-03 2020-11-12 Flagship Pioneering Innovations V, Inc. Methods of modulating immune activity
WO2020232029A1 (en) 2019-05-13 2020-11-19 Iovance Biotherapeutics, Inc. Methods and compositions for selecting tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2021081378A1 (en) 2019-10-25 2021-04-29 Iovance Biotherapeutics, Inc. Gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2021108727A1 (en) 2019-11-27 2021-06-03 Myst Therapeutics, Inc. Method of producing tumor-reactive t cell composition using modulatory agents
WO2021118990A1 (en) 2019-12-11 2021-06-17 Iovance Biotherapeutics, Inc. Processes for the production of tumor infiltrating lymphocytes (tils) and methods of using the same
WO2021127217A1 (en) 2019-12-17 2021-06-24 Flagship Pioneering Innovations V, Inc. Combination anti-cancer therapies with inducers of iron-dependent cellular disassembly
WO2021174208A1 (en) 2020-02-27 2021-09-02 Myst Therapeutics, Llc Methods for ex vivo enrichment and expansion of tumor reactive t cells and related compositions thereof
WO2021226061A1 (en) 2020-05-04 2021-11-11 Iovance Biotherapeutics, Inc. Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
WO2021226085A1 (en) 2020-05-04 2021-11-11 Iovance Biotherapeutics, Inc. Selection of improved tumor reactive t-cells
WO2022006179A1 (en) 2020-06-29 2022-01-06 Flagship Pioneering Innovations V, Inc. Viruses engineered to promote thanotransmission and their use in treating cancer
WO2022076606A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022076952A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022125941A1 (en) 2020-12-11 2022-06-16 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with braf inhibitors and/or mek inhibitors
WO2022133149A1 (en) 2020-12-17 2022-06-23 Iovance Biotherapeutics, Inc. Treatment of cancers with tumor infiltrating lymphocytes
WO2022133140A1 (en) 2020-12-17 2022-06-23 Iovance Biotherapeutics, Inc. Treatment with tumor infiltrating lymphocyte therapies in combination with ctla-4 and pd-1 inhibitors
WO2022170219A1 (en) 2021-02-05 2022-08-11 Iovance Biotherapeutics, Inc. Adjuvant therapy for cancer
WO2022187741A2 (en) 2021-03-05 2022-09-09 Iovance Biotherapeutics, Inc. Tumor storage and cell culture compositions
WO2022212784A1 (en) 2021-03-31 2022-10-06 Flagship Pioneering Innovations V, Inc. Thanotransmission polypeptides and their use in treating cancer
WO2022225981A2 (en) 2021-04-19 2022-10-27 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
WO2022245754A1 (en) 2021-05-17 2022-11-24 Iovance Biotherapeutics, Inc. Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2023278641A1 (en) 2021-06-29 2023-01-05 Flagship Pioneering Innovations V, Inc. Immune cells engineered to promote thanotransmission and uses thereof
WO2023009716A1 (en) 2021-07-28 2023-02-02 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with kras inhibitors
WO2023049862A1 (en) 2021-09-24 2023-03-30 Iovance Biotherapeutics, Inc. Expansion processes and agents for tumor infiltrating lymphocytes
WO2023077015A2 (en) 2021-10-27 2023-05-04 Iovance Biotherapeutics, Inc. Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy
WO2023086803A1 (en) 2021-11-10 2023-05-19 Iovance Biotherapeutics, Inc. Methods of expansion treatment utilizing cd8 tumor infiltrating lymphocytes
WO2023147486A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Tumor infiltrating lymphocytes engineered to express payloads
US11981921B2 (en) 2022-04-15 2024-05-14 Iovance Biotherapeutics, Inc. TIL expansion processes using specific cytokine combinations and/or AKTi treatment
US12024718B2 (en) 2022-07-01 2024-07-02 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
US12031157B2 (en) 2022-07-01 2024-07-09 Iovance Biotherapeutics, Inc. Closed process for expansion and gene editing of tumor infiltrating lymphocytes and uses of same in immunotherapy
WO2024030758A1 (en) 2022-08-01 2024-02-08 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
WO2024077191A1 (en) 2022-10-05 2024-04-11 Flagship Pioneering Innovations V, Inc. Nucleic acid molecules encoding trif and additionalpolypeptides and their use in treating cancer

Also Published As

Publication number Publication date
US8475790B2 (en) 2013-07-02
US20110189189A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
US8475790B2 (en) Combination of CD137 antibody and CTLA-4 antibody for the treatment of proliferative diseases
US20190382491A1 (en) Treatment of cancer using a combination of an anti-pd-1 antibody and anti-cd137
EP3407911B1 (en) Methods and pharmaceutical composition for the treatment of cancer
TW201819412A (en) Activatable anti-CTLA-4 antibodies and uses thereof
EP2172219A1 (en) Anti-cancer agent comprising an iNKT ligand and anti-PD-1 antibody or anti-PD-L1 antibody
KR20230144099A (en) Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent
WO2011146382A1 (en) Improved immunotherapeutic dosing regimens and combinations thereof
CN112672758A (en) Cancer treatment
CN113967253A (en) Immunotherapy by disrupting PD-1/PD-L1 signaling
KR20170137717A (en) Methods, compositions, and kits for the treatment of cancer
AU2018351007B2 (en) Treatment of ovarian cancer with anti-CD47 and anti-PD-L1
ZA200510125B (en) Surrogate therapeutic endpoint for anti-ctla-4 based immunotherapy of disease
CN111542544A (en) Immunostimulatory antibodies for the treatment of cancer
US20160264670A1 (en) Immunotherapeutic dosing regimens and combinations thereof
EP3227335A1 (en) Combination of anti-cs1 and anti-pd1 antibodies to treat cancer (myeloma)
CN113474048A (en) Compositions and methods for cancer treatment
WO2017070137A1 (en) Combination of ck2 inhibitors and immune checkpoint modulators for cancer treatment
JP2023549678A (en) Combination of AHR inhibitors with PDx inhibitors or doxorubicin
EP4069300A1 (en) Methods for enhancing immunity and tumor treatment
US20210277135A1 (en) Ox-40 agonist, pd-1 pathway inhibitor and ctla-4 inhibitor combination for use in a method of treating a cancer or a solid tumor
EP3950065A1 (en) Immunotherapeutic dosing regimens comprising pomalidomide and an anti-cs1 antibody for treating cancer
WO2020128054A1 (en) Combination therapy for treatment of cancer
Clifton et al. Overcoming cancer tolerance with Immune checkpoint blockade
Josephs et al. ANTIBODY THERAPEUTICS FOR OVARIAN CARCINOMA AND TRANSLATION TO THE CLINIC
CN116134155A (en) Methods of treating cancer by administering PD-1 inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13122630

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819711

Country of ref document: EP

Kind code of ref document: A1