WO2010035927A1 - Thermal energy recovery system - Google Patents

Thermal energy recovery system Download PDF

Info

Publication number
WO2010035927A1
WO2010035927A1 PCT/KR2009/000292 KR2009000292W WO2010035927A1 WO 2010035927 A1 WO2010035927 A1 WO 2010035927A1 KR 2009000292 W KR2009000292 W KR 2009000292W WO 2010035927 A1 WO2010035927 A1 WO 2010035927A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
engine
accelerator
heat exchanger
input fluid
Prior art date
Application number
PCT/KR2009/000292
Other languages
French (fr)
Korean (ko)
Inventor
김성완
Original Assignee
주식회사 자이벡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 자이벡 filed Critical 주식회사 자이벡
Publication of WO2010035927A1 publication Critical patent/WO2010035927A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/08Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air the gases being exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/10Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot liquids, e.g. lubricants or cooling water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a heat energy recovery system, and more particularly to an energy recovery system configured to recover and utilize the heat energy generated by the operation of the engine.
  • a compressor is a mechanical device that compresses gas and increases pressure, also called a compressor.
  • Compressors are basically the same as pumps in that they compress mechanical fluids and apply mechanical energy to fluids, but pumps pressurize liquids and compressors pressurize gases to increase pressure. The gas passed through such a compressor increases in pressure and temperature.
  • An internal combustion engine is an engine that generates a mechanical power by directly burning a fuel having chemical energy with oxygen in air and using thermal energy generated during combustion. At this time, the gas emitted after combustion contains a lot of heat, and this heat is generally not utilized and radiated to the outside.
  • a fuel cell is an apparatus that directly generates power without a mechanical driving unit by causing an electrochemical reaction between fuel (hydrogen, LNG, LPG, methanol, etc.) and oxygen in the air.
  • fuel hydrogen, LNG, LPG, methanol, etc.
  • oxygen in the air.
  • existing power generation technology fuel combustion steam generation turbine drive generator drive
  • a fuel cell generates a lot of heat in the process of producing power in the stack by injecting fuel and air, and the introduced air becomes a high temperature state and is discharged to the outside with steam.
  • the molten carbonate fuel cell (MCFC) used as a fuel cell for power generation has a high temperature of 650 degrees Celsius and a solid oxide fuel cell (SOFC) of 1,000 degrees Celsius. to be.
  • the engines that change the state of the supplied fluid to generate power (energy) or receive energy from the outside to change the state of the fluid are discharged from the fluid contains heat, and this thermal energy is not utilized. As it is not wasted and wasted, it is a cause of lowering the energy efficiency of the engine.
  • the present invention has been made on the basis of the technical background as described above, to provide a heat energy recovery system that can improve the energy efficiency of the engine by recovering and utilizing the heat energy discharged through any engine.
  • Heat energy recovery system i) having an inlet for the input fluid and an outlet for discharging the output fluid, and transfers energy to the input fluid to change the state of the input fluid or An engine for converting the energy of the input fluid into another type of energy; ii) an inlet pipe connected to the inlet of the engine and circulating the input fluid to the engine; and iii) connected to the inlet pipe.
  • An input fluid accelerator for increasing a conveying speed of the input fluid flowing into the engine and iv) an outlet pipe connected to an outlet of the engine and circulating an output fluid whose state is changed in the engine to the outside of the engine, v) A heat exchanger mounted to the outlet pipe and collecting heat energy from the output fluid while circulating a working fluid; vi) the heat exchanger and the Power Connect fluid accelerator, and includes a return line for the thermal energy is obtained from the output state is changed to the fluid supply the operation fluid to the fluid input accelerator.
  • the input fluid accelerator may be formed in a pipe shape, and may include an accelerator having a convex portion curved toward a center and a suction nozzle communicating with the recovery tube and the convex portion.
  • the heat exchanger has an inlet and an outlet, and the working fluid is introduced through the inlet of the heat exchanger, receives heat energy from the output fluid, and is discharged through the outlet in a vaporized (superheated gas) state.
  • the working fluid in the vaporized state can be supplied to the input fluid accelerator.
  • the output fluid accelerator may be formed in a tubular shape, and may include an accelerator having a convex portion curved toward the center and a suction nozzle communicating the recovery tube with the convex portion.
  • the outlet of the heat exchanger may be connected to the suction nozzle of the output fluid accelerator so that the working fluid vaporized may be supplied to the output fluid accelerator.
  • the engine includes a plurality of different inlets, and the inlet pipes are connected to the different inlets, respectively, to supply different types of input fluids.
  • Water may be used as the working fluid.
  • the engine may be a compressor that compresses the input fluid by receiving electrical or mechanical energy from the outside.
  • the engine may be an internal combustion engine generating fuel and air into the input fluid to explode inside the engine and generate power to the outside.
  • the engine may be a boiler in which fuel and air are introduced into the input fluid to generate heat energy while burning inside the engine to vaporize water circulating through the engine and discharge it in a vapor state.
  • the engine may be a gas turbine that generates mechanical power using thermal energy.
  • the engine may be a fuel cell in which air and fuel are introduced into the input fluid to generate electricity by causing an electrochemical action inside the engine.
  • a heat exchanger is provided on the outlet side of the engine, and the working fluid is circulated through the heat exchanger to absorb the heat energy of the exhaust gas so that the temperature and pressure on the engine outlet side can be lowered, thereby reducing the engine power required and improving efficiency. You can.
  • the working fluid absorbed thermal energy through the heat exchanger has the effect of reducing the power required of the engine by driving the fluid accelerator in the vaporized state to provide the power required for the inflow of fluid into the engine.
  • FIG. 1 is a schematic diagram showing a thermal energy recovery system according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view illustrating a fluid accelerator installed in a heat energy recovery system according to an exemplary embodiment of the present invention.
  • FIG. 3 is a partially cutaway perspective view illustrating the fluid accelerator shown in FIG. 2 in combination.
  • FIG. 4 is an axial cross-sectional view of the fluid accelerator shown in FIG. 2 in combination.
  • FIG. 5 is a plan view illustrating a spacer applied to the fluid accelerator illustrated in FIG. 2.
  • FIG. 6 is a plan view illustrating a modification of the spacer member applied to the fluid accelerator illustrated in FIG. 2.
  • FIG. 7 is a schematic diagram showing a conventional compressor system.
  • FIG. 8 is a schematic diagram showing a heat energy recovery system according to a first embodiment of the present invention, wherein the compressor system includes a heat exchanger, a recovery pipe, and a fluid accelerator.
  • FIG. 9 is a schematic diagram showing a heat energy recovery system according to a second embodiment of the present invention, in which an internal combustion engine is provided with a heat exchanger, a recovery tube, and a fluid accelerator.
  • FIG. 10 is a schematic diagram showing a conventional boiler system.
  • FIG. 11 is a schematic diagram showing a heat energy recovery system according to a third embodiment of the present invention, wherein a boiler system includes a heat exchanger, a recovery pipe, and a fluid accelerator.
  • FIG. 12 is a schematic diagram showing a conventional direct combustion gas turbine system.
  • FIG. 13 is a schematic diagram showing a conventional indirect combustion gas turbine system.
  • FIG. 14 is a schematic diagram showing a heat energy recovery system according to a fourth embodiment of the present invention, in which a gas turbine system includes a heat exchanger, a recovery pipe, and a fluid accelerator.
  • 15 is a schematic diagram for explaining the operation of the fuel cell.
  • 16 is a schematic diagram showing a conventional fuel cell system.
  • FIG. 17 is a schematic diagram showing the application of a thermal energy recovery system according to a fifth embodiment of the present invention to a fuel cell.
  • FIG. 1 is a schematic diagram showing a thermal energy recovery system according to an embodiment of the present invention.
  • the engine that changes the state by introducing a fluid and then discharges the engine transfers energy to the input fluid according to the type of fluid flowing in and the function of the engine, thereby changing the state of the input fluid or the energy of the input fluid. To convert to other forms of energy.
  • the engine 10 has an inlet for inlet and an outlet for discharging the output fluid, and the inlet is connected with an inlet pipe to distribute the input fluid and the outlet is connected with an outlet pipe for output.
  • the fluid can be circulated.
  • the inlet and the inlet pipe may be formed in plural according to the characteristics of the engine 10, the first input fluid can be circulated through the first inlet tube-the first inlet port and the second inlet tube-the second inlet port
  • the second input fluid can be distributed.
  • the first input fluid and the second input fluid may be different types of input fluid.
  • the input fluid may be air
  • the output fluid may be high temperature and high pressure air.
  • electrical or mechanical energy is supplied from the outside to compress air as an input fluid.
  • the input fluid may be air and fuel
  • the output fluid may be hot exhaust gas.
  • the air and the fuel are mixed and burned in the internal combustion engine to transmit mechanical power to the outside.
  • the input fluid may be air (O 2 ) and fuel
  • the output fluid is high temperature exhaust gas.
  • the boiler sends heat to the outside as air (O 2 ) and fuel are mixed and combusted.
  • the input fluid is divided into air O 2 and fuel H 2 , and the output fluid is a high temperature exhaust gas.
  • the fuel cell generates electrical energy by chemical reaction between air (O 2 ) and fuel (H 2 ).
  • the input fluid may be air and fuel in the direct combustion method, or air in the indirect combustion method.
  • the output fluid becomes hot exhaust gas or air.
  • the gas turbine outputs mechanical power.
  • Table 1 summarizes the state of the input fluid and the output fluid according to the engine applied above.
  • the working fluid may be mainly used water, the operation of the working fluid will be described in detail below.
  • the output fluid discharged through the engine 10 includes heat not only when energy is supplied from the engine 10 (eg, a compressor) but also when energy is generated (eg, an internal combustion engine, a fuel cell, etc.). This heat is released to the outside becomes a part of the energy loss.
  • the heat exchanger 15 is attached to the outlet pipe adjacent to the outlet of the engine 10.
  • the heat exchanger 15 recovers thermal energy from the high temperature output fluid discharged through the outlet pipe while circulating the working fluid therein.
  • "high temperature” means the temperature of the output fluid increased compared to the temperature of the input fluid, and as shown in Table 1, the temperature of the output fluid is set variously for each engine.
  • the heat exchanger 15 may have an inlet and an outlet, and the working fluid is introduced through the inlet of the heat exchanger 15 to receive heat energy from the output fluid and convert it into a gas (superheated gas) state (vaporization). Can be discharged through the outlet.
  • the working fluid is a fluid that can easily vaporize by absorbing heat energy, and a material that does not react specifically with the input fluid even when supplied inside the engine may be suitably used, and water may be typically used.
  • An input fluid accelerator 20 is connected to the inlet pipe adjacent to the inlet of the engine 10.
  • the input fluid accelerator 20 may increase the feed rate of the input fluid flowing into the engine 10.
  • the fluid accelerator will be described in detail below with reference to the drawings.
  • the input fluid accelerator 20 is connected through the heat exchanger 15 and the recovery pipe 12 outside the engine 10.
  • the recovery pipe 12 may supply the operating fluid having a changed state to the input fluid accelerator 20 by obtaining thermal energy radiated from the high temperature output fluid circulated to the outlet pipe.
  • the speed of the input fluid passing through the input fluid accelerator 20 may be increased due to the working fluid containing the heat energy transferred through the recovery pipe 12, and the energy efficiency of the engine 10 may be improved.
  • the output fluid accelerator 23 is connected to the outlet pipe in the rear of the heat exchanger 15 can increase the transfer speed of the output fluid.
  • the outlet of the heat exchanger 15 may be connected to the side of the output fluid accelerator 23 so that the vaporized working fluid may be supplied to the output fluid accelerator 23.
  • This output fluid accelerator 23 may be selectively applied in this embodiment.
  • FIG. 2 is an exploded perspective view illustrating a fluid accelerator installed in a heat energy recovery system according to an exemplary embodiment of the present invention. This structure of the fluid accelerator is applied to the output fluid accelerator as well as the input fluid accelerator in the above embodiment.
  • the fluid accelerator 20 has an inflow guide 212 and an inflow guide 212 whose inner cross-sectional area decreases toward the traveling direction of the input fluid (or output fluid) (y-axis direction in FIG. 2). It is connected to the outer body 210 including the receiving portion 214 is formed with a suction nozzle 216 for introducing the working fluid, and the inner body is inserted into the receiving portion 214 and the step portion 221 is formed along the outer peripheral surface 220, and a plurality of protrusions 234 installed between the outer body 210 and the inner body 220.
  • FIG. 3 is a partial cutaway perspective view of the fluid accelerator shown in FIG. 2 in combination, and FIG. 4 is an axial cross-sectional view.
  • the outer body 210 is made of a tubular (pipe) structure of the outer cylinder, the receiving is disposed behind the inlet guide 212 and the inlet guide 212 disposed in the front It comprises a portion 214.
  • the inflow guide 212 is formed so that the inner diameter gradually decreases from the front end toward the direction of travel of the input fluid (or output fluid) in the y-axis direction in FIG. 3.
  • the inner circumferential surface 212a is convex toward the axis center. It may be made of curved surfaces. Accordingly, the speed of the fluid passing through the inlet guide 212 is faster and the pressure is lowered.
  • the inner circumferential surface 212a of the inflow guide portion 212 is connected to the support surface 212b, which supports the inner circumferential surface 212a and the receiving portion 214, and is connected to the central axis of the receiving portion 214. It is formed perpendicular to the.
  • Receiving portion 214 is made of a cylindrical pipe (pipe) structure having a space in which the inner body 220 is fitted, the suction nozzle 216 is located in the front portion of the receiving portion 214 is opened to the outer peripheral surface Can introduce working fluid At this time, the working fluid introduced through the suction nozzle 216 has a pressure higher than atmospheric pressure.
  • the suction nozzle 216 is connected to the recovery pipe 12 may serve as a passage for supplying the working fluid into the receiving portion (214).
  • the inner body 220 is formed of a cylindrical tube (pipe) structure that is fitted to the receiving portion 214, as shown in Figure 2, the step portion 221 is formed in the front portion.
  • the stepped portion 221 has an outer diameter smaller than the inner diameter of the receiving portion 214 and is formed along the outer circumference of the inner body 220. Accordingly, as shown in FIG. 2, a space is formed between the stepped portion 221 and the accommodation portion 214, which becomes a distribution passage 225.
  • the distribution passage 225 is connected to the suction nozzle 216 to allow the working fluid introduced through the suction nozzle 216 to flow along the outer circumference of the inner body 220.
  • protrusions 234 are disposed between the outer body 210 and the inner body 220 to axially space the outer body 210 and the inner body 220, and the protrusions 234. ) Is formed to protrude from the inner circumferential surface of the ring-shaped spacer 230.
  • the spacer 230 is composed of the support 232 and the projections 234, the projections 234 are projected toward the center (C) of the support 232 and predetermined along the inner peripheral surface of the support 232 Spaced apart at intervals.
  • Support 232 is spaced apart from the inner body 220 is installed to abut the inner surface of the receiving portion 214, the front end of the inner body 220 is installed to abut the protrusions 234.
  • an induction passage 227 through which working fluid flows between neighboring protrusions 234 is provided. Is formed.
  • the guide passage 227 is formed along a distal end of the inner body 220, a plurality of spaced apart, the working fluid is introduced into the discharge guide 223 through the guide passage 227.
  • the working fluid may be uniformly divided and introduced into the fluid accelerator 20. .
  • first and second surfaces the surfaces of the outer body 210 and the inner body 220 facing each other with the guide passage 227 interposed therebetween in the receiving portion 214 of the outer body 210 may be referred to as first and second surfaces, respectively.
  • the first surface is formed perpendicular to the central axis of the receiving portion 214 and the second surface forms a curved surface 226 at least partially curved towards the discharge guide 223.
  • the first surface and the second surface may be directed toward the discharge guide unit 223 while the second surface is bent toward the central axis while maintaining a constant gap and the second surface is bent first. (See also enlargement of the hospital in FIG. 4).
  • a tubular discharge guide part 223 is formed at the rear of the curved surface 226, and the discharge guide part 223 is a moving direction of the input fluid (or output fluid) from the curved surface 226 (y-axis in FIG. 4). Direction), the inner diameter gradually increases.
  • the minimum inner diameter of the curved surface 226 may be formed to be the same as the minimum inner diameter of the discharge guide 223, so that the input fluid (or output fluid) introduced along the inlet guide 212 is discharge guide ( 223 is discharged stably.
  • the working fluid flowing into the inner body 220 flows toward the discharge guide part 223 along the curved surface 226 by the Coanda effect.
  • the Coanda effect means that the fluid proceeds in the direction where the energy is least consumed. If the curve appears in front of the flow direction, the fluid flows along the curved direction of the curve. This allows us to predict in advance the direction in which the fluid will travel.
  • the working fluid can be easily guided toward the discharge guide portion 223.
  • the fluid accelerator 20 according to the present embodiment is formed of a material having excellent corrosion resistance and excellent durability such as stainless steel, aluminum, or engineering plastic that can withstand high temperatures.
  • the outer body 210 and the inner body 220 may be coupled by interference fit, or may be fixed by welding or the like in the state in which the inner body 220 is fitted to the outer body 210, the accommodation of the outer body 210 It is also possible to form a female screw on the inner circumferential surface of the portion 214 and to form a screw thread on the outer circumferential surface of the inner body 220 to be screwed together.
  • the working fluid may be introduced into the fluid accelerator 20 through the suction nozzle 216, the distribution passage 225, and the guide passage 227.
  • a vacuum space V is formed at the rear of the induction passage 227. Due to the vacuum space (V), the inflow of the input fluid (or output fluid) is amplified and the conveying speed is increased, and the input fluid (or output fluid) of about 25 times of the working fluid introduced into the suction nozzle 216 is accelerated. 20 may flow into the interior.
  • FIG. 5 is a plan view illustrating a spacer applied to the fluid accelerator shown in FIG. 2
  • FIG. 6 is a plan view illustrating a modification of the spacer.
  • the spacer 230 of the present exemplary embodiment includes a ring-shaped support 232 and a plurality of protrusions 234 protruding from an inner circumferential surface thereof, and the protrusions 234 are supported by the support 232. It is arranged to face the center (C) of.
  • These protrusions 234 form the induction passage 227 of the fluid accelerator 20 according to the present embodiment, and the working fluid introduced through the suction nozzle 216 at a high speed toward the central axis of the receiving portion 214. Will contribute to spraying.
  • the spacer 330 includes a ring-shaped support 332 and a plurality of protrusions 334 protruding from an inner circumferential surface of the support 332.
  • the protrusions 334 are arranged to face away from the center of the support 332. That is, the protrusions 334 are formed to be inclined to form a set angle (a) with the inner circumference of the support 332, the angle (a) is made of an angle smaller than 90 degrees.
  • the working fluid When spraying the working fluid introduced through the guide passage formed by the protrusions 334, the working fluid forms a vortex and flows toward the central axis of the receiving portion 214 by the force of the inputted input fluid.
  • FIG. 7 is a schematic diagram showing a conventional compressor system
  • Figure 8 is a schematic diagram showing a heat energy recovery system according to a first embodiment of the present invention, the heat energy recovery is provided with a heat exchanger, a recovery tube and a fluid accelerator in the compressor system System.
  • air at room temperature and pressure is introduced into the compressor 30 and discharged into high-temperature and high-pressure air.
  • the discharged high-temperature and high-pressure air is stored in the storage tank 32. .
  • the stored high temperature, high pressure air may be used as compressed air by the user after the temperature is dropped through the freezer 34. Water condensed with water in the air during the temperature drop in the freezer 34 may be discharged through the outlet.
  • a fluid accelerator 38 is provided at the front (inlet side) of the compressor 30, and a heat exchanger is disposed at the rear (outlet side) of the compressor 30.
  • 36 is provided, the fluid accelerator 38 and the heat exchanger 36 is connected via a recovery pipe 37.
  • water is introduced into the working fluid by the pump (35) to obtain thermal energy from the high temperature output fluid discharged from the compressor (30) and through the recovery pipe (37) in a vaporized state. Supplied to the fluid accelerator 38.
  • the water used as the working fluid absorbs heat energy from the exhaust gas of the high temperature compressor 30 while circulating the heat exchanger 36 to become a high pressure steam. Relatively, the temperature at the outlet side of the compressor 30 is lowered (as the temperature is lowered) and the pressure is lowered, and as a result, the required power of the compressor 30 for air compression can be reduced.
  • the air compressed by the compressor 30 is cooled in the freezer 34 to remove moisture.
  • the exhaust gas is already deprived of heat energy in the heat exchanger 36, and thus, the air in the freezer 34 is cooled in comparison with the conventional air. The effect of reducing the load can be expected.
  • the working fluid which is a high temperature, high pressure steam while passing through the heat exchanger 36 is supplied to the fluid accelerator 38 to drive it (increasing the speed of the input fluid), which is necessary for inflow of air into the compressor 30. It can function to provide power, thereby also having the effect of reducing the required power of the compressor (30).
  • FIG. 9 is a schematic diagram showing a heat energy recovery system according to a second embodiment of the present invention, in which an internal combustion engine is provided with a heat exchanger, a recovery tube, and a fluid accelerator.
  • the inlet pipe 41 is connected to the inlet of the internal combustion engine 40
  • the outlet pipe 43 is connected to the outlet
  • the fluid accelerator 48 is adjacent to the inlet and the inlet pipe 41 and Connected.
  • the heat exchanger 46 is provided on the outer surface of the outlet pipe 43
  • the recovery pipe 47 is connected to the side of the heat exchanger 46 and the fluid accelerator 48.
  • water is introduced into the heat exchanger 46 into the working fluid.
  • the water in the heat exchanger 46 is heated and supplied to the fluid accelerator 48 through the recovery pipe 47 in the form of vaporized vapor. do.
  • the steam is injected into the input fluid passing through the fluid accelerator 48 through the side suction nozzle of the fluid accelerator 48, the input fluid may be accelerated and supplied to the internal combustion engine 40 by the action of the fluid accelerator 48. .
  • the fluid in front of the internal combustion engine 40 (inlet side) Accelerator 48 can reduce the power burden required for air intake, and the heat exchanger 46 through which the working fluid flows lowers the temperature of the exhaust gas, lowers the pressure, and ultimately reduces the exhaust power requirement. Will be. That is, the waste heat to be discarded can be recovered to improve the efficiency of the internal combustion engine.
  • the internal combustion engine 40 in particular, by amplifying the inflow of air relative to the fuel, it is possible to induce complete combustion, thereby improving energy efficiency and reducing the smoke emitted due to incomplete combustion.
  • FIG. 10 is a schematic diagram showing a conventional boiler system
  • Figure 11 is a schematic diagram showing a heat energy recovery system according to a third embodiment of the present invention, the heat energy recovery with a heat exchanger, a recovery tube and a fluid accelerator in the boiler system System.
  • air and fuel are supplied through an inlet of the boiler 50, and the supplied air and fuel are burned in the boiler 50 and generate heat.
  • the boiler 50 also absorbs the heat energy generated in the combustion process while being supplied and distributed from the outside to be discharged from the boiler 50 in a gas (vapor) state, thereby performing a heating function.
  • a blower 52 is provided on the air inlet side of the boiler 50 to inlet air, and a blower 53 is provided on the outlet side of the boiler 50 to exhaust high-temperature exhaust gas.
  • an input fluid accelerator 58 is provided in an inlet passage of air (inlet side) of the front of the boiler 50, and a rear (outlet side) of the boiler 50 is provided.
  • the heat exchanger 56 and the output fluid accelerator 59 are sequentially provided in the exhaust gas discharge passage.
  • the heat exchanger 56 is connected to the input fluid accelerator 58 and the output fluid accelerator 59 through the recovery pipe 57, respectively, and is a working fluid that absorbs the heat energy of the exhaust gas while flowing into the heat exchanger 56. Water is supplied to the input fluid accelerator 58 and the output fluid accelerator 59 in a vaporized state, respectively.
  • the waste heat discarded together with the exhaust gas is driven to drive the input fluid accelerator 58 and the output fluid accelerator 59 so that the blower 52 and the expensive blower in the existing system ( 53) can be omitted, and the power required by these blowers 52 and the blowers 53 can be reduced. Further, the omission of the mechanically driven blower 52 and the blower 53 can be expected to reduce the maintenance cost.
  • FIG. 12 is a schematic diagram showing a conventional direct combustion gas turbine system
  • Figure 13 is a schematic diagram showing a conventional indirect combustion gas turbine system
  • Figure 14 is a thermal energy recovery system according to a fourth embodiment of the present invention As a schematic diagram, it is a heat energy recovery system provided with a heat exchanger, a recovery pipe, and a fluid accelerator in a gas turbine system.
  • the conventional direct combustion gas turbine system passes air through the compressor 60 to compress the air, and then supplies the air to the combustion chamber 61, and supplies the combustion chamber with fuel to burn the exhaust gas generated after combustion.
  • the turbine 62 By passing gas through the turbine 62, the turbine 62 is rotated to obtain mechanical power.
  • the compressor 60 is connected to the turbine 62 and the shaft to obtain a compressive force of air from the rotational kinetic energy of the turbine 62.
  • the conventional indirect combustion gas turbine system has a heat exchanger 63 disposed in place of the combustion chamber 61 in comparison with the direct combustion gas turbine system so that the air passing through the compressor 60 is transferred to the heat exchanger ( Thermal energy is obtained while passing through 63, and the exhaust gas thus obtained passes through the turbine 62, thereby rotating the turbine 62 to obtain mechanical power.
  • an input fluid accelerator 68 is provided in an inflow passage of air (inlet side) of the front of the compressor 60, and the rear (outlet side) of the turbine 62.
  • the heat exchanger 66 and the output fluid accelerator 69 are sequentially provided in the exhaust gas discharge passage.
  • the heat exchanger 66 is connected to the input fluid accelerator 68 and the output fluid accelerator 69 through a recovery pipe 67, respectively, and is a working fluid absorbing thermal energy of exhaust gas while being flowed into the heat exchanger 66. Water is supplied to the input fluid accelerator 68 and the output fluid accelerator 69 in a vaporized state, respectively.
  • the input fluid accelerator 68 and the output fluid accelerator 69 may be driven using the heat energy of the exhaust gas passing through the turbine 62, and thus the efficiency of the gas turbine system. You can expect an improvement.
  • FIG. 15 is a schematic diagram illustrating the operation of a fuel cell
  • FIG. 16 is a schematic diagram illustrating a conventional fuel cell system
  • FIG. 17 is a thermal energy recovery system according to a fifth embodiment of the present invention. It is a schematic diagram shown.
  • the fuel cell (module) is basically configured such that the anode 75 and the cathode 73 are in contact with the electrolyte membrane 71 interposed therebetween.
  • the fuel electrode (75) is a fuel of hydrogen (H 2) supplied to the hydrogen ion (H +) and electrons (e -), the air electrode through the decomposed with, where hydrogen ions (H +) is an electrolyte membrane (71) Moving to 73, electrons (e ⁇ ) generate current through an external circuit.
  • hydrogen ions (H + ), electrons (e ⁇ ), and oxygen (O 2 ) are combined to generate water (H 2 O) together with heat.
  • air O 2 and fuel H 2 are supplied through an inlet of a fuel cell (module) 80, and the supplied air O 2 and fuel H are supplied.
  • 2 produces power through an electrochemical reaction in the fuel cell (module) 80 and discharges exhaust gas including water (H 2 O) and heat.
  • a blower 82 is provided in the passage through which the air of the fuel cell (module) 80 flows in order to introduce the air, and a exhaust fan 83 is provided in the passage in which the exhaust gas is discharged, thereby exhausting the exhaust gas. can do.
  • a part of the power produced by the fuel cell (module) 80 may be used to operate the blower 82.
  • the temperature of the exhaust gas is about 650 degrees Celsius for MCFC and about 1,000 degrees Celsius for SOFC.
  • an input fluid accelerator 88 is provided in an inflow passage of air (inlet side) of the front of the fuel cell (module) 80, and the fuel cell (module)
  • the heat exchanger 86 and the output fluid accelerator 89 are sequentially provided in the rear (outlet side) exhaust gas discharge passage of the 80.
  • the heat exchanger 86 is connected to the input fluid accelerator 88 and the output fluid accelerator 89 through a recovery pipe 87, respectively, and is a working fluid absorbing thermal energy of exhaust gas while being flowed into the heat exchanger 86. Water is supplied to the input fluid accelerator 88 and the output fluid accelerator 89 in a vaporized state, respectively.
  • the efficiency of the fuel cell system is about 53% in the case of MCFC, and the blower 82 and the blower 83 consume approximately 10% of the generated power of the fuel cell system. Therefore, if the blower 82 and the blower 83 are not used, the efficiency may be improved by 10% or more.
  • a stack of 250-kw fuel cells produces 280 kw, of which 30 kw is consumed by the fuel cell system itself to drive a blower, a blower, etc., so that the net power is 250 kw. That is, since the fluid accelerator provided in the system of the present embodiment does not consume a separate required power, the efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Disclosed is a thermal energy recovery system which recovers and utilizes thermal energy generated by the operation of an engine, said thermal energy recovery system comprising i) an engine which has an inlet port for introducing inflow fluid and an outlet port for discharging outflow fluid, and which transfers energy to the inflow fluid to change the state of the inflow fluid or convert the energy of the inflow fluid into energy of another form, ii) an inlet pipe which is connected to the inlet port of the engine, and enables the inflow fluid to flow to supply the inflow fluid to the engine, iii) an inflow fluid accelerator which is connected to the inlet pipe to increase the transfer speed of the inflow fluid being introduced into the engine, iv) an outlet pipe which is connected to the outlet port of the engine, and enables the outflow fluid to flow, the state of which is changed in the engine, to the outside of the engine, v) a heat exchanger which is mounted on the outlet pipe, and which enables an actuating fluid to flow to recover thermal energy from the outflow fluid, and vi) a recovery pipe which interconnects the heat exchanger and the inflow fluid accelerator, and supplies the actuating fluid, the state of which is changed by the thermal energy acquired from the outflow fluid, to the inflow fluid accelerator.

Description

열에너지 회수 시스템Thermal energy recovery system
본 발명은 열에너지 회수 시스템에 관한 것으로, 보다 상세하게는 기관(機關)의 작동으로 발생되는 열에너지를 회수하여 활용할 수 있도록 구성된 에너지 회수 시스템에 관한 것이다.The present invention relates to a heat energy recovery system, and more particularly to an energy recovery system configured to recover and utilize the heat energy generated by the operation of the engine.
압축기는 기체를 압축시켜 압력을 높이는 기계적 장치로 컴프레서라고도 한다. 압축기는 유체를 압축하여 유체에 기계적 에너지를 인가한다는 점에서 펌프의 원리와 기본적으로 같지만, 펌프는 액체를 가압하는 것이고 압축기는 기체를 가압하여 압력을 높인다는 점에서 펌프와 구별된다. 이러한 압축기를 거친 기체는 압력과 온도가 상승한다. A compressor is a mechanical device that compresses gas and increases pressure, also called a compressor. Compressors are basically the same as pumps in that they compress mechanical fluids and apply mechanical energy to fluids, but pumps pressurize liquids and compressors pressurize gases to increase pressure. The gas passed through such a compressor increases in pressure and temperature.
내연기관은 기관의 내부에서 화학적 에너지를 갖는 연료를 공기 중의 산소와 혼합하여 연소시키고 연소 시 발생하는 열에너지를 직접 이용하여 기계적 동력을 발생시키는 기관이다. 이 때에도 연소 후 배출되는 기체는 많은 열을 포함하고 있으며, 이러한 열은 일반적으로 활용되지 못하고 외부로 방사 배출된다.An internal combustion engine is an engine that generates a mechanical power by directly burning a fuel having chemical energy with oxygen in air and using thermal energy generated during combustion. At this time, the gas emitted after combustion contains a lot of heat, and this heat is generally not utilized and radiated to the outside.
한편, 연료전지는 연료(수소, LNG, LPG, 메탄올 등) 및 공기 중의 산소가 전기 화학적 반응을 일으켜 기계적 구동부 없이 직접 전력을 생산하는 장치이다. 기존의 발전기술(연료의 연소 증기발생 터빈구동 발전기구동)과는 달리 연소 과정이나 구동장치가 없으므로 효율이 높을 뿐만 아니라 배기가스에 함유된 유해성분이 비교적 적은 전력생산 기술이다.On the other hand, a fuel cell is an apparatus that directly generates power without a mechanical driving unit by causing an electrochemical reaction between fuel (hydrogen, LNG, LPG, methanol, etc.) and oxygen in the air. Unlike the existing power generation technology (fuel combustion steam generation turbine drive generator drive), there is no combustion process or driving device, so it is not only high efficiency but also a relatively low harmful component contained in exhaust gas.
이러한 연료전지는 연료와 공기를 유입하여 스택 내부에서 전력을 생산하는 과정에서 많은 열이 발생하며 유입된 공기는 고온 상태가 되어 스팀(steam)과 함께 외부로 배출된다. 참고로 발전용 연료전지로 사용되는 용융탄산염 연료전지(MCFC, Molten Carbide Fuel Cell)의 배출가스는 섭씨 650도, 고체산화물 연료전지(SOFC, Solid Oxide Fuel Cell)의 배출가스는 섭씨 1,000도의 고온 상태이다.Such a fuel cell generates a lot of heat in the process of producing power in the stack by injecting fuel and air, and the introduced air becomes a high temperature state and is discharged to the outside with steam. For reference, the molten carbonate fuel cell (MCFC) used as a fuel cell for power generation has a high temperature of 650 degrees Celsius and a solid oxide fuel cell (SOFC) of 1,000 degrees Celsius. to be.
이와 같이 공급되는 유체의 상태를 변화시켜 동력(에너지)을 발생시키거나 외부로부터 에너지를 공급받아 상기 유체의 상태를 변화시키는 기능을 하는 기관들은 배출되는 유체가 열을 포함하고 있으며 이러한 열에너지는 활용되지 못하고 낭비됨에 따라 상기 기관의 에너지 효율을 떨어뜨리는 원인이 되고 있다.The engines that change the state of the supplied fluid to generate power (energy) or receive energy from the outside to change the state of the fluid are discharged from the fluid contains heat, and this thermal energy is not utilized. As it is not wasted and wasted, it is a cause of lowering the energy efficiency of the engine.
본 발명은 상기한 바와 같은 기술적 배경을 기반으로 안출된 것으로, 임의의 기관을 통해 배출된 열에너지를 회수하여 활용함으로써 상기 기관의 에너지 효율을 향상시킬 수 있는 열에너지 회수 시스템을 제공하고자 한다.The present invention has been made on the basis of the technical background as described above, to provide a heat energy recovery system that can improve the energy efficiency of the engine by recovering and utilizing the heat energy discharged through any engine.
본 발명의 일 실시예에 따른 열에너지 회수 시스템은, i) 입력유체를 유입하는 유입구와 출력유체를 배출하는 유출구를 구비하고, 상기 입력유체에 에너지를 전달하여 상기 입력유체의 상태를 변화시키거나 상기 입력유체가 가진 에너지를 다른 형태의 에너지로 변환시키는 기관과, ii) 상기 기관의 유입구에 연결되며, 상기 입력유체를 유통시켜 상기 기관에 공급하는 유입관과, iii) 상기 유입관에 연결 설치되어 상기 기관으로 유입되는 상기 입력유체의 이송 속도를 증가시키는 입력유체가속기와, iv) 상기 기관의 유출구에 연결되며, 상기 기관에서 상태가 변한 출력유체를 상기 기관 외부로 유통시키는 유출관과, v) 상기 유출관에 장착되며, 작동유체를 유통시키면서 상기 출력유체로부터 열에너지를 회수하는 열교환기와, vi) 상기 열교환기와 상기 입력유체가속기를 연결하며, 상기 출력유체로부터 열에너지를 얻어 상태가 변화된 상기 작동유체를 상기 입력유체가속기로 공급하는 회수관을 포함한다.Heat energy recovery system according to an embodiment of the present invention, i) having an inlet for the input fluid and an outlet for discharging the output fluid, and transfers energy to the input fluid to change the state of the input fluid or An engine for converting the energy of the input fluid into another type of energy; ii) an inlet pipe connected to the inlet of the engine and circulating the input fluid to the engine; and iii) connected to the inlet pipe. An input fluid accelerator for increasing a conveying speed of the input fluid flowing into the engine, and iv) an outlet pipe connected to an outlet of the engine and circulating an output fluid whose state is changed in the engine to the outside of the engine, v) A heat exchanger mounted to the outlet pipe and collecting heat energy from the output fluid while circulating a working fluid; vi) the heat exchanger and the Power Connect fluid accelerator, and includes a return line for the thermal energy is obtained from the output state is changed to the fluid supply the operation fluid to the fluid input accelerator.
상기 입력유체가속기는 관(管) 형상으로 이루어지며, 중심을 향하여 만곡된 볼록부와, 상기 회수관과 상기 볼록부의 내부를 연통시키는 흡입노즐을 갖는 가속부를 포함할 수 있다.The input fluid accelerator may be formed in a pipe shape, and may include an accelerator having a convex portion curved toward a center and a suction nozzle communicating with the recovery tube and the convex portion.
상기 열교환기는 유입구와 배출구를 구비하고, 상기 작동유체는 상기 열교환기의 유입구를 통해 유입되어 상기 출력유체로부터 열에너지를 전달받아 기화(과열기체) 상태로 상기 배출구를 통해 배출되며, 상기 회수관은 상기 열교환기의 배출구와 연통되어 상기 기화 상태의 작동유체를 상기 입력유체가속기로 공급할 수 있다.The heat exchanger has an inlet and an outlet, and the working fluid is introduced through the inlet of the heat exchanger, receives heat energy from the output fluid, and is discharged through the outlet in a vaporized (superheated gas) state. In communication with the outlet of the heat exchanger, the working fluid in the vaporized state can be supplied to the input fluid accelerator.
상기 열교환기의 후방에서 상기 유출관에 연결 설치되어 상기 출력유체의 이송 속도를 증가시키는 출력유체가속기를 포함할 수 있다. 상기 출력유체가속기는 관(管) 형상으로 이루어지며, 중심을 향하여 만곡된 볼록부와, 상기 회수관과 상기 볼록부의 내부를 연통시키는 흡입노즐을 갖는 가속부를 포함할 수 있다.It may include an output fluid accelerator which is connected to the outlet pipe from the rear of the heat exchanger to increase the transfer speed of the output fluid. The output fluid accelerator may be formed in a tubular shape, and may include an accelerator having a convex portion curved toward the center and a suction nozzle communicating the recovery tube with the convex portion.
상기 열교환기의 배출구는 상기 출력유체가속기의 흡입노즐과 연결되어 기화된 상기 작동유체가 상기 출력유체가속기로 공급될 수 있다.The outlet of the heat exchanger may be connected to the suction nozzle of the output fluid accelerator so that the working fluid vaporized may be supplied to the output fluid accelerator.
상기 기관은 복수 개의 서로 다른 유입구를 구비하며, 상기 유입관은 상기 서로 다른 유입구에 각각 연결되어 서로 다른 종류의 입력유체를 공급할 수 있다.The engine includes a plurality of different inlets, and the inlet pipes are connected to the different inlets, respectively, to supply different types of input fluids.
상기 작동유체로는 물이 사용될 수 있다.Water may be used as the working fluid.
상기 기관은 외부로부터 전기적 또는 기계적 에너지를 공급받아 상기 입력유체를 압축하는 압축기가 될 수 있다.The engine may be a compressor that compresses the input fluid by receiving electrical or mechanical energy from the outside.
상기 기관은 상기 입력유체로 연료와 공기가 유입되어 상기 기관 내부에서 폭발하면서 외부로 동력을 발생시키는 내연기관이 될 수 있다.The engine may be an internal combustion engine generating fuel and air into the input fluid to explode inside the engine and generate power to the outside.
상기 기관은 상기 입력유체로 연료와 공기가 유입되어 상기 기관 내부에서 연소하면서 열에너지를 발생시켜 상기 기관을 유통하는 물을 기화시켜 증기 상태로 배출하는 보일러가 될 수 있다.The engine may be a boiler in which fuel and air are introduced into the input fluid to generate heat energy while burning inside the engine to vaporize water circulating through the engine and discharge it in a vapor state.
상기 기관은 열에너지를 이용해 기계동력을 발생시키는 가스터빈이 될 수 있다.The engine may be a gas turbine that generates mechanical power using thermal energy.
상기 기관은 상기 입력유체로 공기와 연료가 유입되어 상기 기관 내부에서 전기화학작용을 일으켜 전기를 발생시키는 연료전지가 될 수 있다.The engine may be a fuel cell in which air and fuel are introduced into the input fluid to generate electricity by causing an electrochemical action inside the engine.
상기한 바와 같이 본 발명에 따르면, 기관 내의 작용 후 외부로 방출되는 열에너지를 회수하여 상기 기관에 공급되는 유체에 전달하여 이 유체의 유속을 변환시킴으로써 상기 기관의 에너지 효율을 향상시킬 수 있는 효과가 있다.As described above, according to the present invention, there is an effect that can improve the energy efficiency of the engine by recovering the heat energy released to the outside after the action in the engine to be delivered to the fluid supplied to the engine to convert the flow rate of the fluid. .
기관의 배출구측에 열교환기를 구비하고, 이 열교환기를 통해 작동유체를 유통시켜 배출가스의 열에너지를 흡수함에 따라 기관 배출구측의 온도와 압력을 낮출 수 있어 기관 소요동력을 저감할 수 있고, 효율을 향상시킬 수 있다.A heat exchanger is provided on the outlet side of the engine, and the working fluid is circulated through the heat exchanger to absorb the heat energy of the exhaust gas so that the temperature and pressure on the engine outlet side can be lowered, thereby reducing the engine power required and improving efficiency. You can.
또한 열교환기를 거쳐 열에너지를 흡수한 작동유체는 기화된 상태로 유체가속기를 구동하여 기관으로의 유체 유입에 필요한 동력을 제공함으로써 기관의 소요동력을 저감할 수 있는 효과가 있다.In addition, the working fluid absorbed thermal energy through the heat exchanger has the effect of reducing the power required of the engine by driving the fluid accelerator in the vaporized state to provide the power required for the inflow of fluid into the engine.
도 1은 본 발명의 실시예에 따른 열에너지 회수 시스템을 도시한 모식도이다.1 is a schematic diagram showing a thermal energy recovery system according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 열에너지 회수 시스템에 설치된 유체가속기를 도시한 분해 사시도이다.2 is an exploded perspective view illustrating a fluid accelerator installed in a heat energy recovery system according to an exemplary embodiment of the present invention.
도 3은 도 2에 도시한 유체가속기를 결합하여 도시한 부분 절개 사시도이다.3 is a partially cutaway perspective view illustrating the fluid accelerator shown in FIG. 2 in combination.
도 4는 도 2에 도시한 유체가속기를 결합하여 도시한 축방향 단면도이다.4 is an axial cross-sectional view of the fluid accelerator shown in FIG. 2 in combination.
도 5는 도 2에 도시한 유체가속기에 적용된 이격부재를 도시한 평면도이다. 5 is a plan view illustrating a spacer applied to the fluid accelerator illustrated in FIG. 2.
도 6은 도 2에 도시한 유체가속기에 적용된 이격부재의 변형예를 도시한 평면도이다.FIG. 6 is a plan view illustrating a modification of the spacer member applied to the fluid accelerator illustrated in FIG. 2.
도 7은 기존의 압축기 시스템을 도시한 모식도이다. 7 is a schematic diagram showing a conventional compressor system.
도 8은 본 발명의 제1 실시예에 따른 열에너지 회수 시스템을 도시한 모식도로서, 압축기 시스템에 열교환기, 회수관 및 유체가속기가 구비된 열에너지 회수 시스템이다.8 is a schematic diagram showing a heat energy recovery system according to a first embodiment of the present invention, wherein the compressor system includes a heat exchanger, a recovery pipe, and a fluid accelerator.
도 9는 본 발명의 제2 실시예에 따른 열에너지 회수 시스템을 도시한 모식도로서, 내연기관에 열교환기, 회수관 및 유체가속기가 구비된 열에너지 회수 시스템이다.9 is a schematic diagram showing a heat energy recovery system according to a second embodiment of the present invention, in which an internal combustion engine is provided with a heat exchanger, a recovery tube, and a fluid accelerator.
도 10은 기존의 보일러 시스템을 도시한 모식도이다.10 is a schematic diagram showing a conventional boiler system.
도 11은 본 발명의 제3 실시예에 따른 열에너지 회수 시스템을 도시한 모식도로서, 보일러 시스템에 열교환기, 회수관 및 유체가속기가 구비된 열에너지 회수 시스템이다.FIG. 11 is a schematic diagram showing a heat energy recovery system according to a third embodiment of the present invention, wherein a boiler system includes a heat exchanger, a recovery pipe, and a fluid accelerator.
도 12는 기존의 직접연소방식 가스터빈 시스템을 도시한 모식도이다. 12 is a schematic diagram showing a conventional direct combustion gas turbine system.
도 13은 기존의 간접연소방식 가스터빈 시스템을 도시한 모식도이다. 13 is a schematic diagram showing a conventional indirect combustion gas turbine system.
도 14는 본 발명의 제4 실시예에 따른 열에너지 회수 시스템을 도시한 모식도로서, 가스터빈 시스템에 열교환기, 회수관 및 유체가속기가 구비된 열에너지 회수 시스템이다.14 is a schematic diagram showing a heat energy recovery system according to a fourth embodiment of the present invention, in which a gas turbine system includes a heat exchanger, a recovery pipe, and a fluid accelerator.
도 15는 연료전지의 작용을 설명하기 위하여 도시한 모식도이다. 15 is a schematic diagram for explaining the operation of the fuel cell.
도 16은 기존의 연료전지 시스템을 도시한 모식도이다. 16 is a schematic diagram showing a conventional fuel cell system.
도 17은 본 발명의 제5 실시예에 따른 열에너지 회수 시스템을 연료전지에 적용하여 도시한 모식도이다.FIG. 17 is a schematic diagram showing the application of a thermal energy recovery system according to a fifth embodiment of the present invention to a fuel cell.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세하게 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 이하에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
도 1은 본 발명의 실시예에 따른 열에너지 회수 시스템을 도시한 모식도이다.1 is a schematic diagram showing a thermal energy recovery system according to an embodiment of the present invention.
유체를 유입시켜 상태를 변화시킨 다음 배출하는 기관(機關)은 유입되는 유체의 종류와 상기 기관의 기능에 따라 입력유체에 에너지를 전달하여 상기 입력유체의 상태를 변화시키거나 상기 입력유체가 가진 에너지를 다른 형태의 에너지로 변환시키게 된다.The engine that changes the state by introducing a fluid and then discharges the engine transfers energy to the input fluid according to the type of fluid flowing in and the function of the engine, thereby changing the state of the input fluid or the energy of the input fluid. To convert to other forms of energy.
도 1을 참조하면, 기관(10)은 입력유체를 유입하는 유입구와 출력유체를 배출하는 유출구를 구비하며, 상기 유입구에는 유입관을 연결하여 입력유체를 유통시키고 상기 유출구에는 유출관을 연결하여 출력유체를 유통시킬 수 있다.Referring to FIG. 1, the engine 10 has an inlet for inlet and an outlet for discharging the output fluid, and the inlet is connected with an inlet pipe to distribute the input fluid and the outlet is connected with an outlet pipe for output. The fluid can be circulated.
상기 유입구와 유입관은 기관(10)의 성격에 따라 복수 개로 형성될 수 있으며, 제1 유입관-제1 유입구를 통해 제1 입력유체가 유통될 수 있고 제2 유입관-제2 유입구를 통해 제2 입력유체가 유통될 수 있다. 이 때 상기 제1 입력유체와 제2 입력유체는 서로 다른 종류의 입력유체가 유통될 수 있다. The inlet and the inlet pipe may be formed in plural according to the characteristics of the engine 10, the first input fluid can be circulated through the first inlet tube-the first inlet port and the second inlet tube-the second inlet port The second input fluid can be distributed. In this case, the first input fluid and the second input fluid may be different types of input fluid.
예를 들어, 상기 기관(10)이 압축기인 경우에 입력유체는 공기가 될 수 있고, 출력유체는 고온, 고압의 공기가 된다. 상기 압축기의 작용을 하기 위해서는 전기적 또는 기계적 에너지를 외부로부터 공급받아 입력유체인 공기를 압축하게 된다.For example, when the engine 10 is a compressor, the input fluid may be air, and the output fluid may be high temperature and high pressure air. In order to function as the compressor, electrical or mechanical energy is supplied from the outside to compress air as an input fluid.
상기 기관(10)이 내연기관인 경우에 입력유체는 공기와 연료가 될 수 있고, 출력유체는 고온의 배기가스가 된다. 상기 공기와 연료는 혼합되어 상기 내연기관의 내부에서 연소되면서 외부로 기계적인 동력을 전달하게 된다.When the engine 10 is an internal combustion engine, the input fluid may be air and fuel, and the output fluid may be hot exhaust gas. The air and the fuel are mixed and burned in the internal combustion engine to transmit mechanical power to the outside.
상기 기관(10)이 보일러인 경우에 입력유체는 공기(O2)와 연료가 될 수 있고, 출력유체는 고온의 배기가스가 된다. 상기 보일러는 공기(O2)와 연료가 혼합되어 연소되면서 열을 외부로 내보낸다.When the engine 10 is a boiler, the input fluid may be air (O 2 ) and fuel, and the output fluid is high temperature exhaust gas. The boiler sends heat to the outside as air (O 2 ) and fuel are mixed and combusted.
상기 기관(10)이 연료전지인 경우에 입력유체는 공기(O2)와 연료(H2)가 구분되어 입력되며, 출력유체는 고온의 배기가스가 된다. 상기 연료전지는 내부에서 공기(O2)와 연료(H2)의 화학반응에 의해 전기 에너지가 발생된다.When the engine 10 is a fuel cell, the input fluid is divided into air O 2 and fuel H 2 , and the output fluid is a high temperature exhaust gas. The fuel cell generates electrical energy by chemical reaction between air (O 2 ) and fuel (H 2 ).
상기 기관(10)이 가스터빈인 경우에 입력유체는 직접연소방식인 경우 공기와 연료가 될 수 있고, 간접연소방식인 경우에는 공기가 될 수 있다. 출력유체는 고온의 배기가스 또는 공기가 된다. 상기 가스터빈은 기계동력을 출력하게 된다.When the engine 10 is a gas turbine, the input fluid may be air and fuel in the direct combustion method, or air in the indirect combustion method. The output fluid becomes hot exhaust gas or air. The gas turbine outputs mechanical power.
이상 적용되는 기관에 따른 입력유체 및 출력유체의 상태를 정리하면 하기 표 1과 같다. 아울러 작동유체로는 주로 물이 사용될 수 있으며, 작동유체의 작용에 대해서는 이하에 상세하게 설명한다.Table 1 summarizes the state of the input fluid and the output fluid according to the engine applied above. In addition, the working fluid may be mainly used water, the operation of the working fluid will be described in detail below.
표 1
실시예(기관) 압축기 내연기관 보일러 연료전지 가스 터빈
직접연소방식 간접연소방식
제1입력유체 공기 공기 공기(산소) 공기(산소) 공기 공기
제2입력유체 - 연료 연료 연료 연료 -
고온의 출력유체(압력,온도) 공기(7기압,300℃ 이상) 배기가스(대기압,800℃) 배기가스(350℃) 배기가스(650~1,000℃) 배기가스(800~900℃) 공기(600~700℃)
작동유체
Power 기계동력 입력 기계동력 출력 열 출력 전력 출력 기계동력출력 열 입력
기계동력출력
Table 1
Example (Institution) compressor An internal combustion engine Boiler Fuel cell Gas turbine
Direct combustion method Indirect combustion method
First input fluid air air Air (oxygen) Air (oxygen) air air
Second input fluid - fuel fuel fuel fuel -
High temperature output fluid (pressure, temperature) Air (7 atmospheres, 300 ℃ or more) Exhaust gas (atmospheric pressure, 800 ℃) Exhaust gas (350 ℃) Exhaust gas (650 ~ 1,000 ℃) Exhaust gas (800 ~ 900 ℃) Air (600 ~ 700 ℃)
Working fluid water water water water water water
Power Mechanical power input Mechanical power output Heat output Power output Mechanical power output Heat input
Mechanical power output
상기 기관(10)을 거치면서 배출되는 출력유체는 상기 기관(10)에서 에너지를 공급받은 경우(예: 압축기)뿐만 아니라 에너지를 발생시킨 경우(예: 내연기관, 연료전지 등)에도 열을 포함하게 되며, 이러한 열은 외부로 방출되면서 에너지 손실이 되는 부분이 된다.The output fluid discharged through the engine 10 includes heat not only when energy is supplied from the engine 10 (eg, a compressor) but also when energy is generated (eg, an internal combustion engine, a fuel cell, etc.). This heat is released to the outside becomes a part of the energy loss.
이에 본 실시예의 시스템에서는, 상기 기관(10)의 유출구에 인접하여 상기 유출관에는 열교환기(15)가 장착된다. 이러한 열교환기(15)는 내부에서 작동유체를 유통시키면서 상기 유출관을 통해 배출되는 고온의 출력유체로부터 열에너지를 회수한다. 여기서 "고온"이라고 하는 것은 입력유체의 온도에 비해서 높아진 출력유체의 온도를 의미하며, 상기 표 1에서 보는 바와 같이 각 기관마다 출력유체의 온도는 다양하게 설정된다. 상기 열교환기(15)는 유입구와 배출구를 구비할 수 있으며, 상기 작동유체는 열교환기(15)의 유입구를 통해 유입되어 상기 출력유체로부터 열에너지를 전달받아 기체(과열기체) 상태로 변환(기화)되어 상기 배출구를 통해 배출될 수 있다. In the system of the present embodiment, the heat exchanger 15 is attached to the outlet pipe adjacent to the outlet of the engine 10. The heat exchanger 15 recovers thermal energy from the high temperature output fluid discharged through the outlet pipe while circulating the working fluid therein. Here, "high temperature" means the temperature of the output fluid increased compared to the temperature of the input fluid, and as shown in Table 1, the temperature of the output fluid is set variously for each engine. The heat exchanger 15 may have an inlet and an outlet, and the working fluid is introduced through the inlet of the heat exchanger 15 to receive heat energy from the output fluid and convert it into a gas (superheated gas) state (vaporization). Can be discharged through the outlet.
작동유체는 열에너지를 흡수하여 용이하게 기화될 수 있는 유체로서, 기관 내부에 공급되어도 입력유체와 특별히 반응하지 않는 물질이 적합하게 사용될 수 있으며, 대표적으로 물을 사용할 수 있다.The working fluid is a fluid that can easily vaporize by absorbing heat energy, and a material that does not react specifically with the input fluid even when supplied inside the engine may be suitably used, and water may be typically used.
상기 기관(10)의 유입구에 인접하여 상기 유입관에는 입력유체 가속기(20)가 연결 설치된다. 입력유체 가속기(20)는 상기 기관(10)으로 유입되는 입력유체의 이송속도를 증가시킬 수 있다. 유체가속기에 대해서는 이하에서 도면을 참조하여 상세하게 설명한다.An input fluid accelerator 20 is connected to the inlet pipe adjacent to the inlet of the engine 10. The input fluid accelerator 20 may increase the feed rate of the input fluid flowing into the engine 10. The fluid accelerator will be described in detail below with reference to the drawings.
이러한 입력유체 가속기(20)는 기관(10)의 외부에서 상기 열교환기(15)와 회수관(12)을 통해서 연결된다. 회수관(12)은 상기 유출관으로 유통되는 고온의 출력유체로부터 방사되는 열에너지를 얻어 상태가 변화된 작동유체를 상기 입력유체 가속기(20)로 공급할 수 있다. 이와 같이 회수관(12)을 통해 전달되는 열에너지를 함유한 작동유체로 인해 입력유체 가속기(20)를 통과하는 입력유체의 속도는 커질 수 있으며, 상기 기관(10)의 에너지 효율을 향상시킬 수 있다.The input fluid accelerator 20 is connected through the heat exchanger 15 and the recovery pipe 12 outside the engine 10. The recovery pipe 12 may supply the operating fluid having a changed state to the input fluid accelerator 20 by obtaining thermal energy radiated from the high temperature output fluid circulated to the outlet pipe. As such, the speed of the input fluid passing through the input fluid accelerator 20 may be increased due to the working fluid containing the heat energy transferred through the recovery pipe 12, and the energy efficiency of the engine 10 may be improved. .
한편, 상기 열교환기(15)의 후방에는 출력유체 가속기(23)가 상기 유출관과 연결 설치되어 상기 출력유체의 이송 속도를 증가시킬 수 있다. 상기 열교환기(15)의 배출구는 상기 출력유체 가속기(23)의 측방과 연결되어 기화된 작동유체가 상기 출력유체 가속기(23)에 공급될 수 있다. 이러한 출력유체 가속기(23)는 본 실시예에서 선택적으로 적용될 수 있다.On the other hand, the output fluid accelerator 23 is connected to the outlet pipe in the rear of the heat exchanger 15 can increase the transfer speed of the output fluid. The outlet of the heat exchanger 15 may be connected to the side of the output fluid accelerator 23 so that the vaporized working fluid may be supplied to the output fluid accelerator 23. This output fluid accelerator 23 may be selectively applied in this embodiment.
도 2는 본 발명의 실시예에 따른 열에너지 회수 시스템에 설치된 유체가속기를 도시한 분해 사시도이다. 이러한 유체가속기의 구조는 상기 실시예에서 입력유체 가속기 뿐만 아니라 출력유체 가속기에 적용된다.2 is an exploded perspective view illustrating a fluid accelerator installed in a heat energy recovery system according to an exemplary embodiment of the present invention. This structure of the fluid accelerator is applied to the output fluid accelerator as well as the input fluid accelerator in the above embodiment.
도 2를 참조하면, 유체가속기(20)는 입력유체(또는 출력유체)의 진행방향(도 2에서 y축 방향)으로 갈수록 내부 단면적이 감소하는 유입 안내부(212)와 유입 안내부(212)에 연결되며 작동유체를 유입시키는 흡입노즐(216)이 형성된 수용부(214)를 포함하는 외부 몸체(210)와, 수용부(214)에 삽입되며 외주면을 따라 단차부(221)가 형성된 내부 몸체(220), 및 외부 몸체(210)와 내부 몸체(220) 사이에 설치된 복수 개의 돌기들(234)을 포함한다.Referring to FIG. 2, the fluid accelerator 20 has an inflow guide 212 and an inflow guide 212 whose inner cross-sectional area decreases toward the traveling direction of the input fluid (or output fluid) (y-axis direction in FIG. 2). It is connected to the outer body 210 including the receiving portion 214 is formed with a suction nozzle 216 for introducing the working fluid, and the inner body is inserted into the receiving portion 214 and the step portion 221 is formed along the outer peripheral surface 220, and a plurality of protrusions 234 installed between the outer body 210 and the inner body 220.
도 3은 도 2에 도시한 유체가속기를 결합하여 도시한 부분 절개 사시도이고, 도 4는 축방향 단면도이다.3 is a partial cutaway perspective view of the fluid accelerator shown in FIG. 2 in combination, and FIG. 4 is an axial cross-sectional view.
도 3 및 도 4를 참조하면, 외부 몸체(210)는 외부가 원통인 관(管) 구조로 이루어지며, 앞쪽에 배치된 유입 안내부(212)와 유입 안내부(212)의 뒤에 배치된 수용부(214)를 포함하여 구성된다.3 and 4, the outer body 210 is made of a tubular (pipe) structure of the outer cylinder, the receiving is disposed behind the inlet guide 212 and the inlet guide 212 disposed in the front It comprises a portion 214.
유입 안내부(212)는 선단에서 입력유체(또는 출력유체)의 진행방향(도 3에서 y축 방향)으로 갈수록 내경이 점진적으로 감소하도록 형성되는데, 일례로 내주면(212a)이 축 중심을 향해 볼록하게 만곡한 면으로 이루어질 수 있다. 이에 따라 유입 안내부(212)를 통과하는 유체의 속도는 빨라지고 압력은 낮아진다.The inflow guide 212 is formed so that the inner diameter gradually decreases from the front end toward the direction of travel of the input fluid (or output fluid) in the y-axis direction in FIG. 3. For example, the inner circumferential surface 212a is convex toward the axis center. It may be made of curved surfaces. Accordingly, the speed of the fluid passing through the inlet guide 212 is faster and the pressure is lowered.
유입 안내부(212)의 내주면(212a)은 지지면(212b)과 연결되는데, 지지면(212b)은 내주면(212a)과 수용부(214)를 연결하며, 수용부(214)의 중심 축에 대하여 수직하게 형성된다.The inner circumferential surface 212a of the inflow guide portion 212 is connected to the support surface 212b, which supports the inner circumferential surface 212a and the receiving portion 214, and is connected to the central axis of the receiving portion 214. It is formed perpendicular to the.
수용부(214)는 내부 몸체(220)가 끼워지는 공간을 갖는 원통형의 관(管) 구조로 이루어지고, 흡입노즐(216)은 수용부(214)의 앞 부분에 위치하며 외주면 바깥으로 개구되어 작동유체를 유입시킬 수 있다. 이 때, 흡입노즐(216)을 통해 유입되는 작동유체는 대기압보다 높은 압력을 갖는다. 또한, 흡입노즐(216)은 회수관(12)과 연결되어 수용부(214) 내로 작동유체를 공급하는 통로로서의 역할을 할 수 있다.Receiving portion 214 is made of a cylindrical pipe (pipe) structure having a space in which the inner body 220 is fitted, the suction nozzle 216 is located in the front portion of the receiving portion 214 is opened to the outer peripheral surface Can introduce working fluid At this time, the working fluid introduced through the suction nozzle 216 has a pressure higher than atmospheric pressure. In addition, the suction nozzle 216 is connected to the recovery pipe 12 may serve as a passage for supplying the working fluid into the receiving portion (214).
내부 몸체(220)는 수용부(214)에 끼워지는 원통형 관(管) 구조로 이루어지는데, 도 2에 도시한 바와 같이 앞 부분에 단차부(221)가 형성된다. 단차부(221)는 수용부(214)의 내경보다 더 작은 외경을 가지며, 내부 몸체(220)의 외주를 따라 이어져 형성된다. 이에 따라 도 2에 도시한 바와 같이 단차부(221)와 수용부(214) 사이에는 공간이 형성되는데, 이는 분배통로(225)가 된다. 분배통로(225)는 흡입노즐(216)과 연결되어 흡입노즐(216)을 통해 유입된 작동유체가 내부 몸체(220)의 외주를 따라 유동할 수 있도록 한다.The inner body 220 is formed of a cylindrical tube (pipe) structure that is fitted to the receiving portion 214, as shown in Figure 2, the step portion 221 is formed in the front portion. The stepped portion 221 has an outer diameter smaller than the inner diameter of the receiving portion 214 and is formed along the outer circumference of the inner body 220. Accordingly, as shown in FIG. 2, a space is formed between the stepped portion 221 and the accommodation portion 214, which becomes a distribution passage 225. The distribution passage 225 is connected to the suction nozzle 216 to allow the working fluid introduced through the suction nozzle 216 to flow along the outer circumference of the inner body 220.
도 2에 도시된 바와 같이 외부 몸체(210)와 내부 몸체(220) 사이에는 외부 몸체(210)와 내부 몸체(220)를 축방향으로 이격시키는 돌기들(234)이 설치되는데, 돌기들(234)은 링 형상의 이격부재(230)의 내주면으로부터 돌출되어 형성된다.As shown in FIG. 2, protrusions 234 are disposed between the outer body 210 and the inner body 220 to axially space the outer body 210 and the inner body 220, and the protrusions 234. ) Is formed to protrude from the inner circumferential surface of the ring-shaped spacer 230.
즉, 이격부재(230)는 지지대(232)와 돌기들(234)로 이루어지며, 돌기들(234)은 지지대(232)의 중심(C)을 향하여 돌출되며 지지대(232)의 내주면을 따라 소정 간격으로 이격되어 배열된다. 지지대(232)는 내부 몸체(220)에서 이격되어 수용부(214)의 내면에 맞닿도록 설치되며, 내부 몸체(220)의 선단은 돌기들(234)과 맞닿도록 설치된다.That is, the spacer 230 is composed of the support 232 and the projections 234, the projections 234 are projected toward the center (C) of the support 232 and predetermined along the inner peripheral surface of the support 232 Spaced apart at intervals. Support 232 is spaced apart from the inner body 220 is installed to abut the inner surface of the receiving portion 214, the front end of the inner body 220 is installed to abut the protrusions 234.
도 3에 도시된 바와 같이, 외부 몸체(210)와 내부 몸체(220)가 돌기들(234)에 의하여 이격되면, 서로 이웃한 돌기들(234) 사이로 작동유체가 유입되는 유도통로(227)가 형성된다. 이러한 유도통로(227)는 내부 몸체(220)의 선단을 따라 복수 개가 이격되어 형성되며, 유도통로(227)를 통해서 작동유체가 배출 안내부(223) 내로 유입된다. As shown in FIG. 3, when the outer body 210 and the inner body 220 are spaced apart by the protrusions 234, an induction passage 227 through which working fluid flows between neighboring protrusions 234 is provided. Is formed. The guide passage 227 is formed along a distal end of the inner body 220, a plurality of spaced apart, the working fluid is introduced into the discharge guide 223 through the guide passage 227.
이와 같이 본 실시예에 따르면 복수 개의 돌기들(234)이 이격 배치되고 돌기들(234) 사이의 공간으로 작동유체가 공급되므로 작동유체를 균일하게 분할하여 유체가속기(20) 내부로 유입시킬 수 있다.As described above, since the plurality of protrusions 234 are spaced apart and the working fluid is supplied to the space between the protrusions 234, the working fluid may be uniformly divided and introduced into the fluid accelerator 20. .
한편, 외부 몸체(210)의 수용부(214) 내에서 유도통로(227)를 사이에 두고 대면하는 외부 몸체(210)와 내부 몸체(220)의 면을 각각 제1 면과 제2 면이라고 할 때, 상기 제1 면은 수용부(214)의 중심 축에 대해 수직하게 형성되고 상기 제2 면은 적어도 일부분이 배출 안내부(223)를 향하여 굽어진 만곡면(226)을 형성한다. 이 때, 상기 제1 면과 제2 면은 일정한 간극을 유지하면서 중심 축을 향해 내려오다가 상기 제2 면이 먼저 굽어지게 되면서 유입된 작동유체의 방향을 상기 배출 안내부(223) 쪽으로 유도할 수 있게 된다(도 4의 원내 확대도 참고).Meanwhile, the surfaces of the outer body 210 and the inner body 220 facing each other with the guide passage 227 interposed therebetween in the receiving portion 214 of the outer body 210 may be referred to as first and second surfaces, respectively. At this time, the first surface is formed perpendicular to the central axis of the receiving portion 214 and the second surface forms a curved surface 226 at least partially curved towards the discharge guide 223. At this time, the first surface and the second surface may be directed toward the discharge guide unit 223 while the second surface is bent toward the central axis while maintaining a constant gap and the second surface is bent first. (See also enlargement of the hospital in FIG. 4).
만곡면(226)의 뒤쪽에는 관 형상의 배출 안내부(223)가 형성되고, 배출 안내부(223)는 만곡면(226)으로부터 입력유체(또는 출력유체)의 진행방향(도 4에서 y축 방향)으로 갈수록 내경이 점진적으로 증가한다. 만곡면(226)의 최소 내경은 배출 안내부(223)의 최소 내경과 동일하도록 형성될 수 있으며, 이에 따라 유입 안내부(212)를 따라 유입된 입력유체(또는 출력유체)가 배출 안내부(223)를 따라 안정적으로 배출된다.A tubular discharge guide part 223 is formed at the rear of the curved surface 226, and the discharge guide part 223 is a moving direction of the input fluid (or output fluid) from the curved surface 226 (y-axis in FIG. 4). Direction), the inner diameter gradually increases. The minimum inner diameter of the curved surface 226 may be formed to be the same as the minimum inner diameter of the discharge guide 223, so that the input fluid (or output fluid) introduced along the inlet guide 212 is discharge guide ( 223 is discharged stably.
내부 몸체(220)로 유입되는 작동유체는 코안다 효과(Coanda effect)에 의하여 만곡면(226)을 따라 배출 안내부(223) 쪽으로 유동한다. 코안다 효과란 유체가 자기의 에너지가 가장 덜 소비되는 방향으로 진행하는 것을 말하며, 유체가 흐르는 방향의 앞쪽에 곡관(曲管)이 나타나면 곡관의 굽어진 방향을 따라 흐르게 된다. 이를 통해서 유체가 진행할 방향을 미리 예측할 수 있다.The working fluid flowing into the inner body 220 flows toward the discharge guide part 223 along the curved surface 226 by the Coanda effect. The Coanda effect means that the fluid proceeds in the direction where the energy is least consumed. If the curve appears in front of the flow direction, the fluid flows along the curved direction of the curve. This allows us to predict in advance the direction in which the fluid will travel.
이와 같이 유도통로(227)와 배출 안내부(223)가 만나는 부분에 만곡면(226)을 형성하면, 작동유체를 배출 안내부(223) 쪽으로 용이하게 유도할 수 있다.As such, when the curved surface 226 is formed at a portion where the guide passage 227 and the discharge guide portion 223 meet, the working fluid can be easily guided toward the discharge guide portion 223.
본 실시예에 따른 유체가속기(20)는 부식 저항력이 크고 고온에 견딜 수 있는 스테인리스 스틸이나 알루미늄, 또는 엔지니어링 플라스틱 등의 내구성이 우수한 재료로 형성된다.The fluid accelerator 20 according to the present embodiment is formed of a material having excellent corrosion resistance and excellent durability such as stainless steel, aluminum, or engineering plastic that can withstand high temperatures.
한편, 외부 몸체(210)와 내부 몸체(220)는 억지끼움으로 결합되거나, 외부 몸체(210)에 내부 몸체(220)가 끼워진 상태에서 용접 등으로 고정될 수 있으며, 외부 몸체(210)의 수용부(214) 내주면에 암나사를 형성하고 내부 몸체(220)의 외주면에 나사산을 형성하여 서로 나사결합하는 것도 가능하다.On the other hand, the outer body 210 and the inner body 220 may be coupled by interference fit, or may be fixed by welding or the like in the state in which the inner body 220 is fitted to the outer body 210, the accommodation of the outer body 210 It is also possible to form a female screw on the inner circumferential surface of the portion 214 and to form a screw thread on the outer circumferential surface of the inner body 220 to be screwed together.
이러한 구조로 작동유체는 흡입노즐(216)과 분배통로(225), 및 유도통로(227)를 통하여 유체가속기(20)의 내부로 유입될 수 있다. 또한, 높은 압력을 갖는 작동유체가 유체가속기(20) 내부로 유입되면 유도통로(227)의 후방에는 진공 공간(V)이 형성된다. 이러한 진공 공간(V)으로 인하여 입력유체(또는 출력유체)의 유입이 증폭되고 이송 속도가 증가하며, 흡입노즐(216)로 투입된 작동유체의 25배 가량의 입력유체(또는 출력유체)가 유체가속기(20) 내부로 유입될 수 있다.In this structure, the working fluid may be introduced into the fluid accelerator 20 through the suction nozzle 216, the distribution passage 225, and the guide passage 227. In addition, when a working fluid having a high pressure flows into the fluid accelerator 20, a vacuum space V is formed at the rear of the induction passage 227. Due to the vacuum space (V), the inflow of the input fluid (or output fluid) is amplified and the conveying speed is increased, and the input fluid (or output fluid) of about 25 times of the working fluid introduced into the suction nozzle 216 is accelerated. 20 may flow into the interior.
도 5는 도 2에 도시한 유체가속기에 적용된 이격부재를 도시한 평면도이고, 도 6은 이격부재의 변형예를 도시한 평면도이다.5 is a plan view illustrating a spacer applied to the fluid accelerator shown in FIG. 2, and FIG. 6 is a plan view illustrating a modification of the spacer.
도 5를 참조하면, 본 실시예의 이격부재(230)는 링 형상의 지지대(232)와 그 내주면으로부터 돌출 형성된 복수 개의 돌기들(234)로 이루어지며, 상기 돌기들(234)은 지지대(232)의 중심(C)을 향하도록 배열된다. 이러한 돌기들(234)은 본 실시예에 따른 유체가속기(20)의 유도통로(227)를 형성하면서, 흡입노즐(216)을 통해서 유입된 작동유체를 수용부(214)의 중심 축을 향해 고속으로 분사하는 데 기여하게 된다.Referring to FIG. 5, the spacer 230 of the present exemplary embodiment includes a ring-shaped support 232 and a plurality of protrusions 234 protruding from an inner circumferential surface thereof, and the protrusions 234 are supported by the support 232. It is arranged to face the center (C) of. These protrusions 234 form the induction passage 227 of the fluid accelerator 20 according to the present embodiment, and the working fluid introduced through the suction nozzle 216 at a high speed toward the central axis of the receiving portion 214. Will contribute to spraying.
한편, 도 6을 참조하면, 이격부재(330)는 링 형상의 지지대(332)와 지지대(332)의 내주면으로부터 돌출 형성된 복수개의 돌기들(334)로 이루어진다. 본 변형예에 따른 이격부재(330)에서 돌기들(334)은 지지대(332)의 중심으로부터 벗어난 방향을 향하도록 배열된다. 즉, 돌기들(334)은 상기 지지대(332)의 내주와 설정된 각도(a)를 이루며 기울어져 형성되며, 상기 각도(a)는 90도보다 작은 각도로 이루어진다. Meanwhile, referring to FIG. 6, the spacer 330 includes a ring-shaped support 332 and a plurality of protrusions 334 protruding from an inner circumferential surface of the support 332. In the spacer 330 according to the present modification, the protrusions 334 are arranged to face away from the center of the support 332. That is, the protrusions 334 are formed to be inclined to form a set angle (a) with the inner circumference of the support 332, the angle (a) is made of an angle smaller than 90 degrees.
이러한 돌기들(334)에 의하여 형성되는 유도통로를 통해 유입된 작동유체를 분사하는 경우, 유입되는 입력유체의 힘으로 작동유체는 와류를 형성하며 수용부(214)의 중심 축을 향해 유동한다. When spraying the working fluid introduced through the guide passage formed by the protrusions 334, the working fluid forms a vortex and flows toward the central axis of the receiving portion 214 by the force of the inputted input fluid.
도 7은 기존의 압축기 시스템을 도시한 모식도이고, 도 8은 본 발명의 제1 실시예에 따른 열에너지 회수 시스템을 도시한 모식도로서, 압축기 시스템에 열교환기, 회수관 및 유체가속기가 구비된 열에너지 회수 시스템이다.7 is a schematic diagram showing a conventional compressor system, Figure 8 is a schematic diagram showing a heat energy recovery system according to a first embodiment of the present invention, the heat energy recovery is provided with a heat exchanger, a recovery tube and a fluid accelerator in the compressor system System.
도 7을 참조하면, 기존의 압축기 시스템은 상온, 상압의 공기가 압축기(30)로 유입되어 고온, 고압의 공기로 배출되며, 이렇게 배출된 고온, 고압의 공기는 저장탱크(32)에 저장된다. 저장된 고온, 고압의 공기는 냉동기(34)를 거쳐 온도를 떨어뜨린 후 사용자에 의해 압축공기로 사용될 수 있다. 냉동기(34) 내에서 온도가 떨어지는 과정에서 공기 중의 수분이 응축된 물은 배출구를 통해 배출될 수 있다.Referring to FIG. 7, in the conventional compressor system, air at room temperature and pressure is introduced into the compressor 30 and discharged into high-temperature and high-pressure air. The discharged high-temperature and high-pressure air is stored in the storage tank 32. . The stored high temperature, high pressure air may be used as compressed air by the user after the temperature is dropped through the freezer 34. Water condensed with water in the air during the temperature drop in the freezer 34 may be discharged through the outlet.
도 8을 참조하면, 본 실시예에 따른 열에너지 회수 시스템은 압축기(30)의 전방(유입구측)에 유체가속기(38)가 구비되고, 상기 압축기(30)의 후방(배출구측)에 열교환기(36)가 구비되며, 상기 유체가속기(38)와 열교환기(36)는 회수관(37)을 통해 연결된다. 상기 열교환기(36) 내로는 작동유체로 물이 펌프(35)에 의해 유입되어 상기 압축기(30)에서 배출된 고온의 출력유체로부터 열에너지를 얻어 기화된 상태로 상기 회수관(37)을 통해 상기 유체가속기(38)로 공급된다.Referring to FIG. 8, in the heat energy recovery system according to the present embodiment, a fluid accelerator 38 is provided at the front (inlet side) of the compressor 30, and a heat exchanger is disposed at the rear (outlet side) of the compressor 30. 36 is provided, the fluid accelerator 38 and the heat exchanger 36 is connected via a recovery pipe 37. Into the heat exchanger (36), water is introduced into the working fluid by the pump (35) to obtain thermal energy from the high temperature output fluid discharged from the compressor (30) and through the recovery pipe (37) in a vaporized state. Supplied to the fluid accelerator 38.
본 실시예에 따른 열에너지 회수 시스템에서 작동유체로 사용된 물은 상기 열교환기(36)를 유통하면서 고온의 압축기(30) 배출가스로부터 열에너지를 흡수하여 고압의 증기(steam)이 된다. 상대적으로 상기 압축기(30)의 배출구측의 온도는 하강하고 (온도가 낮아짐에 따라) 압력도 하강하며, 결과적으로 공기 압축을 위한 압축기(30)의 소요동력이 저감될 수 있다.In the heat energy recovery system according to the present embodiment, the water used as the working fluid absorbs heat energy from the exhaust gas of the high temperature compressor 30 while circulating the heat exchanger 36 to become a high pressure steam. Relatively, the temperature at the outlet side of the compressor 30 is lowered (as the temperature is lowered) and the pressure is lowered, and as a result, the required power of the compressor 30 for air compression can be reduced.
또한 압축기(30)에 의해 압축된 공기는 냉동기(34)에서 냉각하여 수분을 제거하게 되는데, 상기 배출가스는 열교환기(36)에서 이미 열에너지를 빼앗기므로 기존에 비해 상기 냉동기(34)에서의 냉각부하를 덜게 되는 효과를 기대할 수 있다.In addition, the air compressed by the compressor 30 is cooled in the freezer 34 to remove moisture. The exhaust gas is already deprived of heat energy in the heat exchanger 36, and thus, the air in the freezer 34 is cooled in comparison with the conventional air. The effect of reducing the load can be expected.
한편, 열교환기(36)를 거치면서 고온, 고압의 증기가 된 작동유체는 상기 유체가속기(38)로 공급되어 이를 구동(입력유체의 속도를 증가)함으로써 압축기(30) 내로의 공기 유입에 필요한 동력을 제공하는 기능을 할 수 있으며, 이렇게 함으로써 또한 압축기(30)의 소요동력을 저감할 수 있는 효과가 있다.On the other hand, the working fluid which is a high temperature, high pressure steam while passing through the heat exchanger 36 is supplied to the fluid accelerator 38 to drive it (increasing the speed of the input fluid), which is necessary for inflow of air into the compressor 30. It can function to provide power, thereby also having the effect of reducing the required power of the compressor (30).
도 9는 본 발명의 제2 실시예에 따른 열에너지 회수 시스템을 도시한 모식도로서, 내연기관에 열교환기, 회수관 및 유체가속기가 구비된 열에너지 회수 시스템이다.9 is a schematic diagram showing a heat energy recovery system according to a second embodiment of the present invention, in which an internal combustion engine is provided with a heat exchanger, a recovery tube, and a fluid accelerator.
도 9를 참조하면, 내연기관(40)의 유입구에 유입관(41)이 연결되고 유출구에 유출관(43)이 연결되며, 유체가속기(48)가 상기 유입구에 인접하여 유입관(41)과 연결된다. 그리고 상기 유출관(43)의 외측면에는 열교환기(46)가 구비되며, 회수관(47)은 상기 열교환기(46)와 유체가속기(48)의 측방으로 연결된다. 또한 상기 열교환기(46) 내로는 작동유체로 물이 유입된다.9, the inlet pipe 41 is connected to the inlet of the internal combustion engine 40, the outlet pipe 43 is connected to the outlet, the fluid accelerator 48 is adjacent to the inlet and the inlet pipe 41 and Connected. And the heat exchanger 46 is provided on the outer surface of the outlet pipe 43, the recovery pipe 47 is connected to the side of the heat exchanger 46 and the fluid accelerator 48. In addition, water is introduced into the heat exchanger 46 into the working fluid.
따라서 상기 내연기관(40)을 거쳐 배출된 배기가스가 방사하는 열로 인하여 상기 열교환기(46) 내의 물은 가열되어 기화된 증기의 상태로 상기 회수관(47)을 통해 유체가속기(48)로 공급된다. 유체가속기(48)의 측면 흡입노즐을 통해서 증기가 상기 유체가속기(48)를 지나는 입력유체로 분사되면서 유체가속기(48)의 작용으로 입력유체는 가속되어 상기 내연기관(40)으로 공급될 수 있다.Therefore, due to the heat radiated by the exhaust gas discharged through the internal combustion engine 40, the water in the heat exchanger 46 is heated and supplied to the fluid accelerator 48 through the recovery pipe 47 in the form of vaporized vapor. do. As the steam is injected into the input fluid passing through the fluid accelerator 48 through the side suction nozzle of the fluid accelerator 48, the input fluid may be accelerated and supplied to the internal combustion engine 40 by the action of the fluid accelerator 48. .
따라서 기존의 내연기관에서는 출력 중 일부는 공기 흡입 및 배기가스 배출을 위한 펌핑(pumping)동력으로 소모되는데 비해, 본 실시예에 따른 열에너지 회수 시스템에서는 상기 내연기관(40) 전방(유입구측)의 유체가속기(48)에 의해 공기 흡입으로 소요되는 동력 부담을 덜 수 있으며, 작동유체가 유통되는 열교환기(46)로 인하여 배기가스의 온도는 낮아지고 압력도 하강하며 궁극적으로 배기소요동력 부담을 덜 수 있게 된다. 즉, 버려지는 폐열을 회수하여 내연기관의 효율을 향상시킬 수 있는 것이다.Therefore, in the existing internal combustion engine, part of the output is consumed by pumping power for air intake and exhaust gas discharge, whereas in the heat energy recovery system according to the present embodiment, the fluid in front of the internal combustion engine 40 (inlet side) Accelerator 48 can reduce the power burden required for air intake, and the heat exchanger 46 through which the working fluid flows lowers the temperature of the exhaust gas, lowers the pressure, and ultimately reduces the exhaust power requirement. Will be. That is, the waste heat to be discarded can be recovered to improve the efficiency of the internal combustion engine.
내연기관(40)에서는 특히 연료 대비 공기의 유입량을 증폭시킴으로써 완전 연소를 유도할 수 있어 에너지 효율을 향상시킬 뿐만 아니라 불완전 연소로 인하여 배출되는 매연 등을 저감시킬 수 있는 효과도 있다.In the internal combustion engine 40, in particular, by amplifying the inflow of air relative to the fuel, it is possible to induce complete combustion, thereby improving energy efficiency and reducing the smoke emitted due to incomplete combustion.
또한 내연기관으로 유입되는 공기의 양을 증대시키면 그만큼 연료를 더 공급할 수 있게 된다. 그 결과 내연기관의 크기에 비하여 상대적으로 더욱 고출력을 얻을 수 있다. 자동차 엔진의 경우 동일한 크기와 무게의 엔진이 더 큰 출력을 발휘할 수 있기 때문에 연비향상의 효과를 얻을 수 있다.In addition, increasing the amount of air flowing into the internal combustion engine can provide more fuel. As a result, a relatively higher output can be obtained than the size of the internal combustion engine. In the case of automobile engines, the engine of the same size and weight can produce a greater power output, thereby improving fuel economy.
도 10은 기존의 보일러 시스템을 도시한 모식도이고, 도 11은 본 발명의 제3 실시예에 따른 열에너지 회수 시스템을 도시한 모식도로서, 보일러 시스템에 열교환기, 회수관 및 유체가속기가 구비된 열에너지 회수 시스템이다.10 is a schematic diagram showing a conventional boiler system, Figure 11 is a schematic diagram showing a heat energy recovery system according to a third embodiment of the present invention, the heat energy recovery with a heat exchanger, a recovery tube and a fluid accelerator in the boiler system System.
도 10을 참조하면, 기존의 보일러 시스템은 보일러(50)의 유입구를 통해 공기와 연료가 공급되고, 공급된 공기와 연료는 보일러(50) 내부에서 연소되며 열을 발생시킨다. 이러한 보일러(50)에는 물이 또한 외부에서 공급되어 유통되면서 상기 연소과정에서 발생된 열에너지를 흡수하여 기체(증기) 상태로 보일러(50)에서 배출되고, 이를 통해 난방 기능을 수행한다. 보일러(50)의 공기 유입구측에는 송풍기(52)가 구비되어 공기의 유입을 도모하고 있으며, 보일러(50)의 배출구 측에는 배풍기(53)가 구비되어 고온의 배기가스 배출을 도모하고 있다.Referring to FIG. 10, in the conventional boiler system, air and fuel are supplied through an inlet of the boiler 50, and the supplied air and fuel are burned in the boiler 50 and generate heat. The boiler 50 also absorbs the heat energy generated in the combustion process while being supplied and distributed from the outside to be discharged from the boiler 50 in a gas (vapor) state, thereby performing a heating function. A blower 52 is provided on the air inlet side of the boiler 50 to inlet air, and a blower 53 is provided on the outlet side of the boiler 50 to exhaust high-temperature exhaust gas.
도 11을 참조하면, 본 실시예에 따른 열에너지 회수 시스템은 보일러(50)의 전방(유입구측) 공기의 유입통로에 입력유체 가속기(58)가 구비되고, 상기 보일러(50)의 후방(배출구측) 배기가스 배출통로에 열교환기(56)와 출력유체 가속기(59)가 순차적으로 구비된다. 상기 열교환기(56)는 회수관(57)을 통하여 입력유체 가속기(58) 및 출력유체 가속기(59)와 각각 연결되며, 상기 열교환기(56) 내로 유통되면서 배기가스의 열에너지를 흡수한 작동유체(물)는 기화 상태로 상기 입력유체 가속기(58) 및 출력유체 가속기(59)로 각각 공급된다.Referring to FIG. 11, in the heat energy recovery system according to the present embodiment, an input fluid accelerator 58 is provided in an inlet passage of air (inlet side) of the front of the boiler 50, and a rear (outlet side) of the boiler 50 is provided. The heat exchanger 56 and the output fluid accelerator 59 are sequentially provided in the exhaust gas discharge passage. The heat exchanger 56 is connected to the input fluid accelerator 58 and the output fluid accelerator 59 through the recovery pipe 57, respectively, and is a working fluid that absorbs the heat energy of the exhaust gas while flowing into the heat exchanger 56. Water is supplied to the input fluid accelerator 58 and the output fluid accelerator 59 in a vaporized state, respectively.
본 실시예에 따른 열에너지 회수 시스템에 의하면, 배기가스와 함께 버려지는 폐열을 회수하여 입력유체 가속기(58)와 출력유체 가속기(59)를 구동함으로써 기존의 시스템에서 송풍기(52)와 고가의 배풍기(53)를 생략할 수 있으며, 이들 송풍기(52)와 배풍기(53)에서 소요되는 동력을 저감할 수 있다. 나아가 기계적으로 구동되는 송풍기(52)와 배풍기(53)를 생략함에 따라 유지보수 비용도 저감되는 효과를 기대할 수 있다.According to the heat energy recovery system according to the present embodiment, the waste heat discarded together with the exhaust gas is driven to drive the input fluid accelerator 58 and the output fluid accelerator 59 so that the blower 52 and the expensive blower in the existing system ( 53) can be omitted, and the power required by these blowers 52 and the blowers 53 can be reduced. Further, the omission of the mechanically driven blower 52 and the blower 53 can be expected to reduce the maintenance cost.
도 12는 기존의 직접연소방식 가스터빈 시스템을 도시한 모식도이고, 도 13은 기존의 간접연소방식 가스터빈 시스템을 도시한 모식도이며, 도 14는 본 발명의 제4 실시예에 따른 열에너지 회수 시스템을 도시한 모식도로서, 가스터빈 시스템에 열교환기, 회수관 및 유체가속기가 구비된 열에너지 회수 시스템이다.12 is a schematic diagram showing a conventional direct combustion gas turbine system, Figure 13 is a schematic diagram showing a conventional indirect combustion gas turbine system, Figure 14 is a thermal energy recovery system according to a fourth embodiment of the present invention As a schematic diagram, it is a heat energy recovery system provided with a heat exchanger, a recovery pipe, and a fluid accelerator in a gas turbine system.
도 12를 참조하면, 기존의 직접연소방식 가스터빈 시스템은 공기를 압축기(60)로 통과시켜 압축한 다음 연소실(61)로 공급하고, 연소실에는 연료를 함께 공급하여 연소시키며, 연소 후 발생되는 배기가스가 터빈(62)을 지나도록 함으로써, 상기 터빈(62)을 회전시켜 기계적인 동력을 얻는다. 상기 압축기(60)는 터빈(62)과 축으로 연결되어 상기 터빈(62)의 회전운동 에너지로부터 공기의 압축력을 얻을 수 있다.Referring to FIG. 12, the conventional direct combustion gas turbine system passes air through the compressor 60 to compress the air, and then supplies the air to the combustion chamber 61, and supplies the combustion chamber with fuel to burn the exhaust gas generated after combustion. By passing gas through the turbine 62, the turbine 62 is rotated to obtain mechanical power. The compressor 60 is connected to the turbine 62 and the shaft to obtain a compressive force of air from the rotational kinetic energy of the turbine 62.
도 13을 참조하면, 기존의 간접연소방식 가스터빈 시스템은 직접연소방식 가스터빈 시스템과 비교하여 연소실(61) 대신에 열교환기(63)를 배치하여 압축기(60)를 통과한 공기가 열교환기(63)를 통과하면서 열에너지를 얻고, 이렇게 열에너지를 얻은 배기가스가 터빈(62)을 지나도록 함으로써, 상기 터빈(62)을 회전시켜 기계적인 동력을 얻는다.Referring to FIG. 13, the conventional indirect combustion gas turbine system has a heat exchanger 63 disposed in place of the combustion chamber 61 in comparison with the direct combustion gas turbine system so that the air passing through the compressor 60 is transferred to the heat exchanger ( Thermal energy is obtained while passing through 63, and the exhaust gas thus obtained passes through the turbine 62, thereby rotating the turbine 62 to obtain mechanical power.
도 14를 참조하면, 본 실시예에 따른 열에너지 회수 시스템은 압축기(60)의 전방(유입구측) 공기의 유입통로에 입력유체 가속기(68)가 구비되고, 터빈(62)의 후방(배출구측) 배기가스 배출통로에 열교환기(66)와 출력유체 가속기(69)가 순차적으로 구비된다. 상기 열교환기(66)는 회수관(67)을 통하여 입력유체 가속기(68) 및 출력유체 가속기(69)와 각각 연결되며, 상기 열교환기(66) 내로 유통되면서 배기가스의 열에너지를 흡수한 작동유체(물)는 기화 상태로 상기 입력유체 가속기(68)와 출력유체 가속기(69)로 각각 공급된다.Referring to FIG. 14, in the heat energy recovery system according to the present embodiment, an input fluid accelerator 68 is provided in an inflow passage of air (inlet side) of the front of the compressor 60, and the rear (outlet side) of the turbine 62. The heat exchanger 66 and the output fluid accelerator 69 are sequentially provided in the exhaust gas discharge passage. The heat exchanger 66 is connected to the input fluid accelerator 68 and the output fluid accelerator 69 through a recovery pipe 67, respectively, and is a working fluid absorbing thermal energy of exhaust gas while being flowed into the heat exchanger 66. Water is supplied to the input fluid accelerator 68 and the output fluid accelerator 69 in a vaporized state, respectively.
본 실시예에 따른 열에너지 회수 시스템에서도, 터빈(62)을 거쳐 나오는 배기가스의 열에너지를 이용하여 입력유체가속기(68)와 출력유체 가속기(69)를 구동할 수 있으며, 그에 따른 가스터빈 시스템의 효율 향상을 기대할 수 있다.In the heat energy recovery system according to the present embodiment, the input fluid accelerator 68 and the output fluid accelerator 69 may be driven using the heat energy of the exhaust gas passing through the turbine 62, and thus the efficiency of the gas turbine system. You can expect an improvement.
도 15는 연료전지의 작용을 설명하기 위하여 도시한 모식도이고, 도 16은 기존의 연료전지 시스템을 도시한 모식도이며, 도 17은 본 발명의 제5 실시예에 따른 열에너지 회수 시스템을 연료전지에 적용하여 도시한 모식도이다.FIG. 15 is a schematic diagram illustrating the operation of a fuel cell, FIG. 16 is a schematic diagram illustrating a conventional fuel cell system, and FIG. 17 is a thermal energy recovery system according to a fifth embodiment of the present invention. It is a schematic diagram shown.
도 15를 참조하면, 연료전지(모듈)는 기본적으로 전해질막(71)을 사이에 두고 연료극(75)과 공기극(73)이 접하도록 구성된다. 상기 연료극(75)으로는 연료인 수소(H2)가 공급되어 수소이온(H+)과 전자(e-)로 분해되며, 이 때 수소이온(H+)은 전해질막(71)을 거쳐 공기극(73)으로 이동하고 전자(e-)는 외부 회로를 거쳐 전류를 발생시킨다. 공기극(73)에서는 수소이온(H+)과 전자(e-), 산소(O2)가 결합하여 열과 함께 물(H2O)이 발생된다.Referring to FIG. 15, the fuel cell (module) is basically configured such that the anode 75 and the cathode 73 are in contact with the electrolyte membrane 71 interposed therebetween. Wherein the fuel electrode (75) is a fuel of hydrogen (H 2) supplied to the hydrogen ion (H +) and electrons (e -), the air electrode through the decomposed with, where hydrogen ions (H +) is an electrolyte membrane (71) Moving to 73, electrons (e ) generate current through an external circuit. In the cathode 73, hydrogen ions (H + ), electrons (e ), and oxygen (O 2 ) are combined to generate water (H 2 O) together with heat.
도 16을 참조하면, 기존의 연료전지 시스템은 연료전지(모듈)(80)의 유입구를 통해 공기(O2)와 연료(H2)가 공급되고, 공급된 공기(O2)와 연료(H2)는 상기 연료전지(모듈)(80) 내부에서 전기화학반응을 통해 전력을 생산하고 물(H2O)과 열을 포함한 배기가스를 배출한다. 상기 연료전지(모듈)(80)의 공기가 유입되는 통로에는 송풍기(82)가 구비되어 공기의 유입을 도모하며, 배기가스가 배출되는 통로에는 배풍기(83)가 구비되어 배기가스의 배출을 도모할 수 있다. 이 때, 상기 연료전지(모듈)(80)에서 생산된 전력의 일부는 송풍기(82)를 작동하는데 쓰일 수 있다. 배기가스의 온도는 MCFC의 경우 대략 섭씨 650도, SOFC의 경우 대략 섭씨 1,000도 수준이 된다.Referring to FIG. 16, in the conventional fuel cell system, air O 2 and fuel H 2 are supplied through an inlet of a fuel cell (module) 80, and the supplied air O 2 and fuel H are supplied. 2 ) produces power through an electrochemical reaction in the fuel cell (module) 80 and discharges exhaust gas including water (H 2 O) and heat. A blower 82 is provided in the passage through which the air of the fuel cell (module) 80 flows in order to introduce the air, and a exhaust fan 83 is provided in the passage in which the exhaust gas is discharged, thereby exhausting the exhaust gas. can do. At this time, a part of the power produced by the fuel cell (module) 80 may be used to operate the blower 82. The temperature of the exhaust gas is about 650 degrees Celsius for MCFC and about 1,000 degrees Celsius for SOFC.
도 17을 참조하면, 본 실시예에 따른 열에너지 회수 시스템은 연료전지(모듈)(80)의 전방(유입구측) 공기의 유입통로에 입력유체 가속기(88)가 구비되고, 상기 연료전지(모듈)(80)의 후방(배출구측) 배기가스 배출통로에 열교환기(86)와 출력유체 가속기(89)가 순차적으로 구비된다. 상기 열교환기(86)는 회수관(87)을 통하여 입력유체 가속기(88) 및 출력유체 가속기(89)와 각각 연결되며, 상기 열교환기(86) 내로 유통되면서 배기가스의 열에너지를 흡수한 작동유체(물)는 기화 상태로 상기 입력유체 가속기(88)와 출력유체 가속기(89)로 각각 공급된다.Referring to FIG. 17, in the heat energy recovery system according to the present embodiment, an input fluid accelerator 88 is provided in an inflow passage of air (inlet side) of the front of the fuel cell (module) 80, and the fuel cell (module) The heat exchanger 86 and the output fluid accelerator 89 are sequentially provided in the rear (outlet side) exhaust gas discharge passage of the 80. The heat exchanger 86 is connected to the input fluid accelerator 88 and the output fluid accelerator 89 through a recovery pipe 87, respectively, and is a working fluid absorbing thermal energy of exhaust gas while being flowed into the heat exchanger 86. Water is supplied to the input fluid accelerator 88 and the output fluid accelerator 89 in a vaporized state, respectively.
연료전지 시스템의 효율은 MCFC의 경우 대략 53% 수준이며, 연료전지 시스템의 생산된 전력 중 대략 10%를 송풍기(82)와 배풍기(83)가 소모하고 있다. 따라서 송풍기(82)와 배풍기(83)를 사용하지 않는다면 효율은 10% 이상 향상될 수 있다. 예를 들어, 250kw급 연료전지의 스택(stack)이 생산하는 전력은 280kw인데, 그 중 30kw를 송풍기, 배풍기 등을 구동하기 위해 연료전지 시스템 자체에서 소모되므로, 순 생산 전력은 250kw가 되는 것이다. 즉, 본 실시예의 시스템에 구비되는 유체가속기는 별도의 소요동력을 소모하지 않으므로 그만큼의 효율을 향상시킬 수 있게 된다.The efficiency of the fuel cell system is about 53% in the case of MCFC, and the blower 82 and the blower 83 consume approximately 10% of the generated power of the fuel cell system. Therefore, if the blower 82 and the blower 83 are not used, the efficiency may be improved by 10% or more. For example, a stack of 250-kw fuel cells produces 280 kw, of which 30 kw is consumed by the fuel cell system itself to drive a blower, a blower, etc., so that the net power is 250 kw. That is, since the fluid accelerator provided in the system of the present embodiment does not consume a separate required power, the efficiency can be improved.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것이 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.

Claims (13)

  1. 입력유체를 유입하는 유입구와 출력유체를 배출하는 유출구를 구비하고, 상기 입력유체에 에너지를 전달하여 상기 입력유체의 상태를 변화시키거나 상기 입력유체가 가진 에너지를 다른 형태의 에너지로 변환시키는 기관;An engine having an inlet for inflow of the input fluid and an outlet for discharging the output fluid, the engine for transmitting energy to the input fluid to change the state of the input fluid or to convert the energy of the input fluid into other forms of energy;
    상기 기관의 유입구에 연결되며, 상기 입력유체를 유통시켜 상기 기관에 공급하는 유입관;An inlet pipe connected to an inlet of the engine and circulating the input fluid to supply to the engine;
    상기 유입관에 연결 설치되어 상기 기관으로 유입되는 상기 입력유체의 이송 속도를 증가시키는 입력유체가속기;An input fluid accelerator connected to the inlet pipe to increase a conveying speed of the input fluid flowing into the engine;
    상기 기관의 유출구에 연결되며, 상기 기관에서 상태가 변한 출력유체를 상기 기관 외부로 유통시키는 유출관;An outlet pipe connected to an outlet of the engine and configured to distribute an output fluid whose state is changed in the engine to the outside of the engine;
    상기 유출관에 장착되며, 작동유체를 유통시키면서 상기 출력유체로부터 열에너지를 회수하는 열교환기;A heat exchanger mounted to the outlet pipe and configured to recover thermal energy from the output fluid while circulating a working fluid;
    상기 열교환기와 상기 입력유체가속기를 연결하며, 상기 출력유체로부터 열에너지를 얻어 상태가 변화된 상기 작동유체를 상기 입력유체가속기로 공급하는 회수관을 포함하는 열에너지 회수 시스템.And a recovery tube connecting the heat exchanger and the input fluid accelerator to supply the working fluid whose state is changed by obtaining thermal energy from the output fluid to the input fluid accelerator.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 입력유체가속기는 관(管) 형상으로 이루어지며, 중심을 향하여 만곡된 볼록부와, 상기 회수관과 상기 볼록부의 내부를 연통시키는 흡입노즐을 갖는 가속부를 포함하는 열에너지 회수 시스템.The input fluid accelerator has a tubular shape, and includes a convex portion curved toward the center, and an acceleration portion having an intake nozzle for communicating the interior of the convex portion with the recovery tube.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 열교환기는 유입구와 배출구를 구비하고,The heat exchanger has an inlet and an outlet,
    상기 작동유체는 상기 열교환기의 유입구를 통해 유입되어 상기 출력유체로부터 열에너지를 전달받아 기화 상태로 상기 배출구를 통해 배출되며,The working fluid is introduced through the inlet of the heat exchanger and receives heat energy from the output fluid and is discharged through the outlet in a vaporized state.
    상기 회수관은 상기 열교환기의 배출구와 연통되어 상기 기화 상태의 작동유체를 상기 입력유체가속기로 공급하는 열에너지 회수 시스템. The recovery pipe is in communication with the outlet of the heat exchanger is a thermal energy recovery system for supplying the working fluid in the vaporized state to the input fluid accelerator.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 열교환기의 후방에서 상기 유출관에 연결 설치되어 상기 출력유체의 이송 속도를 증가시키는 출력유체가속기를 포함하는 열에너지 회수 시스템.And an output fluid accelerator configured to be connected to the outlet pipe at the rear of the heat exchanger to increase a transfer speed of the output fluid.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 출력유체가속기는 관(管) 형상으로 이루어지며, 중심을 향하여 만곡된 볼록부와, 상기 회수관과 상기 볼록부의 내부를 연통시키는 흡입노즐을 갖는 가속부 를 포함하는 열에너지 회수 시스템.The output fluid accelerator has a pipe shape, and includes a convex portion curved toward the center, and an acceleration portion having an intake nozzle for communicating the interior of the condensation portion with the recovery tube.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 열교환기의 배출구가 상기 출력유체가속기의 흡입노즐과 연결되어 기화된 상기 작동유체가 상기 출력유체가속기로 공급되는 열에너지 회수 시스템. And a discharge port of the heat exchanger is connected to a suction nozzle of the output fluid accelerator to supply the vaporized working fluid to the output fluid accelerator.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 기관은 복수 개의 서로 다른 유입구를 구비하며, 상기 유입관은 상기 서로 다른 유입구에 각각 연결되어 서로 다른 종류의 입력유체를 공급하는 열에너지 회수 시스템.The engine has a plurality of different inlets, the inlet pipe is connected to each of the different inlets for the thermal energy recovery system for supplying different types of input fluid.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 작동유체는 물인 열에너지 회수 시스템.Wherein said working fluid is water.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 기관은 외부로부터 전기적 또는 기계적 에너지를 공급받아 상기 입력유체를 압축하는 압축기인 열에너지 회수 시스템.The engine is a heat energy recovery system is a compressor for compressing the input fluid by receiving electrical or mechanical energy from the outside.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 기관은 상기 입력유체로 연료와 공기가 유입되어 상기 기관 내부에서 폭발하면서 외부로 동력을 발생시키는 내연기관인 열에너지 회수 시스템.The engine is a heat energy recovery system is an internal combustion engine that generates power to the outside while the fuel and air flows into the input fluid to explode inside the engine.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 기관은 상기 입력유체로 연료와 공기가 유입되어 상기 기관 내부에서 연소하면서 열에너지를 발생시켜 상기 기관을 유통하는 물을 기화시켜 증기 상태로 배출하는 보일러인 열에너지 회수 시스템.Wherein the engine is a heat energy recovery system is a boiler to inject the fuel and air into the input fluid to generate heat energy while burning inside the engine to vaporize the water flowing through the engine to discharge in the steam state.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 기관은 열에너지를 이용해 기계동력을 발생시키는 가스터빈인 열에너지 회수 시스템.The engine is a heat energy recovery system that is a gas turbine that generates mechanical power using heat energy.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 기관은 상기 입력유체로 공기와 연료가 유입되어 상기 기관 내부에서 전기화학작용을 일으켜 전기를 발생시키는 연료전지인 열에너지 회수 시스템.The engine is a heat energy recovery system that is a fuel cell that generates electricity by introducing air and fuel into the input fluid to cause electrochemical action inside the engine.
PCT/KR2009/000292 2008-09-23 2009-01-20 Thermal energy recovery system WO2010035927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080093061 2008-09-23
KR10-2008-0093061 2008-09-23

Publications (1)

Publication Number Publication Date
WO2010035927A1 true WO2010035927A1 (en) 2010-04-01

Family

ID=42059907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000292 WO2010035927A1 (en) 2008-09-23 2009-01-20 Thermal energy recovery system

Country Status (1)

Country Link
WO (1) WO2010035927A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8844291B2 (en) 2010-12-10 2014-09-30 Vaporgenics Inc. Universal heat engine
CN107364309A (en) * 2017-08-22 2017-11-21 青岛大学 A kind of residual heat of tail gas of automobile recycling system
US11137177B1 (en) 2019-03-16 2021-10-05 Vaporgemics, Inc Internal return pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402938A (en) * 1993-09-17 1995-04-04 Exair Corporation Fluid amplifier with improved operating range using tapered shim
KR19980036793A (en) * 1996-11-19 1998-08-05 박병재 Exhaust Purification Efficiency Improvement Device
JP2889915B2 (en) * 1989-03-02 1999-05-10 カール ヘインツ メーゲンビヤー Water evaporator
JP2001165002A (en) * 1999-11-09 2001-06-19 Caterpillar Inc Intake venturi for exhaust gas circulating system in internal combustion engine
KR100708369B1 (en) * 2006-03-07 2007-04-19 안재혁 Controlling system for exhausting waste gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2889915B2 (en) * 1989-03-02 1999-05-10 カール ヘインツ メーゲンビヤー Water evaporator
US5402938A (en) * 1993-09-17 1995-04-04 Exair Corporation Fluid amplifier with improved operating range using tapered shim
KR19980036793A (en) * 1996-11-19 1998-08-05 박병재 Exhaust Purification Efficiency Improvement Device
JP2001165002A (en) * 1999-11-09 2001-06-19 Caterpillar Inc Intake venturi for exhaust gas circulating system in internal combustion engine
KR100708369B1 (en) * 2006-03-07 2007-04-19 안재혁 Controlling system for exhausting waste gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8844291B2 (en) 2010-12-10 2014-09-30 Vaporgenics Inc. Universal heat engine
CN107364309A (en) * 2017-08-22 2017-11-21 青岛大学 A kind of residual heat of tail gas of automobile recycling system
CN107364309B (en) * 2017-08-22 2023-08-04 青岛大学 Automobile exhaust waste heat recycling system
US11137177B1 (en) 2019-03-16 2021-10-05 Vaporgemics, Inc Internal return pump

Similar Documents

Publication Publication Date Title
RU2316083C2 (en) Solid-state oxide fuel cell system
AU2011285093B2 (en) A solid oxide fuel cell system
WO2021230562A1 (en) Ammonia-based solid oxide fuel cell (sofc) system
EP0055011B1 (en) High temperature solid electrolyte fuel cell generator
EP0536910B1 (en) Solid oxide fuel cell generator
JP3041048B2 (en) Method and apparatus for operating a fuel cell structure
US6689499B2 (en) Pressurized solid oxide fuel cell integral air accumular containment
CN1292157A (en) Integrated power module
EP0133747B1 (en) Improved fuel cell generators
SK279491B6 (en) Method and installation for generating electrical energy
US6989209B2 (en) Power generation method
US20100062301A1 (en) System having high-temperature fuel cells
WO2010035927A1 (en) Thermal energy recovery system
US20140202167A1 (en) Power generation system
CN117174949B (en) Coupling transcritical CO 2 SOFC thermal management system with combined heat and power supply
WO2013183854A1 (en) Combined fuel cell and boiler system
CN212508458U (en) Low-temperature magnetization degradation furnace adopting advanced oxidation technology
US20030207163A1 (en) System for generating electricity
KR20120111169A (en) Air supply apparatus for fuel cell and fuel cell system having the same
CN111288430A (en) Movable waste heat steam power generation device and waste heat steam utilization method
JP2916054B2 (en) Solid oxide fuel cell stack
CN110854419B (en) Direct flame fuel cell power generation device using residual fuel and working method
CN213556398U (en) High-efficient mixing arrangement of RTO waste gas
CN114961909B (en) Photo-thermal steam cycle and gas turbine steam cycle combined power generation system
CN1216434C (en) Two-stage anode circulation preheating fuel cell power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09816320

Country of ref document: EP

Kind code of ref document: A1