WO2010039263A1 - Procédés et appareils permettant d’analyser des opérations de localisation et de repérage conformément à des informations historiques - Google Patents

Procédés et appareils permettant d’analyser des opérations de localisation et de repérage conformément à des informations historiques Download PDF

Info

Publication number
WO2010039263A1
WO2010039263A1 PCT/US2009/005444 US2009005444W WO2010039263A1 WO 2010039263 A1 WO2010039263 A1 WO 2010039263A1 US 2009005444 W US2009005444 W US 2009005444W WO 2010039263 A1 WO2010039263 A1 WO 2010039263A1
Authority
WO
WIPO (PCT)
Prior art keywords
locate
information
marking operation
marking
data
Prior art date
Application number
PCT/US2009/005444
Other languages
English (en)
Inventor
Steven E. Nielsen
Curtis Chambers
Jeffrey Farr
Original Assignee
Certusview Technologies, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/493,109 external-priority patent/US20090327024A1/en
Priority claimed from US12/539,497 external-priority patent/US8280631B2/en
Priority claimed from US12/568,087 external-priority patent/US8965700B2/en
Priority claimed from US12/569,192 external-priority patent/US8620587B2/en
Application filed by Certusview Technologies, Llc filed Critical Certusview Technologies, Llc
Priority to CA2739110A priority Critical patent/CA2739110C/fr
Priority to AU2009300343A priority patent/AU2009300343B2/en
Publication of WO2010039263A1 publication Critical patent/WO2010039263A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • Field service operations may be any operation in which companies dispatch technicians and/or other staff to perform certain activities, for example, installations, services and/or repairs.
  • Field service operations may exist in various industries, examples of which include, but are not limited to, network installations, utility installations, security systems, construction, medical equipment, heating, ventilating and air conditioning (HVAC) and the like.
  • HVAC heating, ventilating and air conditioning
  • locate and marking operation An example of a field service operation in the construction industry is a so-called "locate and marking operation,” also commonly referred to more simply as a “locate operation” (or sometimes merely as a “locate”).
  • a locate technician visits a work site at which there is a plan to disturb the ground (e.g., excavating, digging one or more holes and/or trenches, boring, etc.) to determine a presence or an absence of one or more underground facilities (such as various types of utility cables and pipes) in a dig area to be excavated or otherwise disturbed at the work site.
  • a locate and marking operation may be requested for a "design" project, in which there may be no immediate plan to excavate or otherwise disturb the ground, but nonetheless information about a presence or absence of one or more underground facilities at a work site may be valuable to inform a planning, permitting and/or engineering design phase of a future construction project.
  • an excavator who plans to disturb ground at a work site is required by law to notify any potentially affected underground facility owners prior to undertaking an excavation activity.
  • Advanced notice of excavation activities may be provided by an excavator (or another party) by contacting a "one-call center.”
  • One-call centers typically are operated by a consortium of underground facility owners for the purposes of receiving excavation notices and in turn notifying facility owners and/or their agents of a plan to excavate.
  • excavators typically provide to the one-call center various information relating to the planned activity, including a location (e.g., address) of the work site and a description of the dig area to be excavated or otherwise disturbed at the work site.
  • Figure 1 illustrates an example in which a locate and marking operation is initiated as a result of an excavator 110 providing an excavation notice to a one-call center 120.
  • excavation notice also is commonly referred to as a "locate request," and may be provided by the excavator to the one-call center via an electronic mail message, an information entry via a website maintained by the one-call center, or a telephone conversation between the excavator and a human operator at the one-call center.
  • the locate request may include an address or some other location-related information describing the geographic location of a work site at which the excavation is to be performed, as well as a description of the dig area (e.g., a text description),, such as its location relative to certain landmarks and/or its approximate dimensions, within which there is a plan to disturb the ground at the work site.
  • One-call centers similarly may receive locate requests for design projects (for which, as discussed above, there may be no immediate plan to excavate or otherwise disturb the ground).
  • the one-call center Using the information provided in a locate request for planned excavation or design projects, the one-call center identifies certain underground facilities that may be present at the indicated work site. For this purpose, many one-call centers typically maintain a collection "polygon maps" which indicate, within a given geographic area over which the one-call center has jurisdiction, generally where underground facilities may be found relative to some geographic reference frame or coordinate system.
  • Polygon maps typically are provided to the one-call centers by underground facility owners within the jurisdiction of the one call center ("members" of the one-call center).
  • a one- call center first provides the facility owner/member with one or more maps (e.g., street or property maps) within the jurisdiction, on which are superimposed some type of grid or coordinate system employed by the one-call center as a geographic frame of reference.
  • maps e.g., street or property maps
  • the respective facilities owners/members draw one or more polygons on each map to indicate an area within which their facilities generally are disposed underground (without indicating the facilities themselves).
  • polygons themselves do not precisely indicate geographic locations of respective underground facilities; rather, the area enclosed by a given polygon generally provides an over-inclusive indication of where a given facilities owner's underground facilities are disposed.
  • Different facilities owners/members may draw polygons of different sizes around areas including their underground facilities, and in some instances such polygons can cover appreciably large geographic regions (e.g., an entire subdivision of a residential area), which may further obfuscate the actual/precise location of respective underground facilities.
  • the one- call center may in some instances create composite polygon maps to show polygons of multiple different members on a single map. Whether using single member or composite polygon maps, the one-call center examines the address or location information provided in the locate request and identifies a significant buffer zone around an identified work site so as to make an over- inclusive identification of facilities owners/members that may have underground facilities present (e.g., to err on the side of caution).
  • the one-call center consults the polygon maps to identify which member polygons intersect with all or a portion of the buffer zone so as to notify these underground facility owners/members and/or their agents of the proposed excavation or design project.
  • the buffer zones around an indicated work site utilized by one-call centers for this purpose typically embrace a geographic area that includes but goes well beyond the actual work site, and in many cases the geographic area enclosed by a buffer zone is significantly larger than the actual dig area in which excavation or other similar activities are planned.
  • the area enclosed by a given member polygon generally does not provide a precise indication of where one or more underground facilities may in fact be found.
  • one-call centers may also or alternatively have access to various existing maps of underground facilities in their jurisdiction, referred to as "facilities maps.”
  • Facilities maps typically are maintained by facilities owners/members within the jurisdiction and show, for respective different utility types, where underground facilities purportedly may be found relative to some geographic reference frame or coordinate system (e.g., a grid, a street or property map, latitude and longitude coordinates, etc.).
  • Facilities maps generally provide somewhat more detail than polygon maps provided by facilities owners/members; however, in some instances the information contained in facilities maps may not be accurate and/or complete. For at least this reason, whether using polygon maps or facilities maps, as noted above the one- call center utilizes a significant buffer zone around an identified work site so as to make an over- inclusive identification of facilities owners/members that may have underground facilities present.
  • the one-call center Once facilities implicated by the locate request are identified by a one-call center (e.g., via the polygon map/buffer zone process), the one-call center generates a "locate request ticket” (also known as a "locate ticket,” or simply a "ticket").
  • a "locate request ticket” also known as a "locate ticket,” or simply a "ticket”
  • the locate request ticket essentially constitutes an instruction to inspect a work site and typically identifies the work site of the proposed excavation or design and a description of the dig area, typically lists on the ticket all of the underground facilities that may be present at the work site (e.g., by providing a member code for the facility owner whose polygon falls within a given buffer zone), and may also include various other information relevant to the proposed excavation or design (e.g., the name of the excavation company, a name of a property owner or party contracting the excavation company to perform the excavation, etc.).
  • the one-call center sends the ticket to one or more underground facility owners 140 and/or one or more locate service providers 130 (who may be acting as contracted agents of the facility owners) so that they can conduct a locate and marking operation to verify a presence or absence of the underground facilities in the dig area.
  • a given underground facility owner 140 may operate its own fleet of locate technicians (e.g., locate technician 145), in which case the one-call center 120 may send the ticket to the underground facility owner 140.
  • a given facility owner 140 may contract with a locate service provider 130 to receive locate request tickets and perform locate and marking operations on behalf of the facility owner 140.
  • the locate service provider may dispatching a locate technician 150 to verify a presence or absence of the underground facilities in the prescribed dig area.
  • a locate service provider or a facility owner may dispatch a locate technician to the work site of planned excavation to determine a presence or absence of one or more underground facilities in the dig area to be excavated or otherwise disturbed.
  • a typical first step for the locate technician includes utilizing an underground facility “locate device,” which is an instrument or set of instruments (also referred to commonly as a “locate set”) for detecting facilities that are concealed in some manner, such as cables and pipes that are located underground.
  • the locate device is employed by the technician to verify the presence or absence of underground facilities indicated in the locate request ticket as potentially present in the dig area (e.g., via the facility owner member codes listed in the ticket). This process is often referred to as a "locate operation.”
  • an underground facility locate device is used to detect electromagnetic fields that are generated by an applied signal provided along a length of a target facility to be identified.
  • a locate device may include both a signal transmitter to provide the applied signal (e.g., which is coupled by the locate technician to a tracer wire disposed along a length of a facility), and a signal receiver which is generally a handheld apparatus carried by the locate technician as the technician walks around the dig area to search for underground facilities.
  • the transmitter is connected via a connection point to a target object (in this example, underground facility) located in the ground, and generates the applied signal coupled to the underground facility via the connection point (e.g., to a tracer wire along the facility), resulting in the generation of a magnetic field.
  • the magnetic field in turn is detected by the locate receiver, which itself may include one or more detection antenna.
  • the locate receiver indicates a presence of a facility when it detects electromagnetic fields arising from the applied signal. Conversely, the absence of a signal detected by the locate receiver of generally indicates the absence of the target facility.
  • a locate device employed for a locate operation may include a single instrument, similar in some respects to a conventional metal detector.
  • such an instrument may include an oscillator to generate an alternating current that passes through a coil, which in turn produces a first magnetic field. If a piece of electrically conductive metal is in close proximity to the coil (e.g., if an underground facility having a metal component is below/near the coil of the instrument), eddy currents are induced in the metal and the metal produces its own magnetic field, which in turn affects the first magnetic field.
  • the instrument may include a second coil to measure changes to the first magnetic field, thereby facilitating detection of metallic objects.
  • the locate technician In addition to the locate operation, the locate technician also generally performs a "marking operation," in which the technician marks the presence (and in some cases the absence) of a given underground facility in the dig area based on the various signals detected (or not detected) during the locate operation.
  • the locate technician conventionally utilizes a "marking device” to dispense a marking material on, for example, the ground, pavement, or another surface along a detected underground facility.
  • Marking material may be any material, substance, compound, and/or element, used or which may be used separately or in combination to mark, signify, and/or indicate. Examples of marking materials may include, but
  • 1783319.1 are not limited to, paint, chalk, dye, and/or iron.
  • Marking devices such as paint marking wands and/or paint marking wheels, provide a convenient method of dispensing marking materials onto surfaces, such as onto the surface of the ground or pavement.
  • arrows, flags, darts, or other types of physical marks may be used to mark the presence or absence of an underground facility in a dig area, in addition to or as an alternative to a material applied to the ground (such as paint, chalk, dye, tape) along the path of a detected utility.
  • the marks resulting from any of a wide variety of materials and/or objects used to indicate a presence or absence of underground facilities generally are referred to as "locate marks.”
  • locate marks Often, different color materials and/or physical objects may be used for locate marks, wherein different colors correspond to different utility types.
  • the technician also may provide one or more marks to indicate that no facility was found in the dig area (sometimes referred to as a "clear").
  • locate and marking operation As mentioned above, the foregoing activity of identifying and marking a presence or absence of one or more underground facilities generally is referred to for completeness as a "locate and marking operation.” However, in light of common parlance adopted in the construction industry, and/or for the sake of brevity, one or both of the respective locate and marking functions may be referred to in some instances simply as a "locate operation” or a “locate” (i.e., without making any specific reference to the marking function). Accordingly, it should be appreciated that any reference in the relevant arts to the task of a locate technician simply as a "locate operation” or a "locate” does not necessarily exclude the marking portion of the overall process. At the same time, in some contexts a locate operation is identified separately from a marking operation, wherein the former relates more specifically to detection-related activities and the latter relates more specifically to marking-related activities.
  • Inaccurate locating and/or marking of underground facilities can result in physical damage to the facilities, property damage, and/or personal injury during the excavation process that, in turn, can expose a facility owner or contractor to significant legal liability.
  • underground facilities are damaged and/or when property damage or personal injury results from damaging an underground facility during an excavation, the excavator may assert that the facility was not accurately located and/or marked by a locate technician, while the locate contractor who dispatched the technician may in turn assert that the facility was indeed properly located and marked. Proving whether the underground facility was properly located and marked can be difficult after the excavation (or after some damage, e.g., a gas explosion), because in many cases the physical locate marks (e.g., the marking material or other physical marks used to mark the facility on the surface of the dig area) will have been disturbed or destroyed during the excavation process (and/or damage resulting from excavation).
  • the physical locate marks e.g., the marking material or other physical marks used to mark the facility on the surface of the dig area
  • each technician typically is dispatched to perform field operations at any given time, and over any given time period each technician may be assigned numerous work orders, or "tickets" specifying aspects of the field operations to be performed.
  • the volume of tickets per technician may be particularly high in the construction industry, especially in connection with locate and marking operations.
  • the inventors have recognized and appreciated that implementing and performing meaningful oversight and quality control activities in a timely fashion for several field technicians each performing several field operations in a given time period may present challenges, and that failure to perform meaningful oversight and quality control activities may adversely affect customer satisfaction.
  • inventive embodiments disclosed herein relate generally to methods, apparatus and systems for computer-aided determination of quality assessment for locate and/or marking operations.
  • a quality assessment decision is solely under the discretion of a human reviewer, albeit facilitated in some respects by
  • information related to a locate and/or marking operation is electronically analyzed such that a quality assessment is not based solely on human discretion, but rather based at least in part on some predetermined criteria and/or metrics that facilitate an automated determination of quality assessment.
  • an automated quality assessment system may receive information related to a locate and/or marking operation from one or more sources of electronic data (also referred to herein as "field information" or “field data”), analyze the contents of the received electronic data, and automatically assess the quality of the operation based at least in part on the analysis.
  • sources of electronic data also referred to herein as "field information” or "field data”
  • automated analysis of at least some of the received electronic data relating to the locate and/or marking operation facilitates further analysis and/or quality assessment by a human, in which the quality assessment is not based solely on the discretion of the human, but is significantly informed in some manner by automated analysis of data.
  • some or all of the available field information (e.g., which in some instances is derived from data contained in an electronic record of the locate and/or marking operation) is compared to "reference information" or “reference data” (which in some instances is derived from information/data contained in a "reference” electronic record).
  • Examples of types of reference information/data used in a quality assessment process may include, but are not limited to: 1) information/data derived from or relating to one or more facilities maps that illustrate the presumed locations of underground facilities purportedly present in a geographic area proximate to or surrounding and subsuming the work site; 2) information/data derived from or relating to one or more previous locate and/or marking operations at or near the work site (referred to herein as "historical tickets” or “historical data”); and/or 3) information/data relating to one or more environmental landmarks present in a geographic area proximate to or surrounding and subsuming the dig area (e.g., the work site and its environs), or within the dig area itself
  • mark information which may be available, for example, from facilities maps, historical tickets, and/or field data collected at or around the time of the locate and/or marking operation being assessed).
  • the quality assessment of the locate and/or marking operation may be performed, in whole or in part, by one or more analysis components (e.g., one or more processors executing instructions) separate and/or remote from the locate and/or marking device used in connection with the locate and/or marking operation.
  • the assessment may be performed, in whole or in part, by one or more analysis components incorporated within or otherwise coupled to a locate device, a marking device, and/or a combined locate and marking device.
  • the assessment may be performed substantially in real time with respect to the generation of the field information/data used in connection with the assessment (e.g., one or more electronic records of a locate and/or marking operation and/or an electronic manifest of same), otherwise during a locate and/or marking operation, or after completion of a locate and/or marking operation.
  • the field information/data used in connection with the assessment e.g., one or more electronic records of a locate and/or marking operation and/or an electronic manifest of same
  • a notification may be generated based on the quality assessment performed.
  • the notification may provide one or more indications of the quality of the locate and/or marking operation as a whole, or of some aspect thereof.
  • the notification may provide an indication of a degree of correspondence or discrepancy between field data contained in the electronic record of the locate and/or marking operation and reference data contained in the reference electronic record to which it is compared.
  • the notification may provide an indication that the locate and/or marking operation is or is not approved based on the comparison of the field data to the reference data.
  • the notification may be transmitted electronically or otherwise conveyed, for example, to one or more parties associated with one or more underground facilities within the dig area or in a geographic area proximate to or surrounding and subsuming the work site, one or more parties associated with the performance or oversight of the locate and/or marking operation, and/or one or more parties associated with excavation of the dig area for example.
  • an electronic record of a current locate and/or marking operation may be compared to some or all of the contents of a reference electronic record.
  • the reference electronic record may be compared to some or all of the contents of a reference electronic record.
  • the reference electronic record may be compared to some or all of the contents of a reference electronic record.
  • 1783319.1 record may comprise data derived from or relating to one or more previous (or "historical") locate and/or marking operations conducted at the same work site as the current locate and/or marking operation.
  • the types of data being compared between the current electronic record and the reference electronic record may include geographic information, facility type information, and/or other information relating to the facilities identified and/or marked during the current and historical locate and/or marking operations.
  • the comparison may generally involve determining whether there is agreement between the current locate and/or marking operation and the historical locate and/or marking operation, which may in turn involve identifying at least one correspondence or discrepancy between the compared data, and in some instances a degree of correspondence.
  • a first electronic representation of field information relating to a locate and/or marking operation e.g., data in an electronic record, an electronic manifest, etc.
  • a second electronic representation of reference information e.g., data in a reference electronic record from any of a variety of sources
  • the electronic representations may be visually rendered (e.g., via a computer-generated visual representation in a display field) such that the electronic representations are overlaid to provide a visual aid to an automated assessment process.
  • some embodiments of the present disclosure are directed to an apparatus for assessing a quality of a first locate and/or marking operation to identify a presence or an absence of at least one underground facility at a work site.
  • the apparatus comprises: a memory storing processor-executable instructions; at least one I/O interface; and a processor coupled to the memory and the at least one I/O interface.
  • the processor Upon execution of the processor-executable instructions, the processor: A) compares first information relating to the first locate and/or marking operation to second information relating to at least one second locate and/or marking operation different from the first locate and/or marking operation; B) automatically generates, based on A), at least one indication of a quality assessment of the first locate and/or marking operation; and C) electronically stores in the memory, and/or electronically transmits via the at least one I/O interface, the at least one indication of the quality assessment so as to provide an electronic record of the quality assessment.
  • the first locate and/or marking operation is performed by at least one technician, and, in C), the processor transmits at least one feedback message to
  • the feedback message being generated based at least in part on the at least one indication of the quality assessment generated in B).
  • the first information is generated by locating equipment used to perform the first locate and/or marking operation, wherein the locating equipment comprises at least one of a marking device, a locate device, and a combined locate and marking device, and wherein prior to A), the processor: receives the first information from the locating equipment, wherein the first information includes locate information, marking information, and/or landmark information.
  • A), B), and C) are performed during or immediately following the locate and/or marking operation, and the processor: D) alters at least one operating characteristic of the locating equipment based on the at least one indication of the quality assessment.
  • the processor Al) selects for comparison, prior to A), at least some of the first information and/or at least some of the second information based at least in part on a dig area indicator that indicates a dig area of the work site on a digital image.
  • the processor prior to A: obtains the first information from one or more first electronic records relating to the first locate and/or marking operation, based at least in part on a target of comparison corresponding to one or more aspects of the quality the first locate and/or marking operation; and obtains the second information from one or more second electronic records relating to the at least one second locate and/or marking operation, based at least in part on the target of comparison corresponding to one or more aspects of the quality the first locate and/or marking operation.
  • the at least one second locate and/or marking operation includes a plurality of second locate and/or marking operations;
  • the one or more second electronic records comprise a plurality of second electronic records each corresponding to a different one of the plurality of second locate and/or marking operations; and prior to A), the processor obtains the second information by: obtaining at least one piece of information relevant to the target of comparison from each of the plurality of second electronic records so as to collect a plurality of pieces of information; and aggregate the plurality of pieces of information obtained from the plurality of second electronic records to obtain the second information.
  • the target of comparison comprises first geographic information relating to at least one location at which at least one facility line of the at least one underground facility was detected and/or marked during the locate and/or marking operation; the first information includes a first set of geo-location data points indicating first geographic locations at which the at least one facility line of the at least one underground facility was detected and/or marked during the first locate and/or marking operation; and the second information includes a second set of geo-location data points indicating second geographic locations at which at least one corresponding facility line of the at least one underground facility was detected and/or marked during the at least one second locate and/or marking operation, wherein in A) the processor: Al) compares the first set of geo-location data points with the second set of geo-location data points; and A2) determines a distance between each point in the first set and a nearest point in the second set to generate a vector of distances.
  • the processor in A) provides at least one quality assessment criterion relating to the second information relating to at least one second locate and/or marking operation; provides at least two scoring categories for the at least one quality assessment criterion, each scoring category associated with a scoring value or grade; for each scoring category provides an expected data value or range of expected data values; determines, for the at least one quality assessment criterion, into which of the at least two scoring categories the first locate and/or marking operation falls by comparing the first information to the expected data value or range of expected data values for at least one of the at least two scoring categories; and assigns to the first locate and/or marking operation the scoring value or grade associated with the scoring category into which the locate and marking operation falls.
  • Some further embodiments of the present disclosure are directed to an apparatus for automatically assessing a quality of a current locate and/or marking operation based at least in part on reference information relating to one or more historical locate and/or marking operations performed at or near a work site of the current locate and/or marking operation.
  • the apparatus comprises: a memory storing processor-executable instructions; at least one I/O interface; and a processor coupled to the memory and the at least one I/O interface.
  • the processor Upon execution of the processor-executable instructions, the processor: A) identifies at least one first geographic location at which at least one facility line of at least one underground facility was detected and/or marked during the current locate and/or marking operation; B) obtains field geo-location data
  • Some further embodiments of the present disclosure are directed to a method for execution by a computer for assessing a quality of a first locate and/or marking operation to identify a presence or an absence of at least one underground facility at a work site.
  • the computer comprises a memory, at least one I/O interface and a processor.
  • the method comprises: A) comparing first information relating to the first locate and/or marking operation to second information relating to at least one second locate and/or marking operation different from the first locate and/or marking operation; B) automatically generating, based on A), at least one indication of a quality assessment of the first locate and/or marking operation; and C) electronically storing in the memory, and/or electronically transmitting via the at least one I/O interface, the at least one indication of the quality assessment so as to provide an electronic record of the quality assessment.
  • Some further embodiments of the present disclosure are directed to at least one computer-readable medium encoded with computer-executable instructions which, when executed by at least one processor, perform a method for assessing a quality of a first locate and/or marking operation to identify a presence or an absence of at least one underground facility at a work site.
  • the method comprises: A) comparing first information relating to the first locate and/or marking operation to second information relating to at least one second locate and/or marking operation different from the first locate and/or marking operation; B) automatically generating, based on A), at least one indication of a quality assessment of the first locate and/or marking operation; and C) electronically storing in the memory, and/or electronically transmitting via the at least one I/O interface, the at least one indication of the quality assessment so as to provide an electronic record of the quality assessment.
  • dig area refers to a specified area of a work site within in which there is a plan to disturb the ground (e.g., excavate, dig holes and/or trenches, bore, etc.), and beyond which there is no plan to excavate in the immediate surroundings.
  • the metes and bounds of a dig area are intended to provide specificity as to
  • a given work site may include multiple dig areas.
  • the term "facility” refers to one or more lines, cables, fibers, conduits, transmitters, receivers, or other physical objects or structures capable of or used for carrying, transmitting, receiving, storing, and providing utilities, energy, data, substances, and/or services, and/or any combination thereof.
  • underground facility means any facility beneath the surface of the ground. Examples of facilities include, but are not limited to, oil, gas, water, sewer, power, telephone, data transmission, cable television (TV), and/or internet services.
  • locate device refers to any apparatus and/or device, used alone or in combination with any other device, for detecting and/or inferring the presence or absence of any facility, including without limitation, any underground facility.
  • a locate device often includes both a locate transmitter and a locate receiver (which in some instances may also be referred to collectively as a "locate instrument set,” or simply “locate set”).
  • the term "marking device” refers to any apparatus, mechanism, or other device that employs a marking dispenser for causing a marking material and/or marking object to be dispensed, or any apparatus, mechanism, or other device for electronically indicating (e.g., logging in memory) a location, such as a location of an underground facility.
  • the term “marking dispenser” refers to any apparatus, mechanism, or other device for dispensing and/or otherwise using, separately or in combination, a marking material and/or a marking object.
  • An example of a marking dispenser may include, but is not limited to, a pressurized can of marking paint.
  • marking material means any material, substance, compound, and/or element, used or which may be used separately or in combination to mark, signify, and/or indicate.
  • marking materials may include, but are not limited to, paint, chalk, dye, and/or iron.
  • marking object means any object and/or objects used or which may be used separately or in combination to mark, signify, and/or indicate.
  • marking objects may include, but are not limited to, a flag, a dart, and arrow, and/or an RFID marking ball. It is contemplated that marking material may include marking objects. It is further contemplated that the terms "marking materials” or “marking objects” may be used interchangeably in accordance with the present disclosure.
  • locate mark means any mark, sign, and/or object employed to indicate the presence or absence of any underground facility.
  • locate marks may include, but are not limited to, marks made with marking materials, marking objects, global positioning or other information, and/or any other means. Locate marks may be represented in any form including, without limitation, physical, visible, electronic, and/or any combination thereof.
  • actuate or “trigger” (verb form) are used interchangeably to refer to starting or causing any device, program, system, and/or any combination thereof to work, operate, and/or function in response to some type of signal or stimulus.
  • actuation signals or stimuli may include, but are not limited to, any local or remote, physical, audible, inaudible, visual, non-visual, electronic, mechanical, electromechanical, biomechanical, biosensing or other signal, instruction, or event.
  • actuator or “trigger” (noun form) are used interchangeably to refer to any method or device used to generate one or more signals or stimuli for causing actuation.
  • Examples of an actuator/trigger may include, but are not limited to, any form or combination of a lever, switch, program, processor, screen, microphone for capturing audible commands, and/or other device or method.
  • An actuator/trigger may also include, but is not limited to, a device, software, or program that responds to any movement and/or condition of a user, such as, but not limited to, eye movement, brain activity, heart rate, other data, and/or the like, and generates one or more signals or stimuli in response thereto.
  • actuation may cause marking material to be dispensed, as well as various data relating to the marking operation (e.g., geographic location, time stamps, characteristics of material dispensed, etc.) to be logged in an electronic file stored in memory.
  • actuation may cause a detected signal strength, signal frequency, depth, or other information relating to the locate and marking operation to be logged in an electronic file stored in memory.
  • locate and marking operation generally are used interchangeably and refer to any activity to detect, infer, and/or mark the presence or absence of an underground facility.
  • locate operation is used to more specifically refer to detection of one or more underground facilities
  • marking operation is used to more specifically refer to using a marking material and/or one or more
  • locate technician refers to an individual performing a locate and/or marking operation.
  • a locate and/or marking operation often is specified in connection with a dig area, at least a portion of which may be excavated or otherwise disturbed during excavation activities.
  • the term "user” refers to an individual utilizing a locate device and/or a marking device and may include, but is not limited to, land surveyors, locate technicians, and support personnel.
  • locate request ticket refers to any communication or instruction to perform a locate and/or marking operation.
  • a ticket might specify, for example, the address or description of a dig area to be marked, the day and/or time that the dig area is to be marked, and/or whether the user is to mark the excavation area for certain gas, water, sewer, power, telephone, cable television, and/or some other underground facility.
  • historical ticket refers to past tickets that have been completed.
  • complex event processing refers to a software and/or hardware- implemented (e.g., facilitated by a computer system, distributed computer system, computational analysis coded in software, and/or a combination thereof) technique relating to recognizing one or more events, patterns of events, or the absence of an event or pattern of events, within one or more input streams of information and performing one or more actions and/or computations in response to such recognition, in accordance with specified rules, criteria, algorithms, or logic.
  • CEP generally involves detection of relationships between information contained in input streams (which input streams may include indications of previously recognized events), such as causality, membership, timing, event-driven processes, detection of complex patterns of one or more events, event streams processing, event correlation and abstraction, and/or event hierarchies.
  • CEP may complement and contribute to technologies such as, but not limited to, service oriented architecture (SOA), event driven architecture (EDA), and/or business process management (BPM).
  • SOA service oriented architecture
  • EDA event driven architecture
  • BPM business process management
  • CEP allows the information contained in the events flowing through all of the layers of a service business, an enterprise information technology infrastructure and/or a management operation to be discovered, analyzed, and understood in terms of its impact on
  • Figure 1 illustrates an example in which a locate and/or marking operation is initiated as a result of an excavator providing an excavation notice to a one-call center;
  • Figure 2 illustrates an automated quality assessment system for assessing the quality of a field service operation, in accordance with some embodiments of the present disclosure
  • Figure 3 illustrates a process for automatically assessing the quality of a field service operation, in accordance with some embodiments of the present disclosure
  • Figure 4 illustrates a varieties of data sources and an automated quality assessment application for automatically performing quality control in underground facility locate applications, in accordance with some embodiments of the present disclosure
  • Figure 5 illustrates a process for automatically performing quality control in underground facility locate applications, in accordance with some embodiments of the present disclosure
  • Figure 6 illustrates an exemplary locate request ticket generated by a one-call center in response to receiving an excavation notice
  • FIG. 7 illustrates a virtual white lines (VWL) image in which a dig area is indicated on an aerial image of a work site by a set of dashed lines, in accordance with some embodiments of the present disclosure
  • Figure 8 illustrates a data set that may be stored and/or transmitted in connection with a VWL image, in accordance with some embodiments of the present disclosure
  • Figure 9 illustrates an electronic manifest comprising both image data and non-image data relating to a locate and/or marking operation, in accordance with some embodiments of the present disclosure
  • Figure 10 illustrates a data set that may be used to generate an electronic manifest of a locate and/or marking operation, in accordance with some embodiments of the present disclosure
  • Figure 11 illustrates a plurality of locate marks produced by a plurality of actuations of a marking device during a locate and/or marking operation, in accordance with some embodiments of the present disclosure
  • Figure 12 illustrates a process for aggregating information regarding historical locate and/or marking operations and comparing the aggregated information with information regarding a current locate and/or marking operation, in accordance with some embodiments of the present disclosure
  • Figure 13 illustrates a process for carrying out a location-based comparison, in accordance with some embodiments of the present disclosure
  • Figure 14 illustrates a process for determining a distance between two sets of geographical points, in accordance with some embodiments of the present disclosure.
  • Figure 15 illustrates a visual representation of locate marks placed during a current locate and/or marking operation, as well as locate marks rendered based on aggregated historical information, in accordance with some embodiments of the present disclosure.
  • inventive concepts disclosed herein may be employed in the general context of performing oversight and quality control in field service operations, such as locate and/or marking operations.
  • human approvers and/or managers may review a record of a locate and/or marking operation performed by a locate technician, and may assess the quality of the operation in real time and/or within a certain amount of time (e.g., one day) of completion of the operation.
  • This type of review and quality assessment namely, by one or more humans and based solely on the discretion of the humans, is referred to herein as "manual quality assessment.”
  • an automated quality assessment system may receive "field information" (also referred to as "field data") related to a locate and/or marking operation from one or more sources of electronic data, such as electronic records of locate and/or marking operations generated by various locate equipment, an electronic manifest for same, ticket information, service-related information, etc.
  • field information also referred to as "field data”
  • sources of electronic data such as electronic records of locate and/or marking operations generated by various locate equipment, an electronic manifest for same, ticket information, service-related information, etc.
  • the system may electronically analyze the contents of the field information/data by comparing it to "reference information" (also referred to as reference data) derived from or relating to one or more historical records of locate and/or marking operations, and automatically assess the quality of the operation based at least in part on the analysis (e.g., according to some criteria on which the comparison is based and some appropriate metrics for the criteria).
  • reference information also referred to as reference data
  • automated analysis of field information/data facilitates additional analysis and/or quality assessment by a human.
  • the quality assessment may not be based solely on the discretion of the human, but may be significantly informed in some manner by the automated analysis of the received electronic data.
  • manual quality assessment of a locate and/or marking operation
  • methods, apparatus and systems according to the present disclosure may automatically compare electronic data relating to a locate and/or marking operation against reference information derived from or relating to one or more historical records.
  • the outcomes or results of the comparisons may be used in deriving one or more of a variety of indications of assessed quality of a locate and/or marking operation.
  • the indication of assessed quality of a locate and/or marking operation may be categorized into one or more of a plurality of quality categories. Any suitable number and type of categories may be used, as the present disclosure is not limited in this respect.
  • a locate and/or marking operation may be automatically categorized as one of the following: (a) approved - no further action needed; (b) satisfactory, but the locate technician needs coaching or training; (c) unsatisfactory - the ticket needs quality control (QC) action; or (d) real-time prompt - an aspect of the assessment may be suitable for prompting the locate technician in real time with respect to, for example, performing an immediate verification and/or corrective action. Additionally, or alternatively, a score, grade, or other graduated indication (e.g., based on some suitable range or scale) may be provided as an indication of assessed quality of the locate and/or marking operation.
  • FIG. 2 shows an example of an automated quality assessment system 200 in accordance with some embodiments.
  • the automated quality assessment system 200 may, for example, be a computer system having at least one processing units 204 (also referred to herein simply as "processors"), a memory 206 that comprises at least one tangible storage medium (e.g., RAM, ROM, Flash memory, one or more magnetic storage devices, one or more optical storage devices, or any other type of tangible storage medium), and at least one communications interface 202.
  • the memory 206 may store computer-readable instructions of an automated quality assessment application 210, which may be executed by the processor 204.
  • the communication interface 202 may be coupled to a wired or wireless network, bus, or other communication means and may therefore allow the automated quality assessment system 200 to transmit communications to and/or receive communications from other systems.
  • the automated quality assessment application 210 may obtain information associated with a field service operation (e.g., a locate and/or marking operation) from data sources 220 via the communication interface 202, analyze the data to assess the quality of the field service operation, and output one or more indications of assessed quality of the field service operation.
  • a field service operation e.g., a locate and/or marking operation
  • the automated quality assessment application 210 may obtain information associated with a field service operation (e.g., a locate and/or marking operation) from data sources 220 via the communication interface 202, analyze the data to assess the quality of the field service operation, and output one or more indications of assessed quality of the field service operation.
  • one or more indications of assessed quality may be stored in the memory 206 and/or transmitted via the communication interface 202 to provide an electronic record of the quality assessment.
  • the automated quality assessment system 200 may be implemented in any suitable manner, as the present disclose is not limited in this respect.
  • part or all of the analysis and/or processing performed by the automated quality system may be implemented using any suitable software and/or hardware techniques, including, but not limited to, complex event processing (CEP) techniques.
  • CEP complex event processing
  • the automated quality assessment system 200 may additionally comprise at least one display unit 208, for example, to allow a user to view various information in connection with execution of the instructions.
  • a user input device 209 may also be provided, for example, to allow the user to make manual adjustments, make selections, enter data or various other information, and/or interact in any of a variety of manners with the automated quality assessment system 200.
  • FIG 3 shows an example of a process 300 that may be performed by a quality assessment application (e.g., the quality assessment application 210 shown in Figure 2) to automatically assess the quality of a field service operation, such as, for example, a locate and/or marking operation.
  • the process 300 begins at act 302, where the automated quality assessment application receives electronic information associated with a field service operation.
  • the process 300 next continues to act 304, where the automated quality assessment application analyzes at least some of the received information to automatically generate a quality assessment of the field service operation.
  • the process 300 next continues to act 306, where the automated quality assessment application outputs an indication of the quality of the field service operation based on quality assessment generated in the act 304.
  • Figure 4 presents a more detailed functional block diagram of the automated quality assessment application 210 and the data sources 220, in accordance with some embodiments.
  • the automated quality assessment application 210 may be a rules-based computer software application that includes, for example, an information processing component 410, quality assessment outcomes 412 (e.g., one or more indications of assessed quality) and a feedback component 414.
  • the automated quality assessment application 210 may be fed by any number of data sources (e.g., the data sources 220), which may include various types of electronic information and/or records of data associated with locate and/or marking operations performed in the field (e.g., both "field information/data and "reference information/data").
  • Examples of the data sources 220 that may be processed by the information processing component 410 of the automated quality assessment application 100 include, but are not limited to, one or more tickets 420 pending review and assessment (which may include textual ticket information 422), virtual white lines (VWL) images 432 managed by a VWL application 130, ticket assessment outcomes 442 generated by a ticket assessment application 440, locating equipment data 450 (which may include locate receiver data 454 and/or marking device data 452), electronic manifest (EM) images 460 generated by an EM application 460, a collection of facilities maps 480, an archive of historical tickets 490, and any other suitable electronic information and/or records 495.
  • tickets 420 pending review and assessment which may include textual ticket information 422)
  • VWL virtual white lines
  • locating equipment data 450 which may include locate receiver data 454 and/or marking device data 452
  • EM electronic manifest
  • the various data sources 220 may be supplied by any number of entities (not shown) and may be accessible to the automated quality assessment application 210 via, for example, a networked computing system for supporting locate and/or marking operations. Further details regarding the data sources 220 are discussed below in connection with Figures 6-11.
  • the information processing component 410 of the automated quality assessment application 210 may be a rules-based software component that analyzes
  • the information processing component 410 may automatically generate a quality assessment outcome 412 that corresponds to the results of the automated quality assessment.
  • the outcome generated may be a categorization of the locate and/or marking operation into one of a plurality of quality categories (also referred to herein as "scoring" categories or “grading” categories).
  • a locate and/or marking operation may be categorized as:
  • PROMPT - an aspect of the locate and/or marking operation assessment may be suitable for transmitting a real-time prompt to the locate technician with respect to, for example, performing a substantially immediate verification and/or a corrective action.
  • Other examples of possible outcomes generated by automated ticket application 210 include, but are not limited to, a numerical score (e.g., a score of 0-100%), a grade (e.g., a grade of A-F), or other graduated indicator, based on some appropriate range, scale, resolution and/or granularity that is indicative of the quality of the assessed locate and/or marking operation.
  • a numerical score e.g., a score of 0-100%
  • a grade e.g., a grade of A-F
  • other graduated indicator based on some appropriate range, scale, resolution and/or granularity that is indicative of the quality of the assessed locate and/or marking operation.
  • the feedback component 414 of the automated quality assessment application 210 may be responsible for generating and/or transmitting real-time prompts to on-site locate technicians. For example, once the nature of a real-time prompt is determined, the feedback component 414 may query the corresponding ticket information to ensure that the prompt is directed to an appropriate originating locate technician.
  • Figure 5 shows an illustrative process 500 for performing a quality assessment of an underground facility locate and/or marking operation, for example, as implemented by the automated quality assessment application 210 shown in Figures 2 and 4. While the example provided in Figure 5 is a more specific example of the generic process 300 discussed above in connection with Figure 3, and describes an automated quality assessment based on a completed or closed ticket for which it is presumed that a locate and/or marking operation was actually performed by a technician, it should be appreciated that the concepts generally outlined in the process 500 may be applied to various types of available information relating to a requested locate and/or marking operation, whether performed separately or in tandem, and irrespective of actual performance of the locate operation and/or the marking operation, so as to assess the quality of the requested operation.
  • the process 500 begins at act 502, where a closed (i.e., completed) ticket is received by the automated quality assessment application 210 for review and assessment.
  • the automated quality assessment application 210 may collect information associated with the received ticket from any number of the data sources 220 described above and shown in Figure 4, and may use the collected information at act 504 to assess the quality of one or more locate and/or marking operations performed in connection with the ticket.
  • the automated quality assessment application 210 may automatically compare electronic data relating to a locate and/or marking operation pending assessment against reference information derived from or relating to one or more archived records of historical tickets.
  • the process 500 then continues to act 506 to categorize the quality of the locate and/or marking operation pending assessment.
  • the locate and/or marking operation is categorized into one of the four categories discussed above in connection with Figure 4: (a) APPROVED, (b) SATISFACTORY, (c) UNSATISFACTORY, or (d) PROMPT.
  • the process 500 may or may not proceed with additional processing. For example, if the category APPROVED is assigned to the locate and/or marking operation, the process 500 may end without taking further actions.
  • the process 500 may, respectively, route the ticket to coaching or QC personnel for further review (act 508 or act 510). If the category PROMPT is assigned to the
  • the process 500 may proceed to act 512 to route a real-time prompt to an appropriate originating locate technician.
  • an automated quality assessment application may automatically review a variety of field information, which may include a "closed” or “completed” ticket (e.g., a ticket for which the entire scope of requested work has been performed during one or more locate and/or marking operations).
  • the closed tickets may be reviewed in essentially real time and/or within a specified amount of time, such as within one day, from the ticket being closed, and/or at other times thereafter.
  • the automated quality assessment application may compare information pertaining to the ticket pending quality assessment (hereafter the "current" ticket) against reference information derived from or relating to one or more archived records of previously completed and/or reviewed tickets (hereafter the "historical” tickets).
  • the reference information may comprise data relating to one or more previous (or “historical") locate and/or marking operations conducted at the same work site as a current locate and/or marking operation (i.e., a locate and/or marking operation performed in connection with the current ticket).
  • the reference information may comprise data relating to one or more historical locate and/or marking operations conducted at work sites different from, but in close proximity to, the work site of the current locate and/or marking operation.
  • the different work sites may subsume and/or overlap the work site of the current locate and/or marking operation.
  • the reference information may comprise data relating to historical locate and/or marking operations performed by the same technician (or the same
  • the reference information may comprise data relating to historical locate and/or marking operations involving the same type (or types) of underground facilities (e.g., gas) as the current locate and/or marking operation.
  • a historical ticket may be deemed relevant for the review and assessment of a current ticket for a variety of different reasons, and the present disclosure is not limited in this respect.
  • the reference information may comprise data relating to historical locate and/or marking operations performed at work sites having one or more similar characteristics compared to the work site of the current locate and/or marking operation.
  • characteristics may include, but are not limited to, urban/suburban/rural environment, terrain condition, access restriction (e.g., military bases and/or gated community) and the like.
  • a historical record e.g., a record pertaining to a historical locate and/or marking operation
  • a current record e.g., a record pertaining to a current locate and/or marking operation
  • the comparison between the current and historical records may generally involve determining whether the actions taken by a locate technician during the current locate and/or marking operation are consistent with those taken during the historical locate and/or marking operations, and whether there is agreement between the outcomes of the respective locate and/or marking operations (e.g., whether the same types of marking materials are applied at substantially the same locations).
  • 1783319.1 may be used as contextual information when interpreting comparison results; for example, a certain level of discrepancy between a current record and a historical record may be deemed insignificant under one set of circumstances, but, under a different set of circumstances, the same level of discrepancy may be deemed sufficient to trigger a coaching or QC action. Additionally, it should be appreciated that some of the information contents discussed below may be used for "pre-processing" or conditioning one or both of the field information relating to current tickets and the reference information relating to historical tickets.
  • an automated quality assessment application may look to a locate request ticket received from a one-call center (e.g., the one-call center 120 shown in Figure 1) for information that may be useful in quality assessment.
  • a locate request ticket as received from a one-call center is referred to as an "initial" ticket, to be distinguished from a "closed” ticket, which may contain additional information regarding the work performed in response to the initial ticket.
  • an initial ticket may include information provided by an excavator in an excavation notice that initiated the ticket, as well as supplemental information provided by a one-call center that generated the ticket.
  • Figure 6 shows an example of such an initial ticket 600, which contains various pieces of information stored in a number of fields, including:
  • ⁇ location information 604A e.g., address of work site and nearby cross streets and/or a dig area description such as "mark perimeter of building"
  • 604B e.g., lat/long coordinates of work site
  • excavation information 606 including reason (e.g., installing conduit), scope (e.g., 392 feet), depth (e.g., 18-30 inches), method (e.g., by drill and trencher) and property type (e.g., private property),
  • reason e.g., installing conduit
  • scope e.g., 392 feet
  • depth e.g., 18-30 inches
  • method e.g., by drill and trencher
  • property type e.g., private property
  • timing information 608 including scheduled excavation time (e.g., January 6, 2008 at 7:00 a.m.) and duration (e.g., 3 days) and due date by which a requested locate and/or marking operation is to be completed (e.g., January 5, 2008),
  • excavator information 610 including name, address, contact information such as phone number, fax number and email address, and the party who contracted the excavator (e.g., as indicated in the "Work Being Done For" field),
  • ⁇ one-call center information 612 including the time at which the ticket was created and the customer service representative who created the ticket, and
  • ⁇ member codes 614 indicating the different types of facilities that need to be located.
  • the initial ticket 600 may contain additional textual information in a "Remarks" field 616 (although no remarks are provided in the example shown in Figure 6).
  • This textual information may include a description of the dig area (which may alternatively be included in the location information 604A as discussed above) and/or instructions with respect to performing the requested locate and/or marking operation.
  • a one-call center may draw a polygon (e.g., as a "buffer zone" around a designated work site) on a map corresponding to the work site.
  • This polygon may be overlaid onto one or more polygon maps or facilities maps to determine which types of facilities are implicated.
  • a facility type or owner
  • the one-call center may provide coordinates for the vertices of the polygon in the initial ticket, along with other information describing the location and boundaries of the work site and/or dig area.
  • Textual descriptions of dig areas included in locate request tickets may, in some instances, be very imprecise as to exact physical locations at which digging is planned. Therefore, when a locate request is submitted by an excavator, it may be beneficial for the excavator to supplement the locate request with a visit to the site of the dig area for the purpose of indicating the particular location and/or extent of the proposed excavation. For example, marks (e.g., white paint) on the ground at the location at which digging is planned may be used
  • These marks may be chalk marks or paint that is applied to the surface of the ground, and are generally known as "white lines.”
  • an excavator may attach to a locate request ticket a so-called virtual white lines (VWL) image, which may contain a digital image of the work site (or some other suitable digital data representing the geographic location of the work site) along with electronic annotations delimiting the dig area.
  • VWL virtual white lines
  • An example of a VWL image 700 is shown in Figure 7, where a dig area is indicated on an aerial image of a work site by a set of dashed lines 710 forming a rectangle.
  • the lines 710 are more generally referred to as "dig area indicators,” which may be any electronically generated markings indicating a point, line, path and/or area of the planned excavation.
  • the VWL image 700 may be created by the excavator using a suitable VWL application (e.g., the VWL application 430 shown in Figure 4).
  • a suitable VWL application e.g., the VWL application 430 shown in Figure 4
  • an excavator may use an electronic drawing tool provided by the VWL application to electronically draw markings on a digital aerial image of the work site, instead of, or in addition to, physically visiting the work site and marking white lines on the ground.
  • the electronic markings may include any suitable combinations of shapes, shades, points, symbols, coordinates, data sets, and/or other indicators to indicate on the digital image a dig area in which excavation is to occur.
  • the digital image on which dig area indicators are drawn may be geotagged (i.e., associated with geospatial metadata).
  • the VWL application may be programmed to use the geospatial metadata associated with the digital image to convert location information regarding the dig area indicators and/or landmarks shown in the digital image into geographic coordinates such as Global Positioning System (GPS) coordinates. These geographic coordinates may be stored in a separate data set that may be attached to a locate request ticket instead of, or in addition to, the VWL image.
  • GPS Global Positioning System
  • Figure 8 shows an example of a data set 800 that may be stored and/or transmitted in connection with a VWL image.
  • the data set 800 may include a timestamp field 810, an excavator identifier field 820, a dig area coordinates field 830, an environmental landmark identifier field 840, an environmental landmark location field 850, an other information field
  • the data set 800 may include additional, fewer, or different fields.
  • the timestamp field 810 may include time data that identifies the day and/or time that the completed locate request was submitted, which may be useful in establishing when a locate request was initiated.
  • the time data is shown as 9:43 a.m. Eastern Standard Time on November 20, 2007, although other types of date and/or time code may also be used.
  • the excavator identifier field 820 may include an identifier that uniquely identifies the entity submitting the locate request.
  • the identifier is shown as "Joe's Pool Center,” although other types of identifiers may also be used.
  • the virtual white line coordinates field 830 may include geographical information corresponding to the delimited dig area, which may be useful in graphically presenting the dig area on a digital image.
  • the geographical information corresponding to the delimited dig area may identify a set of geographical points along a perimeter of the delimited dig area, as defined by the VWL coordinates.
  • the geographical information corresponding to the delimited dig area include coordinates N38°51.40748, W077°20.27798; . . . ; N38°51.40784, W077°20.27865, although other types of geographical information may be also used.
  • the environmental landmark identifier field 840 may include an identifier that identifies a type of environmental landmarks, for example, "curb," as shown Figure 8, although other types of identifiers may also be used.
  • the environmental landmark location field 850 may include geographical information corresponding to the environmental landmark identified in the environmental landmark identifier field 840. In the example of Figure 8, the geographical information corresponding to the environmental landmark include coordinates N38°51.40756, W077°20.27805; . . . ; N38°51.40773, W077°20.27858, although other types of geographical information may also be used.
  • the other information field 860 may include any other data that may be useful in further describing the dig area.
  • the other information field 860 may include distance information identifying a distance between one or more environmental landmarks and one or more boundaries of the dig area. In the example of Figure 8, the distance information is
  • the other information field 860 may include user notes in the form of audio/voice data, transcribed voice-recognition data, or simply textual data typed in by a user.
  • the property address field 870 may include, for example, the street address and zip code of a property associated with the work site. Other information in the field 870 may include city, state, and/or county identifiers.
  • the ticket number field 880 may include a ticket number associated with the locate request, such as ticket number "1234567" shown in Figure 8. In some instances, the ticket number may not be known at the time the data set 800 is provided, and thus the ticket number 880 may be added to the data set 800 at a later time.
  • the VWL application may be implemented, for example, as described in U.S. Patent Application Serial No. 12/366,853 filed February 6, 2009, entitled “Virtual white lines for delimiting planned excavation sites;” U.S. Patent Application Serial No. 12/475,905 filed June 1, 2009, entitled “Virtual white lines for delimiting planned excavation sites of staged excavation projects;” U.S. Patent Application Serial No. 12/422,364 filed April 13, 2009, entitled “Virtual white lines (VWL) application for indicating a planned excavation or locate path.”
  • VWL Virtual white lines
  • initial tickets received from a one-call center may be assessed by a ticket assessment engine prior to being dispatched to locate technicians.
  • the ticket assessment engine may be programmed to derive useful information from initial tickets that may not be directly available and/or ascertainable from the initial tickets themselves.
  • assessments may be performed, including, but not limited to, the following.
  • Location Location of planned excavation (or, equivalently, location of work site).
  • insufficient location information may be provided in a locate request ticket.
  • a location description may be vague or ambiguous (e.g., a street name without any house numbers).
  • multiple conflicting pieces of location information may be given (e.g., a street address and a pair of lat/long coordinates that do not match). In these situations, additional analysis may be needed to ascertain the location of the work site.
  • Amount and nature of work For example, the size of a dig area, as measured in length or in area, maybe indicative of the scope of a requested locate and/or marking operation. The depth of excavation and the number of different facilities involved may also be relevant.
  • ⁇ Complexity Complexity involved in performing a locate and/or marking operation.
  • a locate and/or marking operation may be classified as high complexity when a high profile facility asset (e.g., fiber-optic communication cables) is involved or when the work site is in a restricted access area (e.g., a military base or gated community).
  • a high profile facility asset e.g., fiber-optic communication cables
  • a restricted access area e.g., a military base or gated community
  • ⁇ Duration Amount of time needed to perform a locate and/or marking operation, which may be determined by scope (e.g., the number and types of different facilities involved) and/or complexity (e.g., delays due to access restrictions).
  • ⁇ Risk Potential liability for damages when a locate service provider is at fault (e.g., failing to complete a locate and/or marking operation by a required deadline or inadequately performing a location operation).
  • a locate and/or marking operation involving one or more main utility lines e.g., water mains serving an entire neighborhood
  • a locate and/or marking operation involving only service lines e.g., utility lines leading to a customer's premise
  • Value Business value created by performing a locate and/or marking operation.
  • value may simply be the revenue collected for the locate and/or marking operation.
  • various operating costs may be subtracted from the revenue.
  • a more sophisticated measure such as value at risk may be used.
  • Personnel skill level or certification required to perform a locate and/or marking operation For example, in some jurisdictions, only a technician with gas certification may be dispatched to perform a locate and/or marking operation involving gas pipes. In some embodiments, personnel skill level may encompass both long term measurements, such as years of experience, and short term measurement, such as recent performance evaluations.
  • Equipment requirements One or more equipment required to adequately perform a locate and/or marking operation, which may be influenced by scope and/or complexity.
  • the types of facilities may influence the types of locate equipment (e.g., a locate device, a marking device, and/or a combined locate and marking device) that may be appropriate for a particular locate and/or marking operation.
  • a manhole cover hook (for opening a manhole) and/or a gas monitor may be required when it is determined that a locate technician may need to enter a manhole in order to perform a locate and/or marking operation.
  • the ticket assessment engine may be programmed to provide an estimated measurement, ranking, score, classification and/or some other suitable value for each of the assessment targets listed above, or any other desirable assessment targets. These outcomes may be stored in association with the initial ticket (e.g., in a database indexed by ticket number), and may be provided to an automated quality assessment application (e.g., the automated quality assessment application 210 shown in Figures 2 and 4) in any suitable manner.
  • an automated quality assessment application e.g., the automated quality assessment application 210 shown in Figures 2 and 4
  • an automated quality assessment application may review information submitted by a locate technician who performed a locate and/or marking operation in connection with a ticket.
  • a ticket including such information is referred to herein as a "closed ticket.”
  • the technician may close the ticket by submitting, either electronically or on paper, a record that provides certain details regarding the locate and/or marking operation.
  • This record may contain any suitable information, such as any number of the following items: ticket number, work order number (when a ticket involves multiple work orders), locate technician name or identifier, time of completion, place of completion, types of facilities that the technician attempted to locate (e.g., as indicated by facility owner member codes), types of facilities actually located, locate marks used and technician signature. Any or all of this information may be stored in association with
  • the closed ticket (e.g., in a database indexed by ticket number), and may be made available to the automated quality assessment application.
  • one or more images captured at the work site may also be collected and stored in association with the ticket.
  • a locate technician may use an image capture mechanism (e.g., a digital camera) to capture one or more images showing:
  • ⁇ locate marks placed in the dig area e.g., paint on the ground.
  • These images may be stored along with any textual information submitted by the locate technician and be accessed by an automated quality assessment application when evaluating the closed ticket.
  • an automated quality assessment application may access one or more electronic manifests associated with a closed ticket
  • an electronic manifest may be a comprehensive electronic record of a closed ticket and its associated locate and/or marking operation(s) and may be generated using an electronic manifest application (e.g., the EM application 460 shown in Figure 4).
  • an electronic manifest application e.g., the EM application 460 shown in Figure 4
  • Illustrative implementations of an electronic manifest application are described in U.S. Patent Application Serial No. 12/369,232, filed February 11, 2009, entitled “Searchable records of underground facility locate marking operations," which is incorporated by reference herein in its entirety.
  • An electronic manifest may contain any suitable types of information, such as the textual and graphical information discussed above in connection with closed tickets. Additionally, or alternatively, an electronic manifest may include an electronic manifest image, which may be a digital image of the dig area and its surroundings with one or more "electronic locate marks" added to indicate corresponding physical locate marks that have been placed at the work site. These electronic locate marks therefore may indicate both the geographical locations and the types of the facilities that are present (or absent) in the dig area.
  • an electronic manifest application may receive as input one or more VWL images that are associated with a ticket.
  • an VWL image may be a digital aerial image having thereon electronic markers (or dig area indicators) that delimit the dig area.
  • the electronic manifest application may further receive locate mark information indicating approximate geographical locations of physical locate marks that have been placed at the work site by a locate technician. Based on the received locate mark information, as well as any geographical information associated with the VWL image, the electronic manifest application may add to the VWL image one or more locate mark indicators at the appropriate locations.
  • an input image may nonetheless be employed to provide an electronic record of a "clear.” More specifically, although no locate mark indicators may be added to an input image, other non-image information associated with the "clear" locate and/or marking operation (e.g., a timestamp of when the locate and/or marking operation was performed, an identifier for a technician or locate company performing the locate and/or marking operation, a text address or other geographical identifier for the dig area, a location stamp, etc.) may be associated with the input image (e.g., as a separate data set linked to the input image, as metadata, in a combined file of image and non-image data, etc.) to create a searchable electronic record that may be consulted to verify that the locate and/or marking operation was indeed completed, even though no facilities were found.
  • non-image information associated with the "clear" locate and/or marking operation e.g., a timestamp of when the locate and/or marking operation was performed, an identifier for a technician or locate company performing the locate and
  • Figure 9 shows an example of an electronic manifest 900 that comprises both image data and non-image data.
  • the electronic manifest 900 comprises a marked-up image 905 showing locate mark indicators 910 (e.g., to indicate locations of physical locate marks), offset indicia 915 (e.g., to indicate distances between physical locate marks and certain environmental landmarks) and dig area indicators 920 (e.g., as provided by an excavator on a VWL image).
  • locate mark indicators 910 e.g., to indicate locations of physical locate marks
  • offset indicia 915 e.g., to indicate distances between physical locate marks and certain environmental landmarks
  • dig area indicators 920 e.g., as provided by an excavator on a VWL image.
  • the electronic manifest 900 comprises non-image information relating to the locate and/or marking operation, such as a ticket number or identifier 925, a name or identifier 930 associated with the locate technician (which may indicate facility owner/operator, or locate company/technician), a time and date stamp 935 indicating when the electronic manifest was created, a location stamp 940 indicating where the electronic manifest was created,
  • Figure 9 shows an example of an electronic manifest including specific types of ticket information
  • an electronic manifest as described herein is not limited in this regard, and may alternatively include other combinations of ticket information.
  • an electronic manifest may be displayed and/or formatted in manners different from the example shown in Figure 9.
  • the underlying electronic data used to generate an electronic manifest may be represented and/or stored in any suitable manner, as the present disclosure is not limited in this respect.
  • the marked-up image(s) and the non-image information may be stored as a single file.
  • the non-image information may be included as metadata associated with the marked-up image(s).
  • the marked-up image(s) and the non-image information may be formatted as separate data sets and may be transmitted and/or stored separately.
  • the marked-up image(s) and the non-image information may be linked together in some manner as relating to a common electronic record.
  • Figure 10 shows an example of a data set 1000 that may be used to generate an electronic manifest.
  • the data set 1000 may include a timestamp field 1010, a facility type identifier field 1020, a facility mark location field 1030, an environmental landmark identifier field 1040, an environmental landmark location field 1050, an other information field 1060, a facility owner/operator field 1065, a marking method field 1070, a property address field 1080, a ticket number field 1090, a location stamp field 1015, and a certification field 1025.
  • Figure 10 shows specific examples of information fields, it should be appreciated that the present disclosure is not limited in this regard.
  • the data set 1000 may include additional, fewer, or different fields.
  • the timestamp field 1010 may include time data that identifies the day and/or time that a locate and/or marking operation is performed. This may coincide with a time at which an environmental landmark location is identified in connection with the dig area.
  • the time data in the timestamp field 1010 is shown in Figure 10 as 9:43 a.m. on October 20, 2005, although any
  • Timestamp field 1010 may be useful in establishing when a locate and/or marking operation occurred.
  • the facility type identifier field 1020 may include an identifier that identifies a type of underground facility that is being marked.
  • the identifier in the facility type identifier field 1020 is shown in Figure 10 as "power," although any type of identifier may be used.
  • the facility mark location field 1030 may include geographical information corresponding to a physical locate mark. In some implementations, the geographical information may identify a set of geographical points along a marking path of a located facility line.
  • the geographical information in the facility mark location field 1030 is shown in Figure 10 as N38°51.40748, W077°20.27798; . . . ; N38°51.40784, W077°20.27865, although any type of geographical information may be used.
  • the information in the facility mark location field 1030 may be useful in graphically presenting the facility locate marks on a map, and/or to verify that the locate and/or marking operation was actually and accurately performed. Additionally, or alternatively, the facility mark location field 1030 may include geographical information for multiple facility locate marks.
  • the environmental landmark identifier field 1040 may include an identifier that identifies a type of environmental landmark being marked.
  • the identifier in environmental landmark identifier field 1040 is shown in Figure 10 as "curb," although any type of identifier may be used.
  • the environmental landmark location field 1050 may include geographical information corresponding to the environmental landmark identified in the environmental landmark identifier field 1040.
  • the geographical information in the environmental landmark location field 1050 is shown in Figure 10 as N38°51.40756, W077°20.27805; . . . ; N38°51.40773, W077°20.27858, although any type of geographical information may be used.
  • the other information field 1060 may store any other data that may be useful, including user notes, such as offset or distance information that identifies a distance between one or more environmental landmarks and one or more facility locate marks.
  • the other information field 1060 is shown in Figure 10 as including "1.2 meters between curb and power line," although any other data may be used. Additionally, or alternatively, the other information field
  • 1783319.1 1060 may include audio/voice data, transcribed voice-recognition data, or the like to incorporate user notes.
  • the facility owner/operator field 1065 may include a name of the owner/operator of a facility that has been marked during the locate and/or marking operation.
  • the facility owner/operator field 1065 is shown as "ABC Corp.” Because multiple facilities may be marked during a single locate and/or marking operation, it may be beneficial to associate each marked facility with a particular owner/operator.
  • this field may include one or more identifiers for the locate company performing the locate and/or marking operation, or an additional field may be added to the data set 1000 for this purpose.
  • the marking method field 1070 may indicate a type of marking used at the dig area to indicate a location of a facility.
  • the marking method field 1070 is shown indicating red paint.
  • the property address field 1080 may be the property address associated with the marking recorded in the data set 1000.
  • the property address field 1080 may include, for example, the street address and zip code of the property.
  • Other information in the field 1080 may include city, state, and/or county identifiers.
  • the ticket number field 1090 may include a ticket number associated with the locate and/or marking operation associated with the data set 1000, such as the ticket "1234567" shown in Figure 10.
  • the location stamp field 1015 may include a location stamp indicating a location where the locate and/or marking operation was performed (e.g., the dig area).
  • the location stamp may optionally be generated at the same time as the timestamp 1010, and the information underlying these stamps may be from a same source or otherwise correlated, such that the location stamp reflects the location of the locate technician, a user device of the locate technician, or an associated locate and/or marking device when the timestamp 1010 is generated.
  • the location stamp may comprise, for example, location coordinates (as shown in Figure 10), a city name or designation, a state name or designation, a county name or designation, and/or an address. Generally, the location stamp may identify the presence and location of a locate technician in connection with the locate and/or marking operation.
  • location stamp data may be generated by a user device of a locate technician in response to an action associated with a locate and/or marking operation (e.g., a marking being made on an electronic manifest, creation of a new electronic
  • location stamp data is generated by a GPS-enabled device associated with a locate technician dispatched to perform a locate and/or marking operation (e.g., a GPS-enabled device in a vehicle and/or on the person of the locate technician), a GPS-enabled locate and/or marking device operated by the technician during the locate and/or marking operation, or a locate and/or marking device capable of determining its own location in some other suitable manner.
  • the location stamp data may then be transmitted from the GPS-enabled device or locate and/or marking device to the user device of the locate technician, either alone or in association with other data (e.g. locate and/or marking data as discussed in greater detail below). The transmission may occur, for example, in response to a request by the user device, a request by the locate technician, or some other triggering action.
  • the location stamp data may be recorded to the data set automatically (e.g., without user intervention) or in response to user input.
  • both the timestamp field 1010 and the location stamp field 1015 may optionally include a plurality of timestamps and location stamps.
  • each of a plurality of actions e.g., markings on the electronic manifest, actuations of the locate and/or marking device
  • Each of these actions may cause the time stamp and/or location stamp to automatically be logged.
  • the timestamp field 1010 and/or location stamp field 1015 may optionally be "read only" fields. Prohibiting changes to these fields (e.g., by the locate technician) may preserve the integrity of the data therein so that it can be reliably used for verification of the locate and/or marking operation.
  • the certification field 1025 may comprise a certification of the data in the data set 1000, for example, by the locate technician and/or another reviewer such as a supervisor or another authorized representative of the locate company.
  • a certification may comprise a signature, initials, an electronic stamp, or some other indication that the information in the data set 1000 is "certified" (e.g., has been reviewed and/or is correct or approved).
  • a user device of a locate technician may store multiple data sets corresponding to multiple facilities identified at a particular dig area.
  • the user device may
  • 1783319.1 provide the data sets to server 220 in a batch (e.g., corresponding to a group of facilities documented within a single electronic manifest) or individually.
  • the batch may be grouped together with other information generally relating to the locate and/or marking operation, such as a name of the company responsible for performing the locate and/or marking operation, a name of the locate technician dispatched to perform the locate and/or marking operation, and the like. Additionally, or alternatively, other information generally relating to the locate and/or marking operation may be included in each data set.
  • Locating equipment data may be any information that is collected and/or generated (e.g., one or more electronic records) by any type of locating equipment equipped with components that are capable of collecting electronic information and/or creating electronic records about locate and/or marking operations that are performed in the field.
  • locating equipment data is constituted by "marking information” (e.g., the marking device data 452 shown in Figure 4) that is associated generally with the marking functionality of a locate and/or marking operation, and/or "locate information” (e.g., the locate receiver data 454 shown in Figure 4) that is associated generally with the locating/detection functionality of a locate and/or marking operation.
  • marking information e.g., the marking device data 452 shown in Figure 4
  • locate information e.g., the locate receiver data 454 shown in Figure 4
  • Locating equipment data also may include "landmark information" that may be acquired by suitably configured locating equipment (e.g., a marking device, a locate device, or a combined locate and marking device capable of operating in a "landmark mode"), which information may be acquired either independently or as part of (e.g., during or proximate in time to) a locate and/or marking operation.
  • suitably configured locating equipment e.g., a marking device, a locate device, or a combined locate and marking device capable of operating in a "landmark mode
  • geo-location data e.g., GPS coordinates
  • geo-location data relating to the detection and/or marking of a given facility during a locate and/or marking operation may be compared to geo-location data in the reference electronic record.
  • field data may refer more broadly to data obtained from any suitable sources, and is not limited to data obtained from locate equipment.
  • field data may include information entered manually by a locate technician, and/or information dictated by the locate technician and transformed into text using any suitable automatic speech recognition application.
  • field data may include one or more digital images captured at the work site (e.g., to show physical locate marks placed on the ground).
  • field data such as GPS coordinates corresponding to a detected and/or marked facility and/or one or more environmental landmarks is compared to reference data such as GPS coordinates in a reference electronic record derived from or relating to geographic information in one or more historical records.
  • the reference data may be transformed if necessary to a frame of reference common to the locating equipment data to enable a meaningful comparison.
  • a correspondence or discrepancy may be ascertained between the field data and the reference data.
  • a set of GPS coordinates obtained from the field, constituting lines or curves representing facilities detected and/or marked during the locate and/or marking operation, and/or one or more GPS coordinates constituting points or polygons representing environmental landmarks may be compared to a corresponding set of GPS coordinates in a reference electronic record to determine a degree of matching between the two sets, in a manner akin to pattern matching.
  • marking device data may include electronic information and/or one or more electronic records of data that is provided by electronic marking devices
  • Examples of electronic marking devices and/or marking systems that may provide marking device data may include, but are not limited, to those described in reference to U.S. Patent Application No. 11/696,606, filed April 4, 2007 and published October 9, 2008, entitled “Marking system and method;” U.S. Patent Application No. 11/685,602, filed March 13, 2007 and published September 18, 2008, entitled “Marking system and method;” U.S. Non-provisional Application Serial No. 12/568,087, filed on September 28, 2009, entitled “Methods and Apparatus for Generating an Electronic Record of Environmental Landmarks Based on Marking Device Actuations;" U.S. Non-provisional Application Serial No.
  • Table 1 shows one example of a sample of marking device data of locating equipment data that may be captured as the result of, for example, an actuation of a marking device.
  • an electronic record of a marking operation may include multiple data entries as shown in the example of Table 1 for respective actuations of a marking device to dispense a marking material (e.g., in some cases there may be one set of data as shown in Table 1 for each actuation).
  • data is collected relating to the geographic location of the placed marker (e.g., geo-location data).
  • data relating to a characteristic of the placed marker e.g., color and/or brand
  • Table 2 shows another example of marking device data that may be captured as the result of, for example, one or more actuations of a marking device.
  • Table 2 illustrates multiple "actuation data sets" of an electronic record of a marking operation as generated by a marking device, in which each actuation data set includes information associated with multiple actuation event entries logged during a corresponding actuation and dispensing of a locate mark.
  • Table 2 shows three actuation data sets of an electronic record, corresponding to three actuations of the marking device (e.g., act-1, act-2, and act-3).
  • act-1, act-2, and act-3 three actuations of the marking device
  • Figure 11 shows an example of a plurality of locate marks 11 lOA-C that may correspond respectively to the three data sets presented in Table 2 below. As shown in Figure 11, the locate marks 111 OA-C form part of a line pattern 1110 that indicate the presence of an underground facility 1120.
  • a "dotting" pattern may be utilized to quickly indicate the location of a target facility.
  • the dotting pattern may be formed by dispensing marking material in one or more short bursts, whereas the line pattern may be formed by dispensing marking material in one or more extended bursts.
  • the dotting pattern may be used during an initial stage of the process of locating the target facility, while the line pattern may be an end product of the locate and/or marking operation.
  • the line pattern may extend the dotting pattern in order to create lines that indicate the presence or absence of an underground facility. These lines may then be utilized by the excavator to, for example, avoid damage to the facility.
  • Table 3 shows an example of a mapping between marking material color and the type of facility to be marked.
  • locate receiver data may be electronic information (e.g., one or more electronic records) of data that is provided by electronic locate receiver devices and/or systems. Examples of a locate receiver device that may provide locate receiver data are described in U.S. Non-provisional Application Serial No. 12/569,192, filed on September 29, 2009, entitled “Methods, Apparatus, and Systems for Generating Electronic Records of Locate and Marking Operations, and Combined Locate and Marking Apparatus for Same;" U.S. Provisional Patent Application Serial No. 61/151,578, entitled “Locating equipment that has enhanced features for increased automation in underground facility locate applications;” and U.S. Provisional Patent Application Serial No. 61/102,122, filed on October 2, 2008, entitled “Combination Locate and Marking Device With a Data Acquisition System Installed Therein, and Associated Methods,” which applications are both hereby incorporated herein by reference in their entirety.
  • Table 4 below shows an example of a sample of locate receiver data that may be captured, for example, at one or more times during operation/use of an appropriately configured locate receiver.
  • Different models of locate receivers and transmitters are available from a variety of manufacturers and have different features; accordingly, it should be appreciated that the
  • the "gain” is typically a measure of the degree of sensitivity of a locate receiver antenna that is picking up a signal emanating from along an underground facility (alternatively, "gain" may be viewed as a degree of amplification being applied to a received signal). Gain may be expressed in terms of any scale (e.g., 0-100), as a numeric value or percentage.
  • Signal strength refers to the strength of a received signal at a given gain value; signal strength similarly may be expressed in terms of any scale, as a numeric value or percentage. Generally speaking, higher signal strengths at lower gains typically indicate more reliable information from a locate receiver, but this may not necessarily be the case for all locate and/or marking operations.
  • an electronic record of a locate and/or marking operation as obtained from a locate receiver may include multiple data entries as shown in the example of Table 4. Each such entry may not only include information about various operating parameters of the locate receiver (e.g., signal strength, gain), but may additionally include location information (geo-location data) associated with detected facilities, as well as various environmental data.
  • the logging of a given entry by a locate receiver may automatically result from one or more conditions (e.g., signal strength exceeding a particular threshold).
  • data entries may be manually logged by a technician using the locate receiver (e.g., via a push button, touch screen, trigger actuation, or other interaction facilitated by a user interface of the locate receiver). In this manner, multiple pieces of data may be collected for an electronic record of a locate and/or marking operation, including multiple pieces of geo-location data for a given underground facility detected via the locate receiver.
  • both marking device data and locate receiver data may be electronic information (e.g., one or more electronic records) of data that is provided by a combined locate and marking device.
  • An example of such a combined locate and marking device is described in U.S. Non-provisional Application Serial No. 12/569,192, filed on September 29, 2009, entitled “Methods, Apparatus, and Systems for Generating Electronic Records of Locate and Marking Operations, and Combined Locate and Marking Apparatus for Same," and U.S. Provisional Patent Application Serial No. 61/102,122, filed on October 2, 2008, entitled “Combination Locate and Marking Device With a Data Acquisition System Installed Therein, and Associated Methods,” which applications are both hereby incorporated herein by reference in their entirety.
  • Table 5 illustrates a non-limiting example of four actuation data sets that may be collected in an electronic record generated by a combined locate and marking device, in which each data set corresponds, for example, to a separate actuation event to dispense marking material. It should be appreciated, however, that these are merely examples, and that various alternative electronic records may be generated according to the aspects of the invention, for
  • Each of the four records of Table 5 includes general information not limited to either the locate receiver functionality or the marking functionality of a combination device.
  • Examples of the general information include, but are not limited to, an identification of a locate service provider (Service provided ID), an identification of a locate technician (User ID), an identification of a locate and/or marking device (Device ID), and information about a requestor of the locate and/or marking operation and the requested address (Locate request data).
  • an entry describing the mode of data collection e.g., Manual
  • Information about an actuation itself such as time of actuation (Timestamp data), actuation duration, and geographical location (geo- location data) at the start, during, and/or at and end of the actuation, may also be included.
  • the data sets also include information relating to the locate receiver functionality of the combination locate and marking device, including a receiver detection mode (e.g., PEAK in Table 5), the strength of a detected signal, and the frequency of the detected signal.
  • Information relating to a depth measurement (e.g., Facility depth) may also be included, as well as information about the marking material to be dispensed by the combination locate and marking device.
  • Table 5 is an illustration of one electronic record including multiple data sets that may be generated in association with the operations of a combination locate and marking device, and that other forms of electronic records are also possible.
  • an electronic record of a locate and/or marking operation may be generated in any of a variety of manners, may have a variety of file formats and/or data structures, and may include any of a variety of locate information and/or marking information (some of which may be germane to one or more actuations of a device, some of which may be common to multiple actuations or the overall locate and/or marking operation in general, and some of which may not be related to specific actuations).
  • electronic records may be a "flat files" including a succession of time-stamped "event entries” of various locate information and/or marking information (logged automatically as a result of one or more particular conditions, e.g., exceeded thresholds for various signals, or manually as a result of user actuation of a device), or a differently formatted file (e.g., an ASCII file, an XML file) having a data structure that segregates or separates in some manner the locate information and/or marking information into multiple different fields.
  • a differently formatted file e.g., an ASCII file, an XML file
  • one or both of the marking device data and the locate receiver data may include landmark information (in addition to, or instead of, locate information and marking information).
  • Landmark information may include any information relating to one or more environmental landmarks of interest (e.g., in and around the work site/dig area and/or generally in the vicinity of the locate and/or marking operation). Examples of landmark information include, but are not limited to, geo-location data of an environmental landmark, a type of environmental landmark, and a time stamp for any acquired information relating to an environmental landmark.
  • landmark information may be acquired from locate equipment particularly configured to operate in a landmark mode so as to acquire such information, as well as one or more other modes (e.g., "locate mode” or “marking mode”) to accomplish functions relating to detection and/or marking of underground facilities.
  • locate mode or marking mode
  • Tables 6 and 7 below show examples of landmark information that may be included in an electronic record forming part of either the marking device data or the locate receiver data.
  • Table 6 shows the format and content of an electronic record entry for a utility pole, which
  • Table 7 shows the format and content of an electronic record entry for a pedestal, which includes four geo-location data points (i.e., one for each corner of the pedestal).
  • Tables 6 and 7 are provided primarily for purposes of illustration, and that a variety of formats and content may be employed for an electronic record entry for landmark information.
  • an automated quality assessment application may access one or more facilities maps illustrating installed underground facilities and street-level landmarks.
  • facilities maps may be any physical, electronic, or other representation of the geographic location, type, number, and/or some other suitable attributes of a facility or facilities.
  • the facilities maps may be supplied by various facility owners/operators and may indicate the geographic location of facility lines (e.g., pipes, cables, and the like).
  • the facilities maps may be supplied by owners of gas facilities, power facilities, telecommunications facilities, water and sewer facilities, and so on.
  • facilities maps may be geotagged, which may enable overlaying a polygon or dig area indicator onto a facilities map to determine whether one or more items on the facilities map fall within the dig area or are sufficiently close to the dig area.
  • the automated quality assessment application may aggregate information contained in multiple facilities maps, for example, to determine all facilities that are supposedly present at a certain dig area.
  • an automated quality assessment application may assess the quality of a current ticket , for example, by assessing the quality of one or more completed locate and/or marking operations associated with the current ticket. Such locate and/or marking operations are herein referred to "current locate and/or marking operations.”
  • the automated quality assessment application may compare information pertaining to the current locate and/or marking operation against information pertaining to one or more historical locate and/or marking operations (i.e., previously completed locate and/or marking operations).
  • Figure 12 shows an example of a high-level process 1200 that may be performed by an automated quality assessment application to aggregate one or more pieces of information regarding historical locate and/or marking operations and to compare the aggregated information with information regarding the current locate and/or marking operation.
  • a target of comparison may be selected that focuses on one or more desired aspects of a current locate and/or marking operation.
  • the target of comparison selected may depend on the purpose of conducting the historical comparison. For example, when the historical comparison is conducted as part of a risk management process, it may be desirable to determine whether the types of facilities located/marked during the current locate and/or marking operation are consistent with the types of facilities located/marked during one or more historical locate and/or marking operations performed at the same work site; hence, in this
  • the target of comparison is "facility type.” Additionally, or alternatively, it may be desirable to determine whether the locations at which locate marks are placed during the current locate and/or marking operation are consistent with the locations at which locate marks were placed during the historical locate and/or marking operations; hence, in this example, the target of comparison is "facility location.”
  • a suitable target of comparison may be "technician action.” It may also be desirable to determine whether the amount of time taken by the locate technician to locate and mark a particular facility type during the current locate and/or marking operation is roughly the same as the amount of time taken by another locate technician to perform a similar locate and/or marking operation. In this case, a suitable target of comparison may be "total duration" of the locate and/or marking operation or "per- facility duration” specific to each facility type marked.
  • Types and/or amount of physical locate marks e.g., paint, flag, wood stakes, and/or nylon whiskers.
  • ⁇ ⁇ Actions taken by locate technicians e.g., based on events logged by a locate device, a marking device, a combined locate and marking device, and/or any other equipment used by the locate technician to perform the locate and/or marking operation).
  • Equipment used by locate technicians e.g., locate equipment, marking equipment, and/or safety equipment.
  • Per-task duration for completing each task within the locate and/or marking operation such as locating, marking, and/or document preparation (e.g., completing a closed ticket report, either on paper or electronically).
  • relevant records pertaining to one or more historical locate and/or marking operations may be retrieved from a suitable data storage.
  • a search may be conducted to identify historical locate and/or marking operations that may be relevant for the comparison target chosen at act 1202. For example, a search may be performed to identify:
  • a search may be performed based on coordinates for one or more dig area indicators that are used to indicate or delimit a dig area on a VWL image (e.g., as shown in FIGs. 7 and 8).
  • the dig area indicator coordinates may identify a plurality of points along a perimeter of the delimited dig area, and the search may filter out any locate and/or historical marking operations performed entirely outside of the delimited dig area.
  • the dig area indicator coordinates may identify a single point, in which case the search may filter out any locate and/or marking operations performed sufficiently
  • historical data relevant to the target of comparison selected at act 1202 may be compiled by extracting information from the historical records retrieved at act 1204 and/or aggregating the extracted information.
  • Various methods of aggregation may be used at act 1206, as the present disclosure is not limited in this regard.
  • an average value e.g., mean, median or mode
  • Any other suitable statistics such as standard deviation and/or variance, may also be computed, which may provide meaningful ranges against which a corresponding value from the current locate and/or marking operation may be measured.
  • a frequency analysis maybe performed to identify a set of one or more frequently occurring values against which a corresponding value from the current locate and/or marking operation may be compared.
  • coordinate data corresponding to a plurality of geographical points for example, a clustering of points may be detected and an acceptance zone may be determined based on any suitable characteristics of the detected cluster of points.
  • At least some of the historical data retrieved at act 1204 may be associated with different levels of confidence. For example, historical data that is perceived to be more accurate/reliable may be associated with a higher level of confidence compared to historical data that is perceived to be less accurate/reliable.
  • the levels of confidence may be adjusted as more records of historical locate and/or marking operations accumulate over time, providing better (e.g., independently verified) information regarding various aspects of locate and/or marking operations (e.g., the types, locations, layouts and/or other attributes of underground facilities at certain known work sites, and/or relative efficiencies of locate technicians). For instance, the level of confidence may be increased when consistent data is being observed, and vice versa.
  • the associated levels of confidence may be used at act 1206 to resolve any conflicts in the historical data. For example, a piece of historical data with the highest confidence lever among similar pieces of historical data may be used for comparison with corresponding data from the current locate and/or marking operation.
  • current data i.e., data regarding the current locate and/or marking operation
  • current data may be compiled using any relevant information retrieved from various information sources, such as those described above in connections with Figures 6-11 and Tables 1-6.
  • the current data compiled at act 1208 is compared against the historical data compiled at act 1206 according to the comparison target selected at act 1202. Any suitable method of comparison may be used, as the present disclosure is not limited in this respect.
  • the types of facilities indicated as being located (respectively, marked or cleared) in the current data may be compared with the types of facilities indicated as being located (respectively, marked or cleared) in the historical data to identify any inconsistencies.
  • locate mark information from the current data may be compared against locate mark information from the historical data to determine whether locate marks dispensed during the current locate and/or marking operation are sufficiently close to locate marks placed during the historical locate and/or marking operations. For instance, this may be done by determining whether data points in the current locate mark information are within a "threshold distance" of one or more data points associated with the historical locate mark information.
  • location-based comparison is described further below in connection with Figures 13 and 14.
  • the actions taken by a locate technician may be compared with actions taken during one or more historical locate and/or marking operations of comparable scope and/or complexity level.
  • the type(s) of marking material used in the current location operation may be compared with the type(s) of marking material used in the historical locate and/or marking operations to identify any inconsistencies.
  • one or more results of the comparison carried out at act 1210 are used to assign and/or update an automated assessment outcome in a suitable manner.
  • suitable thresholds and/or ranges may be selected, and a result of comparison may be measured against the selected thresholds and/or ranges to categorize the current locate and/or marking operation, for example, into one of the categories "APPROVED,” “SATISFACTORY,” “UNSATISFACTORY,” and “PROMPT,” as shown in Figure 5.
  • the thresholds and/or ranges may be chosen in any suitable manner, as the present disclosure is not limited in this regard.
  • the thresholds and/or ranges may be chosen based on human input, which may or may not be informed by various statistics regarding historical locate and/or marking operations.
  • one or more comparison criteria may be defined and applied to the historical and current data obtained at acts 1206 and 1208.
  • the comparison criteria may comprise one or more rules specifying: (1) one or more conditions regarding the historical and/or current data, and (2) for each condition regarding the historical and/or current data, an action to be taken when the condition is satisfied by the historical and/or current data. Examples of actions include, but are not limited to, assigning the current locate and/or marking operation to one of a plurality of pre-defined categories, adjusting a quality score of the current locate and/or marking operation, and/or performing one or more additional comparisons.
  • scoring adjustment may be weighted according to a number of different factors. For example, some aspects of the current locate and/or marking operation may be deemed more or less critical compared to other aspects of the current locate and/or marking operation. Accordingly, heavier or lighter weights may be used when adjusting a quality score based on a comparison relating to those aspects. As a more specific example, a discrepancy in the types of facilities located may be deemed more significant than a discrepancy in the precise locations at which locate marks are placed, and therefore the former may lead to more significant changes in the quality score. Additionally, or alternatively, scoring adjustment may be weighted according to a degree of discrepancy between the historical and current data. For example, a suitable scale (which may or may not be continuous) may be selected to convert a degree of discrepancy into a corresponding scoring adjustment.
  • some or all of the comparison criteria may be parameterized by contextual information available in the historical and/or current records. For instance, when comparing a locate technician's performance efficiency (e.g., in terms of time
  • act 1214 it is determined whether another type of comparison is to be targeted. If it is determined that another comparison target is desired, the process 1200 returns to act 1202 to select a new comparison target.
  • a new comparison target may, in some instances, be the same as the previous comparison target. For example, if the comparison results from act 1210 are unsatisfactory or inconclusive, it may be desirable to repeat the comparison with modified parameters. As a more concrete example, a locate-based comparison may be repeated one or more times with different sets of representative data points (e.g., larger sets of data points) to obtain a more refined result.
  • the process 1200 may end. Alternatively, prior to ending the process 1200, it may be determined whether one or more records pertaining to the current locate and/or marking operation are to be added to an archive of historical tickets.
  • the records may contain any information that is already available regarding the current locate and/or marking operation, as well as some or all of the quality assessment outcomes obtained at act 1212. hi this manner, the current locate and/or marking operation may be taken into account when assessing the quality of future locate and/or marking operations.
  • Figure 13 shows an example of a process 1300 that may be performed to carry out a location-based comparison.
  • the process 1300 may be performed as part of the historical comparison process 1200 shown in Figure 2 when a comparison target selected at act 1202 is the location(s) at which a certain type of facility is marked at a certain work site.
  • the comparison may be based on an absolute frame of reference (e.g., using GPS coordinates from both the historical data and the current data).
  • the comparison may be based on a relative frame of reference (e.g., the comparison may be based on offsets from one or more fixed points of reference, such as one or more environmental landmarks). Any combination of these and other comparison techniques may be used, as the present disclosure is not limited in this respect.
  • the illustrative process 1300 begins at act 1302 by obtaining one or more relevant historical records, hi this example, a search may be performed to identify historical locate and/or marking operations performed at or near the same work site of the current locate and/or marking operation.
  • the search may be based on property address, page and/or grid numbers on a standard map, GPS coordinates, and/or any other suitable types of location data.
  • geo-location data (e.g., coordinates for a set of data points) may be obtained based on location information in the historical data.
  • the geo-location data may be representative of the locations at which locate marks were placed during the historical locate and/or marking operations, for example, as indicated by historical marking device data such as the data sets shown in Table 2 above.
  • the geo-location data may not include the coordinates of all relevant data points found in the historical marking device data. Rather, the geo-location data may include a set of coordinates that are representative of the historical marking device data in some suitable manner. For example, coordinates may be taken along a line pattern (e.g., the line pattern 1100 shown in Figure 11) at some suitable intervals so as to reduce the number of representative data points without significantly sacrificing accuracy.
  • location information extracted from the historical data may need to be transformed in some appropriate fashion to facilitate meaningful comparisons.
  • GPS coordinates may be transformed into map coordinates, or vice versa, according to some suitable map projection.
  • absolute location information e.g., GPS coordinates
  • relative location information e.g., distance and/or directional offsets from one or more fixed reference points
  • Other types of transformations may also be suitable.
  • geo-location data may be obtained based on location information in one or more records pertaining to the current locate and/or marking operation. Similar to the historical geo-location data, current geo-location data may be chosen to be representative of the locations at which locate marks were placed during the current locate and/or marking operation. Also, when appropriate, one or more transformation techniques as described above may be applied to some or all of the current geo-location data.
  • the current geo-location data may be compared in some suitable manner against the historical geo-location data. For example, when the historical and current geo-
  • location data each includes a set of points indicated by coordinates in a common coordinate system (e.g., as a result of one or more transformations performed at act 1304 and/or 1306), a measure of distance may be obtained between the two sets of points.
  • a distance between two sets of points, X and Y may be measured by determining the smallest distance between any point from the first set and any point from the second set.
  • a distance from a set X to a set Y may be a vector d of distance measurements indexed by the points in X. Further details regarding this latter example are described below in connection with Figure 14.
  • one or more results of the comparison carried out at act 1308 may be used to assign and/or update one or more assessment outcomes of the current locate and/or marking operation.
  • a result of comparison may be measured against selected thresholds and/or ranges to categorize the current locate and/or marking operation or otherwise assign a score or grade to the current locate and/or marking operation.
  • a comparison criterion may be defined based on a percentage of points in X having distance measurements falling within some suitable ranges (e.g., within 12 to 18 inches). Further examples of suitable comparison and/or assessment criteria are discussed below in connection with Tables 8 and 9.
  • FIG 14 an example of a process 1400 is presented that may be used to determine a distance from a first set of points, X, to a second set of points, Y.
  • the points in the set X may be represented by multiple pieces of geo-location data (e.g., GPS coordinates), and may correspond to one or more actuations of a marking device during a current locate and/or marking operation, as discussed above in connection with Figure 11 and Table 2.
  • the points in the set Y may also be represented by multiple pieces of geo-location data (e.g., GPS coordinates), and may correspond to one or more actuations of a marking device during one or more historical locate and/or marking operations.
  • geo-location data representing the points in the sets X and Y may be obtained or derived from field data collected using any suitable equipment
  • 1783319.1 including, but not limited to, a locate device, a marking device and/or a combined locate and marking device (e.g., as shown in Table 1, 2, 4 and 5 above).
  • the locate and/or marking operations corresponding respectively to the sets X and Y may be conducted at the same work site at different times, so that a distance from X to Y may indicate whether the locate and/or marking operations produced consistent results.
  • a distance from the set X to the set Y may indicate whether a technician conducting a current locate and/or marking operation placed locate marks at roughly the same locations as did a technician conducting a historical locate and/or marking operation.
  • the illustrative process 1400 begins at act 1402 by initializing a variable n to zero, where n serves as an index for the points in the set X.
  • the process 1400 continues to act 1404, where a point X n in the set X is selected.
  • the process 1400 next continues to act 1406, where a point in set Y that is closest to the point X n is identified and is stored in a variable y c . That is, among all the points in the set Y, the selected point y c has the smallest distance from the point X n .
  • the process 1400 then continues to act 1408, where a distance between X n and y c is recorded and stored in the variable d n .
  • the process next continues to act 1410, where it is determined whether there are any more points in the set X to process. When it is determined that the set X contains one or more points yet to be processed, the process 1400 continues to act 1412, where the value of n is incremented by one. The process then returns to act 1404 to select a next point in the set X. If, on the other hand, it is determined at act 1410 that there are no more points in the set X to process, the process 1400 ends.
  • each of the sets X and Y may include any number of points, as the present disclosure is not limited in this respect.
  • one or both of the sets may have only one geo-location point specifying a single point on Earth.
  • one or both sets may have multiple geo-location points specifying multiple points on Earth.
  • the process 1400 may be applied to determine a measure of distance between any two sets of points in any space in which a measure of distance can be defined between two points.
  • the application of the process 1400 is not limited to geo-location data expressed in an absolute frame of reference that ties the geo-location data to specific points on
  • the geo-location points in set X and Y may not be expressed in latitude and longitude. Rather they may be expressed as locations (e.g., distance and/or direction) relative to some other reference point (e.g., an arbitrary reference point, a reference point defined by one or more facilities maps, and/or a reference point defined by some environmental landmark).
  • some other reference point e.g., an arbitrary reference point, a reference point defined by one or more facilities maps, and/or a reference point defined by some environmental landmark.
  • the process 1400 may even be applied to determine a measure of distance between two sets of points expressed in terms of display coordinates for some field of display (e.g., a computer screen).
  • the process 1400 is also not limited to any particular technique for determining the distance between two points, as any of numerous techniques may be used.
  • a distance between two points may be calculated according to the great-circle distance in spherical geometry, using Vincenty's inverse method for computing geographical distance between two points, and/or using some other suitable method.
  • Table 8 shows one possible technique for generating a quality assessment of a locate and/or marking operation in this way using a scoring table.
  • Techniques for generating a scoring table and computing a score using a scoring table are described in greater detail in U.S. Non-provisional Patent Application Serial No. 12/493,109, filed June 26, 2009, entitled “Methods and Apparatus for Quality Assessment of a Field Service Operation,” incorporated by reference herein.
  • the criterion on which the quality of locate and/or marking operation is being assessed is listed in the leftmost column.
  • the table includes one or more expected or reference values or ranges for the criterion, also referred to as "metrics,” against which information about the locate and/or marking operation is
  • the metrics are divided into several "scoring categories,” namely, value(s)/condition(s) that, if met, result in a particular score.
  • ACTUAL DATA field information/data
  • EXPECT DATA reference information/data
  • a quality assessment for the indicated criterion is based on a comparison of the ACTUAL DATA to the EXPECT DATA (e.g., so as to determine in what scoring category the ACTUAL DATA falls as a result of the comparison).
  • Score is intended to more generally denote any of a variety of graduated indicators for a quality assessment (which in turn may be based on a variety of ranges, scales and resolutions/granularity for the indicators).
  • the criterion on which the quality of the locate operation is being assessed is the percentage of points at which locate marks were placed that are within some threshold distance of the closest corresponding point in the historical data.
  • an evaluation of the distance vector shows that 90% of the points at which locate marks were placed were within one feet of the corresponding closest point in the historical data. As such, the locate and/or marking operation falls into the preferred category.
  • a score, grade, or categorization may be assigned as an output to categorize the quality assessment process based on into which scoring category the assessment falls.
  • each scoring category may be associated with a number of points (e.g., 2 points for Preferred, 1 point for Marginal, and 0 points for Unacceptable), and the quality assessment may be awarded the number of points associated with the scoring category into which it falls.
  • 2 points may be awarded, because the operation falls in the "Preferred" scoring category.
  • the number of points awarded may be converted to a percent score that is based on the number of points awarded and a maximum possible number of points.
  • the locate and/or marking operation received two points out of a maximum possible two points.
  • the locate and/or marking operation may be assigned a score of 2/2 or 100%. If the assessment results were to fall in the "Marginal" category and receive only one point, then it may be assigned a score of 1/2 or 50%. Similarly, if the assessment results were to fall in the unacceptable category and receive zero points, then it may be assigned a score of 0/2 or 0%.
  • a range of percent scores may be converted to letter scores to provide an indication of quality. For example, a percent score of 100-90% may be converted to a letter score of A, 89-80% may be converted to a letter score of B, 79-70% may be converted to a letter score of C, 69-60% may be converted to a letter score of D, and ⁇ 60% may be converted to a letter score of F.
  • a range of percent scores may be converted to a simple PASS/FAIL score. For example, a percent score of 100-60% may be converted to a score of PASS and a percent score of ⁇ 60% may be converted to a score of FAIL.
  • the quality assessment illustrated in Table 8 may be used in the process of Figure 5 to categorize the locate and/or marking operation as either "Approved,” “Coach” or "QC Referral.
  • Table 8 may be used at act 504 to assess the quality of the locate and/or marking operation. Based on this assessment, the quality of the operation may be categorized at act 506. For example, if the operation falls in the "Preferred" scoring category in Table 8 it may be categorized as "Approved" at act 506; if the operation falls in the
  • scoring categories are used, such that the locate and/or marking operation is classified as either Preferred, Marginal, and Unacceptable.
  • the number of scoring categories is merely illustrative, as any number of scoring categories could be used, and various mutually exclusive metrics may be assigned to these scoring categories. For example, in some embodiments, five scoring may be used (e.g., Excellent, Good, Average, Poor, Unacceptable), while in other embodiments more than five scoring categories may be used.
  • the percentage values and distance threshold values used in the metrics in Table 8 are merely illustrative and that a variety of different percentage values and distance threshold values may be used.
  • the distance threshold values may be based on legal requirements pertaining to locate and/or marking operations. For example, some governments (e.g., state governments) may dictate that a locate mark placed on the ground is within a certain "tolerance zone" around the underground facility (e.g., 12 inches, 18 inches, 24 inches, 30 inches, 36 inches, etc.).
  • one or more of the metrics used in a scoring table may be based on a tolerance zone dictated by government regulations.
  • a single criterion is provided for all of the facility lines marked.
  • a separate criterion may be used for each facility line marked. For example, as shown in Table 9 below, if during a locate and/or marking operation, a gas line, a power line, and a water line were marked, then a separate criterion may be provided for each of these facility lines. This enables the accuracy of each facility line that was marked during the locate and/or marking operation to be assessed independent of the other facility lines.
  • each scoring category may be associated with a number of points (e.g., 2 points for Preferred, 1 point for Marginal, and 0 points for Unacceptable), and the quality assessment may be awarded the number of points associated with the scoring category into which it falls.
  • points e.g., 2 points for Preferred, 1 point for Marginal, and 0 points for Unacceptable
  • the quality assessment may be awarded the number of points associated with the scoring category into which it falls.
  • 2 points may be awarded for marking of the gas line(s)
  • 1 point may be awarded for the marking of the electric line(s)
  • 0 points may be awarded for the marking of the water line(s).
  • 1783319.1 operation may receive a score of three points out of a maximum possible total of six points, for a score of3/6 or 50%.
  • the sole criterion for assessing quality is based on a comparison of the location of locate marks placed during a locate operation and the location of locate marks placed during one or more historical locate operations.
  • this criterion may be one of a number of criteria that is used at act 1310 of Figure 13 (or act 506 of Figure 5) to generate/update a quality assessment.
  • this criterion may be used in combination with other criteria to generate a quality assessment, one example of which is provided below.
  • the invention is not limited to using the particular technique described below or any other particular technique.
  • a scoring table similar to Table 8 may be used to assess the quality of a locate and/or marking operation based on a plurality of different criteria.
  • An example of such a scoring table is shown below in Table 10.
  • Table 10 is similar to Table 8, except that instead of a single criterion in the left-most column, there are multiple criteria.
  • each criterion may be assigned a weight factor, such that some criteria (e.g., criteria that are deemed more important) may optionally be given greater weight than others in the quality assessment.
  • actual data (field data) obtained from the locate and/or marking operation being evaluated may be compared with expected data (reference data) values or ranges for that criterion, and a number of points may be awarded based on the scoring category into which the locate and/or marking operation falls for that criterion and a weight factor assigned to that scoring category. For example, if the weight factor for a particular criterion is 5 and the locate and/or marking operation falls into the "Preferred" category for that criterion, then 10 points (i.e. 2x5) would be awarded for that criterion based on the example given above in connection with Table 8.
  • a total number of points may be computed by summing together the points awarded for each of the criteria together.
  • the maximum number of points possible for the locate and/or marking operation may be determined by first determining the sum of all weight factors and then multiplying this sum by the point value of the "Preferred" result.
  • a percentage score may be determined by dividing the number of points awarded by the maximum number of points possible and multiplying the result by 100.
  • a range of percent scores may be converted to letter scores, so that a letter score letter score indicative of the quality of the locate and/or marking operation may be assigned.
  • a percent score of 100-90% may be converted to a letter score of A
  • 89-80% may be converted to a letter score of B
  • 79-70% may be converted to a letter score of C
  • 69-60% may be converted to a letter score of D
  • ⁇ 60% may be converted to a letter score of F.
  • a range of percent scores may be converted to a simple PASS/FAIL score.
  • a percent score of 100-60% may be converted to a score of PASS and a percent score of ⁇ 60% may be converted to a score of FAIL.
  • the numerical quality assessment score may be used to automatically categorize a locate operation as either APPROVED, COACH, or QC Referral.
  • a score of 60% or below may automatically render an assessment of QC Referral, in which case, after act 506 of Figure 5, the process continues to act 510.
  • a score of >60% to 80% may automatically render an assessment of COACH, in which case the process continues to act 508, and a score of >80% to 100% may automatically render an assessment of APPROVED.
  • Table 10 shows a scoring table have a number of various different criteria.
  • the number of criteria and the particular criteria used are merely illustrative, as any number or type of criteria may be used.
  • the constructs provided by Tables 8-10 above illustrate various concepts germane to assessing the quality of locate and/or marking operations based at least on reference information derived from historical information (e.g., historical tickets), which reference information may be used alone or in combination with other information that may provide for a variety of criteria by which such operations may be assessed.
  • marking device data captured during a locate and/or marking operation may be used to create a visual representation of the locate marks placed (either physically or virtually) during the locate and/or marking operation.
  • Figure 15 shows an example of a visual representation of current locate marks 1500A (i.e., locate marks placed during a current locate and/or marking operation).
  • This visual representation may be rendered using any software application capable of rendering one or more features at appropriate locations on a display device (e.g., a computer screen) according to associated location information (e.g., coordinates in some suitable coordinate system, such as GPS coordinates).
  • the visual representation may be rendered using the electronic manifest application 460 described above in connection with Figures 4 and 9.
  • the current locate marks 1500A include line patterns 1510A, 1512A, 1514A and 1516A, each of which comprises a plurality of actuations.
  • the actuations in the line patterns 151 OA, 1512 A, 1514 A and 1516 A may be associated with different paint colors indicating different facility types (e.g., as indicated in Table 3 above). Paint color information may be available in the marking device data captured during the current locate and/or marking operation (e.g., as shown in the "Product data" filed listed in Table 2 above).
  • Figure 15 also shows line patterns 1510B, 1512B, 1514B and 1516B, which may be rendered based on geo-location data extracted and/or aggregated from one or more historical locate and/or marking operations.
  • the line patterns 1510B, 1512B, 1514B and 1516B may be rendered on a different plane compared to the line patterns 1510A, 1512 A, 1514A and 1516A, but may be aligned according to the underlying geo-location data.
  • all of the line patterns 151 OB, 1512B, 1514B and 1516B may correspond to locate marks placed during a single historical locate and/or marking operation.
  • at least some of the line patterns 1510B, 1512B, 1514B and 1516B may correspond to locate marks placed during different historical locate and/or marking operations.
  • the aggregated geo-location data used to render the line patterns 1510B, 1512B, 1514B and 1516B may be obtained by averaging or otherwise transforming geo- location data extracted from the historical tickets.
  • the line patterns 151OB, 1512B, 1514B and 1516B need not correspond exactly to locate marks placed during any historical locate and/or marking operation; rather, they may be some suitable representatives of those locate marks.
  • Line patterns 1510A, 1512A, 1514A and 1516A may be correlated with the line patterns 1510B, 1512B, 1514B and 1516B according to paint color information.
  • a color associated with line pattern 1510A may be "red," indicating that line pattern 1510A corresponds to a power line.
  • a color associated with line pattern 1510B may also be red, which may suggest that the line patterns 1510A and 1510B may correspond to the same power line, and that a comparison between the locations of the line patterns 1510A and 1510B may be appropriate (e.g., using a process similar to the process 1300 shown in Figure 13).
  • the line pattern 1512A may be correlated with the line pattern 1512B
  • the line pattern 1514A may be correlated with the line pattern 1514B
  • the line pattern 1516A may be correlated with the line pattern 1516B.
  • the line patterns 1510A and 1510B may be offset from each other to some degree. This discrepancy may be a discrepancy in location between one of the pairs of correlated line patterns (e.g., the line patterns 1510A and 1510B). That is, the line patterns 1510A and 1510B may be offset from each other to some degree. This discrepancy may be a discrepancy in location between one of the pairs of correlated line patterns (e.g., the line patterns 1510A and 1510B). That is, the line patterns 1510A and 1510B may be offset from each other to some degree. This discrepancy may be a discrepancy in location between one of the pairs of correlated line patterns (e.g., the line patterns 1510A and 1510B). That is, the line patterns 1510A and 1510B may be offset from each other to some degree. This discrepancy may be a discrepancy in location between one of the pairs of correlated line patterns (e.g., the line patterns 1510A and 15
  • 1783319.1 be automatically detected, analyzed and acted upon, for example, via the process 1300 shown in Figure 13.
  • a human user may observe this discrepancy from the visual representations 1500A and 1500B and issue manual instructions based on the observation. For example, the human user may determine (e.g., based on personal experience) that the discrepancy between the line patterns 151 OA and 151 OB represents a significant level of risk, and may manually submit a request for a QC action.
  • various techniques may be employed to assist the human user in making the visual comparisons.
  • the location information used to render line patterns may be suitably filtered, interpolated, smoothed or otherwise processed, to enhance the appearance of the line patterns.
  • features corresponding to field data e.g., line patterns 151 OA, 1512A, 1514 A and 1516 A shown in FIG . 15
  • features corresponding to reference data line patterns 151 OB, 1512B, 1514B and 1516B shown in FIG.
  • the 15 may be differentiated in a display field in any of a variety of manners (e.g., different line types, symbols or patterns; different colors or shades of related colors; different vertical planes of display, etc.) to allow for visual perception of both the field data and the reference data.
  • manners e.g., different line types, symbols or patterns; different colors or shades of related colors; different vertical planes of display, etc.
  • each of the field data and the reference data may be displayed as separate "layers" of the visual rendering, such that a viewer of the visual rendering may turn on and turn off displayed data based on a categorization of the displayed data.
  • all field data may be categorized generally under one layer designation (e.g., "Field” or "Current"), and independently enabled or disabled for display (e.g., hidden) accordingly.
  • all reference data may be categorized generally under another layer designation (e.g., "Reference” or “Historical”) and independently enabled or disabled for display accordingly.
  • Respective layers may be enabled or disabled for display in any of a variety of manners; for example, in one implementation, a "layer directory" or “layer legend” pane may be included in the display field (or as a separate window selectable from the display field of the visual rendering), showing all available layers, and allowing a viewer to select each available layer to be either displayed or hidden, thus facilitating comparative viewing of layers.
  • a "layer directory” or “layer legend” pane may be included in the display field (or as a separate window selectable from the display field of the visual rendering), showing all available layers, and allowing a viewer to select each available layer to be either displayed or hidden, thus facilitating comparative viewing of layers.
  • any of the above-mentioned general categories for layers may have sub- categories for sub-layers, such that each sub-layer may also be selectively enabled or disabled for viewing by a viewer.
  • each sub-layer may also be selectively enabled or disabled for viewing by a viewer.
  • different facility types that may have been marked (and indicated in the field data by color, for example) may be categorized under different sub-layer designations (e.g., "Field - Electric;” "Filed - Gas;” etc.); in this manner, a viewer may be able to hide the electric field data while viewing the gas field data, or vice versa, in addition to having the option to view or hide all field data.
  • Sublayer designations similarly may be employed for the reference data (e.g., "Reference - water/sewer;” “Reference - CATV”).
  • Virtually any characteristic of the information available for display may serve to categorize the information for purposes of displaying layers or sublayers.
  • some or all of the contents of an electronic record of a current locate and/or marking operation may be compared to some or all of the contents of a reference electronic record.
  • the reference electronic record may comprise data derived from or relating to one or more previous (or "historical") locate and/or marking operations conducted at the same work site as the current locate and/or marking operation.
  • the types of data being compared between the current electronic record and the reference electronic record may include geographic information, facility type information, and/or other information relating to the facilities identified and/or marked during the current and historical locate and/or marking operations.
  • the comparison may generally involve determining whether there is agreement between the current locate and/or marking operation and the historical locate and/or marking operation, which may in turn involve identifying at least one correspondence or discrepancy between the compared data, and in some instances a degree of correspondence.
  • the above-described embodiments can be implemented in any of numerous ways.
  • the embodiments may be implemented using hardware, software or a combination thereof.
  • the software code can be executed on any suitable processor or collection of processors, whether provided in a single computer or distributed among multiple computers.
  • the various methods or processes outlined herein may be coded as software that is executable on one or more processors that employ any one of a variety of operating systems or platforms. Additionally, such software may be written using any of a number of suitable programming languages and/or programming or scripting tools, and also may be compiled as executable machine language code or intermediate code that is executed on a framework or virtual machine.
  • inventive concepts may be embodied as a computer readable storage medium (or multiple computer readable storage media) (e.g., a computer memory, one or more floppy discs, compact discs, optical discs, magnetic tapes, flash memories, circuit configurations in Field Programmable Gate Arrays or other semiconductor devices, or other tangible computer storage medium) encoded with one or more programs that, when executed on one or more computers or other processors, perform methods that implement the various
  • the computer readable medium or media can be transportable, such that the program or programs stored thereon can be loaded onto one or more different computers or other processors to implement various aspects of the present disclosure as discussed above.
  • program or “software” are used herein in a generic sense to refer to any type of computer code or set of computer-executable instructions that can be employed to program a computer or other processor to implement various aspects of embodiments as discussed above. Additionally, it should be appreciated that according to one aspect, one or more computer programs that when executed perform methods of the present disclosure need not reside on a single computer or processor, but may be distributed in a modular fashion amongst a number of different computers or processors to implement various aspects of the present disclosure.
  • Computer-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • functionality of the program modules may be combined or distributed as desired in various embodiments.
  • data structures may be stored in computer-readable media in any suitable form.
  • data structures may be shown to have fields that are related through location in the data structure. Such relationships may likewise be achieved by assigning storage for the fields with locations in a computer-readable medium that convey relationship between the fields.
  • any suitable mechanism may be used to establish a relationship between information in fields of a data structure, including through the use of pointers, tags or other mechanisms that establish relationship between data elements.
  • inventive concepts may be embodied as one or more methods, of which an example has been provided.
  • the acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
  • a reference to "A and/or B", when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
  • At least one of A and B can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

L’invention concerne des procédés, appareils et systèmes dont un ordinateur comprenant au moins un processeur matériel, au moins un support d'informations matériel (mémoire) et au moins une interface d'entrée/sortie (E/S) servant à évaluer une qualité d’une première opération de localisation et/ou de repérage pour identifier une présence ou une absence d’au moins une installation souterraine. Des premières informations relatives à la première opération de localisation et/ou de repérage sont comparées à de secondes informations relatives à au moins une seconde opération de localisation et/ou de repérage différente de la première opération. Un ou plusieurs indicateurs d’une évaluation de la qualité de l’opération de localisation et/ou de repérage sont automatiquement générés sur la base d'une telle comparaison, et le ou les indicateurs de l'évaluation de la qualité sont électroniquement stockés dans le ou les supports d’informations matériels, et/ou transmis par voie électronique par l’intermédiaire de la ou des interfaces E/S, de manière à pouvoir archiver l’évaluation de la qualité de manière électronique.
PCT/US2009/005444 2008-10-02 2009-10-01 Procédés et appareils permettant d’analyser des opérations de localisation et de repérage conformément à des informations historiques WO2010039263A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2739110A CA2739110C (fr) 2008-10-02 2009-10-01 Methodes et appareil servant a evaluer la qualite des operations de reperage et de marquage relativement a l'information historique
AU2009300343A AU2009300343B2 (en) 2008-10-02 2009-10-01 Methods and apparatus for analyzing locate and marking operations with respect to historical information

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US10215108P 2008-10-02 2008-10-02
US10218608P 2008-10-02 2008-10-02
US10220508P 2008-10-02 2008-10-02
US10212208P 2008-10-02 2008-10-02
US61/102,122 2008-10-02
US61/102,186 2008-10-02
US61/102,151 2008-10-02
US61/102,205 2008-10-02
US12/493,109 US20090327024A1 (en) 2008-06-27 2009-06-26 Methods and apparatus for quality assessment of a field service operation
US12/493,109 2009-06-26
US12/539,497 2009-08-11
US12/539,497 US8280631B2 (en) 2008-10-02 2009-08-11 Methods and apparatus for generating an electronic record of a marking operation based on marking device actuations
US12/568,087 2009-09-28
US12/568,087 US8965700B2 (en) 2008-10-02 2009-09-28 Methods and apparatus for generating an electronic record of environmental landmarks based on marking device actuations
US12/569,192 US8620587B2 (en) 2008-10-02 2009-09-29 Methods, apparatus, and systems for generating electronic records of locate and marking operations, and combined locate and marking apparatus for same
US12/569,192 2009-09-29

Publications (1)

Publication Number Publication Date
WO2010039263A1 true WO2010039263A1 (fr) 2010-04-08

Family

ID=41507925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/005444 WO2010039263A1 (fr) 2008-10-02 2009-10-01 Procédés et appareils permettant d’analyser des opérations de localisation et de repérage conformément à des informations historiques

Country Status (3)

Country Link
AU (1) AU2009300343B2 (fr)
CA (1) CA2739110C (fr)
WO (1) WO2010039263A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2707246C (fr) 2009-07-07 2015-12-29 Certusview Technologies, Llc Evaluation automatique d'une productivite ou d'une competence d'un technicien de localisation en ce qui a trait a une operation de localisation et de marquage
US8290204B2 (en) 2008-02-12 2012-10-16 Certusview Technologies, Llc Searchable electronic records of underground facility locate marking operations
US8532342B2 (en) 2008-02-12 2013-09-10 Certusview Technologies, Llc Electronic manifest of underground facility locate marks
US8672225B2 (en) 2012-01-31 2014-03-18 Ncr Corporation Convertible barcode reader
US8612271B2 (en) 2008-10-02 2013-12-17 Certusview Technologies, Llc Methods and apparatus for analyzing locate and marking operations with respect to environmental landmarks
US9473626B2 (en) 2008-06-27 2016-10-18 Certusview Technologies, Llc Apparatus and methods for evaluating a quality of a locate operation for underground utility
US8572193B2 (en) 2009-02-10 2013-10-29 Certusview Technologies, Llc Methods, apparatus, and systems for providing an enhanced positive response in underground facility locate and marking operations
CN111582536B (zh) * 2020-03-23 2024-01-30 中国矿业大学(北京) 基于特征学习的隐伏断层预测方法、装置、设备和介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016827A1 (fr) * 1993-12-14 1995-06-22 Pavement Marking Technologies, Inc. Procede et appareil permettant de marquer une surface
WO2002028541A1 (fr) * 2000-10-02 2002-04-11 Udw Procede de production de marquages et appareil mobile pour la mise en oeuvre dudit procede
US20050057745A1 (en) * 2003-09-17 2005-03-17 Bontje Douglas A. Measurement methods and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016827A1 (fr) * 1993-12-14 1995-06-22 Pavement Marking Technologies, Inc. Procede et appareil permettant de marquer une surface
WO2002028541A1 (fr) * 2000-10-02 2002-04-11 Udw Procede de production de marquages et appareil mobile pour la mise en oeuvre dudit procede
US20050057745A1 (en) * 2003-09-17 2005-03-17 Bontje Douglas A. Measurement methods and apparatus

Also Published As

Publication number Publication date
CA2739110A1 (fr) 2010-04-08
CA2739110C (fr) 2016-11-08
AU2009300343A1 (en) 2010-04-08
AU2009300343B2 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
US9208464B2 (en) Methods and apparatus for analyzing locate and marking operations with respect to historical information
US9256849B2 (en) Apparatus and methods for evaluating a quality of a locate operation for underground utility
US9208458B2 (en) Methods and apparatus for analyzing locate and marking operations with respect to facilities maps
US8620726B2 (en) Methods and apparatus for analyzing locate and marking operations by comparing locate information and marking information
US20120036140A1 (en) Methods and apparatus for analyzing locate and marking operations by comparing filtered locate and/or marking information
US9185176B2 (en) Methods and apparatus for managing locate and/or marking operations
AU2009300343B2 (en) Methods and apparatus for analyzing locate and marking operations with respect to historical information
US9473626B2 (en) Apparatus and methods for evaluating a quality of a locate operation for underground utility
AU2009262952B2 (en) Methods and apparatus for quality assessment of a field service operation
AU2009300323B2 (en) Methods and apparatus for analyzing locate and marking operations with respect to facilities maps
WO2010039262A2 (fr) Procédés et appareil pour analyser des opérations de repérage et de marquage par rapport à des repères
CA2712126C (fr) Procedes et appareil d'evaluation de la qualite des operations de positionnement et de marquage en comparant l'information de positionnement et l'information de marquage
AU2014201054A1 (en) Methods and apparatus for analyzing locate and marking operations with respect to environmental landmarks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09756070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009300343

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2739110

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009300343

Country of ref document: AU

Date of ref document: 20091001

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: COMMUNICATION NOT DELIVERED. NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 EPC (EPO FORM 1205A DATED 04.10.2011)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: COMMUNICATION NOT DELIVERED. NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 EPC (EPO FORM 1205A DATED 08.09.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09756070

Country of ref document: EP

Kind code of ref document: A1