WO2010032954A2 - Generator control system using peak voltage - Google Patents

Generator control system using peak voltage Download PDF

Info

Publication number
WO2010032954A2
WO2010032954A2 PCT/KR2009/005262 KR2009005262W WO2010032954A2 WO 2010032954 A2 WO2010032954 A2 WO 2010032954A2 KR 2009005262 W KR2009005262 W KR 2009005262W WO 2010032954 A2 WO2010032954 A2 WO 2010032954A2
Authority
WO
WIPO (PCT)
Prior art keywords
generator
control
voltage
peak voltage
peak
Prior art date
Application number
PCT/KR2009/005262
Other languages
French (fr)
Korean (ko)
Other versions
WO2010032954A9 (en
WO2010032954A3 (en
Inventor
안진우
이동희
김태형
김태옥
Original Assignee
경성대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경성대학교 산학협력단 filed Critical 경성대학교 산학협력단
Publication of WO2010032954A2 publication Critical patent/WO2010032954A2/en
Publication of WO2010032954A3 publication Critical patent/WO2010032954A3/en
Publication of WO2010032954A9 publication Critical patent/WO2010032954A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation

Definitions

  • the present invention relates to a generator control system using a peak voltage and a method thereof, and more particularly, to improve the responsiveness of the generator voltage control according to the delay detection of the rms voltage of the generator, PID controller and peak voltage detector And it relates to a generator control system and method using a peak voltage having a fast voltage response according to a sudden load change by applying a control gain converter.
  • Engine generators are widely used for marine power generation and emergency generators.
  • a self-powered generation system using engine generators has been applied in remote islands where infinite bus connections are difficult to connect, and in the case of foreign countries, the application of engine generator operation systems is largely applied in mountainous areas where power is not supplied to large land plant power generation facilities. It is increasing.
  • Diesel-engine generators are widely used as power supplies in areas where electricity is difficult to supply from onshore power generation and distribution systems. In the case of ships, in particular, the supply of power is entirely supplied from the engine generator. In this case, high quality power is required for power supply of various control equipment, communication equipment, and navigation equipment.
  • the control characteristics of the engine generator operating system are determined by the Governor for controlling the engine and the AVR controlling the generator voltage. Therefore, the engine generator operating system, unlike the infinite bus system, the output voltage is severely variable according to the load, there is a problem that the frequency fluctuation occurs. This instability of power can cause malfunction of the electrical device. In particular, in the case of a single operation system that can not be connected to the infinite bus, such as in the case of ships, the engine generator must supply the full power of the system in a stable manner and must have a stable response characteristics against sudden changes in load.
  • AVR for voltage control of a generator is applying a PWM control structure using a microprocessor in an analog control method using an SCR. This is because the digital controller is easy to apply to various generators and is suitable for complex system control such as droop control and parallel control.
  • the digital AVR controller is generally applied to a PID controller that is well known in the industry. This is because it can be applied to various generators according to the control gain setting, and it is a method that is widely used by users.
  • the conventional PID generation control system has the following problems.
  • the generator output voltage inputs an effective voltage (r.m.s. voltage).
  • the detection signal has a time delay with respect to the actual generator instantaneous voltage output. Due to such a time delay problem, it is difficult to largely set the control gain of the AVR controller. If the control gain is set large, the response can be improved, but it may be a problem in stability. In particular, when control is difficult due to time delay, such as the generator control system of the present invention, if the control gain is set large, the error may increase, rather it is difficult to set large. On the contrary, if the control gain is set small, the response is poor. In addition, the response characteristics of the actual generator has a problem that has a low response to the sudden change of the load.
  • the present invention is to provide a generator control system using a peak voltage that can improve the problem of the response characteristics caused by the generator effective voltage (r.m.s. voltage) detection delay.
  • the present invention is to provide a generator control system using a peak voltage having a stable and fast response to rapid load changes.
  • the generator control system using the peak voltage of the generator according to the present invention includes a peak voltage detector for detecting a peak value of the generator voltage, a comparator for comparing the peak voltage with a set value, and when the detected peak voltage is smaller than a predetermined lower limit value. And a control unit for adjusting the control gain and maintaining the voltage of the generator in a current state when the detected peak voltage is greater than a preset upper limit value.
  • the peak voltage detection unit preferably detects the peak value of the generated voltage according to the frequency of the generator.
  • the peak voltage detector is operated by noise and a fixed resistor (R) and capacitor (C).
  • the comparator preferably includes a first comparator comparing the peak voltage and the lower limit and a second comparator comparing the peak voltage and the upper limit.
  • the control gain conversion unit increases the control gain, and when the undershoot occurs, the control current command of the exciter by the increased control gain is selected. It is preferable to include a switch part which selects the control current command of a predetermined exciter when the overshoot generate
  • control current command of the predetermined exciter is zero so as to keep the voltage of the generator in the current state.
  • the lower limit is 95% of the control command () of the exciter and the upper limit is 105% of the control command () of the exciter.
  • the generator control method using the peak voltage detects the peak value of the generator voltage, comparing the peak voltage with the lower limit value and the upper limit value, and if the detected peak voltage is less than the lower limit value, the control gain is adjusted. If the detected peak voltage is greater than the upper limit, it is preferable to include maintaining the voltage of the generator in a current state.
  • a control current command of a predetermined exciter is preferable to select a control current command of a predetermined exciter as zero (0) so as to maintain the voltage of the generator in the current state.
  • the peak voltage detector and the control gain converter by applying the peak voltage detector and the control gain converter, it is possible to improve the responsiveness of the generator voltage control according to the r.m.s. voltage detection delay and to provide a fast response characteristic against a sudden load change.
  • the present invention applies a switch control method for detecting a peak voltage for a sudden change in the load, varying the control gain of the controller according to the detected signal, and to prevent overshoot. Therefore, the present invention can provide a stable and fast response characteristics compared to the conventional PID control method. This is because the peak voltage detection unit detects the signal instantaneously and controls the voltage using the stable r.m.s. voltage detection unit signal.
  • FIG. 1 is a view showing a voltage control structure of a diesel-engine generator
  • FIG. 2 is a block diagram of a control system of the diesel engine generator of FIG. 1;
  • FIG. 3 is a block diagram of a generator control system to which a PID controller is applied;
  • FIG. 7 is a diagram illustrating a difference in characteristics by PID parameters
  • FIG. 8 is a block diagram of a generator control system using a peak voltage according to the present invention.
  • FIG. 10 is a block diagram of a marine generator system to which the present invention is applied;
  • FIG. 11 is a view showing an example of a control system circuit according to the present invention.
  • FIGS. 13 and 14 are diagrams respectively showing response characteristics of a general PID controller and a control system according to the present invention
  • 15 and 16 are diagrams each showing an example of a response characteristic to an inductance load.
  • 17 is a flowchart of a control method according to the present invention.
  • 1 is a diagram illustrating a voltage control structure of a diesel engine generator.
  • the brushless generator uses a method of supplying the generator voltage of the exciter by the field current of the exciter to the field of the main generator again through the semiconductor rectifying diode inside the generator. Therefore, the brushless generator is more reliable and easier to maintain than the method of directly supplying the field through the brush.
  • both the exciter and the main generator is mounted inside the generator.
  • the diesel engine generator controls the field current of the exciter by detecting the voltage and current of the generator from a PT (Current Transformer) and a CT (Current Transducer) connected to a three-phase output line outside the generator.
  • PT Current Transformer
  • CT Current Transducer
  • the power management system controls the power of the generator control system.
  • PMSs typically supply the power of an automatic voltage regulator (AVR) to a transformer or external power source connected to the generator's output.
  • AVR automatic voltage regulator
  • FIG. 2 is a block diagram of a control system of the diesel engine generator of FIG. 1.
  • the AVR is modeled as a primary delay element having control gain and time delay.
  • the exciter and generator can also be simplified by a delay factor due to the electric time constant.
  • AVR for voltage control of a generator is applying a PWM control structure using a microprocessor in an analog control method using an SCR. This is because the digital controller is easy to apply to various generators and is suitable for complex system control such as droop control and parallel control.
  • FIG. 3 is a block diagram of a generator control system employing a PID controller.
  • a PID controller is applied to a control of an AVR for controlling a generator. This is because it can be applied to various generators according to the control gain setting, and it is a method that is widely used by users.
  • PID control method is the most commonly used control method among control methods.
  • PID is P: Proportinal
  • I Integral
  • D Differential
  • Proportional control is a control method that gradually adjusts the manipulated value to a magnitude proportional to the difference between the command value (target value) and the current output value. In such proportional control, a subtle control can be applied when the command value is approached, so that the target value can be finely approached.
  • 5 is a diagram showing characteristics of the PI control.
  • Integral control is used to eliminate this residual deviation. Integral control is a method of accumulating a small residual deviation in time, and operating in such a way as to increase the manipulated value at a certain size to eliminate the deviation. Control in which the integral action is added to the proportional action may be referred to as "PI control (proportional-integral control)".
  • FIG. 6 is a diagram showing the characteristics of PID control.
  • the control close to the actual target value can be perfected, but there is a problem that the response speed is slow.
  • PI control it can be controlled to the target value, but a certain time (time constant) is required, and a large integer deteriorates the response performance in case of disturbance.
  • the PID control is controlled as if to overshoot at first, and is actively controlled to quickly reach the target value.
  • FIG. 7 is a diagram illustrating differences in characteristics caused by PID parameters.
  • the detection of generator output voltage in power generation control system is r.m.s. Enter the voltage, r.m.s.
  • the detection signal has a time delay with respect to the actual generator instantaneous voltage output. Due to this problem of time delay, it is difficult to largely set the control gain of the AVR controller.
  • the response characteristics of the actual generator has a low response to the sudden change of the load. In onshore power generation systems, instantaneous r.m.s.
  • FIG. 8 is a block diagram of a generator control system using a peak voltage according to the present invention.
  • the peak voltage detector 420 detects a peak value of the AC power generation voltage according to the frequency of the generator.
  • the peak voltage detector 420 may detect the maximum magnitude of the generator voltage without delay with respect to the response of the generator. Since the peak voltage detector 420 operates by noise and fixed R and C, continuous control is possible, and a value smaller than the peak value is detected in the discharge portion. According to the present invention, it is possible to detect the voltage variation in each period by a method of continuously detecting the voltage of the peak voltage detector by using an AD converter and finding the maximum value among them by generator frequency detection.
  • the comparator 500 preferably compares the voltage detected by the peak voltage detector with a set value using two comparators.
  • the first comparator 510 compares the detected peak voltage with a predetermined lower limit value VL_SET and outputs a / UVINT signal.
  • the second comparator 520 compares the detected peak voltage with a preset upper limit value VH_SET and outputs a / OVINT signal.
  • the lower limit value VL_SET and the upper limit value VH_SET are preferably set to 95% and 105% of the control command, respectively.
  • Typical generator response should be less than 15% undershoot and 20% overshoot for 80% load. Therefore, it is desirable to determine the set value in consideration of noise and detection error of the peak voltage detector.
  • the peak voltage detector 420 When the voltage detected by the peak voltage detector 420 is smaller than VL_SET or larger than VH_SET, it may be determined that a sudden load on the generator is changed.
  • control gain i.e., control gain when no overshoot or undershoot has occurred.
  • What is to be controlled in the system according to the invention is the output stage voltage of the generator. That is, the output terminal voltage of the generator is to be constantly output to the voltage desired by the user. Therefore, from the control point of view, the output voltage of the generator becomes the output to be controlled, and the output voltage desired by the user is input. In other words, an input is a command. Since the command is given in the form of a value, it is also called an input value command value. In the system according to the present invention, it is expressed as Vref because it is a command for the output voltage. In the case of a generator, it is difficult to handle this value because the output voltage is alternating instantaneously. Therefore, the concept of root mean square (RMS) is used, and Vrms is the output terminal effective voltage of the generator.
  • RMS root mean square
  • Vrms the value of this Vrms is equal to Vref, and the method used for this is PID.
  • the current error should be checked by comparing the output voltage value Vref desired by the user with the output value Vrms of the actual generator. Control the amount of errors that occur so that Vref and Vrms are equal. Using the error value, the current command value Ifd * is generated as much as it needs to be controlled through the PID controller, and switching is performed to satisfy this value.
  • FIG 9 is a diagram illustrating an example of an operation according to the present invention.
  • the peak voltage detection section quickly detects the application of the load.
  • the control gain converter 610 greatly increases the control gain by the detected / UVINT signal. It is desirable for the control gain to greatly increase the control gain of the AVR controller in the digital signal processing apparatus (DSP). At this time, it is preferable that the control gain is converted so as to operate robustly even for a small error.
  • the conversion of the control gain is to adjust the Kp, Ki, Kd, the adjusted value is input to the PID control unit 620 that performs PID control to the effective voltage (r.m.s. voltage) of the generator.
  • the strong operation for overshoot is set because the characteristic of the exciter causes the voltage of the generator to rise due to the removal of the load while the excitation current is reduced to zero, and the overshoot can exceed 20%. Because there is.
  • FIG. 10 is a block diagram of a marine generator system to which the present invention is applied.
  • the generator is driven by a diesel engine, the field of the generator is operated by the generation of the exciter.
  • the AVR is operated by PWM control by IGBT driving to control the field current of the exciter.
  • CCS is a current control system to control the field current of the exciter.
  • the voltage and current of the generator are detected by a PT (Potential Transformer) and a Current Transducer (CT) installed at the generator output.
  • the voltage is detected by the U-W phase and the current detects the current in the V phase.
  • Droop controller is a controller to determine the characteristics of parallel operation according to the load phase.
  • the self-starter circuit determines the generator's operation while establishing the control power of the AVR.
  • FIG. 11 is a view showing an example of a control system circuit according to the present invention.
  • the generator according to the present invention is designed as an emergency generator for small and medium-sized ships, the excitation field resistance of the generator is 16.5 [ ⁇ ], and the maximum output voltage is set to 45 [V].
  • FIG. 12 is a diagram illustrating an experimental environment of a control system according to the present invention.
  • the experiment of the generator according to the invention was carried out on the rated resistance load and the inductance load.
  • the main controller of the digital AVR is Texas Instruments' TMS320F2811-100, and the generator and bus voltage and current are designed to detect using Analog Device's AD637 and a second-order Sallen Key filter.
  • the peak voltage detector is instantaneously detected using a precision rectifier circuit and a high-speed AD converter built into the DSP.
  • the peak voltage detector is programmed to find the maximum of the AD-converted values in synchronization with the voltage-frequency detector connected to the DSP's CAP.
  • the maximum current of the excitation field is designed to be 15A and consisted of IXYS's FID60-060D (600V, 65A).
  • the self-driving circuit of the AVR controller is composed of an initial starting current control method using a transistor, and is configured in parallel circuit so as to operate stably against the quiescent starting and the full voltage starting in parallel operation.
  • the communication between controller and monitoring device uses CAN and RS-232.
  • the voltage detection was possible to detect 110/220/380 / 450V without changing the hardware through the analog switch.
  • the CBS Current Boosting System
  • the CBS Current Boosting System
  • FIG. 13 and 14 illustrate response characteristics of a general PID controller and a control system according to the present invention, respectively.
  • 13 and 14 show the response characteristics of the PID controller and the control structure according to the present invention, respectively, in the state of 100% load application and load removal. Also the field current of the exciter, r.m.s. The waveforms of the detected voltage, generator output terminal voltage and load current are shown.
  • undershoot and overshoot vary more than 90% and 110% of the set voltage indicated by dotted lines in the state of applying and removing the load.
  • overshoot is increasing by about 24%.
  • undershoot and overshoot are greatly reduced in the control system according to the present invention.
  • the control structure according to the present invention has a faster response than the PID controller with respect to the change in the control gain.
  • undershoot is within 11% and overshoot is within 12%.
  • 15 and 16 are diagrams each showing an example of a response characteristic to an inductance load.
  • control system according to the present invention also exhibits stable voltage control characteristics for the application and removal of the inductance load.
  • voltage of the generator for the Droop 10% setting is also stably controlled according to the magnitude and power factor of the load current.
  • 17 is a flowchart of a control method according to the present invention.
  • the peak voltage detector detects a peak value of the generator voltage (S1100).
  • the comparator compares the peak voltage with a lower limit and an upper limit (S1200).
  • the control gain is adjusted (S1300 and S1350).
  • the switch section selects the control current command of the exciter by the increased control gain.
  • the generator voltage is kept at the present state (S1400 and S1450). If the peak voltage is higher than the upper limit value and an overshoot occurs, the switch unit resets the control current command of the exciter to zero. Select with.
  • a sudden change in load is detected by a designed peak voltage detector, a control gain of the controller is changed according to the detected signal, and a switch control method is applied to prevent overshoot.
  • the digital AVR controller according to the present invention showed improved response characteristics compared to the PID control method of the same controller in a real load test of a 200kW generator for ships.
  • the initial magnetic dynamic and full load fluctuations, droop characteristic test, and V / Hz characteristic test showed stable response characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

The generator control system using the peak voltage of the generator of the present invention comprises: a peak voltage detection unit for detecting the peak value of a generator voltage; a comparator for comparing the peak voltage with a preset value; and a control unit for adjusting the control gain when the detected peak voltage is smaller than a lower threshold value, and for maintaining the voltage of the generator in its current state when the detected peak voltage is above an upper threshold value. The present invention can provide a fast voltage response to sudden load changes.

Description

피크전압을 이용한 발전기 제어시스템Generator control system using peak voltage
본 발명은 피크전압을 이용한 발전기 제어시스템 및 그 방법에 관한 것으로, 더욱 상세하게는 발전기의 실효전압(r.m.s.전압) 검출 지연에 따른 발전기 전압 제어의 응답성을 개선하기 위하여, PID 제어기와 피크전압 검출부 및 제어이득 변환부를 적용하여 급격한 부하 변동에 따른 빠른 전압 응답성을 갖는 피크전압을 이용한 발전기 제어시스템 및 그 방법에 관한 것이다.The present invention relates to a generator control system using a peak voltage and a method thereof, and more particularly, to improve the responsiveness of the generator voltage control according to the delay detection of the rms voltage of the generator, PID controller and peak voltage detector And it relates to a generator control system and method using a peak voltage having a fast voltage response according to a sudden load change by applying a control gain converter.
엔진 발전기는 선박용 전력생산 및 비상용 발전기로 많이 사용되고 있다. 최근에는 무한 모선의 연결이 어려운 낙도 지역에서 엔진 발전기를 이용한 자체 전력 생산 시스템이 적용되고 있고, 외국의 경우에는 대형 육상 플랜트 발전 설비로 전력을 공급하기 어려운 산간지역 등에서 엔진 발전기 운전 시스템의 적용이 크게 늘고 있다. Engine generators are widely used for marine power generation and emergency generators. In recent years, a self-powered generation system using engine generators has been applied in remote islands where infinite bus connections are difficult to connect, and in the case of foreign countries, the application of engine generator operation systems is largely applied in mountainous areas where power is not supplied to large land plant power generation facilities. It is increasing.
디젤-엔진 발전기는 육상 발전 및 송배전 시스템으로부터 전기가 공급되기 어려운 지역의 전원공급 장치로 널리 사용되고 있다. 특히, 선박의 경우 전원의 공급은 전적으로 엔진-발전기로부터 공급된다. 이러한 경우, 각종 제어장비, 통신장비 및 운항장비의 전원 공급을 위해 높은 품질의 전력을 요구된다.Diesel-engine generators are widely used as power supplies in areas where electricity is difficult to supply from onshore power generation and distribution systems. In the case of ships, in particular, the supply of power is entirely supplied from the engine generator. In this case, high quality power is required for power supply of various control equipment, communication equipment, and navigation equipment.
엔진 발전기 운전 시스템의 제어 특성은 엔진 제어를 위한 Governor와 발전기 전압을 제어하는 AVR에 의해 결정된다. 따라서 엔진 발전기 운전 시스템은 무한 모선 시스템과 달리 부하에 따라 출력전압의 가변이 심하고, 주파수의 변동이 발생하는 문제점이 있다. 이러한 전력의 불안정성은 전기장치의 오동작을 일으킬 수 있다. 특히, 선박의 경우와 같이 무한 모선이 연결되지 못하는 단독 운전 시스템의 경우, 엔진 발전기는 시스템의 전 전력을 안정적으로 공급해야 하며 부하의 급변에 대해서도 안정적인 응답특성을 가져야 한다. The control characteristics of the engine generator operating system are determined by the Governor for controlling the engine and the AVR controlling the generator voltage. Therefore, the engine generator operating system, unlike the infinite bus system, the output voltage is severely variable according to the load, there is a problem that the frequency fluctuation occurs. This instability of power can cause malfunction of the electrical device. In particular, in the case of a single operation system that can not be connected to the infinite bus, such as in the case of ships, the engine generator must supply the full power of the system in a stable manner and must have a stable response characteristics against sudden changes in load.
발전기의 전압 제어를 위한 AVR은 최근에는 SCR을 사용하는 아날로그 제어 방식에서 마이크로 프로세서 등을 활용한 PWM 제어 구조를 적용하고 있다. 이는 디지털 방식의 제어기가 다양한 발전기에 적용하기 용이하며, Droop 제어 및 병렬 제어와 같은 복잡한 계통 제어에 적합하기 때문이다. 이러한 디지털 방식의 AVR 제어기는 일반적으로 산업계에 널리 알려진 PID 제어기가 많이 적용되고 있다. 이는 제어이득의 설정에 따라 다양한 발전기에 적용이 가능하며, 사용자에게 널리 익숙해진 방식이기 때문이다. 그러나, 종래의 PID 발전 제어 시스템은 다음과 같은 문제점이 있었다.Recently, AVR for voltage control of a generator is applying a PWM control structure using a microprocessor in an analog control method using an SCR. This is because the digital controller is easy to apply to various generators and is suitable for complex system control such as droop control and parallel control. The digital AVR controller is generally applied to a PID controller that is well known in the industry. This is because it can be applied to various generators according to the control gain setting, and it is a method that is widely used by users. However, the conventional PID generation control system has the following problems.
종래 발전기의 전압 제어 시스템에서 발전기 출력전압은 실효전압(r.m.s.전압)을 입력하였는데, r.m.s. 검출 신호는 실제 발전기 순시전압 출력에 대하여 시간 지연을 가지게 된다. 이러한 시간 지연의 문제로 AVR 제어기의 제어이득을 크게 설정하기 어려운 문제점이 있었다. 제어이득을 크게 설정할 경우 응답성을 향상 될 수 있으나 안정성에서 문제가 될 수 있다. 특히 본 발명과 같은 발전기 제어 시스템처럼 시지연에 의해 제어가 어려운 경우, 제어이득을 크게 설정하면 오히려 오차가 증가할 수 있기 때문에 크게 설정하기 어려운 문제점이 있었다. 반대로 제어이득을 작게 설정하면 응답성이 떨어지는 문제점이 있다. 또한, 실제 발전기의 응답특성은 부하의 급변에 대하여 낮은 응답성을 갖는 문제점이 있다. In the conventional generator voltage control system, the generator output voltage inputs an effective voltage (r.m.s. voltage). The detection signal has a time delay with respect to the actual generator instantaneous voltage output. Due to such a time delay problem, it is difficult to largely set the control gain of the AVR controller. If the control gain is set large, the response can be improved, but it may be a problem in stability. In particular, when control is difficult due to time delay, such as the generator control system of the present invention, if the control gain is set large, the error may increase, rather it is difficult to set large. On the contrary, if the control gain is set small, the response is poor. In addition, the response characteristics of the actual generator has a problem that has a low response to the sudden change of the load.
이는 육상용 발전기의 전압 제어 시스템에서는 d-q 변환에 의한 순시적인 r.m.s. 검출이 용이하지만, 엔진-발전기 시스템에서는 구조적으로 부하에 따라 발전기의 주파수가 가변적이고, 순시적인 주파수 검출을 위한 별도의 장치를 부착하기가 어렵기 때문이다. 따라서, 엔진-발전기 제어 시스템의 전압 제어 응답성은 AVR의 제어이득의 선정과 발전기의 시상수에 매우 의존적으로 된다. This is due to the instantaneous r.m.s. The detection is easy, but in the engine-generator system, the frequency of the generator varies structurally depending on the load, and it is difficult to attach a separate device for instantaneous frequency detection. Therefore, the voltage control responsiveness of the engine-generator control system is highly dependent on the selection of the control gain of the AVR and the time constant of the generator.
본 발명은 발전기 실효전압(r.m.s.전압) 검출 지연으로 인해 발생하는 응답특성의 문제점을 개선할 수 있는 피크전압을 이용한 발전기 제어시스템을 제공함에 있다.The present invention is to provide a generator control system using a peak voltage that can improve the problem of the response characteristics caused by the generator effective voltage (r.m.s. voltage) detection delay.
또한 본 발명은 급격한 부하 변동에 대하여도 안정적이고 빠른 응답성을 갖는 피크전압을 이용한 발전기 제어시스템을 제공함에 있다. In addition, the present invention is to provide a generator control system using a peak voltage having a stable and fast response to rapid load changes.
본 발명에 따른 발전기의 피크전압을 이용한 발전기 제어시스템은 발전기 전압의 피크치를 검출하는 피크전압 검출부, 상기 피크전압을 설정 값과 비교하는 비교기, 상기 검출된 피크전압이 기설정된 하한 값보다 작은 경우에는 제어이득을 조절하며, 상기 검출된 피크전압이 기설정된 상한 값보다 큰 경우에는 발전기의 전압을 현재 상태로 유지시키는 제어부를 포함한다.The generator control system using the peak voltage of the generator according to the present invention includes a peak voltage detector for detecting a peak value of the generator voltage, a comparator for comparing the peak voltage with a set value, and when the detected peak voltage is smaller than a predetermined lower limit value. And a control unit for adjusting the control gain and maintaining the voltage of the generator in a current state when the detected peak voltage is greater than a preset upper limit value.
피크전압 검출부는 발전기의 주파수에 따라 발전 전압의 피크치를 검출하는 것이 바람직하다.The peak voltage detection unit preferably detects the peak value of the generated voltage according to the frequency of the generator.
피크전압 검출부는 노이즈 및 고정된 저항(R) 및 콘덴터(C)에 의해 동작하는 것이 바람직하다.Preferably, the peak voltage detector is operated by noise and a fixed resistor (R) and capacitor (C).
상기 비교기는 피크전압과 하한 값을 비교하는 제1 비교기 및 피크전압과 상한 값을 비교하는 제2 비교기를 포함하는 것이 바람직하다.The comparator preferably includes a first comparator comparing the peak voltage and the lower limit and a second comparator comparing the peak voltage and the upper limit.
피크전압이 하한 값보다 작아 언더슈트가 발생하는 경우에는 제어이득을 증가시키는 제어이득 변환부 및 언더슈트가 발생한 경우에는 증가된 제어이득에 의한 여자기의 제어 전류지령을 선택하며, 피크전압이 상한 값보다 높아 오버슈트가 발생하는 경우에는 소정의 여자기의 제어전류 지령을 선택하는 스위치부를 포함하는 것이 바람직하다.When the undershoot occurs because the peak voltage is lower than the lower limit, the control gain conversion unit increases the control gain, and when the undershoot occurs, the control current command of the exciter by the increased control gain is selected. It is preferable to include a switch part which selects the control current command of a predetermined exciter when the overshoot generate | occur | produces higher than a value.
발전기의 실효전압(r.m.s.전압)으로 PID 제어를 수행하는 PID 제어부를 더 포함하며, 제어이득은 PID제어부의 Kp, Ki, Kd를 조절하는 것이 바람직하다.It further comprises a PID control unit for performing PID control by the effective voltage (r.m.s. voltage) of the generator, the control gain is preferably adjusted Kp, Ki, Kd PID control unit.
오버슈트가 발생하는 경우에는 발전기의 전압을 현재 상태로 유지시키도록 소정의 여자기의 제어 전류지령이 제로(0)인 것이 바람직하다.When an overshoot occurs, it is preferable that the control current command of the predetermined exciter is zero so as to keep the voltage of the generator in the current state.
하한 값은 여자기의 제어 지령()의 95%, 상기 상한 값은 여자기의 제어 지령()의 105%인 것이 바람직하다. It is preferable that the lower limit is 95% of the control command () of the exciter and the upper limit is 105% of the control command () of the exciter.
본 발명에 따른 피크전압을 이용한 발전기 제어방법은 발전기 전압의 피크치를 검출하는 단계, 피크전압을 하한 값과 상한 값과 비교하는 단계 및 검출된 피크전압이 하한 값보다 작은 경우에는 제어이득을 조절하며, 검출된 피크전압이 상한 값보다 큰 경우에는 발전기의 전압을 현재 상태로 유지시키는 단계를 포함하는 것이 바람직하다.The generator control method using the peak voltage according to the present invention detects the peak value of the generator voltage, comparing the peak voltage with the lower limit value and the upper limit value, and if the detected peak voltage is less than the lower limit value, the control gain is adjusted. If the detected peak voltage is greater than the upper limit, it is preferable to include maintaining the voltage of the generator in a current state.
피크전압이 하한 값보다 작아 언더슈트가 발생하는 경우에는 증가된 제어이득에 의한 여자기의 제어 전류지령을 선택하며, 피크전압이 상한 값보다 높아 오버슈트가 발생하는 경우에는 소정의 여자기의 제어전류 지령을 선택하는 것이 바람직하다.If undershoot occurs because the peak voltage is lower than the lower limit, select the control current command of the exciter by increased control gain.If the overshoot occurs because the peak voltage is higher than the upper limit, control the predetermined exciter. It is preferable to select the current command.
오버슈트가 발생하는 경우에는 발전기의 전압을 현재 상태로 유지시키도록 소정의 여자기의 제어 전류지령을 제로(0)로 선택하는 것이 바람직하다.When an overshoot occurs, it is preferable to select a control current command of a predetermined exciter as zero (0) so as to maintain the voltage of the generator in the current state.
본 발명에 따르면, 피크전압 검출부 및 제어이득 변환부를 적용함으로써 r.m.s.전압 검출 지연에 따른 발전기 전압제어의 응답성을 개선할 수 있을 뿐만 아니라 급격한 부하 변동에 대해서 빠른 응답특성을 제공할 수 있다. According to the present invention, by applying the peak voltage detector and the control gain converter, it is possible to improve the responsiveness of the generator voltage control according to the r.m.s. voltage detection delay and to provide a fast response characteristic against a sudden load change.
또한 본 발명은 부하의 급격한 변동을 피크 전압을 검출하고, 검출된 신호에 따라 제어기의 제어이득을 변동시키며, 오버슈트를 방지하기 위한 스위치 제어방식을 적용하였다. 따라서, 본 발명은 종래의 PID 제어 방식에 비하여 안정적이고 빠른 응답특성을 제공할 수 있다. 이는 피크 전압 검출부에서 순시적으로 신호를 검출하고, 안정적인 r.m.s.전압 검출부의 신호를 이용하여 전압을 제어하기 때문이다. In addition, the present invention applies a switch control method for detecting a peak voltage for a sudden change in the load, varying the control gain of the controller according to the detected signal, and to prevent overshoot. Therefore, the present invention can provide a stable and fast response characteristics compared to the conventional PID control method. This is because the peak voltage detection unit detects the signal instantaneously and controls the voltage using the stable r.m.s. voltage detection unit signal.
이러한 본 발명에 따른 방식의 효과를 실제 선박용 200kW급 디젤엔진 발전기에 대한 실부하 시험을 통하여 검증하였다. The effect of the method according to the present invention was verified through a real load test on the actual 200kW diesel engine generator for ships.
도 1은 디젤-엔지 발전기의 전압제어 구조를 도시한 도면,1 is a view showing a voltage control structure of a diesel-engine generator,
도 2는 도 1의 디젤-엔진 발전기의 제어시스템의 블록도,2 is a block diagram of a control system of the diesel engine generator of FIG. 1;
도 3은 PID 제어기를 적용한 발전기 제어 시스템의 블록도,3 is a block diagram of a generator control system to which a PID controller is applied;
도 4는 비례제어의 특성을 도시한 도면,4 is a diagram showing characteristics of proportional control;
도 5는 PI제어의 특성을 도시한 도면, 5 is a diagram showing characteristics of the PI control;
도 6은 PID제어의 특성을 도시한 도면,6 is a diagram showing characteristics of PID control;
도 7은 PID 파라미터에 의한 특성의 차이를 도시한 도면, 7 is a diagram illustrating a difference in characteristics by PID parameters;
도 8은 본 발명에 따른 피크전압을 이용한 발전기 제어시스템의 블록도,8 is a block diagram of a generator control system using a peak voltage according to the present invention;
도 9는 본 발명에 따른 동작의 일 예를 도시한 도면,9 illustrates an example of an operation according to the present invention;
도 10은 본 발명을 적용한 선박용 발전기 시스템의 블록도,10 is a block diagram of a marine generator system to which the present invention is applied;
도 11은 본 발명에 따른 제어시스템 회로의 일 예를 도시한 도면,11 is a view showing an example of a control system circuit according to the present invention;
도 12는 본 발명에 따른 제어시스템의 실험 환경을 도시한 도면,도 13 및 도 14는 일반적인 PID 제어기 및 본 발명에 따른 제어시스템의 응답특성을 각각 도시한 도면,12 is a view showing an experimental environment of a control system according to the present invention, FIGS. 13 and 14 are diagrams respectively showing response characteristics of a general PID controller and a control system according to the present invention;
도 15 및 도 16은 인덕턴스 부하에 대한 응답특성의 일 예를 각각 도시한 도면 및15 and 16 are diagrams each showing an example of a response characteristic to an inductance load; and
도 17은 본 발명에 따른 제어방법의 순서도이다.17 is a flowchart of a control method according to the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예들을 보다 상세하게 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 디젤-엔지 발전기의 전압제어 구조를 도시한 도면이다.  1 is a diagram illustrating a voltage control structure of a diesel engine generator.
일반적인 엔진-발전기의 경우 성능 및 신뢰성의 문제로 여자기를 가지는 브러쉬리스 발전기가 많이 사용되고 있다. 도 1을 참조하면, 브러쉬리스 발전기는 여자기의 계자 전류에 의한 여자기의 발전전압을 발전기 내부의 반도체 정류 다이오드를 통하여 다시 주발전기의 계자로 공급하는 방식을 사용한다. 따라서 브러쉬리스 발전기는 브러쉬를 통하여 직접 계자를 공급하는 방식에 비하여 신뢰성이 높고, 유지 보수에 용이한 장점이 있다.  In the case of a general engine-generator, a brushless generator having an exciter is widely used due to performance and reliability problems. Referring to FIG. 1, the brushless generator uses a method of supplying the generator voltage of the exciter by the field current of the exciter to the field of the main generator again through the semiconductor rectifying diode inside the generator. Therefore, the brushless generator is more reliable and easier to maintain than the method of directly supplying the field through the brush.
도 1의 디젤-엔진 발전기의 전압 제어 구조를 참조하면, 여자기와 주발전기는 모두 발전기 내부에 장착된다. 디젤-엔진 발전기는 발전기 외부의 3상 출력선에 연결된 PT(Potential Transformer) 및 CT(Current Transducer)로부터 발전기의 전압 및 전류를 검출하여 여자기의 계자 전류를 제어한다. Referring to the voltage control structure of the diesel engine generator of Figure 1, both the exciter and the main generator is mounted inside the generator. The diesel engine generator controls the field current of the exciter by detecting the voltage and current of the generator from a PT (Current Transformer) and a CT (Current Transducer) connected to a three-phase output line outside the generator.
PMS(Power management system)는 발전기 제어 시스템의 전원을 제어한다. 이러한 PMS는 일반적으로 AVR(Automatic voltage regulator)의 전력을 발전기의 출력단에 연결된 변압기 또는 외부 전원에 공급한다.The power management system (PMS) controls the power of the generator control system. These PMSs typically supply the power of an automatic voltage regulator (AVR) to a transformer or external power source connected to the generator's output.
도 2는 도 1의 디젤-엔진 발전기의 제어시스템의 블록도이다.  FIG. 2 is a block diagram of a control system of the diesel engine generator of FIG. 1.
도 2를 참조하면, AVR은 제어이득과 시간 지연을 가지는 1차 지연요소로 모델링된다. 또한 여자기 및 발전기도 전기적 시상수에 의한 지연요소로 간략화될 수 있다.  Referring to FIG. 2, the AVR is modeled as a primary delay element having control gain and time delay. In addition, the exciter and generator can also be simplified by a delay factor due to the electric time constant.
도 2에서 발전기의 출력전압은 다음과 같이 표현될 수 있다.In Figure 2 the output voltage of the generator can be expressed as follows.
Figure PCTKR2009005262-appb-I000001
Figure PCTKR2009005262-appb-I000001
최근에 발전기의 전압 제어를 위한 AVR은 SCR을 사용하는 아날로그 제어방식에서 마이크로 프로세서 등을 활용한 PWM 제어구조를 적용하고 있다. 이는 디지털 방식의 제어기가 다양한 발전기에 적용하기 용이하며, Droop 제어 및 병렬 제어와 같은 복잡한 계통 제어에 적합하기 때문이다. Recently, AVR for voltage control of a generator is applying a PWM control structure using a microprocessor in an analog control method using an SCR. This is because the digital controller is easy to apply to various generators and is suitable for complex system control such as droop control and parallel control.
도 3은 PID 제어기를 적용한 발전기 제어 시스템의 블록도이다. 3 is a block diagram of a generator control system employing a PID controller.
도 3을 참조하면, 발전기의 제어를 위한 AVR의 제어에는 PID 제어기가 많이 적용되고 있다. 이는 제어이득의 설정에 따라 다양한 발전기에 적용이 가능하며, 사용자에게 널리 익숙해진 방식이기 때문이다.  Referring to FIG. 3, a PID controller is applied to a control of an AVR for controlling a generator. This is because it can be applied to various generators according to the control gain setting, and it is a method that is widely used by users.
PID 제어방식은 제어 방식 가운데서 가장 흔히 이용되는 제어방식이다. 여기서 PID란 P: Proportinal(비례) , I: Integral(적분) ,D: Differential(미분) 이며 이 3가지 조합으로 제어하는 것으로 유연한 제어가 가능하다. PID control method is the most commonly used control method among control methods. In this case, PID is P: Proportinal, I: Integral, D: Differential, and it is possible to control flexibly with three combinations.
도 4는 비례제어의 특성을 도시한 도면이다.4 is a diagram illustrating the characteristics of proportional control.
비례제어는 조작량을 지령 값(목표 값)과 현재 출력 값과의 차에 비례한 크기가 되도록 하며 서서히 조절하는 제어 방법이다. 이러한 비례제어에서는 지령 값에 접근하면 미묘한 제어를 가할 수 있기 때문에 미세하게 목표 값에 근접할 수 있다.Proportional control is a control method that gradually adjusts the manipulated value to a magnitude proportional to the difference between the command value (target value) and the current output value. In such proportional control, a subtle control can be applied when the command value is approached, so that the target value can be finely approached.
도 5는 PI제어의 특성을 도시한 도면이다.5 is a diagram showing characteristics of the PI control.
비례제어만 사용할 경우 제어량이 목표 값에 접근하면 조작량이 너무 작아지고, 그 이상 미세하게 제어할 수 없는 상태가 발생할 수 있다. 목표 값에 아주 가까운 제어량의 상태에서 안정한 상태로 유지되어 목표 값에 가까워지지만, 아무리 시간이 지나도 제어량과 완전히 일치하지 않는 상태가 발생(잔류편차)한다. 이러한 잔류편차를 없애기 위해 사용되는 것이 적분 제어이다. 이러한 적분제어는 미소한 잔류편차를 시간적으로 누적하여, 어떤 크기로 된 곳에서 조작량을 증가하여 편차를 없애는 식으로 동작시키는 방식이다. 비례 동작에 적분 동작을 추가한 제어를 "PI 제어(비례-적분 제어)" 라 할 수 있다.If only the proportional control is used, when the control amount approaches the target value, the manipulation amount becomes too small, and a state in which fine control cannot be further performed may occur. It remains stable in the state of the control amount very close to the target value and approaches the target value, but no matter how much time passes, the state does not completely match the control amount (residual deviation). Integral control is used to eliminate this residual deviation. Integral control is a method of accumulating a small residual deviation in time, and operating in such a way as to increase the manipulated value at a certain size to eliminate the deviation. Control in which the integral action is added to the proportional action may be referred to as "PI control (proportional-integral control)".
도 6은 PID제어의 특성을 도시한 도면이다.6 is a diagram showing the characteristics of PID control.
PI 제어를 이용하면 실제 목표 값에 가깝게 하는 제어는 완벽하게 할 수 있으나 응답속도가 느린 문제점이 있다. PI 제어에서는 확실히 목표 값으로 제어할 수 있지만, 일정한 시간(시정수)이 필요하며, 정수가 크면 외란이 있을 때의 응답 성능이 나빠진다. 외란에 대하여 신속하게 반응할 수 없고, 즉시 원래의 목표 값으로는 돌아갈 수 없는 문제점이 있다. 급격히 일어나는 외란에 대해 편차를 보고, 전회 편차와의 차가 큰 경우에는 조작량을 많이 하여 기민하게 반응하도록 함으로써 전회와의 편차에 대한 변화차를 보는 것이 "미분"에 상당하는 것이다. PID제어는, 도 6에 도시된 바와 같이, 처음에는 상당히 오버슈트(overshoot)하는 듯이 제어하여 신속히 목표 값이 되도록 적극적으로 제어한다.When using PI control, the control close to the actual target value can be perfected, but there is a problem that the response speed is slow. In PI control, it can be controlled to the target value, but a certain time (time constant) is required, and a large integer deteriorates the response performance in case of disturbance. There is a problem that can not react quickly to the disturbance, and immediately return to the original target value. It is equivalent to "differentiation" to look at the deviation for the sudden disturbance, and to see the difference in the deviation from the previous time by causing a large amount of manipulation to react quickly if the difference with the previous deviation is large. As shown in Fig. 6, the PID control is controlled as if to overshoot at first, and is actively controlled to quickly reach the target value.
도 7은 PID 파라미터에 의한 특성의 차이를 도시한 도면이다.7 is a diagram illustrating differences in characteristics caused by PID parameters.
PID제어에서는 파라미터가 큰 경우에는 미분, 적분 효과가 빨리 효력이 나타나므로 오버슈트(overshoot)가 크게 눈에 띈다. 반면에 파라미터가 작은 경우에는 오버슈트(overshoot)가 거의 나타나지 않았다.In the PID control, overshoot is very noticeable when the parameter is large, so the derivative and integration effects are effective quickly. On the other hand, when the parameter is small, there is almost no overshoot.
이러한 PID 제어기의 응답성은 제어이득에 따라 가변적이므로, 발전기가 출하되기 전에 제어이득의 튜닝을 통하여 적합한 이득을 산정하게 된다. 발전제어 시스템에서 발전기 출력전압의 검출은 r.m.s. 전압을 입력하는데, r.m.s. 검출신호는 실제 발전기 순시전압 출력에 대하여 시간 지연을 갖는다. 이러한 시간 지연의 문제로 인하여, AVR 제어기의 제어이득을 크게 설정하기 어렵다. 또한 실제 발전기의 응답특성은 부하의 급변에 대하여 낮은 응답성을 갖는다. 육상용 발전 시스템에서는 d-q 변환에 의한 순시적인 r.m.s. 검출이 용이하지만, 엔진-발전기 시스템에서는 구조적으로 부하에 따라 발전기의 주파수가 가변적이고 순시적인 주파수 검출을 위한 별도의 장치를 부착하기가 어렵다. 따라서 엔진-발전기 제어 시스템의 전압 제어 응답성은 AVR의 제어이득의 선정과 발전기의 시상수에 매우 의존적이다.Since the responsiveness of the PID controller is variable according to the control gain, an appropriate gain is calculated through tuning the control gain before the generator is shipped. The detection of generator output voltage in power generation control system is r.m.s. Enter the voltage, r.m.s. The detection signal has a time delay with respect to the actual generator instantaneous voltage output. Due to this problem of time delay, it is difficult to largely set the control gain of the AVR controller. In addition, the response characteristics of the actual generator has a low response to the sudden change of the load. In onshore power generation systems, instantaneous r.m.s. Although easy to detect, in an engine-generator system, the frequency of the generator varies structurally depending on the load, and it is difficult to attach a separate device for instantaneous frequency detection. The voltage control responsiveness of the engine-generator control system is thus very dependent on the choice of control gain of the AVR and the time constant of the generator.
도 8은 본 발명에 따른 피크전압을 이용한 발전기 제어시스템의 블록도이다.  8 is a block diagram of a generator control system using a peak voltage according to the present invention.
본 발명에 따른 피크전압을 이용한 발전기 제어시스템은 발전기 실효전압(r.m.s.전압) 검출 지연으로 인한 응답특성 문제를 개선하기 위하여 발전기의 피크전압을 검출하는 피크전압 검출부(420), 피크전압을 하한 값과 상한 값과 비교하는 비교기(500), 검출된 피크전압이 상기 하한 값보다 작은 경우에는 제어이득을 조절하며, 검출된 피크전압이 상한 값보다 큰 경우에는 발전기의 전압을 현재 상태로 유지시키는 제어부(600)를 포함한다. In the generator control system using the peak voltage according to the present invention, the peak voltage detection unit 420 for detecting the peak voltage of the generator, the peak voltage lower limit value and Comparator 500 to compare with the upper limit value, the control gain is adjusted if the detected peak voltage is less than the lower limit value, and the control unit for maintaining the voltage of the generator in the current state if the detected peak voltage is greater than the upper limit value ( 600).
피크전압 검출부(420)는 발전기의 주파수에 따라, AC 발전 전압의 피크치를 검출한다. 피크전압 검출부(420)는 발전기의 응답에 대하여 지연 없이 발전기 전압의 최대크기를 검출 할 수 있다. 피크전압 검출부(420)는 노이즈 및 고정된 R, C에 의해 동작하므로 연속적인 제어가 가능하며, 방전 부분에서는 피크 값보다 작은 값이 검출된다. 본 발명에 따르면, AD 컨버터를 이용하여 연속적으로 피크전압 검출부의 전압을 검출하고, 발전기 주파수 검출에 의해 그 중에서 최대 값을 찾는 방법에 의해서 각 주기 내에서의 전압 변동을 검출할 수 있다.  The peak voltage detector 420 detects a peak value of the AC power generation voltage according to the frequency of the generator. The peak voltage detector 420 may detect the maximum magnitude of the generator voltage without delay with respect to the response of the generator. Since the peak voltage detector 420 operates by noise and fixed R and C, continuous control is possible, and a value smaller than the peak value is detected in the discharge portion. According to the present invention, it is possible to detect the voltage variation in each period by a method of continuously detecting the voltage of the peak voltage detector by using an AD converter and finding the maximum value among them by generator frequency detection.
비교기(500)는 2개의 비교기를 이용하여 피크전압 검출부에서 검출된 전압과 설정치를 비교하는 것이 바람직하다. 제1 비교기(510)는 검출된 피크전압을 기설정된 하한 값 VL_SET과 비교하여 /UVINT 신호를 출력한다. 제2 비교기(520)는 검출된 피크전압을 기설정된 상한 값 VH_SET과 비교하여 /OVINT 신호를 출력한다. 이 때 하한 값 VL_SET과 상한 값 VH_SET은 각각 제어 지령인 의 95% 및 105%로 설정하는 것이 바람직하다. 일반적인 선박의 발전기 응답은 80% 부하에 대해서 언더슈트가 15% 이하, 오버슈트가 20% 이하로 되어야 한다. 따라서 피크전압 검출부의 노이즈 및 검출 오류를 고려하여 설정값을 결정하는 것이 바람직하다.  The comparator 500 preferably compares the voltage detected by the peak voltage detector with a set value using two comparators. The first comparator 510 compares the detected peak voltage with a predetermined lower limit value VL_SET and outputs a / UVINT signal. The second comparator 520 compares the detected peak voltage with a preset upper limit value VH_SET and outputs a / OVINT signal. At this time, the lower limit value VL_SET and the upper limit value VH_SET are preferably set to 95% and 105% of the control command, respectively. Typical generator response should be less than 15% undershoot and 20% overshoot for 80% load. Therefore, it is desirable to determine the set value in consideration of noise and detection error of the peak voltage detector.
피크전압 검출부(420)에서 검출된 전압이 VL_SET 보다 작아지거나 VH_SET 보다 커지는 경우에는 발전기에 급격한 부하가 변동된 것으로 판단할 수 있다.  When the voltage detected by the peak voltage detector 420 is smaller than VL_SET or larger than VH_SET, it may be determined that a sudden load on the generator is changed.
오버슈트나 언더슈트가 일어나지 않는 경우, 이전의 안정화 된 제어이득(즉, 오버슈트나 언더슈트가 일어나지 않았을 경우의 제어이득)으로 유지되는 것이 바람직하다.If no overshoot or undershoot occurs, it is desirable to maintain the previous stabilized control gain (i.e., control gain when no overshoot or undershoot has occurred).
본 발명에 따른 시스템에서 제어하고자 하는 것은 발전기의 출력단 전압이다. 즉, 발전기의 출력단 전압이 사용자가 원하는 전압으로 일정하게 출력될 수 있도록 하는 것이다. 따라서 제어관점에서 보면 발전기의 출력전압이 제어대상인 출력이 되고 사용자가 원하는 출력전압이 입력이 된다. 입력은 다른 말로 지령이라고 할 수 있다. 지령은 값의 형태로 주어지므로 입력치 지령치라고 불리기도 한다. 본 발명에 따른 시스템에서는 출력전압에 대한 지령이므로 Vref로 표현하였다. 발전기의 경우 출력전압이 교류이므로 순시적으로 변화하기 때문에 이 값을 취급한다는 것이 어렵다. 따라서, RMS(Root Mean Square)라는 개념을 사용하였는데, Vrms는 발전기의 출력단 실효전압을 뜻한다. What is to be controlled in the system according to the invention is the output stage voltage of the generator. That is, the output terminal voltage of the generator is to be constantly output to the voltage desired by the user. Therefore, from the control point of view, the output voltage of the generator becomes the output to be controlled, and the output voltage desired by the user is input. In other words, an input is a command. Since the command is given in the form of a value, it is also called an input value command value. In the system according to the present invention, it is expressed as Vref because it is a command for the output voltage. In the case of a generator, it is difficult to handle this value because the output voltage is alternating instantaneously. Therefore, the concept of root mean square (RMS) is used, and Vrms is the output terminal effective voltage of the generator.
이러한 Vrms의 값이 Vref와 같아지도록 하는 것이 본 발명에 따른 시스템에서의 제어의 목적이고, 이를 위해 사용된 방법이 PID이다. 사용자가 원하는 출력 전압 값 Vref와 실제 발전기의 출력 값 Vrms를 비교하여 현재 에러를 확인해야 한다. 발생한 에러의 양만큼 제어를 해서 Vref와 Vrms를 같아지게 한다. 에러 값을 이용하여 PID 제어부를 거쳐서 제어하여야 할 만큼의 전류 지령치 Ifd*를 생성하게 되고, 이 값을 만족하기 위한 스위칭을 수행한다. It is the purpose of control in the system according to the invention that the value of this Vrms is equal to Vref, and the method used for this is PID. The current error should be checked by comparing the output voltage value Vref desired by the user with the output value Vrms of the actual generator. Control the amount of errors that occur so that Vref and Vrms are equal. Using the error value, the current command value Ifd * is generated as much as it needs to be controlled through the PID controller, and switching is performed to satisfy this value.
도 9는 본 발명에 따른 동작의 일 예를 도시한 도면이다.9 is a diagram illustrating an example of an operation according to the present invention.
검출된 r.m.s.전압만으로 제어를 하는 경우 부하 변동(Load Variation)이 발생한 경우, 시간 지연(delay)이 발생하는 문제점이 있었다. 발전기에 급격한 부하인가로 전압의 감소가 발생하면, RMS 검출부는 검출 지연에 의해 서서히 변동한다. In case of controlling only the detected r.m.s. voltage, there is a problem that a time delay occurs when a load variation occurs. When the voltage decreases due to a sudden load on the generator, the RMS detector gradually changes due to the detection delay.
그러나, 본 발명에 의하면, 피크전압 검출부에서는 부하의 인가를 신속하게 검출하게 된다. 검출된 /UVINT 신호에 의해 제어이득 변환부(610)는 제어이득을 크게 증가시킨다. 제어이득은 디지털 신호 처리 장치(DSP)에서 AVR 제어기의 제어이득을 크게 증가시키는 것이 바람직하다. 이 때, 작은 오차에 대해서도 강인하게 동작하도록 제어이득의 변환이 이루어지는 것이 바람직하다. 제어이득의 변환은 Kp, Ki, Kd를 조절하게 되는데, 이렇게 조절된 값은 발전기의 실효전압(r.m.s.전압)으로 PID 제어를 수행하는 PID 제어부(620)에 입력된다.However, according to the present invention, the peak voltage detection section quickly detects the application of the load. The control gain converter 610 greatly increases the control gain by the detected / UVINT signal. It is desirable for the control gain to greatly increase the control gain of the AVR controller in the digital signal processing apparatus (DSP). At this time, it is preferable that the control gain is converted so as to operate robustly even for a small error. The conversion of the control gain is to adjust the Kp, Ki, Kd, the adjusted value is input to the PID control unit 620 that performs PID control to the effective voltage (r.m.s. voltage) of the generator.
반대로, 부하가 급격하게 제거되어 발전기의 전압이 상승하게 되면, /OVINT 신호에 의해 여자기의 제어 전류 지령을 급격하게 감소시킨다. 스위치부(630)에서 여자기의 제어 전류 지령을 0으로 선택하는 것이 바람직하다. 즉, 오버슈트라고 판단될 경우 PID 제어부(620)에서 생성된 Ifd*(발전기 계자전류 지령치)를 사용하지 않고 0의 값으로 처리된다. 이렇게 되면 지령치가 0이므로 이후 발전기의 전압을 출력하는 동작이 현재 상태로 유지된다. 지령이 0인 경우에는 '발전기 출력 = 목표 값'이므로 출력을 증가시키거나 감소시킬 필요가 없다. On the contrary, when the load is abruptly removed and the voltage of the generator rises, the control current command of the exciter is drastically reduced by the / OVINT signal. The switch unit 630 preferably selects the control current command of the exciter as zero. In other words, if it is determined that the overshoot, it is processed as a value of 0 without using Ifd * (generator field current command value) generated by the PID controller 620. In this case, since the setpoint is 0, the operation of outputting the voltage of the generator afterwards is maintained. If the command is 0, there is no need to increase or decrease the output since the generator output = target value.
특히, 오버슈트에 대해서 강한 동작을 설정하게 되는 것은 여자기의 특성상 여자 전류가 0으로 감소하는 동안에도 발전기의 전압은 부하의 제거에 의한 전압상승이 이루어지고 이에 대하여 오버슈트가 20%를 넘어갈 수 있기 때문이다. Particularly, the strong operation for overshoot is set because the characteristic of the exciter causes the voltage of the generator to rise due to the removal of the load while the excitation current is reduced to zero, and the overshoot can exceed 20%. Because there is.
도 10은 본 발명을 적용한 선박용 발전기 시스템의 블록도이다.  10 is a block diagram of a marine generator system to which the present invention is applied.
도 10을 참조하면, 발전기는 디젤 엔진에 의해 구동되고, 발전기의 계자는 여자기의 발전에 의해 동작된다. AVR은 여자기의 계자 전류를 제어하기 위한 IGBT 구동에 의한 PWM 제어에 의해 동작된다. CCS는 전류제어기(Current Control System)로 여자기의 계자 전류를 제어한다.  Referring to Figure 10, the generator is driven by a diesel engine, the field of the generator is operated by the generation of the exciter. The AVR is operated by PWM control by IGBT driving to control the field current of the exciter. CCS is a current control system to control the field current of the exciter.
발전기의 전압과 전류는 발전기 출력단에 설치된 PT(Potential Transformer) 및 CT(Current Transducer)에 의해 검출된다. 전압은 U-W 상에 의해 검출되며, 전류는 V상의 전류를 검출한다.  The voltage and current of the generator are detected by a PT (Potential Transformer) and a Current Transducer (CT) installed at the generator output. The voltage is detected by the U-W phase and the current detects the current in the V phase.
Droop 제어기는 부하의 위상에 따라 병렬 운전에 대한 특성을 결정하기 위한 제어기이다.  Droop controller is a controller to determine the characteristics of parallel operation according to the load phase.
디지털 AVR은 발전기의 잔류 전압에 의한 피드백 루프에 의해 기동되어야 하므로, 자기동(Self-starter) 회로가 AVR의 제어 전원을 확립하는 동안 발전기의 동작을 결정한다. Since the digital AVR must be started by a feedback loop by the generator's residual voltage, the self-starter circuit determines the generator's operation while establishing the control power of the AVR.
도 11은 본 발명에 따른 제어시스템 회로의 일 예를 도시한 도면이다. 11 is a view showing an example of a control system circuit according to the present invention.
본 발명에 따른 제어시스템의 타당성을 검증하기 위하여 3상 380V, 200kW 디젤 엔진 발전기에 대한 실험을 수행하였다. 본 발명에 따른 발전기는 중소형 선박용 비상발전기로 설계되었으며, 발전기의 여자기 계자 저항은 16.5[Ω]이고, 최대 출력전압은 45[V]로 설정하였다.In order to verify the validity of the control system according to the present invention, an experiment was performed on a three-phase 380V, 200kW diesel generator. The generator according to the present invention is designed as an emergency generator for small and medium-sized ships, the excitation field resistance of the generator is 16.5 [Ω], and the maximum output voltage is set to 45 [V].
도 12는 본 발명에 따른 제어시스템의 실험 환경을 도시한 도면이다. 12 is a diagram illustrating an experimental environment of a control system according to the present invention.
본 발명에 따른 발전기의 실험은 정격 저항부하와 인덕턴스 부하에 대하여 수행되었다. 디지털 AVR의 메인 제어기는 TI(Texas Instrument)사의 TMS320F2811-100를 사용하였으며, 발전기와 모선의 전압 및 전류는 Analog Device사의 AD637과 2차 Sallen Key 필터를 사용하여 검출하도록 설계되었다. 피크 전압 검출부는 정밀 정류회로와 DSP에 내장된 고속 AD 컨버터를 사용하여 순시적으로 검출하고 있으며, DSP의 CAP에 연결된 전압 주파수 검출부와 동기하여 AD 변환된 값 중에서 최대 값을 찾도록 프로그램 되었다. 여자기 계자의 최대 전류는 15A로 설계되어 있으며, IXYS사의 FID60-060D(600V, 65A)로 구성하였다.The experiment of the generator according to the invention was carried out on the rated resistance load and the inductance load. The main controller of the digital AVR is Texas Instruments' TMS320F2811-100, and the generator and bus voltage and current are designed to detect using Analog Device's AD637 and a second-order Sallen Key filter. The peak voltage detector is instantaneously detected using a precision rectifier circuit and a high-speed AD converter built into the DSP. The peak voltage detector is programmed to find the maximum of the AD-converted values in synchronization with the voltage-frequency detector connected to the DSP's CAP. The maximum current of the excitation field is designed to be 15A and consisted of IXYS's FID60-060D (600V, 65A).
AVR 제어기의 자기동 회로는 트랜지스터에 의한 초기 기동전류 제어 방식으로 구성되어 있으며, 정지상태 기동 및 병렬 운전에서의 전전압 기동에 대해 안정적으로 동작하도록 병렬회로로 구성하였다. 제어기와 모니터링 장치와의 통신은 CAN과 RS-232 방식을 이용하였다. 전압 검출은 110/220/380/450V에 대하여 아날로그 스위치를 통하여 하드웨어의 변경 없이 검출 가능하도록 하였으며, CBS(Current Boosting System)은 에스시알(SCR) 모듈과 전압 제어기로 구성되었다. The self-driving circuit of the AVR controller is composed of an initial starting current control method using a transistor, and is configured in parallel circuit so as to operate stably against the quiescent starting and the full voltage starting in parallel operation. The communication between controller and monitoring device uses CAN and RS-232. The voltage detection was possible to detect 110/220/380 / 450V without changing the hardware through the analog switch. The CBS (Current Boosting System) is composed of an SCR module and a voltage controller.
도 13, 도 14는 일반적인 PID 제어기 및 본 발명에 따른 제어시스템의 응답특성을 각각 도시한 도면이다.  13 and 14 illustrate response characteristics of a general PID controller and a control system according to the present invention, respectively.
도 13, 도 14의 각각의 도면에는 100% 부하 인가와 부하 제거 상태에서의 PID 제어기와 본 발명에 따른 제어 구조에서의 응답특성이 각각 도시되어 있다. 또한 여자기의 계자 전류, r.m.s. 검출 전압, 발전기 출력단자 전압 및 부하 전류의 파형이 도시되어 있다.  13 and 14 show the response characteristics of the PID controller and the control structure according to the present invention, respectively, in the state of 100% load application and load removal. Also the field current of the exciter, r.m.s. The waveforms of the detected voltage, generator output terminal voltage and load current are shown.
도 13에 도시된 바와 같이, 일반적인 PID 제어기에서는 부하의 인가와 제거 상태에서 언더슈트와 오버슈트는 점선으로 표기된 설정 전압의 90%와 110% 보다 크게 변동하고 있음을 확인할 수 있다. 특히 오버슈트는 약 24%까지 증가하는 것을 보이고 있다.  As shown in FIG. 13, it can be seen that in the general PID controller, undershoot and overshoot vary more than 90% and 110% of the set voltage indicated by dotted lines in the state of applying and removing the load. In particular, overshoot is increasing by about 24%.
도 14에 도시된 바와 같이, 본 발명에 따른 제어시스템에서는 언더슈트 및 오버슈트가 크게 감소하고 있다. 또한, 제어이득의 변화에 대하여 본 발명에 따른 제어 구조는 PID 제어기보다 빠른 응답성을 나타내고 있음을 확인할 수 있다. 본 발명에 따른 제어 구조에서는 언더슈트는 11%, 오버슈트는 12% 이내로 안정적인 제어가 이루어지고 있음을 알 수 있다. As shown in Fig. 14, undershoot and overshoot are greatly reduced in the control system according to the present invention. In addition, it can be seen that the control structure according to the present invention has a faster response than the PID controller with respect to the change in the control gain. In the control structure according to the present invention, it can be seen that undershoot is within 11% and overshoot is within 12%.
도 15 및 도 16은 인덕턴스 부하에 대한 응답특성의 일 예를 각각 도시한 도면이다. 15 and 16 are diagrams each showing an example of a response characteristic to an inductance load.
도 15를 참조하면, 인덕턴스 부하의 인가 및 제거에 대해서도 본 발명에 따른 제어시스템은 안정적인 전압 제어 특성을 나타내고 있음을 확인할 수 있다. 또한 도 16을 참조하면, Droop 10% 설정에 대한 발전기의 전압도 부하 전류의 크기와 역률에 따라 안정적으로 제어되고 있음을 확인할 수 있다. Referring to FIG. 15, it can be seen that the control system according to the present invention also exhibits stable voltage control characteristics for the application and removal of the inductance load. In addition, referring to FIG. 16, it can be seen that the voltage of the generator for the Droop 10% setting is also stably controlled according to the magnitude and power factor of the load current.
도 17은 본 발명에 따른 제어방법의 순서도이다.17 is a flowchart of a control method according to the present invention.
피크 전압 검출부는 발전기 전압의 피크치를 검출한다(S1100).The peak voltage detector detects a peak value of the generator voltage (S1100).
비교기는 피크전압을 하한 값과 상한 값과 비교한다(S1200). The comparator compares the peak voltage with a lower limit and an upper limit (S1200).
검출된 피크전압이 하한 값보다 작은 경우에는 제어이득을 조절한다(S1300 및 S1350). 피크전압이 하한 값보다 작아 언더슈트가 발생하는 경우에는, 스위치부는 증가된 제어이득에 의한 여자기의 제어 전류지령을 선택한다.If the detected peak voltage is smaller than the lower limit value, the control gain is adjusted (S1300 and S1350). When undershoot occurs because the peak voltage is smaller than the lower limit, the switch section selects the control current command of the exciter by the increased control gain.
검출된 피크전압이 상한 값보다 큰 경우에는 발전기의 전압을 현재 상태로 유지한다(S1400 및 S1450)피크전압이 상한 값보다 높아 오버슈트가 발생하는 경우에는, 스위치부는 여자기의 제어전류 지령을 0으로 선택한다. If the detected peak voltage is higher than the upper limit value, the generator voltage is kept at the present state (S1400 and S1450). If the peak voltage is higher than the upper limit value and an overshoot occurs, the switch unit resets the control current command of the exciter to zero. Select with.
본 발명에 따른 제어 방식은 부하의 급격한 변동은 설계된 피크 전압 검출부에서 검출하고, 검출된 신호에 따라 제어기의 제어이득을 변동시키며, 오버슈트를 방지하기 위한 스위치 제어 방식을 적용하였다. 본 발명에 따른 디지털 AVR 제어기는 선박용 200kW 발전기의 실부하 시험에서 동일한 제어기의 PID 제어 방식에 비해 개선된 응답특성을 나타내었다. 또한, 초기 자기동 및 전부하 변동과 Droop 특성 시험, V/Hz 특성 시험에서 모두 안정적인 응답특성을 나타내었다.  In the control method according to the present invention, a sudden change in load is detected by a designed peak voltage detector, a control gain of the controller is changed according to the detected signal, and a switch control method is applied to prevent overshoot. The digital AVR controller according to the present invention showed improved response characteristics compared to the PID control method of the same controller in a real load test of a 200kW generator for ships. In addition, the initial magnetic dynamic and full load fluctuations, droop characteristic test, and V / Hz characteristic test showed stable response characteristics.

Claims (11)

  1. 발전기 전압의 피크치를 검출하는 피크전압 검출부;A peak voltage detector detecting a peak value of the generator voltage;
    상기 피크전압을 설정 값과 비교하는 비교기; 및A comparator for comparing the peak voltage with a set value; And
    상기 검출된 피크전압이 기설정된 하한 값보다 작은 경우에는 제어이득을 조절하며, 상기 검출된 피크전압이 기설정된 상한 값보다 큰 경우에는 발전기의 전압을 현재 상태로 유지시키는 제어부;를 포함하는 발전기의 피크전압을 이용한 발전기 제어시스템.A control unit for adjusting the control gain when the detected peak voltage is smaller than a predetermined lower limit value, and maintaining the voltage of the generator in a current state when the detected peak voltage is larger than a predetermined upper limit value. Generator control system using peak voltage.
  2. 제1항에 있어서,The method of claim 1,
    상기 피크전압 검출부는The peak voltage detector
    발전기의 주파수에 따라 발전 전압의 피크치를 검출하는 피크전압을 이용한 발전기 제어시스템.Generator control system using peak voltage to detect peak value of power generation voltage according to generator frequency.
  3. 제1항에 있어서,The method of claim 1,
    상기 피크전압 검출부는 노이즈 및 고정된 저항(R) 및 콘덴서(C)에 의해 동작하는 피크전압을 이용한 발전기 제어시스템.The peak voltage detection unit using a peak voltage operated by noise and a fixed resistor (R) and a capacitor (C).
  4. 제1항에 있어서,The method of claim 1,
    상기 비교기는The comparator
    상기 피크전압과 상기 하한 값을 비교하는 제1 비교기; 및A first comparator for comparing the peak voltage with the lower limit value; And
    상기 피크전압과 상기 상한 값을 비교하는 제2 비교기;를 포함하는 피크전압을 이용한 발전기 제어시스템.And a second comparator for comparing the peak voltage with the upper limit value.
  5. 제1항에 있어서,The method of claim 1,
    상기 제어부는The control unit
    상기 피크전압이 상기 하한 값보다 작아 언더슈트가 발생하는 경우에는 제어이득을 증가시키는 제어이득 변환부; 및A control gain converter for increasing control gain if the peak voltage is less than the lower limit and an undershoot occurs; And
    상기 언더슈트가 발생한 경우에는 상기 증가된 제어이득에 의한 여자기의 제어 전류지령을 선택하며, 상기 피크전압이 상기 상한 값보다 높아 오버슈트가 발생하는 경우에는 소정의 여자기의 제어전류 지령을 선택하는 스위치부;를 포함하는 발전기의 피크전압을 이용한 발전기 제어시스템.When the undershoot occurs, the control current command of the exciter by the increased control gain is selected. When the overshoot occurs because the peak voltage is higher than the upper limit, the control current command of the predetermined exciter is selected. Generator control system using the peak voltage of the generator comprising a switch unit.
  6. 제1항에 있어서,The method of claim 1,
    발전기의 실효전압(r.m.s.전압)으로 PID 제어를 수행하는 PID 제어부;를 더 포함하며,And a PID controller for performing PID control with an effective voltage (r.m.s. voltage) of the generator.
    상기 제어이득은 상기 PID제어부의 Kp, Ki, Kd를 조절하는 발전기의 피크전압을 이용한 발전기 제어시스템.The control gain generator control system using the peak voltage of the generator for adjusting the Kp, Ki, Kd PID control unit.
  7. 제1항에 있어서,The method of claim 1,
    상기 오버슈트가 발생하는 경우에는 발전기의 전압을 현재 상태로 유지시키도록 상기 소정의 여자기의 제어 전류지령이 제로(0)인 발전기의 피크전압을 이용한 발전기 제어시스템.The generator control system using the peak voltage of the generator of which the control current command of the predetermined exciter is zero (0) to maintain the voltage of the generator in the current state when the overshoot occurs.
  8. 제5항에 있어서,The method of claim 5,
    상기 하한 값은 여자기의 제어 지령(
    Figure PCTKR2009005262-appb-I000002
    )의 95%, 상기 상한 값은 여자기의 제어 지령(
    Figure PCTKR2009005262-appb-I000003
    )의 105%인 발전기의 피크전압을 이용한 발전기 제어시스템.
    The lower limit is the control command of the exciter (
    Figure PCTKR2009005262-appb-I000002
    95% of), the upper limit value is the control command (
    Figure PCTKR2009005262-appb-I000003
    Generator control system using peak voltage of generator which is 105% of
  9. 발전기 전압의 피크치를 검출하는 단계;Detecting a peak value of the generator voltage;
    상기 피크전압을 하한 값과 상한 값과 비교하는 단계; 및Comparing the peak voltage with a lower limit and an upper limit; And
    상기 검출된 피크전압이 상기 하한 값보다 작은 경우에는 제어이득을 조절하며, 상기 검출된 피크전압이 상한 값보다 큰 경우에는 발전기의 전압을 현재 상태로 유지시키는 단계;를 포함하는 피크전압을 이용한 발전기 제어방법.If the detected peak voltage is less than the lower limit value, the control gain is adjusted, and if the detected peak voltage is greater than the upper limit value, maintaining the voltage of the generator in the current state; a generator using the peak voltage Control method.
  10. 제9항에 있어서,The method of claim 9,
    상기 피크전압이 상기 하한 값보다 작아 언더슈트가 발생하는 경우에는 증가된 제어이득에 의한 여자기의 제어 전류지령을 선택하며, 상기 피크전압이 상기 상한 값보다 높아 오버슈트가 발생하는 경우에는 소정의 여자기의 제어전류 지령을 선택하는 피크전압을 이용한 발전기 제어방법.When the undershoot occurs because the peak voltage is smaller than the lower limit value, the control current command of the exciter is selected by the increased control gain. When the overshoot occurs because the peak voltage is higher than the upper limit value, the predetermined current is selected. Generator control method using peak voltage to select control current command of exciter.
  11. 제10항에 있어서,The method of claim 10,
    상기 오버슈트가 발생하는 경우에는 발전기의 전압을 현재 상태로 유지시키도록 상기 소정의 여자기의 제어 전류지령을 제로(0)로 선택하는 피크전압을 이용한 발전기 제어방법.And a peak voltage for selecting a control current command of the predetermined exciter to zero to maintain the voltage of the generator in a current state when the overshoot occurs.
PCT/KR2009/005262 2008-09-19 2009-09-16 Generator control system using peak voltage WO2010032954A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0091906 2008-09-19
KR1020080091906A KR100993109B1 (en) 2008-09-19 2008-09-19 Generator control system with peak voltage detecting

Publications (3)

Publication Number Publication Date
WO2010032954A2 true WO2010032954A2 (en) 2010-03-25
WO2010032954A3 WO2010032954A3 (en) 2010-06-24
WO2010032954A9 WO2010032954A9 (en) 2010-08-12

Family

ID=42039999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005262 WO2010032954A2 (en) 2008-09-19 2009-09-16 Generator control system using peak voltage

Country Status (2)

Country Link
KR (1) KR100993109B1 (en)
WO (1) WO2010032954A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856922A (en) * 2012-06-25 2013-01-02 河海大学常州校区 Synchronous generator parameter equivalent method for micro-grid connection simulation
EP2768134A1 (en) * 2013-02-19 2014-08-20 Siemens Aktiengesellschaft Voltage control for a generator of a wind turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050055810A (en) * 2003-12-09 2005-06-14 조병모 Inverter output controller for a generator
JP2006050890A (en) * 2004-07-06 2006-02-16 Denso Corp Power generation control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284797A (en) * 1992-03-27 1993-10-29 Aisin Seiki Co Ltd Stirling engine generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050055810A (en) * 2003-12-09 2005-06-14 조병모 Inverter output controller for a generator
JP2006050890A (en) * 2004-07-06 2006-02-16 Denso Corp Power generation control device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONG-HEE LEE ET AL.: 'A Performance Improvement of Exciter Control System of Synchronous Generator using Transient Response Compensator' THE PROCEEDINGS OF THE KOREAN INSTITUTE OF ILLUMINATING AND ELECTRICAL INSTALLATION ENGINEERS vol. 21, no. 5, June 2007, pages 82 - 89 *
DONG-HEE LEE ET AL.: 'Dynamic Response Improvement of Stand Alone Engine-Generator System using Double Voltage Detection Method' THE PROCEEDINGS OF KIEE vol. 57, no. 7, July 2008, pages 1195 - 1199 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856922A (en) * 2012-06-25 2013-01-02 河海大学常州校区 Synchronous generator parameter equivalent method for micro-grid connection simulation
EP2768134A1 (en) * 2013-02-19 2014-08-20 Siemens Aktiengesellschaft Voltage control for a generator of a wind turbine

Also Published As

Publication number Publication date
WO2010032954A9 (en) 2010-08-12
WO2010032954A3 (en) 2010-06-24
KR100993109B1 (en) 2010-11-08
KR20100032976A (en) 2010-03-29

Similar Documents

Publication Publication Date Title
EP2263307B1 (en) Method and apparatus for regulating excitation of an alternator
EP2053728A2 (en) Adjustable speed drive protection
US4545002A (en) Thyristor voltage limiter for current source inverter
CN1639462A (en) Method for operating a wind energy plant
WO2017043750A1 (en) Inverter device for microgrid, and method for controlling same
EP0195025A1 (en) Voltage regulator with independent peak and average voltage sensing
US4751629A (en) Output power regulating system for a portable engine powered electric generator
JP4002763B2 (en) Apparatus and method for adjusting reactive power for generating electrical energy in an electrical network
US6798627B2 (en) Engine generator set systems and methods providing load power fault protection
WO2010032954A2 (en) Generator control system using peak voltage
US5017857A (en) Circuit and method for voltage regulation of electric power sources
KR20020066323A (en) Method for controlling the reactive power and device for generating electrical energy in an electrical network
FI120123B (en) Method and apparatus for stabilizing intermediate circuit voltage in a frequency converter
JP4568111B2 (en) Power conversion control device
US20070041229A1 (en) Method and device for producing rectifier gating signals using feed forward control
EP1641098B1 (en) Motor drive system
US3991349A (en) Droop adjustable control apparatus for direct current motor drives
EP0227014A1 (en) Turbine helper drive apparatus
WO2018124467A1 (en) Motor control device and control method for motor control device
Barrass et al. PWM rectifier using indirect voltage sensing
JP2004208345A (en) Three-phase unbalanced voltage restraining apparatus
WO2018236087A1 (en) Power supply device and method for supplying power to load
EP0376725A2 (en) Circuit for discharging DC filter capacitors
Wang et al. Practical start-up process of multiple grid-tied voltage-sourced inverters in laboratory
JP3002190B1 (en) Turbine power generation method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814770

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814770

Country of ref document: EP

Kind code of ref document: A2