WO2010041295A1 - Radio relay device and reproduction method in relay station - Google Patents

Radio relay device and reproduction method in relay station Download PDF

Info

Publication number
WO2010041295A1
WO2010041295A1 PCT/JP2008/002844 JP2008002844W WO2010041295A1 WO 2010041295 A1 WO2010041295 A1 WO 2010041295A1 JP 2008002844 W JP2008002844 W JP 2008002844W WO 2010041295 A1 WO2010041295 A1 WO 2010041295A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
error
radio signal
packet
relay
Prior art date
Application number
PCT/JP2008/002844
Other languages
French (fr)
Japanese (ja)
Inventor
大渕一央
河▲崎▼義博
田島喜晴
太田好明
田中良紀
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/002844 priority Critical patent/WO2010041295A1/en
Publication of WO2010041295A1 publication Critical patent/WO2010041295A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1657Implicit acknowledgement of correct or incorrect reception, e.g. with a moving window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays

Definitions

  • the present invention relates to an apparatus for relaying a radio signal and a retransmission method in a relay station.
  • the present invention can also be applied to, for example, a wireless packet relay system.
  • a wireless packet relay system that transfers a packet transmitted from a transmitting station to a receiving station via a relay station is known.
  • the packet a transmitted from the base station (transmitting station) 1 is transferred to the terminal device (receiving station) 3 a via the relay station 2.
  • the base station 1 can transmit a packet to the terminal device 3a located outside the cell range.
  • the terminal device 3b Since the terminal device 3b is located in the cell range, the terminal device 3b receives the direct wave transmitted from the base station 1 and the relay wave relayed by the relay station 2. In this case, the terminal device 3b can improve the reception quality of the packet b by performing diversity reception of the direct wave signal and the relay wave signal.
  • the relay station As the relay method of the wireless packet relay system, the AF (Amplitude and Forward) method and the DF (Decoded and Forward) method have been proposed.
  • the relay station amplifies the signal received from the transmission station as necessary and transfers the signal to the reception station without demodulating the signal transmitted from the transmission station. Therefore, the AF method has a small delay at the relay station, but the noise component is also amplified, so that the reception quality may be deteriorated.
  • the relay station demodulates / decodes the signal transmitted from the transmitting station and then transfers it to the receiving station. Therefore, the reception quality is improved in the DF method, but the delay in the relay station becomes large. Furthermore, the DF method requires more radio resources than the AF method.
  • Non-Patent Document 1 A time chart of the method proposed in Non-Patent Document 1 is shown in FIG.
  • the relay station transfers the packet to the destination station by the AF method (non-regenerative relay).
  • the relay station demodulates the radio packet and stores it in the memory.
  • the destination station detects an error, it returns a NACK message.
  • the relay station reproduces the packet from the data stored in the memory and transmits it to the destination station. That is, the relay station retransmits the packet by the DF method (regenerative relay).
  • the packet is first transferred by the AF method. For this reason, when there is no error, the packet is transferred without delay. Further, when an error occurs, high-quality communication is realized by retransmitting the packet by the DF method.
  • Patent Documents 1 and 2 A Study on Wireless Packet Transfer Method in Cooperative Transmission, 2007 IEICE Communication Society Conference, 445 pages, B-5-123 Japanese Patent Laid-Open No. 2001-156692 JP 2005-143006 A
  • an object of the present invention is to improve a delay time related to retransmission.
  • retransmission is performed between the relay station and the receiving station.
  • the relay station receives a radio signal from the transmission station and transmits a radio signal to the reception station based on the received radio signal, thereby performing relay processing of transmission data from the transmission station to the reception station.
  • the disclosed retransmission method performs a first transfer process to the receiving station for the wireless signal without demodulating the wireless signal received from the transmitting station, and based on the quality of the received wireless signal, A second transfer process is executed based on data obtained by demodulating or error correcting decoding the radio signal.
  • the receiving station performs reception processing of the radio signal transmitted by the first transfer process and the radio signal transmitted by the second transfer process.
  • the relay station executes the second transfer process based on the quality of the radio signal received from the transmitting station. That is, the relay station can start retransmission control without waiting for a response from the receiving station. Thereby, the delay time related to retransmission in the wireless relay system is improved.
  • the radio relay device includes a transfer unit that transfers a radio signal transmitted from the transmission station to the reception station without demodulating, a measurement unit that measures reception quality of the radio signal, and the measurement unit.
  • a retransmission unit that transmits reproduction data obtained by demodulating and decoding the radio signal to the receiving station when the measured reception quality is lower than a threshold level;
  • Non-Patent Document 1 It is a figure which shows the structure of a transmission station. It is a figure which shows the structure of a relay station. It is a figure which shows the structure of a receiving station. It is a figure explaining a wireless packet relay method (case 1). It is a figure explaining a wireless packet relay method (case 2). It is a figure explaining a wireless packet relay method (case 3). It is a figure explaining a wireless packet relay method (case 4). It is a figure which compares the delay time of AF system, DF system, and the system of embodiment. It is a flowchart which shows operation
  • FIG. 3 is a diagram illustrating a configuration of the transmission station according to the embodiment.
  • the transmitting station 10 corresponds to the base station 1 in the example shown in FIG.
  • the terminal devices 3a and 3b can also operate as transmitting stations.
  • the error detection encoding unit 11 adds an error detection code to the given packet data.
  • the packet data includes, for example, header data and payload data, and is transmitted by a wireless packet.
  • the error detection code is not particularly limited.
  • a CRC (Cyclic Redundancy Check) code can be used.
  • the error correction encoding unit 12 adds an error correction code to the packet data output from the error detection encoding unit 11.
  • the error correction code is not particularly limited, but for example, a turbo code can be used.
  • the error correction code may be, for example, an FEC, BCH code, Huffman code, Hamming code, or the like.
  • the buffer 13 stores the packet data encoded by the error detection encoding unit 11 and the error correction encoding unit 12.
  • the modulation unit 14 generates modulation data based on the packet data stored in the buffer 13.
  • the wireless transmission unit 15 transmits modulated data. That is, a radio signal for transmitting packet data is transmitted.
  • the radio receiving unit 16 receives a radio signal from the relay station 20.
  • the demodulator 17 demodulates the received radio signal.
  • the ACK / NACK determination unit 18 analyzes data obtained by demodulation and detects an acknowledgment (ACK) message or a negative acknowledgment (NACK: Negative ACK) message. When an ACK message is detected, the packet data stored in the buffer 13 is discarded. On the other hand, when the NACK message is detected, the packet data stored in the buffer 13 is retransmitted.
  • FIG. 4 is a diagram illustrating a configuration of the relay station according to the embodiment.
  • the relay station 20 corresponds to the base station 2 in the example shown in FIG.
  • the wireless reception unit 21 receives a wireless signal from the transmission station 10.
  • the demodulator 22 demodulates the radio signal received from the transmission station 10.
  • the synthesizer 23 synthesizes the packet data obtained by the demodulator 22 and the packet data stored in the buffer 24.
  • the buffer 24 stores the combined packet data obtained by the combining unit 23. Note that the buffer 24 is cleared at the first transmission. Therefore, the combining unit 23 performs a packet data combining operation when a packet is retransmitted.
  • the error correction decoding unit 25 performs error correction on the packet data output from the synthesis unit 23. Thereby, when there is an error, the error is corrected. However, the number of correctable errors is determined by the coding rate and the like. In other words, when there are many errors, it may not be possible to correct all the errors.
  • the error detection unit 26 detects an error in the packet data output from the error correction decoding unit 25. That is, the error correction decoding unit 25 detects the presence or absence of an error that could not be corrected.
  • the ACK / NACK generation unit 27 generates an ACK message if no error is detected by the error detection unit 26, and generates an NACK message when an error is detected.
  • the modulation unit 28 generates a modulated signal based on the generated ACK message data or NACK message data.
  • the wireless transmission unit 29 transmits the generated modulated signal (ACK message or NACK message) to the transmission station 10.
  • the signal received by the wireless receiver 21 is input to the demodulator 22 and guided to the wireless transmitter 35 without being demodulated. At this time, the wireless transmission unit 35 amplifies the signal and transmits it to the receiving station 40.
  • the quality measuring unit 30 measures the quality of the radio signal transmitted from the transmitting station 10.
  • the quality measurement unit 30 is not particularly limited, but detects, for example, the reception power of a radio signal, a signal-to-interference ratio (SIR), and the number of error corrections.
  • the received power and SIR are calculated using, for example, digital data representing the received signal.
  • the number of error corrections is the number of errors corrected by the error correction decoding unit 25.
  • the quality measurement unit 30 may detect the number of repetitions in turbo decoding. Then, the quality measurement unit 30 compares the measured quality level with a predetermined threshold level.
  • the functions of the error detection encoding unit 31, the error detection encoding unit 32, the buffer 33, and the modulation unit 34 are basically the error detection encoding unit 11, the error detection encoding unit 12, and the buffer 13 provided in the transmitting station 10. This is the same as the modulation unit 14. However, the packet data output from the error correction decoding unit 25 is input to the error detection encoding unit 31.
  • the buffer 33 stores reproduction packet data. In this embodiment, the reproduction packet data is obtained by demodulating and decoding (including error correction) a radio signal transmitted from the transmission station 10 and executing encoding again.
  • the packet data stored in the buffer 33 is transmitted to the receiving station 40. That is, retransmission control is executed.
  • the reliability is high. That is, highly reliable packet data is transmitted at the time of retransmission.
  • the functions of the radio reception unit 36, the demodulation unit 37, and the ACK / NACK determination unit 38 are basically the same as those of the radio reception unit 16, the demodulation unit 17, and the ACK / NACK determination unit 18 included in the transmission station 10.
  • the wireless receiving unit 36 receives a wireless signal from the receiving station 30. When a NACK message from the receiving station 40 is detected, the packet data stored in the buffer 33 is transmitted to the receiving station 40.
  • FIG. 5 is a diagram illustrating a configuration of the receiving station according to the embodiment.
  • the receiving station 40 corresponds to the terminal devices 3a and 3b in the example illustrated in FIG.
  • the base station 1 can also operate as a receiving station.
  • the functions of the radio reception unit 41, demodulation unit 42, synthesis unit 43, buffer 44, error correction decoding unit 45, error detection unit 46, ACK / NACK generation unit 47, modulation unit 48, and radio transmission unit 49 are basically the same. Includes a radio reception unit 21, a demodulation unit 22, a synthesis unit 23, a buffer 24, an error correction decoding unit 25, an error detection unit 26, an ACK / NACK generation unit 27, a modulation unit 28, and a radio transmission unit 29 included in the relay station 20. Is the same. That is, the receiving station 40 regenerates the packet data by demodulating the radio signal transmitted from the relay station 20 and performing error correction. Further, an ACK / NACK message is generated according to the presence / absence of an error and returned to the relay station 20.
  • the base station 1 shown in FIG. 1 is a transmitting station, and the terminal device 3 (3a or 3b) is a receiving station. Then, the base station 1 transmits packet data # 0 to the terminal device 3.
  • the packet transmitted from the base station 1 is received by the relay station 2.
  • the receiving station 2 transfers the packet transmitted from the base station 1 to the terminal device 3 by the AF method. That is, the radio signal transmitted from the base station 1 is simply amplified and transferred to the terminal device 3 without being demodulated / decoded in the relay station 2.
  • the terminal device 3 receives a radio signal from the relay station 2.
  • the terminal device 3 demodulates the received radio signal, performs error correction, and detects an error. These processes are executed by the demodulator 42, the error correction decoder 45, and the error detector 46.
  • no error is detected.
  • “No error is detected” includes a state in which all errors are corrected using an error correction code.
  • the terminal device 3 generates an ACK message and returns it to the relay station 2. This ACK message is generated by the ACK / NACK generator 47.
  • the relay station 2 receives this ACK message, the communication between the relay station 2 and the terminal device 3 ends.
  • the relay station 2 transfers the signal received from the base station 1 to the terminal device 3, demodulates the received signal, executes error correction, and detects an error. Thereby, packet data is reproduced. These processes are executed by the demodulator 22, the error correction decoder 25, and the error detector 26. Here, in case 1, no error is detected. Then, the reproduced packet data is encoded again by the error detection encoding unit 31 and the error correction encoding unit 32 and stored in the buffer 33. Further, the relay station 2 generates an ACK message and returns it to the base station 1. The ACK message is generated by the ACK / NACK generator 27. When the base station 1 receives this ACK message, the communication between the base station 1 and the relay station 2 ends.
  • the relay station 2 measures the quality of the radio signal received from the base station 1.
  • the quality of the radio signal is measured by the quality measuring unit 30.
  • the quality of the radio signal is better than the threshold level. In this case, the relay station 2 does not execute retransmission control based on reception quality.
  • the terminal device 3 when the terminal device 3 is located within the cell range of the base station 1, the terminal device 3 receives radio signals from both the base station 1 and the relay station 2. At this time, the signal arriving at the terminal device 3 via the relay station 2 is delayed with respect to the signal directly propagated from the base station 1 to the terminal device 3.
  • the AF method has a small delay. Therefore, for example, in a communication system using OFDM, if this delay is smaller than the guard interval, the terminal device 3 can demodulate the signal by diversity reception (or RAKE combining). In this case, improvement in reception quality is expected.
  • a packet transmitted to the terminal device 3 is stored in the buffer 13 of the base station 1.
  • the buffer 13 is cleared when the ACK / NACK determination unit 18 detects an ACK message.
  • a reproduction packet is stored in the buffer 33 of the relay station 2.
  • the buffer 33 is cleared when the ACK / NACK determination unit 38 detects an ACK message.
  • the first transmitted packet is relayed by the AF method. Therefore, virtually no delay occurs.
  • the packet transmitted from the base station 1 is transferred to the terminal device 3 by the relay station 2 as in the case 1.
  • the relay station 2 transfers the packet by the AF method. Even in case 2, the relay station 2 does not detect an error in the received packet. Therefore, the reproduction packet is stored in the buffer 33 and an ACK message is returned to the base station 1. Also, the quality of the radio signal is better than the threshold level. Therefore, the relay station 2 does not execute retransmission control based on reception quality.
  • the terminal device 3 receives a radio signal from the relay station 2. However, in case 2, since the communication environment between the relay station 2 and the terminal device 3 is poor, an error in the radio signal is detected. In this example, “error is detected” means that all errors cannot be corrected even if an error correction code is used. In this case, the terminal device 3 generates a NACK message and returns it to the relay station 2. This NACK message is generated by the ACK / NACK generation unit 47.
  • the relay station 2 When the relay station 2 receives the NACK message from the terminal device 3, the relay station 2 transmits the reproduction packet stored in the buffer 33 to the terminal device 3. That is, the packet is retransmitted from the relay station 2 to the terminal device 3 by the DF method. At this time, it takes a three-slot period from the terminal device 3 receiving the packet until the NACK message is returned, and a three-slot time from the relay station 3 receiving the NACK message to retransmitting the packet. I need it. That is, in case 2, 6 slot periods are required for retransmission processing.
  • the terminal device 3 stores the first received packet in the buffer 44.
  • the buffer 44 is cleared if no error is detected in the received packet. However, in case 2, an error in the received packet is detected. Therefore, the terminal device 3 returns a NACK message and waits for a retransmission packet without clearing the buffer 44.
  • the combining unit 43 combines the packet data stored in the buffer 44 and the retransmitted packet data. The packet data obtained by this combination is decoded and the transmission data is reproduced.
  • the packet transmitted from the base station 1 is transferred to the terminal device 3 by the relay station 2 as in the cases 1 and 2.
  • the relay station 2 transfers the packet by the AF method. Even in case 3, the relay station 2 does not detect an error in the received packet. Therefore, the reproduction packet is stored in the buffer 33 and an ACK message is returned to the base station 1.
  • the relay station 2 predicts that an error will be detected in the terminal device 3, and executes retransmission control. That is, the relay station 2 executes retransmission control without waiting for a NACK message from the terminal device 3. Specifically, when the quality measurement unit 30 determines that the quality of the received radio signal is worse than the threshold level, the reproduction packet stored in the buffer 33 is transmitted to the terminal device 3. That is, packet retransmission is performed by the DF method.
  • the terminal device 3 receives the first packet and the retransmission packet.
  • the error of the first packet is detected.
  • the terminal device 3 generates a NACK message and sends it back to the relay station 2 in order to request packet retransmission.
  • the relay station 2 performs packet retransmission regardless of the presence or absence of the NACK message. Therefore, the terminal device 3 can receive a retransmission packet earlier than when a retransmission is requested with a NACK message.
  • the terminal device 3 receives a retransmission packet after a three-slot period from when the first packet is received. This shortens the delay time related to retransmission.
  • the relay station 2 receives the NACK message from the terminal device 3. Therefore, normally, the relay station 2 executes retransmission control according to the NACK message. However, in case 3, the relay station 2 performs packet retransmission (predictive retransmission) based on the reception quality before receiving the NACK message. Therefore, in this case, the relay station 2 does not perform retransmission control according to the NACK message.
  • the NACK message transmitted from the terminal device 3 may arrive at the base station 1.
  • the base station 1 receives this NACK message, it performs retransmission control. In this case, retransmission packets are duplicated. Therefore, the relay station 2 transmits an ACK message to the base station 1 at a timing when the terminal device 3 transmits a NACK message. Then, in the base station 1, the radio wave of the ACK message from the relay station 2 is stronger than the radio wave of the NACK message from the terminal device 3, and thus the base station 1 ends the process according to the ACK message. .
  • the terminal device 3 combines the first packet and the retransmission packet to reproduce the transmission data. If the terminal device 3 does not detect an error in the first packet, the terminal device 3 returns an ACK message to the relay station 2. However, in case 3, the relay station 2 performs packet retransmission regardless of the error detection result in the terminal device 3. That is, the terminal device 3 receives an unnecessary retransmission packet. In this case, the terminal device 3 discards the received retransmission packet.
  • the radio packet relay method of the embodiment when the reception quality at the relay station 2 is poor, retransmission control is executed without waiting for an ACK / NACK message from the terminal device 3. Therefore, the delay time related to retransmission is shortened.
  • the packet transmitted from the base station 1 is transferred to the terminal device 3 by the relay station 2 as in the cases 1 to 3.
  • the relay station 2 since the communication environment between the base station 1 and the relay station 2 is poor, the relay station 2 detects an error in the received packet. Therefore, a NACK message is returned from the relay station 2 to the base station 1. At this time, the relay station 2 does not store the reproduction packet in the buffer 33.
  • an error in the received packet is detected also in the terminal device 3, and a NACK message is returned from the terminal device 3 to the relay station 2.
  • the base station 1 When receiving the NACK message, the base station 1 retransmits the packet. That is, retransmission control by the base station 1 is executed.
  • FIG. 10 is a diagram comparing the delay times of the AF method, the DF method, and the embodiment.
  • the horizontal axis of the graph shown in FIG. 10 indicates the probability that a packet error is detected at the receiving station when relayed by the AF method.
  • the vertical axis represents the delay time required for relaying in units of time slots shown in FIGS.
  • Packets transferred by the DF method have zero error rate at the receiving station.
  • the error rate is zero at the receiving station.
  • the AF method is relayed.
  • the delay is zero (4)
  • the time required for packet processing at the relay station and the receiving station is 3 slot period (5)
  • the prediction accuracy is 100% in the system of the embodiment
  • the delay time is constant under the condition (1).
  • the delay time of the DF method is 3 slot periods. That is, in the DF method, the delay time is not reduced even when the communication environment is good.
  • the AF method when the error rate is low, the AF method becomes dominant, so the delay time is small. Also, as the error rate increases, the frequency of packet retransmission increases accordingly. However, in the method of the embodiment, the time required for packet retransmission is a three-slot period as shown in FIG. Therefore, even if the error rate increases, the delay time does not increase so much.
  • Non-Patent Document 1 As shown in FIG. 2, when an error is detected at the destination station, a NACK message is returned, and retransmission control is executed according to the NACK message. Therefore, the delay time of the method described in Non-Patent Document 1 is the same as that of the AF method under the above conditions (1) to (3).
  • FIG. 11 is a flowchart showing the operation of the transmitting station (base station 1, transmitting station 10).
  • step S1 input of packet data to be transmitted is awaited.
  • packet data to be transmitted is input, the packet is transmitted to the relay station in step S2.
  • the transmitted packet is stored in the buffer 13.
  • step S3 reception of an ACK / NACK message is awaited.
  • step S4 it is checked whether the received message is ACK or NACK. If an ACK message is received, the process returns to step S1 to wait for input of the next packet data.
  • the NACK message is received, the packet stored in the buffer 13 is transmitted to the relay station in step S5. That is, packet retransmission is executed.
  • FIG. 12 is a flowchart showing the operation of the relay station (relay stations 2 and 20).
  • step S11 it waits for a packet from the transmitting station.
  • step S12 the packet received from the transmitting station is transferred to the receiving station without being demodulated / decoded. That is, the packet is relayed by the AF method.
  • step S13 the received signal is demodulated / decoded.
  • step S14 the quality of the received radio signal is measured.
  • step S15 it is checked whether the received packet is a retransmission packet.
  • step S18 it is checked whether there is an error in the received packet. If an error is detected, the received packet is stored in the buffer 24 in step S19. In step S20, a NACK message is returned to the transmitting station.
  • step S18 If no error is detected in step S18, the packet data after error correction is encoded again in step S21 and stored in the buffer 33. That is, the reproduction packet is stored in the buffer 33.
  • step S22 an ACK message is returned to the transmitting station.
  • step S23 it is checked whether an ACK message corresponding to the packet transferred in step S12 has already been received from the receiving station.
  • step S24 it is checked in step S24 whether the measured reception quality is worse than the threshold level.
  • the reception quality is measured in step S14 in this flowchart. If the reception quality is better than the threshold level, the process ends and the process returns to step S11. On the other hand, if the reception quality is worse than the threshold level, the reproduction packet stored in the buffer 33 is transmitted to the receiving station in step S25. That is, the packet is retransmitted by the DF method.
  • step S15 When the retransmission packet is received from the transmitting station (step S15: Yes), it is checked in step S16 whether the corresponding packet transmitted earlier by the transmitting station is correctly received. If the previous packet has been correctly received, the process proceeds to step S22. On the other hand, if the previous packet has not been received correctly, the previous packet stored in the buffer 24 and the retransmission packet are combined in step S17. When the process of this flowchart is executed for the previous packet, the previous packet is stored in the buffer 24 in step S19.
  • step S18 when an error of the received packet is not detected (step S18: no error) and the reception quality is worse than the threshold level (step S24: Yes), packet retransmission is executed in step S25. Is done. This packet retransmission is executed regardless of the ACK / NACK message from the receiving station as shown in the flowchart of FIG.
  • FIG. 13 is a flowchart showing the operation of the relay station corresponding to the ACK / NACK message. The process of this flowchart is executed in parallel with the process shown in FIG.
  • step S31 an ACK / NACK message returned from the receiving station is awaited.
  • a message is received from the receiving station, it is checked in step S32 whether the message is ACK or NACK. If an ACK message is received, the process ends and the process returns to step S31. On the other hand, if a NACK message is received, the process proceeds to step S33.
  • step S33 it is checked whether the received message is a NACK message corresponding to the packet stored in the buffer 33. When the corresponding NACK message is received, the packet stored in the buffer 33 is transmitted to the receiving station in step S34. On the other hand, when another NACK message is received, the process returns to step S31.
  • Step 1 After the packet is transferred to the receiving station by the AF method in Step S12, it is determined that there is no error in Step S18. Further, in step S24, it is determined that “reception quality is good”. Therefore, the retransmission control in step S25 is not executed. Furthermore, since the ACK message is returned from the receiving station, the retransmission control in step S34 is not executed.
  • step S12 As in case 1, after the packet is transferred to the receiving station by the AF method in step S12, it is determined that there is no error in step S18. Therefore, the reproduction packet is stored in the buffer 33 in step S21. However, since it is determined in step S24 that "reception quality is bad", retransmission control in step S25 is executed. That is, the reproduction packet stored in the buffer 33 is transmitted to the receiving station.
  • FIG. 14 is a flowchart showing the operation of the receiving station (terminal devices 3, 3a, 3b, receiving station 40).
  • the operation of the receiving station is basically the same as that of the relay station (steps S11 to S22 shown in FIG. 12). However, the receiving station does not execute the transfer process in step S12 and the quality measurement in step S14.
  • the terminal device may have a function of measuring the quality of the radio signal.
  • step S43 “No” is determined in step S43, “No error” is determined in step S46, and then an ACK message is returned to the relay station in step S50.
  • step S46 it is determined in step S46 that there is an error for the first packet, and a NACK message is returned to the relay station in step S48. Thereafter, in case 2, the relay station retransmits the packet according to the NACK message. In case 3, the relay station retransmits the packet autonomously (that is, regardless of the NACK message). Further, in case 4, the transmitting station retransmits the packet. In any case, in step S45, the receiving station combines the first packet received earlier and the retransmission packet.
  • the reception quality measured at the relay station will be described.
  • the reception quality is not particularly limited. For example, the following parameters are measured.
  • Error correction number The demodulated data obtained by the demodulator 22 is held in the relay station. Further, reproduced data obtained by performing error correction on the demodulated data and further executing re-encoding is held. Then, the number of error corrections is detected by comparing the demodulated data and the reproduced data for each bit. The smaller the number of error corrections, the higher the quality.
  • turbo decoding the same operation is repeatedly executed while monitoring the presence of errors. Then, when the error disappears, the calculation ends. Therefore, the number of repetitions executed until there is no error represents the reception quality. That is, if the number of repetitions is small, the reception quality is good. In the turbo code, the number of repetitions executed until the number of errors becomes smaller than a predetermined value may be counted.
  • the relay station transfers the radio signal to the terminal device by the AF method, and demodulates the radio signal to count the number of error corrections. At this time, if the number of error corrections exceeds 10 bits, the relay station transmits a reproduction packet to the terminal device without waiting for an ACK / NACK message from the terminal device.
  • the relay station waits for an ACK / NACK message from the terminal device.
  • the relay station receives the NACK message, the relay station transmits a retransmission packet to the terminal device simultaneously with the retransmission timing of the base station.
  • the relay station does not perform retransmission control.
  • the measured quality is compared with the threshold level.
  • This threshold level is a value for predicting “whether or not an error that cannot be corrected at the receiving station occurs when the packet is transferred to the receiving station by the AF method”. That is, “if the quality is better than this threshold level, even if the packet is transferred to the receiving station by the AF method, no error occurs at the receiving station, or all errors can be corrected at the receiving station” or “this If the quality is lower than the threshold level, the threshold level is determined based on the criterion that if the packet is transferred to the receiving station by the AF method, an error that cannot be corrected occurs at the receiving station. Such threshold levels can be determined based on simulations or actual measurements.
  • the threshold level may be determined in consideration of the packet coding rate. That is, when the coding rate is small, the number of errors that can be corrected at the receiving station is large, so that the threshold level can be lowered. On the other hand, when the coding rate is large, the threshold level may be increased because the number of errors that can be corrected at the receiving station is small.
  • FIG. 15 is a diagram for explaining the configuration and operation of the error correction encoders 12 and 32.
  • a turbo code is used as an error correction code. Note that the configurations and operations of the error correction coding units provided in the transmitting station and the relay station are basically the same.
  • the error correction encoding unit includes an interleaver 51, encoders 52 and 53, a puncturing unit 54, and a multiplexing unit (MUX) 55, and encodes from an input information sequence X.
  • Data Z is generated.
  • the interleaver 51 performs an interleaving process on the information sequence X to generate a data sequence Y. In the interleaving process, bit rearrangement is performed according to a predetermined algorithm.
  • the encoder 52 encodes the information sequence X to generate a parity sequence P (1)
  • the encoder 53 encodes the data sequence Y to generate a parity sequence P (2).
  • the puncturing unit 54 generates a parity sequence P (3) by selecting one or more bits from the parity sequences P (1) and P (2).
  • a parity sequence P (3) by selecting one or more bits from the parity sequences P (1) and P (2).
  • 500 bits are selected from the parity sequence P (1)
  • 500 bits are selected from the parity sequence P (2).
  • multiplexing section 55 multiplexes information sequence X and parity sequence P (3) to generate encoded data Z.
  • the error correction encoding unit 12 included in the transmission station and the error correction encoding unit 32 included in the relay station may generate the encoded data Z with the same puncturing pattern, or with different puncturing patterns.
  • the encoded data Z may be generated.
  • the error correction encoding unit 12 included in the transmission station may include the odd number bits of the parity sequence P (1) and the P (2). The even bit is selected, and the error correction coding unit 32 included in the relay station selects the even bit of the parity sequence P (1) and the odd bit of P (2).
  • the receiving station can use different error correction codes. Therefore, error correction capability is improved.
  • the relay station may retransmit a part of the received signal. For example, as shown in FIG. 16, when the SIR is deteriorated below the threshold level in a partial area of the received packet signal, only the data in that area may be retransmitted.

Abstract

A relay station (2) transfers to a reception station (3), a packet transmitted from a transmission station (1). The relay station (2) stores in a buffer, a reproduction packet obtained by demodulating and decoding the received packet data. The relay station (2) measures a quality of the received packet. If the received packet has a quality lower than a threshold value level, the relay station (2) transmits the reproduction packet to a reception station (3) even if a NACK message is not received from the reception station (3).

Description

無線中継装置および中継局における再送方法Radio relay apparatus and retransmission method in relay station
 本発明は、無線信号を中継する装置および中継局における再送方法に係わる。本発明は、例えば、無線パケット中継システムに適用することもできる。 The present invention relates to an apparatus for relaying a radio signal and a retransmission method in a relay station. The present invention can also be applied to, for example, a wireless packet relay system.
 送信局から送信されたパケットを中継局を介して受信局へ転送する無線パケット中継システクが知られている。図1に示す例では、基地局(送信局)1から送信されたパケットaは、中継局2を介して端末装置(受信局)3aへ転送されている。このように、中継局2を設けることにより、基地局1は、セル範囲の外に位置する端末装置3aへパケットを送信することができる。 A wireless packet relay system that transfers a packet transmitted from a transmitting station to a receiving station via a relay station is known. In the example shown in FIG. 1, the packet a transmitted from the base station (transmitting station) 1 is transferred to the terminal device (receiving station) 3 a via the relay station 2. Thus, by providing the relay station 2, the base station 1 can transmit a packet to the terminal device 3a located outside the cell range.
 端末装置3bは、セル範囲の中に位置しているので、基地局1から送信される直接波および中継局2により中継される中継波を受信する。この場合、端末装置3bは、直接波信号および中継波信号をダイバーシチ受信することにより、パケットbについての受信品質を向上することができる。 Since the terminal device 3b is located in the cell range, the terminal device 3b receives the direct wave transmitted from the base station 1 and the relay wave relayed by the relay station 2. In this case, the terminal device 3b can improve the reception quality of the packet b by performing diversity reception of the direct wave signal and the relay wave signal.
 無線パケット中継システムの中継方式としては、AF(Amplitude and Forward)方式およびDF(Decoded and Forward)方式が提案されている。AF方式においては、中継局は、送信局から送信された信号を復調することなく、送信局から受信した信号を必要に応じて増幅して受信局へ転送する。したがって、AF方式は、中継局における遅延は小さいが、雑音成分も増幅されてしまうので、受信品質が劣化することがある。一方、DF方式では、中継局は、送信局から送信された信号をいったん復調/複号した後に受信局へ転送する。よって、DF方式は、受信品質が改善されるが、中継局における遅延が大きくなってしまう。さらに、DF方式は、AF方式と比較して、使用すべき無線リソースが多くなる。 As the relay method of the wireless packet relay system, the AF (Amplitude and Forward) method and the DF (Decoded and Forward) method have been proposed. In the AF method, the relay station amplifies the signal received from the transmission station as necessary and transfers the signal to the reception station without demodulating the signal transmitted from the transmission station. Therefore, the AF method has a small delay at the relay station, but the noise component is also amplified, so that the reception quality may be deteriorated. On the other hand, in the DF scheme, the relay station demodulates / decodes the signal transmitted from the transmitting station and then transfers it to the receiving station. Therefore, the reception quality is improved in the DF method, but the delay in the relay station becomes large. Furthermore, the DF method requires more radio resources than the AF method.
 この問題を解決するための方法が非特許文献1において提案されている。非特許文献1で提案されている方法のタイムチャートを図2に示す。この方法おいては、最初のパケット送信時には、中継局はAF方式(非再生中継)でパケットを宛先局へ転送する。このとき、中継局は、無線パケットを復調してメモリに記憶しておく。宛先局は、誤りを検出したときには、NACKメッセージを返送する。そうすると、中継局は、メモリに記憶されているデータからパケットを再生して、宛先局へ送信する。すなわち、中継局は、DF方式(再生中継)でパケットを再送する。 A method for solving this problem is proposed in Non-Patent Document 1. A time chart of the method proposed in Non-Patent Document 1 is shown in FIG. In this method, at the time of the first packet transmission, the relay station transfers the packet to the destination station by the AF method (non-regenerative relay). At this time, the relay station demodulates the radio packet and stores it in the memory. When the destination station detects an error, it returns a NACK message. Then, the relay station reproduces the packet from the data stored in the memory and transmits it to the destination station. That is, the relay station retransmits the packet by the DF method (regenerative relay).
 このように、提案されている方法では、最初はAF方式でパケットが転送される。このため、誤りが無い場合には遅延なしでパケットが転送される。また、誤りが発生した場合には、DF方式でパケットを再送することにより、品質の高い通信が実現される。 Thus, in the proposed method, the packet is first transferred by the AF method. For this reason, when there is no error, the packet is transferred without delay. Further, when an error occurs, high-quality communication is realized by retransmitting the packet by the DF method.
 しかし、提案されている方法では、NACKメッセージに応じて再送制御が開始されるので、パケット再送時の遅延時間が大きい。すなわち、宛先局における誤り検出処理には所定の時間を要する。また、中継局がNACKメッセ-ジを解析して認識するためにも所定の時間を要する。したがって、通信環境が良好でない場合には、再送手順が頻繁に実行され、スループットが大きく低下してしまう。なお、この問題は、パケット通信においてのみ発生するものではなく、無線中継システムにおいて広く発生し得る。 However, in the proposed method, since retransmission control is started in response to a NACK message, the delay time during packet retransmission is large. That is, a predetermined time is required for error detection processing at the destination station. Also, it takes a predetermined time for the relay station to analyze and recognize the NACK message. Therefore, when the communication environment is not good, retransmission procedures are frequently executed, and the throughput is greatly reduced. This problem does not only occur in packet communication, but can occur widely in wireless relay systems.
 なお、関連する技術は、例えば、特許文献1、2に記載されている。
協調伝送における無線パケット転送方法の一検討、2007年電子情報通信学会通信ソサイエティ大会、445ページ、B-5-123 特開2001-156692号公報 特開2005-143006号公報
Related techniques are described in Patent Documents 1 and 2, for example.
A Study on Wireless Packet Transfer Method in Cooperative Transmission, 2007 IEICE Communication Society Conference, 445 pages, B-5-123 Japanese Patent Laid-Open No. 2001-156692 JP 2005-143006 A
 本発明の課題は、1側面では、再送に係わる遅延時間を改善することである。
 第1の案では、再送を中継局と受信局との間で実行する。中継局は、送信局から無線信号を受信し、受信した無線信号に基づいて受信局へ無線信号を送信することで、前記送信局から前記受信局への送信データの中継処理を行う。開示の再送方法は、前記送信局から受信した無線信号を復調せずに、前記無線信号について前記受信局への第1の転送処理を実行し、受信した前記無線信号についての品質に基づいて、前記無線信号を復調または誤り訂正復号して得られるデータに基づいて第2の転送処理を実行する。そして、前記受信局は、前記第1の転送処理により送信された無線信号および前記第2の転送処理により送信された無線信号の受信処理を行う。
In one aspect, an object of the present invention is to improve a delay time related to retransmission.
In the first plan, retransmission is performed between the relay station and the receiving station. The relay station receives a radio signal from the transmission station and transmits a radio signal to the reception station based on the received radio signal, thereby performing relay processing of transmission data from the transmission station to the reception station. The disclosed retransmission method performs a first transfer process to the receiving station for the wireless signal without demodulating the wireless signal received from the transmitting station, and based on the quality of the received wireless signal, A second transfer process is executed based on data obtained by demodulating or error correcting decoding the radio signal. The receiving station performs reception processing of the radio signal transmitted by the first transfer process and the radio signal transmitted by the second transfer process.
 第2の案では、中継局は、送信局から受信した無線信号についての品質に基づいて、第2の転送処理を実行する。すなわち、中継局は、受信局から応答を待つことなく、再送制御を開始することができる。これにより、無線中継システムにおける再送に係わる遅延時間が改善される。 In the second plan, the relay station executes the second transfer process based on the quality of the radio signal received from the transmitting station. That is, the relay station can start retransmission control without waiting for a response from the receiving station. Thereby, the delay time related to retransmission in the wireless relay system is improved.
 第3の案では、無線中継装置は、送信局から送信される無線信号を復調することなく受信局へ転送する転送部と、前記無線信号の受信品質を測定する測定部と、前記測定部により測定された受信品質が閾値レベルよりも低いときに、前記無線信号を復調および復号することで得られる再生データを前記受信局へ送信する再送部、を有する。 In the third plan, the radio relay device includes a transfer unit that transfers a radio signal transmitted from the transmission station to the reception station without demodulating, a measurement unit that measures reception quality of the radio signal, and the measurement unit. A retransmission unit that transmits reproduction data obtained by demodulating and decoding the radio signal to the receiving station when the measured reception quality is lower than a threshold level;
無線パケット中継システムの構成を示す図である。It is a figure which shows the structure of a wireless packet relay system. 非特許文献1で提案されている方法のタイムチャートである。6 is a time chart of the method proposed in Non-Patent Document 1. 送信局の構成を示す図である。It is a figure which shows the structure of a transmission station. 中継局の構成を示す図である。It is a figure which shows the structure of a relay station. 受信局の構成を示す図である。It is a figure which shows the structure of a receiving station. 無線パケット中継方法を説明する図である(ケース1)。It is a figure explaining a wireless packet relay method (case 1). 無線パケット中継方法を説明する図である(ケース2)。It is a figure explaining a wireless packet relay method (case 2). 無線パケット中継方法を説明する図である(ケース3)。It is a figure explaining a wireless packet relay method (case 3). 無線パケット中継方法を説明する図である(ケース4)。It is a figure explaining a wireless packet relay method (case 4). AF方式、DF方式、実施形態の方式の遅延時間を比較する図である。It is a figure which compares the delay time of AF system, DF system, and the system of embodiment. 送信局の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a transmission station. 中継局の動作を示すフローチャート(その1)である。It is a flowchart (the 1) which shows operation | movement of a relay station. 中継局の動作を示すフローチャート(その2)である。It is a flowchart (the 2) which shows operation | movement of a relay station. 受信局の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a receiving station. 誤り訂正符号化部の構成および動作を説明する図である。It is a figure explaining the structure and operation | movement of an error correction encoding part. 部分再送について説明する図である。It is a figure explaining partial resending.
 図3は、実施形態の送信局の構成を示す図である。図3では、パケットデータを送受信する機能が描かれている。なお、送信局10は、図1に示す例においては、基地局1に相当する。ただし、図1において、端末装置3a、3bも送信局として動作することができる。 FIG. 3 is a diagram illustrating a configuration of the transmission station according to the embodiment. In FIG. 3, a function for transmitting and receiving packet data is depicted. The transmitting station 10 corresponds to the base station 1 in the example shown in FIG. However, in FIG. 1, the terminal devices 3a and 3b can also operate as transmitting stations.
 誤り検出符号化部11は、与えられたパケットデータに誤り検出符号を付与する。パケットデータは、例えば、ヘッダデータおよびペイロードデータを含み、無線パケットにより伝送される。誤り検出符号としては、特に限定されるものではないが、たとえば、CRC(Cyclic Redundancy Check)符号を使用することができる。誤り訂正符号化部12は、誤り検出符号化部11から出力されるパケットデータに誤り訂正符号を付与する。誤り訂正符号としては、特に限定されるものではないが、例えば、ターボ符号を使用することができる。誤り訂正符号は、例えば、FEC、BCH符号、ハフマン符号、ハミング符号などであってもよい。バッファ13は、誤り検出符号化部11および誤り訂正符号化部12により符号化されたパケットデータを格納する。変調部14は、バッファ13に格納されているパケットデータに基づいて変調データを生成する。無線送信部15は、変調データを送信する。すなわち、パケットデータを伝送する無線信号が送信される。 The error detection encoding unit 11 adds an error detection code to the given packet data. The packet data includes, for example, header data and payload data, and is transmitted by a wireless packet. The error detection code is not particularly limited. For example, a CRC (Cyclic Redundancy Check) code can be used. The error correction encoding unit 12 adds an error correction code to the packet data output from the error detection encoding unit 11. The error correction code is not particularly limited, but for example, a turbo code can be used. The error correction code may be, for example, an FEC, BCH code, Huffman code, Hamming code, or the like. The buffer 13 stores the packet data encoded by the error detection encoding unit 11 and the error correction encoding unit 12. The modulation unit 14 generates modulation data based on the packet data stored in the buffer 13. The wireless transmission unit 15 transmits modulated data. That is, a radio signal for transmitting packet data is transmitted.
 無線受信部16は、中継局20から無線信号を受信する。復調部17は、受信した無線信号を復調する。ACK/NACK判定部18は、復調により得られたデータを解析し、確認応答(ACK:Acknowledgement)メッセージまたは否定応答(NACK:Negative ACK)メッセージを検出する。ACKメッセージが検出されたときは、バッファ13に格納されているパケットデータは廃棄される。一方、NACKメッセージが検出されたときは、バッファ13に格納されているパケットデータが再送される。 The radio receiving unit 16 receives a radio signal from the relay station 20. The demodulator 17 demodulates the received radio signal. The ACK / NACK determination unit 18 analyzes data obtained by demodulation and detects an acknowledgment (ACK) message or a negative acknowledgment (NACK: Negative ACK) message. When an ACK message is detected, the packet data stored in the buffer 13 is discarded. On the other hand, when the NACK message is detected, the packet data stored in the buffer 13 is retransmitted.
 図4は、実施形態の中継局の構成を示す図である。なお、中継局20は、図1に示す例では、基地局2に相当する。
 無線受信部21は、送信局10から無線信号を受信する。復調部22は、送信局10から受信した無線信号を復調する。合成部23は、復調部22により得られるパケットデータおよびバッファ24に格納されているパケットデータを合成する。バッファ24は、合成部23により得られる合成パケットデータを格納する。なお、最初の送信時には、バッファ24はクリアされている。したがって、合成部23は、パケットの再送時にパケットデータの合成動作を行う。
FIG. 4 is a diagram illustrating a configuration of the relay station according to the embodiment. Note that the relay station 20 corresponds to the base station 2 in the example shown in FIG.
The wireless reception unit 21 receives a wireless signal from the transmission station 10. The demodulator 22 demodulates the radio signal received from the transmission station 10. The synthesizer 23 synthesizes the packet data obtained by the demodulator 22 and the packet data stored in the buffer 24. The buffer 24 stores the combined packet data obtained by the combining unit 23. Note that the buffer 24 is cleared at the first transmission. Therefore, the combining unit 23 performs a packet data combining operation when a packet is retransmitted.
 誤り訂正復号化部25は、合成部23から出力されるパケットデータに対して、誤り訂正を実行する。これにより、誤りがある場合には、その誤りが訂正される。ただし、訂正可能な誤りの数は、符号化率等により決まっている。すなわち、誤りが多い場合には、すべての誤りを訂正できないことがある。誤り検出部26は、誤り訂正復号化部25から出力されるパケットデータの誤りを検出する。すなわち、誤り訂正復号化部25が訂正できなかった誤りの有無を検出する。 The error correction decoding unit 25 performs error correction on the packet data output from the synthesis unit 23. Thereby, when there is an error, the error is corrected. However, the number of correctable errors is determined by the coding rate and the like. In other words, when there are many errors, it may not be possible to correct all the errors. The error detection unit 26 detects an error in the packet data output from the error correction decoding unit 25. That is, the error correction decoding unit 25 detects the presence or absence of an error that could not be corrected.
 ACK/NACK生成部27は、誤り検出部26により誤りが検出されなければACKメッセージを生成し、誤りが検出されたときはNACKメッセージを生成する。変調部28は、生成されたACKメッセージデータまたはNACKメッセージデータに基づいて変調信号を生成する。無線送信部29は、生成された変調信号(ACKメッセージまたはNACKメッセージ)を送信局10へ送信する。 The ACK / NACK generation unit 27 generates an ACK message if no error is detected by the error detection unit 26, and generates an NACK message when an error is detected. The modulation unit 28 generates a modulated signal based on the generated ACK message data or NACK message data. The wireless transmission unit 29 transmits the generated modulated signal (ACK message or NACK message) to the transmission station 10.
 無線受信部21により受信された信号は、復調部22に入力されると共に、復調されることなく無線送信部35へ導かれる。このとき、無線送信部35は、その信号を増幅して受信局40へ送信する。 The signal received by the wireless receiver 21 is input to the demodulator 22 and guided to the wireless transmitter 35 without being demodulated. At this time, the wireless transmission unit 35 amplifies the signal and transmits it to the receiving station 40.
 品質測定部30は、送信局10から送信された無線信号の品質を測定する。このとき、品質測定部30は、特に限定されるものではないが、例えば、無線信号の受信電力、信号対干渉比(SIR:Signal to Interference Ratio)、誤り訂正数を検出する。受信電力およびSIRは、例えば、受信信号を表すデジタルデータを利用して算出される。また、誤り訂正数は、誤り訂正復号化部25により訂正された誤りの数である。さらに、無線パケット中継システムにおいてターボ復号が使用される場合には、品質測定部30は、ターボ復号における繰返し回数を検出するようにしてもよい。そして、品質測定部30は、測定した品質レベルと、予め決められている閾値レベルとを比較する。 The quality measuring unit 30 measures the quality of the radio signal transmitted from the transmitting station 10. At this time, the quality measurement unit 30 is not particularly limited, but detects, for example, the reception power of a radio signal, a signal-to-interference ratio (SIR), and the number of error corrections. The received power and SIR are calculated using, for example, digital data representing the received signal. The number of error corrections is the number of errors corrected by the error correction decoding unit 25. Furthermore, when turbo decoding is used in the wireless packet relay system, the quality measurement unit 30 may detect the number of repetitions in turbo decoding. Then, the quality measurement unit 30 compares the measured quality level with a predetermined threshold level.
 誤り検出符号化部31、誤り検出符号化部32、バッファ33、変調部34の機能は、基本的には、送信局10が備える誤り検出符号化部11、誤り検出符号化部12、バッファ13、変調部14と同じである。ただし、誤り検出符号化部31には、誤り訂正復号化部25から出力されるパケットデータが入力される。また、バッファ33には、再生パケットデータが格納される。再生パケットデータは、この実施例では、送信局10から送信された無線信号を、中継局20において復調および復号(誤り訂正を含む)し、さらに再び符号化を実行することで得られる。 The functions of the error detection encoding unit 31, the error detection encoding unit 32, the buffer 33, and the modulation unit 34 are basically the error detection encoding unit 11, the error detection encoding unit 12, and the buffer 13 provided in the transmitting station 10. This is the same as the modulation unit 14. However, the packet data output from the error correction decoding unit 25 is input to the error detection encoding unit 31. The buffer 33 stores reproduction packet data. In this embodiment, the reproduction packet data is obtained by demodulating and decoding (including error correction) a radio signal transmitted from the transmission station 10 and executing encoding again.
 品質測定部30により測定された品質が閾値レベルよりも悪い場合には、バッファ33に格納されているパケットデータが受信局40へ送信される。すなわち、再送制御が実行される。ここで、バッファ33に格納されているパケットデータは、誤り訂正処理が実行されているので、信頼性が高い。すなわち、再送時には、信頼性の高いパケットデータが送信される。 When the quality measured by the quality measuring unit 30 is worse than the threshold level, the packet data stored in the buffer 33 is transmitted to the receiving station 40. That is, retransmission control is executed. Here, since the packet data stored in the buffer 33 is subjected to error correction processing, the reliability is high. That is, highly reliable packet data is transmitted at the time of retransmission.
 無線受信部36、復調部37、ACK/NACK判定部38の機能は、基本的には、送信局10が備える無線受信部16、復調部17、ACK/NACK判定部18と同じである。ただし、無線受信部36は、受信局30から無線信号を受信する。また、受信局40からのNACKメッセージが検出されたときは、バッファ33に格納されているパケットデータが受信局40へ送信される。 The functions of the radio reception unit 36, the demodulation unit 37, and the ACK / NACK determination unit 38 are basically the same as those of the radio reception unit 16, the demodulation unit 17, and the ACK / NACK determination unit 18 included in the transmission station 10. However, the wireless receiving unit 36 receives a wireless signal from the receiving station 30. When a NACK message from the receiving station 40 is detected, the packet data stored in the buffer 33 is transmitted to the receiving station 40.
 図5は、実施形態の受信局の構成を示す図である。図5では、パケットデータを送受信する機能が描かれている。なお、受信局40は、図1に示す例では、端末装置3a、3bに相当する。ただし、図1において、基地局1も受信局として動作することができる。 FIG. 5 is a diagram illustrating a configuration of the receiving station according to the embodiment. In FIG. 5, a function for transmitting and receiving packet data is depicted. The receiving station 40 corresponds to the terminal devices 3a and 3b in the example illustrated in FIG. However, in FIG. 1, the base station 1 can also operate as a receiving station.
 無線受信部41、復調部42、合成部43、バッファ44、誤り訂正復号化部45、誤り検出部46、ACK/NACK生成部47、変調部48、無線送信部49の機能は、基本的には、中継局20が備える無線受信部21、復調部22、合成部23、バッファ24、誤り訂正復号化部25、誤り検出部26、ACK/NACK生成部27、変調部28、無線送信部29と同じである。すなわち、受信局40は、中継局20から送信される無線信号を復調し、さらに誤り訂正を行うことでパケットデータを再生する。また、誤りの有無に応じてACK/NACKメッセージが生成され、中継局20へ返送される。 The functions of the radio reception unit 41, demodulation unit 42, synthesis unit 43, buffer 44, error correction decoding unit 45, error detection unit 46, ACK / NACK generation unit 47, modulation unit 48, and radio transmission unit 49 are basically the same. Includes a radio reception unit 21, a demodulation unit 22, a synthesis unit 23, a buffer 24, an error correction decoding unit 25, an error detection unit 26, an ACK / NACK generation unit 27, a modulation unit 28, and a radio transmission unit 29 included in the relay station 20. Is the same. That is, the receiving station 40 regenerates the packet data by demodulating the radio signal transmitted from the relay station 20 and performing error correction. Further, an ACK / NACK message is generated according to the presence / absence of an error and returned to the relay station 20.
 次に、図6~図9を参照しながら実施形態の無線パケット中継方法を説明する。ここでは、図1に示す基地局1が送信局であり、端末装置3(3aまたは3b)が受信局であるものとする。そして、基地局1は、パケットデータ#0を端末装置3へ送信する。 Next, the wireless packet relay method according to the embodiment will be described with reference to FIGS. Here, the base station 1 shown in FIG. 1 is a transmitting station, and the terminal device 3 (3a or 3b) is a receiving station. Then, the base station 1 transmits packet data # 0 to the terminal device 3.
 <ケース1>
 ケース1では、基地局1と中継局2との間、および中継局2と端末装置3との間の通信環境がいずれも良好である。以下、図6を参照しながらケース1におけるシーケンスを説明する。
<Case 1>
In Case 1, the communication environment between the base station 1 and the relay station 2 and between the relay station 2 and the terminal device 3 is good. Hereinafter, the sequence in case 1 will be described with reference to FIG.
 基地局1から送信されたパケットは、中継局2により受信される。受信局2は、基地局1から送信されたパケットをAF方式で端末装置3へ転送する。すなわち、基地局1から送信された無線信号は、中継局2において復調/復号されることなく、単に増幅されて端末装置3へ転送される。 The packet transmitted from the base station 1 is received by the relay station 2. The receiving station 2 transfers the packet transmitted from the base station 1 to the terminal device 3 by the AF method. That is, the radio signal transmitted from the base station 1 is simply amplified and transferred to the terminal device 3 without being demodulated / decoded in the relay station 2.
 端末装置3は、中継局2から無線信号を受信する。端末装置3は、受信した無線信号を復調し、誤り訂正を実行し、誤りを検出する。これらの処理は、復調部42、誤り訂正復号化部45、誤り検出部46により実行される。ここで、ケース1では、誤りが検出されない。なお、「誤りが検出されない」は、誤り訂正符号を利用してすべての誤りが訂正された状態を含む。この場合、端末装置3は、ACKメッセージを生成して中継局2へ返送する。このACKメッセージは、ACK/NACK生成部47により生成される。そして、中継局2がこのACKメッセージを受信すると、中継局2と端末装置3との間の通信は終了する。 The terminal device 3 receives a radio signal from the relay station 2. The terminal device 3 demodulates the received radio signal, performs error correction, and detects an error. These processes are executed by the demodulator 42, the error correction decoder 45, and the error detector 46. Here, in case 1, no error is detected. “No error is detected” includes a state in which all errors are corrected using an error correction code. In this case, the terminal device 3 generates an ACK message and returns it to the relay station 2. This ACK message is generated by the ACK / NACK generator 47. When the relay station 2 receives this ACK message, the communication between the relay station 2 and the terminal device 3 ends.
 中継局2は、基地局1から受信した信号を端末装置3へ転送するとともに、その受信信号を復調し、誤り訂正を実行し、誤りを検出する。これにより、パケットデータが再生される。これらの処理は、復調部22、誤り訂正復号化部25、誤り検出部26により実行される。ここで、ケース1では、誤りが検出されない。そうすると、再生されたパケットデータは、誤り検出符号化部31および誤り訂正符号化部32により再び符号化されてバッファ33に格納される。また、中継局2は、ACKメッセージを生成して基地局1へ返送する。ACKメッセージは、ACK/NACK生成部27により生成される。そして、基地局1がこのACKメッセージを受信すると、基地局1と中継局2との間の通信は終了する。 The relay station 2 transfers the signal received from the base station 1 to the terminal device 3, demodulates the received signal, executes error correction, and detects an error. Thereby, packet data is reproduced. These processes are executed by the demodulator 22, the error correction decoder 25, and the error detector 26. Here, in case 1, no error is detected. Then, the reproduced packet data is encoded again by the error detection encoding unit 31 and the error correction encoding unit 32 and stored in the buffer 33. Further, the relay station 2 generates an ACK message and returns it to the base station 1. The ACK message is generated by the ACK / NACK generator 27. When the base station 1 receives this ACK message, the communication between the base station 1 and the relay station 2 ends.
 なお、中継局2は、基地局1から受信する無線信号の品質を測定する。無線信号の品質は、品質測定部30により測定される。ここで、ケース1では、無線信号の品質は、閾値レベルよりも良好である。この場合、中継局2は、受信品質に基づく再送制御を実行しない。 Note that the relay station 2 measures the quality of the radio signal received from the base station 1. The quality of the radio signal is measured by the quality measuring unit 30. Here, in case 1, the quality of the radio signal is better than the threshold level. In this case, the relay station 2 does not execute retransmission control based on reception quality.
 また、端末装置3が基地局1のセル範囲の中に位置するときは、端末装置3は、基地局1および中継局2の双方から無線信号を受信する。このとき、中継局2を介して端末装置3に到着する信号は、基地局1から端末装置3へ直接的に伝搬される信号に対して遅延している。しかし、AF方式の遅延は小さい。したがって、例えば、OFDMを使用する通信システムにおいて、この遅延がガードインターバルよりも小さければ、端末装置3は、ダイバーシチ受信(或いは、RAKE合成)で信号を復調することができる。この場合、受信品質の向上が期待される。 In addition, when the terminal device 3 is located within the cell range of the base station 1, the terminal device 3 receives radio signals from both the base station 1 and the relay station 2. At this time, the signal arriving at the terminal device 3 via the relay station 2 is delayed with respect to the signal directly propagated from the base station 1 to the terminal device 3. However, the AF method has a small delay. Therefore, for example, in a communication system using OFDM, if this delay is smaller than the guard interval, the terminal device 3 can demodulate the signal by diversity reception (or RAKE combining). In this case, improvement in reception quality is expected.
 基地局1のバッファ13には、端末装置3へ送信されたパケットが格納されている。このバッファ13は、ACK/NACK判定部18がACKメッセージを検出すると、クリアされる。一方、中継局2のバッファ33には、再生パケットが格納されている。このバッファ33は、ACK/NACK判定部38がACKメッセージを検出すると、クリアされる。 A packet transmitted to the terminal device 3 is stored in the buffer 13 of the base station 1. The buffer 13 is cleared when the ACK / NACK determination unit 18 detects an ACK message. On the other hand, a reproduction packet is stored in the buffer 33 of the relay station 2. The buffer 33 is cleared when the ACK / NACK determination unit 38 detects an ACK message.
 なお、中継局2において受信したパケットを処理するために要する時間、および端末装置3において受信したパケットを処理するために要する時間は、この実施例では、互いに同じであるものとする。この時間は、図6に示す例では、3タイムスロットである。 In this embodiment, it is assumed that the time required to process a packet received at the relay station 2 and the time required to process a packet received at the terminal device 3 are the same in this embodiment. This time is 3 time slots in the example shown in FIG.
 このように、実施形態の無線パケット中継方法では、最初に送信されたパケットは、AF方式で中継される。したがって、実質的に遅延が発生することはない。 As described above, in the wireless packet relay method of the embodiment, the first transmitted packet is relayed by the AF method. Therefore, virtually no delay occurs.
 <ケース2>
 ケース2では、基地局1と中継局2との間の通信環境は良好であるが、中継局2と端末装置3との間の通信環境は良好ではない。以下、図7を参照しながらケース2におけるシーケンスを説明する。
<Case 2>
In Case 2, the communication environment between the base station 1 and the relay station 2 is good, but the communication environment between the relay station 2 and the terminal device 3 is not good. Hereinafter, the sequence in case 2 will be described with reference to FIG.
 基地局1から送信されたパケットは、ケース1と同様に、中継局2により端末装置3へ転送される。このとき、中継局2は、AF方式でパケットを転送する。なお、ケース2においても、中継局2において受信パケットの誤りは検出されない。よって、再生パケットがバッファ33に格納されると共に、ACKメッセージが基地局1に返送される。また、無線信号の品質は閾値レベルよりも良好である。したがって、中継局2は、受信品質に基づく再送制御を実行しない。 The packet transmitted from the base station 1 is transferred to the terminal device 3 by the relay station 2 as in the case 1. At this time, the relay station 2 transfers the packet by the AF method. Even in case 2, the relay station 2 does not detect an error in the received packet. Therefore, the reproduction packet is stored in the buffer 33 and an ACK message is returned to the base station 1. Also, the quality of the radio signal is better than the threshold level. Therefore, the relay station 2 does not execute retransmission control based on reception quality.
 端末装置3は、中継局2から無線信号を受信する。しかし、ケース2では、中継局2と端末装置3との間の通信環境が悪いので、無線信号の誤りが検出される。なお、「誤りが検出される」は、この例では、誤り訂正符号を利用してもすべての誤りを訂正できない状態を意味する。この場合、端末装置3は、NACKメッセージを生成して中継局2へ返送する。このNACKメッセージは、ACK/NACK生成部47により生成される。 The terminal device 3 receives a radio signal from the relay station 2. However, in case 2, since the communication environment between the relay station 2 and the terminal device 3 is poor, an error in the radio signal is detected. In this example, “error is detected” means that all errors cannot be corrected even if an error correction code is used. In this case, the terminal device 3 generates a NACK message and returns it to the relay station 2. This NACK message is generated by the ACK / NACK generation unit 47.
 中継局2は、端末装置3からNACKメッセージを受信すると、バッファ33に格納されている再生パケットを端末装置3へ送信する。すなわち、中継局2から端末装置3へDF方式でパケットが再送される。このとき、端末装置3がパケットを受信してからNACKメッセージを返送するまでに3スロット期間を要し、また、中継局3がNACKメッセージを受信してからパケットを再送するまでに3スロット時間を要している。すなわち、ケース2では、再送処理のために6スロット期間を要する。 When the relay station 2 receives the NACK message from the terminal device 3, the relay station 2 transmits the reproduction packet stored in the buffer 33 to the terminal device 3. That is, the packet is retransmitted from the relay station 2 to the terminal device 3 by the DF method. At this time, it takes a three-slot period from the terminal device 3 receiving the packet until the NACK message is returned, and a three-slot time from the relay station 3 receiving the NACK message to retransmitting the packet. I need it. That is, in case 2, 6 slot periods are required for retransmission processing.
 なお、端末装置3は、最初に受信したパケットをバッファ44に格納している。このバッファ44は、受信パケットの誤りが検出されなければクリアされる。しかし、ケース2では、受信パケットの誤りが検出される。よって、端末装置3は、バッファ44をクリアすることなく、NACKメッセージを返送して再送パケットを待つ。そして、NACKメッセージに応じて中継局2からパケットが再送されると、結合部43は、バッファ44に格納されているパケットデータと再送されたパケットデータとを結合する。この結合により得られるパケットデータについて復号が行われ、送信データが再生される。 Note that the terminal device 3 stores the first received packet in the buffer 44. The buffer 44 is cleared if no error is detected in the received packet. However, in case 2, an error in the received packet is detected. Therefore, the terminal device 3 returns a NACK message and waits for a retransmission packet without clearing the buffer 44. When the packet is retransmitted from the relay station 2 in response to the NACK message, the combining unit 43 combines the packet data stored in the buffer 44 and the retransmitted packet data. The packet data obtained by this combination is decoded and the transmission data is reproduced.
 結合されたパケットデータにおいてもなお誤りが検出される場合には、端末装置3と中継局2との間で再送制御が繰り返される。この場合、パケットデータが累積的に結合されるので、再送を繰り返すことにより受信特性は高まってゆく。 If the error is still detected in the combined packet data, retransmission control is repeated between the terminal device 3 and the relay station 2. In this case, since the packet data are cumulatively combined, the reception characteristics are enhanced by repeating retransmission.
 <ケース3>
 ケース3では、基地局1と中継局2との間、および中継局2と端末装置3との間の通信環境はいずれも良好ではない。ただし、中継局2において、受信パケットの誤りは検出されないものとする。以下、図8を参照しながらケース3におけるシーケンスを説明する。
<Case 3>
In Case 3, the communication environment between the base station 1 and the relay station 2 and between the relay station 2 and the terminal device 3 is not good. However, it is assumed that the relay station 2 does not detect an error in the received packet. Hereinafter, the sequence in case 3 will be described with reference to FIG.
 基地局1から送信されたパケットは、ケース1、2と同様に、中継局2により端末装置3へ転送される。このとき、中継局2は、AF方式でパケットを転送する。なお、ケース3においても、中継局2において受信パケットの誤りは検出されない。よって、再生パケットがバッファ33に格納されると共に、ACKメッセージが基地局1に返送される。 The packet transmitted from the base station 1 is transferred to the terminal device 3 by the relay station 2 as in the cases 1 and 2. At this time, the relay station 2 transfers the packet by the AF method. Even in case 3, the relay station 2 does not detect an error in the received packet. Therefore, the reproduction packet is stored in the buffer 33 and an ACK message is returned to the base station 1.
 しかし、ケース3では、受信した無線信号の品質は閾値レベルよりも悪い。この場合、中継局2は、端末装置3において誤りが検出されるであろうと予測し、再送制御を実行する。すなわち、中継局2は、端末装置3からのNACKメッセージを待つことなく、再送制御を実行する。具体的には、受信した無線信号の品質が閾値レベルよりも悪いと品質測定部30により判定されると、バッファ33に格納されている再生パケットが端末装置3へ送信される。すなわち、DF方式でパケット再送が行われる。 However, in case 3, the quality of the received radio signal is worse than the threshold level. In this case, the relay station 2 predicts that an error will be detected in the terminal device 3, and executes retransmission control. That is, the relay station 2 executes retransmission control without waiting for a NACK message from the terminal device 3. Specifically, when the quality measurement unit 30 determines that the quality of the received radio signal is worse than the threshold level, the reproduction packet stored in the buffer 33 is transmitted to the terminal device 3. That is, packet retransmission is performed by the DF method.
 端末装置3は、最初のパケットおよび再送パケットを受信する。ここで、図8に示す例では、最初のパケットの誤りが検出される。そうすると、端末装置3は、パケット再送を要求するために、NACKメッセージを生成して中継局2へ返送する。ところが、中継局2は、上述したように、NACKメッセージの有無にかかわらずパケット再送を実行している。したがって、端末装置3は、NACKメッセージで再送を要求する場合と比べて、再送パケットを早く受け取ることができる。図8に示す例では、端末装置3は、最初のパケットを受信した時から3スロット期間後に再送パケットを受信する。これにより、再送に係わる遅延時間が短くなる。 The terminal device 3 receives the first packet and the retransmission packet. Here, in the example shown in FIG. 8, the error of the first packet is detected. Then, the terminal device 3 generates a NACK message and sends it back to the relay station 2 in order to request packet retransmission. However, as described above, the relay station 2 performs packet retransmission regardless of the presence or absence of the NACK message. Therefore, the terminal device 3 can receive a retransmission packet earlier than when a retransmission is requested with a NACK message. In the example illustrated in FIG. 8, the terminal device 3 receives a retransmission packet after a three-slot period from when the first packet is received. This shortens the delay time related to retransmission.
 なお、中継局2は、端末装置3からNACKメッセージを受信する。したがって、通常であれば、中継局2においてそのNACKメッセージに応じた再送制御が実行される。しかし、ケース3では、中継局2は、NACKメッセージを受信する前に、受信品質に基づくパケット再送(予測再送)を実行している。よって、この場合、中継局2は、NACKメッセージに応じた再送制御は行わない。 Note that the relay station 2 receives the NACK message from the terminal device 3. Therefore, normally, the relay station 2 executes retransmission control according to the NACK message. However, in case 3, the relay station 2 performs packet retransmission (predictive retransmission) based on the reception quality before receiving the NACK message. Therefore, in this case, the relay station 2 does not perform retransmission control according to the NACK message.
 また、端末装置3から送信されるNACKメッセージは、基地局1に到着する可能性もある。基地局1は、このNACKメッセージを受信すると、再送制御を実行してしまう。この場合、再送パケットが重複してしまう。そこで、中継局2は、端末装置3がNACKメッセージを送信するタイミングで、基地局1へACKメッセージを送信する。そうすると、基地局1においては、端末装置3からのNACKメッセージの電波よりも、中継局2からのACKメッセージの電波の方が強いので、基地局1は、そのACKメッセージに応じて処理を終了する。 Also, the NACK message transmitted from the terminal device 3 may arrive at the base station 1. When the base station 1 receives this NACK message, it performs retransmission control. In this case, retransmission packets are duplicated. Therefore, the relay station 2 transmits an ACK message to the base station 1 at a timing when the terminal device 3 transmits a NACK message. Then, in the base station 1, the radio wave of the ACK message from the relay station 2 is stronger than the radio wave of the NACK message from the terminal device 3, and thus the base station 1 ends the process according to the ACK message. .
 さらに、端末装置3は、ケース2と同様に、最初のパケットと再送パケットとを結合して送信データを再生する。
 端末装置3において、最初のパケットの誤りが検出されなかった場合には、端末装置3はACKメッセージを中継局2に返送する。しかし、ケース3では、中継局2は、端末装置3における誤り検出の結果にかかわらず、パケット再送を実行している。すなわち、端末装置3は、不用な再送パケットを受信してしまう。この場合、端末装置3は、受信した再送パケットを廃棄する。
Further, similarly to Case 2, the terminal device 3 combines the first packet and the retransmission packet to reproduce the transmission data.
If the terminal device 3 does not detect an error in the first packet, the terminal device 3 returns an ACK message to the relay station 2. However, in case 3, the relay station 2 performs packet retransmission regardless of the error detection result in the terminal device 3. That is, the terminal device 3 receives an unnecessary retransmission packet. In this case, the terminal device 3 discards the received retransmission packet.
 このように、実施形態の無線パケット中継方法では、中継局2における受信品質が悪い場合には、端末装置3からのACK/NACKメッセージを待つことなく、再送制御が実行される。したがって、再送に係わる遅延時間が短くなる。 As described above, in the radio packet relay method of the embodiment, when the reception quality at the relay station 2 is poor, retransmission control is executed without waiting for an ACK / NACK message from the terminal device 3. Therefore, the delay time related to retransmission is shortened.
 <ケース4>
 ケース4では、基地局1と中継局2との間の通信環境が悪い。以下、図9を参照しながらケース4におけるシーケンスを説明する。
<Case 4>
In Case 4, the communication environment between the base station 1 and the relay station 2 is bad. Hereinafter, the sequence in case 4 will be described with reference to FIG.
 基地局1から送信されたパケットは、ケース1~3と同様に、中継局2により端末装置3へ転送される。しかし、ケース4では、基地局1と中継局2との間の通信環境が悪いので、中継局2において受信パケットの誤りが検出される。よって、中継局2から基地局1へNACKメッセージが返送される。このとき、中継局2において、バッファ33に再生パケットは格納されない。また、図9に示す例では、端末装置3においても受信パケットの誤りが検出され、端末装置3から中継局2へNACKメッセージが返送されている。 The packet transmitted from the base station 1 is transferred to the terminal device 3 by the relay station 2 as in the cases 1 to 3. However, in Case 4, since the communication environment between the base station 1 and the relay station 2 is poor, the relay station 2 detects an error in the received packet. Therefore, a NACK message is returned from the relay station 2 to the base station 1. At this time, the relay station 2 does not store the reproduction packet in the buffer 33. In the example shown in FIG. 9, an error in the received packet is detected also in the terminal device 3, and a NACK message is returned from the terminal device 3 to the relay station 2.
 基地局1は、NACKメッセージを受信すると、パケットを再送する。すなわち、基地局1による再送制御が実行される。 When receiving the NACK message, the base station 1 retransmits the packet. That is, retransmission control by the base station 1 is executed.
 図10は、AF方式、DF方式、実施形態の方式の遅延時間を比較する図である。図10に示すグラフの横軸は、AF方式で中継されたときに受信局でパケット誤りが検出される確率を示している。また、縦軸は、図6~図9に示すタイムスロットを単位として中継に要する遅延時間を表している。ただし、図10では、以下の条件を導入している。
(1)DF方式で転送されるパケットは、受信局において誤り率はゼロ
(2)AF方式で転送される2つのパケットを結合すると、受信局において誤り率はゼロ
(3)AF方式は、中継遅延はゼロ
(4)中継局および受信局においてパケット処理に要する時間は、3スロット期間
(5)実施形態の方式において、予測精度は100パーセント
FIG. 10 is a diagram comparing the delay times of the AF method, the DF method, and the embodiment. The horizontal axis of the graph shown in FIG. 10 indicates the probability that a packet error is detected at the receiving station when relayed by the AF method. The vertical axis represents the delay time required for relaying in units of time slots shown in FIGS. However, the following conditions are introduced in FIG.
(1) Packets transferred by the DF method have zero error rate at the receiving station. (2) When two packets transferred by the AF method are combined, the error rate is zero at the receiving station. (3) The AF method is relayed. The delay is zero (4) The time required for packet processing at the relay station and the receiving station is 3 slot period (5) The prediction accuracy is 100% in the system of the embodiment
 誤り率が低い場合には、AF方式の遅延時間は非常に小さい。しかし、AF方式では、再送制御のために6スロット期間を要する。したがって、通信環境が悪く、誤り率が高くなると、遅延時間が急激に大きくなる。DF方式では、上記条件(1)の下では、遅延時間は一定である。この例では、DF方式の遅延時間は3スロット期間である。すなわち、DF方式では、通信環境が良好なときであっても、遅延時間を小さくならない。 When the error rate is low, the AF method delay time is very small. However, the AF method requires 6 slot periods for retransmission control. Therefore, if the communication environment is bad and the error rate is high, the delay time increases rapidly. In the DF method, the delay time is constant under the condition (1). In this example, the delay time of the DF method is 3 slot periods. That is, in the DF method, the delay time is not reduced even when the communication environment is good.
 実施形態の方式では、誤り率が低いときは、AF方式が支配的となるので、遅延時間は小さい。また、誤り率が高くなると、それに伴ってパケット再送の頻度が高くなる。しかし、実施形態の方式では、パケット再送に要する時間は、図8に示すように、3スロット期間である。したがって、誤り率が高くなっても、遅延時間はさほど大きくならない。 In the method of the embodiment, when the error rate is low, the AF method becomes dominant, so the delay time is small. Also, as the error rate increases, the frequency of packet retransmission increases accordingly. However, in the method of the embodiment, the time required for packet retransmission is a three-slot period as shown in FIG. Therefore, even if the error rate increases, the delay time does not increase so much.
 なお、非特許文献1に記載の方式では、図2に示すように、宛先局において誤りが検出されるとNACKメッセージが返送され、そのNACKメッセージに応じて再送制御が実行される。このため、非特許文献1に記載の方式の遅延時間は、上記条件(1)~(3)の下では、AF方式と同じになる。 In the method described in Non-Patent Document 1, as shown in FIG. 2, when an error is detected at the destination station, a NACK message is returned, and retransmission control is executed according to the NACK message. Therefore, the delay time of the method described in Non-Patent Document 1 is the same as that of the AF method under the above conditions (1) to (3).
 図11は、送信局(基地局1、送信局10)の動作を示すフローチャートである。ステップS1では、送信すべきパケットデータの入力を待つ。送信すべきパケットデータが入力されると、ステップS2において、中継局へパケットが送信される。このとき、送信したパケットは、バッファ13に格納される。ステップS3では、ACK/NACKメッセージの受信を待つ。ステップS4では、受信したメッセージがACKであるのかNACKであるのかをチェックする。そして、ACKメッセージを受信した場合は、ステップS1に戻って次のパケットデータの入力を待つ。一方、NACKメッセージを受信した場合には、ステップS5において、バッファ13に格納されているパケットを、中継局へ送信する。すなわち、パケット再送が実行される。 FIG. 11 is a flowchart showing the operation of the transmitting station (base station 1, transmitting station 10). In step S1, input of packet data to be transmitted is awaited. When packet data to be transmitted is input, the packet is transmitted to the relay station in step S2. At this time, the transmitted packet is stored in the buffer 13. In step S3, reception of an ACK / NACK message is awaited. In step S4, it is checked whether the received message is ACK or NACK. If an ACK message is received, the process returns to step S1 to wait for input of the next packet data. On the other hand, when the NACK message is received, the packet stored in the buffer 13 is transmitted to the relay station in step S5. That is, packet retransmission is executed.
 なお、上述したケース1~3では、中継局からACKメッセージが返送されるので、ステップS1~S4が実行される。一方、ケース4では、中継局からNACKメッセージが返送されるので、ステップS1~S5が実行される。 In cases 1 to 3 described above, an ACK message is returned from the relay station, so steps S1 to S4 are executed. On the other hand, in case 4, since the NACK message is returned from the relay station, steps S1 to S5 are executed.
 図12は、中継局(中継局2、20)の動作を示すフローチャートである。ステップS11では、送信局からのパケットを待つ。送信局からのパケットを受信すると、ステップS12において、送信局から受信したパケットを、復調/復号することなく、受信局へ転送する。すなわち、AF方式でパケットが中継される。ステップS13では、受信信号が復調/復号される。ステップS14では、受信した無線信号の品質が測定される。ステップS15では、受信パケットが再送パケットであるかチェックされる。 FIG. 12 is a flowchart showing the operation of the relay station (relay stations 2 and 20). In step S11, it waits for a packet from the transmitting station. When a packet from the transmitting station is received, in step S12, the packet received from the transmitting station is transferred to the receiving station without being demodulated / decoded. That is, the packet is relayed by the AF method. In step S13, the received signal is demodulated / decoded. In step S14, the quality of the received radio signal is measured. In step S15, it is checked whether the received packet is a retransmission packet.
 受信パケットが再送パケットでなければ、ステップS16、S17はスキップされ、ステップS18へ進む。ステップS18では、受信パケットの誤りの有無をチェックする。誤りが検出されたときは、ステップS19において、受信パケットをバッファ24に格納する。そして、ステップS20において、送信局へNACKメッセージを返送する。 If the received packet is not a retransmission packet, steps S16 and S17 are skipped and the process proceeds to step S18. In step S18, it is checked whether there is an error in the received packet. If an error is detected, the received packet is stored in the buffer 24 in step S19. In step S20, a NACK message is returned to the transmitting station.
 ステップS18において誤りが検出されなかったときは、ステップS21において、誤り訂正後のパケットデータを再び符号化し、バッファ33に格納する。すなわち、再生パケットがバッファ33に格納される。ステップS22では、送信局へACKメッセージが返送される。ステップS23では、ステップS12で転送したパケットに対応するACKメッセージを既に受信局から受け取っているかチェックする。 If no error is detected in step S18, the packet data after error correction is encoded again in step S21 and stored in the buffer 33. That is, the reproduction packet is stored in the buffer 33. In step S22, an ACK message is returned to the transmitting station. In step S23, it is checked whether an ACK message corresponding to the packet transferred in step S12 has already been received from the receiving station.
 対応するACKメッセージを受信していれば、処理を終了してステップS11に戻る。一方、対応するACKメッセージを受信していなければ、ステップS24において、測定した受信品質が閾値レベルよりも悪いかチェックする。なお、受信品質は、このフローチャートでは、ステップS14で測定されている。そして、受信品質が閾値レベルよりも良好であれば、処理を終了してステップS11に戻る。一方、受信品質が閾値レベルよりも悪ければ、ステップS25において、バッファ33に格納されている再生パケットを受信局へ送信する。すなわち、DF方式でパケットが再送される。 If the corresponding ACK message has been received, the process ends and the process returns to step S11. On the other hand, if the corresponding ACK message has not been received, it is checked in step S24 whether the measured reception quality is worse than the threshold level. The reception quality is measured in step S14 in this flowchart. If the reception quality is better than the threshold level, the process ends and the process returns to step S11. On the other hand, if the reception quality is worse than the threshold level, the reproduction packet stored in the buffer 33 is transmitted to the receiving station in step S25. That is, the packet is retransmitted by the DF method.
 送信局から再送パケットを受信した場合には(ステップS15:Yes)、ステップS16おいて、送信局により先に送信された対応するパケットを正しく受信しているかチェックする。先のパケットを正しく受信している場合には、ステップS22へ進む。一方、先のパケットを正しく受信していなかった場合には、ステップS17において、バッファ24に格納されている先のパケットと再送パケットとを合成する。なお、先のパケットに対してこのフローチャートの処理が実行されたときに、ステップS19において、その先のパケットがバッファ24に格納されている。 When the retransmission packet is received from the transmitting station (step S15: Yes), it is checked in step S16 whether the corresponding packet transmitted earlier by the transmitting station is correctly received. If the previous packet has been correctly received, the process proceeds to step S22. On the other hand, if the previous packet has not been received correctly, the previous packet stored in the buffer 24 and the retransmission packet are combined in step S17. When the process of this flowchart is executed for the previous packet, the previous packet is stored in the buffer 24 in step S19.
 このように、実施形態の中継局では、受信パケットの誤りが検出されず(ステップS18:誤りなし)、受信品質が閾値レベルよりも悪い場合(ステップS24:Yes)、ステップS25においてパケット再送が実行される。このパケット再送は、図12に示すフローチャートに示されるように、受信局からのACK/NACKメッセージにかかわりなく実行される。 As described above, in the relay station of the embodiment, when an error of the received packet is not detected (step S18: no error) and the reception quality is worse than the threshold level (step S24: Yes), packet retransmission is executed in step S25. Is done. This packet retransmission is executed regardless of the ACK / NACK message from the receiving station as shown in the flowchart of FIG.
 図13は、ACK/NACKメッセージに対応する中継局の動作を示すフローチャートである。このフローチャートの処理は、図12に示す処理と並列に実行される。 FIG. 13 is a flowchart showing the operation of the relay station corresponding to the ACK / NACK message. The process of this flowchart is executed in parallel with the process shown in FIG.
 ステップS31では、受信局から返送されるACK/NACKメッセージを待つ。受信局からメッセージを受信すると、ステップS32では、そのメッセージがACKであるのかNACKであるのかをチェックする。ACKメッセージを受信した場合には処理を終了してステップS31に戻る。一方、NACKメッセージを受信した場合には、ステップS33へ進む。ステップS33では、受信したメッセージが、バッファ33に格納されているパケットに対応するNACKメッセージであるかチェックする。そして、対応するNACKメッセージを受信した場合には、ステップS34において、バッファ33に格納されているパケットを受信局に送信する。一方、他のNACKメッセージを受信したときは、ステップS31に戻る。 In step S31, an ACK / NACK message returned from the receiving station is awaited. When a message is received from the receiving station, it is checked in step S32 whether the message is ACK or NACK. If an ACK message is received, the process ends and the process returns to step S31. On the other hand, if a NACK message is received, the process proceeds to step S33. In step S33, it is checked whether the received message is a NACK message corresponding to the packet stored in the buffer 33. When the corresponding NACK message is received, the packet stored in the buffer 33 is transmitted to the receiving station in step S34. On the other hand, when another NACK message is received, the process returns to step S31.
 このように、実施形態の中継局においては、受信局からNACKメッセージを受信した場合には、そのNACKメッセージに応じた一般的な再送制御が実行される。 As described above, in the relay station of the embodiment, when a NACK message is received from the receiving station, general retransmission control according to the NACK message is executed.
 ここで、上述したケース1~4を参照しながらフローチャートに示す中継局の動作を説明する。ケース1では、ステップS12においてAF方式で受信局へパケットが転送された後、ステップS18において「誤りなし」と判定される。さらに、ステップS24において「受信品質は良好」と判定される。よって、ステップS25の再送制御は実行されない。さらに、受信局からACKメッセージが返送されるので、ステップS34の再送制御も実行されない。 Here, the operation of the relay station shown in the flowchart will be described with reference to the cases 1 to 4 described above. In Case 1, after the packet is transferred to the receiving station by the AF method in Step S12, it is determined that there is no error in Step S18. Further, in step S24, it is determined that “reception quality is good”. Therefore, the retransmission control in step S25 is not executed. Furthermore, since the ACK message is returned from the receiving station, the retransmission control in step S34 is not executed.
 ケース2でも、ケース1と同様に、ステップS12においてAF方式で受信局へパケットが転送された後、ステップS25の再送制御は実行されない。しかし、受信局からNACKメッセージが返送されるので、ステップS34の再送制御が実行される。 Also in case 2, as in case 1, after the packet is transferred to the receiving station by the AF method in step S12, the retransmission control in step S25 is not executed. However, since the NACK message is returned from the receiving station, the retransmission control in step S34 is executed.
 ケース3でも、ケース1と同様に、ステップS12においてAF方式で受信局へパケットが転送された後、ステップS18において「誤りなし」と判定される。よって、ステップS21において再生パケットがバッファ33に格納される。しかし、ステップS24において「受信品質が悪い」と判定されるので、ステップS25の再送制御が実行される。すなわち、バッファ33に格納されている再生パケットが、受信局へ送信される。 In case 3, as in case 1, after the packet is transferred to the receiving station by the AF method in step S12, it is determined that there is no error in step S18. Therefore, the reproduction packet is stored in the buffer 33 in step S21. However, since it is determined in step S24 that "reception quality is bad", retransmission control in step S25 is executed. That is, the reproduction packet stored in the buffer 33 is transmitted to the receiving station.
 ケース4では、ステップS12においてAF方式で受信局へパケットが転送された後、ステップS18において「誤りあり」と判定される。よって、ステップS20により送信局へNACKメッセージが返送され、送信局による再送制御(図11のステップS5)が実行される。 In Case 4, after the packet is transferred to the receiving station by the AF method in Step S12, it is determined that “there is an error” in Step S18. Therefore, a NACK message is returned to the transmitting station in step S20, and retransmission control by the transmitting station (step S5 in FIG. 11) is executed.
 図14は、受信局(端末装置3、3a、3b、受信局40)の動作を示すフローチャートである。受信局の動作は、基本的には、中継局の動作(図12に示すステップS11~22)と同じである。ただし、受信局では、ステップS12の転送処理およびステップS14の品質測定は実行されない。ただし、端末装置は、無線信号の品質を測定する機能を備えていてもよい。 FIG. 14 is a flowchart showing the operation of the receiving station ( terminal devices 3, 3a, 3b, receiving station 40). The operation of the receiving station is basically the same as that of the relay station (steps S11 to S22 shown in FIG. 12). However, the receiving station does not execute the transfer process in step S12 and the quality measurement in step S14. However, the terminal device may have a function of measuring the quality of the radio signal.
 なお、ケース1では、ステップS43で「No」と判定され、ステップS46で「誤りなし」と判定された後、ステップS50で中継局へACKメッセージが返送される。 In case 1, “No” is determined in step S43, “No error” is determined in step S46, and then an ACK message is returned to the relay station in step S50.
 ケース2~4では、最初のパケットに対して、ステップS46で「誤りあり」と判定され、ステップS48において中継局へNACKメッセージが返送される。この後、ケース2では、中継局がそのNACKメッセージに応じてパケットを再送する。また、ケース3では、中継局は、自律的に(すなわち、NACKメッセージとは無関係に)、パケットを再送する。さらに、ケース4では、送信局がパケットを再送する。いずれにしても、受信局は、ステップS45において、先に受信した最初のパケットおよび再送パケットを合成する。 In cases 2 to 4, it is determined in step S46 that there is an error for the first packet, and a NACK message is returned to the relay station in step S48. Thereafter, in case 2, the relay station retransmits the packet according to the NACK message. In case 3, the relay station retransmits the packet autonomously (that is, regardless of the NACK message). Further, in case 4, the transmitting station retransmits the packet. In any case, in step S45, the receiving station combines the first packet received earlier and the retransmission packet.
 次に、中継局において測定される受信品質について説明する。受信品質は、特に限定されるものではないが、例えば、下記のパラメータが測定される。 Next, the reception quality measured at the relay station will be described. The reception quality is not particularly limited. For example, the following parameters are measured.
 (1)誤り訂正数
中継局において、復調部22により得られる復調データが保持される。また、復調データに対して誤り訂正を実行し、さらに再符号化を実行することにより得られる再生データが保持される。そして、復調データと再生データとをビット毎に比較することにより、誤り訂正数が検出される。誤り訂正数が少ないほど、品質は高い。
(1) Error correction number The demodulated data obtained by the demodulator 22 is held in the relay station. Further, reproduced data obtained by performing error correction on the demodulated data and further executing re-encoding is held. Then, the number of error corrections is detected by comparing the demodulated data and the reproduced data for each bit. The smaller the number of error corrections, the higher the quality.
 (2)ターボ復号の繰返し回数
ターボ復号では、誤りの有無をモニタしながら同じ演算が繰返し実行される。そして、誤りが無くなったときにその演算が終了する。したがって、誤りが無くなるまでに実行された繰返し回数は、受信品質を表す。すなわち、繰返し回数が少なければ、受信品質は良好である。なお、ターボ符号において、誤り数が所定値よりも少なくなるまでに実行された繰返し回数をカウントするようにしてもよい。
(2) Number of iterations of turbo decoding In turbo decoding, the same operation is repeatedly executed while monitoring the presence of errors. Then, when the error disappears, the calculation ends. Therefore, the number of repetitions executed until there is no error represents the reception quality. That is, if the number of repetitions is small, the reception quality is good. In the turbo code, the number of repetitions executed until the number of errors becomes smaller than a predetermined value may be counted.
 (3)SIR
受信した無線信号と雑音の比率が測定される。
 (4)受信電力
受信した無線信号の電力が測定される。
(3) SIR
The ratio of the received radio signal to noise is measured.
(4) Received power The power of the received radio signal is measured.
 一例を示す。ここでは、受信品質として誤り訂正数が使用されるものとする。また、基地局と中継局との間で10ビットの誤りが許容され、中継局と端末装置との間でも10ビットの誤りが許容されるものとする。すなわち、中継局および端末装置において、それぞれ10ビットまで誤りを訂正できるものとする。この場合、中継局は、無線信号をAF方式で端末装置へ転送すると共に、その無線信号を復調して誤り訂正数をカウントする。このとき、誤り訂正数が10ビットを超えていれば、中継局は、端末装置からのACK/NACKメッセージを待たずに、再生パケットを端末装置へ送信する。一方、誤り訂正数が10ビット以下であれば、中継局は、端末装置からのACK/NACKメッセージを待つ。そして、中継局は、NACKメッセージを受信したときは、基地局の再送タイミングと同時に、再送パケットを端末装置へ送信する。ACKメッセージを受信したときは、中継局は、再送制御を行わない。 An example is shown. Here, it is assumed that the number of error corrections is used as the reception quality. Further, a 10-bit error is allowed between the base station and the relay station, and a 10-bit error is allowed between the relay station and the terminal device. That is, it is assumed that each relay station and terminal device can correct errors up to 10 bits. In this case, the relay station transfers the radio signal to the terminal device by the AF method, and demodulates the radio signal to count the number of error corrections. At this time, if the number of error corrections exceeds 10 bits, the relay station transmits a reproduction packet to the terminal device without waiting for an ACK / NACK message from the terminal device. On the other hand, if the number of error corrections is 10 bits or less, the relay station waits for an ACK / NACK message from the terminal device. When the relay station receives the NACK message, the relay station transmits a retransmission packet to the terminal device simultaneously with the retransmission timing of the base station. When the ACK message is received, the relay station does not perform retransmission control.
 なお、図12のステップS24において、測定された品質が閾値レベルと比較される。この閾値レベルは、「パケットをAF方式で受信局へ転送したときに、受信局において訂正できない量の誤りが発生するか否か」を予測する値である。すなわち、「この閾値レベルよりも品質が良好であれば、パケットをAF方式で受信局へ転送しても、受信局において誤りは発生しないか、受信局においてすべての誤りを訂正できる」または「この閾値レベルよりも品質が悪ければ、パケットをAF方式で受信局へ転送すると、受信局において訂正できない量の誤りが発生する」という基準で閾値レベルが決定される。このような閾値レベルは、シミュレーションまたは実際の測定に基づいて決定することができる。 In step S24 in FIG. 12, the measured quality is compared with the threshold level. This threshold level is a value for predicting “whether or not an error that cannot be corrected at the receiving station occurs when the packet is transferred to the receiving station by the AF method”. That is, “if the quality is better than this threshold level, even if the packet is transferred to the receiving station by the AF method, no error occurs at the receiving station, or all errors can be corrected at the receiving station” or “this If the quality is lower than the threshold level, the threshold level is determined based on the criterion that if the packet is transferred to the receiving station by the AF method, an error that cannot be corrected occurs at the receiving station. Such threshold levels can be determined based on simulations or actual measurements.
 また、閾値レベルは、パケットの符号化率を考慮して決めるようにしてもよい。すなわち、符号化率が小さいときは、受信局において訂正可能な誤りの数は多いので、閾値レベルを低くすることができる。一方、符号化率が大きいときは、受信局において訂正可能な誤りの数は少ないので、閾値レベルを高くしてもよい。 Also, the threshold level may be determined in consideration of the packet coding rate. That is, when the coding rate is small, the number of errors that can be corrected at the receiving station is large, so that the threshold level can be lowered. On the other hand, when the coding rate is large, the threshold level may be increased because the number of errors that can be corrected at the receiving station is small.
 図15は、誤り訂正符号化部12、32の構成および動作を説明する図である。この例では、誤り訂正符号としてターボ符号が使用されるものとする。なお、送信局および中継局が備える誤り訂正符号化部の構成および動作は、基本的に互いに同じである。 FIG. 15 is a diagram for explaining the configuration and operation of the error correction encoders 12 and 32. In this example, it is assumed that a turbo code is used as an error correction code. Note that the configurations and operations of the error correction coding units provided in the transmitting station and the relay station are basically the same.
 誤り訂正符号化部は、図15(a)に示すように、インターリーバ51、エンコーダ52、53、パンクチャリング部54、多重化部(MUX)55を備え、入力される情報系列Xから符号化データZを生成する。インターリーバ51は、情報系列Xに対してインターリーブ処理を実行し、データ系列Yを生成する。インターリーブ処理では、予め決められたアルゴリズムにしたがってビット並替えが行われる。エンコーダ52は、情報系列Xを符号化してパリティ系列P(1)を生成し、エンコーダ53は、データ系列Yを符号化してパリティ系列P(2)を生成する。そして、パンクチャリング部54は、パリティ系列P(1)およびP(2)からそれぞれ1ビット以上を選択することにより、パリティ系列P(3)を生成する。図15(b)に示す例では、パリティ系列P(1)から500ビットが選択され、パリティ系列P(2)から500ビットが選択されている。そして、多重化部55は、情報系列Xおよびパリティ系列P(3)を多重化し、符号化データZを生成する。 As shown in FIG. 15A, the error correction encoding unit includes an interleaver 51, encoders 52 and 53, a puncturing unit 54, and a multiplexing unit (MUX) 55, and encodes from an input information sequence X. Data Z is generated. The interleaver 51 performs an interleaving process on the information sequence X to generate a data sequence Y. In the interleaving process, bit rearrangement is performed according to a predetermined algorithm. The encoder 52 encodes the information sequence X to generate a parity sequence P (1), and the encoder 53 encodes the data sequence Y to generate a parity sequence P (2). Then, the puncturing unit 54 generates a parity sequence P (3) by selecting one or more bits from the parity sequences P (1) and P (2). In the example shown in FIG. 15B, 500 bits are selected from the parity sequence P (1), and 500 bits are selected from the parity sequence P (2). Then, multiplexing section 55 multiplexes information sequence X and parity sequence P (3) to generate encoded data Z.
 ここで、送信局が備える誤り訂正符号化部12および中継局が備える誤り訂正符号化部32は、互いに同じパンクチャリングパターンで符号化データZを生成してもよいし、互いに異なるパンクチャリングパターンで符号化データZを生成してもよい。互いに異なるパンクチャリングパターンで符号化を行う場合、特に限定されるものではないが、たとえば、送信局が備える誤り訂正符号化部12は、パリティ系列P(1)の奇数ビットおよびP(2)の偶数ビットを選択し、中継局が備える誤り訂正符号化部32は、パリティ系列P(1)の偶数ビットおよびP(2)の奇数ビットを選択する。 Here, the error correction encoding unit 12 included in the transmission station and the error correction encoding unit 32 included in the relay station may generate the encoded data Z with the same puncturing pattern, or with different puncturing patterns. The encoded data Z may be generated. When encoding with puncturing patterns different from each other, there is no particular limitation. For example, the error correction encoding unit 12 included in the transmission station may include the odd number bits of the parity sequence P (1) and the P (2). The even bit is selected, and the error correction coding unit 32 included in the relay station selects the even bit of the parity sequence P (1) and the odd bit of P (2).
 送信局および中継局において互いに異なるパンクチャリングパターンで符号化データが生成される構成においては、中継局によりパケット再送が実行される場合、受信局は、異なる誤り訂正符号を利用することができる。よって、誤り訂正能力が向上する。 In a configuration in which encoded data is generated with different puncturing patterns in the transmitting station and the relay station, when the packet retransmission is executed by the relay station, the receiving station can use different error correction codes. Therefore, error correction capability is improved.
 また、中継局は、受信信号の品質が良好でない場合、その受信信号の一部を再送するようにしてもよい。例えば、図16に示すように、受信パケット信号の一部領域においてSIRが閾値レベルよりも劣化している場合には、その領域のデータのみを再送するようにしてもよい。 Also, when the quality of the received signal is not good, the relay station may retransmit a part of the received signal. For example, as shown in FIG. 16, when the SIR is deteriorated below the threshold level in a partial area of the received packet signal, only the data in that area may be retransmitted.

Claims (10)

  1.  送信局から無線信号を受信し、受信した無線信号に基づいて受信局へ無線信号を送信することで、前記送信局から前記受信局への送信データの中継処理を行う中継局と前記受信局との間で実行される再送方法において、
     前記送信局から受信した無線信号を復調せずに、前記無線信号について前記受信局への第1の転送処理を実行し、
     受信した前記無線信号についての品質に基づいて、前記無線信号を復調または誤り訂正復号して得られるデータに基づいて、第2の転送処理を実行し、
     前記受信局は、前記第1の転送処理により送信された無線信号および前記第2の転送処理により送信された無線信号の受信処理を行う、
     ことを特徴とする中継局における再送方法。
    A relay station that receives a radio signal from the transmitting station and transmits a radio signal to the receiving station based on the received radio signal, and performs relay processing of transmission data from the transmitting station to the receiving station; and In the retransmission method performed between
    Without demodulating the radio signal received from the transmitting station, the first transfer process to the receiving station is performed on the radio signal,
    Based on the quality of the received radio signal, based on data obtained by demodulating or error correction decoding the radio signal, performing a second transfer process,
    The receiving station performs reception processing of the radio signal transmitted by the first transfer processing and the radio signal transmitted by the second transfer processing.
    A retransmission method in a relay station.
  2.  前記中継局は誤り検出部を備え、
     前記第2の転送処理は、前記無線信号を復調または誤り訂正復号して得られるデータについて、誤りが無いと判定された場合に、実行される、
     ことを特徴とする請求項1記載の再送方法。
    The relay station includes an error detection unit,
    The second transfer process is executed when it is determined that there is no error in the data obtained by demodulating or error correcting decoding the radio signal.
    The retransmission method according to claim 1.
  3.  前記第2の転送処理は、誤り訂正符号化処理および前記誤り訂正符号化処理後のパンクチャ処理を含み、
     前記パンクチャ処理は、前記無線信号について前記送信局が施したパンクチャパターンとは異なるパンクチャパターンで実行される、
     ことを特徴とする請求項1記載の再送方法。
    The second transfer process includes an error correction encoding process and a puncture process after the error correction encoding process,
    The puncturing process is executed with a puncture pattern different from a puncture pattern performed by the transmitting station on the radio signal.
    The retransmission method according to claim 1.
  4.  前記品質は、受信した前記無線信号についての誤り訂正数、または誤りが検出されなくなるまでに実行したターボ復号の繰返し回数、または受信電力、またはSIRであり、
     前記第2の転送処理は、前記品質が、所定の基準を下回る場合に実行される、
     ことを特徴とする請求項1記載の再送方法。
    The quality is the number of error corrections for the received radio signal, the number of iterations of turbo decoding performed until no error is detected, or the received power, or the SIR,
    The second transfer process is executed when the quality falls below a predetermined standard.
    The retransmission method according to claim 1.
  5.  前記第2の転処理は、前記品質が所定の基準を下回る領域のデータを前記受信局へ送信する、
     ことを特徴とする請求項1記載の再送方法。
    In the second conversion process, data in a region where the quality falls below a predetermined standard is transmitted to the receiving station.
    The retransmission method according to claim 1.
  6.  前記第2の転送処理を行う場合に、前記中継局は、受信した前記無線信号についての肯定的な受信応答を送信する、
     ことを特徴とする請求項1記載の再送方法。
    When performing the second transfer process, the relay station transmits a positive reception response for the received radio signal,
    The retransmission method according to claim 1.
  7.  送信局から無線信号を受信し、受信した無線信号に基づいて受信局へ無線信号を送信することで、前記送信局から前記受信局への送信データの中継処理を行う無線中継装置において、
     前記送信局から受信した無線信号を復調せずに、前記無線信号について前記受信局への第1の転送処理を実行する第1の転送部と、
     受信した前記無線信号についての品質に基づいて、前記無線信号を復調または誤り訂正復号して得られるデータに基づいて、第2の転送処理を実行する第2の転送部と、
     を備えることを特徴とする無線中継装置。
    In a radio relay apparatus that performs a relay process of transmission data from the transmission station to the reception station by receiving a radio signal from the transmission station and transmitting the radio signal to the reception station based on the received radio signal.
    A first transfer unit that performs a first transfer process on the wireless signal to the receiving station without demodulating the wireless signal received from the transmitting station;
    A second transfer unit that executes a second transfer process based on data obtained by demodulating or error correcting decoding the wireless signal based on the quality of the received wireless signal;
    A wireless relay device comprising:
  8.  送信局から送信される無線信号を復調することなく受信局へ転送する転送部と、
     前記無線信号の受信品質を測定する測定部と、
     前記測定部により測定された受信品質が閾値レベルよりも低いときに、前記無線信号を復調および復号することで得られる再生データを前記受信局へ送信する再送部と、
     を有する無線中継装置。
    A transfer unit that transfers the radio signal transmitted from the transmitting station to the receiving station without demodulating;
    A measurement unit for measuring the reception quality of the radio signal;
    When the reception quality measured by the measurement unit is lower than a threshold level, a retransmission unit that transmits reproduction data obtained by demodulating and decoding the radio signal to the receiving station;
    A wireless relay device.
  9.  前記無線信号の誤りを検出する誤り検出部をさらに備え、
     前記再送部は、前記品質が閾値レベルよりも低く、且つ、前記誤り検出部により誤りが検出されなかったときに、前記再生データを前記受信局へ送信する
     ことを特徴とする請求項8に記載の無線中継装置。
    An error detector for detecting an error in the radio signal;
    The retransmission section transmits the reproduction data to the receiving station when the quality is lower than a threshold level and an error is not detected by the error detection section. Wireless relay device.
  10.  前記無線信号の誤りを訂正する誤り訂正部と、
     前記誤り訂正部により訂正できなかった誤りを検出する誤り検出部をさらに備え、
     前記再送部は、前記品質が閾値レベルよりも低く、且つ、前記誤り検出部により誤りが検出されなかったときに、前記再生データを前記受信局へ送信する
     ことを特徴とする請求項8に記載の無線パケット中継装置。
    An error correction unit for correcting an error of the radio signal;
    An error detection unit for detecting an error that could not be corrected by the error correction unit;
    The retransmission section transmits the reproduction data to the receiving station when the quality is lower than a threshold level and an error is not detected by the error detection section. Wireless packet relay device.
PCT/JP2008/002844 2008-10-08 2008-10-08 Radio relay device and reproduction method in relay station WO2010041295A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002844 WO2010041295A1 (en) 2008-10-08 2008-10-08 Radio relay device and reproduction method in relay station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002844 WO2010041295A1 (en) 2008-10-08 2008-10-08 Radio relay device and reproduction method in relay station

Publications (1)

Publication Number Publication Date
WO2010041295A1 true WO2010041295A1 (en) 2010-04-15

Family

ID=42100261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002844 WO2010041295A1 (en) 2008-10-08 2008-10-08 Radio relay device and reproduction method in relay station

Country Status (1)

Country Link
WO (1) WO2010041295A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234365A (en) * 2010-04-27 2011-11-17 Research In Motion Ltd Transmission in relay node-based wireless communication system
JP2011239210A (en) * 2010-05-11 2011-11-24 Nippon Telegr & Teleph Corp <Ntt> Communication system, communication apparatus, and communication method and program of those
WO2011157200A1 (en) * 2010-06-13 2011-12-22 中兴通讯股份有限公司 Method, system and device for multi-user joint detection in relay and cooperative communication
US9445284B2 (en) 2011-02-17 2016-09-13 Blackberry Limited Packet delay optimization in the uplink of a multi-hop cooperative relay-enabled wireless network
US20220263872A1 (en) * 2021-02-15 2022-08-18 Charter Communications Operating, Llc System And Method For Evaluating A Customer Premise Equipment (CPE) Device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090669A1 (en) * 2005-02-22 2006-08-31 Matsushita Electric Industrial Co., Ltd. Radio communication method, relay station device, and radio receiver device
WO2006118125A1 (en) * 2005-04-28 2006-11-09 Matsushita Electric Industrial Co., Ltd. Communication relay apparatus and communication relay method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090669A1 (en) * 2005-02-22 2006-08-31 Matsushita Electric Industrial Co., Ltd. Radio communication method, relay station device, and radio receiver device
WO2006118125A1 (en) * 2005-04-28 2006-11-09 Matsushita Electric Industrial Co., Ltd. Communication relay apparatus and communication relay method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"IEEE International Conference on Communications", vol. 10, June 2006, article BASAK CAN ET AL.: "Hybrid Forwarding Scheme for Cooperative Relaying in OFDM Based Networks", pages: 4520 - 4525 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234365A (en) * 2010-04-27 2011-11-17 Research In Motion Ltd Transmission in relay node-based wireless communication system
US8416731B2 (en) 2010-04-27 2013-04-09 Research In Motion Limited Transmission in a relay node-based wireless communication system
US8792412B2 (en) 2010-04-27 2014-07-29 Blackberry Limited Transmission in a relay node-based wireless communication system
JP2011239210A (en) * 2010-05-11 2011-11-24 Nippon Telegr & Teleph Corp <Ntt> Communication system, communication apparatus, and communication method and program of those
WO2011157200A1 (en) * 2010-06-13 2011-12-22 中兴通讯股份有限公司 Method, system and device for multi-user joint detection in relay and cooperative communication
US9445284B2 (en) 2011-02-17 2016-09-13 Blackberry Limited Packet delay optimization in the uplink of a multi-hop cooperative relay-enabled wireless network
US9699740B2 (en) 2011-02-17 2017-07-04 Blackberry Limited Packet delay optimization in the uplink of a multi-hop cooperative relay-enabled wireless network
US20220263872A1 (en) * 2021-02-15 2022-08-18 Charter Communications Operating, Llc System And Method For Evaluating A Customer Premise Equipment (CPE) Device

Similar Documents

Publication Publication Date Title
US9294221B2 (en) Method and arrangement for retransmission control
US7236740B2 (en) Data retransmission apparatus and method in a mobile communication system employing HARQ technique
TWI392300B (en) Apparatus and method for recovering a digital data signal transmitted over a wireless telecommunications network and machine readable medium
CN101411112B (en) Method and arrangement in a telecommunication system
KR100656982B1 (en) Apparatus and method for decoding of portable internet mobile system
EP1628428A1 (en) Receiver and hybrid apq communication system
JP2003008553A (en) Transmitter, receiver, transmitter-receiver and communication system
US20120192026A1 (en) Methods and Systems for Data Transmission Management Using HARQ Mechanism for Concatenated Coded System
WO2003098810A1 (en) Reliability-based hybrid arq scheme
KR20040026231A (en) Adaptive hybrid ARQ method and method of transmitting and receiving data in system employing the same
JP2006253980A (en) Method and apparatus of receiving
KR20090036667A (en) Apparatus and method for processing hybrid-arq in wireless communication system
US10931405B2 (en) Relaying method and device and destination with feedback in an OMAMRC system
JP2006245912A (en) Transmitter, receiver and data retransmission method
CN113273084A (en) Data retransmission in wireless networks
KR20010080224A (en) Accumulative arq method and system
WO2010041295A1 (en) Radio relay device and reproduction method in relay station
JP6126698B2 (en) Method and apparatus for a modified HARQ procedure after a receiver down event
KR101274756B1 (en) Transmitting device, transmitting method and receiving method for multicast and broadcast service
CA2694933A1 (en) Code block reordering prior to forward error correction decoding based on predicted code block reliability
EP1932268B1 (en) Method, apparatuses and system for error detection and selective retransmission
KR101191551B1 (en) Method for transmitting data in wireless multihop network and device thereof
JP2008103991A (en) Data transmitting method
US20110320899A1 (en) Communication system, communication apparatus, radio base station, and communication method
KR20040084212A (en) Hybrid ARQ Wireless Communication System Using state of Feedback Channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP