WO2010035344A1 - Information processing device, power supply control method, and power supply control program - Google Patents

Information processing device, power supply control method, and power supply control program Download PDF

Info

Publication number
WO2010035344A1
WO2010035344A1 PCT/JP2008/067666 JP2008067666W WO2010035344A1 WO 2010035344 A1 WO2010035344 A1 WO 2010035344A1 JP 2008067666 W JP2008067666 W JP 2008067666W WO 2010035344 A1 WO2010035344 A1 WO 2010035344A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
storage devices
devices
dimms
power
Prior art date
Application number
PCT/JP2008/067666
Other languages
French (fr)
Japanese (ja)
Inventor
智和 土屋
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/067666 priority Critical patent/WO2010035344A1/en
Publication of WO2010035344A1 publication Critical patent/WO2010035344A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof

Definitions

  • the present invention relates to an information processing apparatus, a power control method, and a power control program.
  • the present invention relates to an information processing apparatus that uses one or a plurality of storage devices, a power control method for controlling a power supply device that supplies power to the storage devices, and a program for causing a computer to execute the method.
  • an information processing apparatus such as a server having the following configuration is known. That is, the information processing apparatus is equipped with a storage device such as a plurality of DIMMs (dual inline memory module: dual inline memory module, hereinafter the same). Further, the information processing apparatus is equipped with a power supply device such as a plurality of DC-DC converters for supplying a power supply current to the storage device.
  • a power supply device such as a plurality of DC-DC converters for supplying a power supply current to the storage device.
  • the following problems may occur when the actual number of installed DIMMs is small. That is, it is conceivable that as many power supply devices as can supply power more than the number of DIMMs currently installed in the information processing apparatus need operate. In such a case, the amount of power supplied per power supply device is smaller than when power is supplied by a smaller number of power supply devices. When the supply amount of power per power supply device is extremely reduced, the operation efficiency of the power supply device is lowered. That is, when the actual number of installed DIMMs is small, useless power may be consumed by the power supply device.
  • FIG. 1 is a diagram for explaining this point.
  • FIG. 1 shows the operating efficiency (Efficiency) of the power supply device with respect to the current value (Iout) supplied by one power supply device.
  • the operation efficiency is low in the region Z1 where the supplied current value is relatively small, and the operation efficiency is high in the region Z2 where the supplied current value is relatively large.
  • the operation efficiency of the power supply devices is effectively improved with a simple configuration. The purpose is to let you.
  • the information processing apparatus further includes means for controlling the number of power supply devices to be actually operated among the plurality of power supply devices in accordance with the detected number of one or more storage devices.
  • the disclosed information processing device controls the number of power supply devices that are actually operated among the plurality of power supply devices in accordance with the detected number of one or more storage devices. Therefore, the operation efficiency of the power supply device can be effectively improved with a simple configuration.
  • FIG. 3 is a block diagram (part 1) for explaining the configuration and operation of the first embodiment.
  • FIG. 3 is a block diagram (No. 2) for explaining the configuration and operation of the first embodiment.
  • It is a block diagram for demonstrating the structural example of the system board in FIG. 2A, 2B.
  • It is a block diagram for demonstrating the structural example of the control board in FIG. 2A, 2B.
  • 3 is a flowchart for explaining an operation of the first embodiment.
  • FIG. 6 is a diagram (part 1) for explaining the operation of the first embodiment;
  • FIG. 8 is a circuit diagram illustrating a circuit configuration example of a power supply control circuit in FIG. 7. It is a figure for demonstrating the terminal for present signals provided in DIMM in FIG. It is a figure for demonstrating the structural example of the present signal generation circuit in FIG.
  • Control board 200
  • System board 210, 210-1 to 210-4
  • Memory controller 220, 220-1 to 220-16
  • DIMM storage device
  • North Bridge 241-244
  • CPU central processing unit
  • Present signal generation circuit 281 to 286
  • Short circuit detection circuit 300
  • GPIO 410, 420
  • Power supply device 500
  • Power supply control circuit enable signal enable signal Present 1-6 present signal TX1, TX2 Present signal terminal (DIMM) TY1 to TY6 Present signal terminals (present signal generation circuit)
  • the number of power supply apparatuses actually used is changed according to the actual number of storage devices such as DIMMs.
  • the power supply device can be operated in a highly efficient state.
  • the disclosed information processing apparatus in order to control the number of operating power supply apparatuses, the number and types of storage devices actually mounted on the information processing apparatus are grasped. Then, a number of power supply devices suitable for supplying necessary power to the actually mounted storage device are operated.
  • FIG. 2A is a block diagram illustrating a schematic configuration of the information processing apparatus according to the first embodiment.
  • the information processing apparatus is, for example, a server that provides various services in response to requests from client computers.
  • the information processing apparatus according to the first embodiment will be described as a server.
  • the first embodiment can be realized by an information processing apparatus other than the server.
  • the server includes a control board 100, a system board 200, a GPIO (General Purpose I / O, hereinafter the same) 300, and two power supply units 410, 420.
  • GPIO General Purpose I / O, hereinafter the same
  • the system board 200 is a functional unit for actually providing the service provided by the server. As shown in FIG. 2A, the system board 200 includes a memory controller 210 and can mount one or a plurality of DIMMs 220.
  • FIG. 3 is a block diagram showing a detailed configuration example of the system board 200.
  • the system board 200 includes four CPUs 241 to 244, a north bridge 230, and four memory controllers 210-1 to 210-4.
  • the system board 200 can include one or more DIMMs 220-1 to 220-16.
  • the four memory controllers 210-1 to 210-4 are collectively referred to as a memory controller 210.
  • the four memory controllers 210-1 to 210-4 are collectively referred to as a memory controller 210.
  • the 16 DIMMs 220-1 to 220-16 are collectively referred to as DIMM 220.
  • DIMMs 220-1 to 220-16 are collectively referred to as DIMM 220.
  • a total of 16 DIMMs 220-1 to 220-16 are shown as being included in the system board 200.
  • the server can be operated with only one or a plurality of DIMMs among the 16 DIMMs 220-1 to 220-16 mounted on the system board 200.
  • the system board 200 having such a configuration actually provides various services to be provided by the server when the CPUs 241 to 244 execute necessary information processing using the mounted DIMM 220 as appropriate.
  • the control board 100 grasps the type of the DIMM 220 actually mounted by the function of the firmware. More specifically, the control board 100 reads SPD (Serial Presence Detect, the same applies hereinafter) information of each DIMM 220 actually mounted. In the first embodiment, the control board 100 can read the SPD information using the I2C (inter-integrated circuit, the same applies hereinafter) via the memory controller 210. The control board 100 grasps the specification content of the DIMM 220 by reading the SPD information of the DIMM 220 in this way. Specific examples of the contents of the SPD information include, for example, the type, configuration, capacity, access speed, access method, and the like of the DIMM 200.
  • FIG. 4 is a block diagram showing a schematic configuration of the control board 100.
  • the control board 100 includes a CPU 110, a memory 120 on which the firmware and the like are mounted, and an I / O 130.
  • the I / O 130 is an interface IC, and the control board 100 communicates with the system board 200 or the GPIO 300 via the I / O 130 using I2C.
  • the control board 100 can grasp the number of DIMMs 220 mounted based on the SPD information of the DIMM 200 by executing the firmware mounted in the memory 120 as described above.
  • the GPIO 300 is an I / O port for receiving an instruction by an I2C signal from the control board 100 and transmitting an enable signal (that is, an enable signal, the same applies hereinafter) to the power supply devices 410 and 420 according to the contents of the instruction.
  • an enable signal that is, an enable signal, the same applies hereinafter
  • the power supply devices 410 and 420 are power supplies that supply power to the DIMM 220 mounted on the system board 200, and can be, for example, DC-DC converters. Each power supply device 410 and 420 is operated only while the enable signal received from the control board 100 via the GPIO 300 is at a high level, and supplies power to the DIMM 220 during that time.
  • FIG. 2A shows a state where a relatively large number of DIMMs 220 are mounted on the system board 200 of the server
  • FIG. 2B shows a state where a relatively small number of DIMMs 220 are mounted on the system board 200.
  • the following operation is performed by the firmware function of the control board 100 described later with reference to FIG. That is, when a relatively large number of DIMMs 220 are mounted as shown in FIG. 2A, the state is automatically detected, and high level enable signals are transmitted to both of the two power supply devices 410 and 420, respectively. As a result, the two power supply devices 410 and 420 operate, and power is supplied from the two power supply devices 410 and 420 to the relatively large number of DIMMs 220.
  • the firmware mounted in the memory 120 of the control board 100 of the server according to the first embodiment having the above configuration is executed by the CPU 110, and the following operation is performed.
  • an operation performed by the CPU 110 when the firmware is executed will be described with reference to FIG.
  • first table information indicating the number of the two power supply devices 410, 420 to be actually operated is stored in accordance with the total power consumption value of the DIMM 220 actually mounted on the system board 200.
  • FIG. 6A shows an example of the first table information.
  • the example of FIG. 6A is an example of a case where the number of power supply devices 410 and 420 is not limited to two, 410, and 420 as in the first embodiment, and the case of three or more power supply devices is also assumed. . That is, in the case of FIG.
  • the high level that the control board 100 transmits via the GPIO 300 in each case where the total power consumption of the DIMM 220 actually mounted on the system board 200 is P1, P2, P2,.
  • each of the transmitted enable signals is given to a corresponding power supply device. Therefore, the number of high-level enable signals to be transmitted indicates the number of power supply devices that are actually operated.
  • the memory 120 of the control board 100 further stores the following information in advance as information that can be referred to by the CPU 110 executing the firmware. That is, information indicating the power consumption per DIMM for each type of DIMM 220 mounted on the system board 200 is stored in advance in the memory 120 as the second table information.
  • FIG. 6B shows an example of the second table information. In FIG. 6B, with respect to type-1, type-2,... As types of DIMMs 220 actually mounted on the system board 200, respective power consumptions of the corresponding types of DIMMs 220, p1, p2,. Is stored.
  • step S ⁇ b> 3 the firmware acquires the SPD information of the DIMM 220 actually mounted on the system board 200 via the memory controller 210. Then, the firmware grasps the total number of DIMMs 220 actually mounted on the system board 200 from the SPD information.
  • the SPD information is individually stored in each DIMM 220 for each of the DIMMs 220. Therefore, the number of DIMMs 220 actually mounted on the system board 200 can be grasped by counting the number of SPD information obtained from each of the DIMMs 220 actually mounted on the system board 200.
  • the firmware further obtains information indicating the type of the corresponding DIMM 220 included in the SPD information of each DIMM 220 actually mounted on the system board 200.
  • the firmware obtains the power consumption value per corresponding DIMM 2201 by referring to the second table information described above with reference to FIG. 6B.
  • step S4 the firmware calculates the total power consumption of the DIMM 220 actually mounted on the system board 200.
  • the types of DIMMs 220 actually mounted on the system board 200 are all common, for example, type-1.
  • p1 is obtained as the power consumption value for each of all the DIMMs 220 actually mounted on the system board 200 by the second table information in FIG. 6B.
  • the number of DIMMs 220 actually mounted on the system board 200 obtained in step S3 as described above may be multiplied by the common power consumption p1.
  • the total power consumption value of all the DIMMs 220 actually mounted on the system board 200 is obtained.
  • step S5 the first table information in FIG. 6A is referred to.
  • the number of high-level enable signals required for the total power consumption value of all DIMMs 220 actually mounted on the system board 200 obtained in step S4 as described above can be obtained.
  • the firmware of the control board 100 transmits the required number of high-level enable signals to the power supply device via the GPIO 300. As a result, the same number of power supply devices are operated by each of the transmitted number of high-level enable signals, and power is supplied to all the DIMMs 220 by the power supply device.
  • the firmware of the control board 100 determines the number of installed DIMMs 220 and the type of the installed DIMM 220. More specifically, the firmware of the control board 100 grasps the type of the DIMM 220 from the SPD information of the DIMM 220. The firmware refers to the second table information, and obtains the power consumption value per DIMM corresponding to the type of the DIMM 220. As a result, the firmware can grasp the power consumption of the DIMM 220. Then, the firmware calculates the power consumption of all the DIMMs 220 actually mounted on the system board 200 from the information on the number of mounted DIMMs 220 and the power consumption of each mounted DIMM obtained as described above.
  • the firmware supplies a corresponding number of high-level enable signals according to the first table information in order to operate a number of power supply apparatuses 410 and 420 suitable for supplying power consumption of all the DIMMs 220. Send to device.
  • the total number of power supply devices 410 and 420 is two. Therefore, the firmware determines one or two power supply devices 410 and 420 suitable for supplying the power consumption of all the DIMMs 220.
  • the firmware transmits only an enable signal for operating the power supply device 410 at a high level. That is, in this case, the firmware does not set the enable signal for operating the power supply device 420 to the high level.
  • the firmware sets an enable signal for operating the power supply device 410 to a high level as shown in FIG. 2A.
  • the firmware also sets the enable signal for operating the power supply device 420 to a high level. As a result, in this case, both power supply devices 410 and 420 are operated.
  • the power consumption of all DIMMs actually mounted on the system board 200 can be obtained by the firmware mounted on the control board 100.
  • the power consumption of all the DIMMs is relatively small, only one power supply device 410 is operated out of the two power supply devices 410 and 420 as shown in FIG. 2B. In this case, only the one power supply device 410 supplies power to all DIMMs actually mounted on the system board 200.
  • the power consumption of all DIMMs actually mounted on the system board 200 is relatively large, the following operation is performed as shown in FIG. 2A. That is, in this case, both of the two power supply devices 410 and 420 are operated.
  • the two power supply devices 410 and 420 supply power to all DIMMs actually mounted on the system board 200.
  • an appropriate number of power supply devices corresponding to the power consumption of all DIMMs actually mounted on the system board 200 are operated.
  • the individual operation efficiency of the power supply devices 410 and 420 can be effectively improved.
  • the firmware of the control board 100 performs the following operations, for example. That is, when the server is started, the enable signals for the two power supply devices 410 and 420 are set to the high level, respectively, and the two power supply devices 410 and 420 are once operated. In this state, when the two power supply devices 410 and 420 are operated and power is supplied to the DIMM 220 actually mounted on the system board 200, the firmware obtains the SPD information from the DIMM 220 via the memory controller 210. . The firmware calculates the power consumption of all DIMMs 220 actually mounted on the system board 200 based on the SPD information as described above.
  • the firmware determines the number of power supply devices to be operated based on the calculated power consumption of all DIMMs.
  • the firmware sets the enable signal for operating the power supply device 420 to a low level and stops the operation of the power supply device 420. As a result, only one power supply device 410 continues to operate.
  • the enable signal for operating the power supply device 420 is continuously set to the high level as it is, and the operations of both of the two power supply devices 410 and 420 are continued. .
  • Example 2 will be described with reference to FIGS.
  • the information processing apparatus is, for example, a server that provides various services in response to requests from a client computer, like the information processing apparatus according to the first embodiment.
  • the information processing apparatus according to the second embodiment will be described as a server.
  • the second embodiment can be realized by an information processing apparatus other than the server.
  • the server includes a control board 100, a system board 200, a GPIO (General Purpose I / O, hereinafter the same) 300, a power supply control circuit 500, and power supply apparatuses 410 and 420 as shown in FIG.
  • GPIO General Purpose I / O, hereinafter the same
  • the system board 200 is a functional unit for actually providing a service provided by the server in the server. As shown in FIG. 7, the system board 200 can mount one or more DIMMs 220.
  • FIG. 3 is a block diagram showing a detailed configuration of the system board 200.
  • the configuration of the system board 200 is the same as that of the system board 200 in the server of the first embodiment described above, and redundant description is omitted.
  • the system board 200 is provided with a presence signal generation circuit 280.
  • the CPUs 241 to 244 execute necessary information processing by appropriately using the mounted DIMM 220, and actually provide the service to be provided by the server.
  • the control board 100 is equipped with firmware, and the firmware performs the following operations. That is, when the server is started, in order to supply power to the DIMM 220 mounted on the system board 200, the enable signal for the power supply devices 410 and 420 is set to the high level via the GPIO 300 and the power supply control circuit 500.
  • FIG. 4 is a block diagram showing a schematic configuration of the control board 100.
  • the configuration of the control board 100 is the same as that of the control board 100 in the server of the first embodiment described above, and redundant description is omitted.
  • the firmware installed in the memory 120 may be different from the firmware installed on the control board 100 of the server of the first embodiment. That is, in the case of the second embodiment, the firmware includes the number of power supply devices 410 and 420 for calculating and operating the power consumption of the DIMM actually mounted on the system board 200 as described above in the description of the first embodiment. The function to decide is unnecessary.
  • a power supply control circuit 500 and the like are provided and perform necessary functions.
  • the GPIO 300 receives an instruction from the control board 100 using an I2C signal, and transmits an enable signal (that is, an enable signal, the same applies hereinafter) to the power supply apparatuses 410 and 420 via the power supply control circuit 500 in accordance with the contents of the instruction. / O port.
  • the power supply control circuit 500 will be described later.
  • the power supply devices 410 and 420 supply power to the DIMM 220 mounted on the system board 200, and each can be a DC-DC converter, for example, as in the first embodiment.
  • Each power supply device 410 or 420 is operated only while receiving a high level enable signal A or B from the control board 100 via the GPIO 300 and the power supply control circuit 500, and supplies power to the DIMM 220 during that time.
  • the server according to the second embodiment can mount a total of 16 DIMMs 220-1 to 220-16 on the system board 200 as shown in FIG.
  • the server according to the second embodiment can mount a total of 16 DIMMs 220-1 to 220-16 on the system board 200 as shown in FIG.
  • FIG. 7 it is assumed that one or more and six or less DIMMs 220 can be mounted on the system board 200.
  • the six DIMMs 220 are installed in the corresponding six slots of the system board 200.
  • the first DIMM is always installed in the first slot. Shall.
  • the first and second DIMMs are always mounted in the first and second slots, respectively.
  • n (where n is any one of 3 to 6) DIMMs 220 are mounted on the system board
  • the 1st to nth DIMMs are always installed in the 1st to nth slots, respectively. That is, for example, when only one DIMM 220 is mounted on the system board 200, the sixth DIMM is not mounted in the sixth slot.
  • the power supply control circuit 500 has six present signal input terminals 1 to 6 for present signals Present 1 to 6 and a terminal ENABLE that receives an enable signal ENABLE transmitted from the GPIO 300.
  • the power supply control circuit 500 has a terminal A that outputs an enable signal A to the power supply device 410 and a terminal B that outputs an enable signal B to the power supply device 420.
  • the power supply control circuit 500 has OR logic elements OR1, OR2 and AND logic elements AND1, AND2, AND3.
  • the present signal input terminals 1 to 3 are respectively connected to three input terminals of an OR logic element OR1 and an AND logic element AND1.
  • the present signal input terminals 4 to 6 are respectively connected to three input terminals of the OR logic element OR2.
  • the output of the OR logic element OR1 is connected to one input terminal of the AND logic element AND2, and the terminal ENABLE is connected to the other input terminal of the AND logic element AND2.
  • the output of the AND logic element AND1 is connected to the first input terminal of the AND logic element AND3, and the output of the OR logic element OR2 is connected to the second input terminal of the AND logic element AND3.
  • the terminal ENABLE is connected to the third input terminal of the AND logic element AND3.
  • a high-level enable signal is transmitted from the control board 100 to the power supply control circuit 500 via the GPIO 300.
  • the present signal of the DIMM 220, Presents 1 to 6 are supplied from the system board 200 to the power supply control circuit 500.
  • the present signal, Present 1 to 6 corresponds to each of the above six DIMMs 220.
  • the level of the signal corresponding to what is actually mounted on the system board 200 among the six DIMMs 220 becomes high. For example, when only one first DIMM among the six DIMMs 220 is actually mounted on the system board 200, only the present signal, Present 1, becomes high level.
  • the present signals, Presents 2-6 are all at a low level.
  • each of the present signals and Presents 1 to 3 is at a high level.
  • each of present signals and presents 4 to 6 are at a low level.
  • the present signal and all of Presents 1 to 6 become high level.
  • the present signals, Present 1 to 6 are generated by the present signal generation circuit 280 as described below.
  • the present signal terminals TX1 and TX2 are short-circuited, for example, as shown in FIG.
  • the system board 200 on which the six DIMMs 220 are mounted is provided with a total of six slots (not shown) corresponding to the six DIMMs 220.
  • Each of the slots is also provided with a pair of present signal terminals corresponding to the present signal terminals TX1 and TX2 of the DIMM 220.
  • the system board 200 is provided with the present signal generation circuit 280 having a configuration as shown in FIG.
  • the present signal generation circuit 280 includes six short-circuit detection circuits 281 to 286. Each of the short-circuit detection circuits 281 to 286 transmits a high-level present signal when a short-circuit state between input terminals is detected, and transmits a low-level present signal when an open state between input terminals is detected. .
  • the present signal generation circuit 280 has a total of six pairs of present signal terminals TY1 to TY6 corresponding to the present signal terminals TX1 and TX2 of the six DIMMs 220, respectively. Each of the six pairs of present signal terminals TY1 to TY6 is connected to a pair of present signal terminals corresponding to the present signal terminals TX1 and TX2 of the corresponding DIMM 220 in the system board 200. As a result, when the DIMM 220 is inserted into the slot of the system board 200, the present signal terminals TX1 and TX2 of the DIMM 220 are electrically connected to the corresponding pair of terminals among the six pairs of present signal terminals TY1 to TY6. Connected to.
  • the six pairs of present signal terminals TY1 to TY6 of the present signal generation circuit 280 are connected to the input terminals of the corresponding six short-circuit detection circuits 281 to 286, respectively.
  • the six short circuit detection circuits 281 to 286 output the present signals and presents 1 to 6 from the output terminals Present 1 to 6 of the present signal generation circuit 280, respectively. Therefore, when the DIMM 220 is installed in the slot of the system board 200, the present signal generation circuit 280 causes the input terminal of the corresponding short circuit detection circuit to be in a short circuit state and outputs a high level. As a result, the present signal corresponding to the DIMM 220 related to the mounting becomes a high level.
  • the present signal generation circuit 280 releases the corresponding short-circuit detection circuit input terminal and outputs a low level. As a result, the present signal corresponding to the slot in which the DIMM 220 is not mounted becomes a low level.
  • the present signal generation circuit 280 having the above configuration will be described with a specific example.
  • the first DIMM 220 is installed in the first slot among the six slots of the system board.
  • the present signal terminals TX1 and TX2 of the DIMM 220 are electrically connected to the corresponding pair of present signal terminals TY1.
  • the present signal terminals TX1 and TX2 provided in the DIMM 220 are short-circuited. Therefore, in this case, in the present signal generation circuit 280, the corresponding pair of present signal terminals TY1 is short-circuited.
  • the short circuit detection circuit 281 corresponding to the first DIMM 220 detects a short circuit of the present signal terminal TY1 and outputs a high level. As a result, the level of the present signal, Present 1, becomes high.
  • the present signal generation circuit 280 enters a state where the corresponding pair of present signal terminals TY2 are short-circuited.
  • the short circuit detection circuit 282 corresponding to the second DIMM 220 detects a short circuit of the present signal terminal TY2 and outputs a high level. As a result, the level of the present signal, Present 2, becomes high.
  • the present signal generation circuit 280 makes a pair of corresponding present signal terminals TYn. Is short-circuited.
  • the short circuit detection circuit 28n corresponding to the nth DIMM 220 detects a short circuit of the present signal terminal TYn and outputs a high level. As a result, the level of the present signal, Present n becomes high.
  • the operation of the power supply control circuit 500 shown in FIG. 8 will be described.
  • at least one of the three first to third DIMMs among the six DIMMs 220 is installed in the first to third slots of the system board 200.
  • at least one of the present signals and presents 1 to 3 corresponding to the present signal becomes high level.
  • the output of the OR logic element OR1 of the power supply control circuit 500 becomes high level.
  • the server is activated, and as a result, the high level enable signal ENABLE is transmitted from the control board 100 via the GPIO 300 as described above. As a result, the terminal ENABLE becomes high level.
  • the power supply device 410 is operated by the enable signal A.
  • the power supply apparatus 410 supplies power to at least one DIMM 220 among the first to third DIMMs mounted on the system board 200.
  • power is supplied to at least one of the first to third DIMMs by only one power supply device 410.
  • the number of DIMMs mounted on the system board 200 is 1 or more and 3 or less in this way, only one power supply device 410 is operated, and power is supplied to the mounted DIMM 220 by the power supply device 410.
  • the present signals, Presents 1 to 3 are all at a high level, and at least one of the present signals and Presents 4 to 6 is at a high level.
  • the output of the OR logic element OR1 of the power supply control circuit 500 becomes high level.
  • the server is activated as described above, and as a result, the high level enable signal ENABLE is transmitted from the control board 100 via the GPIO 300 as described above.
  • At least one of the 4th to 6th DIMMs is mounted in the corresponding slot in the 4th to 6th slots of the system board 200.
  • at least one of the present signals and presents 4 to 6 falls to a high level.
  • the output of the OR logic element OR2 of the power supply control circuit 500 becomes high level.
  • the high level enable signal ENABLE is transmitted from the control board 100 via the GPIO 300, and the terminal ENABLE is high. Since the present signals, Present 1 to 3 are all at the high level as described above, the output of the AND logic element AND1 is at the high level.
  • the second embodiment when the number of DIMMs mounted on the system board 200 is 1 or more and 3 or less, only one power supply device 410 is operated, and the power supply device 410 supplies power to the mounted DIMMs. Is supplied.
  • the two power supply devices 410 and 420 are operated, and power is supplied to the mounted DIMMs by the power supply devices 410 and 420. . That is, when the number of DIMMs that supply power is small, power is supplied by a small number of power supply devices, and when the number of DIMMs that supply power is large, power is supplied by a large number of power supply devices. As a result, as described above with reference to FIG. 1, it is possible to effectively improve the operation efficiency of each power supply apparatus.
  • each of the first and second embodiments the case where the number of power supply devices is two has been described.
  • the present invention is not limited to such a case. That is, it goes without saying that each embodiment can be applied even when power is supplied to one or a plurality of DIMMs using three or more power supply devices.
  • the number of the three or more power supply devices that are actually operated may be increased when the number of DIMMs actually mounted or the total power consumption is large, and may be controlled when the number is small.

Abstract

An information processing device comprises one or a plurality of storage units the number of which is changeable, an arithmetical unit for performing information processing with the one or plurality of storage units, a plurality of power supply units for supplying power to the one or plurality of storage units, means for detecting the number of the one or plurality of storage units, and means for determining the number of power supply units to be actually operated out of the plurality of power supply units according to the detected number of the one or plurality of storage units.

Description

情報処理装置、電源制御方法および電源制御プログラムInformation processing apparatus, power supply control method, and power supply control program
 本発明は情報処理装置、電源制御方法および電源制御プログラムに係る。また本発明は特に、一又は複数の記憶装置を使用する情報処理装置、当該記憶装置に電源を供給する電源装置を制御するための電源制御方法および同方法をコンピュータに実行させるためのプログラムに関する。 The present invention relates to an information processing apparatus, a power control method, and a power control program. In particular, the present invention relates to an information processing apparatus that uses one or a plurality of storage devices, a power control method for controlling a power supply device that supplies power to the storage devices, and a program for causing a computer to execute the method.
 近年、サーバやパーソナルコンピュータ、家電製品などにおいては、消費電力の抑制、電力損失による発熱の抑制等が求められている。例えばサーバなどの情報処理装置として以下の構成を有するものが知られている。すなわち情報処理装置が複数のDIMM(デュアル・インライン・メモリ・モジュール:Dual Inline Memory Module、以下同様)等の記憶装置を搭載する。更に同情報処理装置が、上記記憶装置に電源電流を供給する複数のDC-DCコンバータ等の電源装置を搭載する。ここで上記電源装置はDIMMの最大枚数搭載時を想定し、複数個並列に設置されている。 In recent years, servers, personal computers, home appliances, and the like have been required to reduce power consumption and heat generation due to power loss. For example, an information processing apparatus such as a server having the following configuration is known. That is, the information processing apparatus is equipped with a storage device such as a plurality of DIMMs (dual inline memory module: dual inline memory module, hereinafter the same). Further, the information processing apparatus is equipped with a power supply device such as a plurality of DC-DC converters for supplying a power supply current to the storage device. Here, assuming that the maximum number of DIMMs is mounted, a plurality of the power supply devices are installed in parallel.
 このような構成の情報処理装置において、実際のDIMMの搭載枚数が少ない場合以下に述べる如くの問題が生ずることが考えられる。すなわち当該情報処理装置に現に搭載されている枚数分のDIMMが必要としている以上の電力を供給可能な個数の電源装置が動作することが考えられる。このような場合、電源装置1個あたりの電力の供給量は、より少ない個数の電源装置で電力を供給する場合に比して少なくなる。電源装置1個あたりに電力の供給量が極端に少なくなると、当該電源装置の動作効率が低下する。すなわち実際のDIMMの搭載枚数が少ない場合、電源装置によって無駄な電力が消費される場合がある。 In the information processing apparatus having such a configuration, the following problems may occur when the actual number of installed DIMMs is small. That is, it is conceivable that as many power supply devices as can supply power more than the number of DIMMs currently installed in the information processing apparatus need operate. In such a case, the amount of power supplied per power supply device is smaller than when power is supplied by a smaller number of power supply devices. When the supply amount of power per power supply device is extremely reduced, the operation efficiency of the power supply device is lowered. That is, when the actual number of installed DIMMs is small, useless power may be consumed by the power supply device.
 図1はその点を説明するための図である。図1は電源装置1個が供給する電流値(Iout)に対する、当該電源装置の動作効率(Efficiency)を示す。図1中、供給する電流値が比較的小さいZ1の領域では動作効率が低く、供給する電流値が比較的大きいZ2の領域では動作効率が高いことが分かる。 FIG. 1 is a diagram for explaining this point. FIG. 1 shows the operating efficiency (Efficiency) of the power supply device with respect to the current value (Iout) supplied by one power supply device. In FIG. 1, it can be seen that the operation efficiency is low in the region Z1 where the supplied current value is relatively small, and the operation efficiency is high in the region Z2 where the supplied current value is relatively large.
 上記の如く複数個並列に設けられた電源装置の出力の総電流を検出し、当該検出に係る総電流量に応じて動作させる電源装置の個数を制御する方法が知られている。
特開平11-127573号公報
There is known a method for detecting the total current of the outputs of a plurality of power supply devices provided in parallel as described above and controlling the number of power supply devices to be operated according to the total current amount related to the detection.
Japanese Patent Laid-Open No. 11-127573
 個数が変更可能とされた一又は複数の記憶装置と、当該記憶装置に電力を供給する複数の電源装置とを有する情報処理装置において、簡易な構成で効果的に前記電源装置の動作効率を向上させることを目的とする。 In an information processing apparatus having one or a plurality of storage devices whose number can be changed and a plurality of power supply devices that supply power to the storage devices, the operation efficiency of the power supply devices is effectively improved with a simple configuration. The purpose is to let you.
 個数が変更可能とされた一又は複数の記憶装置と、当該記憶装置に電力を供給する複数の電源装置とを有する情報処理装置において、前記一又は複数の記憶装置の個数を検出するための手段を設ける。同情報処理装置には更に、前記検出された一又は複数の記憶装置の個数に応じて前記複数の電源装置のうち、実際に動作させる電源装置の個数を制御するための手段を設ける。 Means for detecting the number of one or more storage devices in an information processing device having one or more storage devices whose number can be changed and a plurality of power supply devices for supplying power to the storage devices Is provided. The information processing apparatus further includes means for controlling the number of power supply devices to be actually operated among the plurality of power supply devices in accordance with the detected number of one or more storage devices.
 開示の情報処理装置では、検出された一又は複数の記憶装置の個数に応じて複数の電源装置のうち、実際に動作させる電源装置の個数を制御する。したがって簡易な構成で効果的に電源装置の動作効率を向上させることができる。 The disclosed information processing device controls the number of power supply devices that are actually operated among the plurality of power supply devices in accordance with the detected number of one or more storage devices. Therefore, the operation efficiency of the power supply device can be effectively improved with a simple configuration.
電源装置の動作効率について説明するための図である。It is a figure for demonstrating the operating efficiency of a power supply device. 実施例1の構成および動作を説明するためのブロック図(その1)である。FIG. 3 is a block diagram (part 1) for explaining the configuration and operation of the first embodiment. 実施例1の構成および動作を説明するためのブロック図(その2)である。FIG. 3 is a block diagram (No. 2) for explaining the configuration and operation of the first embodiment. 図2A,2B中のシステムボードの構成例を説明するためのブロック図である。It is a block diagram for demonstrating the structural example of the system board in FIG. 2A, 2B. 図2A,2B中の制御ボードの構成例を説明するためのブロック図である。It is a block diagram for demonstrating the structural example of the control board in FIG. 2A, 2B. 実施例1の動作を説明するためのフローチャートである。3 is a flowchart for explaining an operation of the first embodiment. 実施例1の動作を説明するための図(その1)である。FIG. 6 is a diagram (part 1) for explaining the operation of the first embodiment; 実施例1の動作を説明するための図(その2)である。FIG. 6 is a second diagram for explaining the operation of the first embodiment; 実施例2の構成および動作を説明するためのブロック図である。6 is a block diagram for explaining the configuration and operation of Embodiment 2. FIG. 図7中の電源制御回路の回路構成例を示す回路図である。FIG. 8 is a circuit diagram illustrating a circuit configuration example of a power supply control circuit in FIG. 7. 図7中のDIMMに設けられたプレゼント信号用端子を説明するための図である。It is a figure for demonstrating the terminal for present signals provided in DIMM in FIG. 図7中のプレゼント信号発生回路の構成例を説明するための図である。It is a figure for demonstrating the structural example of the present signal generation circuit in FIG.
符号の説明Explanation of symbols
 100 制御ボード(コンピュータ)
 200 システムボード
 210、210-1~210-4 メモリコントローラ
 220,220-1~220-16 DIMM(記憶装置)
 230 ノースブリッジ
 241~244 CPU(演算装置)
 280 プレゼント信号発生回路
 281~286 短絡検出回路
 300 GPIO
 410,420 電源装置
 500 電源制御回路
 enable信号 イネーブル信号
 Present 1~6 プレゼント信号
 TX1,TX2 プレゼント信号用端子(DIMM)
 TY1~TY6 プレゼント信号用端子(プレゼント信号発生回路)
100 Control board (computer)
200 System board 210, 210-1 to 210-4 Memory controller 220, 220-1 to 220-16 DIMM (storage device)
230 North Bridge 241-244 CPU (arithmetic unit)
280 Present signal generation circuit 281 to 286 Short circuit detection circuit 300 GPIO
410, 420 Power supply device 500 Power supply control circuit enable signal enable signal Present 1-6 present signal TX1, TX2 Present signal terminal (DIMM)
TY1 to TY6 Present signal terminals (present signal generation circuit)
 開示の情報処理装置では、DIMM等の記憶装置の実際の搭載枚数に応じて実際に使用する電源装置の数を変更する。その結果、高効率状態で電源装置を動作させることができる。この方式を使用することにより、比較的安価でかつ故障率の低い制御手段を用いて高効率状態で電源装置を動作させることが可能になる。 In the disclosed information processing apparatus, the number of power supply apparatuses actually used is changed according to the actual number of storage devices such as DIMMs. As a result, the power supply device can be operated in a highly efficient state. By using this method, it is possible to operate the power supply apparatus in a highly efficient state using a control means that is relatively inexpensive and has a low failure rate.
 すなわち開示の情報処理装置では、電源装置の動作個数を制御するため、当該情報処理装置に実際に搭載されている記憶装置の枚数と種類とを把握する。そして、当該実際に搭載された記憶装置に必要な電力を供給するのに適した個数の電源装置を動作させる。 That is, in the disclosed information processing apparatus, in order to control the number of operating power supply apparatuses, the number and types of storage devices actually mounted on the information processing apparatus are grasped. Then, a number of power supply devices suitable for supplying necessary power to the actually mounted storage device are operated.
 以下に実施例1につき、図とともに説明する。 Hereinafter, Example 1 will be described with reference to the drawings.
 図2Aは実施例1に係る情報処理装置の概略の構成を示すブロック図である。 FIG. 2A is a block diagram illustrating a schematic configuration of the information processing apparatus according to the first embodiment.
 同情報処理装置は、例えば、クライアントコンピュータの要求に応じ種々のサービスを提供するサーバである。以下の実施例1の説明において、実施例1に係る情報処理装置をサーバとして説明する。しかしながら実施例1はサーバ以外の情報処理装置によっても実現可能であることは言うまでもない。 The information processing apparatus is, for example, a server that provides various services in response to requests from client computers. In the following description of the first embodiment, the information processing apparatus according to the first embodiment will be described as a server. However, it goes without saying that the first embodiment can be realized by an information processing apparatus other than the server.
 当該サーバは図2Aに示される如く、制御ボード100、システムボード200、GPIO(ジェネラル・パーパス・I/O、以下同様)300および電源装置2個、410、420を有する。 As shown in FIG. 2A, the server includes a control board 100, a system board 200, a GPIO (General Purpose I / O, hereinafter the same) 300, and two power supply units 410, 420.
 システムボード200は当該サーバにおいて、当該サーバが提供するサービスを実際に提供するための機能部である。図2Aに示される如く、システムボード200はメモリコントローラ210を有するとともに、1または複数枚のDIMM220を搭載可能である。 The system board 200 is a functional unit for actually providing the service provided by the server. As shown in FIG. 2A, the system board 200 includes a memory controller 210 and can mount one or a plurality of DIMMs 220.
 図3はシステムボード200の詳細な構成例を示すブロック図である。図3に示される如く、システムボード200は4個のCPU241~244と、ノースブリッジ230と、4個のメモリコントローラ210―1~210-4とを有する。またシステムボード200には1枚以上16枚以内の枚数のDIMM220-1~220-16を搭載可能である。なお図2A、図2Bでは、上記4個のメモリコントローラ210―1~210-4を総称してメモリコントローラ210と示している。また以下の説明においても上記4個のメモリコントローラ210―1~210-4を総称してメモリコントローラ210と称する。また図2A、図2Bでは上記16枚のDIMM220-1~220-16を総称してDIMM220と示している。また、以下の説明でもDIMM220-1~220-16を総称してDIMM220と称する。ここで図3では計16枚のDIMM220-1~220-16がシステムボード200に含まれているように示されている。しかし実際には上記16枚のDIMM220-1~220-16のうち、1枚あるいは複数枚のDIMMのみをシステムボード200に搭載した状態で当該サーバを運転することができる。 FIG. 3 is a block diagram showing a detailed configuration example of the system board 200. As shown in FIG. 3, the system board 200 includes four CPUs 241 to 244, a north bridge 230, and four memory controllers 210-1 to 210-4. The system board 200 can include one or more DIMMs 220-1 to 220-16. 2A and 2B, the four memory controllers 210-1 to 210-4 are collectively referred to as a memory controller 210. In the following description, the four memory controllers 210-1 to 210-4 are collectively referred to as a memory controller 210. 2A and 2B, the 16 DIMMs 220-1 to 220-16 are collectively referred to as DIMM 220. In the following description, DIMMs 220-1 to 220-16 are collectively referred to as DIMM 220. Here, in FIG. 3, a total of 16 DIMMs 220-1 to 220-16 are shown as being included in the system board 200. However, in actuality, the server can be operated with only one or a plurality of DIMMs among the 16 DIMMs 220-1 to 220-16 mounted on the system board 200.
 このような構成を有するシステムボード200は、CPU241~244が、搭載されたDIMM220を適宜使用して必要な情報処理を実行することで、当該サーバが提供すべき種々のサービスを実際に提供する。 The system board 200 having such a configuration actually provides various services to be provided by the server when the CPUs 241 to 244 execute necessary information processing using the mounted DIMM 220 as appropriate.
 上記制御ボード100にはファームウェアが搭載され、同ファームウェアの機能により、システムボード200に実際に搭載されているDIMM220の枚数を検出する。また制御ボード100は上記ファームウェアの機能により、上記実際に搭載されているDIMM220の種類を把握する。より具体的には、制御ボード100は上記実際に搭載されている各DIMM220が有するSPD(シリアル・プレゼンス・ディテクト、以下同様)情報を読み取る。実施例1では制御ボード100はメモリコントローラ210を介し、I2C(インター・インテグレーテッド・サーキット、以下同様)を用いて上記SPD情報を読み取ることができる。制御ボード100はこのようにしてDIMM220のSPD情報を読み取ることにより、当該DIMM220の仕様内容を把握する。上記SPD情報の内容の具体例として、例えば当該DIMM200の種類、構成、容量、アクセス速度、アクセス方法等が挙げられる。 Firmware is mounted on the control board 100, and the number of DIMMs 220 actually mounted on the system board 200 is detected by the function of the firmware. Further, the control board 100 grasps the type of the DIMM 220 actually mounted by the function of the firmware. More specifically, the control board 100 reads SPD (Serial Presence Detect, the same applies hereinafter) information of each DIMM 220 actually mounted. In the first embodiment, the control board 100 can read the SPD information using the I2C (inter-integrated circuit, the same applies hereinafter) via the memory controller 210. The control board 100 grasps the specification content of the DIMM 220 by reading the SPD information of the DIMM 220 in this way. Specific examples of the contents of the SPD information include, for example, the type, configuration, capacity, access speed, access method, and the like of the DIMM 200.
 図4は制御ボード100の概略構成を示すブロック図である。図4に示される如く、制御ボード100はCPU110と、上記ファームウェア等が搭載されたメモリ120とI/O130とを有する。ここでI/O130はインタフェースICであり、制御ボード100はI/O130を介しシステムボード200あるいはGPIO300と、I2Cを用いて通信する。また上記の如く、制御ボード100はメモリ120に搭載されたファームウェアを実行することで、上記の如く、DIMM200のSPD情報に基づき、DIMM220の搭載枚数を把握することができる。 FIG. 4 is a block diagram showing a schematic configuration of the control board 100. As shown in FIG. 4, the control board 100 includes a CPU 110, a memory 120 on which the firmware and the like are mounted, and an I / O 130. Here, the I / O 130 is an interface IC, and the control board 100 communicates with the system board 200 or the GPIO 300 via the I / O 130 using I2C. Further, as described above, the control board 100 can grasp the number of DIMMs 220 mounted based on the SPD information of the DIMM 200 by executing the firmware mounted in the memory 120 as described above.
 GPIO300は制御ボード100からI2Cの信号による指示を受け、当該指示内容に応じて電源装置410、420に対しイネーブル信号(すなわちenable信号、以下同様)を送信するためのI/Oポートである。 The GPIO 300 is an I / O port for receiving an instruction by an I2C signal from the control board 100 and transmitting an enable signal (that is, an enable signal, the same applies hereinafter) to the power supply devices 410 and 420 according to the contents of the instruction.
 電源装置410,420はシステムボード200に搭載されるDIMM220に電力を供給する電源であり、例えば各々DC-DCコンバータとすることができる。各電源装置410,420は制御ボード100からGPIO300を介し受信されるイネーブル信号がハイレベルの間に限り動作され、その間DIMM220に電力を供給する。 The power supply devices 410 and 420 are power supplies that supply power to the DIMM 220 mounted on the system board 200, and can be, for example, DC-DC converters. Each power supply device 410 and 420 is operated only while the enable signal received from the control board 100 via the GPIO 300 is at a high level, and supplies power to the DIMM 220 during that time.
 ここで図2Aは当該サーバのシステムボード200に比較的多数のDIMM220が搭載されている状態を示し、図2Bはシステムボード200に比較的少数のDIMM220が搭載されている状態を示している。図5とともに後述する制御ボード100のファームウェアの機能により以下の動作がなされる。すなわち図2Aに示す如く比較的多数のDIMM220が搭載されている場合、その状態が自動的に検出され、上記2台の電源装置410,420の両方にそれぞれハイレベルのイネーブル信号が送信される。その結果、2台の電源装置410,420が動作し、上記比較的多数のDIMM220に対し2台の電源装置410,420により電力が供給される。他方図2Bに示す如くの比較的少数のDIMM220が搭載されている場合、その状態が自動的に検出され、上記2台の電源装置410,420のうち1台の電源装置410に対してのみ、ハイレベルのイネーブル信号が送信される。その結果、当該1台の電源装置410のみが動作し、上記比較的少数のDIMM220に対しては1台の電源装置410により電力が供給される。その結果電力の供給が必要なDIMM220の個数が多い場合には比較的多数の電源装置を動作させて電力を供給する。同様に電力の供給が必要なDIMM220の個数が少ない場合には比較的少数の電源装置のみを動作させて電力を供給する。その結果電力の供給量が少ない場合に電源装置1個当たりが供給する電力量が少なくなりすぎることを防止することができ、図1とともに上述の如く、各電源装置の動作効率を向上させることができる。 2A shows a state where a relatively large number of DIMMs 220 are mounted on the system board 200 of the server, and FIG. 2B shows a state where a relatively small number of DIMMs 220 are mounted on the system board 200. The following operation is performed by the firmware function of the control board 100 described later with reference to FIG. That is, when a relatively large number of DIMMs 220 are mounted as shown in FIG. 2A, the state is automatically detected, and high level enable signals are transmitted to both of the two power supply devices 410 and 420, respectively. As a result, the two power supply devices 410 and 420 operate, and power is supplied from the two power supply devices 410 and 420 to the relatively large number of DIMMs 220. On the other hand, when a relatively small number of DIMMs 220 as shown in FIG. 2B are mounted, the state is automatically detected, and only one power supply 410 out of the two power supplies 410 and 420 is used. A high level enable signal is transmitted. As a result, only the one power supply device 410 operates, and power is supplied from the single power supply device 410 to the relatively few DIMMs 220. As a result, when the number of DIMMs 220 that require power supply is large, a relatively large number of power supply devices are operated to supply power. Similarly, when the number of DIMMs 220 requiring power supply is small, only a relatively small number of power supply devices are operated to supply power. As a result, when the supply amount of power is small, it is possible to prevent the amount of power supplied per power supply device from being excessively reduced, and as described above with reference to FIG. 1, the operation efficiency of each power supply device can be improved. it can.
 すなわち上記構成の実施例1に係るサーバの制御ボード100のメモリ120に搭載されているファームウェアがCPU110に実行され、以下に述べる動作が行われる。以下同ファームウェアがCPU110に実行されて実行する動作につき、図5とともに説明する。 That is, the firmware mounted in the memory 120 of the control board 100 of the server according to the first embodiment having the above configuration is executed by the CPU 110, and the following operation is performed. Hereinafter, an operation performed by the CPU 110 when the firmware is executed will be described with reference to FIG.
 図5のステップS1にて、制御ボード100のメモリ120には、CPU110が上記ファームウェアを実行することにより参照可能な情報として、予め以下の情報が格納される。すなわちシステムボード200に実際に搭載されているDIMM220の消費電力の合計の値に応じ、電源装置2個、410,420のうち実際に動作させる個数を示す第1のテーブル情報が格納される。図6Aは上記第1のテーブル情報の一例を示す。図6Aの例は、電源装置410,420が実施例1の場合のように2個、410,420である場合に限らず、電源装置が3個以上の場合をも想定した場合の例である。すなわち図6Aの場合、システムボード200に実際に搭載されているDIMM220の合計消費電力がP1,P2,P2,...の各々の場合に対し、制御ボード100がGPIO300を介して送信するハイレベルのイネーブル信号の数n1,n2,n3,...が格納されている。ここで上記送信されるイネーブル信号の各々は、それぞれ対応する電源装置に与えられる。したがって、上記送信するハイレベルのイネーブル信号の数は、実際に動作させる電源装置の個数を示す。なお図6Aにおいて、P1<P2<P3<...であり、n1<n2<n3<...である。すなわちシステムボード200に実際に搭載されているDIMMの消費電力の合計値が大きいほど、当該DIMMに電力を供給する電源装置の個数が増加するように上記第1のテーブル情報の内容が決められる。 5, the following information is stored in advance in the memory 120 of the control board 100 as information that can be referred to when the CPU 110 executes the firmware. That is, first table information indicating the number of the two power supply devices 410, 420 to be actually operated is stored in accordance with the total power consumption value of the DIMM 220 actually mounted on the system board 200. FIG. 6A shows an example of the first table information. The example of FIG. 6A is an example of a case where the number of power supply devices 410 and 420 is not limited to two, 410, and 420 as in the first embodiment, and the case of three or more power supply devices is also assumed. . That is, in the case of FIG. 6A, the high level that the control board 100 transmits via the GPIO 300 in each case where the total power consumption of the DIMM 220 actually mounted on the system board 200 is P1, P2, P2,. The number of enable signals n1, n2, n3,. Here, each of the transmitted enable signals is given to a corresponding power supply device. Therefore, the number of high-level enable signals to be transmitted indicates the number of power supply devices that are actually operated. In FIG. 6A, P1 <P2 <P3 <... and n1 <n2 <n3 <.... That is, the contents of the first table information are determined such that the greater the total power consumption of DIMMs actually mounted on the system board 200, the greater the number of power supply devices that supply power to the DIMMs.
 図5の説明に戻り、ステップS2にて、制御ボード100のメモリ120には、CPU110が上記ファームウェアを実行することにより参照可能な情報として、更に予め以下の情報が格納される。すなわち、システムボード200に搭載されるDIMM220の種類ごとに、DIMM1枚当たりの消費電力を示す情報が第2のテーブル情報としてメモリ120に予め格納されている。図6Bは当該第2のテーブル情報の一例を示す。図6B中、システムボード200に実際に搭載されるDIMM220の種類としてのtype-1、type-2、...に対し、該当する種類のDIMM220のそれぞれの消費電力、p1,p2,...が格納される。 Returning to the description of FIG. 5, in step S2, the memory 120 of the control board 100 further stores the following information in advance as information that can be referred to by the CPU 110 executing the firmware. That is, information indicating the power consumption per DIMM for each type of DIMM 220 mounted on the system board 200 is stored in advance in the memory 120 as the second table information. FIG. 6B shows an example of the second table information. In FIG. 6B, with respect to type-1, type-2,... As types of DIMMs 220 actually mounted on the system board 200, respective power consumptions of the corresponding types of DIMMs 220, p1, p2,. Is stored.
 図5の説明に戻り、ステップS3で上記ファームウェアは、メモリコントローラ210を介しシステムボード200に実際に搭載されているDIMM220のSPD情報を取得する。そしてファームウェアは同SPD情報から、システムボード200に実際に搭載されているDIMM220の合計枚数を把握する。ここで上記SPD情報はDIMM220の1枚ごとに個別に各DIMM220に格納されている。このため、システムボード200に実際に搭載されているDIMM220の各々から得られるそれぞれのSPD情報の個数を計数することにより、システムボード200に実際に搭載されているDIMM220の個数を把握し得る。上記ファームウェアは更に、システムボード200に実際に搭載されているDIMM220のそれぞれのSPD情報に含まれている、該当するDIMM220の種類を示す情報を得る。そしてファームウェアは図6Bとともに上述した第2のテーブル情報を参照することにより、該当するDIMM2201枚当たりの消費電力の値を得る。 Returning to the description of FIG. 5, in step S <b> 3, the firmware acquires the SPD information of the DIMM 220 actually mounted on the system board 200 via the memory controller 210. Then, the firmware grasps the total number of DIMMs 220 actually mounted on the system board 200 from the SPD information. Here, the SPD information is individually stored in each DIMM 220 for each of the DIMMs 220. Therefore, the number of DIMMs 220 actually mounted on the system board 200 can be grasped by counting the number of SPD information obtained from each of the DIMMs 220 actually mounted on the system board 200. The firmware further obtains information indicating the type of the corresponding DIMM 220 included in the SPD information of each DIMM 220 actually mounted on the system board 200. The firmware obtains the power consumption value per corresponding DIMM 2201 by referring to the second table information described above with reference to FIG. 6B.
 そしてステップS4にて、上記ファームウェアは、システムボード200に実際に搭載されているDIMM220の消費電力の合計値を算出する。ここで一例として、システムボード200に実際に搭載されているDIMM220の種類が全て共通の,例えばtype-1であった場合を想定する。この場合、図6Bの第2のテーブル情報により、システムボード200に実際に搭載されている全てのDIMM220の各々の1枚当たりの消費電力の値としてp1が得られる。この場合、上記の如くステップS3にて得られた、システムボード200に実際に搭載されているDIMM220の枚数を上記共通の消費電力p1に掛け合わせればよい。その結果、システムボード200に実際に搭載されている全てのDIMM220の合計の消費電力の値が得られる。 In step S4, the firmware calculates the total power consumption of the DIMM 220 actually mounted on the system board 200. Here, as an example, it is assumed that the types of DIMMs 220 actually mounted on the system board 200 are all common, for example, type-1. In this case, p1 is obtained as the power consumption value for each of all the DIMMs 220 actually mounted on the system board 200 by the second table information in FIG. 6B. In this case, the number of DIMMs 220 actually mounted on the system board 200 obtained in step S3 as described above may be multiplied by the common power consumption p1. As a result, the total power consumption value of all the DIMMs 220 actually mounted on the system board 200 is obtained.
 次に上記例とは異なる例として、システムボード200に実際に搭載されているDIMM220に、相異なる種類のDIMMが混在している場合を想定する。この場合、DIMMの各種類ごとにDIMMの枚数を合計し、当該種類のDIMMの消費電力を掛け合わせることで、各種類ごとのDIMMの消費電力の合計が得られる。次にこのようにして得られた各種類ごとのDIMMの消費電力を全ての種類にわたって合計する。その結果、システムボード200に実際に搭載されている全てのDIMM220の合計の消費電力の値が得られる。 Next, as an example different from the above example, a case where different types of DIMMs are mixed in the DIMM 220 actually mounted on the system board 200 is assumed. In this case, by summing up the number of DIMMs for each type of DIMM and multiplying by the power consumption of the DIMM of that type, the total power consumption of the DIMM for each type can be obtained. Next, the power consumption of each type of DIMM thus obtained is summed over all types. As a result, the total power consumption value of all the DIMMs 220 actually mounted on the system board 200 is obtained.
 次にステップS5にて、図6Aの第1のテーブル情報を参照する。そして上記の如くステップS4にて得られた、システムボード200に実際に搭載されている全てのDIMM220の合計の消費電力の値に対し必要とされるハイレベルのイネーブル信号の個数を得ることができる。制御ボード100のファームウェアは上記必要とされる個数のハイレベルのイネーブル信号を、GPIO300を介し、電源装置に対し送信する。その結果当該送信された個数のハイレベルのイネーブル信号のそれぞれにより同一個数の電源装置が動作され、当該電源装置により、上記全てのDIMM220に対し電力が供給される。 Next, in step S5, the first table information in FIG. 6A is referred to. The number of high-level enable signals required for the total power consumption value of all DIMMs 220 actually mounted on the system board 200 obtained in step S4 as described above can be obtained. . The firmware of the control board 100 transmits the required number of high-level enable signals to the power supply device via the GPIO 300. As a result, the same number of power supply devices are operated by each of the transmitted number of high-level enable signals, and power is supplied to all the DIMMs 220 by the power supply device.
 上記の如く実施例1では、DIMM220の搭載枚数や搭載されたDIMM220の種類を、制御ボード100の上記ファームウェアが判別する。より具体的には、制御ボード100のファームウェアはDIMM220のSPD情報から当該DIMM220の種類を把握する。そして同ファームウェアは前記第2のテーブル情報を参照し、同DIMM220の種類に対応するDIMM1枚当たりの消費電力の値を得る。その結果同ファームウェアは当該DIMM220の消費電力を把握することができる。そして同ファームウェアは、上記の如くに得られた、DIMM220の搭載枚数と搭載された各DIMMの消費電力の情報から、システムボード200に実際に搭載されている全DIMM220の消費電力を計算する。そして同ファームウェアは、上記全DIMM220の消費電力を供給するのに適した個数の電源装置410,420を動作させるべく、上記第1のテーブル情報にしたがって、該当する個数のハイレベルのイネーブル信号を電源装置に送信する。実施例1の場合電源装置410,420の総個数は2である。このため、上記ファームウェアは上記全DIMM220の消費電力を供給するのに適した電源装置410,420の個数として、1個あるいは2個を決定する。ここで動作させる電源装置410,420の個数として1個が決定された場合、図2Bに示される如く、上記ファームウェアは電源装置410を動作させるイネーブル信号のみをハイレベルで送信する。すなわちこの場合、同ファームウェアは電源装置420を動作させるイネーブル信号をハイレベルとはしない。その結果この場合電源装置410のみが動作される。他方、上記動作させる電源装置410,420の個数として2個が決定された場合には図2Aに示される如く、上記ファームウェアは電源装置410を動作させるイネーブル信号をハイレベルにする。更にこの場合、同ファームウェアは電源装置420を動作させるイネーブル信号をもハイレベルにする。その結果この場合電源装置410、420の両方が動作される。 As described above, in the first embodiment, the firmware of the control board 100 determines the number of installed DIMMs 220 and the type of the installed DIMM 220. More specifically, the firmware of the control board 100 grasps the type of the DIMM 220 from the SPD information of the DIMM 220. The firmware refers to the second table information, and obtains the power consumption value per DIMM corresponding to the type of the DIMM 220. As a result, the firmware can grasp the power consumption of the DIMM 220. Then, the firmware calculates the power consumption of all the DIMMs 220 actually mounted on the system board 200 from the information on the number of mounted DIMMs 220 and the power consumption of each mounted DIMM obtained as described above. The firmware supplies a corresponding number of high-level enable signals according to the first table information in order to operate a number of power supply apparatuses 410 and 420 suitable for supplying power consumption of all the DIMMs 220. Send to device. In the case of the first embodiment, the total number of power supply devices 410 and 420 is two. Therefore, the firmware determines one or two power supply devices 410 and 420 suitable for supplying the power consumption of all the DIMMs 220. When one is determined as the number of power supply devices 410 and 420 to be operated here, as shown in FIG. 2B, the firmware transmits only an enable signal for operating the power supply device 410 at a high level. That is, in this case, the firmware does not set the enable signal for operating the power supply device 420 to the high level. As a result, in this case, only the power supply device 410 is operated. On the other hand, when two power supply devices 410 and 420 to be operated are determined, the firmware sets an enable signal for operating the power supply device 410 to a high level as shown in FIG. 2A. In this case, the firmware also sets the enable signal for operating the power supply device 420 to a high level. As a result, in this case, both power supply devices 410 and 420 are operated.
 このように実施例1によれば、制御ボード100に搭載されたファームウェアにより、システムボード200に実際に搭載されている全DIMMの消費電力が得られる。そして当該全DIMMの消費電力が比較的小さい場合には図2Bに示される如く、2個の電源装置410,420のうち、一個の電源装置410のみが動作される。そしてこの場合、当該1個の電源装置410のみが上記システムボード200に実際に搭載されている全DIMMに対する電力の供給を行う。他方、前記システムボード200に実際に搭載されている全DIMMの消費電力が比較的大きい場合には図2Aに示される如く以下の動作がなされる。すなわちこの場合、2個の電源装置410,420の両方が動作される。その結果当該2個の電源装置410、420が上記システムボード200に実際に搭載されている全DIMMに対する電力の供給を行う。その結果システムボード200に実際に搭載されている全DIMMの消費電力に応じた、適当な個数の電源装置が動作される。その結果上記の如く、電源装置410,420の個々の動作効率を効果的に向上させることができる。 As described above, according to the first embodiment, the power consumption of all DIMMs actually mounted on the system board 200 can be obtained by the firmware mounted on the control board 100. When the power consumption of all the DIMMs is relatively small, only one power supply device 410 is operated out of the two power supply devices 410 and 420 as shown in FIG. 2B. In this case, only the one power supply device 410 supplies power to all DIMMs actually mounted on the system board 200. On the other hand, when the power consumption of all DIMMs actually mounted on the system board 200 is relatively large, the following operation is performed as shown in FIG. 2A. That is, in this case, both of the two power supply devices 410 and 420 are operated. As a result, the two power supply devices 410 and 420 supply power to all DIMMs actually mounted on the system board 200. As a result, an appropriate number of power supply devices corresponding to the power consumption of all DIMMs actually mounted on the system board 200 are operated. As a result, as described above, the individual operation efficiency of the power supply devices 410 and 420 can be effectively improved.
 なお上記実施例1において、システムボード200に実際に搭載されているDIMM220からSPD情報を得るためには当該DIMM220に電力を供給する必要がある。そのため制御ボード100のファームウェアが例えば以下の動作を行う。すなわち、当該サーバの起動時に上記2個の電源装置410,420に対するイネーブル信号をそれぞれハイレベルにし、一旦当該2個の電源装置410,420を動作させる。このように2個の電源装置410,420が動作され、システムボード200に実際に搭載されているDIMM220に電力が供給された状態で、同ファームウェアはメモリコントローラ210を介し、DIMM220からSPD情報を得る。同ファームウェアは同SPD情報に基づき上述の如く、システムボード200に実際に搭載されている全DIMM220の消費電力を算出する。そして同ファームウェアは算出された全DIMMの消費電力に基づき、動作させるべき電源装置の個数を決定する。そして同ファームウェアは上記決定に係る電源装置の個数が1であった場合、電源装置420を動作させるためのイネーブル信号をローレベルにし、電源装置420の動作を停止する。その結果1個の電源装置410のみ動作が継続される。他方上記決定に係る電源装置の個数が2であった場合、電源装置420を動作させるためのイネーブル信号をそのまま継続してハイレベルにし、2個の電源装置410,420の双方の動作を継続する。 In the first embodiment, in order to obtain SPD information from the DIMM 220 actually mounted on the system board 200, it is necessary to supply power to the DIMM 220. Therefore, the firmware of the control board 100 performs the following operations, for example. That is, when the server is started, the enable signals for the two power supply devices 410 and 420 are set to the high level, respectively, and the two power supply devices 410 and 420 are once operated. In this state, when the two power supply devices 410 and 420 are operated and power is supplied to the DIMM 220 actually mounted on the system board 200, the firmware obtains the SPD information from the DIMM 220 via the memory controller 210. . The firmware calculates the power consumption of all DIMMs 220 actually mounted on the system board 200 based on the SPD information as described above. The firmware determines the number of power supply devices to be operated based on the calculated power consumption of all DIMMs. When the number of power supply devices related to the determination is 1, the firmware sets the enable signal for operating the power supply device 420 to a low level and stops the operation of the power supply device 420. As a result, only one power supply device 410 continues to operate. On the other hand, when the number of the power supply devices according to the above determination is 2, the enable signal for operating the power supply device 420 is continuously set to the high level as it is, and the operations of both of the two power supply devices 410 and 420 are continued. .
 次に図7,8とともに実施例2について説明する。 Next, Example 2 will be described with reference to FIGS.
 実施例2に係る情報処理装置は上記実施例1に係る情報処理装置同様、例えば、クライアントコンピュータの要求に応じ種々のサービスを提供するサーバである。以下実施例2の説明においても、実施例2に係る情報処理装置をサーバとして説明する。しかしながら実施例2はサーバ以外の情報処理装置によっても実現可能であることは言うまでもない。 The information processing apparatus according to the second embodiment is, for example, a server that provides various services in response to requests from a client computer, like the information processing apparatus according to the first embodiment. Hereinafter, also in the description of the second embodiment, the information processing apparatus according to the second embodiment will be described as a server. However, it is needless to say that the second embodiment can be realized by an information processing apparatus other than the server.
 当該サーバは図7に示される如く、制御ボード100,システムボード200、GPIO(ジェネラル・パーパス・I/O,以下同様)300、電源制御回路500および電源装置410,420を有する。 The server includes a control board 100, a system board 200, a GPIO (General Purpose I / O, hereinafter the same) 300, a power supply control circuit 500, and power supply apparatuses 410 and 420 as shown in FIG.
 上記実施例1の場合同様、システムボード200は当該サーバにおいて、当該サーバが提供するサービスを実際に提供するための機能部である。図7に示される如く、システムボード200は1または複数枚のDIMM220を搭載可能である。 As in the case of the first embodiment, the system board 200 is a functional unit for actually providing a service provided by the server in the server. As shown in FIG. 7, the system board 200 can mount one or more DIMMs 220.
 図3はシステムボード200の詳細な構成を示すブロック図である。システムボード200の構成は上記した実施例1のサーバにおけるシステムボード200と同様の構成であり、重複する説明を省略する。但し後述の如く、実施例2の場合実施例1の場合と異なり、システムボード200にはプレゼンス信号発生回路280が設けられる。また実施例1の場合同様、当該システムボード200は、CPU241~244が、搭載されたDIMM220を適宜使用して必要な情報処理を実行し、当該サーバが提供すべきサービスを実際に提供する。 FIG. 3 is a block diagram showing a detailed configuration of the system board 200. The configuration of the system board 200 is the same as that of the system board 200 in the server of the first embodiment described above, and redundant description is omitted. However, as will be described later, in the case of the second embodiment, unlike the case of the first embodiment, the system board 200 is provided with a presence signal generation circuit 280. Further, as in the first embodiment, in the system board 200, the CPUs 241 to 244 execute necessary information processing by appropriately using the mounted DIMM 220, and actually provide the service to be provided by the server.
 上記制御ボード100にはファームウェアが搭載され、同ファームウェアが以下の動作を行う。すなわち当該サーバの起動時、システムボード200に搭載されているDIMM220に対する電力の供給を行うため、GPIO300および電源制御回路500を経由し、電源装置410,420に対するイネーブル信号をハイレベルにする。 The control board 100 is equipped with firmware, and the firmware performs the following operations. That is, when the server is started, in order to supply power to the DIMM 220 mounted on the system board 200, the enable signal for the power supply devices 410 and 420 is set to the high level via the GPIO 300 and the power supply control circuit 500.
 図4は制御ボード100の概略構成を示すブロック図である。制御ボード100の構成は上記した実施例1のサーバにおける制御ボード100と同様の構成であり、重複する説明を省略する。但し実施例2の場合、メモリ120に搭載されたファームウェアは、上記実施例1のサーバの制御ボード100に搭載されたファームウェアとは異なるものとすることができる。すなわち実施例2の場合、同ファームウェアには、実施例1の説明として上記した如くの、システムボード200に実際に搭載されているDIMMの消費電力を算出し動作させる電源装置410,420の個数を決定する機能は不要である。実施例2の場合後述するように、電源制御回路500等が設けられ、必要な機能を果たす。 FIG. 4 is a block diagram showing a schematic configuration of the control board 100. The configuration of the control board 100 is the same as that of the control board 100 in the server of the first embodiment described above, and redundant description is omitted. However, in the case of the second embodiment, the firmware installed in the memory 120 may be different from the firmware installed on the control board 100 of the server of the first embodiment. That is, in the case of the second embodiment, the firmware includes the number of power supply devices 410 and 420 for calculating and operating the power consumption of the DIMM actually mounted on the system board 200 as described above in the description of the first embodiment. The function to decide is unnecessary. In the case of the second embodiment, as will be described later, a power supply control circuit 500 and the like are provided and perform necessary functions.
 GPIO300は制御ボード100からI2Cの信号による指示を受け、当該指示内容に応じ、電源制御回路500を介し、電源装置410,420に対しイネーブル信号(すなわちenable信号、以下同様)を送信するためのI/Oポートである。なお電源制御回路500については後述する。 The GPIO 300 receives an instruction from the control board 100 using an I2C signal, and transmits an enable signal (that is, an enable signal, the same applies hereinafter) to the power supply apparatuses 410 and 420 via the power supply control circuit 500 in accordance with the contents of the instruction. / O port. The power supply control circuit 500 will be described later.
 電源装置410,420はシステムボード200に搭載されるDIMM220に電力を供給するものであり、実施例1の場合同様、例えば各々DC-DCコンバータとすることができる。各電源装置410あるいは420は、制御ボード100からGPIO300および電源制御回路500を介しハイレベルのイネーブル信号AあるいはBを受信している間に限り動作され、その間DIMM220に電力を供給する。 The power supply devices 410 and 420 supply power to the DIMM 220 mounted on the system board 200, and each can be a DC-DC converter, for example, as in the first embodiment. Each power supply device 410 or 420 is operated only while receiving a high level enable signal A or B from the control board 100 via the GPIO 300 and the power supply control circuit 500, and supplies power to the DIMM 220 during that time.
 以下に上記構成を有する実施例2に係るサーバにおける電源装置410,420の動作につき、図とともに説明する。なお実施例2に係るサーバは実施例1の場合同様、図3に示す如く、そのシステムボード200に計16個のDIMM220―1~220-16を搭載可能である。しかしながら実施例2の説明においては説明の便宜上、図7に示す如く、システムボード200に1個以上6個以下のDIMM220を搭載可能として説明を行う。また、当該6個のDIMM220は、システムボード200の対応する6個のスロットに装着され、1個のDIMM220のみをシステムボードに搭載する場合には必ず一番目のDIMMを一番目のスロットに装着するものとする。同様に2個のDIMM220のみをシステムボードに搭載する場合、必ず1,2番目のDIMMを1,2番目のスロットにそれぞれ装着するものとする。同様にn(nは3~6のうちのいずれか)個のDIMM220のみをシステムボードに搭載する場合、必ず1~n番目のDIMMを1~n番目のスロットにそれぞれ装着するものとする。すなわち例えば1個のDIMM220のみをシステムボード200に搭載する場合に6番目のDIMMを6番目のスロットに装着することはないものとする。 Hereinafter, operations of the power supply devices 410 and 420 in the server according to the second embodiment having the above-described configuration will be described with reference to the drawings. As in the case of the first embodiment, the server according to the second embodiment can mount a total of 16 DIMMs 220-1 to 220-16 on the system board 200 as shown in FIG. However, in the description of the second embodiment, for convenience of explanation, as shown in FIG. 7, it is assumed that one or more and six or less DIMMs 220 can be mounted on the system board 200. The six DIMMs 220 are installed in the corresponding six slots of the system board 200. When only one DIMM 220 is installed on the system board, the first DIMM is always installed in the first slot. Shall. Similarly, when only two DIMMs 220 are mounted on the system board, the first and second DIMMs are always mounted in the first and second slots, respectively. Similarly, when only n (where n is any one of 3 to 6) DIMMs 220 are mounted on the system board, the 1st to nth DIMMs are always installed in the 1st to nth slots, respectively. That is, for example, when only one DIMM 220 is mounted on the system board 200, the sixth DIMM is not mounted in the sixth slot.
 まず図8とともに、上記の如くシステムボード200に1個以上6個以下のDIMM220を搭載可能とした場合の電源制御回路500の構成について説明する。 First, the configuration of the power supply control circuit 500 when it is possible to mount one or more and six or less DIMMs 220 on the system board 200 as described above will be described with reference to FIG.
 電源制御回路500は6個のプレゼント信号Present 1~6用のプレゼント信号入力端子1~6と、GPIO300から送信されるイネーブル信号ENABLEを受信する端子ENABLEとを有する。また電源制御回路500は、電源装置410にイネーブル信号Aを出力する端子Aと、電源装置420にイネーブル信号Bを出力する端子Bとを有する。また電源制御回路500は、OR論理素子OR1,OR2およびAND論理素子AND1,AND2,AND3を有する。 The power supply control circuit 500 has six present signal input terminals 1 to 6 for present signals Present 1 to 6 and a terminal ENABLE that receives an enable signal ENABLE transmitted from the GPIO 300. The power supply control circuit 500 has a terminal A that outputs an enable signal A to the power supply device 410 and a terminal B that outputs an enable signal B to the power supply device 420. The power supply control circuit 500 has OR logic elements OR1, OR2 and AND logic elements AND1, AND2, AND3.
 上記電源制御回路500において、上記プレゼント信号入力端子1~3は、それぞれOR論理素子OR1,およびAND論理素子AND1の3つの入力端子にそれぞれ接続されている。また上記プレゼント信号入力端子4~6は、それぞれOR論理素子OR2の3つの入力端子にそれぞれ接続されている。またOR論理素子OR1の出力はAND論理素子AND2の一の入力端子に接続され、上記端子ENABLEがAND論理素子AND2の他の入力端子に接続されている。またAND論理素子AND1の出力はAND論理素子AND3の1番目の入力端子に接続され、OR論理素子OR2の出力はAND論理素子AND3の2番目の入力端子に接続されている。また端子ENABLEが、AND論理素子AND3の3番目の入力端子に接続されている。 In the power supply control circuit 500, the present signal input terminals 1 to 3 are respectively connected to three input terminals of an OR logic element OR1 and an AND logic element AND1. The present signal input terminals 4 to 6 are respectively connected to three input terminals of the OR logic element OR2. The output of the OR logic element OR1 is connected to one input terminal of the AND logic element AND2, and the terminal ENABLE is connected to the other input terminal of the AND logic element AND2. The output of the AND logic element AND1 is connected to the first input terminal of the AND logic element AND3, and the output of the OR logic element OR2 is connected to the second input terminal of the AND logic element AND3. The terminal ENABLE is connected to the third input terminal of the AND logic element AND3.
 実施例2に係るサーバでは、当該サーバの起動時、制御ボード100からGPIO300経由で電源制御回路500にハイレベルのイネーブル信号が送信される。また電源制御回路500には、システムボード200から、DIMM220のプレゼント信号、Present 1~6が供給される。当該プレゼント信号、Present 1~6は、上記6個のDIMM220の各々に対応する。上記6個のプレゼント信号、Present 1~6中、上記6個のDIMM220のうち実際にシステムボード200に搭載されているものに対応する信号のレベルがハイになる。例えば上記6個のDIMM220のうち、1番目のDIMM、1個のみが実際にシステムボード200に搭載されている場合、プレゼント信号、Present 1のみがハイレベルとなる。その間、プレゼント信号、Present 2~6は全てローレベルとなる。他方、例えば1~3番目のDIMM、計3個が実際にシステムボード200に搭載されている場合、プレゼント信号、Present 1~3の各々がハイレベルとなる。その間、プレゼント信号、Present 4~6の各々はローレベルとなる。また1~6番目のDIMM、すなわち全てのDIMMが実際にシステムボード200に搭載されている場合、プレゼント信号、Present 1~6全てがハイレベルとなる。なおプレゼント信号、Present 1~6は以下に述べるように、プレゼント信号発生回路280により生成される。 In the server according to the second embodiment, when the server is activated, a high-level enable signal is transmitted from the control board 100 to the power supply control circuit 500 via the GPIO 300. Further, the present signal of the DIMM 220, Presents 1 to 6 are supplied from the system board 200 to the power supply control circuit 500. The present signal, Present 1 to 6 corresponds to each of the above six DIMMs 220. Among the six present signals, Presents 1 to 6, the level of the signal corresponding to what is actually mounted on the system board 200 among the six DIMMs 220 becomes high. For example, when only one first DIMM among the six DIMMs 220 is actually mounted on the system board 200, only the present signal, Present 1, becomes high level. During that time, the present signals, Presents 2-6 are all at a low level. On the other hand, for example, when a total of three first to third DIMMs are actually mounted on the system board 200, each of the present signals and Presents 1 to 3 is at a high level. Meanwhile, each of present signals and presents 4 to 6 are at a low level. When the first to sixth DIMMs, that is, all the DIMMs are actually mounted on the system board 200, the present signal and all of Presents 1 to 6 become high level. The present signals, Present 1 to 6 are generated by the present signal generation circuit 280 as described below.
 プレゼント信号、Present 1~6の生成のため、図9に示す如く、前記6個のDIMM220の各々に、予め一対のプレゼント信号用端子TX1,TX2を設けておく。当該プレゼント信号用端子TX1,TX2は、図9に示す如く、例えば互いに短絡されている。上記の如く、上記6個のDIMM220が搭載されるシステムボード200には、当該6個のDIMM220のそれぞれに対応する、計6個のスロット(図示を省略)が設けられている。当該スロットの各々にも、上記DIMM220のプレゼント信号用端子TX1,TX2に対応する一対のプレゼント信号用端子が設けられている。 In order to generate present signals, Presents 1 to 6, as shown in FIG. 9, a pair of present signal terminals TX1 and TX2 are provided in advance in each of the six DIMMs 220. The present signal terminals TX1 and TX2 are short-circuited, for example, as shown in FIG. As described above, the system board 200 on which the six DIMMs 220 are mounted is provided with a total of six slots (not shown) corresponding to the six DIMMs 220. Each of the slots is also provided with a pair of present signal terminals corresponding to the present signal terminals TX1 and TX2 of the DIMM 220.
 システムボード200には図10に示す如くの構成を有する上記プレゼント信号発生回路280が設けられている。当該プレゼント信号発生回路280は6個の短絡検出回路281~286を含む。これら短絡検出回路281~286の各々は、入力端子間の短絡状態を検出した場合にハイレベルのプレゼント信号を発信し、入力端子間の開放状態を検出した場合にローレベルのプレゼント信号を発信する。 The system board 200 is provided with the present signal generation circuit 280 having a configuration as shown in FIG. The present signal generation circuit 280 includes six short-circuit detection circuits 281 to 286. Each of the short-circuit detection circuits 281 to 286 transmits a high-level present signal when a short-circuit state between input terminals is detected, and transmits a low-level present signal when an open state between input terminals is detected. .
 プレゼント信号発生回路280は、前記6個のDIMM220のそれぞれのプレゼント信号用端子TX1,TX2にそれぞれ対応する、計6対のプレゼント信号用端子TY1~TY6を有する。当該6対のプレゼント信号用端子TY1~TY6の各々はシステムボード200において、対応するDIMM220のプレゼント信号用端子TX1,TX2に対応する一対のプレゼント信号用端子に接続される。その結果、システムボード200のスロットにDIMM220が装着されると、当該DIMM220のプレゼント信号用端子TX1,TX2が、上記6対のプレゼント信号用端子TY1~TY6のうちの対応する対の端子に電気的につながれる。プレゼント信号発生回路280の上記6対のプレゼント信号用端子TY1~TY6は、それぞれ対応する6個の短絡検出回路281~286の入力端子に接続される。当該6個の短絡検出回路281~286は、プレゼント信号発生回路280の出力端子Present 1~6から、前記プレゼント信号、Present 1~6をそれぞれ出力する。したがってシステムボード200のスロットにDIMM220が装着されると、プレゼント信号発生回路280では対応する短絡検出回路の入力端子が短絡状態となりハイレベルを出力する。その結果上記装着に係るDIMM220に対応するプレゼント信号がハイレベルとなる。他方システムボード200のスロットのうちDIMM220が装着されていないスロットの各々については、プレゼント信号発生回路280では対応する短絡検出回路の入力端子が解放状態となりローレベルを出力する。その結果上記DIMM220が装着されていないスロットに対応するプレゼント信号がローレベルになる。 The present signal generation circuit 280 has a total of six pairs of present signal terminals TY1 to TY6 corresponding to the present signal terminals TX1 and TX2 of the six DIMMs 220, respectively. Each of the six pairs of present signal terminals TY1 to TY6 is connected to a pair of present signal terminals corresponding to the present signal terminals TX1 and TX2 of the corresponding DIMM 220 in the system board 200. As a result, when the DIMM 220 is inserted into the slot of the system board 200, the present signal terminals TX1 and TX2 of the DIMM 220 are electrically connected to the corresponding pair of terminals among the six pairs of present signal terminals TY1 to TY6. Connected to. The six pairs of present signal terminals TY1 to TY6 of the present signal generation circuit 280 are connected to the input terminals of the corresponding six short-circuit detection circuits 281 to 286, respectively. The six short circuit detection circuits 281 to 286 output the present signals and presents 1 to 6 from the output terminals Present 1 to 6 of the present signal generation circuit 280, respectively. Therefore, when the DIMM 220 is installed in the slot of the system board 200, the present signal generation circuit 280 causes the input terminal of the corresponding short circuit detection circuit to be in a short circuit state and outputs a high level. As a result, the present signal corresponding to the DIMM 220 related to the mounting becomes a high level. On the other hand, for each of the slots on the system board 200 where the DIMM 220 is not mounted, the present signal generation circuit 280 releases the corresponding short-circuit detection circuit input terminal and outputs a low level. As a result, the present signal corresponding to the slot in which the DIMM 220 is not mounted becomes a low level.
 上記構成のプレゼント信号発生回路280の動作につき、具体的な例を挙げて説明する。例えば1番目のDIMM220がシステムボードの上記6個のスロットのうちの1番目のスロットに装着された場合を想定する。この場合、対応するプレゼント信号用端子TY1の対に、当該DIMM220のプレゼント信号用端子TX1,TX2が電気的につながれる。図9とともに上記の如くDIMM220に設けられているプレゼント信号用端子TX1,TX2は短絡されている。したがってこの場合、プレゼント信号発生回路280では、対応するプレゼント信号用端子TY1の対が短絡された状態となる。プレゼント信号発生回路280において、前記1番目のDIMM220に対応する短絡検出回路281は当該プレゼント信号用端子TY1の短絡を検出しハイレベルを出力する。その結果プレゼント信号、Present 1のレベルがハイとなる。 The operation of the present signal generation circuit 280 having the above configuration will be described with a specific example. For example, it is assumed that the first DIMM 220 is installed in the first slot among the six slots of the system board. In this case, the present signal terminals TX1 and TX2 of the DIMM 220 are electrically connected to the corresponding pair of present signal terminals TY1. As described above with reference to FIG. 9, the present signal terminals TX1 and TX2 provided in the DIMM 220 are short-circuited. Therefore, in this case, in the present signal generation circuit 280, the corresponding pair of present signal terminals TY1 is short-circuited. In the present signal generation circuit 280, the short circuit detection circuit 281 corresponding to the first DIMM 220 detects a short circuit of the present signal terminal TY1 and outputs a high level. As a result, the level of the present signal, Present 1, becomes high.
 同様に2番間のDIMM220がシステムボード200の2番目のスロットに装着されると、プレゼント信号発生回路280では、対応するプレゼント信号用端子TY2の対が短絡された状態となる。プレゼント信号発生回路280において、前記2番目のDIMM220に対応する短絡検出回路282は当該プレゼント信号用端子TY2の短絡を検出しハイレベルを出力する。その結果プレゼント信号、Present 2のレベルがハイとなる。同様にn(nは3~6のうちのいずれか)番間のDIMM220がシステムボード200のn番目のスロットに装着されると、プレゼント信号発生回路280では、対応するプレゼント信号用端子TYnの対が短絡された状態となる。プレゼント信号発生回路280において、前記n番目のDIMM220に対応する短絡検出回路28nは当該プレゼント信号用端子TYnの短絡を検出しハイレベルを出力する。その結果プレゼント信号、Present nのレベルがハイとなる。 Similarly, when the second DIMM 220 is installed in the second slot of the system board 200, the present signal generation circuit 280 enters a state where the corresponding pair of present signal terminals TY2 are short-circuited. In the present signal generation circuit 280, the short circuit detection circuit 282 corresponding to the second DIMM 220 detects a short circuit of the present signal terminal TY2 and outputs a high level. As a result, the level of the present signal, Present 2, becomes high. Similarly, when DIMMs 220 between n (n is one of 3 to 6) are installed in the n-th slot of the system board 200, the present signal generation circuit 280 makes a pair of corresponding present signal terminals TYn. Is short-circuited. In the present signal generation circuit 280, the short circuit detection circuit 28n corresponding to the nth DIMM 220 detects a short circuit of the present signal terminal TYn and outputs a high level. As a result, the level of the present signal, Present n becomes high.
 次に図8に示される電源制御回路500の動作を説明する。ここで、一例として、前記6個のDIMM220のうち、1~3番目のDIMM3個のうち、少なくともいずれか1個のみがシステムボード200の1~3番目のスロットに装着された場合を想定する。その場合上記の如く、プレゼント信号、Present 1~3のうち該当する少なくとも一の信号がハイレベルになる。その結果電源制御回路500のOR論理素子OR1の出力がハイレベルになる。またここでは、当該サーバが起動され、その結果上記の如く制御ボード100からGPIO300経由でハイレベルのイネーブル信号ENABLEが送信されているものとする。その結果端子ENABLEがハイレベルになる。その結果AND論理素子AND2の両入力がハイレベルになり、AND論理素子AND2の出力がハイレベルになる。その結果イネーブル信号Aがハイレベルになる。その結果イネーブル信号Aにより電源装置410が動作される。その結果当該電源装置410により、システムボード200に搭載された、上記1~3番目のDIMMのうちの少なくとも1個のDIMM220に対し電力が供給される。 Next, the operation of the power supply control circuit 500 shown in FIG. 8 will be described. Here, as an example, it is assumed that at least one of the three first to third DIMMs among the six DIMMs 220 is installed in the first to third slots of the system board 200. In this case, as described above, at least one of the present signals and presents 1 to 3 corresponding to the present signal becomes high level. As a result, the output of the OR logic element OR1 of the power supply control circuit 500 becomes high level. Also, here, it is assumed that the server is activated, and as a result, the high level enable signal ENABLE is transmitted from the control board 100 via the GPIO 300 as described above. As a result, the terminal ENABLE becomes high level. As a result, both inputs of the AND logic element AND2 become high level, and the output of the AND logic element AND2 becomes high level. As a result, the enable signal A becomes high level. As a result, the power supply device 410 is operated by the enable signal A. As a result, the power supply apparatus 410 supplies power to at least one DIMM 220 among the first to third DIMMs mounted on the system board 200.
 他方この場合、4~6番目のDIMM220はいずれも4~6番目のスロットに装着されていないため、対応するプレゼント信号、Present 4~6は全てローレベルである。その結果OR論理素子OR2の出力はローレベルになる。その結果AND論理素子AND3の2番目の入力がローとなり、AND論理素子AND3の出力Bはローレベルになる。その結果イネーブル信号Bがローレベルになり、電源装置420は動作されない。したがって1~3番目のDIMMのうち少なくとも1個のDIMMのみが対応する1~3番目のスロットのうちの少なくとも1個のスロットのみに装着され、他のスロットにはDIMMが装着されなかった場合、以下の通りになる。すなわち電源装置410のみが動作され、電源装置420は動作されない。その結果、当該1~3番目のDIMMのうちの少なくとも1個に対し、電源装置410、1個のみにより電力が供給される。このようにシステムボード200に搭載されたDIMMの個数が1個以上3個以下の場合、1個の電源装置410のみが動作され、当該電源装置410によって当該搭載されたDIMM220に対し電力が供給される。 On the other hand, since none of the fourth to sixth DIMMs 220 is installed in the fourth to sixth slots, the corresponding present signals, Present 4 to 6 are all at the low level. As a result, the output of the OR logic element OR2 becomes low level. As a result, the second input of the AND logic element AND3 becomes low, and the output B of the AND logic element AND3 becomes low level. As a result, the enable signal B becomes low level, and the power supply apparatus 420 is not operated. Therefore, if at least one of the first to third DIMMs is installed in at least one of the corresponding first to third slots, and no DIMM is installed in the other slots, It becomes as follows. That is, only the power supply device 410 is operated, and the power supply device 420 is not operated. As a result, power is supplied to at least one of the first to third DIMMs by only one power supply device 410. When the number of DIMMs mounted on the system board 200 is 1 or more and 3 or less in this way, only one power supply device 410 is operated, and power is supplied to the mounted DIMM 220 by the power supply device 410. The
 次に前記1~3番目の3個のDIMM全てが対応する1~3番目のシステムボード200のスロットに装着され、かつ4~6番目のDIMM3個のうち少なくともいずれか1個がシステムボード200の4~6番目中の対応するスロットに装着された場合を想定する。その場合上記の如く、プレゼント信号、Present 1~3が全てハイレベルになりかつ、プレゼント信号、Present 4~6のうち該当する少なくとも一の信号がハイレベルになる。その場合電源制御回路500のOR論理素子OR1の出力がハイレベルになる。また上記同様当該サーバが起動され、その結果上記の如く、制御ボード100からGPIO300経由でハイレベルのイネーブル信号ENABLEが送信されているものとする。その結果端子ENABLEがハイとなる。その結果、AND論理素子AND2の両入力がハイレベルになり、AND論理素子AND2の出力がハイレベルになる。その結果イネーブル信号Aがハイレベルになり、電源装置410が動作される。 Next, all of the first to third DIMMs are installed in the corresponding slots of the first to third system boards 200, and at least one of the fourth to sixth DIMMs is mounted on the system board 200. Assume that the slot is installed in the corresponding slot among the fourth to sixth slots. In this case, as described above, the present signals, Presents 1 to 3 are all at a high level, and at least one of the present signals and Presents 4 to 6 is at a high level. In that case, the output of the OR logic element OR1 of the power supply control circuit 500 becomes high level. Further, it is assumed that the server is activated as described above, and as a result, the high level enable signal ENABLE is transmitted from the control board 100 via the GPIO 300 as described above. As a result, the terminal ENABLE goes high. As a result, both inputs of the AND logic element AND2 become high level, and the output of the AND logic element AND2 becomes high level. As a result, the enable signal A becomes high level, and the power supply device 410 is operated.
 更にこの場合上記の如く、4~6番目のDIMM3個のうち少なくともいずれか1個のみがシステムボード200の4~6番目のスロット中の対応するスロットに装着されている。その場合上記の如く、プレゼント信号、Present 4~6のうち該当する少なくとも一の信号がハイレベルになる。その場合電源制御回路500のOR論理素子OR2の出力がハイレベルになる。ここで上記の如く、制御ボード100からGPIO300経由でハイレベルのイネーブル信号ENABLEが送信され、端子ENABLEがハイとなっている。また上記の如くプレゼント信号、Present 1~3は全てハイレベルであるため、AND論理素子AND1の出力がハイレベルになる。その結果、AND論理素子AND3の1~3番目の全ての入力がハイレベルになり、AND論理素子AND2の出力がハイレベルになる。その結果イネーブル信号Bもハイとなり、電源装置420も動作される。このようにして、1~3番目のDIMM3個全て、および4~6番目の3個のDIMMのうちの少なくとも1個がシステムボード200の対応するスロットに装着された場合、以下の通りになる。すなわちイネーブル信号A,Bの両方ともハイレベルになり、その結果対応する2個の電源装置410,420の両方が動作される。したがってこのように1~3番目のDIMM3個全て、および4~6番目の3個のDIMMのうちの少なくとも1個の計4個以上のDIMMがシステムボード200に搭載された場合、以下の通りになる。すなわち2個の電源装置410,420が動作され、2個の電源装置410,420によってDIMM220に電力が供給される。 Further, in this case, as described above, at least one of the 4th to 6th DIMMs is mounted in the corresponding slot in the 4th to 6th slots of the system board 200. In this case, as described above, at least one of the present signals and presents 4 to 6 falls to a high level. In that case, the output of the OR logic element OR2 of the power supply control circuit 500 becomes high level. Here, as described above, the high level enable signal ENABLE is transmitted from the control board 100 via the GPIO 300, and the terminal ENABLE is high. Since the present signals, Present 1 to 3 are all at the high level as described above, the output of the AND logic element AND1 is at the high level. As a result, all the first to third inputs of the AND logic element AND3 become high level, and the output of the AND logic element AND2 becomes high level. As a result, the enable signal B also goes high, and the power supply device 420 is also operated. In this way, when all the first to third DIMMs and at least one of the fourth to sixth DIMMs are installed in the corresponding slots of the system board 200, the following occurs. That is, both the enable signals A and B are at a high level, and as a result, both of the corresponding two power supply devices 410 and 420 are operated. Therefore, when four or more DIMMs in total such as all of the first to third DIMMs and at least one of the fourth to sixth DIMMs are mounted on the system board 200 as follows, Become. That is, the two power supply devices 410 and 420 are operated, and power is supplied to the DIMM 220 by the two power supply devices 410 and 420.
 このように実施例2によれば、システムボード200に搭載されたDIMMの個数が1以上3以下の場合1個の電源装置410のみが動作され、当該電源装置410により当該搭載されたDIMMに電力が供給される。他方システムボード200に搭載されたDIMMの個数が4以上6以下の場合、2個の電源装置410、420が動作され、当該搭載されたDIMMに対し当該電源装置410、420により電力が供給される。すなわち電力を供給するDIMMの個数が少ない場合には少ない個数の電源装置で電力が供給され、電力を供給するDIMMの個数が多い場合には多い個数の電源装置で電力が供給される。その結果図1とともに上記の如く、個々の電源装置の動作効率を効果的に向上し得る。 As described above, according to the second embodiment, when the number of DIMMs mounted on the system board 200 is 1 or more and 3 or less, only one power supply device 410 is operated, and the power supply device 410 supplies power to the mounted DIMMs. Is supplied. On the other hand, when the number of DIMMs mounted on the system board 200 is 4 or more and 6 or less, the two power supply devices 410 and 420 are operated, and power is supplied to the mounted DIMMs by the power supply devices 410 and 420. . That is, when the number of DIMMs that supply power is small, power is supplied by a small number of power supply devices, and when the number of DIMMs that supply power is large, power is supplied by a large number of power supply devices. As a result, as described above with reference to FIG. 1, it is possible to effectively improve the operation efficiency of each power supply apparatus.
 なお上記各実施例1,2の説明においては、電源装置の個数が2個の場合を説明したが、そのような場合に限られる必要はない。すなわち3個以上の電源装置を使用して1または複数のDIMMに電力を供給する場合においても各実施例が適用可能であることは言うまでもない。その場合、前記3個以上の電源装置のうち実際に動作させる個数を、実際に搭載されているDIMMの個数あるいは総消費電力が大きい場合に多くし、小さい場合に少なくする制御を行えばよい。 In the description of each of the first and second embodiments, the case where the number of power supply devices is two has been described. However, the present invention is not limited to such a case. That is, it goes without saying that each embodiment can be applied even when power is supplied to one or a plurality of DIMMs using three or more power supply devices. In that case, the number of the three or more power supply devices that are actually operated may be increased when the number of DIMMs actually mounted or the total power consumption is large, and may be controlled when the number is small.

Claims (10)

  1.  一又は複数の記憶装置であって、当該一又は複数の記憶装置の個数が変更可能とされた一又は複数の記憶装置と、
     前記一又は複数の記憶装置を使用して情報処理を行う演算装置と、
     前記一又は複数の記憶装置に電力を供給する複数の電源装置と、
     前記一又は複数の記憶装置の個数を検出する手段と、
     前記検出された一又は複数の記憶装置の個数に応じて前記複数の電源装置のうち実際に動作させる電源装置の個数を決定する手段とを有する
     情報処理装置。
    One or a plurality of storage devices, wherein the number of the one or more storage devices is changeable, and
    A computing device that performs information processing using the one or more storage devices;
    A plurality of power supply devices for supplying power to the one or more storage devices;
    Means for detecting the number of the one or more storage devices;
    Means for determining the number of power supply devices to be actually operated among the plurality of power supply devices according to the detected number of one or more storage devices.
  2.  前記一又は複数の記憶装置の各々には予め当該記憶装置に関する情報が格納されており、
     前記一又は複数の記憶装置の個数を検出する手段は、前記一又は複数の記憶装置から、当該一又は複数の記憶装置の各々に予め格納されている当該記憶装置に関する情報を読み取る手段と、
     前記読み取られた各記憶装置に関する情報に基づいて、前記一又は複数の記憶装置の個数を判定する手段とを有する
     請求項1に記載の情報処理装置。
    Information about the storage device is stored in advance in each of the one or more storage devices,
    The means for detecting the number of the one or more storage devices reads from the one or more storage devices information related to the storage device stored in advance in each of the one or more storage devices;
    The information processing apparatus according to claim 1, further comprising: a unit that determines the number of the one or more storage devices based on the read information about each storage device.
  3.  更に、前記読み取られた各記憶装置に関する情報に基づいて、前記一又は複数の記憶装置の各々の消費電力を判定する手段を有し、
     前記実際に動作させる電源装置の個数を制御する手段は、前記判定された一又は複数の記憶装置の個数と、前記判定された前記一又は複数の記憶装置の各々の消費電力とに基づき、実際に動作させる電源装置の個数を決定する
     請求項2に記載の情報処理装置。
    And a means for determining the power consumption of each of the one or more storage devices based on the read information about each storage device.
    The means for controlling the number of power supply devices actually operated is based on the determined number of the one or more storage devices and the power consumption of each of the determined one or more storage devices. The information processing device according to claim 2, wherein the number of power supply devices to be operated is determined.
  4.  前記一又は複数の記憶装置の個数を検出する手段は、前記一又は複数の記憶装置の各々につき、当該記憶装置の当該情報処理装置への装着の有無を検出する手段を有し、
     前記実際に動作させる電源装置の個数を決定する手段は、前記検出された各記憶装置の当該情報処理装置への装着の有無に基づき、前記実際に動作させる電源装置の個数を決定する手段を有する
     請求項1に記載の情報処理装置。
    The means for detecting the number of the one or more storage devices includes means for detecting whether or not the storage device is attached to the information processing device for each of the one or more storage devices,
    The means for determining the number of power supply devices to be actually operated has means for determining the number of power supply devices to be actually operated based on whether or not each detected storage device is attached to the information processing device. The information processing apparatus according to claim 1.
  5.  一又は複数の記憶装置であって、当該一又は複数の記憶装置の個数が変更可能とされた一又は複数の記憶装置と、
     前記一又は複数の記憶装置を使用して情報処理を行う演算装置と、
     前記一又は複数の記憶装置に電力を供給する複数の電源装置と
     を有する情報処理装置において、前記複数の電源装置の動作を制御するための電源制御方法であって、
     前記一又は複数の記憶装置の個数を検出する段階と、
     前記検出された一又は複数の記憶装置の個数に応じて前記複数の電源装置のうち、実際に動作させる電源装置の個数を決定する段階とを有する
     電源制御方法。
    One or a plurality of storage devices, wherein the number of the one or more storage devices is changeable, and
    A computing device that performs information processing using the one or more storage devices;
    In an information processing apparatus having a plurality of power supply devices that supply power to the one or a plurality of storage devices, a power control method for controlling operations of the plurality of power supply devices,
    Detecting the number of the one or more storage devices;
    Determining the number of power supply devices to be actually operated among the plurality of power supply devices according to the detected number of one or more storage devices.
  6.  前記一又は複数の記憶装置の各々には予め当該記憶装置に関する情報が格納されており、
     前記一又は複数の記憶装置の個数を検出する段階では、前記一又は複数の記憶装置から、当該一又は複数の記憶装置の各々に予め格納されている当該記憶装置に関する情報を読み取る段階と、
     前記読み取られた各記憶装置に関する情報に基づいて、前記一又は複数の記憶装置の個数を判定する段階とを有する
     請求項5に記載の電源制御方法。
    Information about the storage device is stored in advance in each of the one or more storage devices,
    In the step of detecting the number of the one or more storage devices, a step of reading information on the storage device stored in advance in each of the one or more storage devices from the one or more storage devices;
    The power supply control method according to claim 5, further comprising: determining the number of the one or more storage devices based on the read information about each storage device.
  7.  更に、前記読み取られた各記憶装置に関する情報に基づいて、前記一又は複数の記憶装置の各々の消費電力を判定する段階を有し、
     前記実際に動作させる電源装置の個数を決定する段階では、前記判定された一又は複数の記憶装置の個数と、前記判定された前記一又は複数の記憶装置の各々の消費電力とに基づき、実際に動作させる電源装置の個数を決定する
     請求項6に記載の電源制御方法。
    And determining power consumption of each of the one or more storage devices based on the read information about each storage device.
    In the step of determining the number of power supply devices to be actually operated, based on the determined number of one or more storage devices and the power consumption of each of the determined one or more storage devices, The power supply control method according to claim 6, wherein the number of power supply devices to be operated is determined.
  8.  一又は複数の記憶装置であって、当該一又は複数の記憶装置の個数が変更可能とされた一又は複数の記憶装置と、
     前記一又は複数の記憶装置を使用して情報処理を行う演算装置と、
     前記一又は複数の記憶装置に電力を供給する複数の電源装置と
     を有する情報処理装置において、前記複数の電源装置の動作を制御するためのコンピュータを
     前記一又は複数の記憶装置の個数を検出する手段と、
     前記検出された一又は複数の記憶装置の個数に応じて前記複数の電源装置のうち、実際に動作させる電源装置の個数を決定する手段として機能させるための電源制御プログラム。
    One or a plurality of storage devices, wherein the number of the one or more storage devices is changeable, and
    A computing device that performs information processing using the one or more storage devices;
    And a plurality of power supply devices that supply power to the one or more storage devices. A computer for controlling operations of the plurality of power supply devices detects the number of the one or more storage devices. Means,
    A power supply control program for functioning as means for determining the number of power supply devices to be actually operated among the plurality of power supply devices according to the detected number of one or more storage devices.
  9.  前記一又は複数の記憶装置の各々には予め当該記憶装置に関する情報が格納されており、
     前記一又は複数の記憶装置の個数を検出する手段は、前記一又は複数の記憶装置から、当該一又は複数の記憶装置の各々に予め格納されている当該記憶装置に関する情報を読み取る手段と、
     前記読み取られた各記憶装置に関する情報に基づいて、前記一又は複数の記憶装置の個数を判定する手段とを有する
     請求項8に記載の電源制御プログラム。
    Information about the storage device is stored in advance in each of the one or more storage devices,
    The means for detecting the number of the one or more storage devices reads from the one or more storage devices information related to the storage device stored in advance in each of the one or more storage devices;
    The power supply control program according to claim 8, further comprising: a unit that determines the number of the one or more storage devices based on the read information regarding each storage device.
  10.  更に、前記コンピュータを前記読み取られた各記憶装置に関する情報に基づいて、前記一又は複数の記憶装置の各々に要される電力を判定する手段として機能させるための電源制御プログラムであって、
     前記実際に動作させる電源装置の個数を決定する手段は、前記判定された一又は複数の記憶装置の個数と、前記判定された前記一又は複数の記憶装置の各々の消費電力とに基づき、実際に動作させる電源装置の個数を決定する手段を有する
     請求項9に記載の電源制御プログラム。
    Furthermore, a power supply control program for causing the computer to function as means for determining the power required for each of the one or a plurality of storage devices based on the read information about each storage device,
    The means for determining the number of power supply devices to be actually operated is based on the determined number of one or more storage devices and the power consumption of each of the determined one or more storage devices. The power supply control program according to claim 9, further comprising a unit that determines the number of power supply devices to be operated.
PCT/JP2008/067666 2008-09-29 2008-09-29 Information processing device, power supply control method, and power supply control program WO2010035344A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/067666 WO2010035344A1 (en) 2008-09-29 2008-09-29 Information processing device, power supply control method, and power supply control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/067666 WO2010035344A1 (en) 2008-09-29 2008-09-29 Information processing device, power supply control method, and power supply control program

Publications (1)

Publication Number Publication Date
WO2010035344A1 true WO2010035344A1 (en) 2010-04-01

Family

ID=42059362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067666 WO2010035344A1 (en) 2008-09-29 2008-09-29 Information processing device, power supply control method, and power supply control program

Country Status (1)

Country Link
WO (1) WO2010035344A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142579A (en) * 1999-11-16 2001-05-25 Fujitsu Ltd Power source controller, controller, information processor provided with it and recording medium
JP2004038289A (en) * 2002-06-28 2004-02-05 Toshiba Corp Information processor and power supply control method in the same device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142579A (en) * 1999-11-16 2001-05-25 Fujitsu Ltd Power source controller, controller, information processor provided with it and recording medium
JP2004038289A (en) * 2002-06-28 2004-02-05 Toshiba Corp Information processor and power supply control method in the same device

Similar Documents

Publication Publication Date Title
JP5256340B2 (en) Computer and computer power management system
US20080126816A1 (en) Apparatus and method for switching an apparatus to a power saving mode
US20100077238A1 (en) Energy efficienct power supply system
US7380161B2 (en) Switching a defective signal line with a spare signal line without shutting down the computer system
JPH09204240A (en) Power supplying device
JP6161301B2 (en) Interrupt spread method, interrupt request signal spreader circuit, and system-on-chip including the same
US9459674B2 (en) Power integration module and electronic device
CN107743608B (en) Dynamic power routing to hardware accelerators
US9652427B2 (en) Processor module, micro-server, and method of using processor module
US20090276613A1 (en) Method of sharing basic input output system, and blade server and computer using the same
KR20080076851A (en) Per byte lane dynamic on-die termination
WO2021051445A1 (en) Ncsi network card power supply system
US20100115321A1 (en) Disk Array Control Apparatus and Information Processing Apparatus
WO2010035344A1 (en) Information processing device, power supply control method, and power supply control program
US20050278554A1 (en) System and method for routing data and power to external devices
CN103092304A (en) Power supply control method of dual-graphics-card module and computer device utilizing power supply control method
TW201310462A (en) Backboard port circuit, hard disc backboard and server system using same
JPWO2019044854A1 (en) Voltage detection circuit
US20130111233A1 (en) Optical disk drive and computer
JP2007143236A (en) Power supply
US20130166929A1 (en) Power supply system for memory modules
JP2010040004A (en) Information processor, power supply unit control method, and program
JP2011176904A (en) Distributed power supply system, control method, program, and recording medium
JP5263952B2 (en) Power supply start time control apparatus, information processing apparatus, power supply start time control method, and power supply start time control program
JP2001022480A (en) Information processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08811311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08811311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP