WO2010041598A1 - Method for producing lithium phosphorus oxynitride compound - Google Patents

Method for producing lithium phosphorus oxynitride compound Download PDF

Info

Publication number
WO2010041598A1
WO2010041598A1 PCT/JP2009/067230 JP2009067230W WO2010041598A1 WO 2010041598 A1 WO2010041598 A1 WO 2010041598A1 JP 2009067230 W JP2009067230 W JP 2009067230W WO 2010041598 A1 WO2010041598 A1 WO 2010041598A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
lithium
lithium nitride
raw material
phosphate compound
Prior art date
Application number
PCT/JP2009/067230
Other languages
French (fr)
Japanese (ja)
Inventor
栄幹 大木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2010041598A1 publication Critical patent/WO2010041598A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/097Compounds containing nitrogen and non-metals and optionally metals containing phosphorus atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium nitride phosphoric acid compound capable of obtaining, for example, a lithium nitride lithium phosphate compound useful as a solid electrolyte or an active material by a simple method.
  • the lithium battery currently on the market uses an organic electrolyte that uses a flammable organic solvent as a solvent. Improvement is required.
  • an all-solid-state lithium battery in which the liquid electrolyte is changed to a solid electrolyte to make the battery all solid does not use a flammable organic solvent in the battery. Excellent productivity.
  • an oxide solid electrolyte is known as such a solid electrolyte, and it is generally known that an oxide solid electrolyte has low Li ion conductivity.
  • LIPON a general term for nitrides of lithium phosphate
  • LIPON has high Li ion conductivity and is stable against oxidation and reduction. It is attracting attention as an electrolyte.
  • several methods are known as a synthesis method of LIPON.
  • Patent Literature 1 and Patent Literature 2 disclose a method of forming a lithium nitride lithium phosphate thin film by resistance heating vapor deposition.
  • a lithium nitride phosphate thin film containing a transition metal element is formed by using lithium orthophosphate (Li 3 PO 4 ) and a transition metal element (for example, Ti) as a target and using nitrogen as a sputtering gas.
  • Li 3 PO 4 lithium orthophosphate
  • a transition metal element for example, Ti
  • Patent Document 4 a method of forming an oxynitride by heating a mixture of an oxide having photocatalytic activity (eg, titanium oxide) and a nitrogen compound (eg, urea) adsorbed on the oxide at room temperature.
  • an oxide having photocatalytic activity eg, titanium oxide
  • a nitrogen compound eg, urea
  • Li x M 1-y M ′ y (XO 4 ) n M is a transition metal
  • M ′ is Mg 2+ , Ca 2+ , Al 3+ , Zn 2+, etc.
  • X is S, P, and Si
  • Patent Document 6 discloses that Li 3.0 P 0.8 Si 0.1 Ge 0.1 O 3.45 N 0.8 and Li 2.7 P 0.8 Ge 0.1 B as solid electrolytes. 0.1 O 3.45 N 0.8, Li 3.0 P 0.8 B 0.1 Al 0.1 O 3.45 N 0.8 , etc. are disclosed. Further, Patent Document 7 discloses a non-aqueous electrolyte secondary battery represented by Li x MePO 4-x N y (Me is at least one atom selected from the group consisting of Fe, Co, Ni, and Mn). An active material is disclosed. In this technique, a phosphate compound is heated in a nitrogen gas atmosphere and reacted with ammonia gas to synthesize an active material composed of a phosphate compound containing nitrogen. Specifically, LiFePON and LiCoPOFN are disclosed.
  • Patent Document 8 a raw material of a material represented by Li 2 MePO 4 F (Me is at least one transition metal element selected from the group consisting of Fe, Co, Mn, and Ni) is mixed and obtained. A method for producing an active material for a non-aqueous electrolyte battery that melts the obtained mixture is disclosed.
  • Patent Document 9 discloses an olivine-type lithium iron phosphate positive electrode material and a method for producing the same.
  • Patent Document 10 discloses a part of olivine-type lithium phosphate represented by LiMPO 4 (M is composed of at least one element selected from Co, Ni, Mn, and Fe) as a positive electrode active material. The use of those substituted with fluorine is disclosed.
  • Patent Document 11 discloses that after forming an amorphous LIPON, a part thereof is crystallized to form a solid electrolyte layer containing crystal grains.
  • the present invention has been made in view of the above-mentioned problems, and has as its main object to provide a method for producing a lithium nitride phosphate compound capable of obtaining a lithium nitride phosphate compound by a simple method.
  • R 1 , R 2 and R 3 are each independently a functional group having at least one of carbon (C), hydrogen (H), oxygen (O) and nitrogen (N). is there.
  • the present invention by using a raw material composition containing a nitriding agent and firing the raw material composition, a lithium nitride phosphate compound can be easily obtained. Further, the conventional sputtering method and vapor deposition method have a problem that the amount that can be synthesized per unit time is extremely small, and the mass productivity is low. On the other hand, the present invention has an advantage that such a problem can be solved.
  • the starting compound is preferably a Li 3 PO 4. This is because by using a raw material compound having both the Li element and the PO 4 skeleton, a lithium nitride phosphate compound can be obtained more easily.
  • the starting compound is preferably a mixture of Li 2 CO 3 and (NH 4) H 2 PO 4 . This is because it is easy to adjust the ratio of the Li element and the PO 4 skeleton. Further, since CO 2 is generated from Li 2 CO 3 and NH 3 and H 2 are generated from (NH 4 ) H 2 PO 4 by firing, the composition of the target lithium nitride phosphate compound is hardly adversely affected. Has the advantage.
  • the raw material compound is Li a Xb Y c P d O e
  • X is at least one selected from the group consisting of Ti, Zr, Ge, In, Ga, Sn and Al
  • Y Is at least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se
  • a to e are 0.5 ⁇ a ⁇ 5.0, 0. (5 ⁇ b ⁇ 3.0, 0 ⁇ c ⁇ 2.98, 0.02 ⁇ d ⁇ 3.0, 2.0 ⁇ c + d ⁇ 4.0, 3.0 ⁇ e ⁇ 12.0) It is preferable that it is a compound represented by these. This is because a lithium nitride phosphate compound having high Li ion conductivity can be obtained.
  • the raw material compound is Li a Xb Y c P d O e
  • X is at least one selected from the group consisting of Mn, Fe, Co and Ni
  • Y is Mg, Al, Ti , Ga, Cu, V, Nb, Zr, Ce, In, and Zn
  • a to e are 0.001 ⁇ a ⁇ 1.5, 0.7 ⁇ b ⁇ 1.3, 0 ⁇ c ⁇ 0.4, 0.7 ⁇ b + c 1.3, 0.7 ⁇ d ⁇ 1.3, and 3.0 ⁇ e ⁇ 5.0.
  • a compound is preferred. This is because a lithium nitride lithium phosphate compound having high Li ion conductivity and electron conductivity can be obtained.
  • the raw material compound is Li a Xb Y cP d O e F f
  • X is at least one selected from the group consisting of Mn, Fe, Co and Ni
  • Y is Mg, Al , Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn
  • a to f are 0.001 ⁇ a ⁇ 1.5, 0.7 ⁇ b ⁇ 1.3, 0 ⁇ c ⁇ 0.4, 0.7 ⁇ b + c 1.3, 0.7 ⁇ d ⁇ 1.3, 3.0 ⁇ e ⁇ 5.0, 0.002 ⁇ f ⁇
  • the compound represented by (2) satisfying the relationship of 2.0 is preferable. This is because a lithium nitride lithium phosphate compound having high Li ion conductivity and electron conductivity can be obtained.
  • Li source, X source, Y source, using a mixture containing PO 4 source and F sources it is preferable to have a synthesis step of synthesizing the starting compound. This is because it is possible to obtain a lithium nitride lithium phosphate compound having more excellent durability.
  • the nitriding agent is preferably solid or liquid at normal temperature (25 ° C.). This is because nitriding can be performed efficiently.
  • the nitriding agent is preferably urea. This is because nitriding can be performed effectively.
  • the firing temperature in the synthesis step is preferably in the range of 100 ° C to 800 ° C. This is because a lithium nitride phosphate compound having high Li ion conductivity can be obtained.
  • the firing time in the synthesis step is preferably in the range of 10 minutes to 7 hours. This is because a lithium nitride phosphate compound having high Li ion conductivity can be obtained.
  • Li a Xb Y cP d O e N f (X is at least one selected from the group consisting of Ti, Zr, Ge, In, Ga, Sn and Al, and Y is At least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se, and a to f are 0.5 ⁇ a ⁇ 5.0, 0.5 ⁇ b ⁇ 3.0, 0 ⁇ c ⁇ 2.98, 0.02 ⁇ d ⁇ 3.0, 2.0 ⁇ c + d ⁇ 4.0, 3.0 ⁇ e ⁇ 12.0, 0.002 ⁇ f ⁇ Satisfaction of 2.0) is provided.
  • a lithium nitride lithium phosphate compound is provided.
  • this lithium nitride phosphate compound is usually a compound having a NASICON (LISICON) type structure.
  • Li a Xb Y cP d O e N f (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, and Y is Mg, Al, Ti, It is at least one selected from the group consisting of Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to f are 0.001 ⁇ a ⁇ 1.5, 0.7 ⁇ b ⁇ 1 .3, 0 ⁇ c ⁇ 0.4, 0.7 ⁇ b + c 1.3, 0.7 ⁇ d ⁇ 1.3, 3.0 ⁇ e ⁇ 5.0, 0.002 ⁇ f ⁇ 2.0
  • the lithium nitride phosphate compound is characterized in that it is represented by the following formula:
  • the present invention since it has the above composition, it can be a lithium nitride lithium phosphate compound having high Li ion conductivity and electron conductivity because it has the above composition.
  • This lithium nitride phosphate compound is usually a compound having an olivine structure.
  • Li a Xb Y cP d O e F f N g (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, and Y is Mg, Al, It is at least one selected from the group consisting of Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to g are 0.001 ⁇ a ⁇ 1.5, 0.7 ⁇ b ⁇ 1.3, 0 ⁇ c ⁇ 0.4, 0.7 ⁇ b + c 1.3, 0.7 ⁇ d ⁇ 1.3, 3.0 ⁇ e ⁇ 5.0, 0.002 ⁇ f ⁇ 2 0.0, 0.002 ⁇ g ⁇ 2.0).
  • a lithium nitride phosphate compound is provided.
  • the present invention since it has the above composition, it can be a lithium nitride lithium phosphate compound having high Li ion conductivity and electron conductivity. Furthermore, since it has F in the composition, it can be a lithium nitride phosphate compound excellent in Li ion conductivity, electron conductivity, and durability.
  • This lithium nitride phosphate compound is usually a compound having an olivine structure.
  • the lithium nitride lithium phosphate compound is preferably in the form of particles. This is because peeling and cracking do not occur and the durability is excellent as compared with a thin film lithium nitride phosphate compound.
  • the average particle size of the lithium nitride lithium phosphate compound is preferably in the range of 100 nm to 100 ⁇ m. This is because it is useful as a solid electrolyte or a positive electrode active material.
  • the specific surface area of the lithium nitride lithium phosphate compound is preferably in the range of 0.1 m 2 / g to 300 m 2 / g. This is because a lithium nitride phosphate compound having high Li ion conductivity can be obtained.
  • the present invention also provides a solid electrolyte layer characterized by containing a compound having the above-mentioned NASICON (LISICON) type structure.
  • a solid electrolyte layer having excellent Li ion conductivity can be obtained by using the above compound.
  • the present invention also provides a positive electrode active material layer comprising the compound having the olivine structure described above.
  • a positive electrode active material layer having excellent electron conductivity can be obtained by using the above compound.
  • the method for producing a lithium nitride lithium phosphate compound of the present invention is a preparation for preparing a raw material composition containing a raw material compound having an Li element and a PO 4 skeleton and the nitriding agent represented by the general formula (1) described above. It has a process and the synthetic
  • the “lithium nitride phosphate compound” in the present invention refers to a compound having at least a Li element, a PO 4 skeleton, and an N element, and further includes other elements (for example, transition metal elements) described later. Also good.
  • the “PO 4 skeleton” in the present invention is not limited to a skeleton composed of exact PO 4 but also includes a skeleton composed of the vicinity thereof. When the P element constituting the PO 4 skeleton is 1, the O element constituting the PO 4 skeleton is preferably in the range of 2 to 6, and more preferably in the range of 3 to 4.
  • the present invention by using a raw material composition containing a nitriding agent and firing the raw material composition, a lithium nitride phosphate compound can be easily obtained. Further, the conventional sputtering method and vapor deposition method have a problem that the amount that can be synthesized per unit time is extremely small, and the mass productivity is low. On the other hand, the present invention has an advantage that such a problem can be solved.
  • Li 3 N as a nitriding agent and performing a baking treatment at a temperature of about 800 ° C.
  • a lithium nitride phosphoric acid compound can be synthesized.
  • Li 3 N is likely to react with moisture, and it is expected that it will be difficult to control the reaction.
  • the nitriding agent used in the present invention is usually a less reactive material than Li 3 N, the lithium nitride phosphoric acid compound can be obtained more safely.
  • FIG. 1 is an explanatory diagram showing an example of a method for producing a lithium nitride lithium phosphate compound of the present invention.
  • lithium orthophosphate Li 3 PO 4
  • urea is prepared as a nitriding agent.
  • these are mixed by a ball mill or the like to prepare a raw material composition (preparation step).
  • the obtained raw material composition is baked, for example, in a vacuum state at 500 ° C. to obtain a lithium nitride lithium phosphate compound (synthesis process).
  • FIG. 2 is an explanatory view showing another example of the method for producing a lithium nitride lithium phosphate compound of the present invention.
  • a mixture of lithium carbonate (Li 2 CO 3 ) and diammonium hydrogen phosphate ((NH 4 ) H 2 PO 4 ) is prepared as a raw material compound having an Li element and a PO 4 skeleton, and is used as a nitriding agent.
  • Prepare urea Next, these are mixed by a ball mill or the like to prepare a raw material composition (preparation step). Thereafter, the obtained raw material composition is baked, for example, in a vacuum state at 500 ° C. to obtain a lithium nitride lithium phosphate compound (synthesis process).
  • the manufacturing method of the lithium oxynitride compound of this invention is demonstrated for every process.
  • the preparation step in the present invention is a step of preparing a raw material composition containing a raw material compound having an Li element and a PO 4 skeleton and the nitriding agent described above.
  • Raw material compound starting compound in the present invention are those having a Li element and PO 4 backbone.
  • the raw material compound may be a single compound or a mixture of a compound having an Li element and a compound having a PO 4 skeleton.
  • the use of the raw material compound having both the Li element and the PO 4 skeleton has an advantage that the lithium nitride phosphate compound can be obtained more easily.
  • (I) Raw material compound having both Li element and PO 4 skeleton First, a raw material compound having both Li element and PO 4 skeleton will be described.
  • Li 3 PO 4 can be given.
  • Li 3 PO 4 has three Li, and a lithium nitride lithium phosphate compound having high Li ion conductivity can be obtained.
  • raw material compound having both Li element and PO 4 backbone, in addition to the Li element and PO 4 skeleton may have an element turns into gas by calcination. Examples of such a compound include Li 2 HPO 4 and LiH 2 PO 4 .
  • raw material compound having both Li element and PO 4 backbone, in addition to the Li element and PO 4 skeleton may have other elements.
  • a solid electrolyte or an active material excellent in Li ion conductivity can be obtained.
  • Examples of such a compound include a compound having a NASICON (LISICON) type structure.
  • a compound having a NASICON (LISICON) type structure is useful, for example, as a solid electrolyte.
  • the compound having a NASICON (LISICON) structure for example, Li a X b Y c P d O e ( X is at least one kind selected Ti, Zr, Ge, In, Ga, from the group consisting of Sn and Al Y is at least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se, and a to e are 0.5 ⁇ a ⁇ 5.
  • Examples of compound (I) include Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 and Li 1.3 Si 0.3 Ti 2 P 2.7 O 12 .
  • the raw material compound having both the Li element and the PO 4 skeleton may be a compound having an olivine structure.
  • a compound having an olivine structure is useful, for example, as a positive electrode active material.
  • Examples of the compound having an olivine structure include a compound represented by LiMPO 4 (M is at least one selected from the group consisting of Ni, Mn, Co, and Fe), and a compound having a composition in the vicinity thereof. Etc.
  • Another example of the raw material compound having an olivine type structure is Li a Xb Y cP d O e (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, and Y Is at least one selected from the group consisting of Mg, Al, Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to e are 0.001 ⁇ a ⁇ 1.5, 0.7 ⁇ b ⁇ 1.3, 0 ⁇ c ⁇ 0.4, 0.7 ⁇ b + c 1.3, 0.7 ⁇ d ⁇ 1.3, 3.0 ⁇ e ⁇ 5.0 And a compound represented by (sometimes referred to as compound (II)).
  • X is at least one selected from the group consisting of Mn, Fe, Co and Ni
  • Y Is at least one selected from the group consisting of Mg, Al, Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn
  • raw material compound having an olivine type structure examples include Li a Xb Y cP d O e F f (X is at least one selected from the group consisting of Mn, Fe, Co, and Ni, and Y Is at least one selected from the group consisting of Mg, Al, Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to f are 0.001 ⁇ a ⁇ 1.5, 0.7 ⁇ b ⁇ 1.3, 0 ⁇ c ⁇ 0.4, 0.7 ⁇ b + c 1.3, 0.7 ⁇ d ⁇ 1.3, 3.0 ⁇ e ⁇ 5.0, 0. 002 ⁇ f ⁇ 2.0) (sometimes referred to as compound (III)).
  • combination process which synthesize
  • the method for synthesizing the above-mentioned compounds (I) to (III) is not particularly limited, and examples thereof include a mechanical milling method. The type and conditions of the mechanical milling method will be described later.
  • a method of synthesizing compound (III) for example, a method of synthesizing compound (III) using a mixture containing Li source, X source, Y source, PO 4 source and F source
  • Examples include a method of synthesizing LiXYPO using a mixture containing a source, an X source, a Y source, and a PO 4 source, and then synthesizing compound (III) using a LiXYPO and an F source.
  • the former method is preferred in the present invention. This is because F can be introduced more efficiently.
  • the Y source is not used.
  • the composition of the raw materials usually corresponds to the composition of the target compound.
  • the raw material compound in the present invention may be a mixture of a compound having Li element and a compound having PO 4 skeleton. .
  • the ratio of the Li element and the PO 4 skeleton is easily adjusted.
  • the compound having Li element include Li 2 CO 3 , Li 2 O, LiNO 2 , LiNO 3 , LiCl, CH 3 COOLi, Li 2 C 2 O 4 , LiOH, LiH, and Li 3 P.
  • the compound which has Li element is a compound from which structural components other than Li element become gas by baking. This is because it is difficult to adversely affect the composition of the target lithium nitride phosphate compound.
  • the compound containing Li element is preferably Li 2 CO 3 .
  • Examples of the compound having a PO 4 skeleton include (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4, and H 3 PO 4 .
  • compounds having a PO 4 skeleton is preferably a component other than PO 4 skeleton is a compound turns into gas. This is because it is difficult to adversely affect the composition of the target lithium nitride phosphate compound.
  • the compound having a PO 4 skeleton preferably contains a nitrogen element.
  • the compound having a PO 4 skeleton is preferably (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 or (NH 4 ) 3 PO 4 .
  • the compound having a PO 4 skeleton is preferably (NH 4 ) H 2 PO 4 .
  • the raw material compound in the present invention may be a mixture of a Li source, an X source, a Y source and a PO 4 source from which the above-described compound (I) or compound (II) can be obtained.
  • the Li source and the PO 4 source include the same compounds as the above-mentioned “compound having Li element” and “compound having PO 4 skeleton”, respectively.
  • the X source is not particularly limited as long as it is a compound containing an X element, and may be an organic compound or an inorganic compound. Examples of the X source include oxalic acid compounds, carbonic acid compounds, nitric acid compounds, chlorides, sulfuric acid compounds, and fluorides. The same applies to the Y source.
  • the Li source may further contain at least one of an X element, a Y element, and a PO 4 skeleton.
  • the Li source may contain an X element in addition to the Li element.
  • the raw material compound in the present invention may be a mixture of a Li source, an X source, a Y source, a PO 4 source and an F source from which the above-described compound (III) can be obtained.
  • the composition of the mixture usually corresponds to the composition of compound (III).
  • the Li source, X source, Y source, and PO 4 source are the same as described above.
  • the F source may further contain at least one of Li element, X element, Y element, and PO 4 skeleton. The same applies to the Li source, the X source, the Y source, and the PO 4 source.
  • the F source may contain a Li element in addition to the F element. Specifically, LiF etc. can be mentioned.
  • the addition amount of both compounds is preferably appropriately selected according to the composition of the target lithium nitride phosphate compound.
  • the PO 4 skeleton in the compound having PO 4 skeleton is, for example, in the range of 10 mol parts to 100 mol parts.
  • the amount is within the range of 30 to 60 parts by mole.
  • the nitriding agent in the present invention is represented by the following general formula (1).
  • R 1 , R 2 and R 3 are each independently a functional group having at least one of carbon (C), hydrogen (H), oxygen (O) and nitrogen (N). is there.
  • R 1 , R 2 and R 3 may all be the same or different from each other, and two of R 1 , R 2 and R 3 may be the same. .
  • the nitriding agent in the present invention may be any of solid, liquid, and gas at normal temperature (25 ° C.), but among them, it is preferable that the nitriding agent is solid or liquid. This is because a raw material composition in which the nitriding agent and the raw material compound are in physical contact efficiently can be produced, and the nitriding efficiency of the raw material composition is improved. It should be noted that particularly when ammonia is used as a nitriding agent, the nitriding reaction hardly occurs, the corrosiveness is high, and the equipment may be expensive.
  • nitriding agent in the present invention examples include urea, methylamine, ethylamine, diethylamine, triethylamine, aminoethane, aniline, nicotine, cyclohexylamine, ammonia and the like, and urea is particularly preferable. This is because it is difficult to adversely affect the composition of the target lithium nitride phosphate compound.
  • Urea is a compound in which R 1 and R 2 are H and R 3 is —CONH 2 in the general formula (1).
  • the addition amount of the nitriding agent is preferably selected as appropriate according to the composition of the target lithium nitride phosphate compound.
  • N in the nitriding agent is preferably in the range of, for example, 10 mole parts to 100 mole parts, and more preferably in the range of 30 mole parts to 60 mole parts. preferable.
  • the urea is preferably 100 parts by weight or more, and 150 parts by weight or more. More preferably, it is more preferably 200 parts by weight or more.
  • urea is preferably 1000 parts by weight or less.
  • the raw material composition in this invention contains the raw material compound and nitriding agent which were mentioned above.
  • Examples of the method for adjusting the raw material composition include a method of mixing a raw material compound and a nitriding agent.
  • the mixing method of the raw materials is not particularly limited, but it is preferable to mix more uniformly.
  • it is preferable to mix the raw material compound and the nitriding agent by a mechanical milling method for example, a ball mill method.
  • the mechanical milling method in the present invention may be a mechanical milling method involving a synthesis reaction or a mechanical milling method not involving a synthesis reaction.
  • the mechanical milling method involving a synthesis reaction is performed when the raw material compound is a mixture of a compound having a Li element and a compound having a PO 4 skeleton (for example, the raw material compound is a Li source, an X source, a Y source, and In the case of a mixture of PO 4 sources).
  • the mechanical milling method without a synthesis reaction is used when the raw material compound is a compound having a Li element and a PO 4 skeleton as described above (for example, when the raw material composition is Li 3 PO 4 ). be able to.
  • the dispersibility of a raw material compound and a nitriding agent can be improved.
  • the raw material compound is a compound having a Li element and PO 4 backbone
  • using a general stirring means simply it may be simply mixed.
  • the rotational speed is, for example, in the range of 100 rpm to 11000 rpm, and preferably in the range of 500 rpm to 5000 rpm.
  • the treatment time is not particularly limited, and is preferably set as appropriate to obtain a desired raw material composition.
  • the raw material composition may be prepared by vaporizing the nitriding agent and disposing the raw material compound in the atmosphere. In this state, by firing the raw material composition, it is possible to synthesize a desired lithium nitride phosphate compound.
  • the synthesis step in the present invention is a step of baking the raw material composition to synthesize a lithium nitride phosphate compound.
  • the firing temperature in the present invention is not particularly limited as long as it is a temperature at which a desired lithium nitride phosphoric acid compound can be obtained, but is preferably a temperature equal to or higher than the temperature at which the nitriding agent decomposes or dissolves. This is because it becomes easy to obtain a lithium nitride lithium phosphate compound in which a nitrogen element is incorporated into a chemical bond.
  • the firing temperature is preferably appropriately selected according to the type of nitriding agent used, and is, for example, 100 ° C. or higher, preferably 300 ° C. or higher, more preferably 400 ° C. or higher, and further preferably 500 ° C. or higher.
  • a calcination temperature is 800 degrees C or less, for example, and 700 degrees C or less is more preferable.
  • the firing time is, for example, 10 minutes or longer, preferably 30 minutes or longer, and more preferably 1 hour or longer.
  • baking time is 7 hours or less, for example, and 5 hours or less are more preferable.
  • the atmosphere during firing is not particularly limited, and examples thereof include an air atmosphere; an inert gas atmosphere such as a nitrogen atmosphere and an argon atmosphere; a reducing atmosphere such as an ammonia atmosphere and a hydrogen atmosphere; a vacuum and the like.
  • an inert gas atmosphere, a reducing atmosphere, and a vacuum are preferable, and a reducing atmosphere is particularly preferable. This is because the oxidative deterioration of the lithium nitride phosphoric acid compound can be prevented.
  • a baking method of a raw material composition the method of using a baking furnace etc. can be mentioned, for example.
  • the lithium nitride phosphate compound obtained by the method for producing a lithium nitride phosphate compound of the present invention is useful, for example, as a solid electrolyte or a positive electrode active material. Furthermore, this solid electrolyte can be used for a solid electrolyte membrane (solid electrolyte layer) of a lithium battery, for example. Therefore, in the present invention, there is provided a lithium battery characterized by comprising a step of obtaining a solid electrolyte by performing the preparation step and the synthesis step described above, and a step of forming a solid electrolyte layer using the solid electrolyte. A method can be provided.
  • the solid electrolyte characterized by the above-mentioned manufacturing method can be provided. Furthermore, in the present invention, it is possible to provide an all-solid-state lithium battery characterized by having a solid electrolyte layer using the solid electrolyte obtained by the above production method.
  • the positive electrode active material obtained by this invention can be used for the positive electrode active material layer of a lithium battery. Therefore, in the present invention, lithium having a step of obtaining a positive electrode active material by performing the preparation step and the synthesis step described above, and a step of forming a positive electrode active material layer using the positive electrode active material A method for manufacturing a battery can be provided.
  • the positive electrode active material characterized by obtained by said manufacturing method can be provided. Furthermore, in the present invention, it is possible to provide an all-solid-state lithium battery characterized by having a positive electrode active material layer containing the positive electrode active material obtained by the above production method.
  • the lithium nitride phosphate compound of the present invention can be roughly divided into three embodiments.
  • a first embodiment of the lithium nitride nitride compound of the present invention is Li a Xb Y cP d O e N f (where X is a group consisting of Ti, Zr, Ge, In, Ga, Sn, and Al).
  • Y is at least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se, and a to f are 0 .5 ⁇ a ⁇ 5.0, 0.5 ⁇ b ⁇ 3.0, 0 ⁇ c ⁇ 2.98, 0.02 ⁇ d ⁇ 3.0, 2.0 ⁇ c + d ⁇ 4.0, 3.0 ⁇ E ⁇ 12.0 and 0.002 ⁇ f ⁇ 2.0 are satisfied). Note that 0.02 ⁇ f ⁇ 2.0 is preferable.
  • the first embodiment since it has the above composition, it can be a lithium phosphate lithium compound having high Li ion conductivity.
  • This lithium nitride phosphate compound is usually a compound having a NASICON (LISICON) type structure.
  • the lithium nitride phosphate compound of the first embodiment is not a material in which N is simply adsorbed to Li a Xb Y c P d O e , but in a state where N is chemically bonded, the lithium nitride phosphate compound (Li a it is present in X b Y c P d O e N f) within.
  • the lithium nitride phosphoric acid compound of the first embodiment is preferably in the form of particles (powder). This is because peeling and cracks do not occur unlike the thin film lithium nitride phosphate compound, and the durability is excellent.
  • the average particle diameter of the particulate lithium nitride phosphate compound is, for example, 100 nm or more, preferably 2 ⁇ m or more, and particularly preferably 4 ⁇ m or more. On the other hand, the average particle diameter is, for example, preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less. The average particle diameter can be calculated with a laser diffraction particle size distribution meter.
  • the specific surface area of the lithium nitride lithium phosphate compound is, for example, preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more.
  • the specific surface area is, for example, 300 m 2 / g or less, preferably 100 m 2 / g or less.
  • the specific surface area can be calculated by the BET method (gas adsorption method).
  • a particulate lithium nitride phosphate compound may be obtained in the same manner as described above. However, since such particles are formed from a thin film with few irregularities, the specific surface area of the particles becomes small.
  • the lithium nitride phosphate compound obtained by the method described in “A. Method for producing lithium nitride phosphate compound” has irregularities on the surface of the particles, and therefore has a large specific surface area.
  • lithium nitride phosphoric acid compound of the first embodiment examples include a solid electrolyte.
  • a lithium nitride lithium phosphate compound is used as a solid electrolyte
  • the powdered lithium nitride phosphate compound can be formed into a pellet and used, for example, as a solid electrolyte layer of an all solid lithium battery.
  • the surface of the electrode active material of a general lithium battery is not limited to the all solid-state lithium battery, and may be used by being coated with a lithium nitride phosphate compound.
  • the lithium nitride phosphate compound of the first embodiment can be obtained, for example, by the method described in “A. Method for producing lithium nitride phosphate compound” above.
  • a second embodiment of the lithium nitride phosphoric acid compound of the present invention is Li a Xb Y cP d O e N f (X is at least one selected from the group consisting of Mn, Fe, Co and Ni) Y is at least one selected from the group consisting of Mg, Al, Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to f are 0.001 ⁇ a ⁇ 1.5, 0.7 ⁇ b ⁇ 1.3, 0 ⁇ c ⁇ 0.4, 0.7 ⁇ b + c 1.3, 0.7 ⁇ d ⁇ 1.3, 3.0 ⁇ e ⁇ 5 0.0, 0.002 ⁇ f ⁇ 2.0).
  • the second embodiment since it has the above composition, it can be a lithium nitride lithium phosphate compound having high Li ion conductivity and high electron conductivity.
  • This lithium nitride phosphate compound is usually a compound having an olivine structure.
  • the lithium nitride phosphate compound of the second embodiment is not a material in which N is simply adsorbed to Li a Xb Y c P d O e , but in a state in which N is chemically bonded, the lithium nitride phosphate compound (Li a it is present in X b Y c P d O e N f) within.
  • the lithium nitride phosphoric acid compound of 2nd embodiment is a particulate form (powder form). About an average particle diameter etc., it is the same as that of the content mentioned above.
  • lithium nitride nitride compound of the second embodiment examples include a positive electrode active material. Since the electron conductivity is high, when used as a positive electrode active material, the amount of conductive material used can be reduced, and the capacity of the battery can be increased. Moreover, the lithium nitride phosphate compound of the second embodiment can be obtained, for example, by the method described in “A. Method for producing lithium nitride phosphate compound” above.
  • a third embodiment of the lithium oxynitride compound of the present invention is selected from the group consisting of Li a Xb Y c Pd O e F f N g (X is Mn, Fe, Co and Ni) At least one, Y is at least one selected from the group consisting of Mg, Al, Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to g are 0.001 ⁇ a ⁇ 1.5, 0.7 ⁇ b ⁇ 1.3, 0 ⁇ c ⁇ 0.4, 0.7 ⁇ b + c 1.3, 0.7 ⁇ d ⁇ 1.3, 3.0 ⁇ e ⁇ 5.0, 0.002 ⁇ f ⁇ 2.0, and 0.002 ⁇ g ⁇ 2.0).
  • the third embodiment since it has the above composition, it can be a lithium nitride lithium phosphate compound having high Li ion conductivity and electron conductivity. Furthermore, since it has F in the composition, it can be a lithium nitride phosphate compound excellent in Li ion conductivity, electron conductivity, and durability.
  • This lithium nitride phosphate compound is usually a compound having an olivine structure.
  • the lithium nitride phosphate compound of the third embodiment is not obtained by simply adsorbing F and N to Li a Xb Y c P d O e , but in a state where F and N are chemically bonded, it is present in the compounds in (Li a X b Y c P d O e F f N g).
  • the lithium nitride phosphoric acid compound of 3rd embodiment is a particulate form (powder form). About an average particle diameter etc., it is the same as that of the content mentioned above.
  • lithium nitride lithium phosphate compound of the third embodiment is the same as that of the second embodiment described above. Moreover, the lithium nitride phosphate compound of the third embodiment can be obtained, for example, by the method described in the above-mentioned “A. Method for producing lithium nitride phosphate compound”.
  • the solid electrolyte layer of the present invention is characterized by containing the above-mentioned compound (compound (I)) having a NASICON (LISICON) type structure. According to this invention, it can be set as the solid electrolyte layer excellent in Li ion conductivity by using the compound (I) mentioned above. Thereby, the high output of a battery can be achieved.
  • the thickness of the solid electrolyte layer of the present invention is not particularly limited, but for example, it is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the method of compression-molding the composition containing compound (I) etc. can be mentioned, for example.
  • compound (I) may be contained in the positive electrode active material layer.
  • the positive electrode active material layer of the present invention is characterized by containing the above-described compound (compound (II) or compound (III)) having an olivine structure. According to this invention, it can be set as the positive electrode active material layer excellent in electronic conductivity by using compound (II) or compound (III) mentioned above.
  • the positive electrode active material layer of the present invention contains at least the above-described compound, and may contain a conductive material as necessary. Examples of the conductive material include acetylene black, ketjen black, and carbon fiber.
  • the thickness of the positive electrode active material layer of the present invention is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the method of compression-molding the composition containing compound (II) or compound (III) etc. can be mentioned, for example.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Li 3 PO 4 manufactured by Aldrich, average particle size 4 ⁇ m
  • urea manufactured by Aldrich
  • 1 g each of Li 3 PO 4 and urea was weighed and mixed in a mortar to obtain a raw material composition.
  • the obtained raw material composition was molded into 1 cm ⁇ ⁇ 2 mmt with a molding machine, and the obtained molded body was put into a glass tube and evacuated.
  • the glass tube was fired at 500 ° C. for 3 hours in a tubular furnace. Thereby, a lithium nitride phosphate compound (LIPON) was obtained.
  • LIPON lithium nitride phosphate compound
  • the specific surface area was measured by the BET method with respect to the obtained lithium nitride phosphate compound.
  • a specific surface area and pore distribution fully automatic gas adsorption measuring device Auto Soap-1, manufactured by Yuasa Ionics Co., Ltd.
  • the specific surface area of the obtained lithium nitride lithium phosphate compound was 0.9 m 2 / g.
  • Examples 1-2 to 1-7 A lithium nitride lithium phosphate compound (LIPON) was obtained in the same manner as in Example 1-1 except that the ratio of Li 3 PO 4 and urea, the firing temperature, and the firing time were changed to the conditions shown in Table 2 described later. It was.
  • Li 3 PO 4 manufactured by Aldrich
  • urea manufactured by Aldrich
  • Crystal structure evaluation The crystal structure was evaluated by an X-ray diffraction method (XRD method). RINT-TTR III manufactured by Rigaku Corporation was used as the X-ray diffractometer.
  • Ion conductivity evaluation Ion conductivity was evaluated by an impedance analysis method.
  • a frequency response analyzer 1260 manufactured by Solartron was used as the impedance measuring device.
  • the impedance was measured in the range of 1 Hz to 10 MHz by sandwiching a pellet obtained by molding a measurement sample into 1 cm ⁇ ⁇ 2 mmt with a molding machine and firing it at 500 ° C. for 1 hour. . From the arc shape of the obtained cole-cole plot, the ionic conductivity of the measurement sample was determined.
  • FIG. 4 shows the result of the XRD measurement.
  • a peak of Li 3 PO 4 was detected, and at the same time, a peak similar to Li 4 P 2 O 7 was detected.
  • Li 4 P 2 O 7 has O 3 P—O—PO 3 units.
  • the P—N—P unit was found, and thus the lithium nitride lithium compound obtained in Example 1-1 had an O 3 P—N—PO 3 unit. I guess that. That is, this result suggests that the nitrogen element of the nitriding agent is not simply adsorbed on the surface of Li 3 PO 4 but is incorporated in the chemical bond.
  • the lithium nitride phosphate compound of Example 1-1 has an ionic conductivity 20 times or more that of the evaluation composition of Comparative Example 1-2.
  • the reason for this is presumed to be that the O 3 PN—PO 3 unit described above was formed.
  • the lithium nitride phosphate compounds of Examples 1-2 to 1-7 exhibited high ionic conductivity with respect to the evaluation composition of Comparative Example 1-2.
  • the firing temperature is preferably 400 ° C. or higher, and more preferably 500 ° C. or higher.
  • the higher the ratio of urea to Li 3 PO 4 the higher the ionic conductivity.
  • Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 was synthesized as a raw material. This compound was synthesized by the method described in H. Aono et al., “Ionic-Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate”, J. Electrochem. Soc., 137 (1990) 1023. Next, 1 g each of Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 and urea (manufactured by Aldrich) were weighed and mixed in a mortar to obtain a raw material composition.
  • the obtained raw material composition was molded into 1 cm ⁇ ⁇ 2 mmt with a molding machine, and the obtained molded body was put into a glass tube and evacuated. Next, the glass tube was fired at 500 ° C. for 3 hours in a tubular furnace. As a result, a lithium nitride phosphate compound was obtained.
  • Example 2 Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 used in Example 2 was used as an evaluation composition.
  • FIG. 5 shows the result of the lithium nitride lithium phosphate compound of Example 2.
  • a-2 is a peak of NP 3 unit
  • a-4 is a peak of NP 2 unit.
  • a-3 is a peak due to residual urea.
  • Table 3 shows a comparison of the peaks of Example 2, Comparative Example 2 and Example 1-1 as a reference.
  • Example 3 0.48 g of Li 2 CO 3 , 2.34 g of FeC 2 O 4 and 1.72 g of (NH 4 ) 2 HPO 4 were mixed, and 25 g of ethanol was further added. The obtained composition was ball milled under conditions of 4000 rpm for 3 hours, and then ethanol was evaporated to obtain a raw material compound (LiFePO 4 ) having an olivine structure. Next, 1 g of each of the obtained raw material compound and urea (manufactured by Aldrich) was weighed and mixed in a mortar to obtain a raw material composition.
  • the obtained raw material composition was molded into 1 cm ⁇ ⁇ 2 mmt with a molding machine, and the obtained molded body was put into a glass tube and evacuated. Next, the glass tube was fired at 500 ° C. for 3 hours in a tubular furnace. As a result, a lithium nitride phosphate compound was obtained. The color of the obtained lithium nitride nitride compound was brown.
  • Example 3 The raw material compound obtained in Example 3 was molded into 1 cm ⁇ ⁇ 2 mmt with a molding machine and baked under conditions of 750 ° C. and 24 hours in an Ar atmosphere to obtain a composition for evaluation.
  • the color of the evaluation composition was light gray.
  • Example 4 0.24 g of Li 2 CO 3 , 0.34 g of LiF, 2.34 g of FeC 2 O 4 , 1.72 g of (NH 4 ) 2 HPO 4 were mixed, and 25 g of ethanol was further added. The obtained composition was ball milled under conditions of 4000 rpm for 3 hours, and then ethanol was evaporated to obtain a raw material compound having an olivine structure (LiFePO 4 into which F was introduced). A lithium nitride lithium phosphate compound was obtained in the same manner as in Example 3 except that the obtained raw material compound was used. The color of the obtained lithium nitride nitride compound was dark brown.
  • Example 5 0.48 g of Li 2 CO 3 , 2.39 g of CoC 2 O 4 and 1.72 g of (NH 4 ) 2 HPO 4 were mixed, and 25 g of ethanol was further added. The obtained composition was ball milled under conditions of 4000 rpm for 3 hours, and then ethanol was evaporated to obtain a raw material compound (LiCoPO 4 ) having an olivine structure. A lithium nitride lithium phosphate compound was obtained in the same manner as in Example 3 except that the obtained raw material compound was used.
  • Example 4 The raw material compound obtained in Example 5 was molded into 1 cm ⁇ ⁇ 2 mmt with a molding machine and baked under conditions of 750 ° C. and 24 hours in an Ar atmosphere to obtain a composition for evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

A method for producing a lithium phosphorus oxynitride compound, wherein a lithium phosphorus oxynitride compound can be obtained by simple processes. The method for producing a lithium phosphorus oxynitride compound is characterized by having a preparation step wherein a raw material composition which contains a raw material compound containing Li element and a PO4 skeleton, and a nitriding agent represented by general formula (1) is prepared, and a synthesis step wherein a lithium phosphorus oxynitride compound is synthesized by firing the raw material composition. In general formula (1), R1, R2 and R3 each independently represents a functional group having at least one of carbon (C), hydrogen (H), oxygen (O) and nitrogen (N).

Description

窒化リン酸リチウム化合物の製造方法Method for producing lithium nitride phosphate compound
 本発明は、例えば固体電解質や活物質として有用な窒化リン酸リチウム化合物を、簡易な方法で得ることができる窒化リン酸リチウム化合物の製造方法に関する。 The present invention relates to a method for producing a lithium nitride phosphoric acid compound capable of obtaining, for example, a lithium nitride lithium phosphate compound useful as a solid electrolyte or an active material by a simple method.
 近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を集めている。 In recent years, with the rapid spread of information-related equipment and communication equipment such as personal computers, video cameras and mobile phones, development of batteries used as power sources has been regarded as important. Also in the automobile industry and the like, development of high-power and high-capacity batteries for electric vehicles or hybrid vehicles is being promoted. Currently, lithium batteries are attracting attention from the viewpoint of high energy density among various batteries.
 現在市販されているリチウム電池は、可燃性の有機溶剤を溶媒とする有機電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。これに対し、液体電解質を固体電解質に変えて、電池を全固体化した全固体型リチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れている。 The lithium battery currently on the market uses an organic electrolyte that uses a flammable organic solvent as a solvent. Improvement is required. In contrast, an all-solid-state lithium battery in which the liquid electrolyte is changed to a solid electrolyte to make the battery all solid does not use a flammable organic solvent in the battery. Excellent productivity.
 このような固体電解質として、例えば酸化物固体電解質が知られているが、酸化物固体電解質は一般的にLiイオン伝導性が低いことが知られている。一方、酸化物固体電解質の中でも、LIPON(リン酸リチウムの窒化物の総称)は、高いLiイオン伝導性を有し、かつ、酸化還元に対して安定であるため、全固体型リチウム電池の固体電解質として注目されている。従来から、LIPONの合成方法として、幾つかの方法が知られている。 For example, an oxide solid electrolyte is known as such a solid electrolyte, and it is generally known that an oxide solid electrolyte has low Li ion conductivity. On the other hand, among oxide solid electrolytes, LIPON (a general term for nitrides of lithium phosphate) has high Li ion conductivity and is stable against oxidation and reduction. It is attracting attention as an electrolyte. Conventionally, several methods are known as a synthesis method of LIPON.
 例えば特許文献1および特許文献2においては、抵抗加熱蒸着法により、窒化リン酸リチウム薄膜を形成する方法が開示されている。また、特許文献3においては、オルトリン酸リチウム(LiPO)および遷移金属元素(例えばTi)をターゲットとし、スパッタリングガスとして窒素を用いることで、遷移金属元素を含む窒化リン酸リチウム薄膜を形成する方法が開示されている。しかしながら、これらの方法では、単位時間に合成できる量が極めて少なく、量産性が悪いという問題があった。 For example, Patent Literature 1 and Patent Literature 2 disclose a method of forming a lithium nitride lithium phosphate thin film by resistance heating vapor deposition. Further, in Patent Document 3, a lithium nitride phosphate thin film containing a transition metal element is formed by using lithium orthophosphate (Li 3 PO 4 ) and a transition metal element (for example, Ti) as a target and using nitrogen as a sputtering gas. A method is disclosed. However, these methods have a problem that the amount that can be synthesized per unit time is extremely small and the mass productivity is poor.
 なお、特許文献4においては、光触媒活性を有する酸化物(例えば酸化チタン)と、常温で酸化物に吸着する窒素化合物(例えば尿素)との混合物を加熱することにより、酸化窒化物を形成する方法が開示されている。また、特許文献5には、Li1-yM´(XO(Mは遷移金属であり、M´はMg2+、Ca2+、Al3+、Zn2+等であり、XはS、P、Siである)の製造方法が開示されており、さらに、上記化合物の原料を、NH/HOの雰囲気で還元する方法が開示されている。また、特許文献6には、固体電解質として、Li3.00.8Si0.1Ge0.13.450.8、Li2.70.8Ge0.10.13.450.8、Li3.00.80.1Al0.13.450.8等が開示されている。さらに、特許文献7には、LiMePO4-x(MeはFe、Co、NiおよびMnよりなる群から選択される少なくとも1種の原子)で表される非水電解質二次電池用活物質が開示されている。この技術では、リン酸塩化合物を窒素ガス雰囲気下で加熱し、アンモニアガスと反応させることにより、窒素を含むリン酸塩化合物からなる活物質を合成する。具体的には、LiFePONおよびLiCoPOFN等が開示されている。 In Patent Document 4, a method of forming an oxynitride by heating a mixture of an oxide having photocatalytic activity (eg, titanium oxide) and a nitrogen compound (eg, urea) adsorbed on the oxide at room temperature. Is disclosed. In Patent Document 5, Li x M 1-y M ′ y (XO 4 ) n (M is a transition metal, M ′ is Mg 2+ , Ca 2+ , Al 3+ , Zn 2+, etc., and X is S, P, and Si) are disclosed, and further, a method of reducing the raw materials of the above compounds in an NH 3 / H 2 O atmosphere is disclosed. Patent Document 6 discloses that Li 3.0 P 0.8 Si 0.1 Ge 0.1 O 3.45 N 0.8 and Li 2.7 P 0.8 Ge 0.1 B as solid electrolytes. 0.1 O 3.45 N 0.8, Li 3.0 P 0.8 B 0.1 Al 0.1 O 3.45 N 0.8 , etc. are disclosed. Further, Patent Document 7 discloses a non-aqueous electrolyte secondary battery represented by Li x MePO 4-x N y (Me is at least one atom selected from the group consisting of Fe, Co, Ni, and Mn). An active material is disclosed. In this technique, a phosphate compound is heated in a nitrogen gas atmosphere and reacted with ammonia gas to synthesize an active material composed of a phosphate compound containing nitrogen. Specifically, LiFePON and LiCoPOFN are disclosed.
 また、特許文献8には、LiMePOF(MeはFe、Co、MnおよびNiからなる群より選択される少なくとも1種の遷移金属元素)で表される材料の原料を混合し、得られた混合物を溶融する非水電解質電池用活物質の製造方法が開示されている。特許文献9には、オリビン型リン酸鉄リチウム正極材料およびその製造方法が開示されている。特許文献10には、正極活物質として、LiMPO(MはCo、Ni、Mn、Feから選ばれる少なくとも1種以上の元素から構成される)で表されるオリビン型リン酸リチウムの一部をフッ素で置換されたものを用いることが開示されている。特許文献11には、非晶質のLIPONを形成した後、その一部を結晶化して、結晶粒を含む固体電解質層を形成することが開示されている。 In Patent Document 8, a raw material of a material represented by Li 2 MePO 4 F (Me is at least one transition metal element selected from the group consisting of Fe, Co, Mn, and Ni) is mixed and obtained. A method for producing an active material for a non-aqueous electrolyte battery that melts the obtained mixture is disclosed. Patent Document 9 discloses an olivine-type lithium iron phosphate positive electrode material and a method for producing the same. Patent Document 10 discloses a part of olivine-type lithium phosphate represented by LiMPO 4 (M is composed of at least one element selected from Co, Ni, Mn, and Fe) as a positive electrode active material. The use of those substituted with fluorine is disclosed. Patent Document 11 discloses that after forming an amorphous LIPON, a part thereof is crystallized to form a solid electrolyte layer containing crystal grains.
特開2004-183078号公報JP 2004-183078 A 特開2004-228029号公報JP 2004-228029 A 特開2004-193112号公報JP 2004-193112 A 特開2002-154823号公報JP 2002-154823 A 特表2004‐509058号公報Special table 2004-509058 gazette 特開2005‐038843号公報JP 2005-038843 A 特開2005‐353320号公報JP 2005-353320 A 特開2007‐073360号公報JP 2007-073360 A 特開2006‐131485号公報JP 2006-131485 A 特開2003‐187799号公報JP 2003-187799 A 特開2005‐93372号公報JP 2005-93372 A
 本発明は、上記問題点に鑑みてなされたものであり、簡易な方法で窒化リン酸リチウム化合物を得ることができる窒化リン酸リチウム化合物の製造方法を提供することを主目的とする。 The present invention has been made in view of the above-mentioned problems, and has as its main object to provide a method for producing a lithium nitride phosphate compound capable of obtaining a lithium nitride phosphate compound by a simple method.
 上記目的を達成するために、本発明においては、Li元素およびPO骨格を有する原料化合物と、下記一般式(1)で表される窒化剤と、を含有する原料組成物を調製する調製工程と、上記原料組成物を焼成し、窒化リン酸リチウム化合物を合成する合成工程と、を有することを特徴とする窒化リン酸リチウム化合物の製造方法を提供する。 In order to achieve the above object, in the present invention, a preparation step of preparing a raw material composition containing a raw material compound having an Li element and a PO 4 skeleton and a nitriding agent represented by the following general formula (1) And a synthesis step of synthesizing the lithium nitride phosphate compound by firing the raw material composition and providing a method for producing the lithium nitride phosphate compound.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(1)において、R、RおよびRは、それぞれ独立であり、炭素(C)、水素(H)、酸素(O)および窒素(N)の少なくともいずれかを有する官能基である。 In the general formula (1), R 1 , R 2 and R 3 are each independently a functional group having at least one of carbon (C), hydrogen (H), oxygen (O) and nitrogen (N). is there.
 本発明によれば、窒化剤を含む原料組成物を用い、その原料組成物を焼成することで、容易に窒化リン酸リチウム化合物を得ることができる。また、従来のスパッタリング法や蒸着法は単位時間に合成できる量が極めて少ないという問題があり、量産性が低かった。これに対して、本発明は、このような問題を解決できるという利点を有する。 According to the present invention, by using a raw material composition containing a nitriding agent and firing the raw material composition, a lithium nitride phosphate compound can be easily obtained. Further, the conventional sputtering method and vapor deposition method have a problem that the amount that can be synthesized per unit time is extremely small, and the mass productivity is low. On the other hand, the present invention has an advantage that such a problem can be solved.
 上記発明においては、上記原料化合物が、LiPOであることが好ましい。Li元素およびPO骨格の両方を有する原料化合物を用いることにより、より簡易に窒化リン酸リチウム化合物を得ることができるからである。 In the above invention, the starting compound is preferably a Li 3 PO 4. This is because by using a raw material compound having both the Li element and the PO 4 skeleton, a lithium nitride phosphate compound can be obtained more easily.
 上記発明においては、上記原料化合物が、LiCOおよび(NH)HPOの混合物であることが好ましい。Li元素およびPO骨格の割合を調整しやすいからである。さらに、焼成によって、LiCOからCOが発生し、(NH)HPOからNHおよびHが発生するため、目的とする窒化リン酸リチウム化合物の組成に悪影響を与え難いという利点を有する。 In the above invention, the starting compound is preferably a mixture of Li 2 CO 3 and (NH 4) H 2 PO 4 . This is because it is easy to adjust the ratio of the Li element and the PO 4 skeleton. Further, since CO 2 is generated from Li 2 CO 3 and NH 3 and H 2 are generated from (NH 4 ) H 2 PO 4 by firing, the composition of the target lithium nitride phosphate compound is hardly adversely affected. Has the advantage.
 上記発明においては、上記原料化合物が、Li(XはTi、Zr、Ge、In、Ga、SnおよびAlからなる群から選択される少なくとも1種であり、YはB、Al、Ga、In、C、Si、Ge、Sn、SbおよびSeからなる群から選択される少なくとも1種であり、a~eは、0.5<a<5.0、0.5≦b<3.0、0≦c<2.98、0.02<d≦3.0、2.0<c+d<4.0、3.0<e≦12.0の関係を満たす)で表される化合物であることが好ましい。Liイオン伝導性の高い窒化リン酸リチウム化合物を得ることができるからである。 In the above invention, the raw material compound is Li a Xb Y c P d O e (X is at least one selected from the group consisting of Ti, Zr, Ge, In, Ga, Sn and Al, and Y Is at least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se, and a to e are 0.5 <a <5.0, 0. (5 ≦ b <3.0, 0 ≦ c <2.98, 0.02 <d ≦ 3.0, 2.0 <c + d <4.0, 3.0 <e ≦ 12.0) It is preferable that it is a compound represented by these. This is because a lithium nitride phosphate compound having high Li ion conductivity can be obtained.
 上記発明においては、上記原料化合物が、Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~eは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0の関係を満たす)で表される化合物であることが好ましい。Liイオン伝導性および電子伝導性の高い窒化リン酸リチウム化合物とすることができるからである。 In the above invention, the raw material compound is Li a Xb Y c P d O e (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, and Y is Mg, Al, Ti , Ga, Cu, V, Nb, Zr, Ce, In, and Zn, a to e are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1.3, 0 ≦ c ≦ 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, and 3.0 ≦ e ≦ 5.0. A compound is preferred. This is because a lithium nitride lithium phosphate compound having high Li ion conductivity and electron conductivity can be obtained.
 上記発明においては、上記原料化合物が、Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~fは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0、0.002≦f≦2.0の関係を満たす)で表される化合物であることが好ましい。Liイオン伝導性および電子伝導性の高い窒化リン酸リチウム化合物とすることができるからである。 In the above invention, the raw material compound is Li a Xb Y cP d O e F f (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, and Y is Mg, Al , Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to f are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1.3, 0 ≦ c ≦ 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, 3.0 ≦ e ≦ 5.0, 0.002 ≦ f ≦ The compound represented by (2) satisfying the relationship of 2.0 is preferable. This is because a lithium nitride lithium phosphate compound having high Li ion conductivity and electron conductivity can be obtained.
 上記発明においては、上記調製工程の前に、Li源、X源、Y源、PO源およびF源を含有する混合物を用いて、上記原料化合物を合成する合成工程を有することが好ましい。より耐久性に優れた窒化リン酸リチウム化合物を得ることができるからである。 In the above invention, before the preparation step, Li source, X source, Y source, using a mixture containing PO 4 source and F sources, it is preferable to have a synthesis step of synthesizing the starting compound. This is because it is possible to obtain a lithium nitride lithium phosphate compound having more excellent durability.
 上記発明においては、上記窒化剤が、常温(25℃)で固体または液体であることが好ましい。効率的に窒化を行うことができるからである。 In the above invention, the nitriding agent is preferably solid or liquid at normal temperature (25 ° C.). This is because nitriding can be performed efficiently.
 上記発明においては、上記窒化剤が、尿素であることが好ましい。効果的に窒化を行うことができるからである。 In the above invention, the nitriding agent is preferably urea. This is because nitriding can be performed effectively.
 上記発明においては、上記合成工程の際の焼成温度が、100℃~800℃の範囲内であることが好ましい。Liイオン伝導性の高い窒化リン酸リチウム化合物を得ることができるからである。 In the above invention, the firing temperature in the synthesis step is preferably in the range of 100 ° C to 800 ° C. This is because a lithium nitride phosphate compound having high Li ion conductivity can be obtained.
 上記発明においては、上記合成工程の際の焼成時間が、10分~7時間の範囲内であることが好ましい。Liイオン伝導性の高い窒化リン酸リチウム化合物を得ることができるからである。 In the above invention, the firing time in the synthesis step is preferably in the range of 10 minutes to 7 hours. This is because a lithium nitride phosphate compound having high Li ion conductivity can be obtained.
 また、本発明においては、Li(XはTi、Zr、Ge、In、Ga、SnおよびAlからなる群から選択される少なくとも1種であり、YはB、Al、Ga、In、C、Si、Ge、Sn、SbおよびSeからなる群から選択される少なくとも1種であり、a~fは、0.5<a<5.0、0.5≦b<3.0、0≦c<2.98、0.02<d≦3.0、2.0<c+d<4.0、3.0<e≦12.0、0.002<f<2.0の関係を満たす)で表されることを特徴とする窒化リン酸リチウム化合物を提供する。 In the present invention, Li a Xb Y cP d O e N f (X is at least one selected from the group consisting of Ti, Zr, Ge, In, Ga, Sn and Al, and Y is At least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se, and a to f are 0.5 <a <5.0, 0.5 ≦ b <3.0, 0 ≦ c <2.98, 0.02 <d ≦ 3.0, 2.0 <c + d <4.0, 3.0 <e ≦ 12.0, 0.002 <f <Satisfaction of 2.0) is provided. A lithium nitride lithium phosphate compound is provided.
 本発明によれば、上記の組成を有することから、Liイオン伝導性の高い窒化リン酸リチウム化合物とすることができる。この窒化リン酸リチウム化合物は、通常、NASICON(LISICON)型構造を有する化合物である。 According to the present invention, since it has the above composition, it can be a lithium phosphate lithium compound having high Li ion conductivity. This lithium nitride phosphate compound is usually a compound having a NASICON (LISICON) type structure.
 また、本発明においては、Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~fは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0、0.002≦f≦2.0の関係を満たす)で表されることを特徴とする窒化リン酸リチウム化合物を提供する。 In the present invention, Li a Xb Y cP d O e N f (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, and Y is Mg, Al, Ti, It is at least one selected from the group consisting of Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to f are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1 .3, 0 ≦ c ≦ 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, 3.0 ≦ e ≦ 5.0, 0.002 ≦ f ≦ 2.0 The lithium nitride phosphate compound is characterized in that it is represented by the following formula:
 本発明によれば、上記の組成を有することから、上記の組成を有することから、Liイオン伝導性および電子伝導性の高い窒化リン酸リチウム化合物とすることができる。この窒化リン酸リチウム化合物は、通常、オリビン型構造を有する化合物である。 According to the present invention, since it has the above composition, it can be a lithium nitride lithium phosphate compound having high Li ion conductivity and electron conductivity because it has the above composition. This lithium nitride phosphate compound is usually a compound having an olivine structure.
 また、本発明においては、Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~gは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0、0.002≦f≦2.0、0.002≦g≦2.0の関係を満たす)で表されることを特徴とする窒化リン酸リチウム化合物を提供する。 In the present invention, Li a Xb Y cP d O e F f N g (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, and Y is Mg, Al, It is at least one selected from the group consisting of Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to g are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1.3, 0 ≦ c ≦ 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, 3.0 ≦ e ≦ 5.0, 0.002 ≦ f ≦ 2 0.0, 0.002 ≦ g ≦ 2.0). A lithium nitride phosphate compound is provided.
 本発明によれば、上記の組成を有することから、Liイオン伝導性および電子伝導性の高い窒化リン酸リチウム化合物とすることができる。さらに、組成中にFを有することから、Liイオン伝導性、電子伝導性、耐久性に優れた窒化リン酸リチウム化合物とすることができる。この窒化リン酸リチウム化合物は、通常、オリビン型構造を有する化合物である。 According to the present invention, since it has the above composition, it can be a lithium nitride lithium phosphate compound having high Li ion conductivity and electron conductivity. Furthermore, since it has F in the composition, it can be a lithium nitride phosphate compound excellent in Li ion conductivity, electron conductivity, and durability. This lithium nitride phosphate compound is usually a compound having an olivine structure.
 上記発明においては、窒化リン酸リチウム化合物が粒子状であることが好ましい。薄膜の窒化リン酸リチウム化合物に比べて、剥離やクラック等が生じず、耐久性に優れているからである。 In the above invention, the lithium nitride lithium phosphate compound is preferably in the form of particles. This is because peeling and cracking do not occur and the durability is excellent as compared with a thin film lithium nitride phosphate compound.
 上記発明においては、窒化リン酸リチウム化合物の平均粒径が100nm~100μmの範囲内であることが好ましい。固体電解質や正極活物質として有用だからである。 In the above invention, the average particle size of the lithium nitride lithium phosphate compound is preferably in the range of 100 nm to 100 μm. This is because it is useful as a solid electrolyte or a positive electrode active material.
 上記発明においては、窒化リン酸リチウム化合物の比表面積が0.1m/g~300m/gの範囲内であることが好ましい。Liイオン伝導性の高い窒化リン酸リチウム化合物とすることができるからである。 In the above invention, the specific surface area of the lithium nitride lithium phosphate compound is preferably in the range of 0.1 m 2 / g to 300 m 2 / g. This is because a lithium nitride phosphate compound having high Li ion conductivity can be obtained.
 また、本発明においては、上述したNASICON(LISICON)型構造を有する化合物を含有することを特徴とする固体電解質層を提供する。 The present invention also provides a solid electrolyte layer characterized by containing a compound having the above-mentioned NASICON (LISICON) type structure.
 本発明によれば、上記化合物を用いることにより、Liイオン伝導性に優れた固体電解質層とすることができる。 According to the present invention, a solid electrolyte layer having excellent Li ion conductivity can be obtained by using the above compound.
 また、本発明においては、上述したオリビン型構造を有する化合物を含有することを特徴とする正極活物質層を提供する。 The present invention also provides a positive electrode active material layer comprising the compound having the olivine structure described above.
 本発明によれば、上記化合物を用いることにより、電子伝導性に優れた正極活物質層とすることができる。 According to the present invention, a positive electrode active material layer having excellent electron conductivity can be obtained by using the above compound.
 本発明においては、簡易な方法で窒化リン酸リチウム化合物を得ることができるという効果を奏する。 In the present invention, there is an effect that a lithium nitride phosphate compound can be obtained by a simple method.
本発明の窒化リン酸リチウム化合物の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the lithium nitride phosphate compound of this invention. 本発明の窒化リン酸リチウム化合物の製造方法の他の例を示す説明図である。It is explanatory drawing which shows the other example of the manufacturing method of the lithium nitride phosphate compound of this invention. 実施例1-1および比較例1-1の窒化リン酸リチウム化合物、ならびに比較例1-2の評価用組成物に対するXPS測定の結果である。7 shows the results of XPS measurement on the lithium nitride nitride compound of Example 1-1 and Comparative Example 1-1 and the evaluation composition of Comparative Example 1-2. 実施例1-1の窒化リン酸リチウム化合物に対するXRD測定の結果である。It is a result of the XRD measurement with respect to the lithium nitride nitride compound of Example 1-1. 実施例2の窒化リン酸リチウム化合物に対するXPS測定の結果である。3 is a result of XPS measurement for a lithium nitride lithium phosphate compound of Example 2. 実施例3および比較例3の窒化リン酸リチウム化合物に対するXRD測定の結果である。It is a result of the XRD measurement with respect to the lithium nitride phosphate compound of Example 3 and Comparative Example 3. 実施例4および比較例3の窒化リン酸リチウム化合物に対するXRD測定の結果である。It is a result of the XRD measurement with respect to the lithium nitride phosphate compound of Example 4 and Comparative Example 3.
 以下、本発明の窒化リン酸リチウム化合物の製造方法、窒化リン酸リチウム化合物、固体電解質層および正極活物質層について、詳細に説明する。 Hereinafter, a method for producing a lithium nitride phosphate compound, a lithium nitride phosphate compound, a solid electrolyte layer, and a positive electrode active material layer of the present invention will be described in detail.
A.窒化リン酸リチウム化合物の製造方法
 まず、本発明の窒化リン酸リチウム化合物の製造方法について説明する。本発明の窒化リン酸リチウム化合物の製造方法は、Li元素およびPO骨格を有する原料化合物と、上述した一般式(1)で表される窒化剤と、を含有する原料組成物を調製する調製工程と、上記原料組成物を焼成し、窒化リン酸リチウム化合物を合成する合成工程と、を有することを特徴とするものである。
A. First, the method for producing the lithium nitride phosphate compound of the present invention will be described. The method for producing a lithium nitride lithium phosphate compound of the present invention is a preparation for preparing a raw material composition containing a raw material compound having an Li element and a PO 4 skeleton and the nitriding agent represented by the general formula (1) described above. It has a process and the synthetic | combination process which bakes the said raw material composition and synthesize | combines a lithium nitride phosphoric acid compound, It is characterized by the above-mentioned.
 また、本発明における「窒化リン酸リチウム化合物」とは、少なくともLi元素、PO骨格およびN元素を有する化合物をいい、さらに、後述するその他の元素(例えば遷移金属元素)を含む化合物であっても良い。また、本発明における「PO骨格」は、厳密なPOからなる骨格のみに限定されるものではなく、その近傍組成からなる骨格をも含むものである。PO骨格を構成するP元素を1とした場合に、PO骨格を構成するO元素は、2~6の範囲内であることが好ましく、3~4の範囲内であることがより好ましい。 In addition, the “lithium nitride phosphate compound” in the present invention refers to a compound having at least a Li element, a PO 4 skeleton, and an N element, and further includes other elements (for example, transition metal elements) described later. Also good. In addition, the “PO 4 skeleton” in the present invention is not limited to a skeleton composed of exact PO 4 but also includes a skeleton composed of the vicinity thereof. When the P element constituting the PO 4 skeleton is 1, the O element constituting the PO 4 skeleton is preferably in the range of 2 to 6, and more preferably in the range of 3 to 4.
 本発明によれば、窒化剤を含む原料組成物を用い、その原料組成物を焼成することで、容易に窒化リン酸リチウム化合物を得ることができる。また、従来のスパッタリング法や蒸着法は、単位時間に合成できる量が極めて少ないという問題があり、量産性が低かった。これに対して、本発明は、このような問題を解決できるという利点を有する。 According to the present invention, by using a raw material composition containing a nitriding agent and firing the raw material composition, a lithium nitride phosphate compound can be easily obtained. Further, the conventional sputtering method and vapor deposition method have a problem that the amount that can be synthesized per unit time is extremely small, and the mass productivity is low. On the other hand, the present invention has an advantage that such a problem can be solved.
 また、例えば窒化剤としてLiNを用いて、800℃程度の温度で焼成処理を行うことで、窒化リン酸リチウム化合物を合成することができる可能性がある。しかしながら、LiNは、水分と反応しやすく、反応を制御することが困難になることが予想される。これに対して、本発明に用いられる窒化剤は、通常、LiNに比べて、反応性の低い材料であることから、より安全に窒化リン酸リチウム化合物を得ることができる。 In addition, for example, by using Li 3 N as a nitriding agent and performing a baking treatment at a temperature of about 800 ° C., there is a possibility that a lithium nitride phosphoric acid compound can be synthesized. However, Li 3 N is likely to react with moisture, and it is expected that it will be difficult to control the reaction. On the other hand, since the nitriding agent used in the present invention is usually a less reactive material than Li 3 N, the lithium nitride phosphoric acid compound can be obtained more safely.
 図1は、本発明の窒化リン酸リチウム化合物の製造方法の一例を示す説明図である。図1においては、まず、Li元素およびPO骨格を有する原料化合物としてオルトリン酸リチウム(LiPO)を用意し、窒化剤として尿素を用意する。次に、これらをボールミル等で混合し、原料組成物を調製する(調製工程)。その後、得られた原料組成物を例えば真空状態、500℃の条件で焼成し、窒化リン酸リチウム化合物を得る(合成工程)。 FIG. 1 is an explanatory diagram showing an example of a method for producing a lithium nitride lithium phosphate compound of the present invention. In FIG. 1, first, lithium orthophosphate (Li 3 PO 4 ) is prepared as a raw material compound having an Li element and a PO 4 skeleton, and urea is prepared as a nitriding agent. Next, these are mixed by a ball mill or the like to prepare a raw material composition (preparation step). Thereafter, the obtained raw material composition is baked, for example, in a vacuum state at 500 ° C. to obtain a lithium nitride lithium phosphate compound (synthesis process).
 図2は、本発明の窒化リン酸リチウム化合物の製造方法の他の例を示す説明図である。図2においては、Li元素およびPO骨格を有する原料化合物として、炭酸リチウム(LiCO)およびリン酸水素二アンモニウム((NH)HPO)の混合物を用意し、窒化剤として尿素を用意する。次に、これらをボールミル等で混合し、原料組成物を調製する(調製工程)。その後、得られた原料組成物を例えば真空状態、500℃の条件で焼成し、窒化リン酸リチウム化合物を得る(合成工程)。
 以下、本発明の窒化リン酸リチウム化合物の製造方法について、工程ごとに説明する。
FIG. 2 is an explanatory view showing another example of the method for producing a lithium nitride lithium phosphate compound of the present invention. In FIG. 2, a mixture of lithium carbonate (Li 2 CO 3 ) and diammonium hydrogen phosphate ((NH 4 ) H 2 PO 4 ) is prepared as a raw material compound having an Li element and a PO 4 skeleton, and is used as a nitriding agent. Prepare urea. Next, these are mixed by a ball mill or the like to prepare a raw material composition (preparation step). Thereafter, the obtained raw material composition is baked, for example, in a vacuum state at 500 ° C. to obtain a lithium nitride lithium phosphate compound (synthesis process).
Hereafter, the manufacturing method of the lithium oxynitride compound of this invention is demonstrated for every process.
1.調製工程
 本発明における調製工程は、Li元素およびPO骨格を有する原料化合物と、上述した窒化剤と、を含有する原料組成物を調製する工程である。
1. Preparation Step The preparation step in the present invention is a step of preparing a raw material composition containing a raw material compound having an Li element and a PO 4 skeleton and the nitriding agent described above.
(1)原料化合物
 本発明における原料化合物は、Li元素およびPO骨格を有するものである。原料化合物は、単一の化合物であっても良く、Li元素を有する化合物とPO骨格を有する化合物との混合物であっても良い。前者の場合、Li元素およびPO骨格の両方を有する原料化合物を用いることにより、より簡易に窒化リン酸リチウム化合物を得ることができるという利点を有する。
(1) Raw material compound starting compound in the present invention are those having a Li element and PO 4 backbone. The raw material compound may be a single compound or a mixture of a compound having an Li element and a compound having a PO 4 skeleton. In the former case, the use of the raw material compound having both the Li element and the PO 4 skeleton has an advantage that the lithium nitride phosphate compound can be obtained more easily.
(i)Li元素およびPO骨格の両方を有する原料化合物
 まず、Li元素およびPO骨格の両方を有する原料化合物について説明する。Li元素およびPO骨格の両方を有する原料化合物の一例としては、LiPOを挙げることができる。LiPOはLiを3個有しており、Liイオン伝導性の高い窒化リン酸リチウム化合物を得ることができる。さらに、Li元素およびPO骨格の両方を有する原料化合物は、Li元素およびPO骨格の他に、焼成により気体になる元素を有するものであっても良い。このような化合物としては、例えば、LiHPO、LiHPO等を挙げることができる。
(I) Raw material compound having both Li element and PO 4 skeleton First, a raw material compound having both Li element and PO 4 skeleton will be described. As an example of the raw material compound having both the Li element and the PO 4 skeleton, Li 3 PO 4 can be given. Li 3 PO 4 has three Li, and a lithium nitride lithium phosphate compound having high Li ion conductivity can be obtained. Moreover, raw material compound having both Li element and PO 4 backbone, in addition to the Li element and PO 4 skeleton may have an element turns into gas by calcination. Examples of such a compound include Li 2 HPO 4 and LiH 2 PO 4 .
 また、Li元素およびPO骨格の両方を有する原料化合物は、Li元素およびPO骨格の他に、その他の元素を有するものであっても良い。このような化合物を用いることで、例えば、Liイオン伝導性に優れた固体電解質や活物質を得ることができる。 Moreover, raw material compound having both Li element and PO 4 backbone, in addition to the Li element and PO 4 skeleton may have other elements. By using such a compound, for example, a solid electrolyte or an active material excellent in Li ion conductivity can be obtained.
 このような化合物としては、例えば、NASICON(LISICON)型構造を有する化合物を挙げることができる。NASICON(LISICON)型構造を有する化合物は、例えば固体電解質として有用である。NASICON(LISICON)型構造を有する化合物としては、例えば、Li(XはTi、Zr、Ge、In、Ga、SnおよびAlからなる群から選択される少なくとも1種であり、YはB、Al、Ga、In、C、Si、Ge、Sn、SbおよびSeからなる群から選択される少なくとも1種であり、a~eは、0.5<a<5.0、0.5≦b<3.0、0≦c<2.98、0.02<d≦3.0、2.0<c+d<4.0、3.0<e≦12.0の関係を満たす)で表される化合物(化合物(I)と称する場合がある)を挙げることができる。 Examples of such a compound include a compound having a NASICON (LISICON) type structure. A compound having a NASICON (LISICON) type structure is useful, for example, as a solid electrolyte. The compound having a NASICON (LISICON) structure, for example, Li a X b Y c P d O e ( X is at least one kind selected Ti, Zr, Ge, In, Ga, from the group consisting of Sn and Al Y is at least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se, and a to e are 0.5 <a <5. 0, 0.5 ≦ b <3.0, 0 ≦ c <2.98, 0.02 <d ≦ 3.0, 2.0 <c + d <4.0, 3.0 <e ≦ 12.0 (Satisfying relationship) (sometimes referred to as compound (I)).
 化合物(I)としては、例えば、Li1.3Al0.3Ti0.7(POおよびLi1.3Si0.3Ti2.712等を挙げることができる。 Examples of compound (I) include Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 and Li 1.3 Si 0.3 Ti 2 P 2.7 O 12 .
 また、Li元素およびPO骨格の両方を有する原料化合物は、オリビン型構造を有する化合物であっても良い。オリビン型構造を有する化合物は、例えば正極活物質として有用である。オリビン型構造を有する化合物としては、例えば、LiMPO(MはNi、Mn、CoおよびFeからなる群から選択される少なくとも1種である。)で表される化合物、およびその近傍組成を有する化合物等を挙げることができる。 Further, the raw material compound having both the Li element and the PO 4 skeleton may be a compound having an olivine structure. A compound having an olivine structure is useful, for example, as a positive electrode active material. Examples of the compound having an olivine structure include a compound represented by LiMPO 4 (M is at least one selected from the group consisting of Ni, Mn, Co, and Fe), and a compound having a composition in the vicinity thereof. Etc.
 また、オリビン型構造を有する原料化合物の他の例としては、Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~eは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0の関係を満たす)で表される化合物(化合物(II)と称する場合がある)を挙げることができる。 Another example of the raw material compound having an olivine type structure is Li a Xb Y cP d O e (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, and Y Is at least one selected from the group consisting of Mg, Al, Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to e are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1.3, 0 ≦ c ≦ 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, 3.0 ≦ e ≦ 5.0 And a compound represented by (sometimes referred to as compound (II)).
 オリビン型構造を有する原料化合物の他の例としては、Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~fは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0、0.002≦f≦2.0の関係を満たす)で表される化合物(化合物(III)と称する場合がある)を挙げることができる。 Other examples of the raw material compound having an olivine type structure include Li a Xb Y cP d O e F f (X is at least one selected from the group consisting of Mn, Fe, Co, and Ni, and Y Is at least one selected from the group consisting of Mg, Al, Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to f are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1.3, 0 ≦ c ≦ 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, 3.0 ≦ e ≦ 5.0, 0. 002 ≦ f ≦ 2.0) (sometimes referred to as compound (III)).
 本発明においては、調製工程の前に、上述した原料化合物を予め合成する合成工程を有していても良い。予め合成することで、窒化リン酸リチウム化合物を合成する際に、反応制御が容易になるという利点を有する。上述した化合物(I)~(III)の合成方法は、特に限定されるものではないが、例えば、メカニカルミリング法を挙げることができる。なお、メカニカルミリング法の種類や条件については、後述することにする。また、化合物(III)を合成する方法としては、例えば、Li源、X源、Y源、PO源およびF源を含有する混合物を用いて化合物(III)を合成する方法、および、まずLi源、X源、Y源およびPO源を含有する混合物を用いてLiXYPOを合成し、その後、LiXYPOおよびF源を用いて化合物(III)を合成する方法を挙げることができる。中でも、本発明においては、前者の方法が好ましい。より効率的にFを導入することができるからである。なお、化合物(I)~(III)における「c」が0の場合、Y源は使用しない。また、原材料の組成は、通常、目的とする化合物の組成に対応させる。 In this invention, you may have the synthetic | combination process which synthesize | combines previously the raw material compound before a preparation process. By synthesizing in advance, there is an advantage that the reaction control becomes easy when synthesizing the lithium nitride phosphoric acid compound. The method for synthesizing the above-mentioned compounds (I) to (III) is not particularly limited, and examples thereof include a mechanical milling method. The type and conditions of the mechanical milling method will be described later. As a method of synthesizing compound (III), for example, a method of synthesizing compound (III) using a mixture containing Li source, X source, Y source, PO 4 source and F source, Examples include a method of synthesizing LiXYPO using a mixture containing a source, an X source, a Y source, and a PO 4 source, and then synthesizing compound (III) using a LiXYPO and an F source. Of these, the former method is preferred in the present invention. This is because F can be introduced more efficiently. When “c” in compounds (I) to (III) is 0, the Y source is not used. In addition, the composition of the raw materials usually corresponds to the composition of the target compound.
(ii)Li元素を有する化合物とPO骨格を有する化合物との混合物
 本発明における原料化合物は、上述したように、Li元素を有する化合物とPO骨格を有する化合物との混合物であっても良い。この場合、Li元素およびPO骨格の割合を調整しやすいという利点を有する。Li元素を有する化合物としては、例えばLiCO、LiO、LiNO、LiNO、LiCl、CHCOOLi、Li、LiOH、LiHおよびLiP等を挙げることができる。中でも、Li元素を有する化合物は、焼成によりLi元素以外の構成成分が気体になる化合物であることが好ましい。目的とする窒化リン酸リチウム化合物の組成に悪影響を与え難いからである。特に、本発明においては、Li元素を有する化合物がLiCOであることが好ましい。
(Ii) Mixture of compound having Li element and compound having PO 4 skeleton As described above, the raw material compound in the present invention may be a mixture of a compound having Li element and a compound having PO 4 skeleton. . In this case, there is an advantage that the ratio of the Li element and the PO 4 skeleton is easily adjusted. Examples of the compound having Li element include Li 2 CO 3 , Li 2 O, LiNO 2 , LiNO 3 , LiCl, CH 3 COOLi, Li 2 C 2 O 4 , LiOH, LiH, and Li 3 P. . Especially, it is preferable that the compound which has Li element is a compound from which structural components other than Li element become gas by baking. This is because it is difficult to adversely affect the composition of the target lithium nitride phosphate compound. In particular, in the present invention, the compound containing Li element is preferably Li 2 CO 3 .
 PO骨格を有する化合物としては、例えば(NH)HPO、(NHHPO、(NHPOおよびHPO等を挙げることができる。中でも、PO骨格を有する化合物は、PO骨格以外の構成成分が気体になる化合物であることが好ましい。目的とする窒化リン酸リチウム化合物の組成に悪影響を与え難いからである。さらに、窒化リン酸リチウム化合物の合成を促進するという観点からは、PO骨格を有する化合物が窒素元素を有することが好ましい。このような観点からは、PO骨格を有する化合物が、(NH)HPO、(NHHPOまたは(NHPOであることが好ましい。特に、本発明においては、PO骨格を有する化合物が(NH)HPOであることが好ましい。 Examples of the compound having a PO 4 skeleton include (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) 3 PO 4, and H 3 PO 4 . Of these, compounds having a PO 4 skeleton is preferably a component other than PO 4 skeleton is a compound turns into gas. This is because it is difficult to adversely affect the composition of the target lithium nitride phosphate compound. Furthermore, from the viewpoint of promoting the synthesis of the lithium nitride phosphate compound, the compound having a PO 4 skeleton preferably contains a nitrogen element. From such a viewpoint, the compound having a PO 4 skeleton is preferably (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 or (NH 4 ) 3 PO 4 . In particular, in the present invention, the compound having a PO 4 skeleton is preferably (NH 4 ) H 2 PO 4 .
 また、本発明における原料化合物は、上述した化合物(I)または化合物(II)を得ることができる、Li源、X源、Y源およびPO源の混合物であっても良い。ここで、Li源およびPO源としては、それぞれ、上記の「Li元素を有する化合物」および「PO骨格を有する化合物」と同様の化合物を挙げることができる。また、X源は、X元素を含む化合物であれば特に限定されるものではなく、有機化合物であっても良く、無機化合物であっても良い。X源としては、例えば、シュウ酸化合物、炭酸化合物、硝酸化合物、塩化物、硫酸化合物、フッ化物等を挙げることができる。なお、Y源についても同様である。Li源は、さらに、X元素、Y元素、PO骨格の少なくとも一つを含有するものであっても良い。これは、X源、Y源、PO源についてもそれぞれ同様である。例えば、Li源は、Li元素の他に、X元素を含有するものであっても良い。 The raw material compound in the present invention may be a mixture of a Li source, an X source, a Y source and a PO 4 source from which the above-described compound (I) or compound (II) can be obtained. Here, examples of the Li source and the PO 4 source include the same compounds as the above-mentioned “compound having Li element” and “compound having PO 4 skeleton”, respectively. The X source is not particularly limited as long as it is a compound containing an X element, and may be an organic compound or an inorganic compound. Examples of the X source include oxalic acid compounds, carbonic acid compounds, nitric acid compounds, chlorides, sulfuric acid compounds, and fluorides. The same applies to the Y source. The Li source may further contain at least one of an X element, a Y element, and a PO 4 skeleton. The same applies to the X source, the Y source, and the PO 4 source. For example, the Li source may contain an X element in addition to the Li element.
 また、本発明における原料化合物は、上述した化合物(III)を得ることができる、Li源、X源、Y源、PO源およびF源の混合物であっても良い。この場合、混合物の組成は、通常、化合物(III)の組成に対応させる。なお、Li源、X源、Y源およびPO源については、上述した内容と同様である。また、F源は、さらに、Li元素、X元素、Y元素、PO骨格の少なくとも一つを含有するものであっても良い。これは、Li源、X源、Y源、PO源についても同様である。例えば、F源は、F元素の他に、Li元素を含有するものであっても良い。具体的には、LiF等を挙げることができる。 In addition, the raw material compound in the present invention may be a mixture of a Li source, an X source, a Y source, a PO 4 source and an F source from which the above-described compound (III) can be obtained. In this case, the composition of the mixture usually corresponds to the composition of compound (III). The Li source, X source, Y source, and PO 4 source are the same as described above. The F source may further contain at least one of Li element, X element, Y element, and PO 4 skeleton. The same applies to the Li source, the X source, the Y source, and the PO 4 source. For example, the F source may contain a Li element in addition to the F element. Specifically, LiF etc. can be mentioned.
 Li元素を有する化合物と、PO骨格を有する化合物とを別個に用いる場合、両化合物の添加量は、目的とする窒化リン酸リチウム化合物の組成に応じて適宜選択することが好ましい。例えば、窒化リン酸リチウムを合成する場合は、Li元素を有する化合物におけるLiを100モル部とした場合、PO骨格を有する化合物におけるPO骨格は、例えば10モル部~100モル部の範囲内であることが好ましく、30モル部~60モル部の範囲内であることがより好ましい。 When a compound having an Li element and a compound having a PO 4 skeleton are used separately, the addition amount of both compounds is preferably appropriately selected according to the composition of the target lithium nitride phosphate compound. For example, when lithium nitride phosphate is synthesized, assuming that Li in the compound having Li element is 100 mol parts, the PO 4 skeleton in the compound having PO 4 skeleton is, for example, in the range of 10 mol parts to 100 mol parts. Preferably, the amount is within the range of 30 to 60 parts by mole.
(2)窒化剤
 次に、本発明における窒化剤について説明する。本発明における窒化剤は、下記一般式(1)で表されるものである。
(2) Nitriding agent Next, the nitriding agent in the present invention will be described. The nitriding agent in the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、R、RおよびRは、それぞれ独立であり、炭素(C)、水素(H)、酸素(O)および窒素(N)の少なくともいずれかを有する官能基である。一般式(1)において、R、RおよびRは、全て同じであっても良く、全て異なっていても良く、R、RおよびRのうち2つが同じであっても良い。また、R、RおよびRの少なくとも一つが、炭素(C)を有することが好ましい。 In the general formula (1), R 1 , R 2 and R 3 are each independently a functional group having at least one of carbon (C), hydrogen (H), oxygen (O) and nitrogen (N). is there. In the general formula (1), R 1 , R 2 and R 3 may all be the same or different from each other, and two of R 1 , R 2 and R 3 may be the same. . Moreover, it is preferable that at least one of R 1 , R 2 and R 3 has carbon (C).
 また、本発明における窒化剤は、常温(25℃)で、固体、液体、気体のいずれであっても良いが、中でも、固体または液体であることが好ましい。窒化剤と原料化合物とが物理的に効率良く接触した原料組成物を作製することができ、原料組成物の窒化効率が向上するからである。なお、特にアンモニアを窒化剤とした場合、窒化反応が生じにくく、腐食性が高く、設備が高コストになる可能性がある点に留意すべきである。 Further, the nitriding agent in the present invention may be any of solid, liquid, and gas at normal temperature (25 ° C.), but among them, it is preferable that the nitriding agent is solid or liquid. This is because a raw material composition in which the nitriding agent and the raw material compound are in physical contact efficiently can be produced, and the nitriding efficiency of the raw material composition is improved. It should be noted that particularly when ammonia is used as a nitriding agent, the nitriding reaction hardly occurs, the corrosiveness is high, and the equipment may be expensive.
 本発明における窒化剤としては、例えば尿素、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、アミノエタン、アニリン、ニコチン、シクロヘキシルアミン、アンモニア等を挙げることができ、中でも尿素が好ましい。目的とする窒化リン酸リチウム化合物の組成に悪影響を与え難いからである。なお、尿素は、一般式(1)において、RおよびRがHであり、Rが-CONHである化合物である。 Examples of the nitriding agent in the present invention include urea, methylamine, ethylamine, diethylamine, triethylamine, aminoethane, aniline, nicotine, cyclohexylamine, ammonia and the like, and urea is particularly preferable. This is because it is difficult to adversely affect the composition of the target lithium nitride phosphate compound. Urea is a compound in which R 1 and R 2 are H and R 3 is —CONH 2 in the general formula (1).
 窒化剤の添加量は、目的とする窒化リン酸リチウム化合物の組成に応じて適宜選択することが好ましい。原料化合物におけるLiを100モル部とした場合、窒化剤におけるNは、例えば10モル部~100モル部の範囲内であることが好ましく、30モル部~60モル部の範囲内であることがより好ましい。特に、原料化合物としてLiPOを用い、窒化剤として尿素を用いる場合は、LiPOを100重量部とした場合に、尿素を100重量部以上とすることが好ましく、150重量部以上とすることがより好ましく、200重量部以上とすることがさらに好ましい。一方、尿素は、1000重量部以下であることが好ましい。本発明においては、LiPOおよび尿素が、焼成前に充分に接していることが重要である。そのため、尿素の割合が多すぎる場合、LiPOに接していない部分では充分な窒化が生じないため、全体としての窒化の効率は悪くなる可能性がある。 The addition amount of the nitriding agent is preferably selected as appropriate according to the composition of the target lithium nitride phosphate compound. When Li in the raw material compound is 100 mole parts, N in the nitriding agent is preferably in the range of, for example, 10 mole parts to 100 mole parts, and more preferably in the range of 30 mole parts to 60 mole parts. preferable. In particular, when Li 3 PO 4 is used as the raw material compound and urea is used as the nitriding agent, when Li 3 PO 4 is 100 parts by weight, the urea is preferably 100 parts by weight or more, and 150 parts by weight or more. More preferably, it is more preferably 200 parts by weight or more. On the other hand, urea is preferably 1000 parts by weight or less. In the present invention, it is important that Li 3 PO 4 and urea are sufficiently in contact before firing. Therefore, when the proportion of urea is too large, sufficient nitridation does not occur in the portion that is not in contact with Li 3 PO 4 , so that the overall nitridation efficiency may deteriorate.
(3)原料組成物の調製
 本発明における原料組成物は、上述した原料化合物および窒化剤を含有する。原料組成物の調整方法としては、例えば、原料化合物および窒化剤を混合する方法を挙げることができる。原料の混合方法は、特に限定されるものではないが、より均一に混合することが好ましい。中でも、本発明においては、原料化合物と窒化剤とをメカニカルミリング法(例えばボールミル法)によって混合することが好ましい。メカニカルミリング法を用いることで、原料の粉砕および混合を同時に行うことができ、原料成分の接触面積を大きくすることができるからである。また、本発明におけるメカニカルミリング法は、合成反応を伴うメカニカルミリング法であっても良く、合成反応を伴わないメカニカルミリング法であっても良い。合成反応を伴うメカニカルミリング法は、上述したように、原料化合物がLi元素を有する化合物とPO骨格を有する化合物との混合物である場合(例えば、原料化合物がLi源、X源、Y源およびPO源の混合物である場合)に、用いることができる。一方、合成反応を伴わないメカニカルミリング法は、上述したように、原料化合物がLi元素およびPO骨格を有する化合物である場合(例えば、原料組成物がLiPOである場合)に、用いることができる。これにより、原料化合物と窒化剤との分散性を向上させることができる。なお、原料化合物がLi元素およびPO骨格を有する化合物である場合は、一般的な撹拌手段を用いて、単に混合するだけであっても良い。また、ボールミル法を用いて混合を行う場合、回転速度は、例えば100rpm~11000rpmの範囲内であり、500rpm~5000rpmの範囲内であることが好ましい。また、処理時間は、特に限定されるものではなく、所望の原料組成物が得られる程度に適宜設定することが好ましい。
(3) Preparation of raw material composition The raw material composition in this invention contains the raw material compound and nitriding agent which were mentioned above. Examples of the method for adjusting the raw material composition include a method of mixing a raw material compound and a nitriding agent. The mixing method of the raw materials is not particularly limited, but it is preferable to mix more uniformly. Among these, in the present invention, it is preferable to mix the raw material compound and the nitriding agent by a mechanical milling method (for example, a ball mill method). By using the mechanical milling method, the raw materials can be pulverized and mixed at the same time, and the contact area of the raw material components can be increased. Further, the mechanical milling method in the present invention may be a mechanical milling method involving a synthesis reaction or a mechanical milling method not involving a synthesis reaction. As described above, the mechanical milling method involving a synthesis reaction is performed when the raw material compound is a mixture of a compound having a Li element and a compound having a PO 4 skeleton (for example, the raw material compound is a Li source, an X source, a Y source, and In the case of a mixture of PO 4 sources). On the other hand, the mechanical milling method without a synthesis reaction is used when the raw material compound is a compound having a Li element and a PO 4 skeleton as described above (for example, when the raw material composition is Li 3 PO 4 ). be able to. Thereby, the dispersibility of a raw material compound and a nitriding agent can be improved. Incidentally, when the raw material compound is a compound having a Li element and PO 4 backbone, using a general stirring means, simply it may be simply mixed. When mixing is performed using the ball mill method, the rotational speed is, for example, in the range of 100 rpm to 11000 rpm, and preferably in the range of 500 rpm to 5000 rpm. Further, the treatment time is not particularly limited, and is preferably set as appropriate to obtain a desired raw material composition.
 また、本発明においては、窒化剤を気化させ、その雰囲気の中に、原料化合物を配置することで、原料組成物を調製しても良い。この状態で、原料組成物の焼成を行うことで、所望の窒化リン酸リチウム化合物を合成することも可能である。 In the present invention, the raw material composition may be prepared by vaporizing the nitriding agent and disposing the raw material compound in the atmosphere. In this state, by firing the raw material composition, it is possible to synthesize a desired lithium nitride phosphate compound.
2.合成工程
 次に、本発明における合成工程について説明する。本発明における合成工程は、上記原料組成物を焼成し、窒化リン酸リチウム化合物を合成する工程である。
2. Synthesis Step Next, the synthesis step in the present invention will be described. The synthesis step in the present invention is a step of baking the raw material composition to synthesize a lithium nitride phosphate compound.
 本発明における焼成温度は、所望の窒化リン酸リチウム化合物を得ることができる温度であれば特に限定されるものではないが、窒化剤が分解または溶解する温度以上の温度であることが好ましい。窒素元素が化学結合に組み込まれた窒化リン酸リチウム化合物を得やすくなるからである。焼成温度は、用いる窒化剤の種類に応じて適宜選択することが好ましく、例えば100℃以上であり、300℃以上が好ましく、400℃以上がより好ましく、500℃以上がさらに好ましい。一方、焼成温度は、例えば800℃以下であり、700℃以下がより好ましい。焼成時間は、例えば10分以上であり、30分以上が好ましく、1時間以上がより好ましい。一方、焼成時間は、例えば7時間以下であり、5時間以下がより好ましい。 The firing temperature in the present invention is not particularly limited as long as it is a temperature at which a desired lithium nitride phosphoric acid compound can be obtained, but is preferably a temperature equal to or higher than the temperature at which the nitriding agent decomposes or dissolves. This is because it becomes easy to obtain a lithium nitride lithium phosphate compound in which a nitrogen element is incorporated into a chemical bond. The firing temperature is preferably appropriately selected according to the type of nitriding agent used, and is, for example, 100 ° C. or higher, preferably 300 ° C. or higher, more preferably 400 ° C. or higher, and further preferably 500 ° C. or higher. On the other hand, a calcination temperature is 800 degrees C or less, for example, and 700 degrees C or less is more preferable. The firing time is, for example, 10 minutes or longer, preferably 30 minutes or longer, and more preferably 1 hour or longer. On the other hand, baking time is 7 hours or less, for example, and 5 hours or less are more preferable.
 また、焼成時の雰囲気は、特に限定されるものではないが、例えば大気雰囲気;窒素雰囲気およびアルゴン雰囲気等の不活性ガス雰囲気;アンモニア雰囲気および水素雰囲気等の還元雰囲気;真空等を挙げることができ、中でも不活性ガス雰囲気、還元雰囲気、真空が好ましく、特に還元雰囲気が好ましい。窒化リン酸リチウム化合物の酸化劣化を防止することができるからである。また、原料組成物の焼成方法としては、例えば焼成炉を用いる方法等を挙げることができる。 The atmosphere during firing is not particularly limited, and examples thereof include an air atmosphere; an inert gas atmosphere such as a nitrogen atmosphere and an argon atmosphere; a reducing atmosphere such as an ammonia atmosphere and a hydrogen atmosphere; a vacuum and the like. Among these, an inert gas atmosphere, a reducing atmosphere, and a vacuum are preferable, and a reducing atmosphere is particularly preferable. This is because the oxidative deterioration of the lithium nitride phosphoric acid compound can be prevented. Moreover, as a baking method of a raw material composition, the method of using a baking furnace etc. can be mentioned, for example.
3.その他
 本発明の窒化リン酸リチウム化合物の製造方法により得られる窒化リン酸リチウム化合物は、例えば固体電解質や正極活物質として有用である。さらに、この固体電解質は、例えばリチウム電池の固体電解質膜(固体電解質層)に用いることができる。そのため、本発明においては、上述した調製工程および合成工程を行うことにより固体電解質を得る工程と、上記固体電解質を用いて固体電解質層を形成する工程とを有することを特徴とするリチウム電池の製造方法を提供することができる。また、本発明においては、上記の製造方法により得られたことを特徴とする固体電解質を提供することができる。さらに、本発明においては、上記の製造方法により得られた固体電解質を用いてなる固体電解質層を有することを特徴とする全固体型リチウム電池を提供することができる。一方、本発明により得られる正極活物質は、リチウム電池の正極活物質層に用いることができる。そのため、本発明においては、上述した調製工程および合成工程を行うことにより正極活物質を得る工程と、上記正極活物質を用いて正極活物質層を形成する工程とを有することを特徴とするリチウム電池の製造方法を提供することができる。また、本発明においては、上記の製造方法により得られたことを特徴とする正極活物質を提供することができる。さらに、本発明においては、上記の製造方法により得られた正極活物質を含有する正極活物質層を有することを特徴とする全固体型リチウム電池を提供することができる。
3. Others The lithium nitride phosphate compound obtained by the method for producing a lithium nitride phosphate compound of the present invention is useful, for example, as a solid electrolyte or a positive electrode active material. Furthermore, this solid electrolyte can be used for a solid electrolyte membrane (solid electrolyte layer) of a lithium battery, for example. Therefore, in the present invention, there is provided a lithium battery characterized by comprising a step of obtaining a solid electrolyte by performing the preparation step and the synthesis step described above, and a step of forming a solid electrolyte layer using the solid electrolyte. A method can be provided. Moreover, in this invention, the solid electrolyte characterized by the above-mentioned manufacturing method can be provided. Furthermore, in the present invention, it is possible to provide an all-solid-state lithium battery characterized by having a solid electrolyte layer using the solid electrolyte obtained by the above production method. On the other hand, the positive electrode active material obtained by this invention can be used for the positive electrode active material layer of a lithium battery. Therefore, in the present invention, lithium having a step of obtaining a positive electrode active material by performing the preparation step and the synthesis step described above, and a step of forming a positive electrode active material layer using the positive electrode active material A method for manufacturing a battery can be provided. Moreover, in this invention, the positive electrode active material characterized by obtained by said manufacturing method can be provided. Furthermore, in the present invention, it is possible to provide an all-solid-state lithium battery characterized by having a positive electrode active material layer containing the positive electrode active material obtained by the above production method.
B.窒化リン酸リチウム化合物
 次に、本発明の窒化リン酸リチウム化合物について説明する。本発明の窒化リン酸リチウム化合物は、3つの実施態様に大別することができる。
B. Next, the lithium nitride phosphate compound of the present invention will be described. The lithium nitride phosphate compound of the present invention can be roughly divided into three embodiments.
1.第一実施態様
 本発明の窒化リン酸リチウム化合物の第一実施態様は、Li(XはTi、Zr、Ge、In、Ga、SnおよびAlからなる群から選択される少なくとも1種であり、YはB、Al、Ga、In、C、Si、Ge、Sn、SbおよびSeからなる群から選択される少なくとも1種であり、a~fは、0.5<a<5.0、0.5≦b<3.0、0≦c<2.98、0.02<d≦3.0、2.0<c+d<4.0、3.0<e≦12.0、0.002<f<2.0の関係を満たす)で表されることを特徴とするものである。なお、0.02<f<2.0であることが好ましい。
1. First Embodiment A first embodiment of the lithium nitride nitride compound of the present invention is Li a Xb Y cP d O e N f (where X is a group consisting of Ti, Zr, Ge, In, Ga, Sn, and Al). Y is at least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se, and a to f are 0 .5 <a <5.0, 0.5 ≦ b <3.0, 0 ≦ c <2.98, 0.02 <d ≦ 3.0, 2.0 <c + d <4.0, 3.0 <E ≦ 12.0 and 0.002 <f <2.0 are satisfied). Note that 0.02 <f <2.0 is preferable.
 第一実施態様によれば、上記の組成を有することから、Liイオン伝導性の高い窒化リン酸リチウム化合物とすることができる。この窒化リン酸リチウム化合物は、通常、NASICON(LISICON)型構造を有する化合物である。なお、第一実施態様の窒化リン酸リチウム化合物は、Liに単にNが吸着したものではなく、Nが化学結合した状態で、窒化リン酸リチウム化合物(Li)内に存在するものである。 According to the first embodiment, since it has the above composition, it can be a lithium phosphate lithium compound having high Li ion conductivity. This lithium nitride phosphate compound is usually a compound having a NASICON (LISICON) type structure. Note that the lithium nitride phosphate compound of the first embodiment is not a material in which N is simply adsorbed to Li a Xb Y c P d O e , but in a state where N is chemically bonded, the lithium nitride phosphate compound (Li a it is present in X b Y c P d O e N f) within.
 本発明においては、第一実施態様の窒化リン酸リチウム化合物が粒子状(粉末状)であることが好ましい。薄膜状の窒化リン酸リチウム化合物のように剥離やクラック等が生じず、耐久性に優れているからである。粒子状の窒化リン酸リチウム化合物の平均粒径は、例えば100nm以上、中でも2μm以上、特に4μm以上であることが好ましい。一方、上記平均粒径は、例えば100μm以下、中でも20μm以下であることが好ましい。なお、平均粒径は、レーザー回折式の粒度分布計により算出することができる。 In the present invention, the lithium nitride phosphoric acid compound of the first embodiment is preferably in the form of particles (powder). This is because peeling and cracks do not occur unlike the thin film lithium nitride phosphate compound, and the durability is excellent. The average particle diameter of the particulate lithium nitride phosphate compound is, for example, 100 nm or more, preferably 2 μm or more, and particularly preferably 4 μm or more. On the other hand, the average particle diameter is, for example, preferably 100 μm or less, more preferably 20 μm or less. The average particle diameter can be calculated with a laser diffraction particle size distribution meter.
 また、窒化リン酸リチウム化合物の比表面積は、例えば0.1m/g以上、中でも0.5m/g以上であることが好ましい。一方、上記比表面積は、例えば300m/g以下、中でも100m/g以下であることが好ましい。なお、比表面積は、BET法(気体吸着法)により算出することができる。なお、従来のスパッタリング法や蒸着法を用いた薄膜を削った場合、上記と同様に、粒子状の窒化リン酸リチウム化合物が得られる可能性がある。しかしながら、このような粒子は、凹凸の少ない薄膜から形成されるものであるため、粒子の比表面積は小さくなる。これに対して、上記「A.窒化リン酸リチウム化合物の製造方法」に記載された方法で得られた窒化リン酸リチウム化合物は、粒子の表面に凹凸を有するため、比表面積は大きくなる。 Further, the specific surface area of the lithium nitride lithium phosphate compound is, for example, preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more. On the other hand, the specific surface area is, for example, 300 m 2 / g or less, preferably 100 m 2 / g or less. The specific surface area can be calculated by the BET method (gas adsorption method). In addition, when the thin film using the conventional sputtering method or vapor deposition method is shaved, a particulate lithium nitride phosphate compound may be obtained in the same manner as described above. However, since such particles are formed from a thin film with few irregularities, the specific surface area of the particles becomes small. In contrast, the lithium nitride phosphate compound obtained by the method described in “A. Method for producing lithium nitride phosphate compound” has irregularities on the surface of the particles, and therefore has a large specific surface area.
 第一実施態様の窒化リン酸リチウム化合物の用途としては、例えば、固体電解質等を挙げることができる。窒化リン酸リチウム化合物を固体電解質として用いる場合、粉末状の窒化リン酸リチウム化合物をペレット状に成形して、例えば全固体型リチウム電池の固体電解質層として用いることができる。また、窒化リン酸リチウム化合物を、全固体型リチウム電池の正極層(正極活物質層)または負極層(負極活物質層)に添加する固体電解質材料として用いても良い。さらに、全固体型リチウム電池に限らず、一般的なリチウム電池(例えば非水電解液型リチウム電池)の電極活物質の表面を、窒化リン酸リチウム化合物で被覆して用いても良い。 Examples of the use of the lithium nitride phosphoric acid compound of the first embodiment include a solid electrolyte. When a lithium nitride lithium phosphate compound is used as a solid electrolyte, the powdered lithium nitride phosphate compound can be formed into a pellet and used, for example, as a solid electrolyte layer of an all solid lithium battery. Moreover, you may use lithium nitride phosphoric acid compound as a solid electrolyte material added to the positive electrode layer (positive electrode active material layer) or negative electrode layer (negative electrode active material layer) of an all-solid-state lithium battery. Further, the surface of the electrode active material of a general lithium battery (for example, a non-aqueous electrolyte type lithium battery) is not limited to the all solid-state lithium battery, and may be used by being coated with a lithium nitride phosphate compound.
 第一実施態様の窒化リン酸リチウム化合物は、例えば、上記「A.窒化リン酸リチウム化合物の製造方法」に記載の方法により得ることができる。 The lithium nitride phosphate compound of the first embodiment can be obtained, for example, by the method described in “A. Method for producing lithium nitride phosphate compound” above.
2.第二実施態様
 本発明の窒化リン酸リチウム化合物の第二実施態様は、Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~fは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0、0.002≦f≦2.0の関係を満たす)で表されることを特徴とするものである。
2. Second Embodiment A second embodiment of the lithium nitride phosphoric acid compound of the present invention is Li a Xb Y cP d O e N f (X is at least one selected from the group consisting of Mn, Fe, Co and Ni) Y is at least one selected from the group consisting of Mg, Al, Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to f are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1.3, 0 ≦ c ≦ 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, 3.0 ≦ e ≦ 5 0.0, 0.002 ≦ f ≦ 2.0).
 第二実施態様によれば、上記の組成を有することから、Liイオン伝導性および電子伝導性の高い窒化リン酸リチウム化合物とすることができる。この窒化リン酸リチウム化合物は、通常、オリビン型構造を有する化合物である。なお、第二実施態様の窒化リン酸リチウム化合物は、Liに単にNが吸着したものではなく、Nが化学結合した状態で、窒化リン酸リチウム化合物(Li)内に存在するものである。また、本発明においては、第二実施態様の窒化リン酸リチウム化合物が粒子状(粉末状)であることが好ましい。平均粒径等については、上述した内容と同様である。 According to the second embodiment, since it has the above composition, it can be a lithium nitride lithium phosphate compound having high Li ion conductivity and high electron conductivity. This lithium nitride phosphate compound is usually a compound having an olivine structure. In addition, the lithium nitride phosphate compound of the second embodiment is not a material in which N is simply adsorbed to Li a Xb Y c P d O e , but in a state in which N is chemically bonded, the lithium nitride phosphate compound (Li a it is present in X b Y c P d O e N f) within. Moreover, in this invention, it is preferable that the lithium nitride phosphoric acid compound of 2nd embodiment is a particulate form (powder form). About an average particle diameter etc., it is the same as that of the content mentioned above.
 第二実施態様の窒化リン酸リチウム化合物の用途としては、例えば、正極活物質等を挙げることができる。電子伝導性が高いため、正極活物質として用いた場合に、導電化材の使用量を低減することができ、電池の高容量化を図ることができる。また、第二実施態様の窒化リン酸リチウム化合物は、例えば、上記「A.窒化リン酸リチウム化合物の製造方法」に記載の方法により得ることができる。 Examples of the use of the lithium nitride nitride compound of the second embodiment include a positive electrode active material. Since the electron conductivity is high, when used as a positive electrode active material, the amount of conductive material used can be reduced, and the capacity of the battery can be increased. Moreover, the lithium nitride phosphate compound of the second embodiment can be obtained, for example, by the method described in “A. Method for producing lithium nitride phosphate compound” above.
3.第三実施態様
 本発明の窒化リン酸リチウム化合物の第三実施態様は、Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~gは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0、0.002≦f≦2.0、0.002≦g≦2.0の関係を満たす)で表されることを特徴とするものである。
3. Third Embodiment A third embodiment of the lithium oxynitride compound of the present invention is selected from the group consisting of Li a Xb Y c Pd O e F f N g (X is Mn, Fe, Co and Ni) At least one, Y is at least one selected from the group consisting of Mg, Al, Ti, Ga, Cu, V, Nb, Zr, Ce, In and Zn, and a to g are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1.3, 0 ≦ c ≦ 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, 3.0 ≦ e ≦ 5.0, 0.002 ≦ f ≦ 2.0, and 0.002 ≦ g ≦ 2.0).
 第三実施態様によれば、上記の組成を有することから、Liイオン伝導性および電子伝導性の高い窒化リン酸リチウム化合物とすることができる。さらに、組成中にFを有することから、Liイオン伝導性、電子伝導性、耐久性に優れた窒化リン酸リチウム化合物とすることができる。この窒化リン酸リチウム化合物は、通常、オリビン型構造を有する化合物である。なお、第三実施態様の窒化リン酸リチウム化合物は、Liに単にFおよびNが吸着したものではなく、FおよびNが化学結合した状態で、窒化リン酸リチウム化合物(Li)内に存在するものである。また、本発明においては、第三実施態様の窒化リン酸リチウム化合物が粒子状(粉末状)であることが好ましい。平均粒径等については、上述した内容と同様である。 According to the third embodiment, since it has the above composition, it can be a lithium nitride lithium phosphate compound having high Li ion conductivity and electron conductivity. Furthermore, since it has F in the composition, it can be a lithium nitride phosphate compound excellent in Li ion conductivity, electron conductivity, and durability. This lithium nitride phosphate compound is usually a compound having an olivine structure. In addition, the lithium nitride phosphate compound of the third embodiment is not obtained by simply adsorbing F and N to Li a Xb Y c P d O e , but in a state where F and N are chemically bonded, it is present in the compounds in (Li a X b Y c P d O e F f N g). Moreover, in this invention, it is preferable that the lithium nitride phosphoric acid compound of 3rd embodiment is a particulate form (powder form). About an average particle diameter etc., it is the same as that of the content mentioned above.
 第三実施態様の窒化リン酸リチウム化合物の用途については、上述した第二実施態様と同様である。また、第三実施態様の窒化リン酸リチウム化合物は、例えば、上記「A.窒化リン酸リチウム化合物の製造方法」に記載の方法により得ることができる。 The use of the lithium nitride lithium phosphate compound of the third embodiment is the same as that of the second embodiment described above. Moreover, the lithium nitride phosphate compound of the third embodiment can be obtained, for example, by the method described in the above-mentioned “A. Method for producing lithium nitride phosphate compound”.
C.固体電解質層
 本発明の固体電解質層は、上述したNASICON(LISICON)型構造を有する化合物(化合物(I))を含有することを特徴とするものである。本発明によれば、上述した化合物(I)を用いることにより、Liイオン伝導性に優れた固体電解質層とすることができる。これにより、電池の高出力化を図ることができる。本発明の固体電解質層の厚さは、特に限定されるものではないが、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。また、固体電解質層の形成方法としては、例えば、化合物(I)を含む組成物を圧縮成形する方法等を挙げることができる。なお、化合物(I)は、正極活物質層に含有されるものであっても良い。
C. Solid Electrolyte Layer The solid electrolyte layer of the present invention is characterized by containing the above-mentioned compound (compound (I)) having a NASICON (LISICON) type structure. According to this invention, it can be set as the solid electrolyte layer excellent in Li ion conductivity by using the compound (I) mentioned above. Thereby, the high output of a battery can be achieved. The thickness of the solid electrolyte layer of the present invention is not particularly limited, but for example, it is preferably in the range of 0.1 μm to 1000 μm, and more preferably in the range of 0.1 μm to 300 μm. Moreover, as a formation method of a solid electrolyte layer, the method of compression-molding the composition containing compound (I) etc. can be mentioned, for example. In addition, compound (I) may be contained in the positive electrode active material layer.
D.正極活物質層
 本発明の正極活物質層は、上述したオリビン型構造を有する化合物(化合物(II)または化合物(III))を含有することを特徴とするものである。本発明によれば、上述した化合物(II)または化合物(III)を用いることにより、電子伝導性に優れた正極活物質層とすることができる。本発明の正極活物質層は、少なくとも上記化合物を含有するものであり、必要に応じて、導電化材を含有していても良い。導電化材としては、例えばアセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。本発明の正極活物質層の厚さは、例えば0.1μm~1000μmの範囲内であることが好ましい。また、正極活物質層の形成方法としては、例えば、化合物(II)または化合物(III)を含む組成物を圧縮成形する方法等を挙げることができる。
D. Positive electrode active material layer The positive electrode active material layer of the present invention is characterized by containing the above-described compound (compound (II) or compound (III)) having an olivine structure. According to this invention, it can be set as the positive electrode active material layer excellent in electronic conductivity by using compound (II) or compound (III) mentioned above. The positive electrode active material layer of the present invention contains at least the above-described compound, and may contain a conductive material as necessary. Examples of the conductive material include acetylene black, ketjen black, and carbon fiber. The thickness of the positive electrode active material layer of the present invention is preferably in the range of 0.1 μm to 1000 μm, for example. Moreover, as a formation method of a positive electrode active material layer, the method of compression-molding the composition containing compound (II) or compound (III) etc. can be mentioned, for example.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
 以下に実施例を示して本発明をさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.
[実施例1-1]
 原料として、LiPO(アルドリッチ社製、平均粒径4μm)および尿素(アルドリッチ社製)を用意した。次に、LiPOおよび尿素を、それぞれ1gずつ秤量して、乳鉢にて混合し、原料組成物を得た。その後、得られた原料組成物を、成形機にて1cmφ×2mmtに成形し、得られた成形体をガラス管に入れ、真空とした。次に、そのガラス管を、管状炉で500℃、3時間の条件で焼成した。これにより、窒化リン酸リチウム化合物(LIPON)を得た。なお、得られた窒化リン酸リチウム化合物に対して、BET法により比表面積を測定した。測定には、比表面積および細孔分布全自動ガス吸着測定装置(オートソープ-1、湯浅アイオニクス社製)を用いた。その結果、得られた窒化リン酸リチウム化合物の比表面積は、0.9m/gであった。
[Example 1-1]
Li 3 PO 4 (manufactured by Aldrich, average particle size 4 μm) and urea (manufactured by Aldrich) were prepared as raw materials. Next, 1 g each of Li 3 PO 4 and urea was weighed and mixed in a mortar to obtain a raw material composition. Thereafter, the obtained raw material composition was molded into 1 cmφ × 2 mmt with a molding machine, and the obtained molded body was put into a glass tube and evacuated. Next, the glass tube was fired at 500 ° C. for 3 hours in a tubular furnace. Thereby, a lithium nitride phosphate compound (LIPON) was obtained. In addition, the specific surface area was measured by the BET method with respect to the obtained lithium nitride phosphate compound. For the measurement, a specific surface area and pore distribution fully automatic gas adsorption measuring device (Auto Soap-1, manufactured by Yuasa Ionics Co., Ltd.) was used. As a result, the specific surface area of the obtained lithium nitride lithium phosphate compound was 0.9 m 2 / g.
[実施例1-2~1-7]
 LiPOおよび尿素の比率、焼成温度、焼成時間を、後述する表2に示す条件に変更したこと以外は、実施例1-1と同様にして、窒化リン酸リチウム化合物(LIPON)を得た。
[Examples 1-2 to 1-7]
A lithium nitride lithium phosphate compound (LIPON) was obtained in the same manner as in Example 1-1 except that the ratio of Li 3 PO 4 and urea, the firing temperature, and the firing time were changed to the conditions shown in Table 2 described later. It was.
[比較例1-1]
 入山ら、“Development of all-solid-state thin film rechargeable lithium batteries with high power density by interface regulation approaches”、NEDO平成14年度産業技術研究助成事業成果報告書、プロジェクトID 01B60011cに記載された方法と同様にして、高周波マグネトロンスパッタリング法を用いて、窒化リン酸リチウム化合物(LIPON薄膜)を得た。
[Comparative Example 1-1]
Iriyama et al., “Development of all-solid-state thin film rechargeable lithium batteries with high power density by interface regulation approaches”, NEDO FY2002 Industrial Technology Research Grants Results Report, Project ID 01B60011c Then, using a high-frequency magnetron sputtering method, a lithium nitride lithium phosphate compound (LIPON thin film) was obtained.
[比較例1-2]
 原料として、LiPO(アルドリッチ社製)および尿素(アルドリッチ社製)を用意した。次に、LiPOおよび尿素を、それぞれ1gずつ秤量して、乳鉢にて混合し、評価用組成物を得た。
[Comparative Example 1-2]
Li 3 PO 4 (manufactured by Aldrich) and urea (manufactured by Aldrich) were prepared as raw materials. Next, 1 g each of Li 3 PO 4 and urea was weighed and mixed in a mortar to obtain a composition for evaluation.
[評価1]
 実施例1-1~1-7および比較例1-1の窒化リン酸リチウム化合物と、比較例1-2の評価用組成物とを用いて、化学結合状態評価、結晶構造評価およびイオン伝導性評価を行った。
[Evaluation 1]
Chemical bonding state evaluation, crystal structure evaluation, and ion conductivity using the lithium nitride phosphate compounds of Examples 1-1 to 1-7 and Comparative Example 1-1 and the evaluation composition of Comparative Example 1-2 Evaluation was performed.
(1)評価方法
(化学結合状態評価)
 化学結合状態評価は、光電子分光法(XPS法)により行った。その測定条件を以下に示す。
  測定機器:SSI社製、X線光電子分光装置SSX-100
  励起X線:モノクロAlKα1,2線(1486.6eV)
  X線径 :300×525μmの楕円
  脱出角度:35°
(1) Evaluation method (chemical bond state evaluation)
The chemical bonding state was evaluated by photoelectron spectroscopy (XPS method). The measurement conditions are shown below.
Measuring instrument: SSI, X-ray photoelectron spectrometer SSX-100
Excitation X-ray: Monochrome AlKα 1,2 line (1486.6 eV)
X-ray diameter: 300 × 525 μm ellipse Escape angle: 35 °
(結晶構造評価)
 結晶構造評価は、X線回折法(XRD法)により行った。X線回折装置として、リガク社製 RINT-TTR IIIを用いた。
(Crystal structure evaluation)
The crystal structure was evaluated by an X-ray diffraction method (XRD method). RINT-TTR III manufactured by Rigaku Corporation was used as the X-ray diffractometer.
(イオン伝導性評価)
 イオン伝導性評価は、インピーダンス解析法により行った。インピーダンス測定装置として、ソーラトロン社製 周波数応答アナライザ1260型を用いた。また、インピーダンスの測定は、測定試料を成形機にて1cmφ×2mmtに成形し、500℃、1時間の条件で焼成することにより得られたペレットをAu基板に挟み、1Hz~10MHz範囲で行った。得られたcole-coleプロットの円弧の形から、測定試料のイオン伝導度を決定した。
(Ion conductivity evaluation)
Ion conductivity was evaluated by an impedance analysis method. A frequency response analyzer 1260 manufactured by Solartron was used as the impedance measuring device. The impedance was measured in the range of 1 Hz to 10 MHz by sandwiching a pellet obtained by molding a measurement sample into 1 cmφ × 2 mmt with a molding machine and firing it at 500 ° C. for 1 hour. . From the arc shape of the obtained cole-cole plot, the ionic conductivity of the measurement sample was determined.
(2)評価結果
 化学結合状態評価は、実施例1-1および比較例1-1の窒化リン酸リチウム化合物、および比較例1-2の評価用組成物に対して行った。その結果を図3に示す。Nの結合状態解析により、図3(a)において、a-1はO-N=Oユニットのピークであり、a-2はNPユニットのピークであり、a-4はNPユニットのピークであることが確認された。なお、a-3は残留尿素に起因したピークである。同様に、図3(b)において、b-1はO-N=Oユニットのピークであり、b-2はNPユニットのピークであり、b-4はNPユニットのピークであることが確認された。これに対して、図3(c)において、402.3eVのピークと、c-4のピークは、尿素に起因したピークである。実施例1-1および比較例1-1のピークの比較を表1に示す。
(2) Evaluation Results Chemical bonding state evaluation was performed on the lithium nitride phosphate compounds of Example 1-1 and Comparative Example 1-1 and the evaluation composition of Comparative Example 1-2. The result is shown in FIG. According to the analysis of the binding state of N, in FIG. 3 (a), a-1 is a peak of ON = O unit, a-2 is a peak of NP 3 unit, and a-4 is a peak of NP 2 unit. It was confirmed that. Note that a-3 is a peak due to residual urea. Similarly, in FIG. 3 (b), b-1 is a peak of ON = O unit, b-2 is a peak of NP 3 unit, and b-4 is a peak of NP 2 unit. confirmed. In contrast, in FIG. 3C, the 402.3 eV peak and the c-4 peak are peaks due to urea. A comparison of the peaks of Example 1-1 and Comparative Example 1-1 is shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示されるように、窒素の結合状態は、3種類存在していることが確認できる。また、焼成により得られた窒化リン酸リチウム化合物(実施例1-1)と、スパッタリング法により得られた窒化リン酸リチウム化合物(比較例1-1)とを比較すると、Nが互いに同等の結合状態を有している。そのため、本発明の窒化リン酸リチウム化合物の製造方法により、スパッタリング法で形成したものと同様の窒化リン酸リチウム化合物を得ることができることが確認された。 As shown in Table 1, it can be confirmed that there are three types of nitrogen bonding states. Further, when the lithium nitride phosphate compound obtained by firing (Example 1-1) and the lithium nitride phosphate compound obtained by sputtering (Comparative Example 1-1) were compared, N was bonded to each other. Have a state. For this reason, it was confirmed that the lithium nitride phosphate compound similar to that formed by the sputtering method can be obtained by the method for producing the lithium nitride phosphate compound of the present invention.
 結晶構造評価は、実施例1-1の窒化リン酸リチウム化合物に対して行った。図4は、そのXRD測定の結果である。解析の結果、LiPOのピークが検出されると同時に、Liに類似したピークが検出された。ここで、Liは、OP-O-POユニットを有している。上記のXPSの解析結果から、P-N-Pユニットが確認されていることから、実施例1-1で得られた窒化リン酸リチウム化合物は、OP-N-POユニットを有していると推測される。すなわち、この結果は、窒化剤の窒素元素が、単にLiPOの表面に吸着したのではなく、化学結合に組み込まれていることを示唆している。 The crystal structure evaluation was performed on the lithium nitride lithium phosphate compound of Example 1-1. FIG. 4 shows the result of the XRD measurement. As a result of the analysis, a peak of Li 3 PO 4 was detected, and at the same time, a peak similar to Li 4 P 2 O 7 was detected. Here, Li 4 P 2 O 7 has O 3 P—O—PO 3 units. From the above XPS analysis results, it was confirmed that the P—N—P unit was found, and thus the lithium nitride lithium compound obtained in Example 1-1 had an O 3 P—N—PO 3 unit. I guess that. That is, this result suggests that the nitrogen element of the nitriding agent is not simply adsorbed on the surface of Li 3 PO 4 but is incorporated in the chemical bond.
 イオン伝導性評価は、実施例1-1~1-7の窒化リン酸リチウム化合物、および比較例1-2の評価用組成物に対して行った。その結果を表2に示す。 The ion conductivity was evaluated for the lithium nitride nitride compounds of Examples 1-1 to 1-7 and the evaluation composition of Comparative Example 1-2. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示されるように、実施例1-1の窒化リン酸リチウム化合物は、比較例1-2の評価用組成物に対して、20倍以上のイオン伝導度を有する。この理由は、上述したOP-N-POユニットが形成されたためであると推測される。このように、本発明により、イオン伝導性に優れた窒化リン酸リチウム化合物を、簡易な方法で得られることが確認された。同様に、実施例1-2~1-7の窒化リン酸リチウム化合物は、比較例1-2の評価用組成物に対して、高いイオン伝導度を示した。さらに、実施例1-1~1-7の結果から、焼成温度は、400℃以上であることが好ましく、500℃以上がより好ましいことが明らかになった。また、実施例1-1、1-3および1-4の結果から、LiPOに対する尿素の割合が高い程、イオン伝導度が高くなる傾向が示された。 As shown in Table 2, the lithium nitride phosphate compound of Example 1-1 has an ionic conductivity 20 times or more that of the evaluation composition of Comparative Example 1-2. The reason for this is presumed to be that the O 3 PN—PO 3 unit described above was formed. Thus, according to the present invention, it was confirmed that a lithium nitride phosphate compound excellent in ion conductivity can be obtained by a simple method. Similarly, the lithium nitride phosphate compounds of Examples 1-2 to 1-7 exhibited high ionic conductivity with respect to the evaluation composition of Comparative Example 1-2. Further, from the results of Examples 1-1 to 1-7, it was found that the firing temperature is preferably 400 ° C. or higher, and more preferably 500 ° C. or higher. Further, from the results of Examples 1-1, 1-3, and 1-4, it was shown that the higher the ratio of urea to Li 3 PO 4, the higher the ionic conductivity.
[実施例2]
 原料として、Li1.3Al0.3Ti0.7(POを合成した。この化合物は、H.Aono et al., “Ionic-Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate”, J. Electrochem. Soc., 137(1990)1023に記載された方法により合成した。次に、Li1.3Al0.3Ti0.7(POおよび尿素(アルドリッチ社製)を、それぞれ1gずつ秤量して、乳鉢にて混合し、原料組成物を得た。その後、得られた原料組成物を、成形機にて1cmφ×2mmtに成形し、得られた成形体をガラス管に入れ、真空とした。次に、そのガラス管を、管状炉で500℃、3時間の条件で焼成した。これにより、窒化リン酸リチウム化合物を得た。
[Example 2]
Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 was synthesized as a raw material. This compound was synthesized by the method described in H. Aono et al., “Ionic-Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate”, J. Electrochem. Soc., 137 (1990) 1023. Next, 1 g each of Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 and urea (manufactured by Aldrich) were weighed and mixed in a mortar to obtain a raw material composition. Thereafter, the obtained raw material composition was molded into 1 cmφ × 2 mmt with a molding machine, and the obtained molded body was put into a glass tube and evacuated. Next, the glass tube was fired at 500 ° C. for 3 hours in a tubular furnace. As a result, a lithium nitride phosphate compound was obtained.
[比較例2]
 実施例2で使用したLi1.3Al0.3Ti0.7(POを評価用組成物とした。
[Comparative Example 2]
Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 used in Example 2 was used as an evaluation composition.
[評価2]
 実施例2の窒化リン酸リチウム化合物と、比較例2の評価用組成物とを用いて、化学結合状態評価、結晶構造評価およびイオン伝導性評価を行った。これらの評価方法は、上述の通りである。
[Evaluation 2]
Chemical bonding state evaluation, crystal structure evaluation, and ion conductivity evaluation were performed using the lithium nitride phosphate compound of Example 2 and the evaluation composition of Comparative Example 2. These evaluation methods are as described above.
 化学結合状態評価は、実施例2の窒化リン酸リチウム化合物および比較例2の評価用組成物に対して行った。実施例2の窒化リン酸リチウム化合物の結果を図5に示す。Nの結合状態解析により、a-1はO-N=Oユニットのピークであり、a-2はNPユニットのピークであり、a-4はNPユニットのピークであることが確認された。なお、a-3は残留尿素に起因したピークである。一方、比較例2の評価用組成物は、Nを有しないため、これらのピークは検出されなかった。実施例2、比較例2および参考として上記実施例1-1のピークの比較を表3に示す。 The chemical bonding state evaluation was performed on the lithium nitride nitride compound of Example 2 and the evaluation composition of Comparative Example 2. FIG. 5 shows the result of the lithium nitride lithium phosphate compound of Example 2. By analysis of the binding state of N, it was confirmed that a-1 is a peak of ON = O unit, a-2 is a peak of NP 3 unit, and a-4 is a peak of NP 2 unit. . Note that a-3 is a peak due to residual urea. On the other hand, since the composition for evaluation of Comparative Example 2 did not have N, these peaks were not detected. Table 3 shows a comparison of the peaks of Example 2, Comparative Example 2 and Example 1-1 as a reference.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示されるように、実施例2で得られた窒化リン酸リチウム化合物と、実施例1-1で得られた窒化リン酸リチウム化合物とを比較すると、Nが互いに同等の結合状態を有している。そのため、所望の窒化リン酸リチウム化合物を得ることができることが確認された。 As shown in Table 3, when the lithium nitride phosphate compound obtained in Example 2 and the lithium nitride phosphate compound obtained in Example 1-1 were compared, N had a bonding state equivalent to each other. is doing. Therefore, it was confirmed that a desired lithium nitride phosphoric acid compound can be obtained.
 イオン伝導性評価は、実施例2の窒化リン酸リチウム化合物、および比較例2の評価用組成物に対して行った。その結果を表4に示す。 The ion conductivity evaluation was performed on the lithium nitride nitride compound of Example 2 and the evaluation composition of Comparative Example 2. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4に示されるように、実施例2の窒化リン酸リチウム化合物は、比較例2の評価用組成物に対して、2倍程度のイオン伝導度を有することが確認された。 As shown in Table 4, it was confirmed that the lithium nitride lithium compound of Example 2 had about twice the ionic conductivity with respect to the evaluation composition of Comparative Example 2.
[実施例3]
 LiCOを0.48g、FeCを2.34g、(NHHPOを1.72g混合し、さらにエタノールを25g加えた。得られた組成物に対して、4000rpm、3時間の条件でボールミルを行い、その後、エタノールを蒸発させ、オリビン構造を有する原料化合物(LiFePO)を得た。次に、得られた原料化合物および尿素(アルドリッチ社製)を、それぞれ1gずつ秤量して、乳鉢にて混合し、原料組成物を得た。その後、得られた原料組成物を、成形機にて1cmφ×2mmtに成形し、得られた成形体をガラス管に入れ、真空とした。次に、そのガラス管を、管状炉で500℃、3時間の条件で焼成した。これにより、窒化リン酸リチウム化合物を得た。得られた窒化リン酸リチウム化合物の色は、茶色であった。
[Example 3]
0.48 g of Li 2 CO 3 , 2.34 g of FeC 2 O 4 and 1.72 g of (NH 4 ) 2 HPO 4 were mixed, and 25 g of ethanol was further added. The obtained composition was ball milled under conditions of 4000 rpm for 3 hours, and then ethanol was evaporated to obtain a raw material compound (LiFePO 4 ) having an olivine structure. Next, 1 g of each of the obtained raw material compound and urea (manufactured by Aldrich) was weighed and mixed in a mortar to obtain a raw material composition. Thereafter, the obtained raw material composition was molded into 1 cmφ × 2 mmt with a molding machine, and the obtained molded body was put into a glass tube and evacuated. Next, the glass tube was fired at 500 ° C. for 3 hours in a tubular furnace. As a result, a lithium nitride phosphate compound was obtained. The color of the obtained lithium nitride nitride compound was brown.
[比較例3]
 実施例3で得られた原料化合物を、成形機にて1cmφ×2mmtに成形し、Ar雰囲気下、750℃、24時間の条件で焼成し、評価用組成物とした。評価用組成物の色は、薄い灰色であった。
[Comparative Example 3]
The raw material compound obtained in Example 3 was molded into 1 cmφ × 2 mmt with a molding machine and baked under conditions of 750 ° C. and 24 hours in an Ar atmosphere to obtain a composition for evaluation. The color of the evaluation composition was light gray.
[実施例4]
 LiCOを0.24g、LiFを0.34g、FeCを2.34g、(NHHPOを1.72g混合し、さらにエタノールを25g加えた。得られた組成物に対して、4000rpm、3時間の条件でボールミルを行い、その後、エタノールを蒸発させ、オリビン構造を有する原料化合物(Fを導入したLiFePO)を得た。得られた原料化合物を用いたこと以外は、実施例3と同様にして、窒化リン酸リチウム化合物を得た。得られた窒化リン酸リチウム化合物の色は、こげ茶色であった。
[Example 4]
0.24 g of Li 2 CO 3 , 0.34 g of LiF, 2.34 g of FeC 2 O 4 , 1.72 g of (NH 4 ) 2 HPO 4 were mixed, and 25 g of ethanol was further added. The obtained composition was ball milled under conditions of 4000 rpm for 3 hours, and then ethanol was evaporated to obtain a raw material compound having an olivine structure (LiFePO 4 into which F was introduced). A lithium nitride lithium phosphate compound was obtained in the same manner as in Example 3 except that the obtained raw material compound was used. The color of the obtained lithium nitride nitride compound was dark brown.
[実施例5]
 LiCOを0.48g、CoCを2.39g、(NHHPOを1.72g混合し、さらにエタノールを25g加えた。得られた組成物に対して、4000rpm、3時間の条件でボールミルを行い、その後、エタノールを蒸発させ、オリビン構造を有する原料化合物(LiCoPO)を得た。得られた原料化合物を用いたこと以外は、実施例3と同様にして、窒化リン酸リチウム化合物を得た。
[Example 5]
0.48 g of Li 2 CO 3 , 2.39 g of CoC 2 O 4 and 1.72 g of (NH 4 ) 2 HPO 4 were mixed, and 25 g of ethanol was further added. The obtained composition was ball milled under conditions of 4000 rpm for 3 hours, and then ethanol was evaporated to obtain a raw material compound (LiCoPO 4 ) having an olivine structure. A lithium nitride lithium phosphate compound was obtained in the same manner as in Example 3 except that the obtained raw material compound was used.
[比較例4]
 実施例5で得られた原料化合物を、成形機にて1cmφ×2mmtに成形し、Ar雰囲気下、750℃、24時間の条件で焼成し、評価用組成物とした。
[Comparative Example 4]
The raw material compound obtained in Example 5 was molded into 1 cmφ × 2 mmt with a molding machine and baked under conditions of 750 ° C. and 24 hours in an Ar atmosphere to obtain a composition for evaluation.
[評価3]
 実施例3、4の窒化リン酸リチウム化合物と、比較例3の評価用組成物とを用いて、XRD測定を行った。その結果を図6および図7に示す。図6に示されるように、実施例3は、比較例3に対して、同等のピークを示すこと、および、35.7°付近のメインピークがシフトしていることが確認された。さらに、試料の色が明確に変化したことから、実施例3では、不純物なく鉄オリビン構造中にNを導入できたと考えられる。また、図7に示されるように、実施例4は、比較例3に対して、同等のピークを示すこと、および、35.7°付近のメインピークがシフトしていることが確認された。さらに、試料の色が明確に変化したことから、実施例4では、不純物なく鉄オリビン構造中にNおよびFを導入できたと考えられる。なお、図6、図7において、実施例3、4では、28°付近にピークが検出された。このピークは、比較例3では検出されないものであるが、残留尿素の影響によるものだと考えられる。
[Evaluation 3]
XRD measurement was performed using the lithium nitride phosphate compound of Examples 3 and 4 and the composition for evaluation of Comparative Example 3. The results are shown in FIGS. As shown in FIG. 6, it was confirmed that Example 3 showed an equivalent peak to Comparative Example 3, and that the main peak near 35.7 ° was shifted. Furthermore, since the color of the sample changed clearly, it is considered that in Example 3, N could be introduced into the iron olivine structure without impurities. Further, as shown in FIG. 7, it was confirmed that Example 4 showed an equivalent peak to Comparative Example 3, and that the main peak near 35.7 ° was shifted. Furthermore, since the color of the sample changed clearly, it is considered that in Example 4, N and F could be introduced into the iron olivine structure without impurities. 6 and 7, in Examples 3 and 4, a peak was detected at around 28 °. This peak is not detected in Comparative Example 3, but is considered to be due to the influence of residual urea.
 さらに、実施例3~5の窒化リン酸リチウム化合物と、比較例3、4の評価用組成物とを用いて、電子伝導度測定を行った。電子伝導度の測定条件を以下に示す。
 ・測定装置:三菱化学アナリテック社製、MCP-PD51
 ・試料形状:φ20mmの筒に試料を充填し、20kNに加圧して測定
 ・測定方法:4端子法にて90Vの電圧を印加した状態で電流値を測定し、抵抗を算出し、その値を逆数に変換することで、電子伝導度を求める。
 その結果を表5に示す。
Further, electron conductivity measurement was performed using the lithium nitride phosphate compounds of Examples 3 to 5 and the evaluation compositions of Comparative Examples 3 and 4. The measurement conditions of electron conductivity are shown below.
・ Measuring device: MCP-PD51, manufactured by Mitsubishi Chemical Analytech
・ Sample shape: Fill a sample in a cylinder of φ20mm and pressurize to 20kN ・ Measurement method: Measure current value with 90V voltage applied by 4-terminal method, calculate resistance, and calculate the value By converting to the reciprocal, the electron conductivity is obtained.
The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5に示されるように、実施例3、4の窒化リン酸リチウム化合物は、比較例3の評価用組成物よりも高い電子伝導度を有することが確認された。同様に、実施例5の窒化リン酸リチウム化合物は、比較例4の評価用組成物よりも高い電子伝導度を有することが確認された。また、特に実施例3、4の結果から、Fを導入することで、さらに電子伝導度が向上することが判明した。電子伝導度が高くなることで、導電化材の使用量を低減することができ、電池の高容量化を図ることができる。 As shown in Table 5, it was confirmed that the lithium nitride phosphate compounds of Examples 3 and 4 had higher electronic conductivity than the evaluation composition of Comparative Example 3. Similarly, it was confirmed that the lithium nitride phosphoric acid compound of Example 5 had higher electronic conductivity than the evaluation composition of Comparative Example 4. In particular, from the results of Examples 3 and 4, it was found that by introducing F, the electron conductivity was further improved. By increasing the electron conductivity, the amount of conductive material used can be reduced, and the capacity of the battery can be increased.

Claims (19)

  1.  Li元素およびPO骨格を有する原料化合物と、下記一般式(1)で表される窒化剤と、を含有する原料組成物を調製する調製工程と、
     前記原料組成物を焼成し、窒化リン酸リチウム化合物を合成する合成工程と、
     を有することを特徴とする窒化リン酸リチウム化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)において、R、RおよびRは、それぞれ独立であり、炭素(C)、水素(H)、酸素(O)および窒素(N)の少なくともいずれかを有する官能基である。
    A preparation step of preparing a raw material composition containing a raw material compound having an Li element and a PO 4 skeleton, and a nitriding agent represented by the following general formula (1):
    Firing the raw material composition, and synthesizing a lithium nitride phosphate compound;
    A method for producing a lithium nitride lithium phosphate compound, comprising:
    Figure JPOXMLDOC01-appb-C000001
    In the general formula (1), R 1 , R 2 and R 3 are each independently a functional group having at least one of carbon (C), hydrogen (H), oxygen (O) and nitrogen (N). is there.
  2.  前記原料化合物が、LiPOであることを特徴とする請求の範囲第1項に記載の窒化リン酸リチウム化合物の製造方法。 The method for producing a lithium nitride lithium phosphate compound according to claim 1, wherein the raw material compound is Li 3 PO 4 .
  3.  前記原料化合物が、LiCOおよび(NH)HPOの混合物であることを特徴とする請求の範囲第1項に記載の窒化リン酸リチウム化合物の製造方法。 The method for producing a lithium lithium phosphate compound according to claim 1, wherein the raw material compound is a mixture of Li 2 CO 3 and (NH 4 ) H 2 PO 4 .
  4.  前記原料化合物が、Li(XはTi、Zr、Ge、In、Ga、SnおよびAlからなる群から選択される少なくとも1種であり、YはB、Al、Ga、In、C、Si、Ge、Sn、SbおよびSeからなる群から選択される少なくとも1種であり、a~eは、0.5<a<5.0、0.5≦b<3.0、0≦c<2.98、0.02<d≦3.0、2.0<c+d<4.0、3.0<e≦12.0の関係を満たす)で表される化合物であることを特徴とする請求の範囲第1項に記載の窒化リン酸リチウム化合物の製造方法。 The raw material compound is Li a Xb Y cP d O e (X is at least one selected from the group consisting of Ti, Zr, Ge, In, Ga, Sn and Al, and Y is B, Al, At least one selected from the group consisting of Ga, In, C, Si, Ge, Sn, Sb and Se, and a to e are 0.5 <a <5.0, 0.5 ≦ b <3 0.0, 0 ≦ c <2.98, 0.02 <d ≦ 3.0, 2.0 <c + d <4.0, 3.0 <e ≦ 12.0. The method for producing a lithium nitride lithium phosphate compound according to claim 1, wherein:
  5.  前記原料化合物が、Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~eは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0の関係を満たす)で表される化合物であることを特徴とする請求の範囲第1項に記載の窒化リン酸リチウム化合物の製造方法。 The raw material compound is Li a Xb Y cP d O e (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, and Y is Mg, Al, Ti, Ga, Cu, At least one selected from the group consisting of V, Nb, Zr, Ce, In and Zn, and a to e are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1.3, 0 ≦ c ≦ 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, 3.0 ≦ e ≦ 5.0) The method for producing a lithium nitride lithium phosphate compound according to claim 1,
  6.  前記原料化合物が、Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~fは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0、0.002≦f≦2.0の関係を満たす)で表される化合物であることを特徴とする請求の範囲第1項に記載の窒化リン酸リチウム化合物の製造方法。 The raw material compound is Li a Xb Y cP d O e F f (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, and Y is Mg, Al, Ti, Ga, It is at least one selected from the group consisting of Cu, V, Nb, Zr, Ce, In and Zn, and a to f are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1.3. , 0 ≦ c ≦ 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, 3.0 ≦ e ≦ 5.0, 0.002 ≦ f ≦ 2.0 The method for producing a lithium nitride lithium phosphate compound according to claim 1, wherein the compound is represented by the following formula:
  7.  前記調製工程の前に、Li源、X源、Y源、PO源およびF源を含有する混合物を用いて、前記原料化合物を合成する合成工程を有することを特徴とする請求の範囲第6項に記載の窒化リン酸リチウム化合物の製造方法。 6. The method according to claim 6, further comprising a synthesis step of synthesizing the raw material compound using a mixture containing a Li source, an X source, a Y source, a PO 4 source and an F source before the preparation step. The manufacturing method of lithium nitride phosphoric acid compound as described in claim | item.
  8.  前記窒化剤が、常温(25℃)で固体または液体であることを特徴とする請求の範囲第1項から第7項までのいずれかに記載の窒化リン酸リチウム化合物の製造方法。 The method for producing a lithium nitride lithium compound according to any one of claims 1 to 7, wherein the nitriding agent is solid or liquid at normal temperature (25 ° C).
  9.  前記窒化剤が、尿素であることを特徴とする請求の範囲第1項から第8項までのいずれかに記載の窒化リン酸リチウム化合物の製造方法。 The method for producing a lithium nitride lithium phosphate compound according to any one of claims 1 to 8, wherein the nitriding agent is urea.
  10.  前記合成工程の際の焼成温度が、100℃~800℃の範囲内であることを特徴とする請求の範囲第1項から第9項までのいずれかに記載の窒化リン酸リチウム化合物の製造方法。 The method for producing a lithium nitride lithium compound according to any one of claims 1 to 9, wherein a firing temperature in the synthesis step is in a range of 100 ° C to 800 ° C. .
  11.  前記合成工程の際の焼成時間が、10分~7時間の範囲内であることを特徴とする請求の範囲第1項から第10項までのいずれかに記載の窒化リン酸リチウム化合物の製造方法。 The method for producing a lithium nitride lithium compound according to any one of claims 1 to 10, wherein a firing time in the synthesis step is within a range of 10 minutes to 7 hours. .
  12.  Li(XはTi、Zr、Ge、In、Ga、SnおよびAlからなる群から選択される少なくとも1種であり、YはB、Al、Ga、In、C、Si、Ge、Sn、SbおよびSeからなる群から選択される少なくとも1種であり、a~fは、0.5<a<5.0、0.5≦b<3.0、0≦c<2.98、0.02<d≦3.0、2.0<c+d<4.0、3.0<e≦12.0、0.002<f<2.0の関係を満たす)で表されることを特徴とする窒化リン酸リチウム化合物。 Li a X b Y c P d O e N f (X is at least one selected Ti, Zr, Ge, In, Ga, from the group consisting of Sn and Al, Y is B, Al, Ga, In , C, Si, Ge, Sn, Sb and Se, and a to f are 0.5 <a <5.0, 0.5 ≦ b <3.0, 0 ≦ c <2.98, 0.02 <d ≦ 3.0, 2.0 <c + d <4.0, 3.0 <e ≦ 12.0, 0.002 <f <2.0 A lithium nitride phosphate compound, wherein
  13.  Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~fは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0、0.002≦f≦2.0の関係を満たす)で表されることを特徴とする窒化リン酸リチウム化合物。 Li a X b Y c P d O e N f (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, Y is Mg, Al, Ti, Ga, Cu, V, Nb , Zr, Ce, In and Zn, and a to f are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1.3, 0 ≦ c ≦. 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, 3.0 ≦ e ≦ 5.0, 0.002 ≦ f ≦ 2.0) A lithium nitride phosphate compound characterized by the above.
  14.  Li(XはMn、Fe、CoおよびNiからなる群から選択される少なくとも1種であり、YはMg、Al、Ti、Ga、Cu、V、Nb、Zr、Ce、InおよびZnからなる群から選択される少なくとも1種であり、a~gは、0.001≦a≦1.5、0.7≦b≦1.3、0≦c≦0.4、0.7≦b+c≦1.3、0.7≦d≦1.3、3.0≦e≦5.0、0.002≦f≦2.0、0.002≦g≦2.0の関係を満たす)で表されることを特徴とする窒化リン酸リチウム化合物。 Li a X b Y c P d O e F f N g (X is at least one selected from the group consisting of Mn, Fe, Co and Ni, Y is Mg, Al, Ti, Ga, Cu, V , Nb, Zr, Ce, In and Zn, and a to g are 0.001 ≦ a ≦ 1.5, 0.7 ≦ b ≦ 1.3, 0 ≦ c ≦ 0.4, 0.7 ≦ b + c ≦ 1.3, 0.7 ≦ d ≦ 1.3, 3.0 ≦ e ≦ 5.0, 0.002 ≦ f ≦ 2.0, 0.002 ≦ g ≦ 2.0 is satisfied).
  15.  粒子状であることを特徴とする請求の範囲第12項から第14項までのいずれかに記載の窒化リン酸リチウム化合物。 15. The lithium nitride lithium phosphate compound according to any one of claims 12 to 14, which is in the form of particles.
  16.  平均粒径が100nm~100μmの範囲内であることを特徴とする請求の範囲第15項に記載の窒化リン酸リチウム化合物。 16. The lithium nitride phosphate compound according to claim 15, wherein the average particle size is in the range of 100 nm to 100 μm.
  17.  比表面積が0.1m/g~300m/gの範囲内であることを特徴とする請求の範囲第15項または第16項に記載の窒化リン酸リチウム化合物。 The lithium nitride phosphate compound according to claim 15 or 16, wherein the specific surface area is in the range of 0.1 m 2 / g to 300 m 2 / g.
  18.  請求の範囲第12項に記載の窒化リン酸リチウム化合物を含有することを特徴とする固体電解質層。 A solid electrolyte layer comprising the lithium nitride lithium phosphate compound according to claim 12.
  19.  請求の範囲第13項または第14項に記載の窒化リン酸リチウム化合物を含有することを特徴とする正極活物質層。 A positive electrode active material layer comprising the lithium nitride phosphoric acid compound according to claim 13 or 14.
PCT/JP2009/067230 2008-10-07 2009-10-02 Method for producing lithium phosphorus oxynitride compound WO2010041598A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008260803 2008-10-07
JP2008-260803 2008-10-07
JP2009-089447 2009-04-01
JP2009089447A JP2010111565A (en) 2008-10-07 2009-04-01 Method for producing lithium phosphorus oxynitride compound

Publications (1)

Publication Number Publication Date
WO2010041598A1 true WO2010041598A1 (en) 2010-04-15

Family

ID=42100549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067230 WO2010041598A1 (en) 2008-10-07 2009-10-02 Method for producing lithium phosphorus oxynitride compound

Country Status (2)

Country Link
JP (1) JP2010111565A (en)
WO (1) WO2010041598A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2424013A1 (en) * 2010-08-31 2012-02-29 Samsung SDI Co., Ltd. Cathode active material, method of preparing the same, and cathode and lithium battery including the cathode active material
JP2013216553A (en) * 2012-04-11 2013-10-24 Kobelco Kaken:Kk Li-CONTAINING PHOSPHORIC ACID COMPOUND SINTERED BODY AND SPUTTERING TARGET, AND METHOD FOR MANUFACTURING THE SAME
CN113213440A (en) * 2021-04-28 2021-08-06 浙江工业大学 Corn-rod-shaped phosphorus nitride-like material and preparation method and application thereof
JP2022544886A (en) * 2019-05-16 2022-10-24 フラウンホッファー-ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Wet-Chemically Prepared Polymer-Based Lithium Phosphorus Oxynitrides (LiPONs), Methods of Their Preparation, Their Uses, and Batteries
CN116253570A (en) * 2023-03-20 2023-06-13 超威电源集团有限公司 LiPON target material and preparation method and application of film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6501250B2 (en) * 2015-02-27 2019-04-17 国立大学法人富山大学 Li ion conductive fine particles and manufacturing method thereof, method of manufacturing amorphous LiPON fine particles, manufacturing method of electrolyte layer and electrode layer, lithium ion secondary battery and manufacturing method thereof
JP6872950B2 (en) * 2017-03-30 2021-05-19 古河機械金属株式会社 Li-P-ON-based inorganic solid electrolyte material, how to use Li-P-ON-based inorganic solid electrolyte material, solid electrolyte, solid electrolyte membrane, lithium ion battery and Li-P-ON-based inorganic solid Method of manufacturing electrolyte material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154823A (en) * 2000-11-10 2002-05-28 Toyota Central Res & Dev Lab Inc Manufacturing method of inorganic oxynitride and inorganic oxynitride
JP2005038843A (en) * 2003-06-27 2005-02-10 Matsushita Electric Ind Co Ltd Solid electrolyte and all solid battery using it
JP2005353320A (en) * 2004-06-08 2005-12-22 Matsushita Electric Ind Co Ltd Active material for nonaqueous electrolyte secondary battery, manufacturing method of the same, and nonaqueous electrolyte battery using the same
WO2006120332A2 (en) * 2005-05-06 2006-11-16 Phostech Lithium Inc. Electrode material including a lithium/transition metal complex oxide
WO2008097990A1 (en) * 2007-02-07 2008-08-14 Valence Technology, Inc. Oxynitride-based electrode active materials for secondary electrochemical cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154823A (en) * 2000-11-10 2002-05-28 Toyota Central Res & Dev Lab Inc Manufacturing method of inorganic oxynitride and inorganic oxynitride
JP2005038843A (en) * 2003-06-27 2005-02-10 Matsushita Electric Ind Co Ltd Solid electrolyte and all solid battery using it
JP2005353320A (en) * 2004-06-08 2005-12-22 Matsushita Electric Ind Co Ltd Active material for nonaqueous electrolyte secondary battery, manufacturing method of the same, and nonaqueous electrolyte battery using the same
WO2006120332A2 (en) * 2005-05-06 2006-11-16 Phostech Lithium Inc. Electrode material including a lithium/transition metal complex oxide
WO2008097990A1 (en) * 2007-02-07 2008-08-14 Valence Technology, Inc. Oxynitride-based electrode active materials for secondary electrochemical cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Z. LIU ET AL.: "First-principle investigations of N doping in LiFeP04", SOLID STATE COMMUNICATIONS, vol. 147, no. 11-12, September 2008 (2008-09-01), pages 505 - 509 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2424013A1 (en) * 2010-08-31 2012-02-29 Samsung SDI Co., Ltd. Cathode active material, method of preparing the same, and cathode and lithium battery including the cathode active material
US8932481B2 (en) 2010-08-31 2015-01-13 Samsung Sdi Co., Ltd. Cathode active material, method of preparing the same, and cathode and lithium battery including the cathode active material
JP2013216553A (en) * 2012-04-11 2013-10-24 Kobelco Kaken:Kk Li-CONTAINING PHOSPHORIC ACID COMPOUND SINTERED BODY AND SPUTTERING TARGET, AND METHOD FOR MANUFACTURING THE SAME
EP2837610A1 (en) * 2012-04-11 2015-02-18 Kobelco Research Institute, Inc. Li-CONTAINING PHOSPHORIC-ACID COMPOUND SINTERED BODY AND SPUTTERING TARGET, AND METHOD FOR MANUFACTURING SAID LI-CONTAINING PHOSPHORIC-ACID COMPOUND SINTERED BODY
US9892891B2 (en) 2012-04-11 2018-02-13 Kobelco Research Institute, Inc. Li-containing phosphoric-acid compound sintered body and sputtering target, and method for manufacturing said Li-containing phosphoric-acid compound sintered body
JP2022544886A (en) * 2019-05-16 2022-10-24 フラウンホッファー-ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Wet-Chemically Prepared Polymer-Based Lithium Phosphorus Oxynitrides (LiPONs), Methods of Their Preparation, Their Uses, and Batteries
JP7358703B2 (en) 2019-05-16 2023-10-11 フラウンホッファー-ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Wet chemically prepared polymeric lithium phosphorus oxynitride (LiPON), its preparation method, its use, and batteries
CN113213440A (en) * 2021-04-28 2021-08-06 浙江工业大学 Corn-rod-shaped phosphorus nitride-like material and preparation method and application thereof
CN113213440B (en) * 2021-04-28 2022-03-08 浙江工业大学 Corn-rod-shaped phosphorus nitride-like material and preparation method and application thereof
CN116253570A (en) * 2023-03-20 2023-06-13 超威电源集团有限公司 LiPON target material and preparation method and application of film

Also Published As

Publication number Publication date
JP2010111565A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5660210B2 (en) Solid electrolyte material, solid battery, and method for producing solid electrolyte material
JP5110565B2 (en) Lithium secondary battery, method for producing positive electrode active material coating particles, and method for producing lithium secondary battery
JP6252524B2 (en) Method for producing positive electrode active material for solid state battery
JP5479096B2 (en) Method for producing lithium metal phosphate
JP5552360B2 (en) Method for producing composite positive electrode active material, method for producing all-solid battery, and composite positive electrode active material
US7824802B2 (en) Method of preparing a composite cathode active material for rechargeable electrochemical cell
US20130040193A1 (en) Composite positive electrode active material, all solid-state battery, and methods for manufacture thereof
WO2012005296A1 (en) Solid electrolyte material and lithium battery
WO2013084352A1 (en) Positive electrode active material, positive electrode active material layer, all-solid-state battery, and method for producing positive electrode active material
WO2013176067A1 (en) Positive electrode active material for non-aqueous secondary batteries
WO2010041598A1 (en) Method for producing lithium phosphorus oxynitride compound
JP2010095432A (en) Multi-element phosphate type lithium compound particle having olivine structure, method for producing the same and lithium secondary battery using the same for positive electrode material
JP2015011901A (en) Sulfide solid electrolyte material, sulfide glass, lithium solid battery and method for producing sulfide solid electrolyte material
US20100297505A1 (en) Method of producing nitrided li-ti compound oxide, nitrided li-ti compound oxide, and lithium-ion battery
JP5912550B2 (en) Electrode material, electrode and battery using the same
JP2008103204A (en) Cathode active material and secondary battery using it
WO2010104137A1 (en) Process for producing lithium borate compound
JP2011181452A (en) Manufacturing method of lithium ion battery positive electrode active material, and electrode for lithium ion battery, and lithium ion battery
JP2011001256A (en) Method for producing nitrided lithium-transition metal compound oxide, nitrided lithium-transition metal compound oxide and lithium battery
JP5966992B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2016143527A (en) Method for producing coated lithium-nickel complex oxide particle
JP6077205B2 (en) Electrode material and manufacturing method thereof
JP6070222B2 (en) Non-aqueous secondary battery having positive electrode for non-aqueous secondary battery and positive electrode active material for non-aqueous secondary battery using the positive-electrode active material
JP2020167151A (en) Sulfide solid electrolyte, sulfide solid electrolyte precursor, all-solid-state battery and method for producing sulfide solid electrolyte
JP2017033858A (en) Solid electrolyte material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819133

Country of ref document: EP

Kind code of ref document: A1