WO2010038309A1 - Time sensor circuit - Google Patents

Time sensor circuit Download PDF

Info

Publication number
WO2010038309A1
WO2010038309A1 PCT/JP2008/068055 JP2008068055W WO2010038309A1 WO 2010038309 A1 WO2010038309 A1 WO 2010038309A1 JP 2008068055 W JP2008068055 W JP 2008068055W WO 2010038309 A1 WO2010038309 A1 WO 2010038309A1
Authority
WO
WIPO (PCT)
Prior art keywords
time sensor
time
thin film
sensor element
circuit
Prior art date
Application number
PCT/JP2008/068055
Other languages
French (fr)
Japanese (ja)
Inventor
晶紀 早藤
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/068055 priority Critical patent/WO2010038309A1/en
Publication of WO2010038309A1 publication Critical patent/WO2010038309A1/en

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F13/00Apparatus for measuring unknown time intervals by means not provided for in groups G04F5/00 - G04F10/00

Definitions

  • the present invention relates to a time sensor circuit capable of detecting a long-term elapsed time by utilizing a change in resistance value due to a change with time of a metal thin film or the like.
  • Patent Document 1 discloses a life prediction apparatus for measuring an elapsed time, a temperature history, and the like and determining a replacement time of a part or the like for an industrial product other than the above-described household appliances.
  • Japanese Patent Laid-Open No. 5-281001 Japanese Patent Laid-Open No. 5-281001
  • Patent Document 2 discloses that a ceramic sintered body having a conductive pattern formed thereon is used for maintenance and inspection for fusion reactors, gas turbines, and the like. JP-A-6-102223
  • Patent Document 3 discloses a corrosion sensor that detects corrosion of reinforcing bars of a concrete structure and notifies the detection result by radio or the like. JP 2006-337169 A
  • the elapsed time is integrated and measured using a microcomputer, the temperature is measured at the same time, and the elapsed time is corrected to determine the life (replacement time) of a component or the like. Means are adopted. According to this, it is expected that considerable cost will be required, such as using the above-mentioned microcomputer and temperature measuring means in combination.
  • the ceramic sintered body is cracked by receiving distortion or impact of the structure, and the conductive pattern of the ceramic sintered body is broken. It detects disconnection. Therefore, this is suitable for monitoring physical damage in the above-described fusion reactor, gas turbine, etc., and is difficult to use for measuring elapsed time over a long period of time.
  • the corrosion sensor disclosed in Patent Document 3 is embedded in the concrete structure in advance, and electrically senses moisture and salt acting on the reinforcing bars in the concrete structure to predict the degree of corrosion of the reinforcing bars. This is reported wirelessly. Therefore, even in this case, it is difficult to use for measuring elapsed time over a long period of time.
  • the present invention has been made by paying attention to the problems of the conventional ones described above, and can be used for home appliances, for example, and can reliably grasp the elapsed time over a long period of time. It is an object of the present invention to provide a time sensor circuit capable of reducing the cost.
  • the time sensor circuit according to the present invention which has been made to solve the above-described problems, has a conductive thin film pattern formed on an insulating substrate according to claim 1, and the conductive thin film pattern as time passes. It is characterized in that a time sensor element that increases the resistance value of the time sensor element is provided and a signal corresponding to the resistance value of the time sensor element is output.
  • FIG. 5 is a characteristic diagram showing an example of a temporal change in resistance value in the time sensor element shown in FIGS. BRIEF DESCRIPTION OF THE DRAWINGS It is a circuit block diagram which showed 1st Embodiment of the time sensor circuit concerning this invention using a time sensor element. It is the circuit block diagram which similarly showed 2nd Embodiment of the time sensor circuit.
  • FIG. 1 to FIG. 4 are sectional views showing each form of a time sensor element suitably used in the time sensor circuit according to the present invention.
  • a pair of terminal members 3a and 3b each having a U-shaped cross-section are attached to opposing edges of a rectangular insulating substrate 2, respectively.
  • a conductive thin film pattern 4 is formed on one surface of the insulating substrate 2, that is, on the upper surface of the insulating substrate 2 shown in the drawing so as to connect the pair of terminal members 3a and 3b.
  • the conductive thin film pattern 4 is formed linearly between the terminal members 3a and 3b by using, for example, vapor deposition, sputtering, or printing technology, and for example, in a serpentine shape as necessary.
  • the thin film pattern 4 has a resistance value that increases with time, and a metal thin film or an organic semiconductor thin film can be used for this.
  • the conductive thin film pattern 4 is composed of a metal thin film, for example, materials such as Al, Mg, Ag, Ca, Zn, Fe, Ni, Sn, Pb, and Cu can be used.
  • a material such as pentacene, phthalocyanine, or polythiophene can be used.
  • a sealing member 5 that covers the conductive thin film pattern 4 and seals the conductive thin film pattern 4 with the insulating substrate 2 is further provided.
  • the sealing member 5 is formed in substantially the same shape as the insulating substrate 2, and the peripheral edge thereof is formed so as to slightly protrude toward the sealing member 5, and the sealing member 5 is bonded at the protruding portion. It is attached to the insulating substrate 2 via the agent 6.
  • the thin film pattern 4 is sealed by the sealing member 5, it is isolated from the atmosphere, and the degree of increase in the resistance value of the thin film pattern 4 over time can be controlled. Further, in the embodiment shown in the figure, a gap is formed between the thin film pattern 4 formed on the insulating substrate 2 and the sealing member 5, and the gap is filled with, for example, an inert gas. can do. Thereby, the progress degree in which the resistance value of the thin film pattern 4 increases can be controlled greatly.
  • FIG. 2 is a cross-sectional view showing a second embodiment of the time sensor element 1, and in FIG. 2, parts having the same functions as those shown in FIG. Therefore, the detailed description is abbreviate
  • a desiccant 7 that captures moisture is disposed on the inner surface of the sealing member 5, that is, the surface of the sealing member 5 that faces the thin film pattern 4.
  • FIG. 3 is a sectional view showing a third embodiment of the time sensor element 1, and in FIG. 3, parts having the same functions as those shown in FIG. Therefore, the detailed description is abbreviate
  • the protective film 5A is formed, for example, by applying a paste-like paint on the surface of the insulating substrate 2 where the conductive thin film pattern 4 is formed and solidifying it. Thereby, the protective film 5 ⁇ / b> A as a sealing member is formed in close contact with the conductive thin film pattern 4 and is configured to cover the entire conductive thin film pattern 4.
  • FIG. 4 is a sectional view showing a fourth embodiment of the time sensor element 1, and in FIG. 4, parts having the same functions as those shown in FIG. Therefore, the detailed description is abbreviate
  • the embodiment shown in FIG. 4 shows an example in which an organic EL (electroluminescence) element is used as the conductive thin film pattern 4.
  • the organic EL element as the conductive thin film pattern 4 is made of an organic EL material between the first electrode 4a connected to one terminal member 3a and the second electrode 4c connected to the other terminal member 3b.
  • the light emitting layer 4b is interposed. Then, by supplying a direct current drive current between the terminal members 3a and 3b, the light emitting layer 4b acts to emit light.
  • a transparent electrode using, for example, ITO is used as the second electrode 4c, and the sealing member 5 covering the organic EL element is also made of a transparent material, so that the light emitting layer 4b A top emission type organic EL element in which light passes through the sealing member 5 and is derived is configured.
  • the light emitting layer 4b in the organic EL element described above has a property that its resistance value increases with the passage of time. Therefore, the organic EL element including the light emitting layer 4b between the electrodes becomes conductive with the passage of time. It functions as a time sensor element in which the resistance value of the conductive thin film pattern increases.
  • the desiccant 7 is disposed in the sealing member 5 as shown in FIG.
  • the structure to do can be employ
  • the structure using the protective film 5A can also be adopted.
  • a time sensor circuit to be described later is configured by using the resistance value between the terminal members 3a and 3b provided at both ends of the insulating substrate 2. can do.
  • the thin film pattern 4 which comprises the time sensor element 1 is made into the structure sealed with the sealing member 5 or the protective film 5A instead of this, the thin film pattern 4 can be protected mechanically, In addition, it is possible to control the degree of progress in increasing the resistance value of the thin film pattern 4 over time.
  • FIG. 5 is a characteristic diagram showing an example of a change with time of the resistance value in the time sensor element 1 shown in FIGS.
  • the horizontal axis indicates the elapsed time
  • the vertical axis indicates the resistance value of the thin film pattern 4 between the terminal members 3a and 3b.
  • the resistance value of the conductive thin film pattern 4 increases with time as shown in FIG. Therefore, in the time sensor circuit to be described later, a predetermined elapsed time is set as the set life, the resistance value in the time sensor element at this time is set as a reference value, and when the resistance value reaches this reference value, the signal output Configured to change form.
  • FIGS. 6 to 13 show examples in which a time sensor circuit is configured by appropriately using the time sensor elements shown in FIGS. 1 to 4 described above.
  • FIG. 6 shows the first embodiment.
  • the time sensor element 1 shown in FIGS. 1 to 3 can be suitably used.
  • the time sensor element 1 is connected to the output terminal of the power source E1 (in this embodiment, the anode terminal of the power source E1), and a load is connected in series to the time sensor element 1. 11 is connected.
  • the voltage value supplied to the load 11 acts so as to decrease as the time sensor element 1 changes with time. That is, a signal corresponding to the resistance value of the time sensor element 1 is output to the load 11.
  • the set life shown in FIG. 5 can be detected based on the voltage value output to the load 11, and the output of the power supply supplied to the electrical equipment is cut off using this output voltage. It can also be configured.
  • FIG. 7 shows a second embodiment of the time sensor circuit.
  • the time sensor element 1 shown in FIGS. 1 to 3 can be used preferably.
  • the resistance value in the time sensor element 1 reaches a predetermined value (reference value shown in FIG. 5)
  • the output of the power supply from the output terminal of the power supply circuit is cut off. Acts like
  • the time sensor element 1 and the voltage dividing resistor R1 are connected in series to the output terminal of the power supply E1 (the anode terminal of the power supply E1), and the connection point between the time sensor element 1 and the voltage dividing resistor R1 is The gate of an n-channel type FET Q1 that functions as a first switching element is connected.
  • the drain of the FET Q1 is connected to the output terminal of the power source E1 through the resistor R2, and the gate of the p-channel FET Q2 that functions as the second switching element is connected. Further, the source of the FET Q2 is connected to the output terminal of the power supply E1, and the load 11 is connected to the drain of the FET Q2.
  • the FET Q1 that functions as the first switching element switches to the off state, and functions as a cutoff circuit by turning off the FET Q1.
  • the FET Q2 to be turned on is also turned off. As a result, power supply from the power source E1 to the load 11 is cut off.
  • FIG. 8 shows a third embodiment of the time sensor circuit.
  • the time sensor element 1 shown in FIGS. 1 to 3 can be suitably used.
  • the time sensor element 1 and the LED are connected in series to the operating power supply Vdd.
  • the voltage value supplied to the LED decreases as the time sensor element 1 changes with time. That is, a voltage value corresponding to the resistance value of the time sensor element 1 is supplied to the LED. Since the amount of light emitted from the LED changes according to the voltage across the LED, the set life can be detected according to the amount of light emitted from the LED.
  • FIG. 9 shows a fourth embodiment of the time sensor circuit, and in this example, the time sensor element 1 shown in FIGS. 1 to 3 can be suitably used.
  • the output of the power supply is cut off. it can.
  • the time sensor element 1 and the voltage dividing resistor R3 are connected in series to the operating power supply Vdd, and the potential at the connection point between the time sensor element 1 and the voltage dividing resistor R3 is It is configured to be supplied to a comparator CMP having a reference voltage E2.
  • FIG. 10 shows a fifth embodiment of the time sensor circuit.
  • the time sensor element 1 shown in FIGS. 1 to 3 can be used preferably.
  • the embodiment shown in FIG. 10 is configured to detect the set life using the voltage regulator circuit 12.
  • the operating power supply Vdd is supplied to the input terminal of the voltage regulator circuit 12, and the time sensor element 1 and the voltage dividing resistor R4 are connected in series to the output terminal Out of the voltage regulator circuit 12.
  • a connection point between the time sensor element 1 and the voltage dividing resistor R4, that is, a divided output of the time sensor element 1 and the voltage dividing resistor R4 is applied to the control input terminal of the voltage regulator circuit 12.
  • the voltage value applied to the control input terminal of the voltage regulator circuit 12 decreases as the resistance value in the time sensor element 1 increases due to a change with time.
  • the output voltage at the output terminal Out acts to decrease synergistically.
  • the set life can be detected in accordance with the output voltage at the output terminal Out of the voltage regulator circuit 12, and the output of the power supply supplied to the electrical equipment is cut off using this output voltage. You can also
  • FIG. 11 shows a sixth embodiment of the time sensor circuit, and in this example, the time sensor element 1 shown in FIGS. 1 to 3 can be suitably used.
  • time sensor element 1 and capacitor C1 are connected in series to operating power supply Vdd.
  • a charging time determination circuit 13 for detecting the terminal voltage of the capacitor C1 is provided.
  • the operation power supply Vdd is intermittently supplied, and the charging time determination circuit 13 monitors the rising characteristics of the terminal voltage of the capacitor C1 when the operation power supply Vdd is supplied. Acts as follows. For example, a voltage comparator can be used.
  • the rising characteristic of the terminal voltage of the capacitor C1 is lowered due to the increase in the resistance value of the time sensor element 1 due to the change with time.
  • This state is monitored by the charging time determination circuit 13, and the charging time determination circuit 13 acts so as to provide an output corresponding to the rising characteristic of the terminal voltage of the capacitor C1 to the output terminal Out.
  • the set life can be detected according to the output voltage at the output terminal Out of the charging time determination circuit 13, and the output of the power supply supplied to the electric device is cut off using this output voltage. It can also be configured as follows.
  • FIG. 12 shows a seventh embodiment of the time sensor circuit.
  • the time sensor element 1 shown in FIG. 4 that is, the organic EL element can be suitably used.
  • an organic EL element as the time sensor element 1 is connected to the power source E1, and an optical sensor 14 for detecting the amount of light emitted by the organic EL element is provided. Further, the optical sensor 14 is configured to open and close a switch 15 interposed between the power source E1 and the load 11.
  • the organic EL element constituting the time sensor element 1 has a property that its resistance value increases with the passage of time as described above. Therefore, the amount of light emitted from the organic EL element is similarly reduced.
  • the optical sensor 14 monitors this state, and the optical sensor 14 operates to open the switch 15 when the amount of received light becomes a predetermined value or less, that is, when the set life is reached.
  • the output of the power supply supplied to the load 11 is cut off, and the output of the power supply supplied to the electrical equipment is cut off with the cut off of the power supply supplied to the load 11. It can also be configured.
  • FIG. 13 shows an eighth embodiment of the time sensor circuit, and in this example, the time sensor element 1 shown in FIGS. 1 to 3 can be suitably used.
  • the embodiment shown in FIG. 13 can be suitably used for equipment using a DC-DC converter.
  • an output VBatt from a battery (not shown) constituting the primary side is supplied to the converter circuit 16 and also supplied to the series circuit of the time sensor element 1 and the voltage dividing resistor R5.
  • the converter circuit 16 includes a switching element Q3 for supplying power, and is configured such that a driving current from the battery is supplied to the boosting coil L1 via the switching element Q3.
  • the chopper switching element Q4 the diode D1
  • the controller circuit 17 the external smoothing capacitor C2
  • the feedback voltage dividing resistors R6 and R7 constitute a known chopper type boost converter circuit.
  • the voltage divided by the time sensor element 1 and the voltage dividing resistor R ⁇ b> 5 is supplied to the controller circuit 17, and the resistance value of the time sensor element 1 increases due to changes over time. Therefore, the divided voltage decreases.
  • the controller circuit 17 operates to stop the power supply to the converter circuit 16 by controlling the switching element Q3 to be turned off when the divided voltage is lower than a predetermined value. Thereby, the power supply to the secondary side Vout of the DC-DC converter is stopped.
  • Each time sensor circuit described above can be selectively employed according to each of the devices on which it is mounted.
  • the time sensor element used in the time sensor circuit is formed as a conductive thin film pattern on an insulating substrate, and has a property that the resistance value increases with the passage of time. It can be accurately grasped. Therefore, for example, it can be used for household appliances without causing a cost problem.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A time sensor element (1) and a voltage-dividing resistor (R1) are connected in series with a power source (E1), and an FET (Q1) has its gate connected with the junction of the time sensor element and the voltage-dividing resistor. Moreover, the gate of an FET (Q2) is connected with the drain of the FET (Q1) and further with the power source (E1) through a resistor (R2). Still moreover, the source of the FET (Q2) is connected with the power source (E1), and a load (11) is connected with the drain of the FET (Q2). According to this constitution, in case the resistance in the time sensor element (1) varies with time up to a predetermined value, the FET (Q1) is turned OFF, and the FET (Q2) is also accordingly turned OFF. As a result, the power supply to the load (11) from the power source (E1) is cut off.

Description

時間センサー回路Time sensor circuit
 この発明は、金属薄膜等の経時変化による抵抗値の変動を利用して、長期の経過時間を検知することができる時間センサー回路に関する。 The present invention relates to a time sensor circuit capable of detecting a long-term elapsed time by utilizing a change in resistance value due to a change with time of a metal thin film or the like.
 例えば家庭内で用いられる電化製品などにおいては、十数年もしくはそれ以上の長期間にわたって使用される例があり、製品に使用されている例えばコンデンサにおいては、これを構成する絶縁層の経時劣化により短絡が発生し、最悪の場合においては火災に発展する場合が有り得る。 For example, in household appliances, etc., there are examples that are used over a long period of more than a decade or more, and in capacitors used in products, for example, due to deterioration over time of the insulating layer that constitutes this A short circuit may occur and in the worst case, it may develop into a fire.
 しかしながら、前記した家庭内で用いられる電化製品などを対象として、その製品の長期の経過(利用)時間を計測することについては配慮されていないのが現状である。 However, the present situation is that no consideration is given to measuring the long-term elapsed (use) time of the appliances used in the home as described above.
 一方、前記した家庭用電化製品以外の工業用製品を対象として、経過時間および温度履歴等を計測して部品等の交換時期を判定する寿命予測装置が特許文献1に開示されている。
特開平5-281001号公報
On the other hand, Patent Document 1 discloses a life prediction apparatus for measuring an elapsed time, a temperature history, and the like and determining a replacement time of a part or the like for an industrial product other than the above-described household appliances.
Japanese Patent Laid-Open No. 5-281001
 また、他に核融合炉やガスタービンなどを対象として、その保守点検のために、セラミック焼結体に導電パターンを形成したものを利用することが、特許文献2に開示されている。
特開平6-102223号公報
In addition, Patent Document 2 discloses that a ceramic sintered body having a conductive pattern formed thereon is used for maintenance and inspection for fusion reactors, gas turbines, and the like.
JP-A-6-102223
 さらに、コンクリート構造物の鉄筋の腐蝕を検知し、検知結果を無線等で報知するようにした腐蝕センサーが、特許文献3に開示されている。
特開2006-337169号公報
Further, Patent Document 3 discloses a corrosion sensor that detects corrosion of reinforcing bars of a concrete structure and notifies the detection result by radio or the like.
JP 2006-337169 A
 前記特許文献1に開示の寿命予測装置によると、マイコンを用いて経過時間を積算計測し、同時に温度を計測して前記経過時間に補正を加えて、部品等の寿命(交換時期)を判定する手段が採用されている。これによると、前記したマイコンや温度計測手段を複合的に用いるなど、相当のコストが嵩むことが予想される。 According to the life prediction apparatus disclosed in Patent Document 1, the elapsed time is integrated and measured using a microcomputer, the temperature is measured at the same time, and the elapsed time is corrected to determine the life (replacement time) of a component or the like. Means are adopted. According to this, it is expected that considerable cost will be required, such as using the above-mentioned microcomputer and temperature measuring means in combination.
 しかも、前記したように十数年もしくはそれ以上の長期間にわたって、これを稼働させるには、当該寿命予測装置を保守点検せざるを得ないという問題に帰着し、長期にわたる時間センサー回路としては、実用的には利用し難いという問題を抱えている。 Moreover, as described above, in order to operate this for a long period of more than ten years or more, it results in the problem that the life prediction apparatus has to be inspected, and as a long time sensor circuit, It has a problem that it is difficult to use practically.
 また、特許文献2に開示されたセラミック焼結体を用いた装置によると、構造物の歪みや衝撃を受けることによりセラミック焼結体が割れることを利用して、セラミック焼結体の導電パターンの切断を検知するものである。したがって、これは前記した核融合炉やガスタービンなどにおける物理的な損傷を監視するに適したものであり、長期間にわたる経過時間の計測に利用することは困難である。 Moreover, according to the apparatus using the ceramic sintered body disclosed in Patent Document 2, the ceramic sintered body is cracked by receiving distortion or impact of the structure, and the conductive pattern of the ceramic sintered body is broken. It detects disconnection. Therefore, this is suitable for monitoring physical damage in the above-described fusion reactor, gas turbine, etc., and is difficult to use for measuring elapsed time over a long period of time.
 さらに、特許文献3に開示された腐蝕センサーは、コンクリート構造物内に予めセンサーを埋め込み、コンクリート構造物内の鉄筋に作用する水分や塩分を電気的に感知して鉄筋の腐蝕の程度を予測し、これを無線で報知するものである。したがって、これにおいても長期間にわたる経過時間の計測に利用することは難しい。 Furthermore, the corrosion sensor disclosed in Patent Document 3 is embedded in the concrete structure in advance, and electrically senses moisture and salt acting on the reinforcing bars in the concrete structure to predict the degree of corrosion of the reinforcing bars. This is reported wirelessly. Therefore, even in this case, it is difficult to use for measuring elapsed time over a long period of time.
 この発明は、前記した従来のものの問題点に着目してなされたものであり、例えば家庭用の電化製品等にも利用することができ、長期にわたる経過時間を確実に把握することができ、しかもコストの低減を図ることができる時間センサー回路を提供することを課題とするものである。 The present invention has been made by paying attention to the problems of the conventional ones described above, and can be used for home appliances, for example, and can reliably grasp the elapsed time over a long period of time. It is an object of the present invention to provide a time sensor circuit capable of reducing the cost.
 前記した課題を解決するためになされたこの発明にかかる時間センサー回路は、請求項1に記載のとおり、絶縁基板上に導電性薄膜パターンが形成され、時間の経過に伴って前記導電性薄膜パターンの抵抗値が上昇する時間センサー素子を備え、前記時間センサー素子の抵抗値に応じた信号を出力するように構成した点に特徴を有する。 The time sensor circuit according to the present invention, which has been made to solve the above-described problems, has a conductive thin film pattern formed on an insulating substrate according to claim 1, and the conductive thin film pattern as time passes. It is characterized in that a time sensor element that increases the resistance value of the time sensor element is provided and a signal corresponding to the resistance value of the time sensor element is output.
この発明において用いられる時間センサー素子の第1の実施の形態を示した断面図である。It is sectional drawing which showed 1st Embodiment of the time sensor element used in this invention. 同じく時間センサー素子の第2の実施の形態を示した断面図である。It is sectional drawing which similarly showed 2nd Embodiment of the time sensor element. 同じく時間センサー素子の第3の実施の形態を示した断面図である。It is sectional drawing which similarly showed 3rd Embodiment of the time sensor element. 同じく時間センサー素子の第4の実施の形態を示した断面図である。It is sectional drawing which similarly showed 4th Embodiment of the time sensor element. 図1~4に示す時間センサー素子における抵抗値の経時変化の一例を示す特性線図である。FIG. 5 is a characteristic diagram showing an example of a temporal change in resistance value in the time sensor element shown in FIGS. 時間センサー素子を利用したこの発明にかかる時間センサー回路の第1の実施の形態を示した回路構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a circuit block diagram which showed 1st Embodiment of the time sensor circuit concerning this invention using a time sensor element. 同じく時間センサー回路の第2の実施の形態を示した回路構成図である。It is the circuit block diagram which similarly showed 2nd Embodiment of the time sensor circuit. 同じく時間センサー回路の第3の実施の形態を示した回路構成図である。It is the circuit block diagram which similarly showed 3rd Embodiment of the time sensor circuit. 同じく時間センサー回路の第4の実施の形態を示した回路構成図である。It is the circuit block diagram which similarly showed 4th Embodiment of the time sensor circuit. 同じく時間センサー回路の第5の実施の形態を示した回路構成図である。It is the circuit block diagram which similarly showed 5th Embodiment of the time sensor circuit. 同じく時間センサー回路の第6の実施の形態を示した回路構成図である。It is the circuit block diagram which similarly showed 6th Embodiment of the time sensor circuit. 同じく時間センサー回路の第7の実施の形態を示した回路構成図である。It is the circuit block diagram which similarly showed 7th Embodiment of the time sensor circuit. 同じく時間センサー回路の第8の実施の形態を示した回路構成図である。It is the circuit block diagram which similarly showed 8th Embodiment of the time sensor circuit.
符号の説明Explanation of symbols
 1     時間センサー素子
 2     絶縁基板
 3a,3b 端子部材
 4     導電性薄膜パターン
 4a    第1電極
 4b    発光層
 4c    第2電極
 5     封止部材
 5A    保護膜(封止部材)
 6     接着剤
 7     乾燥剤
 11    負荷
 12    電圧レギュレータ回路
 13    充電時間判定回路
 14    光センサ
 15    スイッチ
 16    コンバータ回路
DESCRIPTION OF SYMBOLS 1 Time sensor element 2 Insulating substrate 3a, 3b Terminal member 4 Conductive thin film pattern 4a 1st electrode 4b Light emitting layer 4c 2nd electrode 5 Sealing member 5A Protective film (sealing member)
6 Adhesive 7 Desiccant 11 Load 12 Voltage Regulator Circuit 13 Charging Time Judgment Circuit 14 Optical Sensor 15 Switch 16 Converter Circuit
 以下、この発明にかかる時間センサー回路について図に基づいて説明する。まず図1~図4は、この発明にかかる時間センサー回路において好適に用いられる時間センサー素子の各形態をそれぞれ断面図で示したものである。 Hereinafter, the time sensor circuit according to the present invention will be described with reference to the drawings. First, FIG. 1 to FIG. 4 are sectional views showing each form of a time sensor element suitably used in the time sensor circuit according to the present invention.
 図1に示す時間センサー素子1においては、方形状の絶縁基板2の対向する縁部に、断面形状がコ字状に形成された一対の端子部材3a,3bがそれぞれ取り付けられている。そして、絶縁基板2の一方の面、すなわち図に示す絶縁基板2の上面には、前記一対の端子部材3a,3bを接続するようにして、導電性薄膜パターン4が形成されている。 In the time sensor element 1 shown in FIG. 1, a pair of terminal members 3a and 3b each having a U-shaped cross-section are attached to opposing edges of a rectangular insulating substrate 2, respectively. A conductive thin film pattern 4 is formed on one surface of the insulating substrate 2, that is, on the upper surface of the insulating substrate 2 shown in the drawing so as to connect the pair of terminal members 3a and 3b.
 前記導電性薄膜パターン4は、例えば蒸着、スパッタリング、もしくは印刷技術などを利用することで前記端子部材3a,3b間に直線状に、また必要に応じて例えば蛇行状に形成される。この薄膜パターン4は時間の経過に伴ってその抵抗値が上昇するものが用いられ、これには金属薄膜や有機半導体薄膜を用いることができる。 The conductive thin film pattern 4 is formed linearly between the terminal members 3a and 3b by using, for example, vapor deposition, sputtering, or printing technology, and for example, in a serpentine shape as necessary. The thin film pattern 4 has a resistance value that increases with time, and a metal thin film or an organic semiconductor thin film can be used for this.
 前記した導電性薄膜パターン4を金属薄膜により構成する場合においては、例えば、Al、Mg、Ag、Ca、Zn、Fe、Ni、Sn、Pb、Cuなどの素材を用いることができる。また、前記導電性薄膜パターン4を有機半導体により形成する場合においては、ペンタセン、フタロシアニン、ポリチオフェンなどの素材を用いることができる。 When the conductive thin film pattern 4 is composed of a metal thin film, for example, materials such as Al, Mg, Ag, Ca, Zn, Fe, Ni, Sn, Pb, and Cu can be used. In the case where the conductive thin film pattern 4 is formed of an organic semiconductor, a material such as pentacene, phthalocyanine, or polythiophene can be used.
 図1に示す実施の形態においては、さらに前記した導電性薄膜パターン4を覆い、前記絶縁基板2との間で導電性薄膜パターン4を封止する封止部材5が備えられている。前記封止部材5は前記絶縁基板2とほぼ同形状に形成され、その周縁部が封止部材5に向かってわずかに突出するように形成されており、封止部材5はこの突出部分において接着剤6を介して絶縁基板2に取り付けられている。 In the embodiment shown in FIG. 1, a sealing member 5 that covers the conductive thin film pattern 4 and seals the conductive thin film pattern 4 with the insulating substrate 2 is further provided. The sealing member 5 is formed in substantially the same shape as the insulating substrate 2, and the peripheral edge thereof is formed so as to slightly protrude toward the sealing member 5, and the sealing member 5 is bonded at the protruding portion. It is attached to the insulating substrate 2 via the agent 6.
 したがって、薄膜パターン4は封止部材5により封止されるので大気から隔離され、時間経過による薄膜パターン4の抵抗値が上昇する度合いを制御することができる。また図に示す実施の形態においては、絶縁基板2に形成された薄膜パターン4と前記封止部材5との間において、空隙が形成されており、この空隙内に、例えば不活性ガスなどを充填することができる。これにより、薄膜パターン4の抵抗値が上昇する進行度合いを大幅に制御することができる。 Therefore, since the thin film pattern 4 is sealed by the sealing member 5, it is isolated from the atmosphere, and the degree of increase in the resistance value of the thin film pattern 4 over time can be controlled. Further, in the embodiment shown in the figure, a gap is formed between the thin film pattern 4 formed on the insulating substrate 2 and the sealing member 5, and the gap is filled with, for example, an inert gas. can do. Thereby, the progress degree in which the resistance value of the thin film pattern 4 increases can be controlled greatly.
 図2は、時間センサー素子1の第2の実施の形態を断面図で示したものであり、図2においては図1に示す各部と同一の機能を果たす部分を同一符号で示している。したがって、その詳細な説明は省略する。 FIG. 2 is a cross-sectional view showing a second embodiment of the time sensor element 1, and in FIG. 2, parts having the same functions as those shown in FIG. Therefore, the detailed description is abbreviate | omitted.
 図2に示す時間センサー素子1においては、封止部材5の内面、すなわち封止部材5における薄膜パターン4に対峙する面に水分を捕獲する乾燥剤7が配置されている。このように薄膜パターン4の封止空間内に乾燥剤7を配置することで、時間経過による薄膜パターン4の抵抗値が上昇する進行度合いをより遅らせるように制御することができる。 In the time sensor element 1 shown in FIG. 2, a desiccant 7 that captures moisture is disposed on the inner surface of the sealing member 5, that is, the surface of the sealing member 5 that faces the thin film pattern 4. Thus, by arrange | positioning the desiccant 7 in the sealing space of the thin film pattern 4, it can control to delay more the progress degree in which the resistance value of the thin film pattern 4 raises by time passage.
 図3は、時間センサー素子1の第3の実施の形態を断面図で示したものであり、図3においては図1に示す各部と同一の機能を果たす部分を同一符号で示している。したがって、その詳細な説明は省略する。なお図3に示す例は、前記した封止部材5として保護膜5Aを用いた例を示している。 FIG. 3 is a sectional view showing a third embodiment of the time sensor element 1, and in FIG. 3, parts having the same functions as those shown in FIG. Therefore, the detailed description is abbreviate | omitted. 3 shows an example in which the protective film 5A is used as the sealing member 5 described above.
 この保護膜5Aとしては、例えばペースト状になされた塗料を利用し、絶縁基板2における導電性薄膜パターン4の形成面に塗布し、これが固化されることにより形成される。これにより、封止部材としての保護膜5Aは導電性薄膜パターン4に密着した状態で形成され、導電性薄膜パターン4の全体を覆うように構成される。  The protective film 5A is formed, for example, by applying a paste-like paint on the surface of the insulating substrate 2 where the conductive thin film pattern 4 is formed and solidifying it. Thereby, the protective film 5 </ b> A as a sealing member is formed in close contact with the conductive thin film pattern 4 and is configured to cover the entire conductive thin film pattern 4. *
 図4は、時間センサー素子1の第4の実施の形態を断面図で示したものであり、図4においては図1に示す各部と同一の機能を果たす部分を同一符号で示している。したがって、その詳細な説明は省略する。なおこの図4に示す実施の形態は導電性薄膜パターン4として、有機EL(エレクトロルミネッセンス)素子を用いた例を示している。 FIG. 4 is a sectional view showing a fourth embodiment of the time sensor element 1, and in FIG. 4, parts having the same functions as those shown in FIG. Therefore, the detailed description is abbreviate | omitted. The embodiment shown in FIG. 4 shows an example in which an organic EL (electroluminescence) element is used as the conductive thin film pattern 4.
 すなわち、導電性薄膜パターン4としての有機EL素子は、一方の端子部材3aに接続された第1電極4aと他方の端子部材3bに接続された第2電極4cとの間に、有機EL素材による発光層4bが介在されている。そして端子部材3a,3b間に直流の駆動電流を供給することにより発光層4bが発光するように作用する。  That is, the organic EL element as the conductive thin film pattern 4 is made of an organic EL material between the first electrode 4a connected to one terminal member 3a and the second electrode 4c connected to the other terminal member 3b. The light emitting layer 4b is interposed. Then, by supplying a direct current drive current between the terminal members 3a and 3b, the light emitting layer 4b acts to emit light. *
 なお、図4に示す実施の形態においては、第2電極4cとして例えばITOを用いた透明電極とし、また有機EL素子を覆う封止部材5も透明な素材を用いることにより、発光層4bからの光が封止部材5を透過して導出されるトップエミッション形式の有機EL素子を構成している。 In the embodiment shown in FIG. 4, a transparent electrode using, for example, ITO is used as the second electrode 4c, and the sealing member 5 covering the organic EL element is also made of a transparent material, so that the light emitting layer 4b A top emission type organic EL element in which light passes through the sealing member 5 and is derived is configured.
 前記した有機EL素子における発光層4bは、時間の経過と共にその抵抗値が増大する性質を有しており、したがって前記発光層4bを電極間に含む有機EL素子は、時間の経過に伴って導電性薄膜パターンの抵抗値が上昇する時間センサー素子としての機能を果たす。 The light emitting layer 4b in the organic EL element described above has a property that its resistance value increases with the passage of time. Therefore, the organic EL element including the light emitting layer 4b between the electrodes becomes conductive with the passage of time. It functions as a time sensor element in which the resistance value of the conductive thin film pattern increases.
 なお、図4に示すように導電性薄膜パターン4として、発光層4bを電極間に含む有機EL素子を用いた場合においても、図2に示すように封止部材5内に乾燥剤7を配置する構成を好適に採用することができる。また図3に示すように保護膜5Aを用いる構成を採用することもできる。 In the case where an organic EL element including the light emitting layer 4b between the electrodes is used as the conductive thin film pattern 4 as shown in FIG. 4, the desiccant 7 is disposed in the sealing member 5 as shown in FIG. The structure to do can be employ | adopted suitably. Moreover, as shown in FIG. 3, the structure using the protective film 5A can also be adopted.
 斯くして、図1~4に示す構成の時間センサー素子1によると、絶縁基板2の両端に具備された端子部材3a,3b間の抵抗値を利用することで、後述する時間センサー回路を構成することができる。 Thus, according to the time sensor element 1 having the configuration shown in FIGS. 1 to 4, a time sensor circuit to be described later is configured by using the resistance value between the terminal members 3a and 3b provided at both ends of the insulating substrate 2. can do.
 そして、時間センサー素子1を構成する薄膜パターン4は、封止部材5もしくはこれに代わる保護膜5Aにより封止された構成になされているので、薄膜パターン4を機械的に保護することができ、かつ時間経過による薄膜パターン4の抵抗値が上昇する進行度合いを制御することができる。 And since the thin film pattern 4 which comprises the time sensor element 1 is made into the structure sealed with the sealing member 5 or the protective film 5A instead of this, the thin film pattern 4 can be protected mechanically, In addition, it is possible to control the degree of progress in increasing the resistance value of the thin film pattern 4 over time.
 図5は、図1~図4に示す時間センサー素子1における抵抗値の経時変化の一例を示す特性線図である。なお、図5においては横軸に経過時間を、縦軸に端子部材3a,3b間の薄膜パターン4の抵抗値を示している。 FIG. 5 is a characteristic diagram showing an example of a change with time of the resistance value in the time sensor element 1 shown in FIGS. In FIG. 5, the horizontal axis indicates the elapsed time, and the vertical axis indicates the resistance value of the thin film pattern 4 between the terminal members 3a and 3b.
 時間センサー素子1における抵抗値は、図5に示すように時間の経過に伴って前記した導電性薄膜パターン4の抵抗値が上昇する。そこで、後述する時間センサー回路においては、所定の経過時間を設定寿命として定め、この時における時間センサー素子における抵抗値を基準値とし、前記抵抗値がこの基準値に到達した場合において、信号の出力形態に変化を与えるように構成される。 As shown in FIG. 5, the resistance value of the conductive thin film pattern 4 increases with time as shown in FIG. Therefore, in the time sensor circuit to be described later, a predetermined elapsed time is set as the set life, the resistance value in the time sensor element at this time is set as a reference value, and when the resistance value reaches this reference value, the signal output Configured to change form.
 図6~図13は、前記した図1~図4に示す時間センサー素子を適宜用いて、時間センサー回路を構成した例を示している。まず図6はその第1の実施の形態を示したものであり、この例においては図1~図3に示した時間センサー素子1を好適に利用することができる。 6 to 13 show examples in which a time sensor circuit is configured by appropriately using the time sensor elements shown in FIGS. 1 to 4 described above. First, FIG. 6 shows the first embodiment. In this example, the time sensor element 1 shown in FIGS. 1 to 3 can be suitably used.
 図6に示す実施の形態においては、電源E1の出力端子(この実施の形態においては、電源E1の陽極端子)に対して、時間センサー素子1が接続され、この時間センサー素子1に直列に負荷11が接続された構成にされている。 In the embodiment shown in FIG. 6, the time sensor element 1 is connected to the output terminal of the power source E1 (in this embodiment, the anode terminal of the power source E1), and a load is connected in series to the time sensor element 1. 11 is connected.
 この構成によると、時間センサー素子1の経時変化に伴って、負荷11に供給される電圧値が低下するように作用する。すなわち、時間センサー素子1の抵抗値に応じた信号が負荷11に出力されることになる。換言すれば負荷11に出力される電圧値によって図5に示す設定寿命を検知することができ、またこの出力電圧を利用して、電気機器に供給される電源電力の出力が遮断されるように構成することもできる。 According to this configuration, the voltage value supplied to the load 11 acts so as to decrease as the time sensor element 1 changes with time. That is, a signal corresponding to the resistance value of the time sensor element 1 is output to the load 11. In other words, the set life shown in FIG. 5 can be detected based on the voltage value output to the load 11, and the output of the power supply supplied to the electrical equipment is cut off using this output voltage. It can also be configured.
 図7は時間センサー回路の第2の実施の形態を示したものであり、この例においては図1~図3に示した時間センサー素子1を好適に利用することができる。図7に示す実施の形態においては、時間センサー素子1における前記抵抗値が所定の値(図5に示す基準値)に達した場合に、電源回路の出力端子からの電源電力の出力が遮断されるように作用する。 FIG. 7 shows a second embodiment of the time sensor circuit. In this example, the time sensor element 1 shown in FIGS. 1 to 3 can be used preferably. In the embodiment shown in FIG. 7, when the resistance value in the time sensor element 1 reaches a predetermined value (reference value shown in FIG. 5), the output of the power supply from the output terminal of the power supply circuit is cut off. Acts like
 すなわち、電源E1の出力端子(電源E1の陽極端子)に対して、時間センサー素子1および分圧抵抗R1が直列に接続されており、時間センサー素子1と分圧抵抗R1との接続点に、第1スイッチング素子として機能するnチャンネル型FETQ1のゲートが接続されている。 That is, the time sensor element 1 and the voltage dividing resistor R1 are connected in series to the output terminal of the power supply E1 (the anode terminal of the power supply E1), and the connection point between the time sensor element 1 and the voltage dividing resistor R1 is The gate of an n-channel type FET Q1 that functions as a first switching element is connected.
 またFETQ1のドレインは抵抗R2を介して電源E1の出力端子に接続されると共に、第2スイッチング素子として機能するpチャンネル型FETQ2のゲートが接続されている。さらに前記FETQ2のソースは、電源E1の出力端子に接続されると共に、FETQ2のドレインには負荷11が接続されている。 The drain of the FET Q1 is connected to the output terminal of the power source E1 through the resistor R2, and the gate of the p-channel FET Q2 that functions as the second switching element is connected. Further, the source of the FET Q2 is connected to the output terminal of the power supply E1, and the load 11 is connected to the drain of the FET Q2.
 図7に示す構成によると、時間センサー素子1における前記抵抗値が所定の値に達した場合に、第1スイッチング素子として機能するFETQ1がオフ状態にスイッチング動作し、FETQ1のオフにより遮断回路として機能するFETQ2もオフ状態になされる。これにより負荷11に対する電源E1からの電力供給は遮断される。 According to the configuration shown in FIG. 7, when the resistance value in the time sensor element 1 reaches a predetermined value, the FET Q1 that functions as the first switching element switches to the off state, and functions as a cutoff circuit by turning off the FET Q1. The FET Q2 to be turned on is also turned off. As a result, power supply from the power source E1 to the load 11 is cut off.
 図8は時間センサー回路の第3の実施の形態を示したものであり、この例においては図1~図3に示した時間センサー素子1を好適に利用することができる。図8に示す実施の形態においては、動作電源Vddに対して時間センサー素子1およびLEDが直列に接続されている。 FIG. 8 shows a third embodiment of the time sensor circuit. In this example, the time sensor element 1 shown in FIGS. 1 to 3 can be suitably used. In the embodiment shown in FIG. 8, the time sensor element 1 and the LED are connected in series to the operating power supply Vdd.
 この構成によると、時間センサー素子1の経時変化に伴って、LEDに供給される電圧値が低下するように作用する。すなわち、時間センサー素子1の抵抗値に応じた電圧値がLEDに供給されるようになる。前記LEDはその両端電圧に応じて発光光量が変化するので、前記LEDからの発光光量に応じて設定寿命を検知することができる。 According to this configuration, the voltage value supplied to the LED decreases as the time sensor element 1 changes with time. That is, a voltage value corresponding to the resistance value of the time sensor element 1 is supplied to the LED. Since the amount of light emitted from the LED changes according to the voltage across the LED, the set life can be detected according to the amount of light emitted from the LED.
 図9は時間センサー回路の第4の実施の形態を示したものであり、この例においては図1~図3に示した時間センサー素子1を好適に利用することができる。図9に示す実施の形態においては、時間センサー素子1における前記抵抗値が所定の値(図5に示す基準値)に達した場合に、電源電力の出力が遮断されるように構成することができる。 FIG. 9 shows a fourth embodiment of the time sensor circuit, and in this example, the time sensor element 1 shown in FIGS. 1 to 3 can be suitably used. In the embodiment shown in FIG. 9, when the resistance value in the time sensor element 1 reaches a predetermined value (reference value shown in FIG. 5), the output of the power supply is cut off. it can.
 すなわち、図9に示す時間センサー回路は、動作電源Vddに対して時間センサー素子1および分圧抵抗R3が直列に接続されており、時間センサー素子1と分圧抵抗R3の接続点の電位が、リファレンス電圧E2を持つコンパレータCMPに供給されるように構成されている。 That is, in the time sensor circuit shown in FIG. 9, the time sensor element 1 and the voltage dividing resistor R3 are connected in series to the operating power supply Vdd, and the potential at the connection point between the time sensor element 1 and the voltage dividing resistor R3 is It is configured to be supplied to a comparator CMP having a reference voltage E2.
 図9に示す構成によると、時間センサー素子1における抵抗値が所定の値に達した場合に、コンパレータCMPの出力端子Outの電位が“0”となる。この出力電位を利用して、電気機器に供給される電源電力の出力が遮断されるように構成することができる。 According to the configuration shown in FIG. 9, when the resistance value in the time sensor element 1 reaches a predetermined value, the potential of the output terminal Out of the comparator CMP becomes “0”. By using this output potential, it is possible to configure so that the output of the power supply supplied to the electric device is cut off.
 図10は時間センサー回路の第5の実施の形態を示したものであり、この例においては図1~図3に示した時間センサー素子1を好適に利用することができる。この図10に示す実施の形態においては、電圧レギュレータ回路12を用いて設定寿命を検知するように構成されている。 FIG. 10 shows a fifth embodiment of the time sensor circuit. In this example, the time sensor element 1 shown in FIGS. 1 to 3 can be used preferably. The embodiment shown in FIG. 10 is configured to detect the set life using the voltage regulator circuit 12.
 図10に示す構成においては、電圧レギュレータ回路12の入力端子に動作電源Vddが供給され、電圧レギュレータ回路12の出力端子Outには時間センサー素子1および分圧抵抗R4が直列接続されている。そして時間センサー素子1と分圧抵抗R4との接続点、すなわち時間センサー素子1と分圧抵抗R4の分圧出力が電圧レギュレータ回路12の制御入力端子に印加されるように構成されている。 In the configuration shown in FIG. 10, the operating power supply Vdd is supplied to the input terminal of the voltage regulator circuit 12, and the time sensor element 1 and the voltage dividing resistor R4 are connected in series to the output terminal Out of the voltage regulator circuit 12. A connection point between the time sensor element 1 and the voltage dividing resistor R4, that is, a divided output of the time sensor element 1 and the voltage dividing resistor R4 is applied to the control input terminal of the voltage regulator circuit 12.
 図10に示す時間センサー回路によると、経時変化により時間センサー素子1における抵抗値が増大するにしたがって、電圧レギュレータ回路12の制御入力端子に印加される電圧値が低下し、これにより電圧レギュレータ回路12の出力端子Outにおける出力電圧は、相乗的に低下するように作用する。 According to the time sensor circuit shown in FIG. 10, the voltage value applied to the control input terminal of the voltage regulator circuit 12 decreases as the resistance value in the time sensor element 1 increases due to a change with time. The output voltage at the output terminal Out acts to decrease synergistically.
 この電圧レギュレータ回路12の出力端子Outにおける出力電圧に応じて設定寿命を検知することができ、またこの出力電圧を利用して、電気機器に供給される電源電力の出力が遮断されるように構成することもできる。 The set life can be detected in accordance with the output voltage at the output terminal Out of the voltage regulator circuit 12, and the output of the power supply supplied to the electrical equipment is cut off using this output voltage. You can also
 図11は時間センサー回路の第6の実施の形態を示したものであり、この例においては図1~図3に示した時間センサー素子1を好適に利用することができる。この図11に示す実施の形態においては、動作電源Vddに対して時間センサー素子1およびコンデンサC1が直列接続されている。そしてコンデンサC1の端子電圧を検知する充電時間判定回路13が具備されている。 FIG. 11 shows a sixth embodiment of the time sensor circuit, and in this example, the time sensor element 1 shown in FIGS. 1 to 3 can be suitably used. In the embodiment shown in FIG. 11, time sensor element 1 and capacitor C1 are connected in series to operating power supply Vdd. A charging time determination circuit 13 for detecting the terminal voltage of the capacitor C1 is provided.
 図11に示す構成においては、動作電源Vddが間欠的に供給されるようになされ、前記充電時間判定回路13は、動作電源Vddが供給された時におけるコンデンサC1の端子電圧の立上がり特性を監視するように作用する。これには例えば電圧コンパレータを用いることができる。 In the configuration shown in FIG. 11, the operation power supply Vdd is intermittently supplied, and the charging time determination circuit 13 monitors the rising characteristics of the terminal voltage of the capacitor C1 when the operation power supply Vdd is supplied. Acts as follows. For example, a voltage comparator can be used.
 図11に示す構成によると、経時変化により時間センサー素子1の抵抗値が増大することにより、コンデンサC1の端子電圧の立上がり特性が低下することになる。この状態を充電時間判定回路13が監視し、当該充電時間判定回路13はコンデンサC1の端子電圧の立上がり特性に応じた出力を出力端Outにもたらすように作用する。 According to the configuration shown in FIG. 11, the rising characteristic of the terminal voltage of the capacitor C1 is lowered due to the increase in the resistance value of the time sensor element 1 due to the change with time. This state is monitored by the charging time determination circuit 13, and the charging time determination circuit 13 acts so as to provide an output corresponding to the rising characteristic of the terminal voltage of the capacitor C1 to the output terminal Out.
 したがって、前記充電時間判定回路13の出力端Outにおける出力電圧に応じて設定寿命を検知することができ、またこの出力電圧を利用して、電気機器に供給される電源電力の出力が遮断されるように構成することもできる。 Accordingly, the set life can be detected according to the output voltage at the output terminal Out of the charging time determination circuit 13, and the output of the power supply supplied to the electric device is cut off using this output voltage. It can also be configured as follows.
 図12は時間センサー回路の第7の実施の形態を示したものであり、この例においては図4に示した時間センサー素子1、すなわち有機EL素子を好適に利用することができる。この図12に示す実施の形態においては、電源E1に時間センサー素子1としての有機EL素子が接続され、有機EL素子により発光される光量を検出する光センサ14が具備されている。さらに前記光センサ14は、前記電源E1と負荷11との間に介在されたスイッチ15を開閉動作させるように構成されている。 FIG. 12 shows a seventh embodiment of the time sensor circuit. In this example, the time sensor element 1 shown in FIG. 4, that is, the organic EL element can be suitably used. In the embodiment shown in FIG. 12, an organic EL element as the time sensor element 1 is connected to the power source E1, and an optical sensor 14 for detecting the amount of light emitted by the organic EL element is provided. Further, the optical sensor 14 is configured to open and close a switch 15 interposed between the power source E1 and the load 11.
 前記時間センサー素子1を構成する有機EL素子は、前記したとおり時間の経過と共にその抵抗値が増大する性質を有しており、したがって有機EL素子からの発光量も同様に低下する。この状態を前記光センサ14が監視し、当該光センサ14は受光量が所定の値以下になった場合、すなわち設定寿命に達した時にスイッチ15を開放するように動作する。 The organic EL element constituting the time sensor element 1 has a property that its resistance value increases with the passage of time as described above. Therefore, the amount of light emitted from the organic EL element is similarly reduced. The optical sensor 14 monitors this state, and the optical sensor 14 operates to open the switch 15 when the amount of received light becomes a predetermined value or less, that is, when the set life is reached.
 これにより、負荷11に供給される電源電力の出力が遮断されるようになされ、負荷11に供給される電源電力の遮断に伴い、電気機器に供給される電源電力の出力が遮断されるように構成することもできる。 Thereby, the output of the power supply supplied to the load 11 is cut off, and the output of the power supply supplied to the electrical equipment is cut off with the cut off of the power supply supplied to the load 11. It can also be configured.
 図13は時間センサー回路の第8の実施の形態を示したものであり、この例においては図1~図3に示した時間センサー素子1を好適に利用することができる。この図13に示す実施の形態は、DC-DCコンバータを用いた機器に好適に採用することができる。 FIG. 13 shows an eighth embodiment of the time sensor circuit, and in this example, the time sensor element 1 shown in FIGS. 1 to 3 can be suitably used. The embodiment shown in FIG. 13 can be suitably used for equipment using a DC-DC converter.
 すなわち、一次側を構成する図示せぬバッテリーからの出力VBattがコンバータ回路16に供給されると共に、時間センサー素子1と分圧抵抗R5の直列回路にも供給される。前記コンバータ回路16には電力供給用のスイッチング素子Q3が具備され、このスイッチング素子Q3を介して昇圧用のコイルL1にバッテリーからの駆動電流が供給されるように構成されている。 That is, an output VBatt from a battery (not shown) constituting the primary side is supplied to the converter circuit 16 and also supplied to the series circuit of the time sensor element 1 and the voltage dividing resistor R5. The converter circuit 16 includes a switching element Q3 for supplying power, and is configured such that a driving current from the battery is supplied to the boosting coil L1 via the switching element Q3.
 前記コンバータ回路16におけるチョッパー用スイッチング素子Q4、ダイオードD1、コントローラ回路17、外付けの平滑コンデンサC2、フィードバック用の分圧抵抗R6,R7は、周知のチョッパー型昇圧コンバータ回路を構成している。 In the converter circuit 16, the chopper switching element Q4, the diode D1, the controller circuit 17, the external smoothing capacitor C2, and the feedback voltage dividing resistors R6 and R7 constitute a known chopper type boost converter circuit.
 図13に示す構成においては、時間センサー素子1と分圧抵抗R5による分圧電圧がコントローラ回路17に供給されるように構成されており、経時変化により時間センサー素子1の抵抗値が増大した場合には、その分圧電圧が低下する。 In the configuration shown in FIG. 13, the voltage divided by the time sensor element 1 and the voltage dividing resistor R <b> 5 is supplied to the controller circuit 17, and the resistance value of the time sensor element 1 increases due to changes over time. Therefore, the divided voltage decreases.
 前記コントローラ回路17は、前記分圧電圧が所定値よりも低下した場合、スイッチング素子Q3をオフ状態となるように制御して、コンバータ回路16への電力供給を停止させるように動作する。これにより、DC-DCコンバータの二次側Voutへの電力供給は停止される。 The controller circuit 17 operates to stop the power supply to the converter circuit 16 by controlling the switching element Q3 to be turned off when the divided voltage is lower than a predetermined value. Thereby, the power supply to the secondary side Vout of the DC-DC converter is stopped.
 以上説明した各時間センサー回路は、これが搭載される機器のそれぞれに応じて選択的に採用することができる。そして、前記時間センサー回路に用いられる時間センサー素子は、絶縁基板上に導電性薄膜パターンとして形成され、時間の経過に伴って抵抗値が上昇する性質のものを用いるので、長期にわたる経過時間を比較的確実に把握することができる。したがって、例えば家庭用の電化製品等にもコストの問題を招来させることなく利用することが可能となる。 Each time sensor circuit described above can be selectively employed according to each of the devices on which it is mounted. The time sensor element used in the time sensor circuit is formed as a conductive thin film pattern on an insulating substrate, and has a property that the resistance value increases with the passage of time. It can be accurately grasped. Therefore, for example, it can be used for household appliances without causing a cost problem.

Claims (8)

  1.  絶縁基板上に導電性薄膜パターンが形成され、時間の経過に伴って前記導電性薄膜パターンの抵抗値が上昇する時間センサー素子を備え、
     前記時間センサー素子の抵抗値に応じた信号を出力することを特徴とする時間センサー回路。
    A conductive thin film pattern is formed on an insulating substrate, and includes a time sensor element in which the resistance value of the conductive thin film pattern increases with the passage of time,
    A time sensor circuit that outputs a signal corresponding to a resistance value of the time sensor element.
  2.  出力端子から電源電力を出力する電源回路を備え、
     前記時間センサー素子における前記抵抗値が所定の値に達した場合に、前記電源回路の出力端子からの電源電力の出力が遮断されるように構成されていることを特徴とする請求項1に記載された時間センサー回路。
    Equipped with a power supply circuit that outputs power from the output terminal,
    The power supply power output from the output terminal of the power supply circuit is cut off when the resistance value of the time sensor element reaches a predetermined value. Time sensor circuit.
  3.  前記時間センサー素子における前記抵抗値が所定の値に達した場合に、前記電源電力の出力を遮断するように構成された遮断回路を備えていることを特徴とする請求項2に記載された時間センサー回路。 3. The time according to claim 2, further comprising a cutoff circuit configured to cut off the output of the power supply power when the resistance value of the time sensor element reaches a predetermined value. Sensor circuit.
  4.  前記電源回路における出力端子に前記時間センサー素子が接続され、前記時間センサー素子における前記抵抗値が所定の値に達した場合に、スイッチング動作する第1スイッチング素子と、前記第1スイッチング素子のスイッチング動作に基づいて、前記遮断回路として機能する第2スイッチング素子がオフ状態になされることを特徴とする請求項3に記載された時間センサー回路。 When the time sensor element is connected to an output terminal of the power supply circuit, and the resistance value of the time sensor element reaches a predetermined value, a first switching element that performs a switching operation, and a switching operation of the first switching element 4. The time sensor circuit according to claim 3, wherein the second switching element functioning as the shut-off circuit is turned off based on the time sensor circuit. 5.
  5.  前記時間センサー素子には、前記導電性薄膜を覆い前記絶縁基板との間で前記導電性薄膜パターンを封止する封止部材がさらに備えられていることを特徴とする請求項1ないし請求項4のいずれか1項に記載された時間センサー回路。 5. The time sensor element further includes a sealing member that covers the conductive thin film and seals the conductive thin film pattern with the insulating substrate. The time sensor circuit described in any one of the above.
  6.  前記封止部材は、前記導電性薄膜パターンに密着した状態で形成され、導電性薄膜パターンの全体を覆う保護膜であることを特徴とする請求項5に記載された時間センサー回路。 6. The time sensor circuit according to claim 5, wherein the sealing member is a protective film that is formed in close contact with the conductive thin film pattern and covers the entire conductive thin film pattern.
  7.  前記導電性薄膜は金属薄膜であることを特徴とする請求項1ないし請求項4のいずれか1項に記載された時間センサー回路。 The time sensor circuit according to any one of claims 1 to 4, wherein the conductive thin film is a metal thin film.
  8.  前記導電性薄膜は有機半導体薄膜であることを特徴とする請求項1ないし請求項4のいずれか1項に記載された時間センサー回路。 5. The time sensor circuit according to claim 1, wherein the conductive thin film is an organic semiconductor thin film.
PCT/JP2008/068055 2008-10-03 2008-10-03 Time sensor circuit WO2010038309A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068055 WO2010038309A1 (en) 2008-10-03 2008-10-03 Time sensor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068055 WO2010038309A1 (en) 2008-10-03 2008-10-03 Time sensor circuit

Publications (1)

Publication Number Publication Date
WO2010038309A1 true WO2010038309A1 (en) 2010-04-08

Family

ID=42073101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068055 WO2010038309A1 (en) 2008-10-03 2008-10-03 Time sensor circuit

Country Status (1)

Country Link
WO (1) WO2010038309A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544233Y2 (en) * 1971-10-01 1980-10-17
JP2007271401A (en) * 2006-03-31 2007-10-18 Renesas Technology Corp Semiconductor device
JP2008520962A (en) * 2004-11-08 2008-06-19 フレッシュポイント・ホールディングス・ソシエテ・アノニム Time temperature indicator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544233Y2 (en) * 1971-10-01 1980-10-17
JP2008520962A (en) * 2004-11-08 2008-06-19 フレッシュポイント・ホールディングス・ソシエテ・アノニム Time temperature indicator
JP2007271401A (en) * 2006-03-31 2007-10-18 Renesas Technology Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US10578665B2 (en) Method for identifying a short circuit in a first light emitting diode element, and optoelectronic subassembly
US20120268079A1 (en) Discharge control circuit
CN101036260A (en) Cordless power tool with a protected weak link element
KR101916970B1 (en) Battery management system and battery pack having the same
WO2011122706A3 (en) Discharge control apparatus for power converting system with capacitor
TWI493207B (en) Battery status monitoring circuit and battery device
US20090316323A1 (en) Circuit arrangement with a relay incorporating one field coil as well as switch contacts
ES2623544T3 (en) Electronic magnetic contactor
US20100244704A1 (en) Light control apparatus and lighting appliance using the same
JPWO2013114710A1 (en) Switching power supply
WO2011073189A3 (en) Large area light emitting device comprising organic light emitting diodes
JP5217214B2 (en) Power supply device and method for detecting expansion of electrochemical element
WO2009004979A1 (en) Power conversion device
RU2423770C2 (en) Electric power tool with device of shut-off delay
WO2010038309A1 (en) Time sensor circuit
JP5081877B2 (en) Light emitting module with selectable connection method
JP2015041487A (en) Battery pack module
TW201100761A (en) Encoder device
CN111596140B (en) Super capacitor test method for specific LED emergency lamp
KR102321508B1 (en) Ultra-Capacitor Module
CN111669877B (en) LED emergency lamp
JP6128304B2 (en) Emergency lighting device
CN102570827A (en) Power system
KR101349237B1 (en) Apparatus for preventing from corrosion
JP6807020B2 (en) In-vehicle step-down DCDC converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08811397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08811397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP