WO2010038829A1 - Method, composition and kit for detecting diabetic peripheral vascular disorder - Google Patents

Method, composition and kit for detecting diabetic peripheral vascular disorder Download PDF

Info

Publication number
WO2010038829A1
WO2010038829A1 PCT/JP2009/067167 JP2009067167W WO2010038829A1 WO 2010038829 A1 WO2010038829 A1 WO 2010038829A1 JP 2009067167 W JP2009067167 W JP 2009067167W WO 2010038829 A1 WO2010038829 A1 WO 2010038829A1
Authority
WO
WIPO (PCT)
Prior art keywords
fragment
antibody
polypeptide
peripheral vascular
diabetic
Prior art date
Application number
PCT/JP2009/067167
Other languages
French (fr)
Japanese (ja)
Inventor
岩田岳
松野聖
棚橋一裕
Original Assignee
独立行政法人国立病院機構
参天製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人国立病院機構, 参天製薬株式会社 filed Critical 独立行政法人国立病院機構
Publication of WO2010038829A1 publication Critical patent/WO2010038829A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/16Ophthalmology
    • G01N2800/164Retinal disorders, e.g. retinopathy

Definitions

  • the present invention relates to a test method for diabetic peripheral vascular disorder.
  • the inspection method includes a method for determining or identifying the disorder.
  • the present invention also relates to a composition and kit useful for diagnosis of diabetic peripheral vascular disorder.
  • the retina is a thin membrane at the back of the eyeball, consisting of many cells, and numerous fine blood vessels. If the state of high blood sugar continues for a long time due to diabetes or the like, the thin blood vessels of the retina are gradually damaged, various components in the blood leak, and swelling occurs in the macular in the center of the object. Such a condition is called macular edema. Since the macula is a very important place for visual acuity, if macular edema persists for a long time, the visual acuity is greatly reduced and often difficult to recover. In Japan (Japan), with the rapid increase in the elderly population and the westernization of food in recent years, the number of diabetic patients is steadily increasing, and the complications of diabetic macular edema tend to increase.
  • Diagnostic method using diagnostic markers is one of objective and high-throughput methods.
  • a diagnostic method using VEGF or bFGF in plasma has been disclosed so far (Non-patent Document 1). These techniques cannot determine diabetic macular edema with relatively high specificity using these markers, and are currently at the research level.
  • Non-patent Document 2 a method for diagnosing diabetic macular edema using a highly reliable protein marker for diabetic macular edema or a protein marker in the blood of diabetic macular edema is still unknown. If a marker capable of diagnosing diabetic macular edema and a method capable of diagnosing using the marker can be created, it can be expected to expand to the diagnosis of diabetic peripheral vascular disorders.
  • markers and marker candidates are generally not clinically used because of their poor specificity and / or sensitivity and their efficient detection methods from biological samples have not been established. Markers of diabetic macular edema with high specificity and sensitivity are eagerly desired. In addition, a high-throughput inspection method with a low patient burden that can more objectively and quantitatively indicate the degree of progression of the patient's pathological condition and the temporal change after surgery is desired.
  • An object of the present invention is to provide a composition or kit useful for diagnosis of diabetic peripheral vascular disorder, particularly diabetic macular edema, and a method for examining diabetic macular edema using the composition or kit.
  • the present inventors have conducted proteomic analysis of vitreous specimens of patients with diabetic peripheral vascular disorders such as diabetic macular edema and patients with other eye diseases, so that they can be detected in vivo specifically for patients with the disorders.
  • the present inventors have found a protein marker and invented a method for examining diabetic peripheral vascular disorder using the protein marker.
  • the present invention has the following features.
  • a fragment that binds to an antibody or an antigen thereof, which specifically binds to at least one of the polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1 to 9 in the sequence listing, a variant thereof or a fragment thereof, or a chemistry thereof Use of one or more of the modified derivatives in the manufacture of a kit for the diagnosis and / or detection of diabetic peripheral vascular disorders.
  • the variant of the polypeptide containing the amino acid sequence represented by SEQ ID NO: 1 to 9 in the sequence listing in this specification is one or more of the amino acid sequence represented by SEQ ID NO: 1 to 9 in the sequence listing or a partial sequence thereof.
  • % identity generally refers to an amino acid residue or position when aligned (aligned) with or without introducing a gap between two amino acid sequences. The percentage of the number of identical amino acid residues or positions shared by the sequence relative to the total number.
  • the identity of two amino acid sequences can be determined using a mathematical algorithm, examples of such algorithms are described in Karlin and Altshul, Proc. Natl. Acad. Sci. USA 1990, 87: 2264 and its improved versions, Karlin and Altshul, Proc. Natl. Acad. Sci. USA 1993, 90: 5873-5877. This type of algorithm is incorporated in BLASTN, BLASTX, etc. (Altshul et al., J. Mol. Biol.
  • gap introduction BLAST gap introduction BLAST (gapped BLAST) (Altshul et al., Nucleic Acid Res. 1997, 25: 3389) can be used.
  • the term “several” refers to any integer less than or equal to 10, ie, 10, 9, 8, 7, 6, 5, 4, 3 or 2.
  • chemically modified derivative as used herein is not limited to the following, for example, a labeled derivative such as an enzyme, a fluorescent substance, a dye, a radioisotope, or the like, or biotinylation, acetylation , Means derivatives containing chemical modifications such as glycosylation, phosphorylation, ubiquitination, sulfation.
  • composition for diagnosis and / or detection or “kit for diagnosis and / or detection” refers to the presence or absence of a diabetic peripheral vascular disorder such as diabetic macular edema, Directly for diagnosing and / or detecting the degree of morbidity or the presence or improvement of the disease and / or the degree of improvement, or for screening candidate substances useful for the prevention, amelioration or treatment of diabetic peripheral vascular disorders such as diabetic macular edema Or it can be used indirectly.
  • the “biological sample” to be detected and / or diagnosed in the present specification includes a target polypeptide that appears or is suspected to be contained in the development of diabetic peripheral vascular disorders such as diabetic macular edema. It refers to a sample collected, for example, a sample of cells, tissues (eg, vitreous), or body fluids (eg, blood, lymph, urine, tears, etc.).
  • “specifically binds” means that an antibody or a fragment thereof forms an antigen-antibody complex only with a target polypeptide that is a marker for diabetic macular edema in the present invention, a variant or a fragment thereof,
  • the other peptidic or polypeptide substance means that it does not substantially form an antigen-antibody complex.
  • substantially does not form means that non-specific complex formation can occur to a small extent.
  • the marker for diabetic peripheral vascular disorder such as diabetic macular edema in the present invention is found in a biological sample such as vitreous body, vitreous humor or blood of a diabetic macular edema patient, but there are other factors such as proliferative diabetic retinopathy and macular hole. Since most or no eye diseases are found, it is possible to easily detect diabetic macular edema by simply using the presence or amount of the marker as an index, for example, vitreous or blood. It has the following effects.
  • a diabetic macular edema marker for diagnosing and / or detecting diabetic macular edema using a composition or kit for the diagnosis or detection of diabetic peripheral angiopathy such as diabetic macular edema of the present invention is A polypeptide comprising the amino acid sequence represented by SEQ ID NOs: 1 to 9, a variant thereof or a fragment thereof.
  • Polypeptides comprising the amino acid sequences represented by SEQ ID NOs: 1 to 9 in the sequence listing of the present invention are shown in the following Table 1 together with their protein numbers (UniProtKB / Swiss-Prot Release 52.2 registered name and registration number) and their characteristics. Shown in These polypeptides are specifically detected in the vitreous of patients with diabetic macular edema and are not detected in the vitreous of patients with proliferative diabetic retinopathy and macular hole, or compared to the vitreous of diabetic macular edema Detection was significantly reduced.
  • the amino acid sequences of these polypeptides can be obtained by accessing a data bank such as UniProtKB / Swiss-Prot.
  • any of the above target polypeptides for detection of diabetic peripheral vascular disorder is detected only in a biological sample such as a vitreous body of a diabetic macular edema patient, or a patient with proliferative diabetic retinopathy and macular hole Is characterized by significantly or exceptionally high in diabetic macular edema patients.
  • a biological sample such as a vitreous body of a diabetic macular edema patient, or a patient with proliferative diabetic retinopathy and macular hole Is characterized by significantly or exceptionally high in diabetic macular edema patients.
  • “significantly” indicates a statistically significant value, and is a term used when the risk factor (p) is less than 0.05.
  • any one, preferably two or more of the above-mentioned diabetic macular edema marker polypeptides are detected at a significant level in the biological sample of the subject (that is, the test subject) compared to the above-mentioned comparative control It can be determined that this is a diabetic peripheral vascular disorder.
  • the polypeptide in the present invention can be produced, for example, by chemical synthesis (for example, peptide synthesis, automatic DNA / RNA synthesis, etc.) or DNA recombination techniques that are conventional techniques in the art.
  • chemical synthesis for example, peptide synthesis, automatic DNA / RNA synthesis, etc.
  • DNA recombination techniques that are conventional techniques in the art.
  • the use of DNA recombination technology is preferred from the viewpoint of procedure and ease of purification.
  • a polynucleotide sequence encoding a partial sequence of the polypeptide of the present invention is chemically synthesized using an automatic DNA synthesizer.
  • the phosphoramidite method is used for this synthesis, and single-stranded DNA of up to about 100 bases can be automatically synthesized by this method.
  • Automatic DNA synthesizers are commercially available from, for example, Polygen and ABI.
  • RNA extracted from a living tissue such as an eye tissue in which the target gene is expressed by a known cDNA cloning, specifically, using an oligo dT cellulose column.
  • a cDNA library is prepared from the poly A (+) RNA obtained by the treatment by RT-PCR, and the target cDNA clone is obtained from this library by screening such as hybridization screening, expression screening, and antibody screening. If necessary, the cDNA clone can be further amplified by PCR. As a result, cDNA corresponding to the target gene can be obtained.
  • Probes or primers can be selected from continuous sequences in the range of, for example, 15 to 100 bases based on the polypeptide sequences shown in SEQ ID NOs: 1 to 9 in the sequence listing and synthesized as described above.
  • the cDNA cloning technique is described in, for example, Sambrook, J. et al. And Russel, D .; Written by Molecular Cloning, A LABORATORY MANUAL, Cold Spring Harbor Laboratory Press, Vol. 1, published in January 15, 2001, Volumes 7.42-7.45, Volumes 8.9-8.17, Ausubel et al., Current Proto. in Molecular Biology, 1994, John Wiley & Sons.
  • the cDNA clone obtained as described above is incorporated into an expression vector, and a prokaryotic or eukaryotic host cell transformed or transfected with the vector is cultured, so that the target polymorph is obtained from the cell or the culture supernatant. Peptides can be obtained.
  • the mature polypeptide can be secreted out of the cell by flanking the nucleotide sequence encoding the secretory signal sequence at the 5 'end of the DNA encoding the target mature polypeptide.
  • Vectors and expression systems are available from Novagen, Takara Shuzo, Daiichi Chemicals, Qiagen, Stratagene, Promega, Roche Diagnostics, Invitrogen, Genetics Institute, Amersham Bioscience, and the like.
  • host cells include prokaryotic cells such as bacteria (eg, E. coli, Bacillus subtilis), yeast (eg, Saccharomyces cerevisiae), insect cells (eg, Sf cells), mammalian cells (eg, COS, CHO, BHK, NIH3T3, etc.) Can be used.
  • Vectors in addition to the DNA encoding the polypeptide, regulatory elements such as promoters (e.g.
  • lac promoter lac promoter, trp promoter, P L promoter, P R promoter, SV40 viral promoter, 3-phosphoglycerate kinase promoter, glycolytic System enzyme promoters), enhancers, polyadenylation signals and ribosome binding sites, replication origins, terminators, selectable markers (for example, drug resistance genes such as ampicillin resistance gene and tetracycline resistance gene; auxotrophic complementary markers such as LEU2 and URA3) ) And the like.
  • selectable markers for example, drug resistance genes such as ampicillin resistance gene and tetracycline resistance gene; auxotrophic complementary markers such as LEU2 and URA3
  • an expression product can be generated in the form of a fusion polypeptide in which a labeled peptide is bound to the C-terminus or N-terminus of the polypeptide.
  • Representative labeled peptides include 6-10 residue histidine repeats (His tag), FLAG, myc peptide, GST (glutathione S-transferase) polypeptide, etc., but the labeled peptides are not limited to these. Absent.
  • examples of the purification method include a method by ion exchange chromatography.
  • a method combining gel filtration, hydrophobic chromatography, isoelectric point chromatography, high performance liquid chromatography (HPLC), electrophoresis, ammonium sulfate fractionation, salting out, ultrafiltration, dialysis and the like may be used.
  • a labeled (poly) peptide such as histidine repeat, FLAG, myc, or GST is attached to the polypeptide
  • a method by affinity chromatography suitable for each generally used labeled peptide can be mentioned.
  • an expression vector that facilitates isolation and purification may be constructed.
  • an expression vector is constructed so that it is expressed in the form of a fusion polypeptide of a polypeptide and a labeled peptide, and the polypeptide is genetically engineered, isolation and purification are easy.
  • Nucleic acid can be purified by a purification method using agarose gel electrophoresis, a DNA-binding resin column, or the like. Moreover, since an automatic nucleic acid purification apparatus, a nucleic acid purification kit, etc. are marketed, nucleic acid purification can also be performed using these.
  • the variant of the polypeptide of the present invention is a deletion of one or more, preferably one or several amino acids in the amino acid sequence represented by SEQ ID NOs: 1 to 9 or a partial sequence thereof. About 80% or more, about 85% or more, preferably about 90% or more, more preferably about 95% or more, about 97% or more with a mutant comprising deletion, substitution, addition or insertion, or the amino acid sequence or a partial sequence thereof , A variant consisting of an amino acid sequence having% identity of about 98% or more and about 99% or more.
  • Such mutants include, for example, homologues of mammalian species different from humans, natural variants such as mutants based on polymorphic variation between the same mammalian species (for example, race), splice variants, mutants, etc. Variants are included.
  • the term “subject” is intended to include not only humans but also other mammals.
  • the polypeptide fragment comprises at least 7, at least 8, at least 10, at least 15, preferably at least 20, at least 25, more preferably at least 30, of the amino acid sequence of the polypeptide. Consists of at least 40, at least 50, at least 100, at least 150, or at least 200 to a total number of consecutive amino acid residues and retains one or more epitopes. Such a fragment is capable of immunospecifically binding to the antibody of the present invention or a fragment thereof. For example, when the polypeptide is present in blood, it is assumed that the polypeptide is present by being cleaved and fragmented by an enzyme such as protease or peptidase.
  • composition or kit for diagnosis or detection of diabetic peripheral vascular disorder relates to an antibody or fragment thereof, or a chemically modified derivative thereof, which specifically binds to a polypeptide comprising the amino acid sequence represented by SEQ ID NOS: 1 to 9 in the sequence listing, a variant thereof or a fragment thereof.
  • a composition comprising one or more, preferably 3 or more, more preferably 5 or more, even more preferably 7 or more, most preferably 9 different substances.
  • composition refers not only to a mixture of a plurality of antibodies, fragments thereof, and / or chemically modified derivatives thereof, but also to a plurality of antibodies, fragments thereof, and / or chemically modified derivatives thereof. It is intended to include combinations.
  • An antibody that recognizes a polypeptide that is a marker for diabetic macular edema, a variant thereof, or a fragment thereof can specifically bind to the polypeptide, a variant thereof, or a fragment thereof via the antigen-binding site of the antibody It is.
  • the antibody that can be used in the present invention is conventionally used by using a polypeptide comprising the amino acid sequences of SEQ ID NOs: 1 to 9, a variant thereof, or a fragment thereof, or a fusion polypeptide thereof as one or a plurality of immunogens. It can produce by the technique of.
  • polypeptides, fragments, variants or fusion polypeptides contain epitopes that elicit antibody formation, but these epitopes may be linear or higher order (intermittent). Epitopes capable of binding to an antibody are generally considered to be present on the hydrophilic surface of the polypeptide structure.
  • the antibody that can be used in the present invention includes any type, class, and subclass.
  • Such antibodies include, for example, IgG, IgE, IgM, IgD, IgA, IgY, IgG1, IgG2, IgG3, IgG4, IgA1, IgA2.
  • antibodies of all aspects are induced by the polypeptide according to the present invention. If all or part of the polypeptide or epitope is isolated, both polyclonal and monoclonal antibodies can be prepared using conventional techniques. Methods include, for example, Kennet et al. (Supervised), Monoclonal Antibodies, Hybridomas: A A NewA Dimension in Biological Analyzes, Pleumnum Press, New York, 1980.
  • Polyclonal antibodies can be produced by immunizing animals such as birds (for example, chickens) and mammals (for example, rabbits, goats, horses, sheep, mice, etc.) with the polypeptide of the present invention.
  • the target antibody can be purified from the blood of an immunized animal by appropriately combining techniques such as ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography and the like.
  • Monoclonal antibodies can be obtained by techniques including producing hybridoma cell lines that produce monoclonal antibodies specific for each polypeptide in mice by conventional techniques.
  • One method for producing such hybridoma cell lines is to immunize an animal with a polypeptide according to the invention, collect spleen cells from the immunized animal, fuse the spleen cells to a myeloma cell line, Generating hybridoma cells and identifying a hybridoma cell line that produces a monoclonal antibody that binds to the polypeptide.
  • Monoclonal antibodies can be recovered by conventional techniques.
  • A. Preparation of monoclonal antibody (1) Immunization and collection of antibody-producing cells The immunogen obtained as described above is administered to mammals such as rats, mice (for example, Balb / c of inbred mice), rabbits, and the like. . A single dose of the immunogen is appropriately determined according to the type of animal to be immunized, the route of administration, etc., and is about 50 to 200 ⁇ g per animal. Immunization is performed mainly by injecting an immunogen subcutaneously or intraperitoneally. Further, the immunization interval is not particularly limited, and after the initial immunization, booster immunization is performed 2 to 10 times, preferably 3 to 4 times at intervals of several days to several weeks, preferably at intervals of 1 to 4 weeks.
  • the antibody titer in the serum of the immunized animal is repeatedly measured by ELISA (Enzyme-Linked Immuno Sorbent Assay) method, etc.
  • ELISA Enzyme-Linked Immuno Sorbent Assay
  • the immunogen is intravenously or intraperitoneally Inject and give final immunization.
  • antibody-producing cells are collected 2 to 5 days, preferably 3 days after the last immunization. Examples of antibody-producing cells include spleen cells, lymph node cells, peripheral blood cells, etc., but spleen cells or local lymph node cells are preferred.
  • Hybridoma cell lines that produce monoclonal antibodies specific for each protein can be produced and identified by conventional techniques.
  • One method for producing such a hybridoma cell line is to immunize an animal with a polypeptide of the invention, collect spleen cells from the immunized animal, and fuse the spleen cells to a myeloma cell line, thereby Generating hybridoma cells and identifying a hybridoma cell line producing a monoclonal antibody that binds to the enzyme.
  • a myeloma cell line to be fused with an antibody-producing cell a generally available cell line of an animal such as a mouse can be used.
  • the cell line used has drug selectivity and cannot survive in a HAT selection medium (including hypoxanthine, aminopterin, and thymidine) in an unfused state, but can survive only in a state fused with antibody-producing cells. Those having the following are preferred.
  • the cell line is preferably derived from an animal of the same species as the immunized animal. Specific examples of myeloma cell lines include P3X63-Ag., which is a hypoxanthine / guanine / phosphoribosyltransferase (HGPRT) deficient cell line derived from Balb / c mice. 8 strains (ATCC TIB9).
  • cell fusion is performed between the myeloma cell line and antibody-producing cells.
  • antibody-producing cells and myeloma cell lines are mixed at a ratio of about 1: 1 to 20: 1 in animal cell culture media such as serum-free DMEM and RPMI-1640 media, and cell fusion is performed.
  • the fusion reaction is performed in the presence of an accelerator.
  • an accelerator As a cell fusion promoter, polyethylene glycol having an average molecular weight of 1500 to 4000 daltons can be used at a concentration of about 10 to 80%.
  • an auxiliary agent such as dimethyl sulfoxide may be used in combination in order to increase the fusion efficiency.
  • antibody-producing cells and myeloma cell lines can be fused using a commercially available cell fusion device utilizing electrical stimulation (for example, electroporation).
  • the target hybridoma is selected from the cells after cell fusion treatment.
  • the cell suspension is appropriately diluted with, for example, fetal bovine serum-containing RPMI-1640 medium, and then plated on a microtiter plate at about 2 million cells / well, and a selective medium is added to each well. Cultivate by changing the selective medium.
  • the culture temperature is 20 to 40 ° C, preferably about 37 ° C.
  • myeloma cells are of HGPRT-deficient strain or thymidine kinase-deficient strain
  • a selective medium HAT medium
  • hypoxanthine, aminopterin, and thymidine containing hypoxanthine, aminopterin, and thymidine. Only those hybridomas can be selectively cultured and propagated. As a result, cells that grow from about 14 days after the start of culture in the selective medium can be obtained as hybridomas.
  • Hybridoma screening is not particularly limited, and may be carried out according to ordinary methods. For example, a part of the culture supernatant contained in a well grown as a hybridoma is collected and subjected to enzyme immunoassay (EIA: Enzyme Immuno Assay and ELISA), radioimmunoassay (RIA: Radio Immuno Assay), etc. Can do. Cloning of the fused cells is performed by limiting dilution or the like, and finally a hybridoma that is a monoclonal antibody-producing cell is established. The hybridoma is stable in culture in a basic medium such as RPMI-1640 or DMEM, and produces and secretes a monoclonal antibody that specifically reacts with the polypeptide diabetic macular edema marker of the present invention.
  • EIA Enzyme Immuno Assay and ELISA
  • RIA Radio Immuno Assay
  • Monoclonal antibodies can be recovered by conventional techniques. That is, as a method for collecting a monoclonal antibody from the established hybridoma, a normal cell culture method or ascites formation method can be employed. In the cell culture method, the hybridoma is cultured in an animal cell culture medium such as RPMI-1640 medium containing 10% fetal bovine serum, MEM medium, or serum-free medium under normal culture conditions (eg, 37 ° C., 5% CO 2 concentration). Cultivate for 2-10 days and obtain antibody from the culture supernatant.
  • an animal cell culture medium such as RPMI-1640 medium containing 10% fetal bovine serum, MEM medium, or serum-free medium under normal culture conditions (eg, 37 ° C., 5% CO 2 concentration).
  • hybridomas In the case of the ascites formation method, about 10 million hybridomas are administered into the abdominal cavity of a myeloma cell-derived mammal and the same type of animal, and the hybridomas are proliferated in large quantities. Ascites fluid or serum is collected after 1-2 weeks.
  • an antigen-binding fragment of the above antibody can also be used.
  • antigen-binding fragments that can be produced by conventional techniques include, but are not limited to, fragments such as Fab and F (ab ′) 2 , Fv, scFv, dsFv.
  • antibody fragments and derivatives that can be produced by genetic engineering techniques.
  • Such antibodies include, for example, synthetic antibodies, recombinant antibodies, multispecific antibodies (including bispecific antibodies), single chain antibodies, and the like.
  • the antibody of the present invention can be used in an assay for detecting the presence of a polypeptide or a (poly) peptide fragment thereof in the present invention, both in vitro and in vivo.
  • the use of monoclonal antibodies is preferred to allow specific detection in the assay, but even polyclonal antibodies can be identified by the so-called absorption method, which involves binding the antibody to an affinity column to which the purified polypeptide is bound.
  • Antibodies can be obtained.
  • composition of the present invention preferably comprises at least one antibody or fragment thereof that can specifically bind to a polypeptide comprising the amino acid sequence of SEQ ID NOs: 1 to 9 in the sequence listing, a variant thereof, or a fragment thereof.
  • the composition of the present invention is in the form of a kit.
  • a kit includes a container for accommodating antibodies or fragments thereof that can specifically bind to each of the above polypeptides, either separately or as a mixture.
  • the antibody or fragment thereof may be attached or bound on a solid phase carrier such as a multi-well plate made of polystyrene, a spherical carrier such as latex beads or magnetic beads.
  • the antibody or fragment thereof used in the present invention may be bound with a label, for example, a fluorophore, an enzyme, a radioisotope, or the like, if necessary, or such a label may be bound to a secondary antibody. Also good.
  • a label for example, a fluorophore, an enzyme, a radioisotope, or the like, if necessary, or such a label may be bound to a secondary antibody. Also good.
  • Fluorophores include, for example, fluorescein and its derivatives (such as FITC), rhodamine and its derivatives (such as tetramethylrhodamine), dansyl chloride and its derivatives, umbelliferone, and the like.
  • Enzymes include, for example, horseradish peroxidase, alkaline phosphatase and the like.
  • Radioisotopes include, for example, iodine ( 131 I, 125 I, 123 I, 121 I), phosphorus ( 32 P), sulfur ( 35 S), metals (eg, 68 Ga, 67 Ga, 68 Ge, 54 Mn, 99 Mo, 99 Tc, 133 Xe, etc.).
  • luminescent substances such as luminol
  • bioluminescent substances such as luciferase and luciferin.
  • an avidin-biotin system or a streptavidin-biotin system can be used.
  • biotin can be bound to the antibody of the present invention or a fragment thereof.
  • composition of the present invention further comprises an antibody or an antigen-binding fragment thereof that specifically binds to at least one of a polypeptide comprising the amino acid sequence represented by SEQ ID NOs: 1 to 9 in the sequence listing, a variant thereof, or a fragment thereof.
  • Kits for the diagnosis or / and detection of diabetic peripheral vascular disorders comprising one or more of those chemically modified derivatives are provided.
  • the kit comprises, for example, different containers (for example, vials) containing the above-mentioned antibodies or nucleic acids for detecting a marker of diabetic peripheral vascular disorder individually or appropriately mixed.
  • the antibodies can preferably be contained in a container in lyophilized form.
  • the kit of the present invention comprises an antibody or antigen-binding fragment thereof that can specifically bind to each of the above polypeptides, such as a multi-well plate, an array, a microtiter plate, a test strip (or test strip), a latex bead. Or a solid support such as a spherical support such as a magnetic bead or a covalently bonded (covalent or non-covalent) bond.
  • the kit may further contain a buffer, a secondary antibody, an instruction manual, etc. for use in the assay method of the present invention.
  • the present invention further provides a fragment that binds to an antibody or an antigen thereof that specifically binds to at least one of a polypeptide comprising the amino acid sequence represented by SEQ ID NOs: 1 to 9 in the sequence listing, a variant thereof or a fragment thereof. Also provided is the use of one or more of these chemically modified derivatives, in the manufacture of a kit for the diagnosis and / or detection of diabetic peripheral vascular disorders.
  • ⁇ Detection of diabetic peripheral vascular disorder> using a substance that can bind to the marker, the polypeptide represented by SEQ ID NOs: 1 to 9 in the sequence listing in a biological sample derived from a subject, a variant or fragment thereof, or the polypeptide , By measuring the amount or presence of one or more of the nucleic acids encoding the variant or fragment thereof in vitro, by a method comprising diabetic peripheral angiopathy (eg diabetic macular edema, simple diabetic retina) , Background diabetic retinopathy, preproliferative diabetic retinopathy, diabetic macular disease, etc.) can be detected.
  • diabetic peripheral angiopathy eg diabetic macular edema, simple diabetic retina
  • Background diabetic retinopathy preproliferative diabetic retinopathy, diabetic macular disease, etc.
  • the subject When the diabetic macular edema marker is detected by the method of the present invention, or when it is determined that the gene expression level is significantly higher than the control, the subject has advanced diabetic peripheral vascular disorder and suffers from diabetic macular edema. Can be diagnosed.
  • the detection of the diabetic macular edema marker may be a single marker, but is preferably performed on a plurality of markers, for example, 2 or more, 3 or more, 4 or more, or 5 or more and 9 or less. . This is to improve the accuracy of disease detection by using a plurality of markers.
  • composition or kit of the present invention is useful for diagnosis, determination or detection of diabetic peripheral vascular disorder, that is, diagnosis of the presence or absence of disease and the degree of disease.
  • Diagnosis of diabetic macular edema is performed by comparing with a negative control such as normal cells, tissues, or body fluids, and detecting the presence or amount of the above-mentioned diabetic macular edema marker in a biological sample of a subject. Is significant, the subject is suspected of having diabetic macular edema.
  • the specimen sample used in the method of the present invention is a biological sample represented by a body fluid such as blood, serum, plasma, urine or tears, or a tissue such as vitreous.
  • the substance capable of binding to the above-mentioned diabetic macular edema marker is, for example, aptamer, Affibody (trademark) (Affibody), each diabetic macular edema marker receptor, each diabetic macular edema marker, Specific action inhibitors, specific action activators of the respective diabetic macular edema markers, preferably antibodies or fragments thereof, or chemically modified derivatives thereof.
  • the measurement is performed by contacting an antibody or fragment optionally labeled with a conventional enzyme or fluorophore with a tissue section or homogenized tissue or body fluid, qualitatively or with an antigen-antibody complex.
  • a step of quantitatively measuring can be included.
  • Detection is, for example, a method for measuring the presence and level of a target polypeptide by immunoelectron microscopy, an enzyme antibody method (for example, ELISA), a fluorescent antibody method, a radioimmunoassay method, a homogeneous method, a heterogeneous method, a solid phase method, a sandwich method Or the like by a method of measuring the presence or level of the target polypeptide by a conventional method.
  • Diabetic macular edema is diagnosed when the target polypeptide is present in a body fluid or tissue or cell, preferably blood, or when the level of the target polypeptide is significantly increased or high compared to a negative control.
  • a method using mass spectrometry is included. Specifically, this method can be performed by the technique described in the examples. That is, a biological sample such as serum or plasma is filtered to remove impurities, diluted with a buffer solution (for example, pH of about 8) and adjusted to a concentration of about 10 mg / ml to about 15 mg / ml, and then a molecular weight of 5 Molecular weight fractionation is performed through a hollow fiber filter (Reference Example (1) below) or a centrifugal flat membrane filter capable of removing more than 10,000 proteins, and the fraction is treated with protease (for example, trypsin) to be peptideized, and mass spectrometry is performed.
  • a buffer solution for example, pH of about 8
  • a molecular weight fractionation is performed through a hollow fiber filter (Reference Example (1) below) or a centrifugal flat membrane filter capable of removing more than 10,000 proteins, and the fraction is treated with protease (for example, trypsin) to be peptid
  • a specific peak derived from the polypeptide of interest Based on the mass / charge number and intensity of a specific peak derived from the polypeptide of interest, it can be applied to a diabetic macular edema patient and healthy by applying a meter (a type using matrix-assisted laser desorption ionization or electrospray ionization) The difference in polypeptide abundance in the sample between humans or other eye diseases can be measured.
  • a meter a type using matrix-assisted laser desorption ionization or electrospray ionization
  • ⁇ Reference example> Production of hollow fiber filter 100 polysulfone hollow fibers having a pore size of about 50,000 on the membrane surface are bundled, and both ends are fixed to a glass tube with an epoxy potting agent so as not to block the hollow part of the hollow fiber. And created a mini-module.
  • the minimodule (module A) is used to remove high molecular weight proteins in serum or plasma, and has a diameter of about 7 mm and a length of about 17 cm.
  • a minimodule (module B) used for concentration of low molecular weight proteins was prepared using a membrane having a pore size of about 3,000 for the molecular weight cut off.
  • the mini module has an inlet connected to the hollow fiber lumen at one end, and an outlet at the opposite end.
  • the hollow fiber inlet and outlet are closed circulation system flow paths using silicon tubes, and the liquid is driven and circulated through the flow path by a peristaltic pump.
  • the glass tube of the hollow fiber mantle is provided with a port for discharging the liquid leaking from the hollow fiber, and one module set is configured.
  • Modules were connected by T-shaped connectors in the middle of the flow path, and three modules A and one module B were connected in tandem to form one hollow fiber filter.
  • the hollow fiber filter was washed with distilled water and filled with an aqueous solution of PBS (phosphate buffer containing 0.15 mM NaCl, pH 7.4).
  • PBS phosphate buffer containing 0.15 mM NaCl, pH 7.4
  • the fraction raw material serum or plasma is injected from the flow channel inlet of the hollow fiber filter, and is discharged from the flow channel outlet after fractionation and concentration. Serum or plasma injected into the hollow fiber filter is subjected to molecular sieving with a molecular weight of about 50,000 for each module A, and components having a molecular weight lower than 50,000 are concentrated and prepared in module B. Yes.
  • Example 1 Protein identification of diabetic macular edema, macular hole, and proliferative diabetic retinopathy 16 diabetic macular edema patients with an average age of 61, 16 macular hole patients of the same age, 16 proliferative diabetic retinopathy patients Vitreous bodies were obtained from each and measured for each. The vitreous was centrifuged to remove contaminants. This vitreous was combined into 16 samples for each disease. The vitreous sample was further diluted in a 300 mM ammonium bicarbonate solution, and fractionated by molecular weight using the hollow fiber filter shown in Reference Example (1). 300 ⁇ g of protein was used per fractionation, and this was repeated 8 times. Eight fraction collection solutions were combined again.
  • the vitreous sample after fractionation (8 fraction collection solutions: total volume 13.6 mL, containing up to 600 ⁇ g of protein) is separated into 3 fractions by reverse phase chromatography with AKTA explorer 10s (GE Healthcare Biosciences) Each fraction was lyophilized and redissolved in 100 mM ammonium bicarbonate buffer. This sample was treated with DTT / iodoacetamide and digested with trypsin in an amount of 1/50 of the protein overnight at 37 ° C. for peptideization. The peptides of each fraction were further fractionated into 8 fractions by an ion exchange column. Each fraction was further fractionated on a reverse phase column, and the eluted peptide was measured using a mass spectrometer LCQ Deca XP plus (Thermo Fisher Scientific Co., Ltd.) linked online. .
  • Phenix conducts searches taking into account isoform-specific amino acid sequences due to alternative splicing of the same protein, changes in mass due to post-translational modifications, etc., and therefore identifies peptides that cannot be identified by Bioworks There is a case. Under these conditions, proteins identified only in Phenix were also listed.
  • proteins listed in each disease a protein detected in a patient with diabetic macular edema but not detected in a macular hole or proliferative diabetic retinopathy patient was found as a vitreous marker protein.
  • These proteins are polypeptides comprising the amino acid sequences represented by SEQ ID NOs: 1 to 9 shown in Table 1 (above) and the sequence listing, and therefore diabetic peripheral vascular disorders such as diabetic macular edema as diabetic macular edema markers. Has proved useful in the detection and diagnosis during treatment.
  • the present invention is particularly useful in the pharmaceutical and pharmaceutical industries because it can provide a composition for diagnosing diabetic peripheral vascular disorders such as diabetic macular edema having excellent specificity and sensitivity.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Disclosed is a method for detecting a diabetic peripheral vascular disorder such as diabetic macular edema, which comprises measuring at least one component selected from a polypeptide comprising an amino acid sequence depicted in any one of SEQ ID NO:1 to SEQ ID NO:9 shown in the Sequence Listing and a mutant or a fragment of the polypeptide in a biological sample collected from a subject.  Also disclosed is a composition or a kit for diagnosing and/or detecting a diabetic peripheral vascular disorder such as diabetic macular edema.

Description

糖尿病性末梢血管障害の検査のための方法、組成物およびキットMethods, compositions and kits for the examination of diabetic peripheral vascular disorders
 本発明は、糖尿病性末梢血管障害の検査方法に関する。該検査方法には該障害の判定方法または同定方法も含まれる。 The present invention relates to a test method for diabetic peripheral vascular disorder. The inspection method includes a method for determining or identifying the disorder.
 本発明はまた、糖尿病性末梢血管障害の診断に有用な組成物およびキットに関する。 The present invention also relates to a composition and kit useful for diagnosis of diabetic peripheral vascular disorder.
 網膜は眼球後部にある薄い膜で、多くの細胞からなり、無数の細かい血管が張り巡らされている。糖尿病などにより血糖の高い状態が長く続くと、網膜の細い血管は少しずつ損傷を受け、血液中の各種成分が漏れ出し、物を見る中心部の黄斑にむくみが生じる。このような状態を黄斑浮腫と言う。黄斑部は視力にきわめて重要な場所であるので、黄斑浮腫が長期間続くと視力が大きく低下し、しばしば回復が困難になる。我国(日本)では、近年の急激な高齢者人口の増加や食の欧米化に伴い、糖尿病患者数も増加の一途をたどっており、その合併症である糖尿病黄斑浮腫も増加する傾向にある。 The retina is a thin membrane at the back of the eyeball, consisting of many cells, and numerous fine blood vessels. If the state of high blood sugar continues for a long time due to diabetes or the like, the thin blood vessels of the retina are gradually damaged, various components in the blood leak, and swelling occurs in the macular in the center of the object. Such a condition is called macular edema. Since the macula is a very important place for visual acuity, if macular edema persists for a long time, the visual acuity is greatly reduced and often difficult to recover. In Japan (Japan), with the rapid increase in the elderly population and the westernization of food in recent years, the number of diabetic patients is steadily increasing, and the complications of diabetic macular edema tend to increase.
 本疾患は視力低下につながる疾患であるため、早期に診断を行うことが非常に重要である。従来、糖尿病黄斑浮腫の診断においては、眼底検査が中心に行われており、患者が検査の前に瞳孔を開くための点眼薬をさすか、あるいは、網膜の血管を染色する蛍光色素を腕の静脈に注射した後に、眼底鏡や眼底カメラで医師が直接、網膜を観察している。しかしながら、点眼薬によって瞳孔が開きっぱなしの状態になるため、まぶしくて見えない状態が約3時間程度続くことがあり、一時的ではあるものの患者にとって負担となる。また、蛍光色素を静注した後に悪心、嘔吐、ショックなどの副作用を引き起こす可能性が全くないとは言えないのが現状である。さらに、医師による網膜の直接観察は、必ずしも客観的な診断方法とはいえず、一人一人の患者について医師が対応しなければならないために大勢の被験者を扱う集団検診などへの展開が難しい。このように、患者の病態の進行度合いや治療中の経時変化をより客観的および定量的に示すことのできる、患者負担の少ないハイスループットな診断方法が望まれている。 】 Since this disease is a disease that leads to decreased visual acuity, it is very important to make an early diagnosis. Conventionally, diagnosis of diabetic macular edema has been performed mainly by the fundus examination, and the patient applies eye drops to open the pupil before the examination, or a fluorescent dye that stains the blood vessels of the retina. After injection into a vein, a doctor observes the retina directly with a fundus mirror or fundus camera. However, since the pupil is left open by eye drops, the dull and invisible state may continue for about 3 hours, which is a temporary burden for the patient. Moreover, it cannot be said that there is no possibility of causing side effects such as nausea, vomiting and shock after intravenous injection of fluorescent dyes. Furthermore, direct observation of the retina by a doctor is not necessarily an objective diagnostic method, and the doctor must deal with each patient, so that it is difficult to develop into a mass screening that handles a large number of subjects. Thus, there is a demand for a high-throughput diagnostic method with less patient burden that can more objectively and quantitatively indicate the degree of progression of a patient's disease state and the change over time during treatment.
 診断マーカーを用いた診断方法は客観的でハイスループットな方法の一つである。これまでに血漿中のVEGFやbFGFによる診断方法が開示されている(非特許文献1)。これらの手法は、これらのマーカーをもって相対的に高い特異性で糖尿病黄斑浮腫を判定することはできず、研究レベルにとどまっているのが現状である。 Diagnostic method using diagnostic markers is one of objective and high-throughput methods. A diagnostic method using VEGF or bFGF in plasma has been disclosed so far (Non-patent Document 1). These techniques cannot determine diabetic macular edema with relatively high specificity using these markers, and are currently at the research level.
 近年のゲノム解析またはプロテオーム解析の進歩に伴い、様々な新規のマーカー候補が報告されている。糖尿病黄斑浮腫においても、眼組織を用いたプロテオーム解析により、様々な新規のマーカー候補が報告されている(非特許文献2)。しかしながら、信頼性の高い糖尿病黄斑浮腫のタンパク質マーカーや、糖尿病黄斑浮腫の血液中のタンパク質マーカーを用いて糖尿病黄斑浮腫を診断する方法については未だ知られていない。糖尿病黄斑浮腫を診断できるマーカー、およびそのマーカーを用いて診断できる方法を創出できれば、糖尿病性末梢血管障害の診断にも拡大展開できることが期待される。 With recent advances in genome analysis or proteome analysis, various new marker candidates have been reported. In diabetic macular edema, various novel marker candidates have been reported by proteomic analysis using ocular tissue (Non-patent Document 2). However, a method for diagnosing diabetic macular edema using a highly reliable protein marker for diabetic macular edema or a protein marker in the blood of diabetic macular edema is still unknown. If a marker capable of diagnosing diabetic macular edema and a method capable of diagnosing using the marker can be created, it can be expected to expand to the diagnosis of diabetic peripheral vascular disorders.
 上記の既存マーカー、およびマーカー候補は特異性および/または感受性に乏しいことや、生体試料からのその効率的な検出方法が確立していないことから一般に臨床上の利用は行われておらず、より特異性および感受性が高い糖尿病黄斑浮腫のマーカーが切望されている。また、患者の病態の進行度合いや術後の経時変化をより客観的および定量的に示すことのできる、患者負担の少ないハイスループットな検査方法が望まれている。 The above existing markers and marker candidates are generally not clinically used because of their poor specificity and / or sensitivity and their efficient detection methods from biological samples have not been established. Markers of diabetic macular edema with high specificity and sensitivity are eagerly desired. In addition, a high-throughput inspection method with a low patient burden that can more objectively and quantitatively indicate the degree of progression of the patient's pathological condition and the temporal change after surgery is desired.
 本発明は、糖尿病性末梢血管障害、とりわけ糖尿病黄斑浮腫の診断に有用な組成物またはキット、および該組成物またはキットを用いた糖尿病黄斑浮腫の検査方法を提供することを目的とする。 An object of the present invention is to provide a composition or kit useful for diagnosis of diabetic peripheral vascular disorder, particularly diabetic macular edema, and a method for examining diabetic macular edema using the composition or kit.
 本発明者らは、糖尿病黄斑浮腫などの糖尿病性末梢血管障害をもつ患者と他の眼疾患患者の硝子体検体をプロテオーム解析することによって、該障害をもつ患者に特異的に検出される生体中タンパク質マーカーを見出し、そのタンパク質マーカーを用いた、糖尿病性末梢血管障害の検査方法を発明するに至った。 The present inventors have conducted proteomic analysis of vitreous specimens of patients with diabetic peripheral vascular disorders such as diabetic macular edema and patients with other eye diseases, so that they can be detected in vivo specifically for patients with the disorders. The present inventors have found a protein marker and invented a method for examining diabetic peripheral vascular disorder using the protein marker.
<発明の概要>
 本発明は、以下の特徴を有する。
<Summary of invention>
The present invention has the following features.
(1)被験者由来の生体試料中に含まれる配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片のいずれか1つまたは複数を定量的もしくは定性的に測定および/または検出することを含む、糖尿病性末梢血管障害の検査方法。 (1) Quantitative or qualitative analysis of any one or more of the polypeptide containing the amino acid sequence represented by SEQ ID NO: 1 to 9 in the sequence listing contained in a biological sample derived from a subject, its variant or fragment thereof A method for examining diabetic peripheral vascular disorder, comprising measuring and / or detecting the disease.
(2)糖尿病性末梢血管障害が糖尿病黄斑浮腫である、上記(1)に記載の検定方法。 (2) The assay method according to (1) above, wherein the diabetic peripheral vascular disorder is diabetic macular edema.
(3)上記ポリペプチド、その変異体またはその断片の測定および/または検出を、質量分析法を用いて行う、上記(1)または(2)に記載の方法。 (3) The method according to (1) or (2) above, wherein measurement and / or detection of the polypeptide, variant thereof or fragment thereof is performed using mass spectrometry.
(4)上記測定および/または検出を、上記ポリペプチド、その変異体またはその断片と結合可能な物質を用いて行う、上記(3)に記載の方法。 (4) The method according to (3) above, wherein the measurement and / or detection is performed using a substance capable of binding to the polypeptide, a variant thereof or a fragment thereof.
(5)上記結合可能な物質が抗体またはその断片である、上記(4)に記載の方法。 (5) The method according to (4) above, wherein the bindable substance is an antibody or a fragment thereof.
(6)上記抗体またはその断片が、酵素、蛍光物質、色素または放射性同位元素のいずれかで標識されている、上記(5)に記載の方法。 (6) The method according to (5) above, wherein the antibody or fragment thereof is labeled with any of an enzyme, a fluorescent substance, a dye, or a radioisotope.
(7)上記抗体またはその断片が、モノクローナルまたはポリクローナル抗体、あるいはその断片である、上記(5)または(6)に記載の方法。 (7) The method according to (5) or (6) above, wherein the antibody or fragment thereof is a monoclonal or polyclonal antibody, or a fragment thereof.
(8)上記生体試料が、血液、血漿、血清、尿、涙液、硝子体または硝子体液である、上記(1)~(7)のいずれかに記載の方法。 (8) The method according to any one of (1) to (7) above, wherein the biological sample is blood, plasma, serum, urine, tears, vitreous or vitreous humor.
(9)配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片の少なくとも1つと特異的に結合する、抗体もしくはその断片またはそれらの化学修飾誘導体、のうちの1つまたは複数の物質を含む、糖尿病性末梢血管障害の診断または/および検出のための組成物。 (9) an antibody or a fragment thereof, or a chemically modified derivative thereof, which specifically binds to at least one of a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1 to 9 in the sequence listing, a variant thereof or a fragment thereof A composition for diagnosis or / and detection of diabetic peripheral vascular disorder, comprising one or more substances.
(10)配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片の少なくとも1つと特異的に結合する、抗体もしくはその抗原に結合する断片またはそれらの化学修飾誘導体、のうちの1つまたは複数の物質を含む、糖尿病性末梢血管障害の診断および/または検出のためのキット。 (10) Fragments that bind to an antibody or an antigen thereof, which specifically bind to at least one of the polypeptides comprising the amino acid sequences represented by SEQ ID NOS: 1 to 9 in the sequence listing, variants or fragments thereof, or their chemistry A kit for the diagnosis and / or detection of diabetic peripheral vascular disorder comprising one or more of the modified derivatives.
(11)配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片の少なくとも1つと特異的に結合する、抗体もしくはその抗原に結合する断片またはそれらの化学修飾誘導体、のうちの1つまたは複数の物質の、糖尿病性末梢血管障害の診断および/または検出のためのキットの製造における使用。 (11) A fragment that binds to an antibody or an antigen thereof, which specifically binds to at least one of the polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1 to 9 in the sequence listing, a variant thereof or a fragment thereof, or a chemistry thereof Use of one or more of the modified derivatives in the manufacture of a kit for the diagnosis and / or detection of diabetic peripheral vascular disorders.
<定義>
 本明細書中で使用する用語は、以下の定義を有する。
<Definition>
The terms used herein have the following definitions:
 本明細書における配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチドの変異体は、配列表の配列番号1~9で表されるアミノ酸配列またはその部分配列おいて1もしくは複数、好ましくは1もしくは数個、のアミノ酸の欠失、置換、付加または挿入を含む変異体、あるいは該アミノ酸配列またはその部分配列と約80%以上、約85%以上、好ましくは約90%以上、より好ましくは約95%以上、約97%以上、約98%以上、約99%以上の同一性を有するアミノ酸配列からなる変異体を意味する。 The variant of the polypeptide containing the amino acid sequence represented by SEQ ID NO: 1 to 9 in the sequence listing in this specification is one or more of the amino acid sequence represented by SEQ ID NO: 1 to 9 in the sequence listing or a partial sequence thereof. About 80% or more, about 85% or more, preferably about 90% or more, preferably a variant comprising deletion, substitution, addition or insertion of one or several amino acids, or the amino acid sequence or a partial sequence thereof More preferably, it means a variant comprising an amino acid sequence having about 95% or more, about 97% or more, about 98% or more, or about 99% or more identity.
 本明細書で使用される「%同一性」という用語は、一般に、2つのアミノ酸配列にギャップを導入して、またはギャップを導入しないで、整列化(アラインメント)したとき、アミノ酸残基または位置の総数に対する、配列が共有する同一のアミノ酸残基または位置の数の割合(%)を意味する。2つのアミノ酸配列の同一性は、数学的アルゴリズムを用いて決定することが可能であり、そのようなアルゴリズムの例は、KarlinおよびAltshul, Proc. Natl. Acad. Sci. USA 1990, 87:2264および、その改良版であるKarlinおよびAltshul, Proc. Natl. Acad. Sci. USA 1993, 90:5873-5877である。この種のアルゴリズムは、BLASTN、BLASTXなどに組み込まれている(Altshulら, J. Mol. Biol. 1990, 215:403)。本発明の配列表の配列番号1~9で表されるポリペプチドの各アミノ酸配列と相同なアミノ酸配列を得るためには、BLASTの蛋白質検索を、例えばスコア=50、ワード長=3としたBLASTプログラムを用いて実行する。また、ギャップを導入したアラインメントを得るためには、ギャップ導入BLAST(gapped BLAST)(Altshulら, Nucleic Acid Res. 1997, 25:3389)を利用することができる。 As used herein, the term “% identity” generally refers to an amino acid residue or position when aligned (aligned) with or without introducing a gap between two amino acid sequences. The percentage of the number of identical amino acid residues or positions shared by the sequence relative to the total number. The identity of two amino acid sequences can be determined using a mathematical algorithm, examples of such algorithms are described in Karlin and Altshul, Proc. Natl. Acad. Sci. USA 1990, 87: 2264 and its improved versions, Karlin and Altshul, Proc. Natl. Acad. Sci. USA 1993, 90: 5873-5877. This type of algorithm is incorporated in BLASTN, BLASTX, etc. (Altshul et al., J. Mol. Biol. 1990, 215: 403). In order to obtain an amino acid sequence that is homologous to each amino acid sequence of the polypeptides represented by SEQ ID NOs: 1 to 9 in the sequence listing of the present invention, BLAST protein search is performed using, for example, BLAST protein search with score = 50 and word length = 3. Execute using a program. Moreover, in order to obtain the alignment which introduce | transduced the gap, gap introduction BLAST (gapped BLAST) (Altshul et al., Nucleic Acid Res. 1997, 25: 3389) can be used.
 本明細書で使用される「数個」という用語は、10以下のいずれかの整数、すなわち、10、9、8、7、6、5、4、3または2個の整数を指す。 As used herein, the term “several” refers to any integer less than or equal to 10, ie, 10, 9, 8, 7, 6, 5, 4, 3 or 2.
 本明細書で使用される「化学修飾誘導体」という用語は、以下のものに限定されないが、例えば、酵素、蛍光物質、色素、放射性同位元素などのラベルによるラベル化誘導体、あるいはビオチン化、アセチル化、グリコシル化、リン酸化、ユビキチン化、硫酸化などの化学修飾を含む誘導体を意味する。 The term “chemically modified derivative” as used herein is not limited to the following, for example, a labeled derivative such as an enzyme, a fluorescent substance, a dye, a radioisotope, or the like, or biotinylation, acetylation , Means derivatives containing chemical modifications such as glycosylation, phosphorylation, ubiquitination, sulfation.
 本明細書で使用される「診断および/または検出のための組成物」または「診断および/または検出のためのキット」という用語は、糖尿病黄斑浮腫などの糖尿病性末梢血管障害の罹患の有無、罹患の程度もしくは改善の有無や改善の程度を診断および/または検出するために、あるいは糖尿病黄斑浮腫などの糖尿病末梢血管障害の予防、改善または治療に有用な候補物質をスクリーニングするために、直接的または間接的に使用しうるものをいう。 As used herein, the term “composition for diagnosis and / or detection” or “kit for diagnosis and / or detection” refers to the presence or absence of a diabetic peripheral vascular disorder such as diabetic macular edema, Directly for diagnosing and / or detecting the degree of morbidity or the presence or improvement of the disease and / or the degree of improvement, or for screening candidate substances useful for the prevention, amelioration or treatment of diabetic peripheral vascular disorders such as diabetic macular edema Or it can be used indirectly.
 本明細書において検出および/または診断対象となる「生体試料」とは、糖尿病黄斑浮腫などの糖尿病末梢血管障害の発生にともない出現する標的ポリペプチドを含有する、あるいはその含有が疑われる、生体から採取された試料、例えば細胞、組織(例えば、硝子体など)、または体液(例えば、血液、リンパ液、尿、涙液など)の試料をいう。 The “biological sample” to be detected and / or diagnosed in the present specification includes a target polypeptide that appears or is suspected to be contained in the development of diabetic peripheral vascular disorders such as diabetic macular edema. It refers to a sample collected, for example, a sample of cells, tissues (eg, vitreous), or body fluids (eg, blood, lymph, urine, tears, etc.).
 本明細書において「特異的に結合する」とは、抗体またはその断片が、本発明における糖尿病黄斑浮腫マーカーである標的ポリペプチド、その変異体またはその断片とのみ抗原-抗体複合体を形成し、他のペプチド性またはポリペプチド性物質とは抗原-抗体複合体を実質的に形成しないことを意味する。ここで、「実質的に形成しない」とは、程度は小さいが非特異的な複合体形成が起こり得ることを意味する。 As used herein, “specifically binds” means that an antibody or a fragment thereof forms an antigen-antibody complex only with a target polypeptide that is a marker for diabetic macular edema in the present invention, a variant or a fragment thereof, The other peptidic or polypeptide substance means that it does not substantially form an antigen-antibody complex. Here, “substantially does not form” means that non-specific complex formation can occur to a small extent.
 本明細書は本願の優先権の基礎である日本国特許出願2008-257430号の明細書に記載される内容を包含する。 This specification includes the contents described in the specification of Japanese Patent Application No. 2008-257430 which is the basis of the priority of the present application.
 本発明における糖尿病黄斑浮腫などの糖尿病末梢血管障害のマーカーは、糖尿病黄斑浮腫患者の硝子体、硝子体液や血液などの生体試料中に見出されるが、増殖性糖尿病網膜症や黄斑円孔などの他の眼疾患にはほとんど、または全く見出されないため、単に該マーカーの存在または量を指標にすることによって、例えば硝子体や血液を用いて、容易に糖尿病黄斑浮腫を検出することができるという格別の作用効果を有する。 The marker for diabetic peripheral vascular disorder such as diabetic macular edema in the present invention is found in a biological sample such as vitreous body, vitreous humor or blood of a diabetic macular edema patient, but there are other factors such as proliferative diabetic retinopathy and macular hole. Since most or no eye diseases are found, it is possible to easily detect diabetic macular edema by simply using the presence or amount of the marker as an index, for example, vitreous or blood. It has the following effects.
 以下に本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically.
<糖尿病性末梢血管障害マーカー>
 本発明の糖尿病黄斑浮腫などの糖尿病性末梢血管障害の診断、または検出のための組成物またはキットを使用して糖尿病黄斑浮腫を診断および/または検出するための糖尿病黄斑浮腫マーカーは、配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片である。
<Diabetic peripheral vascular disorder marker>
A diabetic macular edema marker for diagnosing and / or detecting diabetic macular edema using a composition or kit for the diagnosis or detection of diabetic peripheral angiopathy such as diabetic macular edema of the present invention is A polypeptide comprising the amino acid sequence represented by SEQ ID NOs: 1 to 9, a variant thereof or a fragment thereof.
 本発明の配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチドを、そのタンパク質番号(UniProtKB/Swiss-Prot Release 52.2登録名および登録番号)、ならびにそれらの特性とともに下記の表1に示す。これらのポリペプチドは、糖尿病黄斑浮腫患者硝子体中に特異的に検出され、増殖性糖尿病網膜症および黄斑円孔の患者の硝子体には検出されないか、または糖尿病黄斑浮腫患者硝子体に比べて検出が有意に減少していた。なお、これらのポリペプチドのアミノ酸配列は、UniProtKB/Swiss-Prot等のデータバンクにアクセスすることによって入手可能である。
Figure JPOXMLDOC01-appb-T000001
Polypeptides comprising the amino acid sequences represented by SEQ ID NOs: 1 to 9 in the sequence listing of the present invention are shown in the following Table 1 together with their protein numbers (UniProtKB / Swiss-Prot Release 52.2 registered name and registration number) and their characteristics. Shown in These polypeptides are specifically detected in the vitreous of patients with diabetic macular edema and are not detected in the vitreous of patients with proliferative diabetic retinopathy and macular hole, or compared to the vitreous of diabetic macular edema Detection was significantly reduced. The amino acid sequences of these polypeptides can be obtained by accessing a data bank such as UniProtKB / Swiss-Prot.
Figure JPOXMLDOC01-appb-T000001
 本発明において糖尿病性末梢血管障害の検出のための上記標的ポリペプチドはいずれも、糖尿病黄斑浮腫患者の硝子体などの生体試料中にしか検出されないか、増殖性糖尿病網膜症および黄斑円孔の患者と比べて糖尿病黄斑浮腫患者において有意にまたは格別に高いことによって特徴付けられる。ここで「有意に」とは、統計学的に有意であることを示し、危険率(p)が0.05未満である場合に使用される用語である。 In the present invention, any of the above target polypeptides for detection of diabetic peripheral vascular disorder is detected only in a biological sample such as a vitreous body of a diabetic macular edema patient, or a patient with proliferative diabetic retinopathy and macular hole Is characterized by significantly or exceptionally high in diabetic macular edema patients. Here, “significantly” indicates a statistically significant value, and is a term used when the risk factor (p) is less than 0.05.
 したがって、被験者(すなわち、検査対象者)の生体試料中に上記糖尿病黄斑浮腫マーカーポリペプチドのいずれか1つ、好ましくは2つまたはそれ以上が上記比較対照と比べて有意のレベルで検出される場合、糖尿病性末梢血管障害であると判定することができる。 Therefore, when any one, preferably two or more of the above-mentioned diabetic macular edema marker polypeptides are detected at a significant level in the biological sample of the subject (that is, the test subject) compared to the above-mentioned comparative control It can be determined that this is a diabetic peripheral vascular disorder.
 本発明におけるポリペプチドは、例えば当業界で慣用の技術である化学合成(例えば、ペプチド合成、DNA/RNA自動合成など)またはDNA組換え技術によって作製することができる。手順や精製の簡易さの点で、DNA組換え技術の使用が好ましい。 The polypeptide in the present invention can be produced, for example, by chemical synthesis (for example, peptide synthesis, automatic DNA / RNA synthesis, etc.) or DNA recombination techniques that are conventional techniques in the art. The use of DNA recombination technology is preferred from the viewpoint of procedure and ease of purification.
 簡単に説明すると、はじめに、本発明におけるポリペプチドの部分配列をコードするポリヌクレオチド配列を、DNA自動合成装置を用いて化学的に合成する。この合成には一般にホスホアミダイト法が使用され、この方法によって約100塩基までの一本鎖DNAを自動合成することができる。DNA自動合成装置は、例えばPolygen社、ABI社などから市販されている。 Briefly, first, a polynucleotide sequence encoding a partial sequence of the polypeptide of the present invention is chemically synthesized using an automatic DNA synthesizer. In general, the phosphoramidite method is used for this synthesis, and single-stranded DNA of up to about 100 bases can be automatically synthesized by this method. Automatic DNA synthesizers are commercially available from, for example, Polygen and ABI.
 得られたポリヌクレオチドをプローブまたはプライマーとして用いて、周知のcDNAクローニングによって、具体的には、標的である上記遺伝子が発現される眼組織などの生体組織から抽出した全RNAをオリゴdTセルロースカラムで処理して得られるポリA(+)RNAからRT-PCR法によってcDNAライブラリーを作製し、このライブラリーからハイブリダイゼーションスクリーニング、発現スクリーニング、抗体スクリーニングなどのスクリーニングによって、目的のcDNAクローンを得る。必要に応じて、cDNAクローンをさらにPCR法によって増幅することもできる。これによって目的の遺伝子に対応するcDNAを得ることができる。 Using the obtained polynucleotide as a probe or primer, total RNA extracted from a living tissue such as an eye tissue in which the target gene is expressed by a known cDNA cloning, specifically, using an oligo dT cellulose column. A cDNA library is prepared from the poly A (+) RNA obtained by the treatment by RT-PCR, and the target cDNA clone is obtained from this library by screening such as hybridization screening, expression screening, and antibody screening. If necessary, the cDNA clone can be further amplified by PCR. As a result, cDNA corresponding to the target gene can be obtained.
 プローブまたはプライマーは、配列表の配列番号1~9に示されるポリペプチド配列に基づいて例えば15~100塩基の範囲の連続する配列の中から選択し、上記のようにして合成しうる。また、cDNAクローニング技術は、例えばSambrook,J.およびRussel,D.著、MolecularCloning,A LABORATORY MANUAL、Cold Spring Harbor Laboratory Press、2001年1月15日発行、の第1巻7.42~7.45、第2巻8.9~8.17、Ausubelら, Current Protocols in Molecular Biology, 1994年, John Wiley & Sonsに記載されている。 Probes or primers can be selected from continuous sequences in the range of, for example, 15 to 100 bases based on the polypeptide sequences shown in SEQ ID NOs: 1 to 9 in the sequence listing and synthesized as described above. The cDNA cloning technique is described in, for example, Sambrook, J. et al. And Russel, D .; Written by Molecular Cloning, A LABORATORY MANUAL, Cold Spring Harbor Laboratory Press, Vol. 1, published in January 15, 2001, Volumes 7.42-7.45, Volumes 8.9-8.17, Ausubel et al., Current Proto. in Molecular Biology, 1994, John Wiley & Sons.
 次に、上記のようにして得られたcDNAクローンを発現ベクターに組み込み、該ベクターによって形質転換またはトランスフェクションされた原核または真核宿主細胞を培養することによって該細胞または培養上清から目的のポリペプチドを得ることができる。このとき、目的の成熟ポリペプチドをコードするDNAの5’末端に、分泌シグナル配列をコードするヌクレオチド配列をフランキングすることによって細胞外に成熟ポリペプチドを分泌させることができる。 Next, the cDNA clone obtained as described above is incorporated into an expression vector, and a prokaryotic or eukaryotic host cell transformed or transfected with the vector is cultured, so that the target polymorph is obtained from the cell or the culture supernatant. Peptides can be obtained. At this time, the mature polypeptide can be secreted out of the cell by flanking the nucleotide sequence encoding the secretory signal sequence at the 5 'end of the DNA encoding the target mature polypeptide.
 ベクターおよび発現系はNovagen社、宝酒造、第一化学薬品、Qiagen社、Stratagene社、Promega社、Roche Diagnositics社、Invitrogen社、Genetics Institute社、Amersham Bioscience社などから入手可能である。宿主細胞としては、細菌などの原核細胞(例えば大腸菌、枯草菌)、酵母(例えばサッカロマイセス・セレビシアエ)、昆虫細胞(例えばSf細胞)、哺乳動物細胞(例えばCOS、CHO、BHK、NIH3T3など)などを用いることができる。ベクターには、該ポリペプチドをコードするDNAの他に、調節エレメント、例えばプロモーター(例えばlacプロモーター、trpプロモーター、Pプロモーター、Pプロモーター、SV40ウイルスプロモーター、3-ホスホグリセレートキナーゼプロモーター、解糖系酵素プロモーターなど)、エンハンサー、ポリアデニル化シグナルおよびリボソーム結合部位、複製開始点、ターミネーター、選択マーカー(例えばアンピシリン耐性遺伝子、テトラサイクリン耐性遺伝子などの薬剤耐性遺伝子;LEU2、URA3などの栄養要求性相補マーカーなど)などを含むことができる。 Vectors and expression systems are available from Novagen, Takara Shuzo, Daiichi Chemicals, Qiagen, Stratagene, Promega, Roche Diagnostics, Invitrogen, Genetics Institute, Amersham Bioscience, and the like. Examples of host cells include prokaryotic cells such as bacteria (eg, E. coli, Bacillus subtilis), yeast (eg, Saccharomyces cerevisiae), insect cells (eg, Sf cells), mammalian cells (eg, COS, CHO, BHK, NIH3T3, etc.) Can be used. Vectors, in addition to the DNA encoding the polypeptide, regulatory elements such as promoters (e.g. lac promoter, trp promoter, P L promoter, P R promoter, SV40 viral promoter, 3-phosphoglycerate kinase promoter, glycolytic System enzyme promoters), enhancers, polyadenylation signals and ribosome binding sites, replication origins, terminators, selectable markers (for example, drug resistance genes such as ampicillin resistance gene and tetracycline resistance gene; auxotrophic complementary markers such as LEU2 and URA3) ) And the like.
 また、ポリペプチドの精製を容易にするために、標識ペプチドをポリペプチドのC末端またはN末端に結合させた融合ポリペプチドの形態で発現産物生成させることもできる。代表的な標識ペプチドには、6~10残基のヒスチジンリピート(Hisタグ)、FLAG、mycペプチド、GST(グルタチオンS-トランスフェラーゼ)ポリペプチドなどが挙げられるが、標識ペプチドはこれらに限られるものではない。 In order to facilitate the purification of the polypeptide, an expression product can be generated in the form of a fusion polypeptide in which a labeled peptide is bound to the C-terminus or N-terminus of the polypeptide. Representative labeled peptides include 6-10 residue histidine repeats (His tag), FLAG, myc peptide, GST (glutathione S-transferase) polypeptide, etc., but the labeled peptides are not limited to these. Absent.
 標識ペプチドを付けずに本発明に係るポリペプチドを生産した場合には、その精製法として例えばイオン交換クロマトグラフィーによる方法を挙げることができる。またこれに加えて、ゲルろ過や疎水性クロマトグラフィー、等電点クロマトグラフィー、高速液体クロマトグラフィー(HPLC)、電気泳動、硫安分画、塩析、限外ろ過、透析などを組み合わせる方法でもよい。さらにまた、該ポリペプチドにヒスチジンリピート、FLAG、myc、GSTといった標識(ポリ)ペプチドを付けている場合には、一般に用いられるそれぞれの標識ペプチドに適したアフィニティークロマトグラフィーによる方法を挙げることができる。この場合、単離・精製が容易となるような発現ベクターを構築するとよい。特にポリペプチドと標識ペプチドとの融合ポリペプチドの形態で発現するように発現ベクターを構築し、遺伝子工学的に当該ポリペプチドを調製すれば、単離・精製も容易である。 When the polypeptide according to the present invention is produced without attaching a labeled peptide, examples of the purification method include a method by ion exchange chromatography. In addition to this, a method combining gel filtration, hydrophobic chromatography, isoelectric point chromatography, high performance liquid chromatography (HPLC), electrophoresis, ammonium sulfate fractionation, salting out, ultrafiltration, dialysis and the like may be used. Furthermore, when a labeled (poly) peptide such as histidine repeat, FLAG, myc, or GST is attached to the polypeptide, a method by affinity chromatography suitable for each generally used labeled peptide can be mentioned. In this case, an expression vector that facilitates isolation and purification may be constructed. In particular, if an expression vector is constructed so that it is expressed in the form of a fusion polypeptide of a polypeptide and a labeled peptide, and the polypeptide is genetically engineered, isolation and purification are easy.
 核酸の精製は、アガロースゲル電気泳動、DNA結合性樹脂カラムなどを使用した精製法によって行うことができる。また、自動核酸精製装置や核酸精製キットなどが市販されているので、これらを使用して、核酸精製を行うこともできる。 Nucleic acid can be purified by a purification method using agarose gel electrophoresis, a DNA-binding resin column, or the like. Moreover, since an automatic nucleic acid purification apparatus, a nucleic acid purification kit, etc. are marketed, nucleic acid purification can also be performed using these.
 本発明における上記ポリペプチドの変異体は、上記定義のとおり、配列表の配列番号1~9で表されるアミノ酸配列またはその部分配列おいて1以上、好ましくは1もしくは数個、のアミノ酸の欠失、置換、付加または挿入を含む変異体、あるいは該アミノ酸配列またはその部分配列と約80%以上、約85%以上、好ましくは約90%以上、より好ましくは約95%以上、約97%以上、約98%以上、約99%以上の%同一性を有するアミノ酸配列からなる変異体である。このような変異体には、例えば、ヒトと異なる哺乳動物種のホモログ、同種の哺乳動物(例えば人種)間での多型性変異に基づく変異体、スプライス変異体、突然変異体などの天然変異体が含まれる。 As defined above, the variant of the polypeptide of the present invention is a deletion of one or more, preferably one or several amino acids in the amino acid sequence represented by SEQ ID NOs: 1 to 9 or a partial sequence thereof. About 80% or more, about 85% or more, preferably about 90% or more, more preferably about 95% or more, about 97% or more with a mutant comprising deletion, substitution, addition or insertion, or the amino acid sequence or a partial sequence thereof , A variant consisting of an amino acid sequence having% identity of about 98% or more and about 99% or more. Such mutants include, for example, homologues of mammalian species different from humans, natural variants such as mutants based on polymorphic variation between the same mammalian species (for example, race), splice variants, mutants, etc. Variants are included.
 本発明における「被験者」なる用語には、ヒトのみならず、他の哺乳動物も含むことが意図されている。 In the present invention, the term “subject” is intended to include not only humans but also other mammals.
 本発明における上記ポリペプチドの断片は、該ポリペプチドのアミノ酸配列の少なくとも7個、少なくとも8個、少なくとも10個、少なくとも15個、好ましくは少なくとも20個、少なくとも25個、より好ましくは少なくとも30個、少なくとも40個、少なくとも50個、少なくとも100個、少なくとも150個、または少なくとも200個から全数までの連続するアミノ酸残基からなり、1個または複数のエピトープを保持する。このような断片は、本発明に関わる抗体またはその断片と免疫特異的に結合することができるものである。上記ポリペプチドが、例えば血液中に存在する場合には、そこに存在するプロテアーゼやペプチダーゼなどの酵素によって切断され断片化されて存在することが想定される。 In the present invention, the polypeptide fragment comprises at least 7, at least 8, at least 10, at least 15, preferably at least 20, at least 25, more preferably at least 30, of the amino acid sequence of the polypeptide. Consists of at least 40, at least 50, at least 100, at least 150, or at least 200 to a total number of consecutive amino acid residues and retains one or more epitopes. Such a fragment is capable of immunospecifically binding to the antibody of the present invention or a fragment thereof. For example, when the polypeptide is present in blood, it is assumed that the polypeptide is present by being cleaved and fragmented by an enzyme such as protease or peptidase.
<糖尿病性末梢血管障害の診断または検出のための組成物またはキット>
 本発明は、配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片と特異的に結合する、抗体もしくはその断片、またはそれらの化学修飾誘導体、のうちの1つまたは複数、好ましくは3種以上、より好ましくは5種以上、更に好ましくは7種以上、最も好ましくは9種の異なる物質を含む、糖尿病性末梢血管障害の診断および/または検出のための組成物を提供する。
<Composition or kit for diagnosis or detection of diabetic peripheral vascular disorder>
The present invention relates to an antibody or fragment thereof, or a chemically modified derivative thereof, which specifically binds to a polypeptide comprising the amino acid sequence represented by SEQ ID NOS: 1 to 9 in the sequence listing, a variant thereof or a fragment thereof. For the diagnosis and / or detection of diabetic peripheral vascular disorders, comprising one or more, preferably 3 or more, more preferably 5 or more, even more preferably 7 or more, most preferably 9 different substances A composition is provided.
 本発明において、組成物なる用語は、複数の抗体、その断片、および/またはそれらの化学修飾誘導体、の単なる混合のみならず、複数の抗体、その断片、および/またはそれらの化学修飾誘導体、の組合せも含むことを意図している。 In the present invention, the term composition refers not only to a mixture of a plurality of antibodies, fragments thereof, and / or chemically modified derivatives thereof, but also to a plurality of antibodies, fragments thereof, and / or chemically modified derivatives thereof. It is intended to include combinations.
 糖尿病黄斑浮腫マーカーであるポリペプチド、その変異体、またはその断片を認識する抗体は、抗体の抗原結合部位を介して、該ポリペプチド、その変異体、またはその断片に特異的に結合し得るものである。本発明で使用しうる抗体は、配列表の配列番号1~9のアミノ酸配列を含むポリペプチド、その変異体、またはその断片、あるいはその融合ポリペプチドを1または複数の免疫原として使用して慣用の技術によって作製することができる。これらのポリペプチド、断片、変異体または融合ポリペプチドは、抗体形成を引き出すエピトープを含むが、これらエピトープは、直鎖でもよいし、より高次構造(断続的)でもよい。抗体と結合可能なエピトープは、一般に、ポリペプチド構造の親水性表面上に存在すると考えられる。 An antibody that recognizes a polypeptide that is a marker for diabetic macular edema, a variant thereof, or a fragment thereof can specifically bind to the polypeptide, a variant thereof, or a fragment thereof via the antigen-binding site of the antibody It is. The antibody that can be used in the present invention is conventionally used by using a polypeptide comprising the amino acid sequences of SEQ ID NOs: 1 to 9, a variant thereof, or a fragment thereof, or a fusion polypeptide thereof as one or a plurality of immunogens. It can produce by the technique of. These polypeptides, fragments, variants or fusion polypeptides contain epitopes that elicit antibody formation, but these epitopes may be linear or higher order (intermittent). Epitopes capable of binding to an antibody are generally considered to be present on the hydrophilic surface of the polypeptide structure.
 本発明で使用しうる抗体は、いずれのタイプ、クラス、サブクラスも含まれるものとする。そのような抗体には、例えばIgG、IgE、IgM、IgD、IgA、IgY、IgG1、IgG2、IgG3、IgG4、IgA1、IgA2などが含まれる。 The antibody that can be used in the present invention includes any type, class, and subclass. Such antibodies include, for example, IgG, IgE, IgM, IgD, IgA, IgY, IgG1, IgG2, IgG3, IgG4, IgA1, IgA2.
 さらにまた、本発明に係るポリペプチドによってあらゆる態様の抗体が誘導される。該ポリペプチドの全部もしくは一部またはエピトープが単離されていれば、慣用技術を用いてポリクローナル抗体およびモノクローナル抗体のいずれも作製可能である。方法には例えば、Kennetら(監修),Monoclonal Antibodies,Hybridomas:  A New  Dimension in Biological Analyses,Ple num Press,New York,1980に挙げられた方法がある。 Furthermore, antibodies of all aspects are induced by the polypeptide according to the present invention. If all or part of the polypeptide or epitope is isolated, both polyclonal and monoclonal antibodies can be prepared using conventional techniques. Methods include, for example, Kennet et al. (Supervised), Monoclonal Antibodies, Hybridomas: A A NewA Dimension in Biological Analyzes, Pleumnum Press, New York, 1980.
 ポリクローナル抗体は、鳥類(例えば、ニワトリなど)、哺乳動物(例えば、ウサギ、ヤギ、ウマ、ヒツジ、ネズミなど)などの動物に本発明に係るポリペプチドを免疫することによって作製することができる。目的の抗体は、免疫された動物の血液から、硫安分画、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどの手法を適宜組み合わせて精製することができる。 Polyclonal antibodies can be produced by immunizing animals such as birds (for example, chickens) and mammals (for example, rabbits, goats, horses, sheep, mice, etc.) with the polypeptide of the present invention. The target antibody can be purified from the blood of an immunized animal by appropriately combining techniques such as ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography and the like.
 モノクローナル抗体は、各ポリペプチドに特異的なモノクローナル抗体を産生するハイブリドーマ細胞株を、慣用技術によってマウスにおいて産生することを含む手法によって得ることができる。こうしたハイブリドーマ細胞株を産生するための1つの方法は、動物を本発明に係るポリペプチドで免疫し、免疫された動物から脾臓細胞を採取し、該脾臓細胞を骨髄腫細胞株に融合させ、それによりハイブリドーマ細胞を生成し、そして該ポリペプチドに結合するモノクローナル抗体を産生するハイブリドーマ細胞株を同定することを含む。モノクローナル抗体は、慣用技術によって回収可能である。 Monoclonal antibodies can be obtained by techniques including producing hybridoma cell lines that produce monoclonal antibodies specific for each polypeptide in mice by conventional techniques. One method for producing such hybridoma cell lines is to immunize an animal with a polypeptide according to the invention, collect spleen cells from the immunized animal, fuse the spleen cells to a myeloma cell line, Generating hybridoma cells and identifying a hybridoma cell line that produces a monoclonal antibody that binds to the polypeptide. Monoclonal antibodies can be recovered by conventional techniques.
 モノクローナルおよびポリクローナル抗体の作製について以下に詳しく説明する。 Preparation of monoclonal and polyclonal antibodies is described in detail below.
A.モノクローナル抗体の作製
(1)免疫および抗体産生細胞の採取
 上記のようにして得られた免疫原を、哺乳動物、例えばラット、マウス(例えば近交系マウスのBalb/c)、ウサギなどに投与する。免疫原の1回の投与量は、免疫動物の種類、投与経路などにより適宜決定されるものであるが、動物1匹当たり約50~200μgとされる。免疫は主として皮下、腹腔内に免疫原を注入することにより行われる。また、免疫の間隔は特に限定されず、初回免疫後、数日から数週間間隔で、好ましくは1~4週間間隔で、2~10回、好ましくは3~4回追加免疫を行う。初回免疫の後、免疫動物の血清中の抗体価の測定をELISA(Enzyme-Linked Immuno Sorbent Assay)法などにより繰り返し行い、抗体価がプラトーに達したときは、免疫原を静脈内または腹腔内に注射し、最終免疫とする。そして、最終免疫の日から2~5日後、好ましくは3日後に、抗体産生細胞を採取する。抗体産生細胞としては、脾臓細胞、リンパ節細胞、末梢血細胞等が挙げられるが、脾臓細胞または局所リンパ節細胞が好ましい。
A. Preparation of monoclonal antibody (1) Immunization and collection of antibody-producing cells The immunogen obtained as described above is administered to mammals such as rats, mice (for example, Balb / c of inbred mice), rabbits, and the like. . A single dose of the immunogen is appropriately determined according to the type of animal to be immunized, the route of administration, etc., and is about 50 to 200 μg per animal. Immunization is performed mainly by injecting an immunogen subcutaneously or intraperitoneally. Further, the immunization interval is not particularly limited, and after the initial immunization, booster immunization is performed 2 to 10 times, preferably 3 to 4 times at intervals of several days to several weeks, preferably at intervals of 1 to 4 weeks. After the initial immunization, the antibody titer in the serum of the immunized animal is repeatedly measured by ELISA (Enzyme-Linked Immuno Sorbent Assay) method, etc. When the antibody titer reaches a plateau, the immunogen is intravenously or intraperitoneally Inject and give final immunization. Then, antibody-producing cells are collected 2 to 5 days, preferably 3 days after the last immunization. Examples of antibody-producing cells include spleen cells, lymph node cells, peripheral blood cells, etc., but spleen cells or local lymph node cells are preferred.
(2)細胞融合
 各タンパク質に特異的なモノクローナル抗体を産生するハイブリドーマ細胞株は、慣用的技術によって産生し、そして同定することが可能である。こうしたハイブリドーマ細胞株を産生するための1つの方法は、動物を本発明のポリペプチドで免疫し、免疫された動物から脾臓細胞を採取し、該脾臓細胞を骨髄腫細胞株に融合させ、それによりハイブリドーマ細胞を生成し、そして該酵素に結合するモノクローナル抗体を産生するハイブリドーマ細胞株を同定することを含む。抗体産生細胞と融合させる骨髄腫細胞株としては、マウスなどの動物の一般に入手可能な株化細胞を使用することができる。使用する細胞株としては、薬剤選択性を有し、未融合の状態ではHAT選択培地(ヒポキサンチン、アミノプテリン、チミジンを含む)で生存できず、抗体産生細胞と融合した状態でのみ生存できる性質を有するものが好ましい。また株化細胞は、免疫動物と同種系の動物に由来するものが好ましい。骨髄腫細胞株の具体例としては、Balb/cマウス由来のヒポキサンチン・グアニン・ホスホリボシル・トランスフェラーゼ(HGPRT)欠損細胞株であるP3X63-Ag.8株(ATCC TIB9)などが挙げられる。
(2) Cell fusion Hybridoma cell lines that produce monoclonal antibodies specific for each protein can be produced and identified by conventional techniques. One method for producing such a hybridoma cell line is to immunize an animal with a polypeptide of the invention, collect spleen cells from the immunized animal, and fuse the spleen cells to a myeloma cell line, thereby Generating hybridoma cells and identifying a hybridoma cell line producing a monoclonal antibody that binds to the enzyme. As a myeloma cell line to be fused with an antibody-producing cell, a generally available cell line of an animal such as a mouse can be used. The cell line used has drug selectivity and cannot survive in a HAT selection medium (including hypoxanthine, aminopterin, and thymidine) in an unfused state, but can survive only in a state fused with antibody-producing cells. Those having the following are preferred. The cell line is preferably derived from an animal of the same species as the immunized animal. Specific examples of myeloma cell lines include P3X63-Ag., Which is a hypoxanthine / guanine / phosphoribosyltransferase (HGPRT) deficient cell line derived from Balb / c mice. 8 strains (ATCC TIB9).
 次に、上記骨髄腫細胞株と抗体産生細胞とを細胞融合させる。細胞融合は、血清を含まないDMEM、RPMI-1640培地などの動物細胞培養用培地中で、抗体産生細胞と骨髄腫細胞株とを約1:1~20:1の割合で混合し、細胞融合促進剤の存在下にて融合反応を行う。細胞融合促進剤として、平均分子量1500~4000ダルトンのポリエチレングリコール等を約10~80%の濃度で使用することができる。また場合によっては、融合効率を高めるために、ジメチルスルホキシドなどの補助剤を併用してもよい。さらに、電気刺激(例えばエレクトロポレーション)を利用した市販の細胞融合装置を用いて抗体産生細胞と骨髄腫細胞株とを融合させることもできる。 Next, cell fusion is performed between the myeloma cell line and antibody-producing cells. In cell fusion, antibody-producing cells and myeloma cell lines are mixed at a ratio of about 1: 1 to 20: 1 in animal cell culture media such as serum-free DMEM and RPMI-1640 media, and cell fusion is performed. The fusion reaction is performed in the presence of an accelerator. As a cell fusion promoter, polyethylene glycol having an average molecular weight of 1500 to 4000 daltons can be used at a concentration of about 10 to 80%. In some cases, an auxiliary agent such as dimethyl sulfoxide may be used in combination in order to increase the fusion efficiency. Furthermore, antibody-producing cells and myeloma cell lines can be fused using a commercially available cell fusion device utilizing electrical stimulation (for example, electroporation).
(3)ハイブリドーマの選別およびクローニング
 細胞融合処理後の細胞から目的とするハイブリドーマを選別する。その方法として、細胞懸濁液を、例えばウシ胎児血清含有RPMI-1640培地などで適当に希釈後、マイクロタイタープレート上に200万個/ウェル程度まき、各ウェルに選択培地を加え、以後適当に選択培地を交換して培養を行う。培養温度は、20~40℃、好ましくは約37℃である。ミエローマ細胞がHGPRT欠損株またはチミジンキナーゼ欠損株のものである場合には、ヒポキサンチン・アミノプテリン・チミジンを含む選択培地(HAT培地)を用いることにより、抗体産生能を有する細胞と骨髄腫細胞株のハイブリドーマのみを選択的に培養し、増殖させることができる。その結果、選択培地で培養開始後、約14日前後から生育してくる細胞をハイブリドーマとして得ることができる。
(3) Selection and cloning of hybridoma The target hybridoma is selected from the cells after cell fusion treatment. As a method for this, the cell suspension is appropriately diluted with, for example, fetal bovine serum-containing RPMI-1640 medium, and then plated on a microtiter plate at about 2 million cells / well, and a selective medium is added to each well. Cultivate by changing the selective medium. The culture temperature is 20 to 40 ° C, preferably about 37 ° C. When the myeloma cells are of HGPRT-deficient strain or thymidine kinase-deficient strain, cells having the ability to produce antibodies and myeloma cell lines can be obtained by using a selective medium (HAT medium) containing hypoxanthine, aminopterin, and thymidine. Only those hybridomas can be selectively cultured and propagated. As a result, cells that grow from about 14 days after the start of culture in the selective medium can be obtained as hybridomas.
 次に、増殖してきたハイブリドーマの培養上清中に、目的とする抗体が存在するか否かをスクリーニングする。ハイブリドーマのスクリーニングは、通常の方法に従えばよく、特に限定されない。例えば、ハイブリドーマとして生育したウェルに含まれる培養上清の一部を採取し、酵素免疫測定法(EIA:Enzyme Immuno Assay、およびELISA)、放射性免疫測定法(RIA:Radio Immuno Assay)等によって行うことができる。融合細胞のクローニングは、限界希釈法等により行い、最終的にモノクローナル抗体産生細胞であるハイブリドーマを樹立する。ハイブリドーマは、RPMI-1640、DMEM等の基本培地中での培養において安定であり、本発明のポリペプチド性糖尿病黄斑浮腫マーカーと特異的に反応するモノクローナル抗体を産生、分泌するものである。 Next, it is screened whether the target antibody is present in the culture supernatant of the hybridoma that has proliferated. Hybridoma screening is not particularly limited, and may be carried out according to ordinary methods. For example, a part of the culture supernatant contained in a well grown as a hybridoma is collected and subjected to enzyme immunoassay (EIA: Enzyme Immuno Assay and ELISA), radioimmunoassay (RIA: Radio Immuno Assay), etc. Can do. Cloning of the fused cells is performed by limiting dilution or the like, and finally a hybridoma that is a monoclonal antibody-producing cell is established. The hybridoma is stable in culture in a basic medium such as RPMI-1640 or DMEM, and produces and secretes a monoclonal antibody that specifically reacts with the polypeptide diabetic macular edema marker of the present invention.
(4)抗体の回収
 モノクローナル抗体は、慣用的技術によって回収可能である。すなわち樹立したハイブリドーマからモノクローナル抗体を採取する方法として、通常の細胞培養法または腹水形成法等を採用することができる。細胞培養法においては、ハイブリドーマを10% ウシ胎児血清含有RPMI-1640培地、MEM培地または無血清培地等の動物細胞培養培地中で、通常の培養条件(例えば37℃、5%CO濃度)で2~10日間培養し、その培養上清から抗体を取得する。腹水形成法の場合は、ミエローマ細胞由来の哺乳動物と同種系動物の腹腔内にハイブリドーマを約1000万個投与し、ハイブリドーマを大量に増殖させる。そして、1~2週間後に腹水または血清を採取する。
(4) Antibody recovery Monoclonal antibodies can be recovered by conventional techniques. That is, as a method for collecting a monoclonal antibody from the established hybridoma, a normal cell culture method or ascites formation method can be employed. In the cell culture method, the hybridoma is cultured in an animal cell culture medium such as RPMI-1640 medium containing 10% fetal bovine serum, MEM medium, or serum-free medium under normal culture conditions (eg, 37 ° C., 5% CO 2 concentration). Cultivate for 2-10 days and obtain antibody from the culture supernatant. In the case of the ascites formation method, about 10 million hybridomas are administered into the abdominal cavity of a myeloma cell-derived mammal and the same type of animal, and the hybridomas are proliferated in large quantities. Ascites fluid or serum is collected after 1-2 weeks.
 上記抗体の採取方法において、抗体の精製が必要とされる場合は、硫安塩析法、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、ゲルろ過クロマトグラフィーなどの公知の方法を適宜に選択して、またはこれらを組み合わせることにより、精製された本発明のモノクローナル抗体を得ることができる。 In the above antibody collection method, when purification of the antibody is required, a known method such as ammonium sulfate salting out method, ion exchange chromatography, affinity chromatography, gel filtration chromatography or the like is appropriately selected, or these In combination, a purified monoclonal antibody of the present invention can be obtained.
B.ポリクローナル抗体の作製
 ポリクローナル抗体を作製する場合は、前記と同様に動物を免疫し、最終の免疫日から6~60日後に、酵素免疫測定法(EIAおよびELISA)、放射性免疫測定法(RIA)等で抗体価を測定し、最大の抗体価を示した日に採血し、抗血清を得る。その後は、抗血清中のポリクローナル抗体の反応性をELISA法などで測定する。
B. Preparation of polyclonal antibody When preparing a polyclonal antibody, an animal is immunized in the same manner as described above, and 6 to 60 days after the last immunization, enzyme immunoassay (EIA and ELISA), radioimmunoassay (RIA), etc. The antibody titer is measured and blood is collected on the day when the maximum antibody titer is shown to obtain antiserum. Thereafter, the reactivity of the polyclonal antibody in the antiserum is measured by an ELISA method or the like.
 また本発明においては、上記抗体の抗原結合断片も使用しうる。慣用的技術によって産生可能な抗原結合断片の例には、FabおよびF(ab’)、Fv、scFv、dsFvなどの断片が含まれるが、これらに限定されない。遺伝子工学技術によって産生可能な抗体断片および誘導体もまた含まれる。そのような抗体には、例えば合成抗体、組換え抗体、多重特異性抗体(二重特異性抗体を含む)、単鎖抗体などが含まれる。 In the present invention, an antigen-binding fragment of the above antibody can also be used. Examples of antigen-binding fragments that can be produced by conventional techniques include, but are not limited to, fragments such as Fab and F (ab ′) 2 , Fv, scFv, dsFv. Also included are antibody fragments and derivatives that can be produced by genetic engineering techniques. Such antibodies include, for example, synthetic antibodies, recombinant antibodies, multispecific antibodies (including bispecific antibodies), single chain antibodies, and the like.
 本発明の抗体は、in vitroおよびin vivoのいずれにおいても、本発明において、ポリペプチドまたはその(ポリ)ペプチド断片の存在を検出するためのアッセイに使用可能である。アッセイにおける特異的検出を可能にするために、モノクローナル抗体の使用が好ましいが、ポリクローナル抗体であっても、精製ポリペプチドを結合したアフィニティーカラムに抗体を結合させることを含む、いわゆる吸収法によって、特異抗体を得ることができる。 The antibody of the present invention can be used in an assay for detecting the presence of a polypeptide or a (poly) peptide fragment thereof in the present invention, both in vitro and in vivo. The use of monoclonal antibodies is preferred to allow specific detection in the assay, but even polyclonal antibodies can be identified by the so-called absorption method, which involves binding the antibody to an affinity column to which the purified polypeptide is bound. Antibodies can be obtained.
 したがって、本発明の組成物は、配列表の配列番号1~9のアミノ酸配列を含むポリペプチド、その変異体、またはその断片と特異的に結合可能な抗体またはその断片を少なくとも1つ含む、好ましくは複数種(2種以上、3種以上など)、より好ましくは全ての種類を含むことができる。 Therefore, the composition of the present invention preferably comprises at least one antibody or fragment thereof that can specifically bind to a polypeptide comprising the amino acid sequence of SEQ ID NOs: 1 to 9 in the sequence listing, a variant thereof, or a fragment thereof. Can include multiple types (two or more, three or more, etc.), more preferably all types.
 好ましくは、本発明の組成物はキットの形態である。このようなキットにおいては、上記の各ポリペプチドに特異的に結合可能な抗体またはその断片を、それぞれ別個に、あるいは混合物として、収容する容器を含む。抗体またはその断片は、例えばポリスチレン製などのマルチウエルプレート、ラテックスビーズ、磁性ビーズなどの球状担体などの固相担体上に付着または結合させてもよい。 Preferably, the composition of the present invention is in the form of a kit. Such a kit includes a container for accommodating antibodies or fragments thereof that can specifically bind to each of the above polypeptides, either separately or as a mixture. The antibody or fragment thereof may be attached or bound on a solid phase carrier such as a multi-well plate made of polystyrene, a spherical carrier such as latex beads or magnetic beads.
 本発明で使用される抗体またはその断片には、必要に応じてラベル、例えば蛍光団、酵素、放射性同位元素などを結合させてもよいし、あるいは二次抗体にこのようなラベルを結合してもよい。 The antibody or fragment thereof used in the present invention may be bound with a label, for example, a fluorophore, an enzyme, a radioisotope, or the like, if necessary, or such a label may be bound to a secondary antibody. Also good.
 蛍光団には、例えばフレオレセインとその誘導体(FITCなど)、ローダミンとその誘導体(テトラメチルローダミンなど)、ダンシルクロリドとその誘導体、ウンベリフェロンなどが含まれる。 Fluorophores include, for example, fluorescein and its derivatives (such as FITC), rhodamine and its derivatives (such as tetramethylrhodamine), dansyl chloride and its derivatives, umbelliferone, and the like.
 酵素には、例えば西洋ワサビペルオキシダーゼ、アルカリホスファターゼなどが含まれる。 Enzymes include, for example, horseradish peroxidase, alkaline phosphatase and the like.
 放射性同位元素には、例えばヨウ素(131I、125I、123I、121I)、リン(32P)、イオウ(35S)、金属類(例えば68Ga、67Ga、68Ge、54Mn、99Mo、99Tc、133Xeなど)などが含まれる。 Radioisotopes include, for example, iodine ( 131 I, 125 I, 123 I, 121 I), phosphorus ( 32 P), sulfur ( 35 S), metals (eg, 68 Ga, 67 Ga, 68 Ge, 54 Mn, 99 Mo, 99 Tc, 133 Xe, etc.).
 その他のラベルには、例えばルミノールなどの発光物質、ルシフェラーゼ、ルシフェリンなどの生物発光物質などが含まれる。 Other labels include, for example, luminescent substances such as luminol, and bioluminescent substances such as luciferase and luciferin.
 また、必要に応じて、アビジン-ビオチン系またはストレプトアビジン-ビオチン系を利用することも可能であり、この場合、本発明の抗体またはその断片に例えばビオチンを結合することもできる。 If necessary, an avidin-biotin system or a streptavidin-biotin system can be used. In this case, for example, biotin can be bound to the antibody of the present invention or a fragment thereof.
 本発明の組成物はさらに、配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片の少なくとも1つと特異的に結合する、抗体もしくはその抗原結合断片またはそれらの化学修飾誘導体、のうちの1つまたは複数の物質を含む、糖尿病末梢血管障害の診断または/および検出のためのキットを提供する。 The composition of the present invention further comprises an antibody or an antigen-binding fragment thereof that specifically binds to at least one of a polypeptide comprising the amino acid sequence represented by SEQ ID NOs: 1 to 9 in the sequence listing, a variant thereof, or a fragment thereof. Kits for the diagnosis or / and detection of diabetic peripheral vascular disorders comprising one or more of those chemically modified derivatives are provided.
 該キットは、例えば、糖尿病性末梢血管障害のマーカーを検出するための上記の抗体類または核酸類を個別に、または適宜混合して、収容した異なる容器(例えばバイアルなど)からなる。抗体類は、好ましくは、凍結乾燥形態で容器に収容されうる。 The kit comprises, for example, different containers (for example, vials) containing the above-mentioned antibodies or nucleic acids for detecting a marker of diabetic peripheral vascular disorder individually or appropriately mixed. The antibodies can preferably be contained in a container in lyophilized form.
 あるいは、本発明のキットは、上記の各ポリペプチドに特異的に結合可能な抗体またはその抗原結合断片を、例えばマルチウエルプレート、アレイ、マイクロタイタープレート、試験片(もしくは、テストストリップ)、ラテックスビーズや磁性ビーズなどの球状担体などの固相担体上に付着または(共有もしくは非共有)結合させたものからなってもよい。 Alternatively, the kit of the present invention comprises an antibody or antigen-binding fragment thereof that can specifically bind to each of the above polypeptides, such as a multi-well plate, an array, a microtiter plate, a test strip (or test strip), a latex bead. Or a solid support such as a spherical support such as a magnetic bead or a covalently bonded (covalent or non-covalent) bond.
 キットにはさらに、本発明の検定方法に使用するためのバッファー、二次抗体、使用説明書などが含まれてもよい。 The kit may further contain a buffer, a secondary antibody, an instruction manual, etc. for use in the assay method of the present invention.
 したがって、本発明はさらに、配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片の少なくとも1つと特異的に結合する、抗体もしくはその抗原に結合する断片またはそれらの化学修飾誘導体、のうちの1つまたは複数の物質の、糖尿病性末梢血管障害の診断および/または検出のためのキットの製造における使用を提供する。 Therefore, the present invention further provides a fragment that binds to an antibody or an antigen thereof that specifically binds to at least one of a polypeptide comprising the amino acid sequence represented by SEQ ID NOs: 1 to 9 in the sequence listing, a variant thereof or a fragment thereof. Also provided is the use of one or more of these chemically modified derivatives, in the manufacture of a kit for the diagnosis and / or detection of diabetic peripheral vascular disorders.
<糖尿病性末梢血管障害の検出>
 本発明によれば、上記マーカーと結合可能な物質を用いて、被験者由来の生体試料中の配列表の配列番号1~9で表されるポリペプチド、その変異体またはその断片、あるいは該ポリペプチド、その変異体またはその断片をコードする核酸、のうちの1つまたは複数について、その量もしくは存在をインビトロで測定することを含む方法によって、糖尿病性末梢血管障害(例えば糖尿病黄斑浮腫、単純糖尿病網膜症、背景糖尿病網膜症、前増殖糖尿病網膜症、糖尿病性黄斑症など)を検出することができる。本発明の方法によって糖尿病黄斑浮腫マーカーが検出されるか、または対照と比べて遺伝子発現レベルが有意に高いと判定されるときには、被験者は糖尿病性末梢血管障害が進行し、糖尿病黄斑浮腫に罹患していると診断しうる。
<Detection of diabetic peripheral vascular disorder>
According to the present invention, using a substance that can bind to the marker, the polypeptide represented by SEQ ID NOs: 1 to 9 in the sequence listing in a biological sample derived from a subject, a variant or fragment thereof, or the polypeptide , By measuring the amount or presence of one or more of the nucleic acids encoding the variant or fragment thereof in vitro, by a method comprising diabetic peripheral angiopathy (eg diabetic macular edema, simple diabetic retina) , Background diabetic retinopathy, preproliferative diabetic retinopathy, diabetic macular disease, etc.) can be detected. When the diabetic macular edema marker is detected by the method of the present invention, or when it is determined that the gene expression level is significantly higher than the control, the subject has advanced diabetic peripheral vascular disorder and suffers from diabetic macular edema. Can be diagnosed.
 本発明の方法では、上記糖尿病黄斑浮腫マーカーの検出は、単一のマーカーでもよいが、好ましくは複数、例えば2以上、3以上、4以上、または5以上から9以下のマーカーについて行うのがよい。これは、複数のマーカーを用いることによって疾患の検出精度を向上するためである。 In the method of the present invention, the detection of the diabetic macular edema marker may be a single marker, but is preferably performed on a plurality of markers, for example, 2 or more, 3 or more, 4 or more, or 5 or more and 9 or less. . This is to improve the accuracy of disease detection by using a plurality of markers.
 本発明の組成物またはキットは、糖尿病性末梢血管障害の診断、判定または検出、すなわち罹患の有無や罹患の程度の診断、のために有用である。糖尿病黄斑浮腫の診断においては、正常な細胞、組織または体液などの陰性対照との比較を行い、被験者の生体試料中の上記糖尿病黄斑浮腫マーカーの存在または量を検出し、その存在または量の差が有意であれば、被験者について糖尿病黄斑浮腫の罹患が疑われる。 The composition or kit of the present invention is useful for diagnosis, determination or detection of diabetic peripheral vascular disorder, that is, diagnosis of the presence or absence of disease and the degree of disease. Diagnosis of diabetic macular edema is performed by comparing with a negative control such as normal cells, tissues, or body fluids, and detecting the presence or amount of the above-mentioned diabetic macular edema marker in a biological sample of a subject. Is significant, the subject is suspected of having diabetic macular edema.
 本発明方法で用いられる検体試料としては、血液、血清、血漿、尿または涙液などの体液、または硝子体などの組織に代表される生体試料である。 The specimen sample used in the method of the present invention is a biological sample represented by a body fluid such as blood, serum, plasma, urine or tears, or a tissue such as vitreous.
 上記糖尿病黄斑浮腫マーカーと結合可能な物質は、上記抗体またはその抗原結合断片の他、例えばアプタマー、Affibody(商標)(Affibody社)、それぞれの糖尿病黄斑浮腫マーカーの受容体、それぞれの糖尿病黄斑浮腫マーカーの特異的作用阻害物質、それぞれの糖尿病黄斑浮腫マーカーの特異的作用活性化物質などを含み、好ましくは抗体もしくはその断片、またはそれらの化学修飾誘導体である。 The substance capable of binding to the above-mentioned diabetic macular edema marker is, for example, aptamer, Affibody (trademark) (Affibody), each diabetic macular edema marker receptor, each diabetic macular edema marker, Specific action inhibitors, specific action activators of the respective diabetic macular edema markers, preferably antibodies or fragments thereof, or chemically modified derivatives thereof.
 本発明の実施形態において、測定は、慣用の酵素または蛍光団で必要により標識した抗体または断片と、組織切片またはホモゲナイズした組織または体液とを接触させる工程、抗原-抗体複合体を定性的にまたは定量的に測定する工程を含むことができる。検出は、例えば免疫電顕により標的ポリペプチドの存在とレベルを測定する方法、酵素抗体法(例えばELISA)、蛍光抗体法、放射性免疫測定法、均一法、不均一法、固相法、サンドイッチ法などの慣用法によって標的ポリペプチドの存在またはレベルを測定する方法などによって行うことができる。体液または組織もしくは細胞、好ましくは血液、において、標的ポリペプチドが存在する場合、あるいは陰性対照と比較して標的ポリペプチドのレベルが有意に増大または高い場合、糖尿病黄斑浮腫であると診断する。 In an embodiment of the present invention, the measurement is performed by contacting an antibody or fragment optionally labeled with a conventional enzyme or fluorophore with a tissue section or homogenized tissue or body fluid, qualitatively or with an antigen-antibody complex. A step of quantitatively measuring can be included. Detection is, for example, a method for measuring the presence and level of a target polypeptide by immunoelectron microscopy, an enzyme antibody method (for example, ELISA), a fluorescent antibody method, a radioimmunoassay method, a homogeneous method, a heterogeneous method, a solid phase method, a sandwich method Or the like by a method of measuring the presence or level of the target polypeptide by a conventional method. Diabetic macular edema is diagnosed when the target polypeptide is present in a body fluid or tissue or cell, preferably blood, or when the level of the target polypeptide is significantly increased or high compared to a negative control.
 免疫学的方法に代わる測定方法として、質量分析法を用いる方法が含まれる。この方法は、具体的には実施例に記載される手法で行うことができる。すなわち、生物試料、例えば血清または血漿をフィルターでろ過して夾雑物を除き、緩衝液(例えばpH約8)で希釈して約10mg/ml~約15mg/mlの濃度に調整したのち、分子量5万以上のタンパク質を除去可能な中空糸フィルター(下記参考例(1))または遠心型平膜フィルターを通して分子量分画し、画分をプロテアーゼ(例えばトリプシン)で処理してペプチド化し、これを質量分析計(マトリックス支援レーザー脱離イオン化法、またはエレクトロスプレーイオン化法を利用したタイプ)に掛けて、目的のポリペプチド由来の特定ピークの質量/荷電数と強度に基づいて、糖尿病黄斑浮腫患者と、健常人または他の眼疾患の間における試料中のポリペプチドの存在量の差異を測定することができる。 As a measurement method replacing the immunological method, a method using mass spectrometry is included. Specifically, this method can be performed by the technique described in the examples. That is, a biological sample such as serum or plasma is filtered to remove impurities, diluted with a buffer solution (for example, pH of about 8) and adjusted to a concentration of about 10 mg / ml to about 15 mg / ml, and then a molecular weight of 5 Molecular weight fractionation is performed through a hollow fiber filter (Reference Example (1) below) or a centrifugal flat membrane filter capable of removing more than 10,000 proteins, and the fraction is treated with protease (for example, trypsin) to be peptideized, and mass spectrometry is performed. Based on the mass / charge number and intensity of a specific peak derived from the polypeptide of interest, it can be applied to a diabetic macular edema patient and healthy by applying a meter (a type using matrix-assisted laser desorption ionization or electrospray ionization) The difference in polypeptide abundance in the sample between humans or other eye diseases can be measured.
 本発明を以下の実施例によってさらに具体的に説明する。しかし、本発明の範囲は、この実施例によって制限されないものとする。 The present invention will be described more specifically with reference to the following examples. However, the scope of the present invention shall not be limited by this example.
<参考例>
(1)中空糸フィルターの作製
 分画分子量約5万の孔径を膜表面に有するポリスルホン中空糸を100本束ね、中空糸中空部を閉塞しないようにエポキシ系ポッティング剤で両末端をガラス管に固定し、ミニモジュールを作成した。該ミニモジュール(モジュールA)は血清または血漿中の高分子量タンパク質の除去に用いられ、その直径は約7mm、長さは約17cmである。同様に低分子量タンパク質の濃縮に用いられるミニモジュール(モジュールB)を分画分子量約3千の孔径の膜を用いて作成した。ミニモジュールは片端に中空糸内腔に連結する入口があり、反対側の端は出口となる。中空糸入口と出口はシリコンチューブによる閉鎖循環系流路であり、この流路内を液体がペリスタポンプに駆動されて循環する。また、中空糸外套のガラス管には、中空糸から漏出してきた液体を排出するポートを備え、1つモジュールセットが構成される。流路途中にT字のコネクターによって、モジュールを連結し、モジュールA3本と、モジュールB1本をタンデムに連結してひとつの中空糸フィルターとした。この中空糸フィルターを蒸留水にて洗浄し、PBS(0.15mM NaClを含むリン酸緩衝液、pH7.4)水溶液を充填した。分画原料の血清または血漿は該中空糸フィルターの流路入口から注入され、分画・濃縮後に流路出口から排出される。該中空糸フィルターに注入された血清または血漿は、モジュールA毎に分子量約5万で分子篩いがかかり、分子量5万よりも低分子の成分はモジュールBで濃縮され、調製されるようになっている。
<Reference example>
(1) Production of hollow fiber filter 100 polysulfone hollow fibers having a pore size of about 50,000 on the membrane surface are bundled, and both ends are fixed to a glass tube with an epoxy potting agent so as not to block the hollow part of the hollow fiber. And created a mini-module. The minimodule (module A) is used to remove high molecular weight proteins in serum or plasma, and has a diameter of about 7 mm and a length of about 17 cm. Similarly, a minimodule (module B) used for concentration of low molecular weight proteins was prepared using a membrane having a pore size of about 3,000 for the molecular weight cut off. The mini module has an inlet connected to the hollow fiber lumen at one end, and an outlet at the opposite end. The hollow fiber inlet and outlet are closed circulation system flow paths using silicon tubes, and the liquid is driven and circulated through the flow path by a peristaltic pump. Further, the glass tube of the hollow fiber mantle is provided with a port for discharging the liquid leaking from the hollow fiber, and one module set is configured. Modules were connected by T-shaped connectors in the middle of the flow path, and three modules A and one module B were connected in tandem to form one hollow fiber filter. The hollow fiber filter was washed with distilled water and filled with an aqueous solution of PBS (phosphate buffer containing 0.15 mM NaCl, pH 7.4). The fraction raw material serum or plasma is injected from the flow channel inlet of the hollow fiber filter, and is discharged from the flow channel outlet after fractionation and concentration. Serum or plasma injected into the hollow fiber filter is subjected to molecular sieving with a molecular weight of about 50,000 for each module A, and components having a molecular weight lower than 50,000 are concentrated and prepared in module B. Yes.
<実施例1>
(1)糖尿病黄斑浮腫、黄斑円孔、および増殖性糖尿病網膜症のタンパク質同定
 平均年齢61歳の糖尿病黄斑浮腫患者16名、および同年代の黄斑円孔患者16名、増殖性糖尿病網膜症患者16名から硝子体を得て、それぞれについて測定を行った。硝子体を遠心分離して夾雑物質を取り除いた。この硝子体を疾患ごとに、16検体分を1つにまとめた。硝子体サンプルは、さらに300mM重炭酸アンモニウム溶液に希釈し、参考例(1)に示した中空糸フィルターによって分子量による分画を行った。タンパク質は分画操作1回あたり300μgを用い、これを8回繰り返した。8回分の分画回収液は再び1つにまとめた。分画後の硝子体サンプル(分画回収液8回分:全量13.6mL、最大600μgのタンパク質を含む)はAKTA explorer 10s(GEヘルスケア バイオサイエンス株式会社)による逆相クロマトグラフィーで3分画に分離し、それぞれのフラクションを凍結乾燥した後、100mM重炭酸アンモニウムバッファーに再溶解した。このサンプルをDTT・ヨードアセトアミド処理後に、タンパク質の50分の1量のトリプシンで37℃、一晩、消化し、ペプチド化を行った。各分画のペプチドをさらにイオン交換カラムによって8分画化した。その各々の分画を、逆相カラムでさらに分画し、溶出されてきたペプチドについて、オンラインで連結された質量分析計LCQ Deca XP plus(サーモフィッシャーサイエンティフィック株式会社)を用いて、測定した。
<Example 1>
(1) Protein identification of diabetic macular edema, macular hole, and proliferative diabetic retinopathy 16 diabetic macular edema patients with an average age of 61, 16 macular hole patients of the same age, 16 proliferative diabetic retinopathy patients Vitreous bodies were obtained from each and measured for each. The vitreous was centrifuged to remove contaminants. This vitreous was combined into 16 samples for each disease. The vitreous sample was further diluted in a 300 mM ammonium bicarbonate solution, and fractionated by molecular weight using the hollow fiber filter shown in Reference Example (1). 300 μg of protein was used per fractionation, and this was repeated 8 times. Eight fraction collection solutions were combined again. The vitreous sample after fractionation (8 fraction collection solutions: total volume 13.6 mL, containing up to 600 μg of protein) is separated into 3 fractions by reverse phase chromatography with AKTA explorer 10s (GE Healthcare Biosciences) Each fraction was lyophilized and redissolved in 100 mM ammonium bicarbonate buffer. This sample was treated with DTT / iodoacetamide and digested with trypsin in an amount of 1/50 of the protein overnight at 37 ° C. for peptideization. The peptides of each fraction were further fractionated into 8 fractions by an ion exchange column. Each fraction was further fractionated on a reverse phase column, and the eluted peptide was measured using a mass spectrometer LCQ Deca XP plus (Thermo Fisher Scientific Co., Ltd.) linked online. .
(2)黄斑円孔、糖尿病黄斑浮腫、および増殖性糖尿病網膜症の硝子体のタンパク質発現比較
 上記(1)において測定したデータを、タンパク質同定ソフトウェアであるBioworks(サーモフィッシャーサイエンティフィック株式会社)およびPhenyx(GENE BIO社)を用いて解析することにより、網羅的にタンパク質同定を行った。同定されたタンパク質の中から、2種類のソフトウエアで、共に同定されたタンパク質をリストアップし、各疾患の患者硝子体サンプルから検出されたタンパク質とした。これは、アルゴリズムの異なる二種類のソフトウエアを組み合わせることで、一方のソフトウエアの解析結果に含まれる擬陽性のタンパク質を排除するために行った。しかし、Phenyxは、Bioworksと異なり、同じタンパク質のオルタナティブスプライシングによるアイソフォーム特異的なアミノ酸配列や、翻訳後修飾による質量の変化等を考慮に加えて検索を行うため、Bioworksで同定できないペプチドを同定する場合がある。このような条件で、Phenyxでのみ同定されたタンパク質についても、リストアップした。
(2) Vitreous protein expression comparison of macular hole, diabetic macular edema, and proliferative diabetic retinopathy The data measured in (1) above was obtained from Bioworks (Thermo Fisher Scientific Co., Ltd.), a protein identification software, and By using Phenyx (GENE BIO), protein identification was performed comprehensively. Among the identified proteins, the proteins identified together with two kinds of software were listed, and the proteins were detected from patient vitreous samples of each disease. This was done to eliminate false positive proteins contained in the analysis results of one software by combining two types of software with different algorithms. However, unlike Bioworks, Phenix conducts searches taking into account isoform-specific amino acid sequences due to alternative splicing of the same protein, changes in mass due to post-translational modifications, etc., and therefore identifies peptides that cannot be identified by Bioworks There is a case. Under these conditions, proteins identified only in Phenix were also listed.
 各疾患でリストアップされたタンパク質のうち、糖尿病黄斑浮腫患者で検出され、黄斑円孔、増殖性糖尿病網膜症患者では全く検出されていないタンパク質を硝子体マーカータンパク質として見いだした。これらのタンパク質は、表1(上記)および配列表に示した配列番号1~9で表されるアミノ酸配列を含むポリペプチドであり、故に糖尿病黄斑浮腫マーカーとして糖尿病黄斑浮腫などの糖尿病性末梢血管障害の検出および治療中の診断において有用であることが判明した。 Among the proteins listed in each disease, a protein detected in a patient with diabetic macular edema but not detected in a macular hole or proliferative diabetic retinopathy patient was found as a vitreous marker protein. These proteins are polypeptides comprising the amino acid sequences represented by SEQ ID NOs: 1 to 9 shown in Table 1 (above) and the sequence listing, and therefore diabetic peripheral vascular disorders such as diabetic macular edema as diabetic macular edema markers. Has proved useful in the detection and diagnosis during treatment.
 本発明は、特異性および感受性に優れた、糖尿病黄斑浮腫などの糖尿病性末梢血管障害の診断のための組成物を提供することができるため、特に製薬および医薬産業上有用である。 The present invention is particularly useful in the pharmaceutical and pharmaceutical industries because it can provide a composition for diagnosing diabetic peripheral vascular disorders such as diabetic macular edema having excellent specificity and sensitivity.
 本明細書で引用した全ての刊行物等をそのまま参考として本明細書にとり入れるものとする。 All publications cited in this specification shall be incorporated into this specification as reference.

Claims (11)

  1.  被験者由来の生体試料中に含まれる配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片のいずれか1つまたは複数を定量的もしくは定性的に測定および/または検出することを含む、糖尿病性末梢血管障害の検査方法。 Quantitatively or qualitatively measure one or more of the polypeptide comprising the amino acid sequence represented by SEQ ID Nos. 1 to 9 in the sequence listing contained in the biological sample derived from the subject, its variant or fragment thereof, and A method for examining diabetic peripheral vascular disorders, comprising detecting.
  2.  糖尿病性末梢血管障害が糖尿病黄斑浮腫である、請求項1に記載の方法。 The method according to claim 1, wherein the diabetic peripheral vascular disorder is diabetic macular edema.
  3.  前記ポリペプチド、その変異体またはその断片の測定および/または検出を、質量分析法を用いて行う、請求項2に記載の方法。 The method according to claim 2, wherein measurement and / or detection of the polypeptide, a variant thereof or a fragment thereof is performed using mass spectrometry.
  4.  前記測定および/または検出を、前記ポリペプチド、その変異体またはその断片と結合可能な物質を用いて行う、請求項3に記載の方法。 The method according to claim 3, wherein the measurement and / or detection is performed using a substance capable of binding to the polypeptide, a variant thereof or a fragment thereof.
  5.  前記結合可能な物質が抗体またはその断片である、請求項4に記載の方法。 The method according to claim 4, wherein the substance capable of binding is an antibody or a fragment thereof.
  6.  前記抗体またはその断片が、酵素、蛍光物質、色素または放射性同位元素のいずれかで標識されている、請求項5に記載の方法。 The method according to claim 5, wherein the antibody or a fragment thereof is labeled with any of an enzyme, a fluorescent substance, a dye, or a radioisotope.
  7.  前記抗体またはその断片が、モノクローナルまたはポリクローナル抗体、あるいはその断片である、請求項5または6に記載の方法。 The method according to claim 5 or 6, wherein the antibody or a fragment thereof is a monoclonal or polyclonal antibody, or a fragment thereof.
  8.  前記生体試料が、血液、血漿、血清、尿、涙液、硝子体または硝子体液である、請求項1~7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the biological sample is blood, plasma, serum, urine, tears, vitreous or vitreous humor.
  9.  配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片の少なくとも1つと特異的に結合する、抗体もしくはその断片またはそれらの化学修飾誘導体、のうちの1つまたは複数の物質を含む、糖尿病性末梢血管障害の診断または/および検出のための組成物。 One of an antibody or a fragment thereof, or a chemically modified derivative thereof, which specifically binds to at least one of a polypeptide comprising the amino acid sequence represented by SEQ ID NOs: 1 to 9 in the sequence listing, a variant thereof or a fragment thereof A composition for diagnosis or / and detection of diabetic peripheral vascular disorder, comprising one or more substances.
  10.  配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片の少なくとも1つと特異的に結合する、抗体もしくはその抗原に結合する断片またはそれらの化学修飾誘導体、のうちの1つまたは複数の物質を含む、糖尿病性末梢血管障害の診断および/または検出のためのキット。 A fragment comprising the amino acid sequence represented by SEQ ID NOs: 1 to 9 in the sequence listing, a fragment thereof binding specifically to at least one of its variants or fragments thereof, or a chemically modified derivative thereof; A kit for the diagnosis and / or detection of diabetic peripheral vascular disorders, comprising one or more of the substances.
  11.  配列表の配列番号1~9で表されるアミノ酸配列を含むポリペプチド、その変異体またはその断片の少なくとも1つと特異的に結合する、抗体もしくはその抗原に結合する断片またはそれらの化学修飾誘導体、のうちの1つまたは複数の物質の、糖尿病性末梢血管障害の診断および/または検出のためのキットの製造における使用。 A fragment comprising the amino acid sequence represented by SEQ ID NOs: 1 to 9 in the sequence listing, a fragment thereof binding specifically to at least one of its variants or fragments thereof, or a chemically modified derivative thereof; Of one or more of the above in the manufacture of a kit for the diagnosis and / or detection of diabetic peripheral vascular disorders.
PCT/JP2009/067167 2008-10-02 2009-10-01 Method, composition and kit for detecting diabetic peripheral vascular disorder WO2010038829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008257430A JP2010085363A (en) 2008-10-02 2008-10-02 Method, composition and kit for examining diabetic peripheral vascular disorder
JP2008-257430 2008-10-02

Publications (1)

Publication Number Publication Date
WO2010038829A1 true WO2010038829A1 (en) 2010-04-08

Family

ID=42073587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067167 WO2010038829A1 (en) 2008-10-02 2009-10-01 Method, composition and kit for detecting diabetic peripheral vascular disorder

Country Status (2)

Country Link
JP (1) JP2010085363A (en)
WO (1) WO2010038829A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102334303B1 (en) * 2020-05-06 2021-12-01 건국대학교 산학협력단 Biomarkers in blood for diabetic macular edema and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768797A (en) * 1980-10-11 1982-04-27 Wako Pure Chem Ind Ltd Measurement of ceruloplasmin
JPH0875743A (en) * 1994-09-08 1996-03-22 Chemo Sero Therapeut Res Inst Measurement of ceruloplasmin utilizing competitive antibody
JPH09178740A (en) * 1995-10-24 1997-07-11 Tokuyama Corp Marker compound for diabetes and complication thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768797A (en) * 1980-10-11 1982-04-27 Wako Pure Chem Ind Ltd Measurement of ceruloplasmin
JPH0875743A (en) * 1994-09-08 1996-03-22 Chemo Sero Therapeut Res Inst Measurement of ceruloplasmin utilizing competitive antibody
JPH09178740A (en) * 1995-10-24 1997-07-11 Tokuyama Corp Marker compound for diabetes and complication thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERIKO AKAZA ET AL.: "Tonyobyo Momakusho to Ohan Jomaku no Kobu Garasutai Hishitsu Mae Pocket to Shuhenbu Garasutai no Proteome Kaiseki", JOURNAL OF JAPANESE OPHTHALMOLOGICAL SOCIETY, vol. 110, 2006, pages 188 *
ERIKO AKAZA ET AL.: "Tonyobyo Ohan Fushugan ni Okeru Garasutai Pocket to Shuhenbu no Vascular Endotherial Growth Factor Nodo, Ohan Taiseki", JOURNAL OF JAPANESE OPHTHALMOLOGICAL SOCIETY, vol. 111, 2007, pages 208 *
HIDEHARU FUNATSU: "Tonyobyo Momakusho -Byotai Kaimei to Chiryo eno Oyo- Tonyobyo Ohan Fushu to Bisho Junkan Dotai", JOURNAL OF JAPANESE OPHTHALMOLOGICAL SOCIETY, vol. 110, 2006, pages 83 *
KOICHI WATANABE: "Tonyobyo ni Okeru Kessei To Tanpakushitsu no 2,3 no Kento", JOURNAL OF NIHON UNIVERSITY MEDICAL ASSOCIATION, vol. 36, no. 10, 1977, pages 877 - 888 *
YOSHITAKA KUMON ET AL.: "Tonyobyo Kanja n Okeru Kessei Ceruloplasmin-chi no Kento", THE JOURNAL OF THE JAPAN DIABETIC SOCIETY, vol. 43, no. SUPP.1, 2000, pages S.109 *

Also Published As

Publication number Publication date
JP2010085363A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
KR102404285B1 (en) Assays for igfbp7 having improved performance in biological samples
WO2009091023A1 (en) Composition and method for diagnosis or detection of gastric cancer
CN111316099A (en) Proteoliposome-based ZNT8 autoantigen for diagnosis of type 1 diabetes
WO2013035799A1 (en) Antibody capable of binding to specific region of periostin, and method for measuring periostin using same
JP2023065484A (en) New tau species
WO2009123225A1 (en) Composition, kit and method for detecting neuropathy
WO2010038831A1 (en) Method, composition and kit for detecting diabetic complications accompanied by cell proliferation
JP2009244146A (en) Composition for testing disease accompanying metabolic disorder, kit, and method
CN112147324A (en) Detection of autoantibodies
WO2009123224A1 (en) Composition, kit and method for detecting aging and disease associated with vascular disorder
WO2010038829A1 (en) Method, composition and kit for detecting diabetic peripheral vascular disorder
JP2009168669A (en) Composition and method for diagnosing or detecting stomach cancer
WO2010038830A1 (en) Method, composition and kit for detecting tissue disorders induced by atrophy of collagen fibers
JP2009168686A (en) Composition and method for diagnosing or detecting colon cancer
JP4829961B2 (en) Prostasin partial peptide and anti-prostasin antibody
CN115703837B (en) Recombinant antibody for resisting growth stimulus expression gene 2 protein
JP2012018119A (en) Colon cancer detection marker and colon cancer detection method using the same
WO2013031757A1 (en) Marker for detecting pancreatic cancer, breast cancer, lung cancer, or prostate cancer, and examination method
WO2023245117A2 (en) Compositions and methods comprising anti-nrp2 antibodies
CN117024586A (en) Antibody composition and method for detecting concentration of YKL-40 in blood
JP2008190947A (en) Method and composition for measuring medicinal effect of anti-human tnf-alpha antibody for treating articular rheumatism
JP2008263840A (en) Composition and method for diagnosis or detection of gastric cancer
JP2009168682A (en) Composition and method for diagnosing or detecting esophagus cancer
JP2008206476A (en) Composition and method for diagnosing renal cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817861

Country of ref document: EP

Kind code of ref document: A1