WO2010035600A1 - Pain relief device - Google Patents

Pain relief device Download PDF

Info

Publication number
WO2010035600A1
WO2010035600A1 PCT/JP2009/064701 JP2009064701W WO2010035600A1 WO 2010035600 A1 WO2010035600 A1 WO 2010035600A1 JP 2009064701 W JP2009064701 W JP 2009064701W WO 2010035600 A1 WO2010035600 A1 WO 2010035600A1
Authority
WO
WIPO (PCT)
Prior art keywords
stimulation signal
stimulation
pain
detection
unit
Prior art date
Application number
PCT/JP2009/064701
Other languages
French (fr)
Japanese (ja)
Inventor
美仁 福井
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008246555A external-priority patent/JP2010075401A/en
Priority claimed from JP2009033020A external-priority patent/JP2010187775A/en
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2010035600A1 publication Critical patent/WO2010035600A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36082Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease

Definitions

  • the present invention relates to a pain relieving apparatus that relieves pain by stimulating nerves, and particularly relates to a pain relieving apparatus that can adjust stimulation based on circulatory dynamics for pulsatile pain.
  • electrical stimulation therapy that relieves pain by electrically stimulating nerves is effective.
  • This method is effective when a predetermined effect cannot be obtained by conventional drug therapy, nerve block therapy, or surgical therapy, or when the treatment cannot be continued due to side effects or the like.
  • This electrical stimulation therapy includes spinal cord electrical stimulation therapy and peripheral nerve electrical stimulation therapy.
  • Spinal cord electrostimulation therapy is a method of performing electrical stimulation by placing an electrode lead outside the spinal dura mater that covers the spinal cord.
  • the peripheral nerve electrical stimulation therapy is a therapy for performing electrical stimulation by placing an electrode lead directly on the peripheral nerve or subcutaneously near the peripheral nerve. In these spinal cord electrical stimulation therapy and peripheral nerve electrical stimulation therapy, pain can be alleviated by interfering with pain transmission through the spinal cord or peripheral nerve using electrical stimulation.
  • Migraine is a chronic headache that occurs on one side (sometimes both sides) of the head, and may be accompanied by nausea, vomiting, photosensitivity, and hypersensitivity. In general, there are many women in their 20s and 50s, and the number of patients is said to be about four times that of men. Cluster headache is more common in men and is the most painful of all chronic headaches. Headache occurs on one side of the head and is once or twice a year, but daily headaches occur every day for a certain period (often 1-2 months). Migraine and cluster headache are characterized by painful pulsation, and it is known that the heartbeat pulsates with the heartbeat like a pulse. In recent years, trials of peripheral nerve electrical stimulation therapy for migraine and cluster headache have been made.
  • occipital nerve which is a peripheral nerve that exits from the cervical vertebrae Nos. 2 and 3 and travels toward the parietal region of the occipital region.
  • electrical stimulation is usually performed by placing electrodes under the neck of the neck where the occipital nerve is running, and the stimulation parameters such as voltage and frequency at the time of stimulation depend on the intensity of pain. Had to be changed manually.
  • Patent Document 1 intends to relieve a headache with a leadless stimulation device implanted near the occipital nerve.
  • This Patent Document 1 particularly discloses a method for adjusting stimulation parameters using a sensor. Is disclosed.
  • the present invention has been made in view of the above points, and measures whether circulatory dynamics such as electrocardiogram, pressure pulse wave or heart sound are measured, and is stimulation performed for a certain period in synchronization with detection of ventricular contraction or blood output?
  • Another object of the present invention is to provide a pain relieving device that can relieve pain by increasing the intensity of stimulation over normal time for a certain period.
  • the present invention for solving the above problems includes a stimulation signal generation unit that generates a stimulation signal for electrically stimulating a nerve, a circulation dynamics measurement sensor that measures circulation dynamics, a stimulation signal generation unit, and circulation dynamics measurement A control unit connected to the sensor, and the control unit generates a stimulation signal from the stimulation signal generation unit in response to an output from the hemodynamic measurement sensor in order to treat pulsatile pain. I try to control it.
  • the electrically stimulated nerve is a spinal cord or a peripheral nerve such as a occipital nerve.
  • the pulsatile pain is a migraine or cluster headache
  • the circulatory dynamics measured by the circulatory dynamics measuring unit is any one of electrocardiogram, pressure pulse wave, and heart sound.
  • control unit when the control unit detects ventricular contraction or blood output, generation of an electrical stimulation signal may be started, or the control unit may start ventricular contraction or blood.
  • the intensity of the electrical stimulation signal may be increased.
  • the parameters of the electrical stimulation signal depend on at least one of frequency, pulse width, pulse current, and pulse voltage, or a plurality of combinations selected from these.
  • the nerve can be stimulated at the timing of the heart ventricle contraction or the blood pumping out of the heart in synchronization with the pulsatile pain cycle.
  • the nerve can be stimulated for a predetermined stimulation period in synchronization with the pulsation of pain, so that pain having a pulsating surname can be relieved accurately and discomfort given to the patient can be reduced. it can. Since the intensity of the electrical stimulation signal for stimulating the nerve is increased only during the stimulation period, there is also an effect that the battery life can be extended.
  • the pain relieving device is generally sealed in a biocompatible container and implanted in the body.
  • This container is provided with a connector for exchanging signals with the outside, and is connected to a sensor and an electrode lead.
  • the electrode lead is guided to a nerve site to be stimulated through a subcutaneous tunnel, and nerve stimulation is performed by a stimulation electrode provided on the electrode lead.
  • the chest, abdomen, or neck is generally subcutaneous.
  • FIG. 1 is a functional block diagram showing a pain alleviating apparatus according to the first embodiment of the present invention.
  • the pain relieving apparatus 101 detects heart ventricular contraction or blood output from the heart, and performs electrical stimulation on peripheral nerves at a timing synchronized with the detected ventricular contraction. .
  • the contraction of the ventricle is detected by detecting the pumping of blood from the ventricle. Therefore, “ventricular contraction” and “blood output” mean the same thing.
  • the pain relieving apparatus 101 includes a circulatory dynamic measurement sensor 102, a control unit 103, and a stimulation signal generation unit 104 that applies an electrical stimulation signal to a peripheral nerve via an electrode lead (not shown).
  • the circulatory dynamic measurement sensor 102 is for obtaining the heartbeat timing of the patient in which the pain relieving apparatus 101 is implanted, and is mainly composed of a sensor, an amplifier, and a filter for noise removal. It is connected to the control unit 103 so that it can be output to the control unit 103 as an electrical signal.
  • Typical examples of circulatory dynamics include electrocardiograms, pressure pulse waves, or heart sounds.
  • the sensor part of the circulatory dynamic measurement sensor 102 is disposed at a place (in vivo) corresponding to the type of circulatory dynamics to be measured.
  • the control unit 103 controls the stimulation signal generation unit 104 based on the electrical signal indicating the circulation dynamics input from the circulation dynamic measurement sensor 102.
  • the stimulation signal generation unit 104 generates an electrical stimulation signal based on an instruction from the control unit 103, and this electrical stimulation signal is applied to the peripheral nerve via an electrode lead (not shown).
  • control unit 103 includes a first detection unit 105, a timer 106, a stimulation period setting value storage unit 107, and a comparison unit 108.
  • the first detection unit 105 is electrically connected to the circulatory dynamic measurement sensor 102 and the stimulus signal generation unit 104.
  • the first detection unit 105 detects the contraction of the ventricle based on the electrical signal indicating the circulation dynamics input from the circulation dynamic measurement sensor 102. Then, at the timing when the contraction of the ventricle is detected, the stimulation signal generation unit 104 generates an electrical stimulation signal.
  • a signal indicating the detection hereinafter referred to as “blood output detection signal” is output to the stimulation signal generation unit 104 at the timing when the ventricular contraction is detected (hereinafter referred to as “heartbeat timing”).
  • the first detection unit 105 operates the timer 106 at the timing when the contraction of the ventricle is detected. Details of detection of ventricular contraction will be described later with reference to FIG.
  • the timer 106 measures the elapsed time from the contraction of the ventricle detected by the first detection unit 105 and inputs the elapsed time to the comparison unit 108.
  • the stimulation period setting value storage unit 107 stores stimulation period setting values in advance. This stimulation period set value is preferably shorter than the interval between successive heartbeats, and ideally about 0.3 seconds.
  • the comparison unit 108 is a so-called comparator that compares two inputs and switches the output depending on which is larger. That is, the comparison unit 108 compares the elapsed time from the timer 106 with the stimulation period setting value stored in the stimulation period setting value storage unit 107. Then, when the elapsed time becomes larger than the stimulation period setting value, a signal indicating that the elapsed time becomes larger than the stimulation period setting value is generated and output to the stimulation signal generation unit 104. The stimulation signal generation unit 104 stops the generation of the electrical stimulation signal with the input of the signal as a trigger.
  • FIG. 2 is a diagram showing various circulatory dynamic electrical signals measured by the circulatory dynamic measurement sensor 102.
  • FIG. 2A is an electrocardiogram showing a time-series change of an electric signal of the electrocardiogram.
  • the vertical axis represents the signal level of an electrical signal indicating electrocardiogram.
  • the horizontal axis is the time axis.
  • An electrical signal indicating electrocardiogram is a signal having a predetermined period.
  • the electric signal indicating the electrocardiogram is composed of five waves, P wave, Q wave, R wave, S wave, and T wave, and conspicuous Q wave, R wave, and S wave are collectively called QRS wave. .
  • the ventricular contraction of the heart occurs at the timing when this QRS wave is generated. It is known that this substantially coincides with the timing of blood discharge from the heart.
  • the first detection unit 105 detects the timing of ventricular contraction of the heart by detecting the QRS wave.
  • a circuit including a filter that passes a frequency range of the QRS wave and a comparator in which a predetermined threshold is set can be used.
  • FIG. 2B is a diagram illustrating a time-series change in the electrical signal of the pressure pulse wave.
  • the vertical axis represents the signal level of the electrical signal indicating the pressure pulse wave.
  • the horizontal axis is a time axis common to the electrocardiogram of FIG. 2A.
  • the electrical signal indicating the pressure pulse wave is a signal representing a change in blood pressure in the blood vessel.
  • the position where the signal level of the electric signal indicating the pressure pulse wave increases rapidly indicates the timing at which blood is pumped from the heart.
  • the first detection unit 105 detects the position where the signal level of the electrical signal indicating the pressure pulse wave increases rapidly, thereby blood from the heart. Detect the timing of the beat.
  • the position where the signal level of the electric signal indicating the pressure pulse wave increases abruptly can also be detected by a circuit comprising a filter and a comparator in which a predetermined threshold is set, as in the case of an electrocardiogram.
  • FIG. 2C is a heart sound diagram showing an electrical signal of a heart sound.
  • the vertical axis represents the signal level of an electrical signal indicating heart sound
  • the horizontal axis represents a time axis common to the electrocardiogram in FIG. 2A.
  • the electrical signal indicating the heart sound is also a signal having a predetermined cycle.
  • the electrical signal indicating the heart sound is composed of three waves, a heart sound I sound, a heart sound II sound, and a heart sound III sound.
  • Heart sound I is a sound generated when the tricuspid valve between the right and right ventricles and the mitral valve between the left and left ventricles close at the beginning of the ventricular systole. It has the feature that it can be heard in line with the QRS wave. In other words, ventricular contraction occurs at the timing when the heart sound I sound is generated, which substantially coincides with the timing of blood discharge from the heart.
  • Heart sound II sound is generated when the pulmonary valve and aortic valve close at the beginning of the ventricular diastole.
  • the heart sound II sound is characterized by being generated after the T wave of the electrocardiogram.
  • the heart sound III sound is a sound that fills the ventricle with blood when the ventricle expands.
  • the heart sound III sound is a weak signal compared to the heart sound I sound and the heart sound II sound.
  • the first detection unit 105 detects the timing of the ventricular contraction of the heart by detecting the heart sound I sound. Since the heart sound III sound is weaker than the heart sound I sound and the heart sound II sound, only the heart sound I sound and the heart sound II sound can be extracted by a filter and a comparator in which a predetermined threshold is set.
  • the period from the heart sound I to the heart sound II sound is short compared to the heartbeat cycle, after detecting the heart sound I sound, during a predetermined period corresponding to the period from the heart sound I to the heart sound II sound.
  • the electrical stimulation signal used for stimulation of the peripheral nerve is generally a burst wave by a rectangular pulse train.
  • FIG. 3 is a waveform diagram showing a time-series change when a burst wave is used as the electrical stimulation signal.
  • the vertical axis represents the signal level of the electrical stimulation signal, that is, the voltage.
  • the horizontal axis is a time axis common to FIGS. 2A to 2C.
  • each vertical line represents an individual rectangular pulse, and the reciprocal of the interval between adjacent vertical lines represents the frequency.
  • a period during which the stimulation signal generation unit 104 generates an electrical stimulation signal is referred to as a “stimulation period”.
  • the timing at which the stimulation period starts that is, the timing at which the stimulation signal generator 104 starts generating the electrical stimulation signal coincides with the detection of the QRS wave in the electrocardiogram shown in FIG. 2A.
  • the timing at which the stimulation period ends that is, the timing at which the stimulation signal generation unit 104 stops generating the electrical stimulation signal is stored in the stimulation period setting value storage unit 107 for about 0.3 seconds from the start of the stimulation period. Equal to the stimulation period setting value.
  • the strength with which the electrical stimulation signal stimulates the peripheral nerve is preferably changed according to the degree of pain of the patient according to the electrical stimulation parameter of the electrical stimulation signal.
  • the pulse width and pulse voltage (pulse current when using a constant current pulse) or the interval (frequency) of each rectangular pulse of the burst wave used for the electrical stimulation signal is changed. By adjusting the strength to stimulate the peripheral nerve.
  • FIG. 4 is a flowchart showing an operation flow of the pain alleviating apparatus 101 according to the first embodiment of the present invention.
  • step S11 when the sensor portion of the circulatory dynamic measurement sensor 102 is implanted at a predetermined position in the living body and the pain alleviating apparatus 101 becomes available (step S11), the electrical stimulation parameter of the stimulation signal generation unit 104 is changed.
  • Initialization is performed (step S12). That is, the electrical stimulation parameters such as frequency, pulse width, pulse current, and pulse voltage are set to initial values.
  • This initialized state is a state in which the stimulus signal generation unit 104 does not operate.
  • the circulatory dynamics measurement sensor 102 measures an electrical signal indicating the circulatory dynamics via a sensor installed at a predetermined location of the living body (step S13), and the electrical signal indicating the circulatory dynamics is measured by the control unit 103.
  • One detection unit 105 outputs the result.
  • the first detection unit 105 checks whether or not ventricular contraction is detected based on the electrical signal indicating the circulatory dynamics input from the circulatory dynamic measuring sensor 102 (step S14). If ventricular contraction is not detected (NO in step S14), the first detection unit 105 waits until ventricular contraction is detected.
  • the first detection unit 105 stops the measurement of the circulatory dynamics by the circulatory dynamic measurement sensor 102 (step S15). Then, the first detection unit 105 generates a blood output detection signal and outputs this blood output detection signal to the stimulation signal generation unit 104.
  • the stimulation signal generation unit 104 generates an electrical stimulation signal with the input of the blood output detection signal as a trigger, and starts stimulation of the peripheral nerve by the electrical stimulation signal (step S16). Further, the first detection unit 105 starts the timer 106 simultaneously with the start of stimulation of the peripheral nerve, that is, detection of ventricular contraction, and starts counting time from detection of ventricular contraction (step S17). Then, the counted time is input to the comparison unit 108.
  • the comparison unit 108 compares the time from the detection of ventricular contraction input from the timer 106 with the stimulation period setting value stored in advance in the stimulation period setting value storage unit 107, and which value is It is confirmed whether it is larger (step S18). If the time from the detection of the contraction of the ventricle is smaller than the stimulation period setting value (NO in step S18), the nerve stimulation from the stimulation signal generation unit 104 is continued until this time reaches the stimulation period setting value.
  • the comparison unit 108 stops the operation of the stimulation signal generation unit 104. That is, the stimulation signal generation unit 104 stops the stimulation by the electrical stimulation signal for the peripheral nerve (step S19).
  • step S13 After the above processing is completed, the processing returns to step S13 and the processing from step S13 to step S19 is repeated.
  • nerves are stimulated by an electrical stimulation signal in synchronism with the contraction of the heart's ventricle (the pumping of blood from the heart). Pain occurs in synchronization with the pumping of blood, so stimulating nerves in synchronization with the pulsation of pain can alleviate pain with pulsation and reduce discomfort for the patient. It becomes possible to reduce.
  • the electrical stimulation signal is generated only for a predetermined stimulation period from the time when the heart ventricle contracts (blood from the heart). In other words, the stimulus signal is not generated during a period of low necessity. This has the effect of extending the life of the battery compared to the conventional one and reducing the risk of side effects.
  • FIG. 5 is a functional block diagram showing a pain alleviating apparatus according to the second embodiment of the present invention.
  • the pain alleviating apparatus 501 of the present embodiment always stimulates the peripheral nerve at a predetermined frequency f1, and when there is contraction of the heart ventricle (blood from the heart), the frequency f2 higher than the frequency f1.
  • the pain alleviating apparatus 501 sets the electrical stimulus signal generated by the stimulus signal generation unit 104 to a stimulus having a frequency f1 that is a relatively weak electrical stimulus or a stimulus having a frequency f2 that is a stronger electrical stimulus.
  • a parameter adjustment unit 502 is added to the pain alleviating apparatus 101 shown in FIG.
  • the parameter adjustment unit 502 is electrically connected to the first detection unit 105 and the comparison unit 108.
  • the parameter adjustment unit 502 changes the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 based on the outputs from the first detection unit 105 and the comparison unit 108.
  • the parameter adjustment unit 502 functions to provide the stimulation signal generation unit 104 with a signal for changing the frequency (parameter) of the electrical stimulation signal (hereinafter referred to as “stimulation intensity change signal”). It will be.
  • the parameter adjustment unit 502 sets the frequency of the electrical stimulation signal to be higher than the normal frequency f1 at the timing when the first detection unit 105 detects the contraction of the ventricle of the heart (the pumping of blood from the heart).
  • a stimulus intensity change signal for setting the frequency f2 is given to the stimulus signal generator 104.
  • the parameter adjustment unit 502 increases the frequency of the electrical stimulation signal approximately 0.3 seconds after the first detection unit 105 detects the contraction of the ventricle of the heart (the output from the heart).
  • a stimulus intensity change signal for returning from the frequency f2 to the lower frequency f1 is provided to the stimulus signal generator 104. This time of 0.3 seconds is a time corresponding to the stimulation period setting value stored in the stimulation period setting value storage unit 107.
  • FIG. 6 is a waveform diagram showing a time-series change when a burst wave is used as the electrical stimulation signal.
  • the vertical axis represents the signal level of the electrical stimulation signal, that is, the voltage.
  • the horizontal axis is a time axis.
  • each vertical line represents an individual rectangular pulse, and the reciprocal of the interval between the adjacent vertical lines represents the frequency of the electrical stimulation signal.
  • the stimulation intensity of the electrical stimulation signal is increased. In this way, a period in which parameters such as frequency and voltage are changed is referred to as a “stimulation period”.
  • the timing at which the stimulation period starts that is, the timing at which the stimulation signal generator 104 starts generating an electrical stimulation signal having a high frequency f2 coincides with the timing at which the QRS wave in the electrocardiogram shown in FIG. 2A is detected.
  • the timing at which the stimulation period ends that is, the timing at which the stimulation signal generation unit 104 returns to the electrical stimulation signal having the low frequency f1 is stored in the stimulation period setting value storage unit 107 for about 0.3 seconds from the start of the stimulation period. Set to the stimulation period setting value.
  • the degree of strength with which the electrical stimulation signal stimulates the peripheral nerve depends on the stimulation frequency, and the stimulation intensity increases as the frequency increases.
  • FIG. 7 is a flowchart showing a flow of operations of the pain alleviating apparatus 501 in the second embodiment of the present invention.
  • the stimulation signal generation unit 104 uses an electrical stimulation parameter.
  • a certain pulse width, pulse current, and pulse voltage are set to initial values, and the parameter adjusting unit 502 supplies a signal for setting the frequency of the electrical stimulation signal to f1 to the stimulation signal generating unit 104 so that the frequency of the electrical stimulation parameter is initialized. It becomes.
  • the stimulation signal generation unit 104 generates an electrical stimulation signal with the frequency f1, and stimulates the peripheral nerve with the electrical stimulation signal with the frequency f1 (step S23).
  • the circulatory dynamics measurement sensor 102 measures an electrical signal indicating the circulatory dynamics via a sensor installed at a predetermined location of the living body (step S24), and the electrical signal indicating the circulatory dynamics is sent to the control unit 103.
  • One detection unit 105 outputs the result.
  • the first detection unit 105 checks whether or not ventricular contraction is detected based on the electrical signal indicating the circulatory dynamics input from the circulatory dynamic measuring sensor 102 (step S25). When ventricular contraction is not detected, the first detection unit 105 waits for detection of ventricular contraction (NO in step S25). Until then, the stimulation signal generation unit 104 continues the stimulation of the peripheral nerve by the electrical stimulation signal of the low frequency f1.
  • the first detection unit 105 stops the measurement of the circulatory dynamics by the circulatory dynamic measurement sensor 102 (step S26). At the same time, the first detection unit 105 generates a blood output detection signal and gives this blood output detection signal to the parameter adjustment unit 502. Then, the parameter adjustment unit 502 generates a stimulation intensity change signal for changing the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to the frequency f2, and uses this stimulation intensity change signal as the stimulation signal generation unit 104. Output to. As a result, the stimulation signal generation unit 104 generates an electrical stimulation signal having a frequency f2 higher than the frequency f1, and starts stimulation of the peripheral nerve by the electrical stimulation signal having the frequency f2 (step S27).
  • the first detection unit 105 starts the timer 106 simultaneously with the start of stimulation of the peripheral nerve by the electrical stimulation signal of the frequency f2, that is, the detection of the ventricular contraction, and starts counting the time from the detection of the contraction of the ventricle (Step). S28). Then, the counted time is input to the comparison unit 108.
  • the comparison unit 108 compares the time from the detection of ventricular contraction input from the timer 106 with the stimulation period setting value stored in advance in the stimulation period setting value storage unit 107, and which value is It is confirmed whether it is larger (step S29). While the time since the detection of the contraction of the ventricle is smaller than the stimulation period setting value (NO in step S29), stimulation at a high frequency f2 is continuously performed.
  • the comparison unit 108 sets the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to the parameter adjustment unit 502 to f1.
  • a stimulus intensity change signal is generated, and this stimulus intensity change signal is given to the stimulus signal generator 104.
  • the stimulation signal generation unit 104 generates an electrical stimulation signal having a frequency f1 lower than the frequency f2, and returns to a state in which the peripheral nerve is stimulated by the electrical stimulation signal having the lower frequency f1 (step S30).
  • step S24 After the above processing is completed, the processing returns to step S24, and the processing from step S24 to step S30 is repeated.
  • peripheral nerves are always stimulated at a predetermined frequency f1, and nerves are detected at a frequency f2 higher than the frequency f1 for a predetermined stimulation period from detection of cardiac ventricular contraction.
  • To stimulate it is effective for a patient who always feels a relatively strong pain other than pulsation after a predetermined period of time has elapsed since detection of ventricular contraction. That is, for normal pain, the pain is relieved by a stimulus having a frequency f1, which is a relatively weak electrical stimulus, and a frequency f2 which is a stronger electrical stimulus than the stimulus having the frequency f1 is added to the pain caused by pulsation. Deal with the stimulus. This has the effect of extending the life of the battery compared to the conventional one and reducing the risk of side effects.
  • FIG. 8 is a functional block diagram showing a pain alleviating apparatus according to the third embodiment of the present invention.
  • the pain relieving apparatus 601 of the third embodiment determines a stimulation period in which the electrical stimulation signal is set to the high frequency f2 based on the heart rate or the heartbeat interval. Therefore, the pain relieving apparatus 601 includes a heart rate / heart rate interval measuring unit 603 and a stimulation period setting value selecting unit 604 as an alternative to the stimulation period setting value storage unit 107 of the pain relieving apparatus 501 of the second embodiment. It has become.
  • the heart rate / beat interval measuring unit 603 is electrically connected to the stimulation period setting value selecting unit 604. Then, the heart rate or heart rate measured by the heart rate / heart rate interval measurement unit 603 is output to the stimulation period setting value selection unit 604.
  • the stimulation period setting value selection unit 604 calculates a stimulation period setting value for the heart rate interval input from the heart rate / heart rate interval measurement unit 603, for example, according to the following equation.
  • (Stimulation period set value) 0.5 x (Heart rate interval)
  • the stimulation period setting value selection unit 604 can store a table representing the relationship between the heartbeat interval and the stimulation period in advance, and can select the stimulation period setting value based on the measured heartbeat interval from this correspondence. It is.
  • the stimulation period setting value selection unit 604 is electrically connected to the comparison unit 108 so as to output the stimulation period setting value calculated from the above formula or selected from the table to the comparison unit 108.
  • the heart rate / heart rate interval measurement unit 603 may measure a heart rate. However, in that case, the stimulation period setting value selection unit 604 calculates or selects the stimulation period setting value based on the heart rate.
  • the heartbeat interval is calculated by 60 ⁇ heart rate.
  • FIG. 9 is a flowchart showing an operation flow of the pain alleviating apparatus 601 according to the third embodiment of the present invention.
  • the process from step S31 to step S36 is completely the same as the process from step S21 to step S26 shown in FIG. 7, so the description up to the process from step S31 to step S36 is omitted here.
  • the processing after step S37 will be described.
  • the heart rate / heart beat interval measuring unit 603 measures the immediately preceding heart rate or heart beat interval (step S37), and the measured heart rate or heart beat interval. Is output to the stimulation period setting value selection unit 604. Then, the stimulation period setting value selection unit 604 derives the stimulation period setting value using the above-described formula or table (step S38), and the derived stimulation period setting value is input to the comparison unit 108.
  • the first detection unit 105 generates, in the parameter adjustment unit 502, a stimulation intensity change signal that sets the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to f2. Then, this stimulation intensity change signal is given to the stimulation signal generator 104.
  • the stimulation signal generation unit 104 generates an electrical stimulation signal having a frequency f2 higher than the frequency f1, and starts stimulation of the peripheral nerve by the electrical stimulation signal having the frequency f2 (step S39). Further, the first detection unit 105 starts the timer 106 simultaneously with the start of stimulation of the peripheral nerve by the electrical stimulation signal of the frequency f2, that is, the detection of the ventricular contraction, and starts counting time from the detection of the ventricular contraction ( Step S40). Then, the counted time is input to the comparison unit 108.
  • the comparison unit 108 compares the time from the detection of ventricular contraction input from the timer 106 with the stimulation period setting value derived by the stimulation period setting value selection unit 604, and which value is greater. (Step S41). As long as the time since the detection of the contraction of the ventricle is smaller than the stimulation period setting value (NO in step S41), stimulation at a high frequency f2 is continuously performed.
  • the comparison unit 108 sets the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to the parameter adjustment unit 502 to the high frequency f2.
  • the stimulus intensity change signal having a low frequency f1 is generated, and the stimulus intensity change signal is supplied to the stimulus signal generation unit 104.
  • the stimulation signal generator 104 returns to stimulation of the peripheral nerve by the electrical stimulation signal of the low frequency f1 (step S42).
  • step S34 After the above processing is completed, the processing returns to step S34, and the processing from step S34 to step S42 is repeated.
  • the stimulation period in which the electrical stimulation signal is set to the high frequency f2 is determined based on the heart rate or the heartbeat interval.
  • the time required for pulsation changes depending on the patient's metabolism and mental stress, and becomes shorter as the heart rate increases (beat interval decreases). Along with this, the pulsation of pain felt by the patient also changes. Therefore, by determining the stimulation period based on the heart rate or the heartbeat interval, the optimal stimulation period for the patient can be set. As a result, pain having pulsation can be alleviated more accurately and the battery life can be extended.
  • FIG. 10 is a functional block diagram showing a pain alleviating apparatus according to the fourth embodiment of the present invention.
  • the pain alleviating apparatus 701 of this embodiment always stimulates the peripheral nerve at a predetermined frequency f1, and when there is contraction of the ventricle of the heart, the nerve is stimulated at a frequency f2 higher than the frequency f1. Further, when there is physical activity in this state, the nerve is stimulated at a frequency f3 higher than the frequency f2.
  • the pain relieving device 701 replaces the parameter adjusting unit 502 of the pain relieving device 501 shown in FIG. 5 with a parameter adjusting unit 703 and replaces the control unit 103 with the second detecting unit.
  • the control part 702 further provided with is provided.
  • the control unit 702 controls the parameter adjustment unit 703 based on an electrical signal indicating the circulation dynamics input from the circulation dynamic measurement sensor 102.
  • the parameter adjustment unit 703 outputs a stimulus intensity change signal to the stimulus signal generation unit 104 based on an instruction from the control unit 702.
  • a stimulation intensity change signal is generated for electrical stimulation with a second stimulation intensity that is higher than the first stimulation intensity.
  • a third stimulation intensity that is stronger than the second stimulation intensity for a predetermined period with respect to the nerve at the timing.
  • a stimulus intensity change signal for performing electrical stimulation is output to the stimulus signal generation unit 104.
  • control unit 702 includes a first detection unit 105, a timer 106, a stimulation period set value storage unit 107, a comparison unit 108, and a second detection unit 704. Since the first detection unit 105, the timer 106, the stimulation period set value storage unit 107, and the comparison unit 108 are as described above, the description thereof is omitted.
  • the second detection unit 704 includes an acceleration sensor and a vibration sensor that detect physical activity, that is, that the body has moved, or a temperature sensor that detects increase in metabolic demand, that is, a patient's metabolism, an oxygen saturation sensor, and the like. And is placed in the body corresponding to these sensors.
  • the second detection unit 704 sends a signal indicating this detection (hereinafter referred to as “physical activity detection signal”) to the parameter adjustment unit 703 while detecting the metabolic request or physical activity.
  • the physical activity detected by the second detection unit includes both an active activity such as walking and a passive activity received by riding a vehicle.
  • Accelerometer and vibration sensor are installed in the pain relief container and detect acceleration and vibration caused by active or passive activities.
  • a temperature sensor and an oxygen saturation sensor are generally placed in a central vein where peripheral venous blood that carries heat and carbon dioxide produced by muscles and organs joins, Connected.
  • the temperature sensor detects metabolic demands such as fever and exercise by measuring central venous blood temperature.
  • the oxygen saturation sensor includes a light emitting unit and a light receiving unit, and detects metabolic demands such as fever and exercise by measuring oxygen saturation by capturing transmission and reflection of emitted light in blood.
  • the electrical stimulation signal used for nerve stimulation is generally a burst wave by a rectangular pulse train.
  • FIG. 11 is a waveform diagram showing a time-series change when a burst wave is used as the electrical stimulation signal.
  • the vertical axis represents the signal level of the electrical stimulation signal, that is, the voltage.
  • the horizontal axis is a time axis common to FIGS. 2A to 2C.
  • each vertical line represents an individual rectangular pulse (pulse width is not shown), and the reciprocal of the interval between adjacent vertical lines indicates the frequency. Yes.
  • FIG. 11A shows a stimulation signal generation unit when the second detection unit 704 has not detected a metabolic request or physical activity, that is, when no physical activity detection signal is output from the second detection unit 704 to the parameter adjustment unit 703. It is the figure which showed the electrical stimulation signal which 104 produces
  • FIG. 11B shows that when the second detection unit 704 detects a metabolic request or physical activity, that is, when a physical activity detection signal is output from the second detection unit 704 to the parameter adjustment unit 703, the stimulation signal generation unit 104 It is the figure which showed the electrical stimulation signal to produce
  • the timing at which the frequency of the electrical stimulation signal is changed that is, the timing at which the stimulation intensity changing signal is output from the parameter adjustment unit 703 to the stimulation signal generation unit 104 is shown in FIG. This corresponds to the detection of the QRS wave of the electrocardiogram shown in FIG.
  • the timing at which the predetermined period with high stimulation intensity ends that is, the timing at which the stimulation signal generator 104 returns the frequency of the electrical stimulation signal before the change is about 0.3 seconds from the start of the predetermined period with high stimulation intensity, that is, It is equal to the stimulation period setting value stored in the stimulation period setting value storage unit 107.
  • the frequency of the electrical stimulation signal is changed from f1 to f2 (f2> f1) with the detection of the QRS wave as a trigger, as shown in FIG. 11A.
  • the case where no metabolic request or physical activity is detected refers to the case where the parameter adjustment unit 703 has received a blood output detection signal.
  • the stimulation intensity of the electrical stimulation signal at frequency f1 corresponds to the first stimulation intensity described above
  • the stimulation intensity of the electrical stimulation signal at frequency f2 corresponds to the second stimulation intensity described above.
  • the frequency of the electrical stimulation signal is changed from f1 to f3 (f3> f2) triggered by the detection of the QRS wave.
  • the case where a metabolic request or physical activity is detected here refers to a case where the parameter adjustment unit 703 receives a blood output detection signal and a physical activity detection signal.
  • the stimulation intensity of the electrical stimulation signal at the frequency f3 corresponds to the third stimulation intensity described above.
  • the voltage of the electrical stimulation signal, the pulse width, the frequency f1 at the first stimulation intensity, the frequency f2 at the second stimulation intensity, and the frequency f3 at the third stimulation intensity are determined according to the nature of the patient's pain. And are set by the patient.
  • FIG. 12 is a flowchart showing an operation flow of the pain alleviating apparatus 701 according to the fourth embodiment of the present invention.
  • the sensor portion of the circulatory dynamic measurement sensor 102 is implanted at a predetermined position in the living body, and the pain relieving device 701 is made available (step S51).
  • the stimulation signal generation unit 104 sets electrical stimulation parameters such as pulse width, pulse current, and pulse voltage to initial values, and the parameter adjustment unit 703 sets the frequency of the electrical stimulation signal.
  • a stimulus intensity change signal for f1 is given to the stimulus signal generator 104.
  • the frequency of the electrical stimulation parameter is also initialized, and the initialization of the electrical stimulation parameter is completed (step S52).
  • the stimulation signal generation unit 104 generates an electrical stimulation signal having the first stimulation intensity, that is, the frequency f1, and stimulates the nerve with the electrical stimulation signal having the frequency f1 (step S53).
  • the circulatory dynamics measurement sensor 102 measures an electrical signal indicating the circulatory dynamics via a sensor installed at a predetermined location of the living body (step S54), and the electrical signal indicating the circulatory dynamics is sent to the control unit 702.
  • One detection unit 105 outputs the result.
  • the second detection unit 704 starts measuring metabolic demand or physical activity.
  • the first detection unit 105 checks whether or not ventricular contraction is detected based on the electrical signal indicating the circulatory dynamics input from the circulatory dynamic measuring sensor 102 (step S55). When ventricular contraction is not detected, the first detection unit 105 waits for detection of ventricular contraction (NO in step S55). Until then, the stimulation signal generation unit 104 continues nerve stimulation by the electrical stimulation signal of the low frequency f1.
  • the second detection unit 704 checks whether a metabolic request or physical activity is detected (step S56).
  • the first detection unit 105 stops the measurement of the circulatory dynamics by the circulatory dynamic measurement sensor 102, and the second detection unit detects the metabolic request or physical activity. Activity measurement is stopped (step S57). At the same time, the first detection unit 105 outputs a blood output detection signal to the parameter adjustment unit 703. Then, the parameter adjustment unit 703 generates a stimulation intensity change signal that changes the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to f2. Then, this stimulation intensity change signal is given to the stimulation signal generator 104. As a result, the stimulation signal generation unit 104 generates an electrical stimulation signal (see FIG. 11A) having a frequency f2 higher than the frequency f1, and starts nerve stimulation using the electrical stimulation signal having the frequency f2 (step S58). Then, the process proceeds to step S61.
  • step S56 when a metabolic request or physical activity is detected in step S56 (YES in step S56), the second detection unit 704 stops measuring the metabolic request or physical activity (step S59) and physical activity.
  • the detection signal is output to the parameter adjustment unit 703.
  • the first detection unit 105 the measurement of the circulatory dynamics by the circulatory dynamics measurement sensor 102 is stopped, and a blood output detection signal is output to the parameter adjustment unit 703.
  • the parameter adjustment unit 703 When receiving the blood output detection signal and the physical activity detection signal, the parameter adjustment unit 703 generates a stimulation intensity change signal for changing the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to f3. Then, this stimulation intensity change signal is given to the stimulation signal generator 104. As a result, the stimulation signal generation unit 104 generates an electrical stimulation signal (see FIG. 11B) having a frequency f3 higher than the frequency f2, and starts nerve stimulation using the electrical stimulation signal having the frequency f3 (step S60). ), The process proceeds to step S61.
  • the first detection unit 105 starts the timer 106 simultaneously with the detection of the ventricular contraction, and starts counting the time from the ventricular contraction (step S61). Then, the counted time is input to the comparison unit 108.
  • the comparison unit 108 compares the time from the contraction of the ventricle input from the timer 106 with the stimulation period setting value stored in advance in the stimulation period setting value storage unit 107, and which value is greater (Step S62). While the time from the contraction of the ventricle is smaller than the stimulation period set value (NO in step S62), the nerves by the electrical stimulation signal of the frequency f2 changed by the process of step S58 or the frequency f3 changed by the process of step S60 are used. Stimulation is performed continuously.
  • step S62 when the time from the contraction of the ventricle reaches the stimulation period setting value (YES in step S62), the comparison unit 108 supplies a signal to the parameter adjustment unit 703, and the stimulation signal generation unit 104 generates it. A stimulus intensity change signal for changing the frequency of the electrical stimulus signal to f1 is generated. Then, the stimulation intensity change signal is given to the stimulation signal generation unit 104 from the parameter adjustment unit 703. As a result, the stimulation signal generation unit 104 generates an electrical stimulation signal having the frequency f1, and returns to a state in which nerve stimulation is performed using the electrical stimulation signal having the frequency f1 (step S63). After the above processing is completed, the processing returns to step S54 and the processing from step S54 to step S63 is repeated.
  • the nerve is stimulated by the electrical stimulation signal in synchronization with the contraction of the ventricle of the heart (the pumping of blood from the heart). Pain increases in synchrony with blood pumping, and stimulating nerves in synchrony with the pulsation of pain can alleviate pain with pulsatile and reduce discomfort for the patient. It becomes possible to reduce.
  • a strong electrical stimulation signal is generated for a predetermined stimulation period from the time when the heart ventricle contracts. That is, the nerve is stimulated with an electrical stimulation signal with a strong stimulation intensity during a predetermined period when the pain is strong, and the nerve is stimulated with an electrical stimulation signal with a weak stimulation intensity during a period when the pain is weak.
  • the lifetime of the battery can be made longer than that of the conventional one, and the side effect risk can be reduced.
  • nerves are stimulated with an electrical stimulation signal having a stronger stimulation intensity when a metabolic demand or physical activity is detected. This can also relieve pain that increases with metabolic demand or physical activity.
  • FIG. 13 is a functional block diagram showing the pain alleviating apparatus in the fifth embodiment of the present invention.
  • the pain relieving apparatus 801 as the fifth embodiment of the present invention is a metabolic request or physical activity (for example, heart rate increase) that is a trigger for changing the stimulation intensity of the electrical stimulation signal to the third stimulation intensity.
  • the detection is performed using the measurement of the circulation dynamics in the circulation dynamic measurement sensor 102. Therefore, the second detection unit 803 of the control unit 802 is electrically connected to the circulatory dynamic measurement sensor 102, and detects, for example, an increase in heart rate based on the circulatory dynamics measured by the circulatory dynamic measurement sensor 102. .
  • the normal heart rate is stored in advance in a memory provided in the second detection unit 803 and compared with the heart rate obtained from the detected circulatory dynamics. Assume that metabolic demand has been detected.
  • the second detection unit 803 detects a metabolic request (heart rate increase)
  • the second detection unit 803 generates a physical activity detection signal and outputs it to the parameter adjustment unit 703.
  • the second detection unit detects the metabolic demand or physical activity (for example, heart rate increase) using the circulatory dynamics measured by the circulatory dynamic measuring sensor. To do so. Therefore, it is not necessary to provide an acceleration sensor, a temperature sensor, a vibration sensor, an oxygen saturation sensor, or the like in the second detection unit, the configuration of the entire device can be simplified, and the cost for manufacturing the device can be reduced. There is an effect that can be done.
  • the pain alleviating devices of the first to fifth embodiments change the intensity of the electrical stimulation signal by changing the stimulation frequency.
  • the intensity of the electrical stimulation signal is generally adjusted by changing a predetermined pulse interval (or frequency).
  • the frequency is changed.
  • the voltage strength during the stimulation period may be changed.
  • electrical stimulation is normally performed with the voltage V1, and when only one of the ventricular contractions is detected, the electrical stimulation is performed with the voltage V2 (> V1) at a timing synchronized with the detected ventricular contraction, In addition to ventricular contraction, when metabolic demand or physical activity is detected, electrical stimulation is performed at voltage V3 (> V2) at this timing, so that the intensity of the stimulation can be increased or decreased in the same manner as changing the level of the frequency. The effect of changing is obtained. Further, in order to adjust the intensity of the electrical stimulation signal, it is also possible to adjust the electrical stimulation parameters by a plurality of combinations selected from the frequency, pulse width, pulse current, and pulse voltage.
  • the voltage or frequency of the electrical stimulation signal during the stimulation period may be gradually changed.
  • the stimulus is gradually increased when the patient is given a stimulus, and the magnitude of the stimulus is gradually reduced when the stimulus is weakened. Can be relieved.
  • the vertical axis and horizontal axis in FIG. 14 are the same as those in FIGS.
  • the target for stimulation with the electrical stimulation signal is the peripheral nerve.
  • the occipital nerve is generally used as the peripheral nerve for stimulation, it is also possible to stimulate at least one of the large occipital nerve, the small occipital nerve, and the third occipital nerve, which are branches of the occipital nerve. It is also possible to place an electrode outside the spinal dura to stimulate the spinal cord in the region where the occipital nerve originates. In this case, the spinal cord in the region from the first cervical vertebra to the third cervical vertebra is preferred. Furthermore, it can be applied to stimulation of the vagus nerve, which is known to relieve the pain of migraine or cluster headache by stimulation, or stimulation of the brain region related to migraine or cluster headache.
  • the pain relief device and the sensor have been described as being implanted in the body.
  • the pain relieving device is implanted with only an electrode lead for a few days to a week, and this is connected to an external pain relieving device to confirm the effect of stimulation. Even in such a case, the same effect can be obtained by placing the sensor on the body surface, measuring electrocardiogram, pressure pulse wave, heart sound, etc., and controlling the electrical stimulation signal with an external pain relief device. Needless to say.
  • a fixed value f3, V3
  • f3, V3 a fixed value
  • the third stimulus intensity is controlled according to the metabolic demand or the degree of physical activity. That is, when the detected metabolic demand or physical activity is small, the third stimulus intensity is weak (but stronger than f2 or V2), and when the detected metabolic demand or physical activity is large, the third stimulus intensity is increased. It is also possible to do.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pain & Pain Management (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

The object of the invention is to stimulate a nerve at the timing most effective for relief of a pulsating pain, while consuming less energy so that the life of the battery is extended. Circulatory dynamics, such as the electrocardiac wave, the pressure pulse wave, and the cardiac sound are measured in the treatment of the pulsating pain, such as a migraine headache or cluster headache.  On the basis of the measurement values, the generation of a stimulation signal to stimulate a peripheral nerve and the strength of the stimulation signal are controlled.  The strength of an electric stimulation signal is controlled by changing the frequency or the level of amplitude of the electric stimulation signal at the timing of the stimulation.  Frequency, pulse width, pulse current, pulse voltage, and so forth are considered as parameters of the electric stimulation signal.

Description

疼痛緩和装置Pain relief device
 本発明は、神経を刺激することによって疼痛を緩和する疼痛緩和装置に関し、特に、拍動性を有する疼痛に対して循環動態に基づいて刺激を調整することが可能な疼痛緩和装置に関する。 The present invention relates to a pain relieving apparatus that relieves pain by stimulating nerves, and particularly relates to a pain relieving apparatus that can adjust stimulation based on circulatory dynamics for pulsatile pain.
 痛み治療において、神経を電気刺激することにより痛みを緩和する電気刺激療法が効果を挙げている。この方法は、従来から行われている、薬物療法、神経ブロック療法、外科的療法で所定の効果を得られない場合や、副作用などによりその治療が継続できない場合に有効である。この電気刺激療法には、脊髄電気刺激療法や末梢神経電気刺激療法などがある。脊髄電気刺激療法は、脊髄を覆う脊髄硬膜の外側に電極リードを留置して電気刺激を行う療法である。また、末梢神経電気刺激療法は、末梢神経に直接あるいは当該末梢神経の近くの皮下に電極リードを留置して電気刺激を行う療法である。これら脊髄電気刺激療法および末梢神経電気刺激療法では、脊髄や末梢神経を介した痛みの伝達に電気的刺激を利用して干渉することにより、痛みを緩和することができる。 In pain treatment, electrical stimulation therapy that relieves pain by electrically stimulating nerves is effective. This method is effective when a predetermined effect cannot be obtained by conventional drug therapy, nerve block therapy, or surgical therapy, or when the treatment cannot be continued due to side effects or the like. This electrical stimulation therapy includes spinal cord electrical stimulation therapy and peripheral nerve electrical stimulation therapy. Spinal cord electrostimulation therapy is a method of performing electrical stimulation by placing an electrode lead outside the spinal dura mater that covers the spinal cord. In addition, the peripheral nerve electrical stimulation therapy is a therapy for performing electrical stimulation by placing an electrode lead directly on the peripheral nerve or subcutaneously near the peripheral nerve. In these spinal cord electrical stimulation therapy and peripheral nerve electrical stimulation therapy, pain can be alleviated by interfering with pain transmission through the spinal cord or peripheral nerve using electrical stimulation.
 片頭痛は、頭の片側(時に両側)に起こる慢性の頭痛で、悪心や嘔吐、また、光過敏や音過敏を伴うことがあり、しばしば耐え難い痛みで社会生活に大きな支障を来たすことがある。一般に20代~50代の女性に多く、その患者数は男性の約4倍と言われている。群発頭痛は、男性に多く、慢性頭痛のなかでも最も激しい痛みを伴う。頭の片側に起こり、年に1~2回程度であるが、ある一定期間(多くの場合1~2ヶ月)連続して毎日頭痛が起こる。片頭痛や群発頭痛は、痛みの拍動性が特徴で、心臓の拍動とともにズキンズキンと脈打つように強く痛むことが知られている。近年、片頭痛や群発頭痛に対する末梢神経電気刺激療法の試みがなされている。これは、頚椎2番、3番から出て、後頭部の頭頂方向へ走行する末梢神経である後頭神経を電気刺激することによってその痛みを緩和しようとするものである。本試みでは、通常、後頭神経が走行している頚背部皮下に電極を留置して電気刺激が行われるが、この刺激の際の電圧や周波数などの刺激パラメータは、痛みの強度に応じて患者が手動で変更する必要があった。 Migraine is a chronic headache that occurs on one side (sometimes both sides) of the head, and may be accompanied by nausea, vomiting, photosensitivity, and hypersensitivity. In general, there are many women in their 20s and 50s, and the number of patients is said to be about four times that of men. Cluster headache is more common in men and is the most painful of all chronic headaches. Headache occurs on one side of the head and is once or twice a year, but daily headaches occur every day for a certain period (often 1-2 months). Migraine and cluster headache are characterized by painful pulsation, and it is known that the heartbeat pulsates with the heartbeat like a pulse. In recent years, trials of peripheral nerve electrical stimulation therapy for migraine and cluster headache have been made. This is intended to relieve the pain by electrically stimulating the occipital nerve, which is a peripheral nerve that exits from the cervical vertebrae Nos. 2 and 3 and travels toward the parietal region of the occipital region. In this trial, electrical stimulation is usually performed by placing electrodes under the neck of the neck where the occipital nerve is running, and the stimulation parameters such as voltage and frequency at the time of stimulation depend on the intensity of pain. Had to be changed manually.
 また、特許文献1に記載の技術は、後頭神経の近くに植え込んだリードレスの刺激装置によって頭痛を緩和しようとするものであり、この特許文献1には、特にセンサによって刺激パラメータを調整する方法が開示されている。 The technique described in Patent Document 1 intends to relieve a headache with a leadless stimulation device implanted near the occipital nerve. This Patent Document 1 particularly discloses a method for adjusting stimulation parameters using a sensor. Is disclosed.
米国特許第6,735,475号明細書US Pat. No. 6,735,475
 しかしながら、痛みの拍動性に応じて刺激の強度を手動で変更することは困難であり、また、特許文献1に記載の技術においても、片頭痛や群発頭痛に特徴的な痛みの拍動性に特化した刺激方法ではないため、拍動性の不快感が残存したり、この不快感を取り除くためには、痛みの拍動のピークに合わせて刺激強度を設定しなければならず、常に刺激強度を高く保たなければならない。そのため、高い電圧が必要となり、電池寿命を短くするという問題があった。 However, it is difficult to manually change the intensity of stimulation according to the pulsatility of pain, and in the technique described in Patent Document 1, the pulsation of pain characteristic of migraine or cluster headache Because it is not a specialized stimulation method, pulsatile discomfort remains or in order to remove this discomfort, the stimulation intensity must be set according to the peak of painful pulsation, and always The stimulation intensity must be kept high. Therefore, a high voltage is required and there is a problem of shortening the battery life.
 本発明はかかる点に鑑みてなされたものであり、心電、圧脈波あるいは心音等の循環動態を計測し、心室収縮や血液拍出の検出に同期して、一定期間だけ刺激を行うか、あるいは一定期間だけ平時の刺激より刺激強度を強くすることにより、疼痛を和らげることができる疼痛緩和装置を提供することを目的とする。 The present invention has been made in view of the above points, and measures whether circulatory dynamics such as electrocardiogram, pressure pulse wave or heart sound are measured, and is stimulation performed for a certain period in synchronization with detection of ventricular contraction or blood output? Another object of the present invention is to provide a pain relieving device that can relieve pain by increasing the intensity of stimulation over normal time for a certain period.
 上記課題を解決するための本発明は、神経を電気的に刺激するための刺激信号を発生する刺激信号発生部と、循環動態を計測する循環動態計測センサと、刺激信号発生部と循環動態計測センサに接続する制御部と、を備え、制御部は、拍動性を有する痛みを治療するために、循環動態計測センサからの出力に応答して、刺激信号発生部からの刺激信号の発生を制御するようにしている。 The present invention for solving the above problems includes a stimulation signal generation unit that generates a stimulation signal for electrically stimulating a nerve, a circulation dynamics measurement sensor that measures circulation dynamics, a stimulation signal generation unit, and circulation dynamics measurement A control unit connected to the sensor, and the control unit generates a stimulation signal from the stimulation signal generation unit in response to an output from the hemodynamic measurement sensor in order to treat pulsatile pain. I try to control it.
 ここで、電気的に刺激する神経は、脊髄であるか、後頭神経等の末梢神経であることが好ましい。また、拍動性を有する痛みは、片頭痛もしくは群発頭痛であり、上記循環動態計測部が計測する循環動態は、心電、圧脈波、心音のいずれかである。 Here, it is preferable that the electrically stimulated nerve is a spinal cord or a peripheral nerve such as a occipital nerve. The pulsatile pain is a migraine or cluster headache, and the circulatory dynamics measured by the circulatory dynamics measuring unit is any one of electrocardiogram, pressure pulse wave, and heart sound.
 また、本発明の好ましい形態としては、制御部が、心室収縮もしくは血液拍出を検出した場合に、電気的刺激信号の発生を開始するようにしてもよいし、制御部が、心室収縮もしくは血液拍出を検出した場合に、電気的刺激信号の強度を増加させるようにしてもよい。ここで、電気的刺激信号のパラメータとしては、周波数、パルス幅、パルス電流、パルス電圧の少なくとも1つ、もしくはこれらの中から選ばれる複数の組み合わせに依存させることが望ましい。 As a preferred embodiment of the present invention, when the control unit detects ventricular contraction or blood output, generation of an electrical stimulation signal may be started, or the control unit may start ventricular contraction or blood. When the output is detected, the intensity of the electrical stimulation signal may be increased. Here, it is desirable that the parameters of the electrical stimulation signal depend on at least one of frequency, pulse width, pulse current, and pulse voltage, or a plurality of combinations selected from these.
 本発明の上述した構成によれば、拍動性を有する疼痛の周期と同期する、心臓の心室の収縮あるいは心臓からの血液の拍出のタイミングで神経を刺激することができる。 According to the above-described configuration of the present invention, the nerve can be stimulated at the timing of the heart ventricle contraction or the blood pumping out of the heart in synchronization with the pulsatile pain cycle.
 本発明によれば、疼痛の拍動性と同期して所定の刺激期間だけ神経を刺激できるので、拍動姓を有する疼痛を的確にやわらげことができ、患者に与える不快感を低減することができる。神経を刺激するための電気的刺激信号の強度を刺激期間だけ高くするので、電池の寿命を長くすることができるという効果もある。 According to the present invention, the nerve can be stimulated for a predetermined stimulation period in synchronization with the pulsation of pain, so that pain having a pulsating surname can be relieved accurately and discomfort given to the patient can be reduced. it can. Since the intensity of the electrical stimulation signal for stimulating the nerve is increased only during the stimulation period, there is also an effect that the battery life can be extended.
本発明の第一の実施の形態に係る疼痛緩和装置を示す機能ブロック図である。It is a functional block diagram which shows the pain alleviation apparatus which concerns on 1st embodiment of this invention. 循環動態の電気信号を示す波形図である。It is a wave form diagram which shows the electrical signal of a circulatory dynamics. 電気的刺激信号の例を示す波形図である。It is a wave form diagram which shows the example of an electrical stimulation signal. 本発明の第一の実施の形態に係る疼痛緩和装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the pain alleviation apparatus which concerns on 1st embodiment of this invention. 本発明の第二の実施の形態に係る疼痛緩和装置を示す機能ブロック図である。It is a functional block diagram which shows the pain alleviation apparatus which concerns on 2nd embodiment of this invention. 電気的刺激信号の例を示す波形図である。It is a wave form diagram which shows the example of an electrical stimulation signal. 本発明の第二の実施の形態に係る疼痛緩和装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the pain alleviation apparatus which concerns on 2nd embodiment of this invention. 本発明の第三の実施の形態に係る疼痛緩和装置を示す機能ブロック図である。It is a functional block diagram which shows the pain alleviation apparatus which concerns on 3rd embodiment of this invention. 本発明の第三の実施の形態に係る疼痛緩和装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the pain alleviation apparatus which concerns on 3rd embodiment of this invention. 本発明の第四の実施の形態に係る疼痛緩和装置を示す機能ブロック図である。It is a functional block diagram which shows the pain alleviation apparatus which concerns on 4th embodiment of this invention. 電気的刺激信号の例を示す波形図である。It is a wave form diagram which shows the example of an electrical stimulation signal. 本発明の第四の実施の形態に係る疼痛緩和装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the pain alleviation apparatus which concerns on 4th embodiment of this invention. 本発明の第五の実施の形態に係る疼痛緩和装置を示す機能ブロック図である。It is a functional block diagram which shows the pain alleviation apparatus which concerns on 5th embodiment of this invention. 電気的刺激信号の例を示す波形図である。It is a wave form diagram which shows the example of an electrical stimulation signal.
以下、発明を実施するための最良の形態(以下、「実施の形態」という)について説明する。なお、説明は以下の順序で行う。
 1.第一の実施の形態
 2.第二の実施の形態
 3.第三の実施の形態
 4.第四の実施の形態
 5.第五の実施の形態
 6.変形例
Hereinafter, the best mode for carrying out the invention (hereinafter referred to as “embodiment”) will be described. The description will be given in the following order.
1. 1. First embodiment Second embodiment 3. 3. Third embodiment 4. Fourth embodiment 5. Fifth embodiment Modified example
〈1.第一の実施の形態〉
 本発明の第一の実施の形態の例を、図1~図4を参照して説明する。
<1. First Embodiment>
An example of the first embodiment of the present invention will be described with reference to FIGS.
 [疼痛緩和装置の構成]
 疼痛緩和装置は、一般的に、生体適合性を有する容器に密封され、体内に植え込まれる。この容器には外部と信号の授受を行うためのコネクタが設けられており、センサや電極リードが接続される。電極リードは、皮下トンネルを介して刺激を行う神経部位まで導かれ、電極リード上に設けられた刺激電極によって神経の刺激が行われる。疼痛緩和装置の体内への植え込み部位としては、胸部や腹部、あるいは頚部の皮下が一般的である。
 図1は、本発明の第一の実施の形態における疼痛緩和装置を示す機能ブロック図である。
 第一の実施の形態の疼痛緩和装置101は、心臓の心室収縮あるいは心臓からの血液拍出を検出し、検出した心室の収縮と同期したタイミングで末梢神経に対し電気的刺激を行うものである。ここで、心室の収縮は心室からの血液の拍出を検出することで検出される。したがって、「心室の収縮」と「血液の拍出」は同じことを意味している。
[Configuration of Pain Relief Device]
The pain relieving device is generally sealed in a biocompatible container and implanted in the body. This container is provided with a connector for exchanging signals with the outside, and is connected to a sensor and an electrode lead. The electrode lead is guided to a nerve site to be stimulated through a subcutaneous tunnel, and nerve stimulation is performed by a stimulation electrode provided on the electrode lead. As a site for implanting the pain relieving device, the chest, abdomen, or neck is generally subcutaneous.
FIG. 1 is a functional block diagram showing a pain alleviating apparatus according to the first embodiment of the present invention.
The pain relieving apparatus 101 according to the first embodiment detects heart ventricular contraction or blood output from the heart, and performs electrical stimulation on peripheral nerves at a timing synchronized with the detected ventricular contraction. . Here, the contraction of the ventricle is detected by detecting the pumping of blood from the ventricle. Therefore, “ventricular contraction” and “blood output” mean the same thing.
 疼痛緩和装置101は、循環動態計測センサ102と、制御部103と、図示しない電極リードを介して末梢神経に電気的刺激信号を印加する刺激信号発生部104とよりなる。 The pain relieving apparatus 101 includes a circulatory dynamic measurement sensor 102, a control unit 103, and a stimulation signal generation unit 104 that applies an electrical stimulation signal to a peripheral nerve via an electrode lead (not shown).
 循環動態計測センサ102は、疼痛緩和装置101が植え込まれた患者の心拍タイミングを得るためのもので、主にセンサと増幅器とノイズ除去のためのフィルタから構成されており、計測した循環動態が電気信号として制御部103に出力できるように、制御部103と接続されている。循環動態の代表的な例としては、心電、圧脈波あるいは心音等がある。なお、循環動態計測センサ102のセンサ部分は、計測する循環動態の種類に応じた場所(生体内)に配置される。 The circulatory dynamic measurement sensor 102 is for obtaining the heartbeat timing of the patient in which the pain relieving apparatus 101 is implanted, and is mainly composed of a sensor, an amplifier, and a filter for noise removal. It is connected to the control unit 103 so that it can be output to the control unit 103 as an electrical signal. Typical examples of circulatory dynamics include electrocardiograms, pressure pulse waves, or heart sounds. In addition, the sensor part of the circulatory dynamic measurement sensor 102 is disposed at a place (in vivo) corresponding to the type of circulatory dynamics to be measured.
 制御部103は、循環動態計測センサ102から入力される循環動態を示す電気信号に基づいて、刺激信号発生部104を制御するものである。 The control unit 103 controls the stimulation signal generation unit 104 based on the electrical signal indicating the circulation dynamics input from the circulation dynamic measurement sensor 102.
 刺激信号発生部104は、制御部103からの指示に基づいて電気的刺激信号を生成し、この電気的刺激信号が図示しない電極リードを介して末梢神経に印加される。 The stimulation signal generation unit 104 generates an electrical stimulation signal based on an instruction from the control unit 103, and this electrical stimulation signal is applied to the peripheral nerve via an electrode lead (not shown).
 制御部103は、より詳細には第一検出部105と、タイマ106と、刺激期間設定値記憶部107と、比較部108から構成されている。 More specifically, the control unit 103 includes a first detection unit 105, a timer 106, a stimulation period setting value storage unit 107, and a comparison unit 108.
 第一検出部105は、循環動態計測センサ102および刺激信号発生部104と電気的に接続されている。第一検出部105は、循環動態計測センサ102から入力される循環動態を示す電気信号に基づいて、心室の収縮を検出する。そして、心室の収縮を検出したタイミングで、刺激信号発生部104に電気的刺激信号を発生させる。具体的には、心室の収縮を検出したタイミング(以下、「心拍タイミング」という)で当該検出を示す信号(以下、「血液拍出検出信号」という)を刺激信号発生部104に出力する。さらに、第一検出部105は、心室の収縮を検出したタイミングでタイマ106を動作させる。なお、心室の収縮の検出の詳細については、図2に基づいて後述する。 The first detection unit 105 is electrically connected to the circulatory dynamic measurement sensor 102 and the stimulus signal generation unit 104. The first detection unit 105 detects the contraction of the ventricle based on the electrical signal indicating the circulation dynamics input from the circulation dynamic measurement sensor 102. Then, at the timing when the contraction of the ventricle is detected, the stimulation signal generation unit 104 generates an electrical stimulation signal. Specifically, a signal indicating the detection (hereinafter referred to as “blood output detection signal”) is output to the stimulation signal generation unit 104 at the timing when the ventricular contraction is detected (hereinafter referred to as “heartbeat timing”). Further, the first detection unit 105 operates the timer 106 at the timing when the contraction of the ventricle is detected. Details of detection of ventricular contraction will be described later with reference to FIG.
 タイマ106は、第一検出部105が検出した心室の収縮からの経過時間を計測して、その経過時間を比較部108に入力する。刺激期間設定値記憶部107は、予め刺激期間設定値を記憶しておく。この刺激期間設定値は、連続する心拍の間隔より短いことが好ましく、約0.3秒が理想的である。 The timer 106 measures the elapsed time from the contraction of the ventricle detected by the first detection unit 105 and inputs the elapsed time to the comparison unit 108. The stimulation period setting value storage unit 107 stores stimulation period setting values in advance. This stimulation period set value is preferably shorter than the interval between successive heartbeats, and ideally about 0.3 seconds.
 比較部108は、二つの入力を比較し、どちらが大きいかで出力が切り替わる、いわゆるコンパレータである。すなわち、比較部108は、タイマ106からの経過時間と、刺激期間設定値記憶部107に記憶してある刺激期間設定値とを比較する。そして、経過時間が刺激期間設定値よりも大きくなった段階で、経過時間が刺激期間設定値よりも大きくなったことを示す信号を生成して刺激信号発生部104に出力する。なお、刺激信号発生部104では、当該信号の入力をトリガーにして、電気的刺激信号の生成が停止させられる。 The comparison unit 108 is a so-called comparator that compares two inputs and switches the output depending on which is larger. That is, the comparison unit 108 compares the elapsed time from the timer 106 with the stimulation period setting value stored in the stimulation period setting value storage unit 107. Then, when the elapsed time becomes larger than the stimulation period setting value, a signal indicating that the elapsed time becomes larger than the stimulation period setting value is generated and output to the stimulation signal generation unit 104. The stimulation signal generation unit 104 stops the generation of the electrical stimulation signal with the input of the signal as a trigger.
 〔循環動態〕
 図2は、循環動態計測センサ102が計測する、さまざまな循環動態の電気信号を示す図である。
 図2Aは、心電の電気信号の時系列変化を示す心電図である。縦軸は心電を示す電気信号の信号レベルを表している。横軸は時間軸である。
 心電は、疼痛緩和装置が胸部皮下に植え込まれる場合には、疼痛緩和装置を密封した容器上に心電電極を配して計測することができる。また、疼痛緩和装置が胸部から離れた場所に植え込まれる場合には、容器のコネクタに心電リードを接続し、心電リード先端にある心電電極を心電の信号レベルが大きくなる位置に植え込むことによって計測することも可能である。あるいは、経静脈的に心臓内に心電リードを挿入し、心臓内から心電を計測することも可能である。
[Circulation dynamics]
FIG. 2 is a diagram showing various circulatory dynamic electrical signals measured by the circulatory dynamic measurement sensor 102.
FIG. 2A is an electrocardiogram showing a time-series change of an electric signal of the electrocardiogram. The vertical axis represents the signal level of an electrical signal indicating electrocardiogram. The horizontal axis is the time axis.
When the pain relieving device is implanted under the chest, the electrocardiogram can be measured by arranging an electrocardiographic electrode on a container in which the pain relieving device is sealed. When the pain relief device is implanted in a place away from the chest, connect the ECG lead to the connector of the container and place the ECG electrode at the tip of the ECG lead at a position where the ECG signal level increases. It is also possible to measure by implanting. Alternatively, it is possible to insert an electrocardiogram lead into the heart intravenously and measure the electrocardiogram from within the heart.
 心電を示す電気信号は、所定の周期を持つ信号である。この心電を示す電気信号は、P波、Q波、R波、S波およびT波という5つの波で構成され、その中でも目立つQ波、R波およびS波は一括してQRS波と呼ばれる。このQRS波の発生するタイミングで心臓の心室収縮が起こる。これは心臓からの血液拍出のタイミングとほぼ一致することが知られている。 An electrical signal indicating electrocardiogram is a signal having a predetermined period. The electric signal indicating the electrocardiogram is composed of five waves, P wave, Q wave, R wave, S wave, and T wave, and conspicuous Q wave, R wave, and S wave are collectively called QRS wave. . The ventricular contraction of the heart occurs at the timing when this QRS wave is generated. It is known that this substantially coincides with the timing of blood discharge from the heart.
 すなわち、循環動態計測センサ102の計測対象が心電の場合、第一検出部105は、QRS波を検出することにより、心臓の心室収縮のタイミングを検出する。QRS波を検出するには、例えばQRS波が有する周波数範囲を通過させるフィルタと所定の閾値が設定されたコンパレータよりなる回路で行うことができる。 That is, when the measurement target of the circulatory dynamic measurement sensor 102 is an electrocardiogram, the first detection unit 105 detects the timing of ventricular contraction of the heart by detecting the QRS wave. In order to detect the QRS wave, for example, a circuit including a filter that passes a frequency range of the QRS wave and a comparator in which a predetermined threshold is set can be used.
 図2Bは、圧脈波の電気信号の時系列変化を示す図である。縦軸は圧脈波を示す電気信号の信号レベルを表している。横軸は、図2Aの心電図と共通の時間軸である。
 圧脈波は、疼痛緩和装置が頚部皮下に植え込まれる場合には、疼痛緩和装置を密封した容器上に加速度センサを配して、頚動脈における圧脈波を計測することができる。また、疼痛緩和装置が頚部から離れた場所に植え込まれる場合には、頚動脈近くの皮下に加速度センサを留置し、加速度センサに接続されたリードを皮下トンネルを介して疼痛緩和装置の容器のコネクタに接続して計測することも可能である。
FIG. 2B is a diagram illustrating a time-series change in the electrical signal of the pressure pulse wave. The vertical axis represents the signal level of the electrical signal indicating the pressure pulse wave. The horizontal axis is a time axis common to the electrocardiogram of FIG. 2A.
When the pain relief device is implanted under the neck of the neck, the pressure pulse wave can be measured on the carotid artery by placing an acceleration sensor on a container in which the pain relief device is sealed. When the pain relieving device is implanted in a place away from the neck, an acceleration sensor is placed subcutaneously near the carotid artery, and the lead connected to the acceleration sensor is connected to the connector of the pain relieving device container through the subcutaneous tunnel. It is also possible to connect to and measure.
 圧脈波を示す電気信号は、血管内の血圧の変化を表す信号である。この圧脈波を示す電気信号の信号レベルの急激に増加する位置が、心臓から血液が拍出されるタイミングを示している。 The electrical signal indicating the pressure pulse wave is a signal representing a change in blood pressure in the blood vessel. The position where the signal level of the electric signal indicating the pressure pulse wave increases rapidly indicates the timing at which blood is pumped from the heart.
 すなわち、循環動態計測センサ102の計測対象が圧脈波の場合、第一検出部105は、圧脈波を示す電気信号の信号レベルが急激に増加する位置を検出することにより、心臓からの血液拍出のタイミングを検出する。圧脈波を示す電気信号の信号レベルの急激に増加する位置も、心電図のときと同様に、フィルタと所定の閾値が設定されたコンパレータよりなる回路で検出可能である。 That is, when the measurement target of the circulatory dynamic measurement sensor 102 is a pressure pulse wave, the first detection unit 105 detects the position where the signal level of the electrical signal indicating the pressure pulse wave increases rapidly, thereby blood from the heart. Detect the timing of the beat. The position where the signal level of the electric signal indicating the pressure pulse wave increases abruptly can also be detected by a circuit comprising a filter and a comparator in which a predetermined threshold is set, as in the case of an electrocardiogram.
 図2Cは、心音の電気信号を示す心音図である。縦軸は心音を示す電気信号の信号レベルを表し、横軸は、図2Aの心電図と共通の時間軸を表わしている。
 心音は、疼痛緩和装置が胸部皮下に植え込まれる場合には、疼痛緩和装置を密封した容器上に加速度センサを配して計測することができる。また、疼痛緩和装置が胸部から離れた場所に植え込まれる場合には、胸部皮下に加速度センサを留置し、加速度センサに接続されたリードを皮下トンネルを介して疼痛緩和装置の容器のコネクタに接続して計測することも可能である。
FIG. 2C is a heart sound diagram showing an electrical signal of a heart sound. The vertical axis represents the signal level of an electrical signal indicating heart sound, and the horizontal axis represents a time axis common to the electrocardiogram in FIG. 2A.
When the pain relieving device is implanted under the chest, the heart sound can be measured by placing an acceleration sensor on a container in which the pain relieving device is sealed. When the pain relief device is implanted in a place away from the chest, an acceleration sensor is placed under the chest, and the lead connected to the acceleration sensor is connected to the connector of the pain relief device container through the subcutaneous tunnel. It is also possible to measure.
 心音を示す電気信号も、所定の周期を持つ信号である。この心音を示す電気信号は、心音I音、心音II音および心音III音という3つの波で構成される。 The electrical signal indicating the heart sound is also a signal having a predetermined cycle. The electrical signal indicating the heart sound is composed of three waves, a heart sound I sound, a heart sound II sound, and a heart sound III sound.
 心音I音は、心室収縮期の始まりに、右心房と右心室の間にある三尖弁と、左心房と左心室の間にある僧帽弁が閉鎖するときに発生する音で、心電図のQRS波に一致して聞こえるという特徴を持っている。すなわち、この心音I音の発生するタイミングで心室の収縮が起こり、これは心臓からの血液拍出のタイミングとほぼ一致する。 Heart sound I is a sound generated when the tricuspid valve between the right and right ventricles and the mitral valve between the left and left ventricles close at the beginning of the ventricular systole. It has the feature that it can be heard in line with the QRS wave. In other words, ventricular contraction occurs at the timing when the heart sound I sound is generated, which substantially coincides with the timing of blood discharge from the heart.
 心音II音は、心室拡張期の始まりに、肺動脈弁と大動脈弁が閉鎖するときに発生する音である。心音II音は心電図のT波よりも後に発生するという特徴を持っている。心音III音は、心室が拡張するときに心室に血液が充満する音である。この心音III音は、心音I音と心音II音に比較して微弱な信号である。 Heart sound II sound is generated when the pulmonary valve and aortic valve close at the beginning of the ventricular diastole. The heart sound II sound is characterized by being generated after the T wave of the electrocardiogram. The heart sound III sound is a sound that fills the ventricle with blood when the ventricle expands. The heart sound III sound is a weak signal compared to the heart sound I sound and the heart sound II sound.
 循環動態計測センサ102の計測対象が心音の場合、第一検出部105は、心音I音を検出することにより、心臓の心室収縮のタイミングを検出する。心音III音は、心音I音と心音II音に比較して微弱なため、フィルタと所定の閾値が設定されたコンパレータにより心音I音と心音II音のみを抽出することができる。さらに、心拍周期に比較して心音I音から心音II音までの期間は短いため、心音I音を検出した後、心音I音から心音II音までの期間に相当する、予め定めた期間の間、循環動態計測センサ102からの信号を無視することで、心音II音を心音I音として誤検出することを防止できる。 When the measurement target of the circulatory dynamic measurement sensor 102 is a heart sound, the first detection unit 105 detects the timing of the ventricular contraction of the heart by detecting the heart sound I sound. Since the heart sound III sound is weaker than the heart sound I sound and the heart sound II sound, only the heart sound I sound and the heart sound II sound can be extracted by a filter and a comparator in which a predetermined threshold is set. Further, since the period from the heart sound I to the heart sound II sound is short compared to the heartbeat cycle, after detecting the heart sound I sound, during a predetermined period corresponding to the period from the heart sound I to the heart sound II sound By ignoring the signal from the circulatory dynamic measurement sensor 102, it is possible to prevent erroneous detection of the heart sound II sound as the heart sound I sound.
 以下、循環動態計測センサ102が心電を計測するものであるとして説明を行う。 Hereinafter, description will be made on the assumption that the circulatory dynamic measurement sensor 102 measures an electrocardiogram.
 [電気的刺激信号]
 次に、刺激信号発生部104が生成する電気的刺激信号について説明する。
 末梢神経の刺激に用いる電気的刺激信号は、矩形パルス列によるバースト波が一般的である。図3は、電気的刺激信号としてバースト波を用いたときの、時系列変化を示す波形図である。縦軸は電気的刺激信号の信号レベル、すなわち電圧を表している。横軸は、図2A~Cと共通の時間軸である。図3に示す電気的刺激信号は、縦線の1本1本が個々の矩形パルスを表しており、その隣接する縦線の間隔の逆数がその周波数を示している。なお、本実施形態では、刺激信号発生部104が電気的刺激信号の生成を行っている期間を「刺激期間」という。
[Electric stimulation signal]
Next, the electrical stimulus signal generated by the stimulus signal generator 104 will be described.
The electrical stimulation signal used for stimulation of the peripheral nerve is generally a burst wave by a rectangular pulse train. FIG. 3 is a waveform diagram showing a time-series change when a burst wave is used as the electrical stimulation signal. The vertical axis represents the signal level of the electrical stimulation signal, that is, the voltage. The horizontal axis is a time axis common to FIGS. 2A to 2C. In the electrical stimulation signal shown in FIG. 3, each vertical line represents an individual rectangular pulse, and the reciprocal of the interval between adjacent vertical lines represents the frequency. In the present embodiment, a period during which the stimulation signal generation unit 104 generates an electrical stimulation signal is referred to as a “stimulation period”.
 刺激期間が開始するタイミング、すなわち刺激信号発生部104が電気的刺激信号の生成を開始するタイミングは、図2Aに示す心電図のQRS波の検出に一致する。また、刺激期間が終了するタイミング、すなわち刺激信号発生部104が電気的刺激信号の生成を停止するタイミングは、刺激期間の開始から約0.3秒、つまり刺激期間設定値記憶部107に記憶されている刺激期間設定値に等しい。 The timing at which the stimulation period starts, that is, the timing at which the stimulation signal generator 104 starts generating the electrical stimulation signal coincides with the detection of the QRS wave in the electrocardiogram shown in FIG. 2A. The timing at which the stimulation period ends, that is, the timing at which the stimulation signal generation unit 104 stops generating the electrical stimulation signal is stored in the stimulation period setting value storage unit 107 for about 0.3 seconds from the start of the stimulation period. Equal to the stimulation period setting value.
 電気的刺激信号が末梢神経を刺激する強さは、患者の痛みの度合いに応じて、電気的刺激信号の電気的刺激パラメータを変更するのが好ましい。実際には、電気的刺激信号に用いられるバースト波の、個々の矩形パルスのパルス幅やパルス電圧(定電流パルスを用いたときはパルス電流)、あるいは個々の矩形パルスの間隔(周波数)を変更することにより、末梢神経を刺激する強さを調整する。 The strength with which the electrical stimulation signal stimulates the peripheral nerve is preferably changed according to the degree of pain of the patient according to the electrical stimulation parameter of the electrical stimulation signal. Actually, the pulse width and pulse voltage (pulse current when using a constant current pulse) or the interval (frequency) of each rectangular pulse of the burst wave used for the electrical stimulation signal is changed. By adjusting the strength to stimulate the peripheral nerve.
 [疼痛緩和装置の動作]
 次に、疼痛緩和装置101の動作について説明する。
 図4は、本発明の第一の実施の形態における疼痛緩和装置101の動作の流れを示すフローチャートである。
[Operation of pain relief device]
Next, the operation of the pain alleviating apparatus 101 will be described.
FIG. 4 is a flowchart showing an operation flow of the pain alleviating apparatus 101 according to the first embodiment of the present invention.
 まず、循環動態計測センサ102のセンサ部分が生体内の所定の位置に植え込まれて、疼痛緩和装置101が利用可能な状態になると(ステップS11)、刺激信号発生部104の電気的刺激パラメータが初期化される(ステップS12)。すなわち、電気的刺激パラメータである、周波数、パルス幅、パルス電流、パルス電圧が初期値に設定される。この初期化された状態は、刺激信号発生部104が作動しない状態である。 First, when the sensor portion of the circulatory dynamic measurement sensor 102 is implanted at a predetermined position in the living body and the pain alleviating apparatus 101 becomes available (step S11), the electrical stimulation parameter of the stimulation signal generation unit 104 is changed. Initialization is performed (step S12). That is, the electrical stimulation parameters such as frequency, pulse width, pulse current, and pulse voltage are set to initial values. This initialized state is a state in which the stimulus signal generation unit 104 does not operate.
 次に、循環動態計測センサ102は、生体の所定の場所に設置されたセンサを介して循環動態を示す電気信号を計測し(ステップS13)、当該循環動態を示す電気信号を制御部103の第一検出部105に出力する。 Next, the circulatory dynamics measurement sensor 102 measures an electrical signal indicating the circulatory dynamics via a sensor installed at a predetermined location of the living body (step S13), and the electrical signal indicating the circulatory dynamics is measured by the control unit 103. One detection unit 105 outputs the result.
 そして、第一検出部105は、循環動態計測センサ102から入力された、循環動態を示す電気信号に基づいて、心室収縮が検出されたか否かを確認する(ステップS14)。心室収縮が検出されない(ステップS14のNO)ならば、第一検出部105は、心室収縮が検出されるまで待つ。 Then, the first detection unit 105 checks whether or not ventricular contraction is detected based on the electrical signal indicating the circulatory dynamics input from the circulatory dynamic measuring sensor 102 (step S14). If ventricular contraction is not detected (NO in step S14), the first detection unit 105 waits until ventricular contraction is detected.
 心室収縮が検出されると(ステップS14のYES)、第一検出部105は、循環動態計測センサ102による循環動態の計測を停止させる(ステップS15)。そして、第一検出部105は、血液拍出検出信号を生成し、この血液拍出検出信号を刺激信号発生部104に出力する。刺激信号発生部104は、血液拍出検出信号の入力をトリガーに、電気的刺激信号を生成し、当該電気的刺激信号による末梢神経の刺激を開始する(ステップS16)。さらに、第一検出部105は、末梢神経の刺激開始、すなわち心室収縮の検出と同時に、タイマ106をスタートさせ、心室の収縮検出からの時間のカウントを開始する(ステップS17)。そして、カウントした時間を比較部108に入力する。 When ventricular contraction is detected (YES in step S14), the first detection unit 105 stops the measurement of the circulatory dynamics by the circulatory dynamic measurement sensor 102 (step S15). Then, the first detection unit 105 generates a blood output detection signal and outputs this blood output detection signal to the stimulation signal generation unit 104. The stimulation signal generation unit 104 generates an electrical stimulation signal with the input of the blood output detection signal as a trigger, and starts stimulation of the peripheral nerve by the electrical stimulation signal (step S16). Further, the first detection unit 105 starts the timer 106 simultaneously with the start of stimulation of the peripheral nerve, that is, detection of ventricular contraction, and starts counting time from detection of ventricular contraction (step S17). Then, the counted time is input to the comparison unit 108.
 ここで、比較部108は、タイマ106から入力される、心室の収縮検出からの時間と、刺激期間設定値記憶部107に予め記憶された刺激期間設定値との比較を行い、どちらの値が大きいかを確認する(ステップS18)。心室の収縮検出からの時間が刺激期間設定値よりも小さいならば(ステップS18のNO)、この時間が刺激期間設定値に到達するまで、刺激信号発生部104からの神経刺激を継続する。 Here, the comparison unit 108 compares the time from the detection of ventricular contraction input from the timer 106 with the stimulation period setting value stored in advance in the stimulation period setting value storage unit 107, and which value is It is confirmed whether it is larger (step S18). If the time from the detection of the contraction of the ventricle is smaller than the stimulation period setting value (NO in step S18), the nerve stimulation from the stimulation signal generation unit 104 is continued until this time reaches the stimulation period setting value.
 心室の収縮検出からの時間が刺激期間設定値に到達した段階で(ステップS18のYES)、比較部108は刺激信号発生部104の動作を停止させる。すなわち、刺激信号発生部104は、末梢神経に対する電気的刺激信号による刺激を停止する(ステップS19)。 When the time from the detection of the contraction of the ventricle has reached the stimulation period set value (YES in step S18), the comparison unit 108 stops the operation of the stimulation signal generation unit 104. That is, the stimulation signal generation unit 104 stops the stimulation by the electrical stimulation signal for the peripheral nerve (step S19).
 以上の処理が完了した後、ステップS13の処理に戻り、ステップS13~ステップS19の処理を繰り返す。 After the above processing is completed, the processing returns to step S13 and the processing from step S13 to step S19 is repeated.
 以上説明したように、本発明の第一の実施形態では、心臓の心室の収縮(心臓からの血液の拍出)と同期して、電気的刺激信号により神経を刺激するようにしている。痛みは血液の拍出と同期して発生するので、痛みの拍動性と同期して神経を刺激することにより、拍動性を有する疼痛を的確に和らげることができ、患者に与える不快感を低減することが可能になる。 As described above, in the first embodiment of the present invention, nerves are stimulated by an electrical stimulation signal in synchronism with the contraction of the heart's ventricle (the pumping of blood from the heart). Pain occurs in synchronization with the pumping of blood, so stimulating nerves in synchronization with the pulsation of pain can alleviate pain with pulsation and reduce discomfort for the patient. It becomes possible to reduce.
 また、本発明の第一の実施形態では、心臓の心室の収縮(心臓からの血液の拍出)があった時点から所定の刺激期間だけ電気的刺激信号を生成するようにした。すなわち、必要性の小さい期間は刺激信号を生成しないようにした。これにより、電池の寿命を従来のものより長くしたり、副作用のリスクを小さくするという効果がある。 In the first embodiment of the present invention, the electrical stimulation signal is generated only for a predetermined stimulation period from the time when the heart ventricle contracts (blood from the heart). In other words, the stimulus signal is not generated during a period of low necessity. This has the effect of extending the life of the battery compared to the conventional one and reducing the risk of side effects.
〈2.第二の実施の形態〉
 次に、本発明の第二の実施の形態の例を、図5~図7を参照して説明する。以下説明において、第一の実施の形態と同様の構成については、同一符号を付して、その説明を省略もしくは簡略する。
<2. Second Embodiment>
Next, an example of the second embodiment of the present invention will be described with reference to FIGS. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 [疼痛緩和装置の構成]
 図5は、本発明の第二の実施の形態における疼痛緩和装置を示す機能ブロック図である。
 本実施形態例の疼痛緩和装置501は、常に所定の周波数f1で末梢神経を刺激しておき、心臓の心室の収縮(心臓からの血液の拍出)があった場合、周波数f1より高い周波数f2で末梢神経を刺激するようにする。すなわち、疼痛緩和装置501は、刺激信号発生部104が生成する電気的刺激信号を比較的弱い電気刺激である周波数f1の刺激、あるいは、それより強い電気刺激である周波数f2の刺激に設定するために、図1に示す疼痛緩和装置101にパラメータ調整部502を追加した構成となっている。
[Configuration of Pain Relief Device]
FIG. 5 is a functional block diagram showing a pain alleviating apparatus according to the second embodiment of the present invention.
The pain alleviating apparatus 501 of the present embodiment always stimulates the peripheral nerve at a predetermined frequency f1, and when there is contraction of the heart ventricle (blood from the heart), the frequency f2 higher than the frequency f1. To stimulate the peripheral nerves. That is, the pain alleviating apparatus 501 sets the electrical stimulus signal generated by the stimulus signal generation unit 104 to a stimulus having a frequency f1 that is a relatively weak electrical stimulus or a stimulus having a frequency f2 that is a stronger electrical stimulus. In addition, a parameter adjustment unit 502 is added to the pain alleviating apparatus 101 shown in FIG.
 パラメータ調整部502は、第一検出部105および比較部108と電気的に接続されている。このパラメータ調整部502は、第一検出部105および比較部108からの出力に基づいて、刺激信号発生部104が生成する電気的刺激信号の周波数を変更する。言い換えると、この電気的刺激信号の周波数(パラメータ)を変更するための信号(以下、「刺激強度変更信号」という)を刺激信号発生部104に与える働きをするのがパラメータ調整部502であるということになる。 The parameter adjustment unit 502 is electrically connected to the first detection unit 105 and the comparison unit 108. The parameter adjustment unit 502 changes the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 based on the outputs from the first detection unit 105 and the comparison unit 108. In other words, it is said that the parameter adjustment unit 502 functions to provide the stimulation signal generation unit 104 with a signal for changing the frequency (parameter) of the electrical stimulation signal (hereinafter referred to as “stimulation intensity change signal”). It will be.
 具体的には、パラメータ調整部502は、第一検出部105が心臓の心室の収縮(心臓からの血液の拍出)を検出したタイミングで、電気的刺激信号の周波数を通常の周波数f1より高い周波数f2にするための刺激強度変更信号を刺激信号発生部104に与える。また、逆に、パラメータ調整部502は、第一検出部105が心臓の心室の収縮(心臓からの拍出)を検出してから約0.3秒後には、電気的刺激信号の周波数を高い周波数f2から低い周波数f1に戻すための刺激強度変更信号を刺激信号発生部104に与えるようにする。この0.3秒という時間は、刺激期間設定値記憶部107に記憶された刺激期間設定値に相当する時間である。 Specifically, the parameter adjustment unit 502 sets the frequency of the electrical stimulation signal to be higher than the normal frequency f1 at the timing when the first detection unit 105 detects the contraction of the ventricle of the heart (the pumping of blood from the heart). A stimulus intensity change signal for setting the frequency f2 is given to the stimulus signal generator 104. Conversely, the parameter adjustment unit 502 increases the frequency of the electrical stimulation signal approximately 0.3 seconds after the first detection unit 105 detects the contraction of the ventricle of the heart (the output from the heart). A stimulus intensity change signal for returning from the frequency f2 to the lower frequency f1 is provided to the stimulus signal generator 104. This time of 0.3 seconds is a time corresponding to the stimulation period setting value stored in the stimulation period setting value storage unit 107.
 [電気的刺激信号]
 次に、刺激信号発生部104が生成する電気的刺激信号について説明する。
 図6は、電気的刺激信号としてバースト波を用いたときの、時系列変化を示す波形図である。
 縦軸は電気的刺激信号の信号レベル、すなわち電圧を表している。横軸は、時間軸である。電気的刺激信号において、縦線の1本1本が個々の矩形パルスを表しており、その隣接する縦線の間隔の逆数が電気的刺激信号の周波数を示している。なお、第二の実施形態を含む、後述する各実施形態(第三~第五の実施形態および変形例)では、第一の実施形態例とは異なり、電気的刺激信号の刺激強度が強くなるように周波数や電圧等のパラメータを変更している期間を「刺激期間」としている。
[Electric stimulation signal]
Next, the electrical stimulus signal generated by the stimulus signal generator 104 will be described.
FIG. 6 is a waveform diagram showing a time-series change when a burst wave is used as the electrical stimulation signal.
The vertical axis represents the signal level of the electrical stimulation signal, that is, the voltage. The horizontal axis is a time axis. In the electrical stimulation signal, each vertical line represents an individual rectangular pulse, and the reciprocal of the interval between the adjacent vertical lines represents the frequency of the electrical stimulation signal. In each of the embodiments described later (third to fifth embodiments and modifications) including the second embodiment, unlike the first embodiment, the stimulation intensity of the electrical stimulation signal is increased. In this way, a period in which parameters such as frequency and voltage are changed is referred to as a “stimulation period”.
 刺激期間が開始するタイミング、すなわち刺激信号発生部104が高い周波数f2の電気的刺激信号の生成を開始するタイミングは、図2Aに示す心電図のQRS波を検出するタイミングに一致する。刺激期間が終了するタイミング、すなわち刺激信号発生部104が低い周波数f1の電気的刺激信号に戻るタイミングは、刺激期間開始から約0.3秒、つまり刺激期間設定値記憶部107に記憶されている刺激期間設定値に等しくする。 The timing at which the stimulation period starts, that is, the timing at which the stimulation signal generator 104 starts generating an electrical stimulation signal having a high frequency f2 coincides with the timing at which the QRS wave in the electrocardiogram shown in FIG. 2A is detected. The timing at which the stimulation period ends, that is, the timing at which the stimulation signal generation unit 104 returns to the electrical stimulation signal having the low frequency f1 is stored in the stimulation period setting value storage unit 107 for about 0.3 seconds from the start of the stimulation period. Set to the stimulation period setting value.
 一般に、電気的刺激信号が末梢神経を刺激する強さの度合いは、その刺激する周波数に依存し、周波数が高いほど刺激の強度が増大する。本実施形態例では、患者の痛みの度合い、例えば、痛みの拍動の高低や深さに応じて刺激する周波数の高低を予め設定することが可能であり、これにより個別の患者に対して適切な処置を行うことができるようになっている。 Generally, the degree of strength with which the electrical stimulation signal stimulates the peripheral nerve depends on the stimulation frequency, and the stimulation intensity increases as the frequency increases. In the present embodiment example, it is possible to preset the level of the stimulation frequency according to the degree of pain of the patient, for example, the level and depth of the pulsation of pain, which is appropriate for each individual patient. It is possible to perform various treatments.
 [疼痛緩和装置の動作]
 次に、疼痛緩和装置501の動作について説明する。
 図7は、本発明の第二の実施の形態における疼痛緩和装置501の動作の流れを示すフローチャートである。
[Operation of pain relief device]
Next, the operation of the pain alleviating apparatus 501 will be described.
FIG. 7 is a flowchart showing a flow of operations of the pain alleviating apparatus 501 in the second embodiment of the present invention.
 まず、循環動態計測センサ102のセンサ部分が生体内の所定の位置に植え込まれて、疼痛緩和装置501が利用可能な状態になると(ステップS21)、刺激信号発生部104では電気的刺激パラメータである、パルス幅、パルス電流、パルス電圧が初期値に設定され、パラメータ調整部502では電気的刺激信号の周波数をf1にする信号を刺激信号発生部104に与えて電気的刺激パラメータの周波数が初期化される。これが、電気的刺激パラメータの初期化である(ステップS22)。すると、刺激信号発生部104は、周波数f1の電気的刺激信号を生成し、この周波数f1の電気的刺激信号で末梢神経を刺激する(ステップS23)。 First, when the sensor portion of the circulatory dynamic measurement sensor 102 is implanted at a predetermined position in the living body and the pain relieving device 501 becomes available (step S21), the stimulation signal generation unit 104 uses an electrical stimulation parameter. A certain pulse width, pulse current, and pulse voltage are set to initial values, and the parameter adjusting unit 502 supplies a signal for setting the frequency of the electrical stimulation signal to f1 to the stimulation signal generating unit 104 so that the frequency of the electrical stimulation parameter is initialized. It becomes. This is the initialization of the electrical stimulation parameters (step S22). Then, the stimulation signal generation unit 104 generates an electrical stimulation signal with the frequency f1, and stimulates the peripheral nerve with the electrical stimulation signal with the frequency f1 (step S23).
 次に、循環動態計測センサ102は、生体の所定の場所に設置されたセンサを介して循環動態を示す電気信号を計測し(ステップS24)、当該循環動態を示す電気信号を制御部103の第一検出部105に出力する。 Next, the circulatory dynamics measurement sensor 102 measures an electrical signal indicating the circulatory dynamics via a sensor installed at a predetermined location of the living body (step S24), and the electrical signal indicating the circulatory dynamics is sent to the control unit 103. One detection unit 105 outputs the result.
 そして、第一検出部105は、循環動態計測センサ102から入力された、循環動態を示す電気信号に基づいて心室収縮が検出されたか否かを確認する(ステップS25)。心室収縮が検出されない場合は、第一検出部105は、心室収縮が検出されるのを待つ(ステップS25のNO)。それまでは、刺激信号発生部104は、低い周波数f1の電気的刺激信号によって末梢神経の刺激を継続する。 Then, the first detection unit 105 checks whether or not ventricular contraction is detected based on the electrical signal indicating the circulatory dynamics input from the circulatory dynamic measuring sensor 102 (step S25). When ventricular contraction is not detected, the first detection unit 105 waits for detection of ventricular contraction (NO in step S25). Until then, the stimulation signal generation unit 104 continues the stimulation of the peripheral nerve by the electrical stimulation signal of the low frequency f1.
 心室収縮が検出されると(ステップS25のYES)、第一検出部105は、循環動態計測センサ102による循環動態の計測を停止させる(ステップS26)。同時に、第一検出部105は血液拍出検出信号を生成し、この血液拍出検出信号をパラメータ調整部502に与える。すると、パラメータ調整部502は、刺激信号発生部104で生成される電気的刺激信号の周波数を周波数f2に変更させるための刺激強度変更信号を生成し、この刺激強度変更信号を刺激信号発生部104に出力する。この結果、刺激信号発生部104は、周波数f1より高い周波数f2の電気的刺激信号を生成し、この周波数f2の電気的刺激信号による末梢神経の刺激を開始する(ステップS27)。 When ventricular contraction is detected (YES in step S25), the first detection unit 105 stops the measurement of the circulatory dynamics by the circulatory dynamic measurement sensor 102 (step S26). At the same time, the first detection unit 105 generates a blood output detection signal and gives this blood output detection signal to the parameter adjustment unit 502. Then, the parameter adjustment unit 502 generates a stimulation intensity change signal for changing the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to the frequency f2, and uses this stimulation intensity change signal as the stimulation signal generation unit 104. Output to. As a result, the stimulation signal generation unit 104 generates an electrical stimulation signal having a frequency f2 higher than the frequency f1, and starts stimulation of the peripheral nerve by the electrical stimulation signal having the frequency f2 (step S27).
 さらに、第一検出部105は、周波数f2の電気的刺激信号による末梢神経の刺激開始、すなわち心室収縮の検出と同時にタイマ106をスタートさせ、心室の収縮検出からの時間のカウントを開始する(ステップS28)。そして、カウントした時間を比較部108に入力する。 Further, the first detection unit 105 starts the timer 106 simultaneously with the start of stimulation of the peripheral nerve by the electrical stimulation signal of the frequency f2, that is, the detection of the ventricular contraction, and starts counting the time from the detection of the contraction of the ventricle (Step). S28). Then, the counted time is input to the comparison unit 108.
 ここで、比較部108は、タイマ106から入力される、心室の収縮検出からの時間と、刺激期間設定値記憶部107に予め記憶された刺激期間設定値との比較を行い、どちらの値が大きいかを確認する(ステップS29)。心室の収縮検出からの時間が刺激期間設定値よりも小さい間は(ステップS29のNO)、高い周波数f2の刺激が継続的に行われる。 Here, the comparison unit 108 compares the time from the detection of ventricular contraction input from the timer 106 with the stimulation period setting value stored in advance in the stimulation period setting value storage unit 107, and which value is It is confirmed whether it is larger (step S29). While the time since the detection of the contraction of the ventricle is smaller than the stimulation period setting value (NO in step S29), stimulation at a high frequency f2 is continuously performed.
 心室の収縮検出からの時間が刺激期間設定値に到達すると(ステップS29のYES)、比較部108は、パラメータ調整部502に刺激信号発生部104が生成する電気的刺激信号の周波数をf1にする刺激強度変更信号を生成させ、この刺激強度変更信号が刺激信号発生部104に与えられる。この結果、刺激信号発生部104は、周波数f2より低い周波数f1の電気的刺激信号を生成し、この低い周波数f1の電気的刺激信号によって末梢神経の刺激を行う状態に戻す(ステップS30)。 When the time from the detection of ventricular contraction reaches the stimulation period setting value (YES in step S29), the comparison unit 108 sets the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to the parameter adjustment unit 502 to f1. A stimulus intensity change signal is generated, and this stimulus intensity change signal is given to the stimulus signal generator 104. As a result, the stimulation signal generation unit 104 generates an electrical stimulation signal having a frequency f1 lower than the frequency f2, and returns to a state in which the peripheral nerve is stimulated by the electrical stimulation signal having the lower frequency f1 (step S30).
 以上の処理が完了した後、ステップS24の処理に戻り、ステップS24~ステップS30の処理を繰り返す。 After the above processing is completed, the processing returns to step S24, and the processing from step S24 to step S30 is repeated.
 以上説明したように、本発明の第二の実施形態では、常に所定の周波数f1で末梢神経を刺激しておき、心臓の心室の収縮検出から所定の刺激期間だけ周波数f1より高い周波数f2で神経を刺激するようにしている。このような形態とすることにより、心室の収縮の検出から所定期間過ぎた後の、拍動以外においても常時比較的強く痛みを感じる患者に効果的である。すなわち、平時の痛みに対しては比較的弱い電気的刺激である周波数f1の刺激で痛みを緩和し、拍動に伴う痛みの上積み分を周波数f1の刺激よりも強い電気的刺激である周波数f2の刺激で対処する。これにより、電池の寿命を従来のものより長くしたり、副作用のリスクを小さくするという効果がある。 As described above, in the second embodiment of the present invention, peripheral nerves are always stimulated at a predetermined frequency f1, and nerves are detected at a frequency f2 higher than the frequency f1 for a predetermined stimulation period from detection of cardiac ventricular contraction. To stimulate. By adopting such a configuration, it is effective for a patient who always feels a relatively strong pain other than pulsation after a predetermined period of time has elapsed since detection of ventricular contraction. That is, for normal pain, the pain is relieved by a stimulus having a frequency f1, which is a relatively weak electrical stimulus, and a frequency f2 which is a stronger electrical stimulus than the stimulus having the frequency f1 is added to the pain caused by pulsation. Deal with the stimulus. This has the effect of extending the life of the battery compared to the conventional one and reducing the risk of side effects.
〈3.第三の実施の形態〉
 次に、本発明の第三の実施の形態の例を、図8~図9を参照して説明する。以下の説明において、第一および第二の実施の形態と同様の構成については、同一符号を付して、その説明を省略もしくは簡略する。
<3. Third Embodiment>
Next, an example of the third embodiment of the present invention will be described with reference to FIGS. In the following description, components similar to those in the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted or simplified.
 [疼痛緩和装置の構成]
 図8は、本発明の第三の実施の形態における疼痛緩和装置を示す機能ブロック図である。
 第三の実施形態の疼痛緩和装置601は、心拍数あるいは心拍間隔に基づいて、電気的刺激信号を高い周波数f2にする刺激期間を決定する。そのため、疼痛緩和装置601は、第二の実施の形態の疼痛緩和装置501の刺激期間設定値記憶部107の代替として、心拍数/心拍間隔計測部603および刺激期間設定値選択部604を備える構成となっている。
[Configuration of Pain Relief Device]
FIG. 8 is a functional block diagram showing a pain alleviating apparatus according to the third embodiment of the present invention.
The pain relieving apparatus 601 of the third embodiment determines a stimulation period in which the electrical stimulation signal is set to the high frequency f2 based on the heart rate or the heartbeat interval. Therefore, the pain relieving apparatus 601 includes a heart rate / heart rate interval measuring unit 603 and a stimulation period setting value selecting unit 604 as an alternative to the stimulation period setting value storage unit 107 of the pain relieving apparatus 501 of the second embodiment. It has become.
 心拍数/心拍間隔計測部603は、刺激期間設定値選択部604と電気的に接続されている。そして、心拍数/心拍間隔計測部603で計測した心拍数あるいは心拍間隔が刺激期間設定値選択部604に出力される。 The heart rate / beat interval measuring unit 603 is electrically connected to the stimulation period setting value selecting unit 604. Then, the heart rate or heart rate measured by the heart rate / heart rate interval measurement unit 603 is output to the stimulation period setting value selection unit 604.
 刺激期間設定値選択部604は、心拍数/心拍間隔計測部603から入力される心拍間隔に対しては、例えば、次式に従って、刺激期間設定値を計算する。
 (刺激期間設定値)=0.5×(心拍間隔)
 また、刺激期間設定値選択部604において、心拍間隔と刺激期間の関係を表すテーブルを予め記憶させておき、この対応関係から、計測した心拍間隔に基づいて刺激期間設定値を選択することも可能である。
The stimulation period setting value selection unit 604 calculates a stimulation period setting value for the heart rate interval input from the heart rate / heart rate interval measurement unit 603, for example, according to the following equation.
(Stimulation period set value) = 0.5 x (Heart rate interval)
The stimulation period setting value selection unit 604 can store a table representing the relationship between the heartbeat interval and the stimulation period in advance, and can select the stimulation period setting value based on the measured heartbeat interval from this correspondence. It is.
 そして、刺激期間設定値選択部604は、上記式で計算、あるいはテーブルから選択された刺激期間設定値を比較部108に出力するように、当該比較部108と電気的に接続されている。なお、心拍数/心拍間隔計測部603は心拍数を計測するものであってもよい。但し、その場合には、刺激期間設定値選択部604は心拍数に基づいて刺激期間設定値を計算、あるいは選択することになる。なお、心拍間隔は、60÷心拍数で算出される。 The stimulation period setting value selection unit 604 is electrically connected to the comparison unit 108 so as to output the stimulation period setting value calculated from the above formula or selected from the table to the comparison unit 108. The heart rate / heart rate interval measurement unit 603 may measure a heart rate. However, in that case, the stimulation period setting value selection unit 604 calculates or selects the stimulation period setting value based on the heart rate. The heartbeat interval is calculated by 60 ÷ heart rate.
 [疼痛緩和装置の動作]
 次に、疼痛緩和装置601の動作について説明する。
 図9は、本発明の第三の実施の形態における疼痛緩和装置601の動作の流れを示すフローチャートである。図9において、ステップS31~ステップS36の処理までは、図7に示したステップS21~ステップS26の処理までのフローと完全に一致するので、ここではステップS31~ステップS36の処理までの説明は省略し、ステップS37の処理以降について説明する。
[Operation of pain relief device]
Next, the operation of the pain alleviating apparatus 601 will be described.
FIG. 9 is a flowchart showing an operation flow of the pain alleviating apparatus 601 according to the third embodiment of the present invention. In FIG. 9, the process from step S31 to step S36 is completely the same as the process from step S21 to step S26 shown in FIG. 7, so the description up to the process from step S31 to step S36 is omitted here. Then, the processing after step S37 will be described.
 ステップS36で、循環動態計測センサ102が循環動態の計測を停止した後、心拍数/心拍間隔計測部603は直前の心拍数あるいは心拍間隔を計測し(ステップS37)、計測した心拍数あるいは心拍間隔を刺激期間設定値選択部604に出力する。すると、刺激期間設定値選択部604は、前述の式あるいはテーブルを利用して、刺激期間設定値を導出し(ステップS38)、この導出された刺激期間設定値が比較部108に入力される。同時に、第一検出部105は、パラメータ調整部502に、刺激信号発生部104が生成する電気的刺激信号の周波数をf2にする刺激強度変更信号を生成する。そして、この刺激強度変更信号を刺激信号発生部104に与える。この結果、刺激信号発生部104は、周波数f1より高い周波数f2の電気的刺激信号を生成し、この周波数f2の電気的刺激信号による末梢神経の刺激を開始する(ステップS39)。さらに、第一検出部105は、周波数f2の電気的刺激信号による末梢神経の刺激開始、すなわち心室の収縮の検出と同時にタイマ106をスタートさせ、心室の収縮検出からの時間のカウントを開始する(ステップS40)。そして、カウントした時間を比較部108に入力する。 After the circulatory dynamics measurement sensor 102 stops measuring the circulatory dynamics in step S36, the heart rate / heart beat interval measuring unit 603 measures the immediately preceding heart rate or heart beat interval (step S37), and the measured heart rate or heart beat interval. Is output to the stimulation period setting value selection unit 604. Then, the stimulation period setting value selection unit 604 derives the stimulation period setting value using the above-described formula or table (step S38), and the derived stimulation period setting value is input to the comparison unit 108. At the same time, the first detection unit 105 generates, in the parameter adjustment unit 502, a stimulation intensity change signal that sets the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to f2. Then, this stimulation intensity change signal is given to the stimulation signal generator 104. As a result, the stimulation signal generation unit 104 generates an electrical stimulation signal having a frequency f2 higher than the frequency f1, and starts stimulation of the peripheral nerve by the electrical stimulation signal having the frequency f2 (step S39). Further, the first detection unit 105 starts the timer 106 simultaneously with the start of stimulation of the peripheral nerve by the electrical stimulation signal of the frequency f2, that is, the detection of the ventricular contraction, and starts counting time from the detection of the ventricular contraction ( Step S40). Then, the counted time is input to the comparison unit 108.
 ここで、比較部108は、タイマ106から入力される、心室の収縮検出からの時間と、刺激期間設定値選択部604によって導出された刺激期間設定値との比較を行い、どちらの値が大きいかを確認する(ステップS41)。心室の収縮検出からの時間が刺激期間設定値よりも小さいうちは(ステップS41のNO)、高い周波数f2の刺激が継続的に行われることになる。 Here, the comparison unit 108 compares the time from the detection of ventricular contraction input from the timer 106 with the stimulation period setting value derived by the stimulation period setting value selection unit 604, and which value is greater. (Step S41). As long as the time since the detection of the contraction of the ventricle is smaller than the stimulation period setting value (NO in step S41), stimulation at a high frequency f2 is continuously performed.
 心室の収縮検出からの時間が刺激期間設定値に到達すると(ステップS41のYES)、比較部108は、パラメータ調整部502に刺激信号発生部104が生成する電気的刺激信号の周波数を高い周波数f2から低い周波数f1にする刺激強度変更信号を生成させ、この刺激強度変更信号を刺激信号発生部104に供給する。この刺激強度変更信号に基づいて、刺激信号発生部104は、低い周波数f1の電気的刺激信号による末梢神経の刺激に戻す(ステップS42)。 When the time from the detection of contraction of the ventricle reaches the stimulation period setting value (YES in step S41), the comparison unit 108 sets the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to the parameter adjustment unit 502 to the high frequency f2. The stimulus intensity change signal having a low frequency f1 is generated, and the stimulus intensity change signal is supplied to the stimulus signal generation unit 104. Based on this stimulation intensity change signal, the stimulation signal generator 104 returns to stimulation of the peripheral nerve by the electrical stimulation signal of the low frequency f1 (step S42).
 以上の処理が完了した後、ステップS34の処理に戻り、ステップS34~ステップS42の処理を繰り返す。 After the above processing is completed, the processing returns to step S34, and the processing from step S34 to step S42 is repeated.
 以上説明したように、本発明の第三の実施形態では、電気的刺激信号を高い周波数f2にする刺激期間を心拍数あるいは心拍間隔に基づいて決定するようにした。拍動に要する時間は、患者の代謝や精神的ストレスの状況によって変化し、心拍数が増加(心拍間隔が減少)すれば短くなる。これに伴って、患者の感じる疼痛の拍動性も変化する。したがって、心拍数あるいは心拍間隔に基づいて刺激期間を決定することにより、患者にとって最適な刺激期間を設定できる。これにより、拍動性を有する疼痛をより的確に和らげるとともに、電池の寿命を長くすることができる。 As described above, in the third embodiment of the present invention, the stimulation period in which the electrical stimulation signal is set to the high frequency f2 is determined based on the heart rate or the heartbeat interval. The time required for pulsation changes depending on the patient's metabolism and mental stress, and becomes shorter as the heart rate increases (beat interval decreases). Along with this, the pulsation of pain felt by the patient also changes. Therefore, by determining the stimulation period based on the heart rate or the heartbeat interval, the optimal stimulation period for the patient can be set. As a result, pain having pulsation can be alleviated more accurately and the battery life can be extended.
〈4.第四の実施の形態〉 <4. Fourth Embodiment>
 本発明の第四の実施の形態の例を、図10~図12を参照して説明する。以下説明において、第一から第三の実施の形態と同様の構成については、同一符号を付して、その説明を省略もしくは簡略する。 An example of the fourth embodiment of the present invention will be described with reference to FIGS. In the following description, the same components as those in the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 [疼痛緩和装置の構成]
 図10は、本発明の第四の実施の形態における疼痛緩和装置を示す機能ブロック図である。
 本実施形態例の疼痛緩和装置701は、常に所定の周波数f1で末梢神経を刺激しておき、心臓の心室の収縮があった場合、周波数f1より高い周波数f2で神経を刺激するようにする。さらに、この状態において身体活動があった場合、周波数f2より高い周波数f3で神経を刺激する。この機能を実現するために、疼痛緩和装置701は、図5に示す疼痛緩和装置501のパラメータ調整部502をパラメータ調整部703に置き換え、制御部103の代わりに当該制御部103に第二検出部をさらに備えた制御部702を備える。
[Configuration of Pain Relief Device]
FIG. 10 is a functional block diagram showing a pain alleviating apparatus according to the fourth embodiment of the present invention.
The pain alleviating apparatus 701 of this embodiment always stimulates the peripheral nerve at a predetermined frequency f1, and when there is contraction of the ventricle of the heart, the nerve is stimulated at a frequency f2 higher than the frequency f1. Further, when there is physical activity in this state, the nerve is stimulated at a frequency f3 higher than the frequency f2. In order to realize this function, the pain relieving device 701 replaces the parameter adjusting unit 502 of the pain relieving device 501 shown in FIG. 5 with a parameter adjusting unit 703 and replaces the control unit 103 with the second detecting unit. The control part 702 further provided with is provided.
 制御部702は、循環動態計測センサ102から入力される循環動態を示す電気信号に基づいて、パラメータ調整部703を制御するものである。 The control unit 702 controls the parameter adjustment unit 703 based on an electrical signal indicating the circulation dynamics input from the circulation dynamic measurement sensor 102.
 パラメータ調整部703は、制御部702からの指示に基づいて、刺激信号発生部104に刺激強度変更信号を出力する。 The parameter adjustment unit 703 outputs a stimulus intensity change signal to the stimulus signal generation unit 104 based on an instruction from the control unit 702.
 つまり、通常時には、神経に対して第一刺激強度で電気的刺激を行い、心室収縮のみが検出された場合には、検出した心室収縮と同期したタイミング(心拍タイミング)で神経に対して所定期間の間、第一刺激強度よりも強い第二刺激強度で電気的刺激を行うための刺激強度変更信号を生成する。また、心室収縮に加え、後述する第二検出部704で代謝要求あるいは身体活動が検出された場合は、当該タイミングで神経に対して所定期間の間、第二刺激強度よりも強い第三刺激強度で電気的刺激を行うための刺激強度変更信号を、刺激信号発生部104に出力する。 In other words, when electrical stimulation is normally performed on the nerve with the first stimulation intensity and only ventricular contraction is detected, the nerve is synchronized with the detected ventricular contraction (heartbeat timing) for a predetermined period for the nerve. In the meantime, a stimulation intensity change signal is generated for electrical stimulation with a second stimulation intensity that is higher than the first stimulation intensity. Further, in addition to ventricular contraction, when a metabolic request or physical activity is detected by a second detection unit 704 described later, a third stimulation intensity that is stronger than the second stimulation intensity for a predetermined period with respect to the nerve at the timing. A stimulus intensity change signal for performing electrical stimulation is output to the stimulus signal generation unit 104.
 制御部702は、より詳細には第一検出部105と、タイマ106と、刺激期間設定値記憶部107と、比較部108と、第二検出部704から構成されている。なお、第一検出部105、タイマ106、刺激期間設定値記憶部107および比較部108は前述したとおりなので、説明は省略する。 More specifically, the control unit 702 includes a first detection unit 105, a timer 106, a stimulation period set value storage unit 107, a comparison unit 108, and a second detection unit 704. Since the first detection unit 105, the timer 106, the stimulation period set value storage unit 107, and the comparison unit 108 are as described above, the description thereof is omitted.
 第二検出部704は、身体活動、つまり身体が動いたことを検出する、加速度センサや振動センサ、あるいは代謝要求、つまり患者の代謝が増加したことを検出する温度センサや酸素飽和度センサ等を含んでおり、これらのセンサに対応して体内に配置される。第二検出部704は、代謝要求あるいは身体活動を検出すると、代謝要求あるいは身体活動を検出している間、この検出を示す信号(以下、「身体活動検出信号」という)をパラメータ調整部703に出力する。なお、第二検出部が検出する身体活動とは、ウォーキング等の能動的な活動や乗り物に乗る等によって受ける受動的な活動の両方を含む。 The second detection unit 704 includes an acceleration sensor and a vibration sensor that detect physical activity, that is, that the body has moved, or a temperature sensor that detects increase in metabolic demand, that is, a patient's metabolism, an oxygen saturation sensor, and the like. And is placed in the body corresponding to these sensors. When detecting the metabolic request or physical activity, the second detection unit 704 sends a signal indicating this detection (hereinafter referred to as “physical activity detection signal”) to the parameter adjustment unit 703 while detecting the metabolic request or physical activity. Output. The physical activity detected by the second detection unit includes both an active activity such as walking and a passive activity received by riding a vehicle.
 加速度センサと振動センサは、疼痛緩和装置容器内に取り付けられ、能動的あるいは受動的な活動によって起こる加速度や振動を検出する。温度センサと酸素飽和度センサは、一般的に、筋肉や臓器が産生した熱や二酸化炭素を運搬する末梢静脈血液が合流する中心静脈内に留置されて、それぞれ、リードを介して疼痛緩和装置と接続される。温度センサは、中心静脈血液温度の計測により発熱や運動などの代謝要求を検出する。酸素飽和度センサは、発光部と受光部を備え、発した光の血液中での透過や反射を捉えることにより酸素飽和度を計測して発熱や運動などの代謝要求を検出する。 Accelerometer and vibration sensor are installed in the pain relief container and detect acceleration and vibration caused by active or passive activities. A temperature sensor and an oxygen saturation sensor are generally placed in a central vein where peripheral venous blood that carries heat and carbon dioxide produced by muscles and organs joins, Connected. The temperature sensor detects metabolic demands such as fever and exercise by measuring central venous blood temperature. The oxygen saturation sensor includes a light emitting unit and a light receiving unit, and detects metabolic demands such as fever and exercise by measuring oxygen saturation by capturing transmission and reflection of emitted light in blood.
 [電気的刺激信号]
 次に、刺激信号発生部104が生成する電気的刺激信号について説明する。
 神経の刺激に用いる電気的刺激信号は、矩形パルス列によるバースト波が一般的である。図11は、電気的刺激信号としてバースト波を用いたときの、時系列変化を示す波形図である。縦軸は電気的刺激信号の信号レベル、すなわち電圧を表している。横軸は、図2A~Cと共通の時間軸である。図11に示す各電気的刺激信号は、縦線の1本1本が個々の矩形パルス(パルス幅は不図示)を表しており、その隣接する縦線の間隔の逆数がその周波数を示している。
[Electric stimulation signal]
Next, the electrical stimulus signal generated by the stimulus signal generator 104 will be described.
The electrical stimulation signal used for nerve stimulation is generally a burst wave by a rectangular pulse train. FIG. 11 is a waveform diagram showing a time-series change when a burst wave is used as the electrical stimulation signal. The vertical axis represents the signal level of the electrical stimulation signal, that is, the voltage. The horizontal axis is a time axis common to FIGS. 2A to 2C. In each electrical stimulation signal shown in FIG. 11, each vertical line represents an individual rectangular pulse (pulse width is not shown), and the reciprocal of the interval between adjacent vertical lines indicates the frequency. Yes.
 図11Aは、第二検出部704が代謝要求あるいは身体活動を検出していない場合、すなわち第二検出部704からパラメータ調整部703に身体活動検出信号が出力されていない場合に、刺激信号発生部104が生成する電気的刺激信号を示した図である。 FIG. 11A shows a stimulation signal generation unit when the second detection unit 704 has not detected a metabolic request or physical activity, that is, when no physical activity detection signal is output from the second detection unit 704 to the parameter adjustment unit 703. It is the figure which showed the electrical stimulation signal which 104 produces | generates.
 図11Bは、第二検出部704が代謝要求あるいは身体活動を検出した場合、すなわち第二検出部704からパラメータ調整部703に身体活動検出信号が出力されている場合に、刺激信号発生部104が生成する電気的刺激信号を示した図である。 FIG. 11B shows that when the second detection unit 704 detects a metabolic request or physical activity, that is, when a physical activity detection signal is output from the second detection unit 704 to the parameter adjustment unit 703, the stimulation signal generation unit 104 It is the figure which showed the electrical stimulation signal to produce | generate.
 代謝要求あるいは身体活動の検出の有無にかかわらず、電気的刺激信号の周波数が変更されるタイミング、すなわちパラメータ調整部703から刺激信号発生部104に刺激強度変更信号が出力されるタイミングは、図2Aに示す心電図のQRS波の検出に一致する。また、刺激強度の高い所定期間が終了するタイミング、すなわち刺激信号発生部104が電気的刺激信号の周波数を変更前に戻すタイミングは、刺激強度の高い所定期間の開始から約0.3秒、つまり刺激期間設定値記憶部107に記憶されている刺激期間設定値に等しい。 Regardless of whether metabolic demand or physical activity is detected, the timing at which the frequency of the electrical stimulation signal is changed, that is, the timing at which the stimulation intensity changing signal is output from the parameter adjustment unit 703 to the stimulation signal generation unit 104 is shown in FIG. This corresponds to the detection of the QRS wave of the electrocardiogram shown in FIG. The timing at which the predetermined period with high stimulation intensity ends, that is, the timing at which the stimulation signal generator 104 returns the frequency of the electrical stimulation signal before the change is about 0.3 seconds from the start of the predetermined period with high stimulation intensity, that is, It is equal to the stimulation period setting value stored in the stimulation period setting value storage unit 107.
 代謝要求あるいは身体活動の検出がない場合は、図11Aに示すように、QRS波の検出をトリガーにして電気的刺激信号の周波数がf1からf2(f2>f1)に変更される。ここでの代謝要求あるいは身体活動の検出がない場合とは、パラメータ調整部703に血液拍出検出信号の入力があった場合のことを指す。なお、周波数f1の電気的刺激信号の刺激強度が前述の第一刺激強度に相当し、周波数f2の電気的刺激信号の刺激強度が前述の第二刺激強度に該当する。 When no metabolic demand or physical activity is detected, the frequency of the electrical stimulation signal is changed from f1 to f2 (f2> f1) with the detection of the QRS wave as a trigger, as shown in FIG. 11A. Here, the case where no metabolic request or physical activity is detected refers to the case where the parameter adjustment unit 703 has received a blood output detection signal. The stimulation intensity of the electrical stimulation signal at frequency f1 corresponds to the first stimulation intensity described above, and the stimulation intensity of the electrical stimulation signal at frequency f2 corresponds to the second stimulation intensity described above.
 代謝要求あるいは身体活動の検出があった場合は、図11Bに示すように、QRS波の検出をトリガーにして電気的刺激信号の周波数がf1からf3(f3>f2)に変更される。ここでの代謝要求あるいは身体活動の検出があった場合とは、パラメータ調整部703に血液拍出検出信号および身体活動検出信号の入力があった場合のことを指す。なお、周波数f3の電気的刺激信号の刺激強度が前述の第三刺激強度に相当する。 When a metabolic request or physical activity is detected, as shown in FIG. 11B, the frequency of the electrical stimulation signal is changed from f1 to f3 (f3> f2) triggered by the detection of the QRS wave. The case where a metabolic request or physical activity is detected here refers to a case where the parameter adjustment unit 703 receives a blood output detection signal and a physical activity detection signal. Note that the stimulation intensity of the electrical stimulation signal at the frequency f3 corresponds to the third stimulation intensity described above.
 ここで、電気的刺激信号の電圧、パルス幅、そして、第一刺激強度における周波数f1、第二刺激強度における周波数f2、第三刺激強度における周波数f3は、患者の痛みの性状に応じて、医師や患者が設定するものである。 Here, the voltage of the electrical stimulation signal, the pulse width, the frequency f1 at the first stimulation intensity, the frequency f2 at the second stimulation intensity, and the frequency f3 at the third stimulation intensity are determined according to the nature of the patient's pain. And are set by the patient.
 [疼痛緩和装置の動作]
 次に、疼痛緩和装置701の動作について説明する。
 図12は、本発明の第四の実施の形態における疼痛緩和装置701の動作の流れを示すフローチャートである。
[Operation of pain relief device]
Next, the operation of the pain alleviating apparatus 701 will be described.
FIG. 12 is a flowchart showing an operation flow of the pain alleviating apparatus 701 according to the fourth embodiment of the present invention.
 まず、循環動態計測センサ102のセンサ部分が生体内の所定の位置に植え込まれて、疼痛緩和装置701が利用可能な状態とされる(ステップS51)。このステップS51の状態になると、刺激信号発生部104で、パルス幅、パルス電流、パルス電圧等の電気的刺激パラメータが初期値に設定されるとともに、パラメータ調整部703から電気的刺激信号の周波数をf1にする刺激強度変更信号が刺激信号発生部104に与えられる。これにより、電気的刺激パラメータの周波数も初期化され、電気的刺激パラメータの初期化が完了する(ステップS52)。すると、刺激信号発生部104は、第一刺激強度、すなわち周波数f1の電気的刺激信号を生成し、この周波数f1の電気的刺激信号で神経を刺激する(ステップS53)。 First, the sensor portion of the circulatory dynamic measurement sensor 102 is implanted at a predetermined position in the living body, and the pain relieving device 701 is made available (step S51). In the state of step S51, the stimulation signal generation unit 104 sets electrical stimulation parameters such as pulse width, pulse current, and pulse voltage to initial values, and the parameter adjustment unit 703 sets the frequency of the electrical stimulation signal. A stimulus intensity change signal for f1 is given to the stimulus signal generator 104. Thereby, the frequency of the electrical stimulation parameter is also initialized, and the initialization of the electrical stimulation parameter is completed (step S52). Then, the stimulation signal generation unit 104 generates an electrical stimulation signal having the first stimulation intensity, that is, the frequency f1, and stimulates the nerve with the electrical stimulation signal having the frequency f1 (step S53).
 次に、循環動態計測センサ102は、生体の所定の場所に設置されたセンサを介して循環動態を示す電気信号を計測し(ステップS54)、当該循環動態を示す電気信号を制御部702の第一検出部105に出力する。このステップS54の処理と併行して、第二検出部704は代謝要求あるいは身体活動の計測を開始する。 Next, the circulatory dynamics measurement sensor 102 measures an electrical signal indicating the circulatory dynamics via a sensor installed at a predetermined location of the living body (step S54), and the electrical signal indicating the circulatory dynamics is sent to the control unit 702. One detection unit 105 outputs the result. In parallel with the processing in step S54, the second detection unit 704 starts measuring metabolic demand or physical activity.
 そして、第一検出部105は、循環動態計測センサ102から入力された、循環動態を示す電気信号に基づいて心室収縮が検出されたか否かを確認する(ステップS55)。心室収縮が検出されない場合は、第一検出部105は、心室収縮が検出されるのを待つ(ステップS55のNO)。それまでは、刺激信号発生部104は、低い周波数f1の電気的刺激信号によって神経の刺激を継続する。 Then, the first detection unit 105 checks whether or not ventricular contraction is detected based on the electrical signal indicating the circulatory dynamics input from the circulatory dynamic measuring sensor 102 (step S55). When ventricular contraction is not detected, the first detection unit 105 waits for detection of ventricular contraction (NO in step S55). Until then, the stimulation signal generation unit 104 continues nerve stimulation by the electrical stimulation signal of the low frequency f1.
 心室収縮が検出されたと判定された場合は(ステップS55のYES)、第二検出部704では代謝要求あるいは身体活動が検出されたか否かが確認される(ステップS56)。 If it is determined that ventricular contraction is detected (YES in step S55), the second detection unit 704 checks whether a metabolic request or physical activity is detected (step S56).
 代謝要求あるいは身体活動が検出されない場合には(ステップS56のNO)、第一検出部105は、循環動態計測センサ102による循環動態の計測を停止させるとともに、第二検出部は、代謝要求あるいは身体活動の計測を停止する(ステップS57)。同時に、第一検出部105はパラメータ調整部703に血液拍出検出信号を出力する。すると、パラメータ調整部703は、刺激信号発生部104が生成する電気的刺激信号の周波数をf2に変更する刺激強度変更信号を生成する。そして、この刺激強度変更信号を刺激信号発生部104に与える。この結果、刺激信号発生部104は、周波数f1より高い周波数f2の電気的刺激信号(図11Aを参照)を生成し、この周波数f2の電気的刺激信号による神経の刺激を開始し(ステップS58)、ステップS61の処理に移行する。 If a metabolic request or physical activity is not detected (NO in step S56), the first detection unit 105 stops the measurement of the circulatory dynamics by the circulatory dynamic measurement sensor 102, and the second detection unit detects the metabolic request or physical activity. Activity measurement is stopped (step S57). At the same time, the first detection unit 105 outputs a blood output detection signal to the parameter adjustment unit 703. Then, the parameter adjustment unit 703 generates a stimulation intensity change signal that changes the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to f2. Then, this stimulation intensity change signal is given to the stimulation signal generator 104. As a result, the stimulation signal generation unit 104 generates an electrical stimulation signal (see FIG. 11A) having a frequency f2 higher than the frequency f1, and starts nerve stimulation using the electrical stimulation signal having the frequency f2 (step S58). Then, the process proceeds to step S61.
 一方、ステップS56で、代謝要求あるいは身体活動が検出された場合には(ステップS56のYES)、第二検出部704は、代謝要求あるいは身体活動の計測を停止する(ステップS59)とともに、身体活動検出信号をパラメータ調整部703に出力する。このとき、第一検出部105では、循環動態計測センサ102による循環動態の計測が停止されるとともに、血液拍出検出信号がパラメータ調整部703に出力される。 On the other hand, when a metabolic request or physical activity is detected in step S56 (YES in step S56), the second detection unit 704 stops measuring the metabolic request or physical activity (step S59) and physical activity. The detection signal is output to the parameter adjustment unit 703. At this time, in the first detection unit 105, the measurement of the circulatory dynamics by the circulatory dynamics measurement sensor 102 is stopped, and a blood output detection signal is output to the parameter adjustment unit 703.
 血液拍出検出信号および身体活動検出信号を受け取ると、パラメータ調整部703は、刺激信号発生部104が生成する電気的刺激信号の周波数をf3に変更する刺激強度変更信号を生成する。そして、この刺激強度変更信号を刺激信号発生部104に与える。この結果、刺激信号発生部104は、周波数f2より高い周波数f3の電気的刺激信号(図11Bを参照)を生成し、この周波数f3の電気的刺激信号による神経の刺激を開始して(ステップS60)、ステップS61の処理に移行する。 When receiving the blood output detection signal and the physical activity detection signal, the parameter adjustment unit 703 generates a stimulation intensity change signal for changing the frequency of the electrical stimulation signal generated by the stimulation signal generation unit 104 to f3. Then, this stimulation intensity change signal is given to the stimulation signal generator 104. As a result, the stimulation signal generation unit 104 generates an electrical stimulation signal (see FIG. 11B) having a frequency f3 higher than the frequency f2, and starts nerve stimulation using the electrical stimulation signal having the frequency f3 (step S60). ), The process proceeds to step S61.
 続いて、第一検出部105は、心室収縮の検出と同時にタイマ106をスタートさせ、心室の収縮からの時間のカウントを開始する(ステップS61)。そして、カウントした時間を比較部108に入力する。 Subsequently, the first detection unit 105 starts the timer 106 simultaneously with the detection of the ventricular contraction, and starts counting the time from the ventricular contraction (step S61). Then, the counted time is input to the comparison unit 108.
 ここで、比較部108は、タイマ106から入力される、心室の収縮からの時間と、刺激期間設定値記憶部107に予め記憶された刺激期間設定値との比較を行い、どちらの値が大きいかを確認する(ステップS62)。心室の収縮からの時間が刺激期間設定値よりも小さい間は(ステップS62のNO)、ステップS58の処理で変更した周波数f2あるいはステップS60の処理で変更した周波数f3の電気的刺激信号による神経の刺激が継続的に行われる。 Here, the comparison unit 108 compares the time from the contraction of the ventricle input from the timer 106 with the stimulation period setting value stored in advance in the stimulation period setting value storage unit 107, and which value is greater (Step S62). While the time from the contraction of the ventricle is smaller than the stimulation period set value (NO in step S62), the nerves by the electrical stimulation signal of the frequency f2 changed by the process of step S58 or the frequency f3 changed by the process of step S60 are used. Stimulation is performed continuously.
 また、ステップS62で、心室の収縮からの時間が刺激期間設定値に到達すると(ステップS62のYES)、比較部108は、パラメータ調整部703に信号を供給し、刺激信号発生部104が生成する電気的刺激信号の周波数をf1に変更する刺激強度変更信号を生成させるようにする。そして、パラメータ調整部703から、この刺激強度変更信号が刺激信号発生部104に与えられる。この結果、刺激信号発生部104は、周波数f1の電気的刺激信号を生成し、この周波数f1の電気的刺激信号によって神経の刺激を行う状態に戻す(ステップS63)。
 以上の処理が完了した後、ステップS54の処理に戻り、ステップS54~ステップS63の処理を繰り返す。
In step S62, when the time from the contraction of the ventricle reaches the stimulation period setting value (YES in step S62), the comparison unit 108 supplies a signal to the parameter adjustment unit 703, and the stimulation signal generation unit 104 generates it. A stimulus intensity change signal for changing the frequency of the electrical stimulus signal to f1 is generated. Then, the stimulation intensity change signal is given to the stimulation signal generation unit 104 from the parameter adjustment unit 703. As a result, the stimulation signal generation unit 104 generates an electrical stimulation signal having the frequency f1, and returns to a state in which nerve stimulation is performed using the electrical stimulation signal having the frequency f1 (step S63).
After the above processing is completed, the processing returns to step S54 and the processing from step S54 to step S63 is repeated.
 以上説明したように、本発明の第四の実施形態例では、心臓の心室の収縮(心臓からの血液の拍出)と同期して、電気的刺激信号により神経を刺激するようにしている。痛みは血液の拍出と同期して増強するので、痛みの拍動性と同期して神経を刺激することにより、拍動性を有する疼痛を的確に和らげることができ、患者に与える不快感を低減することが可能になる。 As described above, in the fourth embodiment of the present invention, the nerve is stimulated by the electrical stimulation signal in synchronization with the contraction of the ventricle of the heart (the pumping of blood from the heart). Pain increases in synchrony with blood pumping, and stimulating nerves in synchrony with the pulsation of pain can alleviate pain with pulsatile and reduce discomfort for the patient. It becomes possible to reduce.
 また、本発明の第四の実施形態例は、心臓の心室の収縮があった時点から所定の刺激期間だけ強い電気的刺激信号を生成するようにした。すなわち、痛みが強くなる所定期間の間は、強い刺激強度の電気的刺激信号で神経を刺激し、痛みが弱くなる期間は弱い刺激強度の電気的刺激信号で神経を刺激するようにしている。これにより、電池の寿命を従来のものより長くすることができるとともに、副作用のリスクを小さくすることができるという作用効果がある。 In the fourth embodiment of the present invention, a strong electrical stimulation signal is generated for a predetermined stimulation period from the time when the heart ventricle contracts. That is, the nerve is stimulated with an electrical stimulation signal with a strong stimulation intensity during a predetermined period when the pain is strong, and the nerve is stimulated with an electrical stimulation signal with a weak stimulation intensity during a period when the pain is weak. Thereby, the lifetime of the battery can be made longer than that of the conventional one, and the side effect risk can be reduced.
 さらに、本発明の第四の実施形態例では、代謝要求あるいは身体活動が検出された際により強い刺激強度の電気的刺激信号で神経を刺激するようにしている。これにより、代謝要求あるいは身体活動に伴って強くなる疼痛をも和らげることもできる。
〈5.第五の実施の形態〉
Furthermore, in the fourth embodiment of the present invention, nerves are stimulated with an electrical stimulation signal having a stronger stimulation intensity when a metabolic demand or physical activity is detected. This can also relieve pain that increases with metabolic demand or physical activity.
<5. Fifth embodiment>
 次に、本発明の第五の実施の形態の例を、図13を参照して説明する。以下説明において、第一から第四の実施の形態と同様の構成については、同一符号を付して、その説明を省略もしくは簡略する。 Next, an example of the fifth embodiment of the present invention will be described with reference to FIG. In the following description, the same components as those in the first to fourth embodiments are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 [疼痛緩和装置の構成]
 図13は、本発明の第五の実施の形態例における疼痛緩和装置を示す機能ブロック図である。
 本発明の第五の実施形態例としての疼痛緩和装置801は、電気的刺激信号の刺激強度を第三刺激強度に変更するためのトリガーとなる代謝要求あるいは身体活動(例えば、心拍数増加)の検出を、循環動態計測センサ102における循環動態の計測を利用して行う。そのため、制御部802の第二検出部803は、循環動態計測センサ102と電気的に接続されており、循環動態計測センサ102が計測している循環動態に基づいて、例えば心拍数増加を検出する。すなわち、平常時の心拍数を予め第二検出部803内に設けたメモリに保存しておき、検出された循環動態から得られる心拍数と比較し、所定以上の増加が検出された場合には代謝要求が検出されたものとする。そして、この第二検出部803において、代謝要求(心拍数増加)が検出された場合、第二検出部803は身体活動検出信号を生成し、これをパラメータ調整部703に出力する。
[Configuration of Pain Relief Device]
FIG. 13 is a functional block diagram showing the pain alleviating apparatus in the fifth embodiment of the present invention.
The pain relieving apparatus 801 as the fifth embodiment of the present invention is a metabolic request or physical activity (for example, heart rate increase) that is a trigger for changing the stimulation intensity of the electrical stimulation signal to the third stimulation intensity. The detection is performed using the measurement of the circulation dynamics in the circulation dynamic measurement sensor 102. Therefore, the second detection unit 803 of the control unit 802 is electrically connected to the circulatory dynamic measurement sensor 102, and detects, for example, an increase in heart rate based on the circulatory dynamics measured by the circulatory dynamic measurement sensor 102. . That is, the normal heart rate is stored in advance in a memory provided in the second detection unit 803 and compared with the heart rate obtained from the detected circulatory dynamics. Assume that metabolic demand has been detected. When the second detection unit 803 detects a metabolic request (heart rate increase), the second detection unit 803 generates a physical activity detection signal and outputs it to the parameter adjustment unit 703.
 以上説明したように、本発明の第五の実施形態では、循環動態計測センサで計測している循環動態を利用して代謝要求あるいは身体活動(例えば、心拍数増加)の検出を第二検出部で行えるようにする。そのため、加速度センサ、温度センサ、振動センサあるいは酸素飽和度センサ等を第二検出部に設ける必要がなくなり、装置全体の構成を簡易なものにできるとともに、装置の製作に係るコストを低減することができるという効果がある。 As described above, in the fifth embodiment of the present invention, the second detection unit detects the metabolic demand or physical activity (for example, heart rate increase) using the circulatory dynamics measured by the circulatory dynamic measuring sensor. To do so. Therefore, it is not necessary to provide an acceleration sensor, a temperature sensor, a vibration sensor, an oxygen saturation sensor, or the like in the second detection unit, the configuration of the entire device can be simplified, and the cost for manufacturing the device can be reduced. There is an effect that can be done.
〈6.変形例〉
 上述したように、第一から第五の実施の形態の疼痛緩和装置は、刺激する周波数を変化させることにより電気的刺激信号の強度を変えるものであった。このように、通常は、電気的刺激信号を所定のパルス間隔(あるいは周波数)を変化させてその強度を調整するのが一般的であるが、他方、図14Aに示すように、周波数を変化させる代わりに、刺激期間における電圧の強さを変更するようにしてもよい。すなわち、通常時には電圧V1で電気的刺激を行い、心室収縮のいずれかのみが検出された場合には、検出した心室収縮と同期したタイミングで電圧V2(>V1)で電気的刺激を行い、さらに、心室収縮に加え、代謝要求あるいは身体活動が検出された場合は、当該タイミングで電圧V3(>V2)で電気的刺激を行うことにより、周波数の高低を変えるのと同様に刺激強度の強弱を変化させる効果が得られる。また、電気的刺激信号の強度を調整するのに、その電気的刺激パラメータである、周波数、パルス幅、パルス電流、パルス電圧の中から選ばれる複数の組み合わせで調整することも可能である。
<6. Modification>
As described above, the pain alleviating devices of the first to fifth embodiments change the intensity of the electrical stimulation signal by changing the stimulation frequency. As described above, generally, the intensity of the electrical stimulation signal is generally adjusted by changing a predetermined pulse interval (or frequency). On the other hand, as shown in FIG. 14A, the frequency is changed. Instead, the voltage strength during the stimulation period may be changed. In other words, electrical stimulation is normally performed with the voltage V1, and when only one of the ventricular contractions is detected, the electrical stimulation is performed with the voltage V2 (> V1) at a timing synchronized with the detected ventricular contraction, In addition to ventricular contraction, when metabolic demand or physical activity is detected, electrical stimulation is performed at voltage V3 (> V2) at this timing, so that the intensity of the stimulation can be increased or decreased in the same manner as changing the level of the frequency. The effect of changing is obtained. Further, in order to adjust the intensity of the electrical stimulation signal, it is also possible to adjust the electrical stimulation parameters by a plurality of combinations selected from the frequency, pulse width, pulse current, and pulse voltage.
 さらに、図14Bおよび図14Cに示すように、刺激期間における電気的刺激信号の電圧あるいは周波数を徐々に変化させてもよい。これにより、患者に対して刺激を与えるときは徐々に刺激が強くなり、刺激を弱くするときは徐々に刺激の大きさを小さくしていくので、電気的刺激信号の急激な変化に起因する違和感を和らげることができる。なお、図14の縦軸および横軸は、図3、6および11と等しいので説明は省略する。 Furthermore, as shown in FIGS. 14B and 14C, the voltage or frequency of the electrical stimulation signal during the stimulation period may be gradually changed. As a result, the stimulus is gradually increased when the patient is given a stimulus, and the magnitude of the stimulus is gradually reduced when the stimulus is weakened. Can be relieved. The vertical axis and horizontal axis in FIG. 14 are the same as those in FIGS.
 また、上述した各実施の形態例では、電気的刺激信号での刺激対象を末梢神経とした。刺激を行う末梢神経としては後頭神経が一般的であるが、この後頭神経の分枝である、大後頭神経、小後頭神経、第三後頭神経の少なくとも1つを刺激することも可能である。また、脊髄硬膜外に電極を留置し、後頭神経が発する領域の脊髄を刺激することも可能である。この場合、第一頚椎から第三頚椎の領域にある脊髄が好適である。さらに、刺激を行うことで片頭痛や群発頭痛の痛みを和らげることが知られている迷走神経や、片頭痛や群発頭痛に関連した脳領域の刺激に対しても適応が可能である。 Also, in each of the above-described embodiments, the target for stimulation with the electrical stimulation signal is the peripheral nerve. Although the occipital nerve is generally used as the peripheral nerve for stimulation, it is also possible to stimulate at least one of the large occipital nerve, the small occipital nerve, and the third occipital nerve, which are branches of the occipital nerve. It is also possible to place an electrode outside the spinal dura to stimulate the spinal cord in the region where the occipital nerve originates. In this case, the spinal cord in the region from the first cervical vertebra to the third cervical vertebra is preferred. Furthermore, it can be applied to stimulation of the vagus nerve, which is known to relieve the pain of migraine or cluster headache by stimulation, or stimulation of the brain region related to migraine or cluster headache.
 また、上述した各実施の形態例では、疼痛緩和装置とセンサを体内に植え込むものとして説明してきた。一般的に、疼痛緩和装置は、数日から1週間程度は、電極リードのみを植え込み、これと体外の疼痛緩和装置を接続して、その刺激の効果が確認される。このような場合においても、センサを体表に置いて心電、圧脈波、心音等を計測し、体外の疼痛緩和装置によって電気的刺激信号の制御を行うことにより、同様の効果が得られることは言うまでもない。 In each of the above-described embodiments, the pain relief device and the sensor have been described as being implanted in the body. Generally, the pain relieving device is implanted with only an electrode lead for a few days to a week, and this is connected to an external pain relieving device to confirm the effect of stimulation. Even in such a case, the same effect can be obtained by placing the sensor on the body surface, measuring electrocardiogram, pressure pulse wave, heart sound, etc., and controlling the electrical stimulation signal with an external pain relief device. Needless to say.
 また、上述した第四、第五の実施の形態例では、代謝要求あるいは身体活動が検出された場合に、固定された値(f3、V3)を第三刺激強度として用いたが、検出された代謝要求あるいは身体活動の度合いに応じて、第三刺激強度を制御することも可能である。すなわち、検出された代謝要求や身体活動が小さい場合は第三刺激強度を弱く(ただし、f2やV2よりも強く)、検出された代謝要求や身体活動が大きい場合は第三刺激強度をより強くすることも可能である。 Further, in the fourth and fifth embodiments described above, when a metabolic demand or physical activity is detected, a fixed value (f3, V3) is used as the third stimulus intensity, but this is detected. It is also possible to control the third stimulus intensity according to the metabolic demand or the degree of physical activity. That is, when the detected metabolic demand or physical activity is small, the third stimulus intensity is weak (but stronger than f2 or V2), and when the detected metabolic demand or physical activity is large, the third stimulus intensity is increased. It is also possible to do.
 その他、本発明は、上述した実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の変形、変更が可能であることは勿論である。 In addition, the present invention is not limited to the embodiments described above, and various modifications and changes can be made without departing from the scope of the present invention.
 101,501,601,701、801…疼痛緩和装置、102…循環動態計測センサ、103,602、702、802…制御部、104…刺激信号発生部、105…第一検出部、106…タイマ、107…刺激期間設定値記憶部、108…比較部、502,703…パラメータ調整部、603…心拍数/心拍間隔計測部、604…刺激期間設定値選択部、704,803…第二検出部、 101, 501, 601, 701, 801 ... Pain alleviation device, 102 ... Circulation dynamic measurement sensor, 103, 602, 702, 802 ... Control unit, 104 ... Stimulus signal generation unit, 105 ... First detection unit, 106 ... Timer, 107: stimulation period set value storage unit, 108: comparison unit, 502, 703 ... parameter adjustment unit, 603 ... heart rate / beat interval measurement unit, 604 ... stimulation period set value selection unit, 704, 803 ... second detection unit,

Claims (19)

  1.  神経を電気的に刺激するための刺激信号を発生する刺激信号発生部と、
     循環動態を計測する循環動態計測センサと、
     前記刺激信号発生部と前記循環動態計測センサに接続する制御部と、を備え、
     前記制御部は、拍動性を有する痛みを治療するために、前記循環動態計測センサからの出力に応答して、前記刺激信号発生部からの前記刺激信号の発生を制御する、
     疼痛緩和装置。
    A stimulation signal generator for generating a stimulation signal for electrically stimulating the nerve;
    A circulatory dynamic measurement sensor for measuring the circulatory dynamic
    A control unit connected to the stimulation signal generation unit and the circulatory dynamics measurement sensor,
    The control unit controls the generation of the stimulation signal from the stimulation signal generation unit in response to an output from the circulatory dynamic measurement sensor in order to treat pulsating pain.
    Pain relief device.
  2.  前記制御部は、
     前記循環動態計測センサで計測される循環動態に基づいて、心拍のタイミングを検出する第一検出部を備え、
     前記刺激信号発生部は、前記第一検出部で検出される前記心拍のタイミングに応答して、前記刺激信号の発生を制御する、
     請求項1に記載の疼痛緩和装置。
    The controller is
    Based on the circulatory dynamics measured by the circulatory dynamic measurement sensor, comprising a first detector for detecting the timing of the heartbeat,
    The stimulation signal generation unit controls generation of the stimulation signal in response to the timing of the heartbeat detected by the first detection unit.
    The pain relieving apparatus according to claim 1.
  3.  前記第一検出部は、前記第一検出部で検出された心拍のタイミングの検出に応答して、前記刺激信号発生部に前記刺激信号の発生を開始させる、
     請求項2に記載の疼痛緩和装置。
    In response to detection of the timing of the heartbeat detected by the first detection unit, the first detection unit causes the stimulation signal generation unit to start generating the stimulation signal.
    The pain relieving apparatus according to claim 2.
  4.  前記刺激信号発生部に生成させる前記刺激信号の強度を変更するパラメータ調整部をさらに備え、
     前記パラメータ調整部は、前記第一検出部で検出された心拍のタイミングの検出に応答して、前記刺激信号発生部で発生する前記刺激信号の強度を増加させる、
     請求項2に記載の疼痛緩和装置。
    A parameter adjustment unit that changes the intensity of the stimulation signal to be generated by the stimulation signal generation unit;
    The parameter adjustment unit increases the intensity of the stimulation signal generated by the stimulation signal generation unit in response to detection of the timing of the heartbeat detected by the first detection unit;
    The pain relieving apparatus according to claim 2.
  5.  前記制御部は、
     代謝要求もしくは身体活動を検出する第二検出部をさらに備え、
     前記パラメータ調整部は、拍動性を有する痛みを治療するために、前記第一検出部で検出した心拍のタイミングの検出に応答して、前記第二検出部で検出した代謝要求もしくは身体活動に基づいて、前記刺激信号発生部で発生する前記刺激信号の強度を調整する、
     請求項4に記載の疼痛緩和装置。
    The controller is
    A second detector for detecting metabolic demand or physical activity;
    The parameter adjustment unit responds to the detection of the heartbeat timing detected by the first detection unit in response to the metabolic demand or physical activity detected by the second detection unit in order to treat pain having pulsation. Based on the intensity of the stimulus signal generated by the stimulus signal generator,
    The pain relieving apparatus according to claim 4.
  6.  前記パラメータ調整部は、前記刺激信号発生部から発生される前記刺激信号の強度を、前記代謝要求もしくは身体活動の大小の度合いに応じて調整する、
     請求項5に記載の疼痛緩和装置。
    The parameter adjustment unit adjusts the intensity of the stimulation signal generated from the stimulation signal generation unit according to the degree of the metabolic demand or physical activity,
    The pain relieving apparatus according to claim 5.
  7.  前記パラメータ調整部は、
     前記第一検出部で検出した心拍のタイミングの検出に応答して、前記刺激発生部で通常発生している第一の強度の刺激信号の強度を、前記第一の強度よりも強い第二の強度に変更し、
     前記第二検出部で代謝要求もしくは身体活動が検出された場合には、前記第一検出部で検出した心拍のタイミングの検出に応答して、前記刺激信号発生部で発生する前記刺激信号の強度を、前記第二の強度よりもさらに強い第三の強度に変更する、
     請求項6に記載の疼痛緩和装置。
    The parameter adjustment unit includes:
    In response to the detection of the heartbeat timing detected by the first detection unit, the intensity of the stimulus signal of the first intensity that is normally generated by the stimulus generation unit is set to a second value that is higher than the first intensity. Change to strength,
    In response to detection of heartbeat timing detected by the first detection unit when the metabolic demand or physical activity is detected by the second detection unit, the intensity of the stimulation signal generated by the stimulation signal generation unit To a third strength that is even stronger than the second strength,
    The pain relieving apparatus according to claim 6.
  8.  前記刺激信号の強度の調整は、該刺激信号のパラメータである周波数、パルス幅、パルス電流、パルス電圧の少なくとも1つ、もしくはこれらの中から選ばれる複数の組み合わせの調整によってなされる、
     請求項4~7のいずれかに記載の疼痛緩和装置。
    The adjustment of the intensity of the stimulation signal is made by adjusting at least one of a frequency, a pulse width, a pulse current, and a pulse voltage, which are parameters of the stimulation signal, or a plurality of combinations selected from these.
    The pain alleviating device according to any one of claims 4 to 7.
  9.  前記循環動態計測センサは、心電図、圧脈波、心音のいずれか1つの前記循環動態を計測するセンサであり、
     前記第一検出部は、前記循環動態計測センサが検出した前記心電図、圧脈波、心音のいずれか1つに基づいて前記心拍のタイミングを検出する
     請求項2~8のいずれかに記載の疼痛緩和装置。
    The circulatory dynamics measurement sensor is a sensor that measures the circulatory dynamics of any one of an electrocardiogram, a pressure pulse wave, and a heart sound,
    The pain according to any one of claims 2 to 8, wherein the first detection unit detects the timing of the heartbeat based on any one of the electrocardiogram, pressure pulse wave, and heart sound detected by the hemodynamic measurement sensor. Mitigation device.
  10.  前記心拍のタイミングの検出が、心室の収縮の開始の検出である、
     請求項9に記載の疼痛緩和装置。
    Detection of the timing of the heartbeat is detection of the start of ventricular contraction;
    The pain relieving apparatus according to claim 9.
  11.  前記第二検出部は、前記第一検出部で検出した前記心拍のタイミングを利用して心拍数を算出し、算出した前記心拍数の変動に基づいて前記代謝要求もしくは前記身体活動を検出する、
     請求項5~10のいずれかに記載の疼痛緩和装置。
    The second detection unit calculates a heart rate using the timing of the heart beat detected by the first detection unit, and detects the metabolic demand or the physical activity based on the calculated fluctuation of the heart rate.
    The pain alleviating device according to any one of claims 5 to 10.
  12.  前記第二検出部は、加速度センサまたは振動センサである、
     請求項5~10のいずれかに記載の疼痛緩和装置。
    The second detection unit is an acceleration sensor or a vibration sensor.
    The pain alleviating device according to any one of claims 5 to 10.
  13.  前記刺激信号発生部が刺激する神経は、第一頚椎から第三頚椎の間の領域の脊髄である、
     請求項1~12のいずれかに記載の疼痛緩和装置。
    The nerve stimulated by the stimulation signal generator is a spinal cord in a region between the first cervical vertebra and the third cervical vertebra.
    The pain alleviating device according to any one of claims 1 to 12.
  14.  前記刺激信号発生部が刺激する神経は、末梢神経である、
     請求項1~12のいずれかに記載の疼痛緩和装置。
    The nerve stimulated by the stimulation signal generator is a peripheral nerve,
    The pain alleviating device according to any one of claims 1 to 12.
  15.  前記末梢神経は、後頭神経である、
     請求項14に記載の疼痛緩和装置。
    The peripheral nerve is the occipital nerve;
    The pain relieving apparatus according to claim 14.
  16.  前記拍動性を有する痛みは、片頭痛もしくは群発頭痛である、
     請求項1~15のいずれかに記載の疼痛緩和装置。
    The pulsatile pain is migraine or cluster headache,
    The pain alleviating device according to any one of claims 1 to 15.
  17.  前記刺激信号の発生が、前記心拍のタイミングの検出から所定の期間なされるか、もしくは前記刺激信号の強度の増加が、前記心拍のタイミングの検出から所定の期間なされる、
     請求項3または4に記載の疼痛緩和装置。
    The generation of the stimulation signal is performed for a predetermined period from the detection of the timing of the heartbeat, or the increase of the intensity of the stimulation signal is performed for a predetermined period of time from the detection of the timing of the heartbeat.
    The pain relieving apparatus according to claim 3 or 4.
  18.  前記所定の期間は、固定された期間である、
     請求項17に記載の疼痛緩和装置。
    The predetermined period is a fixed period.
    The pain relieving apparatus according to claim 17.
  19.  前記所定の期間は、前記心室の収縮の検出により算出された心拍数もしくは心拍間隔に基づいて調整される、
     請求項17に記載の疼痛緩和装置。
    The predetermined period is adjusted based on a heart rate or a heart beat interval calculated by detecting the contraction of the ventricle.
    The pain relieving apparatus according to claim 17.
PCT/JP2009/064701 2008-09-25 2009-08-24 Pain relief device WO2010035600A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008246555A JP2010075401A (en) 2008-09-25 2008-09-25 Pain relieving apparatus
JP2008-246555 2008-09-25
JP2009-033020 2009-02-16
JP2009033020A JP2010187775A (en) 2009-02-16 2009-02-16 Pain relief device

Publications (1)

Publication Number Publication Date
WO2010035600A1 true WO2010035600A1 (en) 2010-04-01

Family

ID=42059607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064701 WO2010035600A1 (en) 2008-09-25 2009-08-24 Pain relief device

Country Status (1)

Country Link
WO (1) WO2010035600A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706031A (en) * 2013-11-21 2014-04-09 宁波市全灵医疗设备股份有限公司 Electronic pain relieving instrument

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500996A (en) * 1991-05-03 1996-02-06 サイベロニクス,インク. Treatment of migraine by nerve stimulation
JPH09294815A (en) * 1996-04-26 1997-11-18 Haimobuichi Iechieru Transcranial electric stimulating device
JP2002539862A (en) * 1999-03-24 2002-11-26 ロイド アール. サベルスキ, Apparatus and method for pain relief and / or muscle retraining
WO2007115113A1 (en) * 2006-03-29 2007-10-11 Catholic Healthcare West Synchronization of vagus nerve stimulation with the cardiac cycle of a patient

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500996A (en) * 1991-05-03 1996-02-06 サイベロニクス,インク. Treatment of migraine by nerve stimulation
JPH09294815A (en) * 1996-04-26 1997-11-18 Haimobuichi Iechieru Transcranial electric stimulating device
JP2002539862A (en) * 1999-03-24 2002-11-26 ロイド アール. サベルスキ, Apparatus and method for pain relief and / or muscle retraining
WO2007115113A1 (en) * 2006-03-29 2007-10-11 Catholic Healthcare West Synchronization of vagus nerve stimulation with the cardiac cycle of a patient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706031A (en) * 2013-11-21 2014-04-09 宁波市全灵医疗设备股份有限公司 Electronic pain relieving instrument

Similar Documents

Publication Publication Date Title
US11154716B2 (en) System for providing stimulation pattern to modulate neural activity
US9440078B2 (en) Neural stimulation modulation based on monitored cardiovascular parameter
US7194313B2 (en) Baroreflex therapy for disordered breathing
US7486991B2 (en) Baroreflex modulation to gradually decrease blood pressure
JP5329089B2 (en) A system for sustained baroreflex stimulation
US7643875B2 (en) Baroreflex stimulation system to reduce hypertension
US20100274321A1 (en) Baroreflex activation therapy with conditional shut off
US20080167693A1 (en) Method and apparatus for synchronizing neural stimulation to cardiac cycles
US20050149143A1 (en) Baroreflex stimulator with integrated pressure sensor
US20090132002A1 (en) Baroreflex activation therapy with conditional shut off
US20050149129A1 (en) Baropacing and cardiac pacing to control output
US20100016913A1 (en) Intermittent pacing therapy for angina and disease prevention
JP2012519574A (en) System for autonomic nerve regulation including electrodes that can be implanted in lymphatic vessels
EP1711223A1 (en) Baroreflex stimulation system
US20100016916A1 (en) Apparatus and methods for treatment of atherosclerosis and infarction
JP2010534516A (en) Baroreflex activation therapy that changes the intensity stepwise
JP2010187775A (en) Pain relief device
JP2010075401A (en) Pain relieving apparatus
WO2010035600A1 (en) Pain relief device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09816017

Country of ref document: EP

Kind code of ref document: A1