WO2010032855A1 - Fine particles of a water-insoluble compound, dispersion of same and process for production thereof - Google Patents

Fine particles of a water-insoluble compound, dispersion of same and process for production thereof Download PDF

Info

Publication number
WO2010032855A1
WO2010032855A1 PCT/JP2009/066456 JP2009066456W WO2010032855A1 WO 2010032855 A1 WO2010032855 A1 WO 2010032855A1 JP 2009066456 W JP2009066456 W JP 2009066456W WO 2010032855 A1 WO2010032855 A1 WO 2010032855A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dispersant
water
fine particles
solvent
Prior art date
Application number
PCT/JP2009/066456
Other languages
French (fr)
Japanese (ja)
Inventor
真人 中尾
大輔 佐々木
眞敏 湯本
敬太郎 相見
秀俊 藤村
陽介 宮下
敏貴 二宮
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009126242A external-priority patent/JP5591490B2/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2010032855A1 publication Critical patent/WO2010032855A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • C09B67/0085Non common dispersing agents
    • C09B67/009Non common dispersing agents polymeric dispersing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images

Definitions

  • the present invention relates to fine particles of a water-insoluble compound suitably used for resists and inks formed on a substrate, a dispersion thereof, and a production method thereof.
  • the pigment particles are made finer, the effect of light scattering is reduced and the light transmission is improved. For this reason, as a coloring material applied to an ink for inkjet recording or a pigment dispersion composition for a color filter, it is desired to make the pigment fine particles to 100 nanometers or less.
  • the pigment is finely divided by a mechanical force using a disperser such as a sand mill, a roll mill, or a ball mill.
  • a disperser such as a sand mill, a roll mill, or a ball mill.
  • the smaller the particle size the longer the dispersion takes, and the higher the cost, the more difficult it becomes to obtain a uniform quality.
  • an aqueous dispersion of pigment-containing particles is formed by mixing a pigment solution prepared by dissolving a dispersant and an organic pigment in an aprotic organic solvent in the presence of an alkali with water, and agglomerating the mixture.
  • a fine pigment dispersion having a uniform size independent of the size of the primary particles of the pigment is disclosed by performing treatment and treatment for imparting redispersibility (see Patent Document 1). .
  • the obtained particles 30 have a structure in which the pigment (coloring material particles) 11 are included in the dispersant 22. With such a particle structure, when the particles are used as an ink liquid for ink jet recording, transparency, color density, storage stability, ink jet discharge durability and the like are excellent.
  • Patent Document 2 an attempt to attach a block copolymer to the surface of phthalocyanine pigment fine particles (Patent Document 2), an attempt to integrate a water-insoluble colorant and a chargeable resin pseudo particle (Patent Document 3), a polymer on the pigment particle surface
  • Patent Document 4 an attempt to graft a chain
  • Patent Document 1 discloses a procedure for encapsulating particles in the polymer by polymerizing a polymerizable compound after forming colorant particles, it involves a chemical modification reaction. The particle formation process is complicated. Further, in any of these methods, since the colorant particles are covered with the dispersant, any improvement in the amount of the dispersant used is desired.
  • an object of the present invention is to provide fine particles that are stably dispersed in a medium, and in particular, to provide fine particles of a water-insoluble compound excellent in dispersion stability with time and a dispersion thereof.
  • the present invention also provides water-insoluble compound fine particles having the above-mentioned excellent characteristics that can be produced with a small amount of a dispersant by a simple particle formation step and, if necessary, a dispersion step without requiring complicated operations and special treatments. , Its dispersion, and its manufacturing method.
  • Fine particles according to (1) wherein 10% by mass or more and 100% by mass or less of the dispersant dissolved at the time of fine particle formation is taken in and embedded in the fine particles.
  • the total amount of the dispersant dissolved in the good solvent and the poor solvent is 10 to 300 parts by mass with respect to 100 parts by mass of the water-insoluble compound, as described in (1) or (2) Fine particles.
  • 80% by mass or more of the dispersing agent embedded in the fine particles out of the dispersing agent has a particle radius from the particle surface of the fine particles. Fine particles of a water-insoluble compound characterized by being unevenly distributed in an outer region of up to 50%.
  • Fine particles according to (4) characterized in that (6) The fine particles according to (4) or (5), wherein the dispersant is embedded in an amount of 5 to 200% by mass based on the mass of the water-insoluble compound.
  • the dispersant is a polymer dispersant having a structural portion showing an interaction attracting the water-insoluble compound composed of an aromatic ring and a nitrogen-containing cyclic hydrocarbon group and / or a quaternary ammonium group.
  • the dispersant has at least one hydrophilic group selected from the group consisting of a carboxylic acid group, a hydroxyl group, a sulfonic acid group, a phosphoric acid group, an amide group, a sulfonamide group, and an alkylene oxide group.
  • the dispersant further has a site having at least one bond selected from an ester bond, an ether bond, and an amide bond for dispersing the water-insoluble compound in a dispersion medium, or an aromatic ring.
  • the good solvent is at least one solvent selected from the group consisting of an acidic solvent, an alkaline solvent, a polar organic solvent, and a supercritical fluid, or a mixture thereof.
  • the poor solvent is a solvent containing water as a main component.
  • the fine particle dispersion according to (17) which contains a dispersant not embedded in the fine particles.
  • the dispersant is a polymer dispersant having a structural portion showing an interaction attracting the water-insoluble compound composed of an aromatic ring and a nitrogen-containing cyclic hydrocarbon group and / or a quaternary ammonium group.
  • the dispersing agent comprises an aromatic ring and a nitrogen-containing cyclic hydrocarbon group and / or a quaternary ammonium group, exhibiting an interaction property that attracts the water-insoluble compound, and the water-insoluble compound in the dispersion medium. It is a polymer dispersant having a steric repulsion part having a repeating unit containing at least one type of bond selected from an ester bond, an ether bond, and an amide bond for dispersion (22 ) Production method of the fine particles described in the above.
  • the fine particles of the water-insoluble compound of the present invention and the dispersion thereof have an excellent effect of suppressing aggregation of the fine particles in the dispersion medium and exhibit extremely good dispersibility even when the amount of the dispersant used is small. Play. Furthermore, the above-mentioned good dispersion state can be maintained over a long period of time, and it is possible to achieve both high dispersibility in a small amount of dispersant, which has been difficult in the past, and particularly high dispersion and storage stability over time. Can do. Further, according to the production method of the present invention, the water-insoluble compound fine particles having the above-mentioned excellent characteristics and the dispersion thereof can be easily formed without any complicated operation or special treatment, and if necessary, a dispersion step. Therefore, it can be produced with a small amount of dispersant, and can be suitably adapted to mass production for industrial use as a precision optical element material such as high-performance ink and color filter.
  • Sectional drawing which shows typically the structure of the microparticles
  • Sectional drawing which shows typically the structure of the microparticles
  • Sectional drawing which shows the structure of the conventional particle
  • the fine particles of this embodiment embed a dispersant.
  • the term “embedding” refers to a state in which part or all of the molecules of the dispersing agent are taken into the fine particles.
  • the state in which all of the dispersant is incorporated is a state in which the entire molecule of the added dispersant is encapsulated in the fine particles 10 (see the embedded embedding dispersant 2b).
  • the part-incorporated state is a state in which a part or functional group of the added dispersant is encapsulated in the particle and the remaining part extends outward from the particle (see the external embedding dispersant 2a). Both of these are included.
  • a specific dispersant coexists in at least one of a good solvent and a poor solvent, and a water-insoluble compound is dissolved in the good solvent together with or separately from the good solvent and the poor solvent side liquid. And build-up fine particles in which the dispersant is embedded in the particles.
  • the dispersant is preferably a polymer dispersant having a mass average molecular weight of 1000 or more, and more preferably a polymer dispersant having a specific structural site as described later.
  • the dispersing agent partially or wholly incorporated into the inside of the particle is not simply merely physically adsorbed on the particle surface as in the prior art, but is immobilized and irreversibly incorporated within the particle. For this reason, unless the fine particles are destroyed or dissolved, the dispersion medium and / or the composition solvent usually does not release or desorb. Therefore, the fine particles embedded with the dispersant have a high dispersion effect that the aggregation of the particles can be suppressed, and the dispersion stability is extremely high even if the amount of the dispersant used is small.
  • the characteristics of the fine particles embedded with the dispersing agent of this embodiment can be confirmed by measuring the amount of the dispersing agent that does not desorb even after repeated washing with a solvent in which the dispersing agent dissolves. .
  • the method for efficiently embedding the dispersing agent in the particles is not particularly limited.
  • a specific dispersing agent can be selected and used, or by adjusting process conditions such as a channel mixing method.
  • process conditions such as a channel mixing method.
  • grains is demonstrated in detail.
  • the dispersant In order to embed the dispersant in the particles by the usual reprecipitation method, it is preferable to use a specific dispersant. At this time, if all the dispersant molecules are encapsulated in the particles and all the functional groups necessary for the dispersion are also encapsulated in the particles, it may not be possible to sufficiently fulfill the role of imparting the dispersibility of the dispersant. Therefore, it is preferable that all the functional groups necessary for the dispersion are not included in the particles. In order to appropriately encapsulate the dispersant in the fine particles and impart dispersion stability, it is preferable to use a dispersant that satisfies the following requirements.
  • the medium in which the dispersant can be dissolved is compatible with the medium in which the water-insoluble compound used in combination can be dissolved;
  • the dispersant is a polymer dispersant having a mass average molecular weight of 1000 or more, (3) The dispersant is precipitated by mixing with a poor solvent, but the deposition rate is slower than the precipitation of the water-insoluble compound.
  • the dispersant contains at least one functional group having an interactive property attracting a water-insoluble compound, By achieving the above requirements, the dispersant can be efficiently and moderately encapsulated in the particles.
  • the dispersant to be embedded used in the present embodiment is preferably used after being dissolved in a good solvent for dissolving the water-insoluble compound, a good solvent prepared separately from this, or a poor solvent.
  • the following method is mentioned as a preferable embodiment of dissolution and mixing of the dispersant.
  • (1) A method in which a dispersant is co-dissolved in a good solvent together with a water-insoluble compound, brought into contact with a poor solvent, and precipitated.
  • a water-insoluble compound solution and a dispersant solution are prepared separately.
  • a method in which a solution obtained by dissolving a dispersant in a water-insoluble compound solution and a poor solvent is brought into contact with each other to cause precipitation.
  • the fine particles of the present invention may be prepared by any of these methods, but it is preferable that the dispersant-dissolved solution is compatible with the water-insoluble compound solution. If the dispersant solution and the water-insoluble compound solution are not compatible with each other, the dispersant may not be sufficiently incorporated into the particles by mixing with the poor solvent.
  • the methods (1) and (2) are particularly preferably used.
  • the dispersant in order to incorporate the dispersant into the particles, is preferably a polymer dispersant having a mass average molecular weight of 1000 or more, more preferably 3000 to 300,000, and particularly preferably It is 5000 or more and 100,000 or less. If the molecular weight of the dispersant is too low, the proportion of the dispersant incorporated into the particle may decrease, and if it is too large, aggregation of the dispersant may increase and redispersibility may deteriorate.
  • the dispersion of the dispersant is preferably narrow, that is, monodisperse.
  • the degree of dispersion of the dispersant is represented by a ratio of the number average molecular weight to the mass average molecular weight, and a dispersant having a dispersity in the range of 1.0 to 5.0 is preferable, and a range of 1.0 to 4.0 is particularly preferable. Is used.
  • the dispersant embedded in the fine particles used in the present embodiment (hereinafter, sometimes referred to as “embedding dispersant” to be distinguished from a simple dispersant) is dissolved in a solvent in advance and mixed with a poor solvent. It can be made to precipitate. Similarly, a water-insoluble compound can also be dissolved in a good solvent and precipitated by contact with a poor solvent to form fine particles. In such a fine particle formation stage, when the deposition rate of the dispersant is faster than the deposition rate of the water-insoluble compound, the dispersant is deposited before it is sufficiently incorporated into the particles, so that the dispersant is incorporated into the particles. Hateful.
  • the deposition rate of the dispersant is lower than the deposition rate of the water-insoluble compound.
  • fine-particles can be controlled by adjusting the deposition rate of the embedding dispersing agent in this way as needed.
  • the deposition rate of the embedding dispersant is preferably slower than that of the water-insoluble compound.
  • the precipitation rate ratio between the water-insoluble compound and the dispersant is determined for each particle. It is preferable to determine based on formation conditions.
  • a preferable dispersing agent for incorporating the embedding dispersant into the particles and further preventing the embedded dispersing agent from being released in the dispersion medium or the composition medium will be described.
  • the chemistry of the embedding dispersant is shown so that the dispersing agent and the water-insoluble compound are precipitated through a mixing process so as to exhibit an attractive interaction between them. It is preferable to design the structure. In the present invention, it is preferable to mix the embedding dispersant and the water-insoluble compound in a state dissolved in a solvent.
  • the interaction between the dispersant and the water-insoluble compound is small, In some cases, the incorporation rate into the composition may be too small, or the embedded dispersant may be easily released in the dispersion medium or the composition medium, or the dispersion stability may deteriorate. For this reason, it is preferable to use an embedding dispersant having a structure site that strongly attracts and interacts with the water-insoluble compound, and it is preferable to strengthen this interaction to enhance entrainment and firmly fix the dispersant to the particles.
  • the embedding dispersant introduced into the system at the time of microparticle formation is embedded. That is, with respect to the mass (A) of the added embedding dispersant, the percentage of the mass (B) of the dispersant incorporated and embedded in the particles ((B) / (A) ⁇ 100) ( Hereinafter, this rate may be referred to as “dispersing agent uptake rate.”) Is preferably 10% by mass or more. Further, the dispersant uptake rate ((B) / (A)) is more preferably 20% by mass or more, and particularly preferably 30% by mass or more.
  • the upper limit in calculation is 100% by mass, and it is practical that it is 98% by mass or less.
  • the measurement and calculation of the above-mentioned “dispersing agent uptake rate” is performed according to the method described in the following examples unless otherwise specified.
  • the fine particles of the present embodiment have extremely high dispersion stability over time as well as initial dispersibility because a larger amount of dispersant is incorporated into the particles than ever before. Needless to say, the amount of the dispersant used can be reduced, the manufacturing cost can be reduced, and unnecessary dispersant components can be greatly reduced by switching the solvent, which is excellent in environmental compatibility.
  • the amount of the embedded embedding dispersant is assumed to be the ratio of the fine particles to the mass of components other than the dispersant, that is, the embedding dispersant forming the fine particles as a dispersed phase and the continuous phase formed by a water-insoluble compound or the like.
  • the percentage of the ratio of the mass (X) of the embedding dispersant constituting the dispersed phase to the mass (Y) of the continuous phase of the fine particles ((X) / (Y) ⁇ 100) (hereinafter this ratio is (It may be referred to as “dispersing agent embedding ratio”). It is 5 to 200% by mass (this point is optional in the second embodiment), and more preferably 8 to 160% by mass. preferable.
  • the measurement and calculation of the “dispersing agent embedding rate” is performed according to the method described in the following examples unless otherwise specified.
  • the fine particle of the present embodiment is a fine particle composed of a water-insoluble compound and a dispersant, and is 50% of the particle radius from the particle surface (this ratio is determined from the particle surface of the particle radius line to the inside of the particle). This is the percentage of the value obtained by dividing the distance to the fixed point by the distance (radius) from the particle center to the particle surface, and corresponds to the percentage of [radius outside distance r 2 / radius R] shown in FIG.
  • the distance from the approximate center point of the particle to the outer surface can be regarded as the radius, which will be described in detail later). 80% by mass or more of the dispersing agent embedded in is unevenly distributed.
  • embedding means a state in which a part or all of the components of the dispersant are taken into the particles.
  • the state in which all of the dispersant is incorporated is a state in which the entire molecule of the added dispersant is encapsulated in the particles 20 (see the embedded embedding dispersant 2b).
  • the partially incorporated state is a state in which a part of the added dispersant or a functional group is encapsulated in the particle and extends to the outside of the remaining particle (see the embedded embedding dispersant 2a). Sometimes both are included.
  • the uneven distribution in the particle outer region Ao means a state in which almost no dispersant is encapsulated in the vicinity of the center of the particle and most of the dispersant is encapsulated only in the vicinity of the particle surface.
  • the distribution of the unevenly distributed dispersant of the present invention is defined by an outer region Ao within 50% (r 2 / R) of the particle radius from the particle surface, preferably 40% (r 2 / R of the particle radius from the particle surface).
  • R) is defined by the outer region Ao within the range, and more preferably is defined by the outer region Ao within 30% (r 2 / R) of the particle radius from the particle surface.
  • the fine particle preparation relating to the uptake of the dispersant, the definition of the uptake rate and the embedding rate, the measurement / calculation method, and the preferred range are the same as in the first embodiment.
  • the interaction that attracts the embedding dispersant or a water-insoluble compound that is preferable as a structural site thereof means an interaction between molecules or between the structural sites in terms of adsorptivity or affinity, specifically hydrogen bonding interaction. , ⁇ - ⁇ interaction, ion-ion interaction, dipole interaction, London dispersion force (Van der Waals force), and charge transfer interaction. Other examples include hydrophobic interaction based on thermodynamic factors. Any of the above-described interactions may be used as the interaction between the dispersant or the structural site thereof and the water-insoluble compound, and is not particularly limited, but in particular, hydrogen bonding interaction, ⁇ - ⁇ interaction, ion It is effective that it is an interaction. Therefore, it is preferable to introduce a site exhibiting the above-mentioned interaction as a partial structure of the embedding / dispersing agent, whereby the dispersing agent is easily taken into the particles and easily embedded.
  • the hydrogen bond interaction occurs in a molecule in which hydrogen is covalently bonded to an atom having high electronegativity such as fluorine, oxygen, or nitrogen, and in this case, a polar molecule is generated.
  • the hydrogen atom is charged to a positive charge smaller than 1, and as a result, an interaction occurs when an attempt is made to adsorb a negatively charged atom such as oxygen contained in another nearby molecule.
  • a dispersant having a functional group that easily causes the above-described interaction via a hydrogen bond with a water-insoluble compound is used, the incorporation rate of the dispersant into the fine particles can be increased.
  • ⁇ - ⁇ interaction is a dispersion force acting between aromatic rings of organic compound molecules, and is also called stacking interaction.
  • aromatic compounds have a strong planar structure and abundant electrons delocalized by the ⁇ -electron system, so that the London dispersion force is particularly strong. Therefore, the force attracting each other increases as the number of ⁇ electrons increases.
  • a dispersant having a functional group that easily interacts with a water-insoluble compound and ⁇ - ⁇ can be used, the incorporation rate of the dispersant into the fine particles can be increased.
  • the ion-ion interaction is an interaction that occurs between charged ions. For example, since different charges attract each other, if the molecular design is such that the dispersant has a charge different from that of the water-insoluble target substance in the dispersion medium, the interaction between the dispersant and the water-insoluble compound is enhanced, The uptake rate into the fine particles can be increased.
  • the embedding dispersant and the water-insoluble compound are molecularly designed so as to exhibit the plurality of interactions described above.
  • the preferred molecular structure of the dispersant varies depending on the type of the water-insoluble compound of interest.
  • the water-insoluble compound is an organic pigment, it has a heterocyclic moiety in order to impart a hydrogen bonding interaction.
  • a polymer compound can be preferably used, and a polymer compound having a nitrogen-containing heterocyclic moiety is particularly preferred.
  • a dispersant having an aromatic ring as a partial structure is preferable in order to impart ⁇ - ⁇ interaction or hydrophobic interaction.
  • what has a heterocycle and an aromatic ring simultaneously in the same molecular skeleton is especially preferable.
  • heterocyclic partial structure of a preferable dispersant used in the present invention include the following sites (I-1) to (I-29), phthalocyanine-based, insoluble azo-based, azo lake-based, anthraquinone-based, quinacridone-based Organic dye structures such as dioxazine, diketopyrrolopyrrole, anthrapyridine, ansanthrone, indanthrone, flavanthrone, perinone, perylene, thioindigo, and the like in the present invention. It is not limited to.
  • the unit having these sites is preferably 1.0 to 99.0 mol%, more preferably 3.0 to 95.0 mol% of the entire unit constituting the polymer compound. Particularly preferably, it is introduced in the range of 0 to 90.0 mol%.
  • a dispersant having the following sites (II-1) to (II-4) can be used for the purpose of interaction between ions, but it is particularly limited to these. It will never be done.
  • the unit having these sites is preferably 1.0 to 99.0 mol%, more preferably 3.0 to 95.0 mol% of the entire unit constituting the polymer compound. Particularly preferably, it is introduced in the range of 0 to 90.0 mol%.
  • the embedding / dispersing agent is preferably a polymer compound having the above-described interaction group in a partial structure, but further includes an organic solvent medium (for example, an alcohol solvent, a ketone solvent, an ether solvent, a sulfoxide solvent, an ester solvent).
  • an organic solvent medium for example, an alcohol solvent, a ketone solvent, an ether solvent, a sulfoxide solvent, an ester solvent.
  • Preferable examples include solvents, amide solvents, aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, nitrile solvents, and mixtures thereof.
  • ketone solvents An aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, or a mixture thereof is more preferable, and examples of the ketone solvent include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, and the like.
  • the solvent include propylene glycol monomethyl ether and propylene glycol.
  • ester solvents such as 1,3-butylene glycol diacetate, methyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, and ethyl cellosolve acetate.
  • Ethyl lactate butyl acetate, ethyl carbitol acetate, butyl carbitol acetate, etc.
  • aromatic hydrocarbon solvent examples include toluene, xylene, etc.
  • aliphatic hydrocarbon solvent examples include , Cyclohexane, n-octane, etc. These solvents may be used alone or in combination of two or more, and a solvent having a boiling point of 180 ° C. to 250 ° C. may be used if necessary.
  • the dispersion medium such as 2-pyrrolidone, N-acryloylmorpholine, etc.
  • the dispersion medium also has a partial structure (affinity site) with high affinity. Due to the affinity, dispersibility can be imparted in the dispersion medium by the portion (2o site in FIG. 1-1) of the embedding dispersant outside the particles.
  • the affinity site with the dispersion medium is not particularly limited, but examples of the type (s) of the compound include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid. Preferred examples include diesters, itaconic acid diesters, (meth) acrylamides, styrenes, vinyl ethers, vinyl ketones, olefins, maleimides, (meth) acrylonitrile and the like. In addition, in this specification, when showing either or both of "acryl and methacryl", it may describe as "(meth) acryl".
  • Examples of (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate , Isobutyl (meth) acrylate, t-butyl (meth) acrylate, amyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate (meth) acrylate, phenyl (meth) acrylate , 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-methoxyethyl (meth) acrylate , 2- (Ethoxyethyl) (meth) acrylate,
  • crotonates examples include butyl crotonate and hexyl crotonate.
  • vinyl esters examples include vinyl acetate, vinyl chloroacetate, vinyl propionate, vinyl butyrate, vinyl methoxyacetate, and vinyl benzoate.
  • maleic acid diesters examples include dimethyl maleate, diethyl maleate, and dibutyl maleate.
  • fumaric acid diesters examples include dimethyl fumarate, diethyl fumarate, and dibutyl fumarate.
  • itaconic acid diesters examples include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.
  • (Meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nn-butyl (Meth) acrylamide, Nt-butyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N- (2-methoxyethyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N- Diethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-nitrophenyl acrylamide, N-ethyl-N-phenyl acrylamide, N-benzyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone acrylamide, N-methylo Le acrylamide, N- hydroxyethyl
  • styrenes examples include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, butyl styrene, hydroxy styrene, methoxy styrene, butoxy styrene, acetoxy styrene, chlorostyrene, dichlorostyrene, bromostyrene, chloromethyl
  • acidsic substance for example, t-Boc and the like
  • vinyl ethers include methyl vinyl ether, ethyl vinyl ether, 2-chloroethyl vinyl ether, hydroxyethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, octyl vinyl ether, methoxyethyl vinyl ether, and phenyl vinyl ether.
  • vinyl ketones examples include methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, and phenyl vinyl ketone.
  • olefins examples include ethylene, propylene, isobutylene, butadiene, and isoprene.
  • maleimides examples include maleimide, butyl maleimide, cyclohexyl maleimide, and phenyl maleimide.
  • the structure of the preferable dispersing agent and its function for allowing the embedding dispersant to be incorporated into the particles and for the incorporated dispersing agent to be unevenly distributed in the outer region of the particles will be described.
  • an embedding type dispersing agent having a steric repulsive site having a repeating unit in addition to the above-mentioned interactive group.
  • the encapsulated dispersant has a steric repulsive site. Otherwise, a water-insoluble compound is newly deposited on the incorporated dispersant, and as a result, fine particles are obtained in which the embedding dispersant is incorporated into the center of the particle. Therefore, the above-described interacting structural part for incorporating the embedding dispersant into the particles and the structural part having a steric repulsive action having a repeating unit so that a new water-insoluble compound does not precipitate on the incorporated dispersing agent. It is preferable to have both.
  • the embedding dispersant is preferably a polymer compound having the above-mentioned interaction group and steric repulsion group in a partial structure, but the portion having steric repulsion is a dispersion medium and / or composition medium is an organic solvent-based medium.
  • organic solvent-based medium for example, alcohol solvents, ketone solvents, ether solvents, sulfoxide solvents, ester solvents, amide solvents, aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, nitrile solvents, or mixtures thereof, etc.
  • a ketone solvent, an ether solvent, an ester solvent, an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, or a mixture thereof is more preferable.
  • Examples include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, etc.
  • Examples of ether solvents include Examples include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.
  • Examples of ester solvents include 1,3-butylene glycol diacetate, methyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3- Examples include ethyl ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, butyl acetate, ethyl carbitol acetate, butyl carbitol acetate, etc.
  • aromatic hydrocarbon solvents examples include toluene, xylene, and the like.
  • group hydrocarbon solvent examples include cyclohexane, n-octane, etc. These solvents may be used alone or in combination of two or more, and have a boiling point of 180 ° C. to 250 ° C.
  • reactive diluents eg 2-hydroxyethyl (meth) acrylate, benzyl (meth) acrylate, ethoxylated phenyl (meth) acrylate, isobornyl (meth) acrylate, phenoxyethyl) (Meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, polymerizable compounds such as N-vinyl-2-pyrrolidone, N-acryloylmorpholine) are preferred.
  • the steric repulsion part Since the steric repulsion part has an affinity for the dispersion medium, the steric repulsion part has both the effect of unevenly distributing the embedding dispersant in the outer region of the particle and the effect of dispersing the particle in the dispersion medium. Therefore, good dispersibility can be exhibited with a smaller amount of dispersant.
  • the embedding dispersant that is unevenly distributed in the outer region of the particle tends to reduce the proportion of the steric repulsion site that contributes to the dispersion into the particle, and the steric repulsion site contributes to the dispersion effectively. sell. Therefore, compared with the case where the dispersant is taken up to the center of the particle, the dispersibility is extremely high even if the amount of the dispersant used is small, which is preferable.
  • outward extension rate is preferably 40 to 100% by mass. If the above-mentioned outward extension ratio indicating the degree to which the steric repulsion chain of the embedding dispersant is exposed to the outside of the particle is small, the ratio of the steric repulsion chain that can contribute to the dispersion becomes small, and the dispersibility of the fine particles immediately after dispersion is reduced. May not be enough.
  • the outward extension ratio is more preferably 50 to 100% by mass, and particularly preferably 60 to 100% by mass.
  • the upper limit for calculation is 100% by mass, and it is practical that it is 99% by mass or less.
  • the dispersant uptake rate is determined according to the method described in the following examples unless otherwise specified.
  • the steric repulsive part is preferably composed of a repeating unit including a part having at least one bond selected from an ester bond, an ether bond and an amide bond, or a part having an aromatic ring.
  • Examples of the structural moiety composed of the repeating unit constituting these steric repulsive dispersing groups include the following (III-1) to (III-5), but are not particularly limited in the present invention. .
  • the steric repulsive structural portion is preferably 1.0 to 99.0 mol%, more preferably 3.0 to 95.0 mol% of the entire unit constituting the polymer compound. It is particularly preferable to introduce in the range of 0.0 to 90.0 mol%.
  • m is preferably 3 to 200, and more preferably 5 to 120. These steric repulsive sites may be used alone or in combination of two or more.
  • the other functional group is more preferably a vinyl monomer polymer or copolymer having a hydrocarbon group having 4 or more carbon atoms, and more preferably a hydrocarbon having 6 to 24 carbon atoms. Particularly preferred is a polymer or copolymer of a monomer having a group.
  • Preferable examples of the other functional groups include functional groups obtained by polymerizing the monomers u-1 to u-12.
  • a monomer containing an ionic functional group can be used.
  • ionic vinyl monomers anionic vinyl monomers, cationic vinyl monomers
  • alkali metal salts of vinyl monomers having the acidic group organic amines (for example, triethylamine, dimethylaminoethanol, etc.) And the like.
  • the nitrogen-containing vinyl monomer is an alkyl halide (alkyl group: C1-18, halogen atom: chlorine atom, bromine atom or iodine atom): Benzyl halides such as benzyl chloride and benzyl bromide; alkylsulfonic acid esters such as methanesulfonic acid (alkyl group: C1-18); arylsulfonic acid alkylesters such as benzenesulfonic acid and toluenesulfonic acid (alkyl group: C1— 18); dialky sulfate (Alkyl group: C1 ⁇ 4) that is quaternized with such, like dialkyl diallyl ammonium salts.
  • alkyl halide alkyl group: C1-18, halogen atom: chlorine atom, bromine atom or iodine atom
  • Benzyl halides such as benzyl chloride and benzyl bromide
  • the fine particles of the present invention can also be used as a colorant for inkjet recording ink.
  • the main component of the dispersion medium and / or the composition medium is an aqueous solvent (for example, water and a water / water-soluble organic solvent mixture.
  • water-soluble organic solvent examples include glycerin, 1,2,6-hexanetriol, Trimethylolpropane, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, dipropylene glycol, 2-butene-1,4-diol, 2-ethyl-1,3-hexanediol, 2 Alkanediols such as methyl-2,4-pentanediol, 1,2-octanediol, 1,2-hexanediol, 1,2-pentanediol, 4-methyl-1,2-pentanediol (polyhydric alcohols) ); Glucose, Mannose, Fructose, Ribo Sugars such as xylose, arabinose, galactose, aldonic acid, glucitol, maltose, cellobiose, lactose, sucrose
  • Polyhydric alcohols are useful for the purpose of drying inhibitors and wetting agents.
  • glycerin ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-butanediol 2,3-butanediol, 1,4-butanediol, 3-methyl-1,3-butanediol, 1,5-pentanediol, tetraethylene glycol, 1,6-hexanediol, 2-methyl-2,
  • Examples thereof include 4-pentanediol, polyethylene glycol, 1,2,4-butanetriol, 1,2,6-hexanetriol, and the like.
  • the form of polymerization of the embedding dispersant having the interaction group, the steric repulsion dispersing group, and various functional groups is not particularly limited, but the unit having the interaction group, the unit having the steric repulsion dispersion group, various types Polymers or copolymers of vinyl monomers in units having functional groups (for example, alkyl methacrylate homopolymers, styrene homopolymers, alkyl methacrylate / styrene copolymers, polyvinyl butyral, etc.) , Ester polymers (eg, polycaprolactone), ether polymers (eg, polytetramethylene oxide), urethane polymers (eg, polyurethane made of tetramethylene glycol and hexamethylene diisocyanate), amide polymers (eg, Polyamide 6 and polyamide 66 ), Silicone polymer (e.g., polydimethylsiloxane, etc.), carbonate-based polymers
  • the polymer compound is preferably a polymer or copolymer of each vinyl monomer, an ester polymer, an ether polymer, or a modified product or copolymer thereof. From the viewpoint of adjusting solubility in a solvent, cost, ease of synthesis, etc., the polymer compound is most preferably a polymer or copolymer of each vinyl monomer.
  • a method by radical polymerization can be applied.
  • Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing a vinyl monomer polymer or copolymer by radical polymerization can be easily set by those skilled in the art. The conditions can also be determined experimentally.
  • the polymer dispersant used as the embedding dispersant can be used in any binding form. Specifically, any (co) polymers of random (co) polymers, block (co) polymers, and graft (co) polymers can be used. In particular, block (co) polymers, grafts (Co) polymers are preferred.
  • the fine particles of the water-insoluble compound of the present invention are preferably those in which the embedding dispersant having the above specific structure site is mainly used and embedded in the fine particles, but a non-embedded dispersant may be used in combination.
  • Dispersant used in combination for example, viscosity adjustment of the dispersion, photodevelopment imparting, reactivity with the embedding dispersant, interaction with the embedding dispersant, affinity with the dispersion medium, It can be used for the purpose of deaggregating particles precipitated in a poor solvent, the purpose of adjusting the size of fine particles, the purpose of adjusting the affinity between a good solvent and a poor solvent, and the purpose of imparting affinity to a dispersion medium.
  • Ordinary dispersants such as surfactants, low molecular dispersants and polymer dispersants can be used in combination.
  • the use ratio and the number of the dispersant used in combination are not particularly limited, but it is preferably used in the range of 0.01 to 195% by mass with respect to 1% by mass of the water-insoluble compound. It is more preferable to use in the range of mass%.
  • the number of dispersants used in combination is preferably one or more.
  • a polymer compound can be used as the dispersant used in combination. Specifically, styrene, styrene derivatives, vinyl naphthalene, vinyl naphthalene derivatives, aliphatic alcohol esters of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, acrylic acid, etc.
  • Acrylic acid derivative methacrylic acid, methacrylic acid derivative, maleic acid, maleic acid derivative, alkenyl sulfonic acid, vinylamine, allylamine, itaconic acid, itaconic acid derivative, fumaric acid, fumaric acid derivative, vinyl acetate, vinylphosphonic acid, vinylpyrrolidone , Acrylamide, N-vinylacetamide, N-vinylformamide and derivatives thereof, etc.
  • natural polymer compounds such as albumin, gelatin, rosin, shellac, starch, gum arabic and sodium alginate, and modified products thereof can be used in combination.
  • Non-embedding dispersant It is preferable to use the following specific polymer compounds A to D as dispersants that are used in combination with the embedding dispersant and are not embedded in the fine particles of the water-insoluble compound.
  • the more preferable range in is described individually if necessary), but is preferably from 1,000 to 500,000, more preferably from 2,000 to 300,000, and particularly preferably from 3,000 to 200,000.
  • the molecular weight and the degree of dispersion are determined by the methods measured in the examples unless otherwise specified.
  • a polymer compound having a heterocyclic ring in the side chain is preferable.
  • Such a polymer compound is preferably a monomer represented by the following general formula (1) or a polymer containing a polymer unit derived from a monomer comprising a maleimide or a maleimide derivative.
  • a polymer containing a polymer unit derived from the monomer represented by the general formula (1) is particularly preferable.
  • R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group.
  • R 2 represents a single bond or a divalent linking group.
  • Y represents —CO—, —C ( ⁇ O) O—, —CONH—, —OC ( ⁇ O) —, or a phenylene group.
  • Z represents a group having a nitrogen-containing heterocyclic structure.
  • the alkyl group for R 1 is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, and particularly preferably an alkyl group having 1 to 4 carbon atoms.
  • alkyl group represented by R 1 has a substituent
  • substituents include a hydroxy group and an alkoxy group (preferably having 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms).
  • alkoxy group preferably having 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms.
  • a methoxy group, an ethoxy group, a cyclohexyloxy group, etc. are mentioned.
  • preferable alkyl group represented by R 1 include, for example, methyl group, ethyl group, propyl group, n-butyl group, i-butyl group, t-butyl group, n-hexyl group, cyclohexyl group, 2 -Hydroxyethyl group, 3-hydroxypropyl group, 2-hydroxypropyl group, 2-methoxyethyl group.
  • R 1 is most preferably a hydrogen atom or a methyl group.
  • R 2 represents a single bond or a divalent linking group.
  • the divalent linking group is preferably a substituted or unsubstituted alkylene group.
  • the alkylene group is preferably an alkylene group having 1 to 12 carbon atoms, more preferably an alkylene group having 1 to 12 carbon atoms, still more preferably an alkylene group having 1 to 8 carbon atoms, and an alkylene group having 1 to 4 carbon atoms. Particularly preferred.
  • Two or more alkylene groups represented by R 2 may be linked via a hetero atom (for example, an oxygen atom, a nitrogen atom, or a sulfur atom).
  • the preferable alkylene group represented by R 2 include a methylene group, an ethylene group, a propylene group, a trimethylene group, and a tetramethylene group.
  • examples of the substituent include a hydroxy group.
  • Examples of the divalent linking group represented by R 2 include —O—, —S—, —C ( ⁇ O) O—, —CONH—, —C ( ⁇ O) S at the terminal of the alkylene group.
  • Z represents a group having a heterocyclic structure.
  • the group having a heterocyclic structure include phthalocyanine series, insoluble azo series, azo lake series, anthraquinone series, quinacridone series, dioxazine series, diketopyrrolopyrrole series, anthrapyridine series, ansanthrone series, indanthrone series, and flavan.
  • thioindigo dye structures such as thiophene, furan, xanthene, pyrrole, pyrroline, pyrrolidine, dioxolane, pyrazole, pyrazoline, pyrazolidine, imidazole, oxazole, thiazole, oxadiazole, triazole, Thiadiazole, pyran, pyridine, piperidine, dioxane, morpholine, pyridazine, pyrimidine, piperazine, triazine, trithiane, isoindoline, isoindolinone, benzimidazolone, Heterocycles such as zothiazole, succinimide, phthalimide, naphthalimide, hydantoin, indole, quinoline, carbazole, acridine, acridone, anthraquinone, pyrazine,
  • These heterocyclic structures may have a substituent, and examples of the substituent include an alkyl group, an alkoxy group, a halogen atom, an aliphatic ester group, an aromatic ester group, an alkoxycarbonyl group, and the like. Can be mentioned.
  • Z is more preferably a group having a nitrogen-containing heterocyclic structure having 6 or more carbon atoms, and particularly preferably a group having a nitrogen-containing heterocyclic structure having 6 to 12 carbon atoms.
  • the nitrogen-containing heterocyclic structure having 6 or more carbon atoms include phenothiazine ring, phenoxazine ring, acridone ring, anthraquinone ring, benzimidazole structure, benztriazole structure, benzthiazole structure, cyclic amide structure, and cyclic urea structure.
  • a cyclic imide structure are preferable, and a structure represented by the following (2), (3) or (4) is particularly preferable.
  • X represents a single bond, an alkylene group (for example, a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, etc.), —O—, —S—, —NR A —, and One selected from the group consisting of —C ( ⁇ O) —.
  • R A represents a hydrogen atom or an alkyl group.
  • the alkyl group is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, or an n-propyl group.
  • X in the general formula (2) is preferably a single bond, a methylene group, —O— or —C ( ⁇ O) —, particularly preferably —C ( ⁇ O) —.
  • Y and Z each independently represent —N ⁇ , —NH—, —N (R B ) —, —S—, or —O—.
  • R B represents an alkyl group
  • the alkyl group is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, such as a methyl group Ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group, n-octadecyl group and the like.
  • Y and Z in the general formula (4) —N ⁇ , —NH—, and —N (R B ) — are particularly preferable.
  • Examples of the combination of Y and Z include a combination in which one of Y and Z is —N ⁇ and the other is —NH—, and an imidazolyl group.
  • ring A, ring B, ring C, and ring D each independently represent an aromatic ring.
  • the aromatic ring include a benzene ring, naphthalene ring, indene ring, azulene ring, fluorene ring, anthracene ring, pyridine ring, pyrazine ring, pyrimidine ring, pyrrole ring, imidazole ring, indole ring, quinoline ring, acridine ring, Examples include phenothiazine ring, phenoxazine ring, acridone ring, anthraquinone ring, among others, benzene ring, naphthalene ring, anthracene ring, pyridine ring, phenoxazine ring, acridine ring, phenothiazine ring, phenoxazine ring.
  • examples of the ring A and ring B in the general formula (2) include a benzene ring, a naphthalene ring, a pyridine ring, a pyrazine ring, and the like.
  • examples of the ring C in the general formula (3) include a benzene ring, a naphthalene ring, a pyridine ring, and a pyrazine ring.
  • Examples of the ring D in the general formula (4) include a benzene ring, a naphthalene ring, a pyridine ring, a pyrazine ring, and the like.
  • a benzene ring and a naphthalene ring are more preferable from the viewpoint of dispersibility and stability over time of the dispersion, and the general formula (2) or In (4), a benzene ring is more preferable, and in the general formula (3), a naphthalene ring is more preferable.
  • the polymer compound having a heterocyclic ring in the side chain used in this embodiment contains only one type of copolymer unit derived from the monomer represented by the general formula (1), maleimide, and maleimide derivative. It may also include two or more.
  • the content of the copolymer unit derived from the monomer represented by the general formula (1), maleimide, and maleimide derivative is not particularly limited.
  • the total structural unit contained in the polymer compound having a heterocyclic ring in the side chain of this embodiment is 100% by mass, it is derived from the monomer represented by the general formula (1), the maleimide, and the maleimide derivative.
  • the copolymer unit is preferably contained in an amount of 5% by mass or more, more preferably 10 to 50% by mass.
  • the monomer represented by the general formula (1) is preferable because of its high adsorptivity to water-insoluble compounds.
  • the general formula (1) in order to effectively suppress the formation of secondary aggregates, which are aggregates of primary particles of a water-insoluble compound, or to effectively weaken the cohesive force of the secondary aggregates, the general formula (1)
  • the content of the copolymer unit derived from the monomer, maleimide, and maleimide derivative represented is preferably 5% by mass or more. From the viewpoint of developability when producing a color filter with a photocurable composition containing a dispersion composition, the content of copolymer units derived from the monomer represented by the general formula (1) is It is preferable that it is 50 mass% or less.
  • the polymer compound having a heterocyclic ring in the side chain of this embodiment preferably further contains a copolymer unit derived from a monomer having an acid group.
  • the polymer compound further contains a copolymer unit derived from a monomer having an acid group, when the dispersion composition of the water-insoluble compound is applied to the photosensitive composition, it is excellent in the development removability of the unexposed area. .
  • Examples of the monomer having an acid group include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, ⁇ -chloroacrylic acid, cinnamic acid; maleic acid, maleic anhydride, fumaric acid, itaconic acid, anhydrous Unsaturated dicarboxylic acids such as itaconic acid, citraconic acid, citraconic anhydride and mesaconic acid or their anhydrides; trivalent or higher unsaturated polycarboxylic acids or their anhydrides; succinic acid mono (2-acryloyloxyethyl) ), Succinic acid mono (2-methacryloyloxyethyl), phthalic acid mono (2-acryloyloxyethyl), phthalic acid mono (2-methacryloyloxyethyl) mono (2-methacryloyloxyethyl) mono [ (Meth) acryloyloxyalkyl] esters; ⁇ -carboxy-
  • the content of the copolymer unit derived from the monomer having an acid group is preferably 50 to 200 mgKOH / g, particularly preferably 80 to 200 mgKOH. / G. A more preferred range is 100 to 180 mg KOH / g. That is, in terms of suppressing the formation of precipitates in the developer, the content of copolymer units derived from the monomer having an acid group is preferably 50 mgKOH / g or more.
  • the acid value is 200 mgKOH / g or more, aggregation between acid groups becomes strong, aggregation between processed pigments occurs, and dispersibility deteriorates.
  • a monomer having an acid group is used.
  • the content of the derived copolymer unit is preferably in the above range.
  • the polymer compound having a heterocyclic ring in the side chain in the present embodiment may further contain copolymer units derived from a copolymerizable vinyl monomer as long as the effect is not impaired.
  • a vinyl monomer which can be used here For example, (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters, itaconic acid diesters, ( Preference is given to (meth) acrylamides, vinyl ethers, esters of vinyl alcohol, styrenes, (meth) acrylonitrile and the like.
  • vinyl monomers include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid, which have been mentioned as the affinity sites with the dispersion medium in the description of the embedding dispersant.
  • examples thereof include diesters, fumaric acid diesters, itaconic acid diesters, styrenes, and vinyl ethers.
  • the preferred molecular weight of the polymer compound having a heterocyclic ring in the side chain is in the range of 1,000 to 100,000 in terms of mass average molecular weight (Mw) and in the range of 400 to 50,000 in terms of number average molecular weight (Mn).
  • Mw mass average molecular weight
  • Mn number average molecular weight
  • the mass average molecular weight (Mw) is most preferably in the range of 8,000 to 30,000, and the number average molecular weight (Mn) is in the range of 4,000 to 12,000.
  • the mass average molecular weight (Mw) of the polymer compound having a heterocyclic ring in the side chain is preferably 1,000 or more.
  • the mass average molecular weight of the polymer compound having a heterocyclic ring in the side chain of the present embodiment is preferably 100,000 or less.
  • : 2 is preferable, more preferably 1: 0.05 to 1: 1, and still more preferably 1: 0.1 to 1: 0.6.
  • the polymer compound having a heterocyclic ring is, for example, a monomer represented by the general formula (1), a polymerizable oligomer (macromonomer), and another radical polymerizable compound as a copolymerization component. It can be produced by a radical polymerization method. In general, a suspension polymerization method or a solution polymerization method is used. Solvents used in the synthesis of such polymers include, for example, ethylene dichloride, cyclohexanone, methyl ethyl ketone, acetone, methanol, ethanol, propanol, butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 2-methoxyethyl.
  • Examples include acetate, 1-methoxy-2-propanol, 1-methoxy-2-propyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, toluene, ethyl acetate, methyl lactate, and ethyl lactate. . These solvents may be used alone or in combination of two or more.
  • a radical polymerization initiator can be used, and a chain transfer agent (eg, 2-mercaptoethanol and dodecyl mercaptan) can be further used.
  • a chain transfer agent eg, 2-mercaptoethanol and dodecyl mercaptan
  • polymer Compound B a polymer compound (hereinafter referred to as “specific polymer”) containing at least one repeating unit selected from repeating units represented by any one of the following general formulas (I) and (II): In some cases).
  • R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group
  • X 1 and X 2 each independently represent —CO—, —C ( ⁇ O) O—, —CONH—, —OC ( ⁇ O) —, or a phenylene group
  • L 1 and L 2 each independently represent a single bond or a divalent organic linking group.
  • a 1 and A 2 each independently represents a monovalent organic group
  • m and n each independently represents an integer of 2 to 8
  • p and q each independently represents 1 to 100 Represents an integer.
  • R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group.
  • a substituted or unsubstituted alkyl group is preferable.
  • the alkyl group an alkyl group having 1 to 12 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is particularly preferable.
  • the alkyl group has a substituent
  • examples of the substituent include a hydroxy group and an alkoxy group (preferably having a carbon number of 1 to 5, more preferably 1 to 3 carbon atoms), a methoxy group, an ethoxy group, Examples include a cyclohexyloxy group.
  • alkyl groups include methyl, ethyl, propyl, n-butyl, i-butyl, t-butyl, n-hexyl, cyclohexyl, 2-hydroxyethyl, Examples include 3-hydroxypropyl group, 2-hydroxypropyl group, and 2-methoxyethyl group.
  • R 1 , R 2 , R 4 , and R 5 are preferably hydrogen atoms
  • R 3 and R 6 are most preferably hydrogen atoms or methyl groups from the viewpoint of adsorption efficiency of water-insoluble compounds on the particle surface. preferable.
  • X 1 and X 2 each independently represents —CO—, —C ( ⁇ O) O—, —CONH—, —OC ( ⁇ O) —, or a phenylene group.
  • —C ( ⁇ O) O—, —CONH—, and a phenylene group are preferable from the viewpoint of the adsorptivity of water-insoluble compounds to particles, and —C ( ⁇ O) O— is most preferable.
  • L 1 and L 2 each independently represents a single bond or a divalent organic linking group.
  • the divalent organic linking group is preferably a substituted or unsubstituted alkylene group or a divalent organic linking group comprising the alkylene group and a hetero atom or a partial structure containing a hetero atom.
  • the alkylene group is preferably an alkylene group having 1 to 12 carbon atoms, more preferably an alkylene group having 1 to 8 carbon atoms, and particularly preferably an alkylene group having 1 to 4 carbon atoms.
  • examples of the hetero atom in the partial structure containing a hetero atom include an oxygen atom, a nitrogen atom, and a sulfur atom, and among them, an oxygen atom and a nitrogen atom are preferable.
  • preferable alkylene groups include a methylene group, an ethylene group, a propylene group, a trimethylene group, and a tetramethylene group.
  • examples of the substituent include a hydroxy group.
  • the divalent organic linking group includes a heteroatom or a heteroatom selected from —C ( ⁇ O) —, —OC ( ⁇ O) —, and —NHC ( ⁇ O) — at the end of the above alkylene group.
  • a substance having a partial structure and connected to an adjacent oxygen atom via the heteroatom or a partial structure containing a heteroatom is preferable from the viewpoint of the adsorptivity to water-insoluble compound particles.
  • the adjacent oxygen atom means an oxygen atom that is bonded to L 1 in the general formula (I) and L 2 in the general formula (II) on the side chain end side.
  • a 1 and A 2 each independently represents a monovalent organic group.
  • a monovalent organic group a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group is preferable.
  • preferable alkyl groups include linear, branched, and cyclic alkyl groups having 1 to 20 carbon atoms.
  • Specific examples thereof include a methyl group, an ethyl group, a propyl group, Butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, hexadecyl, octadecyl, eicosyl, isopropyl, isobutyl, s-butyl, Examples thereof include t-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclohexyl group, cyclopentyl group and 2-norbornyl group.
  • a monovalent non-metallic atomic group other than hydrogen is used as the substituent of the substituted alkyl group.
  • Preferred examples include halogen atoms (—F, —Br, —Cl, —I), hydroxyl groups, alkoxy groups.
  • aryloxy group mercapto group, alkylthio group, arylthio group, alkyldithio group, aryldithio group, amino group, N-alkylamino group, N, N-dialkylamino group, N-arylamino group, N, N-diaryl Amino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, N-alkylcarbamoyloxy group, N-arylcarbamoyloxy group, N, N-dialkylcarbamoyloxy group, N, N-diarylcarbamoyloxy Group, N-alkyl-N-arylcarbamoyloxy group, alkylsulfoxy Arylsulfoxy group, acyloxy group, acylthio group, acylamino group, N-alkylacylamino group, N-arylacylamino group, ure
  • alkyl group in these substituents include the alkyl groups described above, and these may further have a substituent.
  • substituents include alkoxy group, aryloxy group, alkylthio group, arylthio group, N, N-dialkylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, aryl group, hetero
  • An aryl group, an alkenyl group, an alkynyl group, and a silyl group are preferable from the viewpoint of dispersion stability.
  • aryl group examples include phenyl, biphenyl, naphthyl, tolyl, xylyl, mesityl, cumenyl, chlorophenyl, bromophenyl, chloromethylphenyl, hydroxyphenyl, methoxyphenyl, ethoxy Phenyl group, phenoxyphenyl group, acetoxyphenyl group, benzoyloxyphenyl group, methylthiophenyl group, phenylthiophenyl group, methylaminophenyl group, dimethylaminophenyl group, acetylaminophenyl group, carboxyphenyl group, methoxycarbonylphenyl group, Ethoxyphenylcarbonyl group, phenoxycarbonylphenyl group, N-phenylcarbamoylphenyl group, phenyl group, cyanophenyl group, sulfophenyl group, sulfonatophen
  • a 1 and A 2 from the viewpoint of dispersion stability and developability, a straight chain having 1 to 20 carbon atoms, a branched structure having 3 to 20 carbon atoms, and a number having 5 to 20 carbon atoms Cyclic alkyl groups are preferable, linear alkyl groups having 4 to 15 carbon atoms, branched alkyl groups having 4 to 15 carbon atoms, and cyclic alkyl groups having 6 to 10 carbon atoms are more preferable. More preferred are linear alkyl groups of 6 to 10 and branched alkyl groups of 6 to 12 carbon atoms.
  • M and n each independently represents an integer of 2 to 8. From the viewpoint of dispersion stability and developability, 4 to 6 is preferable, and 5 is most preferable.
  • P and q each independently represents an integer of 1 to 100. Two or more different p and different q may be mixed. p and q are preferably 5 to 60, more preferably 5 to 40, and still more preferably 5 to 20 from the viewpoints of dispersion stability and developability.
  • the specific polymer in this embodiment is preferably a polymer containing a repeating unit represented by the general formula (I) from the viewpoint of dispersion stability.
  • the repeating unit represented by the general formula (I) is more preferably a repeating unit represented by the following general formula (I) -2.
  • R 1 to R 3 each independently represent a hydrogen atom or a monovalent organic group
  • La represents an alkylene group having 2 to 10 carbon atoms
  • Lb represents —C ( ⁇ O) — or —NHC ( ⁇ O) —
  • a 1 represents a monovalent organic group
  • m represents an integer of 2 to 8
  • p represents an integer of 1 to 100 Represents.
  • the repeating unit represented by the general formula (I), (II), or (I) -2 is a simple unit represented by the following general formula (i), (ii), or (i) -2, respectively.
  • the polymer is introduced as a repeating unit of the polymer compound by polymerization or copolymerization.
  • R 1 to R 6 each independently represent a hydrogen atom or a monovalent organic group
  • X 1 and X 2 are each Independently represents —CO—, —C ( ⁇ O) O—, —CONH—, —OC ( ⁇ O) —, or a phenylene group
  • L 1 and L 2 each independently represent a single bond or 2
  • a valent organic linking group La represents an alkylene group having 2 to 10 carbon atoms
  • Lb represents —C ( ⁇ O) — or —NHC ( ⁇ O) —
  • a 1 and A 2 represent Each independently represents a monovalent organic group
  • m and n each independently represents an integer of 2 to 8
  • p and q each independently represents an integer of 1 to 100.
  • the specific polymer in this embodiment should just contain the at least 1 sort (s) of repeating unit selected from the repeating unit represented by either of general formula (I) and (II), and contains only 1 type. There may be two or more kinds.
  • the content of the repeating unit represented by any one of the general formulas (I) and (II) is not particularly limited, but the total repeating unit contained in the polymer is 100% by mass.
  • the repeating unit represented by any one of the general formulas (I) and (II) is preferably contained in an amount of 5% by mass or more, more preferably 50% by mass, and 50% by mass to 80% by mass. It is more preferable to contain.
  • the specific polymer in the present embodiment includes a monomer having a functional group capable of being adsorbed, and the aforementioned general formulas (i), (ii), (i)- It is preferably a polymer compound obtained by copolymerizing the monomer represented by 2.
  • the monomer having a functional group that can be adsorbed to water-insoluble compound particles include a monomer having an organic dye structure or a heterocyclic structure, a monomer having an acidic group, a monomer having a basic nitrogen atom, and an ion. And monomers having a functional group.
  • monomers having an organic dye structure or a heterocyclic structure are preferable in terms of adsorption power.
  • the monomer having an organic dye structure or a heterocyclic structure is selected from the group consisting of the monomer represented by the general formula (1) described in the high part of the polymer compound A, maleimide, and a maleimide derivative. Preferably it is a seed.
  • the preferred range is also as defined above.
  • Examples of the monomer having an acidic group include a vinyl monomer having a carboxyl group and a vinyl monomer having a sulfonic acid group.
  • Examples of the vinyl monomer having a carboxyl group include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, and acrylic acid dimer.
  • an addition reaction product of a monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate and a cyclic anhydride such as maleic anhydride, phthalic anhydride, or cyclohexanedicarboxylic anhydride, ⁇ -carboxy-polycaprolactone Mono (meth) acrylates can also be used.
  • a cyclic anhydride such as maleic anhydride, phthalic anhydride, or cyclohexanedicarboxylic anhydride, ⁇ -carboxy-polycaprolactone Mono (meth) acrylates
  • anhydride containing monomers such as maleic anhydride, itaconic anhydride, and citraconic anhydride, as a precursor of a carboxyl group.
  • (meth) acrylic acid is particularly preferable from the viewpoints of copolymerizability, cost, solubility, and the like.
  • Examples of the vinyl monomer having a sulfonic acid group include 2-acrylamido-2-methylpropanesulfonic acid, and examples of the vinyl monomer having a phosphoric acid group include phosphoric acid mono (2-acryloyloxyethyl ester) and phosphoric acid mono (1-methyl-2-acryloyloxyethyl ester) and the like.
  • the specific polymer in this embodiment preferably includes a repeating unit derived from a monomer having an acidic group as described above.
  • a repeating unit derived from a monomer having an acidic group as described above.
  • the specific polymer in this embodiment may include only one type of repeating unit derived from a monomer having an acidic group, or may include two or more types.
  • the content of the repeating unit derived from the monomer having an acidic group is preferably 50 mgKOH / g or more, particularly preferably 50 mgKOH / g to 200 mgKOH / g. That is, in terms of suppressing the formation of precipitates in the developer, the content of the repeating unit derived from the monomer having an acidic group is preferably 50 mgKOH / g or more.
  • secondary aggregates which are aggregates of primary particles of a water-insoluble compound, or to effectively weaken the cohesive force of secondary aggregates, it is derived from a monomer having an acidic group.
  • the content of the repeating unit is preferably 50 mgKOH / g to 200 mgKOH / g.
  • each exemplified compound, urea group, urethane group, and coordinating oxygen atom in the monomer that forms a basic group which has been mentioned as the functional group in the description of the embedding dispersant previously
  • Examples of each compound (especially exemplified compounds u-1 to u-12) in monomers having a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group, an isocyanate group, and a hydroxyl group can be given.
  • each example compound in the monomer which has the ionic group illustrated previously similarly is also mentioned.
  • the monomer having a functional group capable of adsorbing to the particles of the water-insoluble compound can be appropriately selected according to the type of the water-insoluble compound to be dispersed. These may be used alone or in combination of two or more. Also good.
  • the specific polymer in this embodiment may further contain a repeating unit derived from a copolymerizable vinyl monomer as long as the effect is not impaired.
  • vinyl monomers examples include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, and maleic acid diesters that have been cited as the affinity sites for the dispersion medium in the description of the embedding dispersant. , Fumaric acid diesters, itaconic acid diesters, styrenes, or vinyl ethers.
  • Preferred embodiments of the specific copolymer in this embodiment include at least a monomer represented by the general formula (i), (ii), or (i) -2, and a monomer having an organic dye structure or a heterocyclic structure. More preferably, at least the monomer represented by the above general formula (i) -2, the monomer represented by the above general formula (11), and an acid group And a monomer having a copolymer. According to this embodiment, a dispersion composition excellent in adsorption of water-insoluble compounds to particles and excellent in developability can be provided.
  • the preferred molecular weight of the polymer compound having a heterocyclic ring in the side chain is a mass average molecular weight (Mw) in the range of 1,000 to 100,000, and a number average molecular weight (Mn) of 400 to 50,000.
  • a range is preferable. More preferably, the weight average molecular weight (Mw) is in the range of 5,000 to 50,000, and the number average molecular weight (Mn) is in the range of 2,000 to 30,000.
  • the mass average molecular weight (Mw) is most preferably in the range of 8,000 to 30,000, and the number average molecular weight (Mn) is in the range of 4,000 to 12,000.
  • the mass average molecular weight (Mw) of the specific polymer is It is preferable that it is 1000 or more. Moreover, from the viewpoint of developability when producing a color filter with a colored photosensitive composition containing a dispersion composition, the mass average molecular weight (Mw) of the specific polymer is preferably 30000 or less.
  • the specific polymer in this embodiment includes, for example, a monomer represented by the following general formula (i), (ii), or (i) -2, and another radical polymerizable compound (described above) as a copolymerization component.
  • a monomer represented by the following general formula (i), (ii), or (i) -2 and another radical polymerizable compound (described above) as a copolymerization component.
  • Solvents used in the synthesis of such a specific polymer include, for example, ethylene dichloride, cyclohexanone, methyl ethyl ketone, acetone, methanol, ethanol, propanol, butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 2-methoxy Examples include ethyl acetate, 1-methoxy-2-propanol, 1-methoxy-2-propyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, toluene, ethyl acetate, methyl lactate, and ethyl lactate. It is done.
  • radical polymerization a radical polymerization initiator can be used, and a chain transfer agent (eg, 2-mercaptoethanol and dodecyl mercaptan) can be further used.
  • chain transfer agent eg, 2-mercaptoethanol and dodecyl mercaptan
  • polymer compounds may be used at the same time in addition to the above-mentioned specific copolymer as necessary, as long as the effects of the present embodiment are not impaired.
  • natural resins modified natural resins, synthetic resins, synthetic resins modified with natural resins, and the like are used.
  • the natural resin is typically rosin
  • the modified natural resin includes rosin derivatives, fiber derivatives, rubber derivatives, protein derivatives and oligomers thereof.
  • the synthetic resin include an epoxy resin, an acrylic resin, a maleic acid resin, a butyral resin, a polyester resin, a melamine resin, a phenol resin, and a polyurethane resin.
  • Examples of synthetic resins modified with natural resins include rosin-modified maleic acid resins and rosin-modified phenolic resins.
  • Synthetic resins include polyamidoamine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, polyurethane, polyester, poly (meth) acrylate, (meth) acrylic copolymer, naphthalenesulfonic acid formalin condensate Is mentioned.
  • the polymer compound of this embodiment preferably has acrylic acid in the main chain, the acrylic acid content is preferably 5 to 30% by mass, and the graft type has a mass average molecular weight in the range of 1,000 to 100,000.
  • a polymer compound is preferred.
  • an acrylic acid group may be contained in the main chain. Further, an acrylic acid group may be further included in the branch part.
  • a method for synthesizing a specific graft polymer as described in New Polymer Experiments Vol. 2 (Kyoritsu Shuppan, 1995), etc., as a general method, (1) a method of polymerizing a branch monomer from a main chain polymer, ( 2) A method of bonding a branched polymer to a main chain polymer (3) A method of copolymerizing a main chain monomer with a branched polymer can be used. That is, the specific graft polymer is preferably obtained by copolymerizing acrylic acid, a polymerizable oligomer (hereinafter referred to as macromonomer) and another copolymerizable monomer.
  • macromonomer a polymerizable oligomer
  • the amount of acrylic acid introduced is preferably 5 to 30% by mass from the viewpoint of dispersibility. If it exceeds 30% by mass, the amount of macromonomer to be copolymerized becomes relatively small, so that the steric repulsion chain does not contribute and sufficient dispersion stability cannot be obtained. On the other hand, if it is 5% by mass or less, sufficient flexibility cannot be obtained as a whole polymer compound, and it is difficult to obtain the effects of improving dispersion stability and developability. Furthermore, the amount of acrylic acid introduced is preferably 10 to 30% by mass, and most preferably 10 to 25% by mass, although it depends on the type and molecular weight of the macromonomer.
  • the polymer compound of this embodiment preferably has a repeating unit selected from the following general formulas (31) and (32), and more preferably contains 5 to 100% by mass of the repeating unit.
  • a polymer compound having a mass average molecular weight of 1,000 to 100,000 is preferable.
  • Examples of the acid group represented by the general formula (32) include —C (CF 3 ) 2 OH, —C (C 2 F 5 ) 2 OH, —C (CF 3 ) (CH 3 ) OH, —CH (CF 3 ) OH and the like can be mentioned, and —C (CF 3 ) 2 OH is preferable.
  • the amount of the acid groups of the general formula (31) and the general formula (32) contained in the polymer compound can be appropriately adjusted according to the type of the water-insoluble compound to be dispersed.
  • the amount of the repeating unit containing an acid group is preferably 5 to 100% by mass, preferably 10 to 80% by mass, and more preferably 20 to 60% by mass.
  • the acid value is preferably 30 to 300 mgKOH / g, more preferably 50 to 200 mgKOH / g. When the acid value is less than 30 mgKOH / g, development cannot be performed or a development residue occurs. When the acid value exceeds 300 mgKOH / g, the dispersibility stability becomes poor, or the speed in alkali development becomes too fast, and an appropriate development latitude cannot be obtained.
  • the acid value is based on the measurement of the amount (mg) of potassium hydroxide required to neutralize 1 g of the polymer compound.
  • a polymer compound having a desired acid value can be obtained by adjusting the number of acid groups possessed by the monomer, the molecular weight of the monomer, the composition ratio of the monomers, and the like, and controlling the number of acidic groups possessed by the polymer compound.
  • the polymer compounds may introduce the general formulas (31) and (32) by polymerizing monomers represented by the following general formulas (GI) to (G-III). It is possible and preferable.
  • R 3 represents a hydrogen atom or a methyl group.
  • S 1 represents a linking group represented by the general formulas (1-a) to (1-f).
  • R represents an alkyl group, a cycloalkyl group or an aryl group which may have a substituent.
  • Rf represents an alkylene group substituted with at least one fluorine atom.
  • W 2 is a single bond or (Z 1 and Z 2 represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, and a hydroxyl group, and Z 3 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, and the number of carbon atoms.
  • Z 1 and Z 2 represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, and a hydroxyl group
  • Z 3 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, and the number of carbon atoms.
  • the general formulas (GI) to (G-III) are preferably represented by the following general formulas (G-IV) to (G-VII).
  • W 1 represents a single linking group selected from alkylene, alkoxy and ester, or a linking group composed of any combination.
  • S 1 is represented by the above general formulas (1-a) to (1-f).
  • R 1 represents an optionally substituted alkyl group, cycloalkyl group or aryl group
  • R 2 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, An alkoxy group and a cyano group
  • R 3 represents a hydrogen atom or a methyl group
  • Rf represents an alkylene group substituted with at least one fluorine atom.
  • R 3 represents a hydrogen atom or a methyl group.
  • the polymer compound of this embodiment can be synthesized by polymerizing monomers as described above, or can be synthesized by reacting a precursor polymer compound with a low molecular compound having an acid group.
  • the polymer compound of this embodiment is more preferably at least one selected from a block polymer, a graft polymer, and a terminal-modified polymer.
  • the polymer compound of this embodiment is considered to act to adsorb on the particle surface of the water-insoluble compound and prevent reaggregation in the dispersion step. Therefore, the polymer compound of this embodiment may be a linear random copolymer, but a block polymer, a graft polymer, and a terminal-modified polymer that are more effective can be cited as preferred structures.
  • Linear type random copolymer A linear random copolymer is obtained by subjecting a monomer containing an acid group represented by the above general formulas (GI) to (G-III) to any other copolymerizable monomer by any polymerization method such as radical polymerization. Obtainable. Other copolymerizable monomers are described in detail in the section of block type polymer.
  • the preferred mass average molecular weight of the linear random copolymer is not particularly limited, but is preferably in the range of 1,000 to 100,000, and more preferably in the range of 3,000 to 50,000.
  • the mass average molecular weight is 1,000 or more, a stabilizing effect can be obtained more effectively, and when the mass average molecular weight is 100,000 or less, it is more effectively adsorbed and has good dispersibility. Can be demonstrated.
  • Block type polymer Although it does not specifically limit as a block type polymer, The block type polymer which consists of a water-insoluble compound adsorption block (a), the block (b) which has an acid group, and the block (c) which does not adsorb
  • Examples of the monomer having an organic dye structure or a heterocyclic structure include, for example, phthalocyanine series, insoluble azo series, azo lake series, anthraquinone series, quinacridone series, dioxazine series, diketopyrrolopyrrole series, anthrapyridine series, anthanthrone series, Ron, flavanthrone, perinone, perylene, and thioindigo dye structures such as thiophene, furan, xanthene, pyrrole, pyrroline, pyrrolidine, dioxolane, pyrazole, pyrazoline, pyrazolidine, imidazole, oxazole, thiazole, oxadi Azole, triazole, thiadiazole, pyran, pyridine, piperidine, dioxane, morpholine, pyridazine, pyrimidine, piperazine, triazine, trithiane,
  • Examples of the monomer having an acidic group may include a vinyl monomer having a carboxyl group and a vinyl monomer having a sulfonic acid group or a phosphoric acid group. Specifically, each compound mentioned as a monomer which has the acidic group which makes the specific polymer of the said high molecular compound B is mentioned.
  • the acid group can be introduced separately from the acid group described above.
  • Examples of the monomer having a basic nitrogen atom include vinylpyridine, vinylimidazole, vinyltriazole and the like as the monomer having a heterocyclic ring.
  • the monomer having a basic nitrogen atom examples include vinylpyridine, vinylimidazole, vinyltriazole and the like as the monomer having a heterocyclic ring.
  • Specific examples of the monomer having a group or a hydroxyl group can be given.
  • each example compound in the monomer which has the ionic group illustrated previously similarly is also mentioned.
  • the monomer containing the ionic functional group previously mentioned as the functional group in the description of the embedding dispersant can be used.
  • the monomer having a functional group capable of adsorbing to the particles of the water-insoluble compound can be appropriately selected according to the type of the water-insoluble compound to be dispersed. These may be used alone or in combination of two or more. Also good.
  • Examples of the monomer constituting the block (b) having an acid group include those already described. Preferably, it is composed of monomers represented by the above general formulas (GI) to (G-III).
  • the monomer having an acid group can be appropriately selected according to the type of the water-insoluble compound to be dispersed, and these may be used alone or in combination of two or more.
  • the monomer constituting the block (c) that is not adsorbed on the water-insoluble compound particles is not particularly limited.
  • (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters examples thereof include fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, styrenes, vinyl ethers, vinyl ketones, olefins, maleimides, and (meth) acrylonitrile.
  • These monomers may be used independently and may use 2 or more types together.
  • Itaconic acid diesters, styrenes, vinyl ethers, vinyl ketones, olefins, maleimides, (meth) acrylonitrile, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, vinylcaprolactone, etc. Can be mentioned.
  • a conventionally known method can be used.
  • living polymerization, iniferter method and the like are known, and as another method, thiolcarboxylic acid or 2-acetyl is used in radical polymerization of a monomer having an adsorbing group or a monomer having no adsorbing group.
  • a polymer obtained by polymerizing a compound containing a thioester and a thiol group in a molecule such as thioethyl ether or 10-acetylthiodecanethiol is treated with an alkali such as sodium hydroxide or ammonia,
  • an alkali such as sodium hydroxide or ammonia
  • a method in which a polymer having a thiol group at one end and radical polymerization of the monomer component of the other block in the presence of the obtained polymer having a thiol group at one end are also known.
  • living polymerization is preferable.
  • the mass average molecular weight of the block polymer is not particularly limited, but is preferably in the range of 1,000 to 100,000, and more preferably in the range of 5,000 to 50,000. When the mass average molecular weight is 1,000 or more, a stabilizing effect can be obtained more effectively, and when the mass average molecular weight is 100,000 or less, it is more effectively adsorbed and has good dispersibility. Can be demonstrated.
  • the graft polymer may contain the acid group described above in either the main chain or the branch, or both.
  • the method for synthesizing the graft polymer is, as described in New Polymer Experiments Vol. 2 (Kyoritsu Shuppan, 1995), as a general method of polymerizing a branch monomer from a main chain polymer, A method of bonding a branched polymer to a molecule, a method of copolymerizing a main chain monomer with a branched polymer, and the like can be used.
  • the graft-type polymer that can be used in this embodiment is a monomer containing an acid group represented by the above general formulas (GI) to (G-III) in either the main chain or the branch or both. It is obtained by copolymerizing one or more kinds with other copolymerizable monomers.
  • copolymerizable monomers include the above-mentioned (i) monomers having an organic dye structure or a heterocyclic structure, (ii) monomers having an acidic group, (iii) monomers having a basic nitrogen atom, (iv) urea A group having 4 or more carbon atoms, a urethane group, a coordinating oxygen atom, an alkoxysilyl group, an epoxy group, an isocyanate group, a hydroxyl group-containing monomer, (v) a monomer containing an ionic functional group, vi) (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, styrenes, vinyl ethers, vinyl ketones, olefins , Maleimides, (meth) acrylonitrile and other monomers It can be.
  • graft type polymer of this embodiment As a preferable form in the graft type polymer of this embodiment, the following forms may be mentioned.
  • macromonomers polymerizable oligomers
  • Graft-type polymer having a copolymer component A monomer represented by the above (i) to (iv) and a polymerizable oligomer (hereinafter referred to as a macromonomer) containing an acid group represented by the general formulas (GI) to (G-III) are combined.
  • Graft type polymer as a polymerization component.
  • the mass average molecular weight of the graft polymer is not particularly limited, but is preferably in the range of 1,000 to 100,000, and more preferably in the range of 5,000 to 50,000.
  • the mass average molecular weight is 1,000 or more, a stabilizing effect can be obtained more effectively, and when the mass average molecular weight is 100,000 or less, it is more effectively adsorbed and has good dispersibility.
  • the weight average molecular weight of the branch is preferably 300 to 30,000. More preferably, it is 1,000 to 20,000.
  • the molecular weight of the branch portion is in the above range, the developability is particularly good and the development latitude is wide.
  • the terminal-modified polymer is a polymer having a repeating unit having the acid group of this embodiment in the main chain and having a functional group having a high affinity for a water-insoluble compound at the terminal. That is, as the main chain, the above-mentioned linear random copolymer can be used as it is.
  • the monomer used for copolymerization for example, as the radical polymerizable monomer, the above-mentioned “monomer having acid group (b)” and “monomer constituting a block that is not adsorbed to water-insoluble compound particles (c ) "Can be used.
  • the terminal-modified polymer that can be used in this embodiment is a polymer obtained by subjecting the terminal of this linear random copolymer to the modification described below.
  • a method for synthesizing a polymer having a functional group at the end of the polymer is not particularly limited, and examples thereof include the following methods and a combination thereof. 1. 1. A method of synthesizing by polymerization (for example, radical polymerization, anionic polymerization, cationic polymerization, etc.) using a functional group-containing polymerization initiator.
  • polymerization for example, radical polymerization, anionic polymerization, cationic polymerization, etc.
  • the functional groups introduced here are organic dye structures, heterocyclic structures, acidic groups, groups having basic nitrogen atoms, urea groups, urethane groups, coordination groups Examples thereof include groups having a coordinated oxygen atom, hydrocarbon groups having 4 or more carbon atoms, alkoxysilyl groups, epoxy groups, isocyanate groups, hydroxyl groups, and ionic functional groups.
  • Examples of the chain transfer agent capable of introducing a functional group at the polymer terminal include mercapto compounds (for example, thioglycolic acid, thiomalic acid, thiosalicylic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, 3-mercaptobutyric acid, N- ( 2-mercaptopropionyl) glycine, 2-mercaptonicotinic acid, 3- [N- (2-mercaptoethyl) carbamoyl] propionic acid, 3- [N- (2-mercaptoethyl) amino] propionic acid, N- (3- Mercaptopropionyl) alanine, 2-mercaptoethanesulfonic acid, 3-mecaptopropanesulfonic acid, 4-mercaptobutanesulfonic acid, 2-mercaptoethanol, 3-mercapto-1,2-propanediol, 1-mercapto-2-propanol 3-mercapto-2-pig , Mercaptophenol, 2-
  • Examples of the polymerization initiator capable of introducing a functional group into the polymer terminal include 2,2′-azobis (2-cyanopropanol), 2,2′-azobis (2-cyanopentanol), 4,4′- Azobis (4-cyanovaleric acid), 4,4′-azobis (4-cyanovaleric acid chloride), 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane], 2 , 2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [2- (3,4,5,6-tetrahydropyrimidin-2-yl) propane], 2, 2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ , 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide ] Or this Derivatives of al the like.
  • the molecular weight of the above terminal-modified polymer is preferably a mass average molecular weight of 1,000 to 50,000.
  • the number average molecular weight is 1,000 or more, a steric repulsion effect as a dispersant for a water-insoluble compound can be obtained more effectively, and when it is 50,000 or less, the steric effect is more effectively suppressed.
  • the time for adsorption of the water-insoluble compound to the particles can be further shortened.
  • the water-insoluble compound used in the present invention is not particularly limited, specifically, for example, organic pigments, organic dyes, fullerenes, polydiacetylenes, polyimides and other high molecular organic materials, aromatic hydrocarbons or aliphatic hydrocarbons (for example, Particles composed of aromatic hydrocarbons or aliphatic hydrocarbons having orientation, or aromatic hydrocarbons or aliphatic hydrocarbons having sublimability), and organic pigments, organic dyes, or polymeric organic materials are preferred.
  • Organic pigments are particularly preferred.
  • the organic particles may be used singly, or a plurality of organic particles may be combined, or a plurality of water-insoluble compounds may be used to form a multilayer particle structure.
  • the organic pigment is not limited in hue, for example, perylene, perinone, quinacridone, quinacridonequinone, anthraquinone, anthanthrone, benzimidazolone, disazo condensation, disazo, azo, indanthrone, phthalocyanine, triarylcarbonium , Dioxazine, aminoanthraquinone, diketopyrrolopyrrole, thioindigo, isoindoline, isoindolinone, pyranthrone or isoviolanthrone compound pigment, or a mixture thereof.
  • C.I. I. Pigment red 190 C.I. No. 71140
  • C.I. I. Pigment red 224 C.I. No. 71127
  • C.I. I. Perylene compound pigments such as C.I. Pigment Violet 29 (C.I. No. 71129); I. Pigment orange 43 (C.I. No. 71105), or C.I. I. Perinone compound pigments such as C.I. Pigment Red 194 (C.I. No. 71100); I. Pigment violet 19 (C.I. No. 73900), C.I. I. Pigment violet 42, C.I. I. Pigment red 122 (C.I. No. 73915), C.I. I.
  • Pigment Yellow 147 (C.I. No. 60645); I. Anthanthrone compound pigments such as CI Pigment Red 168 (C.I. No. 59300); I. Pigment brown 25 (C.I. No. 12510), C.I. I. Pigment violet 32 (C.I. No. 12517), C.I. I. Pigment yellow 180 (C.I. No. 21290), C.I. I. Pigment yellow 181 (C.I. No. 11777), C.I. I. Pigment orange 62 (C.I. No. 11775), or C.I. I. Benzimidazolone compound pigments such as CI Pigment Red 185 (C.I. No. 12516); I.
  • Pigment yellow 93 (C.I. No. 20710), C.I. I. Pigment yellow 94 (C.I. No. 20038), C.I. I. Pigment yellow 95 (C.I. No. 20034), C.I. I. Pigment yellow 128 (C.I. No. 20037), C.I. I. Pigment yellow 166 (C.I. No. 20035), C.I. I. Pigment orange 34 (C.I. No. 21115), C.I. I. Pigment orange 13 (C.I. No. 21110), C.I. I. Pigment orange 31 (C.I. No. 20050), C.I. I. Pigment red 144 (C.I. No. 20735), C.I. I.
  • Pigment red 166 (C.I. No. 20730), C.I. I. Pigment red 220 (C.I. No. 20055), C.I. I. Pigment red 221 (C.I. No. 20065), C.I. I. Pigment red 242 (C.I. No. 20067), C.I. I. Pigment red 248, C.I. I. Pigment red 262, or C.I. I. Disazo condensed compound pigments such as CI Pigment Brown 23 (C.I. No. 20060); I. Pigment yellow 13 (C.I. No. 21100), C.I. I. Pigment yellow 83 (C.I. No. 21108), or C.I. I.
  • Disazo compound pigments such as CI Pigment Yellow 188 (C.I. No. 21094); I. Pigment red 187 (C.I. No. 12486), C.I. I. Pigment red 170 (C.I. No. 12475), C.I. I. Pigment yellow 74 (C.I. No. 11714), C.I. I. Pigment yellow 150 (C.I. No. 48545), C.I. I. Pigment red 48 (C.I. No. 15865), C.I. I. Pigment red 53 (C.I. No. 15585), C.I. I. Pigment orange 64 (C.I. No. 12760), or C.I. I.
  • Azo compound pigments such as CI Pigment Red 247 (C.I. No. 15915), C.I. I. Indanthrone compound pigments such as C.I. Pigment Blue 60 (C.I. No. 69800); I. Pigment green 7 (C.I. No. 74260), C.I. I. Pigment green 36 (C.I. No. 74265), C.I. I. Pigment green 37 (C.I. No. 74255), C.I. I. Pigment green 58, C.I. I. Pigment blue 16 (C.I. No. 74100), C.I. I. Pigment blue 75 (C.I. No. 74160: 2), C.I. I. Pigment blue 79 (C.I.
  • C.I. I. Pigment Blue 15: 6 C.I. No. 74160
  • C.I. I. Phthalocyanine compound pigments such as C.I. Pigment Blue 15: 3 (C.I. No. 74160); I. Pigment blue 56 (C.I. No. 42800), or C.I. I. Pigment Blue 61 (C.I. No. 42765: 1) and the like triarylcarbonium compound pigments, C.I. I. Pigment violet 23 (C.I. No. 51319) or C.I. I. Pigment Violet 37 (C.I. No. 51345), Pigment Blue 80 and other dioxazine compound pigments, C.I. I.
  • Aminoanthraquinone compound pigments such as C.I. Pigment Red 177 (C.I. No. 65300); I. Pigment red 254 (C.I. No. 56110), C.I. I. Pigment Red 255 (C.I. No. 561050), C.I. I. Pigment red 264, C.I. I. Pigment red 272 (C.I. No. 561150), C.I. I. Pigment orange 71, or C.I. I. Diketopyrrolopyrrole compound pigments such as C.I. Pigment Orange 73; I. Thioindigo compound pigments such as C.I. Pigment Red 88 (C.I. No. 7313); I.
  • Pigment yellow 139 (C.I. No. 56298), C.I. I. Pigment Orange 66 (C.I. No. 48210), an isoindoline compound pigment such as C.I. I. Pigment yellow 109 (C.I. No. 56284), C.I. I. Pigment yellow 185 (C.I. No. 56290), or C.I. I. Pigment Orange 61 (C.I. No. 11295) and the like, an inindolinone compound pigment such as C.I. I. Pigment Orange 40 (C.I. No. 59700), or C.I. I. Pyranthrone compound pigments such as C.I. Pigment Red 216 (C.I. No. 59710); I.
  • Quinophthalone pigments such as CI Pigment Yellow 138; I. And isoviolanthrone compound pigments such as CI Pigment Violet 31 (60010).
  • quinacridone compound pigments, diketopyrrolopyrrole compound pigments, dioxazine compound pigments, phthalocyanine compound pigments, or azo compound pigments are preferable, and diketopyrrolopyrrole compound pigments, dioxazine compound pigments, phthalocyanine compound pigments (zinc phthalocyanine, More preferred are aluminum phthalocyanine and the like.
  • the content of the water-insoluble compound is preferably 1 to 60% by mass, and more preferably 2 to 50% by mass.
  • the fine particles obtained in the present invention are desirably water-insoluble compounds that can be stably dispersed in a dispersion medium.
  • the particle size of fine particles there is a method of expressing the average size of the population by quantifying by a measurement method, but it is often used that the mode diameter indicating the maximum value of the distribution, the median value of the integral distribution curve There are corresponding median diameters, various average diameters (number average, length average, area average, mass average, volume average, etc.), etc. In the present invention, unless otherwise specified, the average particle diameter is the number average diameter. Say.
  • the average particle size of the fine particles (primary particles) of the present invention is preferably 100 nm or less, more preferably 75 nm or less, and particularly preferably 50 nm or less.
  • the fine particles of the present invention are single crystals, polycrystals or aggregates of that size, and the fine particles may be crystalline particles, amorphous particles, or a mixture thereof.
  • the fine particles of the present invention can be described as being embedding a specific dispersant 2 as a disperse phase with the water-insoluble compound 1 as shown in FIGS.
  • the embedded dispersing agent 2 there are shown an embedded embedding dispersant 2b in which the whole molecule is encapsulated and an outer embedding dispersing agent 2a in which a part thereof extends outward.
  • the outward extending portion 2o of the external embedding dispersant 2a is continuous with the internal portion 2i, and the outward extending portion 2o has a steric repulsive portion, while the internal portion 2i is insoluble in water. It preferably has a site that exhibits an interaction that attracts the compound.
  • Such molecular structure and its design embodiments are as described above.
  • the outer region Ao located at 50% (r 2 / R) of the particle radius from the particle surface (that is, the center point c in FIG. 1-2).
  • the embedding dispersant 2 in the inner region Ai is less than 20%.
  • measurement and evaluation of surface uneven distribution in which the embedding dispersant is unevenly distributed in the outer region are performed according to the methods described in the following examples unless otherwise specified.
  • the ratio (Mv / Mn) of the volume average particle diameter (Mv) and the number average particle diameter (Mn) is used as an index representing the uniformity (monodispersity) of the particles, unless otherwise specified.
  • the monodispersity of the organic nanoparticles (primary particles) of the present invention in the present invention, monodispersity means the degree of uniform particle size), that is, Mv / Mn is 1.0 to 2.0. It is preferably 1.0 to 1.8, more preferably 1.0 to 1.5.
  • Examples of the method for measuring the particle size of the organic particles include microscopy, mass method, light scattering method, light blocking method, electrical resistance method, acoustic method, and dynamic light scattering method. Particularly preferred.
  • Examples of the microscope used for the microscopy include a scanning electron microscope and a transmission electron microscope.
  • Examples of the particle measuring apparatus using the dynamic light scattering method include Nikkiso's Nanotrac UPA-EX150 and Otsuka Electronics' dynamic light scattering photometer DLS-7000 series (both are trade names).
  • the fine particles of the water-insoluble compound of the present invention contain (i) the dispersing agent on the good solvent side and / or the poor solvent side when mixing the solution in which the water-insoluble compound is dissolved in the good solvent and the poor solvent. Mixed or (ii) a build-up fine particle that embeds the produced dispersant by preparing a solution in which the dispersant is dissolved in a good solvent separately and mixing with both the solutions preferable.
  • the amount of the embedding dispersant used is not particularly limited, but the amount added to the system when the fine particles of the water-insoluble compound are precipitated is in the range of 10 to 300 parts by mass with respect to 100 parts by mass of the water-insoluble compound.
  • the range of 10 to 120 parts by mass is more preferable, and the range of 20 to 100 parts by mass is particularly preferable.
  • the fine particles of the present invention as described above, it is preferable that 10% by mass or more of the embedding dispersant to be added to the reprecipitation method is embedded.
  • the embedding dispersant may be used alone or in combination of two or more.
  • the content of the embedding dispersant in the dispersion of the present invention is not particularly limited, but the upper limit is an amount added to the above system, and the lower limit is practically an amount embedded in fine particles. Specifically, it is preferably 1 to 294% by mass, more preferably 2 to 99% by mass.
  • the good solvent is not particularly limited as long as it can dissolve the water-insoluble compound and / or the embedding dispersant, and is compatible with the poor solvent (mixed uniformly).
  • the solubility of the water-insoluble compound in the good solvent is preferably 0.2% by mass or more, and more preferably 0.5% by mass or more. Although there is no particular upper limit to the solubility, it is practical that the solubility is 50% by mass or less in consideration of a commonly used water-insoluble compound. Further, the solubility of the embedding dispersant in the good solvent is preferably 4.0% by mass or more, and more preferably 10.0% by mass or more. Although there is no particular upper limit to the solubility, it is practical that the solubility is 70% by mass or less in consideration of a commonly used polymer compound.
  • the compatibility between the good solvent and the poor solvent is preferably 30% by mass or more, and more preferably 50% by mass or more, with respect to the poor solvent. There is no particular upper limit to the amount of good solvent dissolved in the poor solvent, but it is practical to mix them in an arbitrary ratio.
  • the solvent is preferably the same type of solvent.
  • the good solvent is not particularly limited, but an organic acid (eg, formic acid, dichloroacetic acid, methanesulfonic acid, etc.), an organic base (eg, diazabicycloundecene (DBU), tetrabutylammonium hydroxide, tetramethylammonium hydroxide).
  • organic acid eg, formic acid, dichloroacetic acid, methanesulfonic acid, etc.
  • an organic base eg, diazabicycloundecene (DBU), tetrabutylammonium hydroxide, tetramethylammonium hydroxide.
  • aqueous solvent eg, water, hydrochloric acid, sodium hydroxide aqueous solution
  • alcohol solvent eg, methanol, ethanol, n-propanol, etc.
  • ketone solvent eg, methyl ethyl ketone, methyl isobutyl
  • Ketones cyclohexanone, etc.
  • ether solvents eg, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.
  • sulfoxide solvents eg, dimethyl sulfoxide, Samethylene sulfoxide, sulfolane, etc.
  • ester solvents eg, ethyl acetate, n-butyl acetate, ethyl lactate, etc.
  • amide solvents eg, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, etc.
  • an organic acid, an organic base, an aqueous solvent, an alcohol solvent, a ketone solvent, an ether solvent, a sulfoxide solvent, an ester solvent, an amide solvent, or a mixture thereof is more preferable, and an organic acid, an organic base , Sulfoxide solvents, amide solvents, or mixtures thereof are particularly preferred.
  • the temperature at normal pressure is preferably ⁇ 10 to 150 ° C., more preferably ⁇ 5 to 130 ° C., and particularly preferably 0 to 100 ° C.
  • inorganic bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, and barium hydroxide can also be used as the base used when dissolving with alkali.
  • the amount of the base used is not particularly limited, but in the case of an inorganic base, it is preferably 1.0 to 30 molar equivalents, more preferably 1.0 to 25 molar equivalents relative to the water-insoluble compound. Particularly preferred is 0.0 to 20 molar equivalents.
  • the amount is preferably 1.0 to 100 molar equivalents, more preferably 5.0 to 100 molar equivalents, and particularly preferably 20 to 100 molar equivalents with respect to the water-insoluble compound.
  • inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid can be used as the acid used when dissolving in an acidic state.
  • the amount of the acid to be used is not particularly limited, but it is often used in an excessive amount compared to the base, and is preferably 3 to 500 molar equivalents relative to the water-insoluble compound, more preferably 10 to 500 molar equivalents. It is preferably 30 to 200 molar equivalents.
  • an inorganic base or an inorganic acid When an inorganic base or an inorganic acid is mixed with an organic solvent and used as a good solvent for a water-insoluble compound, the alkali or acid is completely dissolved, so that it has a high solubility in some water or lower alcohol or other alkali or acid.
  • a solvent with can be added to the organic solvent.
  • the amount of water or lower alcohol is preferably 50% by mass or less, more preferably 30% by mass or less, based on the total amount of the water-insoluble compound solution. Specifically, water, methanol, ethanol, n-propanol, isopropanol, butyl alcohol and the like can be used.
  • the viscosity of the water-insoluble compound solution is preferably 0.5 to 100.0 mPa ⁇ s, and more preferably 1.0 to 50.0 mPa ⁇ s.
  • the water-insoluble compound solution is not particularly limited as long as it dissolves a water-insoluble compound and, if necessary, a polymer compound in a good solvent, and may contain other components.
  • the organic compound which has an acidic group, the organic compound which has basicity etc. are mentioned suitably. These components have the action of adsorbing quickly to the deposited pigment when the pigment is precipitated by mixing the water-insoluble compound solution and the poor solvent, and treating the pigment surface to be acidic or basic.
  • the solubility of the other components in the poor solvent is not particularly limited.
  • Examples of the acidic group of the organic compound having an acidic group that can be used in the present invention include a carboxylic acid group, a sulfonic acid group, a sulfinic acid group, a sulfenic acid group, a phosphonic acid group, a hydroxyl group, and a sulfide group. Is not to be done. Moreover, 1 type may be individual in a molecule
  • the addition amount of the organic compound having an acidic group is preferably in the range of 0.01 to 30% by mass, more preferably in the range of 0.05 to 20% by mass with respect to the water-insoluble compound.
  • the range of 0.05 to 15% by mass is particularly preferable.
  • Organic compounds having a basic group include alkylamines, arylamines, aralkylamines, pyrazole derivatives, imidazole derivatives, triazole derivatives, tetrazole derivatives, oxazole derivatives, thiazole derivatives, pyridine derivatives, pyridazine derivatives, pyrimidine derivatives, pyrazine derivatives, triazines. Derivatives and the like can be mentioned, and alkylamine, arylamine and imidazole derivatives are preferable.
  • organic compound which has the said basic group 6 or more are preferable, More preferably, it is 8 or more, More preferably, it is 10 or more.
  • organic compound having a basic group include compounds described in paragraphs [0054] to [0056] of JP-A-2009-79158, and preferred ranges thereof are also the same.
  • the organic compound having a basic group is preferably in the range of 0.01 to 30% by mass, more preferably in the range of 0.05 to 20% by mass, based on the water-insoluble compound. It is particularly preferably in the range of ⁇ 15% by mass.
  • an organic compound composed of a basic group and a heterocyclic group examples include compounds described in paragraphs [0060] to [0087] of JP-A-2009-79158, and preferred ranges thereof are also the same.
  • the addition amount of the organic compound composed of the basic group and the heterocyclic group is preferably in the range of 0.01 to 30% by mass, and in the range of 0.05 to 20% by mass with respect to the water-insoluble compound. More preferably, it is in the range of 0.05 to 15% by mass.
  • pigment derivatives described in JP-A No. 2007-9096 and JP-A No. 7-331182 can be exemplified.
  • the pigment derivative referred to here is derived from a pigment derivative compound derived from an organic pigment as a parent substance and manufactured by chemically modifying the parent structure, or by a pigmentation reaction of a chemically modified pigment precursor.
  • a pigment derivative type compound examples include “EFKA 6745 (phthalocyanine derivative)” manufactured by EFKA, “Solsperse 5000 (phthalocyanine derivative)” manufactured by Lubrizol (all are trade names), and the like.
  • the amount used is preferably in the range of 0.5 to 30% by weight, more preferably in the range of 3 to 20% by weight, and more preferably in the range of 5 to 15% by weight with respect to the pigment. It is especially preferable that it is in the range.
  • the poor solvent is not particularly limited, but the solubility of the water-insoluble compound in the poor solvent is preferably 0.02% by mass or less, and more preferably 0.01% by mass or less. Although there is no particular lower limit to the solubility of the water-insoluble compound in the poor solvent, 0.0001% by mass or more is practical in consideration of a commonly used water-insoluble compound.
  • the solubility of the self-dispersing polymer compound in the poor solvent is 2.0% by mass or less (insoluble), and preferably 1.0% by mass or less. Although there is no particular lower limit to the solubility of the water-insoluble compound in the poor solvent, 0.001% by mass or more is practical in consideration of a commonly used polymer compound.
  • the poor solvent is not particularly limited, but an aqueous solvent (for example, water, hydrochloric acid, sodium hydroxide aqueous solution), an alcohol solvent (for example, methanol, ethanol, n-propanol, etc.), a ketone solvent (for example, methyl ethyl ketone, Methyl isobutyl ketone, cyclohexanone, etc.), ether solvents (eg, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.), sulfoxide solvents (eg, dimethyl sulfoxide, hexamethylene sulfoxide, sulfolane, etc.), ester solvents ( For example, ethyl acetate, n-butyl acetate, ethyl lactate, etc.), amide solvents (eg, N, N-dimethylformamide, 1-methyl-2-pyrrolidon
  • an aqueous solvent, an alcohol solvent, a ketone solvent, a sulfoxide solvent, an ester solvent, an amide solvent, a nitrile solvent, or a mixture thereof is more preferable, and an aqueous medium, an alcohol solvent, or a mixture thereof. Is particularly preferred.
  • the aqueous medium refers to water alone or water and water-soluble organic solvent or inorganic salt solution, for example, water, hydrochloric acid, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and the like.
  • the alcohol solvent include methanol, ethanol, isopropyl alcohol, n-propyl alcohol, 1-methoxy-2-propanol and the like.
  • the solubility in the good solvent should be sufficiently higher than the solubility in the poor solvent.
  • the solubility difference is preferably 0.2% by mass or more, and 0.5% by mass or more. It is more preferable.
  • the difference in solubility between the good solvent and the poor solvent is 50% by mass or less in consideration of a commonly used water-insoluble compound.
  • the solubility difference is preferably 2.0% by mass or more, and more preferably 5.0% by mass or more. Although there is no particular upper limit to the difference in solubility between the good solvent and the poor solvent, it is practical that the difference is 70% by mass or less in consideration of a commonly used polymer compound.
  • the state of the poor solvent is not particularly limited, and a range from normal pressure to subcritical and supercritical conditions can be selected.
  • the temperature at normal pressure is preferably ⁇ 30 to 100 ° C., more preferably ⁇ 10 to 60 ° C., and particularly preferably 0 to 30 ° C.
  • the viscosity of the water-insoluble compound solution is preferably 0.5 to 100.0 mPa ⁇ s, and more preferably 1.0 to 50.0 mPa ⁇ s.
  • the water-insoluble compound solution and the poor solvent When mixing the water-insoluble compound solution and the poor solvent, either of them may be added and mixed. However, it is preferable to jet the water-insoluble compound solution into the poor solvent and mix the poor solvent. A stirred state is preferred.
  • the stirring speed is preferably 100 to 10000 rpm, more preferably 150 to 8000 rpm, and particularly preferably 200 to 6000 rpm.
  • a pump or the like may be used for the addition, or it may not be used.
  • addition in a liquid or addition outside a liquid may be sufficient, addition in a liquid is more preferable.
  • the inner diameter of the supply pipe is preferably 0.1 to 200 mm, more preferably 0.2 to 100 mm.
  • the rate at which the liquid is supplied from the supply pipe is preferably 1 to 10,000 ml / min, more preferably 5 to 5000 ml / min.
  • the Reynolds number is a dimensionless number representing the state of fluid flow and is represented by the following equation.
  • Re represents the Reynolds number
  • represents the density [kg / m 3 ] of the water-insoluble compound solution
  • U represents the relative velocity [m / s when the water-insoluble compound solution and the poor solvent meet.
  • L represents the equivalent diameter [m] of the flow path or supply port where the water-insoluble compound solution meets the poor solvent
  • represents the viscosity coefficient [Pa ⁇ s] of the water-insoluble compound solution.
  • the equivalent diameter L refers to the diameter of the equivalent circular pipe when assuming an opening diameter of a pipe having an arbitrary cross-sectional shape or a circular pipe equivalent to the flow path.
  • the value of the equivalent diameter L is not specifically limited, For example, it is synonymous with the preferable internal diameter of the supply port mentioned above.
  • the relative speed U when the water-insoluble compound solution and the poor solvent meet is defined by the relative speed in the direction perpendicular to the surface of the part where both meet. That is, for example, when a water-insoluble compound solution is injected and mixed in a stationary poor solvent, the speed of injection from the supply port becomes equal to the relative speed U.
  • the value of the relative speed U is not particularly limited, but is preferably 0.5 to 100 m / s, and more preferably 1.0 to 50 m / s.
  • the density ⁇ of the water-insoluble compound solution is a value determined by the type of material selected, but is practically, for example, 0.8 to 2.0 kg / m 3 . Further, the viscosity coefficient ⁇ of the water-insoluble compound solution is also a value determined by the material used, the ambient temperature, etc., but the preferred range is synonymous with the preferred viscosity of the water-insoluble compound solution described above.
  • it can be obtained by adjusting the Reynolds number to 60 or more to control the particle diameter of the pigment nanoparticles, preferably 100 or more, and more preferably 150 or more.
  • favorable pigment nanoparticles can be obtained by controlling and controlling in the range of 100,000 or less, which is preferable. Or it is good also as conditions which raised Reynolds number so that the average particle diameter of the nanoparticle obtained may be 60 nm or less. At this time, within the above range, it is possible to control and obtain pigment nanoparticles having a smaller particle size by increasing the Reynolds number.
  • the mixing ratio of the water-insoluble compound solution and the poor solvent is preferably 1/50 to 2/3 in volume ratio, more preferably 1/40 to 1/2, and particularly preferably 1/20 to 3/8.
  • the particle concentration in the liquid when organic fine particles are precipitated is not particularly limited, but the organic particles are preferably in the range of 10 to 40,000 mg, more preferably in the range of 20 to 30000 mg, particularly with respect to 1000 ml of the solvent. The range is preferably 50 to 25000 mg.
  • the preparation scale for generating fine particles is not particularly limited, but the preparation amount of the poor solvent is preferably 10 to 2000 L, more preferably 50 to 1000 L.
  • At least one poor solvent becomes a good solvent (solubility in the poor solvent is 4.0% by mass or more) in at least one of the water-insoluble compound solution and the poor solvent.
  • a compound hereinafter sometimes referred to as a particle size adjusting agent may be contained.
  • polymer particle size adjusting agent examples include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene glycol, polypropylene glycol, polyacrylamide, vinyl alcohol-vinyl acetate copolymer, polyvinyl alcohol-partial formalized product, polyvinyl alcohol-part.
  • natural polymers such as alginate, gelatin, albumin, casein, gum arabic, tongant gum, lignin sulfonate, etc.
  • polyvinylpyrrolidone, polyacrylic acid, polyallylamine, polyallylamine hydrochloride, polyvinylamine hydrochloride, allylamine hydrochloride / diallylamine hydrochloride copolymer, diallylamine monomer / SO 2 copolymer, and the like are preferable.
  • These particle size adjusting agents can be used singly or in combination of two or more.
  • the mass average molecular weight is preferably from 1,000 to 500,000, more preferably from 10,000 to 500,000, and particularly preferably from 10,000 to 100,000.
  • N-acyl-N-alkyl taurine salt As an anionic particle size adjusting agent (anionic surfactant), N-acyl-N-alkyl taurine salt, fatty acid salt, alkyl sulfate ester salt, alkylbenzene sulfonate, alkyl naphthalene sulfonate, dialkyl sulfosuccinate, alkyl Examples thereof include phosphoric acid ester salts, naphthalenesulfonic acid formalin condensate, polyoxyethylene alkyl sulfate ester salts and the like. Of these, N-acyl-N-alkyltaurine salts are preferred. As the N-acyl-N-alkyl taurine salts, those described in JP-A-3-273067 are preferable. These anionic particle size regulators can be used alone or in combination of two or more.
  • Cationic particle size modifiers include quaternary ammonium salts, alkoxylated polyamines, aliphatic amine polyglycol ethers, aliphatic amines, diamines derived from aliphatic amines and fatty alcohols, and Examples include salts of cationic substances of imidazoline derived from polyamines and fatty acids. These cationic particle size regulators can be used alone or in combination of two or more.
  • the amphoteric particle size regulator is a particle size in which the anionic particle size regulator has both an anion group moiety in the molecule and a cationic group moiety in the molecule of the cationic particle size modifier. It is a regulator.
  • Nonionic particle size adjusting agents include polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene Examples thereof include alkylamines and glycerin fatty acid esters. Of these, polyoxyethylene alkylaryl ether is preferable. These nonionic particle size regulators may be used alone or in combination of two or more.
  • the content of the particle size adjusting agent is preferably in the range of 0.1 to 100% by mass with respect to the pigment, more preferably 0.1% in order to further improve the particle size control of the water-insoluble compound fine particles. It is in the range of ⁇ 50 mass%, more preferably in the range of 0.1 to 20 mass%.
  • the particle size adjusting agents may be used alone or in combination.
  • the type of the third solvent used by switching from the good solvent (first solvent) and the poor solvent (second solvent) is not particularly limited, but is preferably an organic solvent, such as an ester compound solvent, an alcohol compound solvent, Aromatic compound solvents and aliphatic compound solvents are preferred, ester compound solvents, aromatic compound solvents and aliphatic compound solvents are more preferred, and ester compound solvents are particularly preferred.
  • the third solvent may be a pure solvent based on the above solvent or a mixed solvent composed of a plurality of solvents.
  • first solvent not only the above-mentioned third solvent but also a fourth solvent described later, a solvent different from both the good solvent and the poor solvent, which is a medium of the dispersion composition, is collectively referred to as “first solvent”.
  • 3 solvent a solvent different from both the good solvent and the poor solvent, which is a medium of the dispersion composition
  • ester compound solvent examples include 2- (1-methoxy) propyl acetate, ethyl acetate, and ethyl lactate.
  • alcohol compound solvent examples include methanol, ethanol, n-butanol, isobutanol and the like.
  • aromatic compound solvent examples include benzene, toluene, xylene and the like.
  • aliphatic compound solvent examples include n-hexane and cyclohexane.
  • ethyl lactate, ethyl acetate, ethanol, and 2- (1-methoxy) propyl acetate are preferable, and ethyl lactate and 2- (1-methoxy) propyl acetate are more preferable. These may be used alone or in combination of two or more.
  • the third solvent is not the same as the good solvent or the poor solvent.
  • the timing of adding the third solvent is not particularly limited as long as it is after the precipitation of the water-insoluble compound fine particles, but it may be added to the mixed liquid in which the fine particles are precipitated, or a part of the solvent in the mixed liquid may be removed. It may be added after the removal, or all may be added after removing (concentrating) in advance. That is, the third solvent can be used as a substitution solvent, and the solvent component consisting of the good solvent and the poor solvent in the dispersion liquid in which the fine particles are precipitated can be substituted with the third solvent. Alternatively, the third solvent can be added after the good solvent and the poor solvent are completely removed (concentrated) and taken out as pigment particle powder.
  • the third solvent is added to replace the solvent, and the second solvent removal step (The solvent may be removed and powdered by the second removal). Thereafter, a pigment dispersant and / or a solvent can be added to obtain a desired pigment dispersion composition.
  • the good solvent and the poor solvent are completely removed (concentrated) and taken out as pigment particle powder, and then the third solvent and / or the pigment dispersant can be added to obtain a desired pigment dispersion composition.
  • the amount of the third solvent added is not particularly limited, but is preferably 100 to 300,000 parts by mass, more preferably 500 to 10,000 parts by mass with respect to 100 parts by mass of the water-insoluble compound fine particles.
  • the process for removing the solvent component from the mixed solution after the precipitation of the water-insoluble compound fine particles is not particularly limited, and examples thereof include a method of filtering with a filter and the like, a method of precipitating and concentrating the water-insoluble compound fine particles by centrifugation. It is done.
  • an apparatus for filter filtration for example, an apparatus such as reduced pressure or pressure filtration can be used.
  • preferable filters include filter paper, nanofilters, and ultrafilters. Any device may be used as the centrifuge as long as the water-insoluble compound fine particles can be precipitated.
  • Centrifugation conditions are preferably 50 to 10,000, more preferably 100 to 8000, and particularly preferably 150 to 6000 in terms of centrifugal force (a value representing how many times the gravity acceleration is applied).
  • the temperature at the time of centrifugation depends on the solvent type of the dispersion, but is preferably ⁇ 10 to 80 ° C., more preferably ⁇ 5 to 70 ° C., and particularly preferably 0 to 60 ° C.
  • a method of concentrating the solvent by sublimation by vacuum freeze-drying, a method of drying and concentrating the solvent by heating or decompression, a method combining them, or the like can also be used.
  • the fine particles of the water-insoluble compound can be used in a state dispersed in a vehicle, for example.
  • the vehicle refers to a part of a medium in which a water-insoluble compound is dispersed in a liquid state when it is a paint, and is a part that is liquid and binds to the water-insoluble compound to harden a coating film (binder). And a component (organic solvent) for dissolving and diluting it.
  • the polymer compound used for forming the fine particles and / or the water-insoluble compound dispersant used for redispersion are collectively referred to as a binder.
  • the concentration of fine particles in the dispersion composition of fine particles after redispersion is appropriately determined according to the purpose, but preferably the fine particles are 2 to 30% by mass, and preferably 4 to 20% by mass with respect to the total amount of the dispersion composition. More preferred is 5 to 15% by mass.
  • the amount of the binder and the dissolved diluent component is appropriately determined depending on the type of the water-insoluble compound and the like, but the binder is 1 to 30% by mass with respect to the total amount of the dispersion composition. It is preferably 3 to 20% by mass, more preferably 5 to 15% by mass.
  • the dissolved and diluted component is preferably 5 to 80% by mass, and more preferably 10 to 70% by mass.
  • the aggregation state of the water-insoluble compound fine particles is spontaneously solved in the third solvent without adding another dispersant or the like. It preferably has a property of being dispersed in a medium, and this property is referred to as “self-dispersible” or “self-dispersible”. However, in order to further improve the redispersibility in the present invention, a pigment dispersant or the like may be added during redispersion of the fine particles.
  • a dispersion method using ultrasonic waves or a method of applying physical energy can be used.
  • the ultrasonic irradiation device used preferably has a function capable of applying an ultrasonic wave of 10 kHz or higher, and examples thereof include an ultrasonic homogenizer and an ultrasonic cleaner.
  • the liquid temperature is preferably 1 to 100 ° C., more preferably 5 to 60 ° C.
  • the temperature control method can be performed by controlling the dispersion temperature, controlling the temperature of the temperature adjusting layer that controls the temperature of the dispersion, and the like.
  • disperser used when dispersing the pigment nanoparticles by applying physical energy, for example, dispersers such as kneaders, roll mills, atriders, super mills, dissolvers, homomixers, and sand mills. Can be mentioned. In addition, a high-pressure dispersion method and a dispersion method using fine particle beads are also preferable.
  • pigment dispersants include polymer dispersants (for example, linear polymers, block polymers, graft polymers, terminal-modified polymers, etc.), surfactants (polyoxyethylene alkyl phosphate ester, poly Oxyethylene alkylamine, alkanolamine, etc.), pigment derivatives and the like.
  • the dispersant acts to adsorb on the surface of the pigment and prevent reaggregation.
  • a block polymer, a graft polymer, and a terminal-modified polymer having an anchor site to the pigment surface can be cited as preferred structures.
  • the pigment derivative has an effect of promoting the adsorption of the polymer dispersant by modifying the pigment surface.
  • the polymer compound include “Disperbyk-2000, 2001” manufactured by BYK Chemie, “EFKA 4330, 4340” manufactured by EFKA, and the like.
  • the graft polymer include “Solsperse 24000, 28000, 32000, 38500, 39000, 55000” manufactured by Lubrizol, “Disperbyk-161, 171, 174” manufactured by BYK Chemie, and the like.
  • the terminal-modified polymer include “Solsperse 3000, 17000, 27000” manufactured by Lubrizol (all are trade names).
  • the pigment derivative (hereinafter also referred to as “pigment derivative type dispersant”) is derived from an organic pigment as a parent substance, and is manufactured by chemically modifying the parent structure, or It is defined as a pigment derivative type dispersant obtained by a pigmentation reaction of a chemically modified pigment precursor. Generally, it is also called a synergist type dispersant.
  • a functional group such as a pigment derivative having an acidic group, a pigment derivative having a basic group, or a phthalimidomethyl group described in JP-A-2007-9096, JP-A-7-331182, or the like.
  • the introduced pigment derivative is preferably used.
  • Examples of commercially available products include “EFKA 6745 (phthalocyanine derivative) and 6750 (azo pigment derivative)” manufactured by EFKA, “Solsperse 5000 (phthalocyanine derivative) and 22000 (azo pigment derivative)” manufactured by Lubrizol (any) Also product name).
  • Examples of the linear polymer include an alkali-soluble resin described later, and it is also preferable to use the linear polymer in combination with the pigment derivative. Only one pigment dispersant may be used, or two or more pigment dispersants may be used in combination.
  • the photocurable composition contains a dispersion composition of fine particles of the water-insoluble compound, a photopolymerizable compound, and a photopolymerization initiator (hereinafter sometimes referred to as a photopolymerization initiator system), preferably, Furthermore, an alkali-soluble resin is included.
  • a photopolymerization initiator system a photopolymerization initiator system
  • an alkali-soluble resin is included.
  • the water-insoluble compound fine particles and the method for producing the dispersion composition have already been described in detail.
  • the content of the fine particles in the photocurable composition is preferably 3 to 90% by mass with respect to the total solid content (in the present invention, the total solid content means the total composition excluding the organic solvent), and 20 More preferably, it is ⁇ 80% by mass, and further preferably 25-60% by mass. If this amount is too large, the viscosity of the dispersion increases, which may cause problems in production suitability. If the amount is too small, coloring power is not sufficient. Moreover, you may use it in combination with a normal pigment for toning. As the pigment, those described above can be used.
  • the photopolymerizable compound (hereinafter sometimes referred to as a polymerizable monomer or a polymerizable oligomer) is a polyfunctional monomer that has two or more ethylenically unsaturated double bonds and undergoes addition polymerization upon irradiation with light. Is preferred.
  • Examples of such a photopolymerizable compound include compounds having at least one addition-polymerizable ethylenically unsaturated group in the molecule and having a boiling point of 100 ° C. or higher at normal pressure.
  • Examples include monofunctional acrylates and monofunctional methacrylates such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate and phenoxyethyl (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) ) Acrylate, trimethylolethane triacrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane diacrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, di Pentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, hexane All di (meth) acrylate, trimethylolpropane tri (acryloyloxy
  • polyfunctional acrylates such as epoxy acrylates which are reaction products of epoxy resin and (meth) acrylic acid, and methacrylates.
  • trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are preferable.
  • “polymerizable compound B” described in JP-A-11-133600 can also be mentioned as a preferable example.
  • the photopolymerizable compound may be used alone or in combination of two or more.
  • the content of the photocurable composition with respect to the total solid content is generally 5 to 50% by mass, and 10 to 40% by mass. Is preferred. If this amount is too large, it becomes difficult to control the developability, which causes a problem in production suitability. If the amount is too small, the curing power at the time of exposure is insufficient.
  • a photopolymerization initiator system refers to a mixture that exhibits a photopolymerization initiation function by a combination of a plurality of compounds
  • oxime-based compounds such as 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, O— Benzoyl-4 '-(benzmercapto) benzoyl-hexyl-ketoxime, 2,4,6-trimethylphenylcarbonyl-diphenylphosphonyl oxide, hexafluorophospho-trialkylphenylphosphonium salt, and the like may be mentioned as suitable ones. it can.
  • the photopolymerization initiator or the photopolymerization initiator system may be used alone or in combination of two or more, but it is particularly preferable to use two or more. When at least two kinds of photopolymerization initiators are used, display characteristics, particularly display unevenness, can be reduced.
  • the content of the photopolymerization initiator or photopolymerization initiator system with respect to the total solid content of the photocurable composition is generally 0.5 to 20% by mass, and preferably 1 to 15% by mass. If this amount is too large, the sensitivity becomes too high and control becomes difficult. If the amount is too small, the exposure sensitivity becomes too low.
  • the alkali-soluble resin can be added at the time of preparing a photocurable composition or an ink-jet ink for a color filter, but it is also preferably added at the time of producing the fine particle dispersion composition or at the time of forming fine particles. It is also possible to add the alkali-soluble resin to both or one of the poor solvents for adding the water-insoluble compound solution and the water-insoluble compound solution to form fine particles of the water-insoluble compound. Alternatively, it is also preferable to add an alkali-soluble resin solution when forming fine particles of a water-insoluble compound in a separate system.
  • alkali-soluble resin a binder having an acidic group is preferable, and an alkali-soluble polymer having a polar group such as a carboxylic acid group or a carboxylic acid group in the side chain is preferable.
  • alkali-soluble polymer having a polar group such as a carboxylic acid group or a carboxylic acid group in the side chain. Examples thereof include JP-A-59-44615, JP-B-54-34327, JP-B-58-12577, JP-B-54-25957, JP-A-59-53836, and JP-A-57-36.
  • Methacrylic acid copolymer acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially esterified maleic acid copolymer as described in JP-A-59-71048 Etc.
  • the cellulose derivative which has a carboxylic acid group, carboxylate, etc. in a side chain can also be mentioned, In addition to this, what added the cyclic acid anhydride to the polymer which has a hydroxyl group can also be used preferably.
  • copolymers of benzyl (meth) acrylate and (meth) acrylic acid described in US Pat. No. 4,139,391, benzyl (meth) acrylate and (meth) acrylic acid are used. And multi-component copolymers with other monomers.
  • the alkali-soluble resin may be used alone or in the form of a composition used in combination with a normal film-forming polymer.
  • the amount of water-insoluble compound added to 100 parts by mass of the fine particles is 10 to 200 masses. Parts are common, with 25 to 100 parts by weight being preferred.
  • the side chain of the alkali-soluble resin may have a polymerizable group, and a UV curable resin or a thermosetting resin is also useful.
  • a resin having a water-soluble atomic group in a part of the side chain can be used.
  • an organic solvent for preparing the photocurable composition
  • an organic solvent for preparing the photocurable composition
  • the fourth solvent include, but are not limited to, alcohol solvents, ketone solvents, ether solvents, sulfoxide solvents, ester solvents, amide solvents, aromatic hydrocarbon solvents, aliphatic hydrocarbons.
  • Preferable examples include a system solvent, a nitrile solvent, or a mixture thereof.
  • the ether solvent include propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate.
  • ester solvent examples include 1,3-butylene glycol diacetate, methyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, butyl acetate, ethyl Examples thereof include carbitol acetate and butyl carbitol acetate.
  • aromatic hydrocarbon solvent examples include toluene and xylene.
  • aliphatic hydrocarbon solvent examples include cyclohexane and n-octane. These solvents may be used alone or in combination of two or more.
  • a solvent having a boiling point of 180 ° C. to 250 ° C. can be used if necessary.
  • the content of the organic solvent is preferably 10 to 95% by mass with respect to the total amount of the photocurable composition.
  • an appropriate surfactant is contained in the photocurable composition.
  • Suitable surfactants include those disclosed in JP-A Nos. 2003-337424 and 11-133600.
  • content of surfactant 5 mass% or less is preferable with respect to photocurable composition whole quantity.
  • the photocurable composition preferably contains a thermal polymerization inhibitor.
  • the thermal polymerization inhibitor include hydroquinone, hydroquinone monomethyl ether, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl) -6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2-mercaptobenzimidazole, phenothiazine and the like.
  • the content of the thermal polymerization inhibitor is preferably 1% by mass or less with respect to the total amount of the photocurable composition.
  • a colorant in addition to the colorant (pigment), a colorant (dye or pigment) can be added to the photocurable composition as necessary.
  • a pigment among the colorants it is desirable that the pigment is uniformly dispersed in the photocurable composition.
  • Specific examples of the dyes or pigments include the coloring materials described in JP-A-2005-17716 [0038]-[0040] and JP-A-2005-361447 [0068]-[0072]. And the colorants described in JP-A-2005-17521 [0080] to [0088] can be suitably used.
  • the auxiliary dye or pigment content is preferably 5% by mass or less based on the total amount of the photocurable composition.
  • the photocurable composition can contain an ultraviolet absorber as necessary.
  • the ultraviolet absorber include salicylate series, benzophenone series, benzotriazole series, cyanoacrylate series, nickel chelate series, hindered amine series and the like in addition to the compounds described in JP-A-5-72724.
  • content of a ultraviolet absorber 5 mass% or less is preferable with respect to the photocurable composition whole quantity.
  • the photocurable composition may contain “adhesion aid” described in JP-A No. 11-133600, other additives, and the like in addition to the above-described additives.
  • the photocurable composition can be made into an inkjet ink by adjusting the composition appropriately.
  • the inkjet ink may be a normal inkjet ink such as for printing, but among them, the inkjet ink for the color filter is preferable.
  • the ink-jet ink is not particularly limited as long as it contains the above-mentioned water-insoluble compound fine particles, and preferably contains the above-mentioned water-insoluble compound fine particles in a medium containing a polymerizable monomer and / or a polymerizable oligomer.
  • the polymerizable monomer and / or polymerizable oligomer those described above for the photocurable composition can be used.
  • the viscosity at the time of injection is preferably 5 to 25 mPa ⁇ s, more preferably 8 to 22 mPa ⁇ s, and particularly preferably 10 to 20 mPa ⁇ s (in the present invention, unless otherwise specified) It is a value at 25 ° C.).
  • the viscosity can be adjusted by adjusting the type and amount of components contained in the ink. The viscosity can be measured, for example, by a normal apparatus such as a conical plate type rotational viscometer or an E type viscometer.
  • the surface tension of the ink upon ejection is preferably 15 to 40 mN / m from the viewpoint of improving the flatness of the pixel (in the present invention, the surface tension is a value at 23 ° C. unless otherwise specified). ). More preferably, it is 20 to 35 mN / m, and most preferably 25 to 30 mN / m.
  • the surface tension can be adjusted by the addition of a surfactant and the type of solvent.
  • the surface tension is obtained by using a measuring device such as a surface tension measuring device (CBVP-Z, manufactured by Kyowa Interface Science Co., Ltd.) or a fully automatic balanced electro surface tension meter ESB-V (manufactured by Kyowa Scientific Co., Ltd.). It can be measured by the plate method.
  • Ink jet ink for color filters can be sprayed by continuously ejecting charged ink and controlled by an electric field, intermittently ejecting ink using piezoelectric elements, or intermittently using ink by heating and foaming.
  • Various methods such as a method of spraying can be employed.
  • a normal method such as a method of thermally curing ink, a method of photocuring, or a method of ejecting droplets after forming a transparent image receiving layer on a substrate in advance. Can be used.
  • An ordinary ink jet head (hereinafter also simply referred to as a head) can be applied, and a continuous type or a dot on demand type can be used.
  • the thermal head is preferably a type having an operation valve as described in JP-A-9-323420 for discharging.
  • the piezo head for example, the heads described in European Patent A277,703, European Patent A278,590 and the like can be used.
  • the head preferably has a temperature control function so that the temperature of the ink can be controlled.
  • the drive frequency is preferably 1 to 500 kHz.
  • a heating step of performing heat treatment can be provided. That is, a substrate having a layer photopolymerized by light irradiation is heated in an electric furnace, a dryer or the like, or an infrared lamp is irradiated.
  • the heating temperature and time depend on the composition of the photosensitive dark color composition and the thickness of the formed layer, but generally from about 120 ° C. to obtain sufficient solvent resistance, alkali resistance, and ultraviolet absorbance. Heating at about 250 ° C. for about 10 minutes to about 120 minutes is preferred.
  • the pattern shape of the color filter thus formed is not particularly limited, and may be a general black matrix stripe shape, a lattice shape, or a delta arrangement. May be.
  • partition wall it is preferable to prepare a partition wall in advance before the pixel forming step using the color filter inkjet ink described above, and to apply ink to a portion surrounded by the partition wall.
  • Any partition may be used, but in the case of manufacturing a color filter, it is preferably a light-blocking partition having a black matrix function (hereinafter also simply referred to as “partition”).
  • the partition wall can be produced by the same material and method as those of a normal color filter black matrix. For example, paragraph numbers [0021] to [0074] of JP 2005-3861 A, black matrices described in paragraph numbers [0012] to [0021] of JP 2004-240039 A, and JP 2006-17980 A. And the inkjet black matrix described in paragraphs [0009] to [0044] of JP-A-2006-10875.
  • the thickness of the coating film using the photocurable composition can be appropriately determined depending on the application, but is preferably 0.5 to 5.0 ⁇ m, and preferably 1.0 to 3.0 ⁇ m. Is more preferable.
  • the above-mentioned monomer or oligomer can be polymerized to form a polymerized film of the photocurable composition, and a color filter having the polymerized film can be produced (about production of a color filter) Will be described later.)
  • Polymerization of the photopolymerizable compound can be carried out by allowing a photopolymerization initiator or a photopolymerization initiator system to act upon irradiation with light.
  • the said coating film can be formed by apply
  • Slit nozzles and slit coaters described in Japanese Patent Laid-Open No. 2001-310147 and the like are preferably used.
  • spin coating is excellent in that a thin film having a thickness of 1 to 3 ⁇ m can be uniformly applied with high accuracy, and it can be widely used for producing a color filter.
  • slit coating suitable for coating a substrate that is wider and larger in area than spin coating has been used in order to increase manufacturing efficiency and manufacturing cost. It has come to be adopted in the production of. From the viewpoint of liquid-saving properties, slit coating is superior to spin coating, and a uniform coating film can be obtained with a smaller amount of coating liquid.
  • a coating head having a slit (gap) with a width of several tens of microns at the tip and a length corresponding to the coating width of a rectangular substrate is maintained at a clearance (gap) of several tens to several hundreds of microns with the substrate.
  • this is a coating method in which a coating liquid supplied from a slit is applied to a substrate with a predetermined discharge amount by giving a constant relative speed between the substrate and the coating head.
  • This slit coating is (1) less liquid loss compared to spin coating, (2) cleaning process is reduced because there is no flying of the coating liquid, and (3) the scattered liquid components are applied to the coating film again.
  • slit coating is suitable for producing a color filter for a large-screen liquid crystal display device, and is expected as an advantageous coating method for reducing the amount of coating liquid.
  • coating in the said preparation method can be performed with a normal coating apparatus etc.
  • Preferred specific examples of the slit coater are the same as described above.
  • the color filter using the fine particles or dispersion thereof of the present invention is preferably excellent in contrast.
  • the contrast represents the ratio of the amount of transmitted light between two polarizing plates when the polarization axis is parallel and when it is vertical (“1990 Seventh Color Optical Conference, 512-color display 10.4. "Refer to" Color TFT for TFT-LCD, Ueki, Koseki, Fukunaga, Yamanaka "etc.)
  • the high contrast of the color filter means that the bright and dark discrimination when combined with the liquid crystal can be increased, which is a very important performance in order to replace the liquid crystal display with a CRT.
  • the obtained monomer (A-5) is mentioned as a preferred specific example of the monomer represented by the general formula (i), (ii), or (i) -2.
  • Monomer (A-5) 37.5 g, monomer M-11 5.0 g, methacrylic acid 7.5 g, dodecyl mercaptan 1.3 and 16.7-methoxy-2-propanol 116.7 g were purged with nitrogen.
  • the mixture was introduced into a three-necked flask, stirred with a stirrer (Shinto Kagaku Co., Ltd .: Three-One Motor), heated to 75 ° C. while flowing nitrogen into the flask. To this was added 0.3 g of 2,2-azobis (2,4-dimethylvaleronitrile) (“V-65” manufactured by Wako Pure Chemical Industries, Ltd.), and the mixture was stirred with heating at 75 ° C. for 2 hours.
  • a stirrer Shinto Kagaku Co., Ltd .: Three-One Motor
  • Example AI Comparative Example AI
  • Example A-1 To 1000 g of N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries), pigment C.I. I. 50 g of Pigment Red 254 (Irgaphor Red BT-CF, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.) is dispersed, and 52.3 g of a tetramethylammonium hydroxide 25% methanol solution is added dropwise to prepare a pigment solution. did.
  • the organic pigment was injected at a flow rate of 400 ml / min using a NP-KX-500 large-capacity non-pulsating flow pump (trade name, manufactured by Nippon Seimitsu Chemical Co., Ltd.) at a flow rate of 400 ml / min.
  • Particles were formed to prepare pigment nanoparticle dispersion liquid 01.
  • the pigment nanoparticle dispersion liquid 01 prepared by the above procedure was concentrated at 5000 rpm for 90 minutes using an H-112 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type ro cloth manufactured by Shikishima Canvas Co., Ltd.
  • the obtained pigment nanoparticle concentrated paste 01 was recovered.
  • the pigment nanoparticle concentrated paste 01 was dried in an oven at 100 ° C. for 8 hours to obtain an organic pigment powder 01 (solid content concentration: 96 mass%) (organic pigment content: 59 mass%).
  • a pigment dispersion composition having the following composition was prepared.
  • Organic pigment powder 01 14.0 g 46.3 g of propylene glycol monomethyl ether acetate
  • the pigment dispersion composition having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm to obtain a pigment dispersion composition 01. It was.
  • Examples A-2 to A-9 In the pigment dispersion composition of Example A-1, pigment dispersion compositions 02 to 09 were prepared in the same manner as in Example A-1, except that the graft polymers were PA-2 to PA-9.
  • Examples A-10 to A-12 In the pigment dispersion composition of Example A-1, the amount of graft polymer PA-1 added was reduced from 30.0 g to 10.0 g, and the organic pigment powder was redispersed in propylene glycol monomethyl ether acetate. Pigment dispersion compositions 10 to 12 were prepared in the same manner as in Example A-1, except that 20.0 g of the combined PA-10 to 12 was added.
  • the pigment composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm to obtain a pigment dispersion composition c1.
  • pigment dispersion composition c2 was prepared in the same manner as in Example A-1, except that the graft polymer was PA-c1.
  • the temperature of the solution was controlled at 5 ° C.
  • the above-mentioned pigment solution was added to 1000 ml of ion-exchanged water containing hydrochloric acid as a poor solvent stirred at 500 rpm by a GK-0222-10 type Lamond Stirrer (trade name, manufactured by Fujisawa Pharmaceutical Co., Ltd.).
  • a KX-500 type large capacity non-pulsating flow pump (trade name, manufactured by Nippon Seimitsu Chemical Co., Ltd.), by injecting 100 ml at a flow rate of 400 ml / min from a liquid feed pipe having a flow path diameter of 1.1 mm,
  • pigment nanoparticle dispersion c3 was prepared.
  • the pigment nanoparticle aggregated liquid prepared by the above procedure was concentrated at 5000 rpm for 90 minutes using an H-112 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type cloth manufactured by Shikishima Canvas Co., Ltd.
  • the pigment nanoparticle concentrated paste was recovered.
  • the pigment nanoparticle concentrated paste was dried in an oven at 100 ° C. for 8 hours to obtain an organic pigment powder c3 (solid content concentration 94 mass%) (organic pigment content 58 mass%).
  • a pigment dispersion composition c3 having the following composition was prepared. 14.0 g of the organic pigment powder c3 46.3 g of propylene glycol monomethyl ether acetate The pigment dispersion composition c3 having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm. Obtained.
  • pigment dispersion composition c4 was prepared in the same manner as in Example 1 except that the graft polymer was polystyrene.
  • pigment dispersion composition c5 was prepared in the same manner as in Example A-1, except that the graft polymer was polyvinylpyrrolidone (K-30, trade name, manufactured by Wako Pure Chemical Industries, Ltd.). Adjusted.
  • the concentrated paste was set on a solid 13 C CP / MAS NMR sample stage, and based on the Goldman-Shen pulse sequence, 1 H 90 ° pulse width 4.5 ⁇ s, waiting time 200 ⁇ s for initial solvent selection, CP contact time 1 ms
  • the measurement was performed while changing the spin diffusion time from 0.5 to 200 ms.
  • the number of integrations was 4,096 times, and the repetition time was 3 to 10 seconds with 5 times the 1 H spin-lattice relaxation time of the sample as a guide.
  • the rotation speed of magic angle spinning was 8000 to 10000 Hz depending on the sample.
  • the peak areas of the pigment and the dispersant are calculated by peak separation of the spectrum at each spin diffusion time, and the diffusion distance L assuming a one-dimensional diffusion model is calculated with respect to the spin diffusion time tm.
  • the particle structure was judged from a plot of the peak area against the distance from the solvent molecule.
  • “ ⁇ ” was given, and when it was not recognized, “X” was given.
  • Table 2A The results are shown in Table 2A.
  • the pigment dispersion composition was subjected to suction filtration with a membrane filter (MILLIPORE cut size: 0.05 ⁇ m).
  • the obtained powder 1 after filtration was put into any appropriate solvent capable of dissolving the incorporated dispersant, and again with a motor mill M-50 (manufactured by Eiger Japan), using zirconia beads having a diameter of 0.65 mm, The dispersion treatment was performed at a peripheral speed of 9 m / s over 3 hours. Thereafter, the dispersant uptake rate was estimated by the following equation from the polymer amount of the powder 2 after filtration and the added polymer amount obtained by suction filtration in the same manner as described above.
  • the pigment dispersion composition was applied on a glass substrate at 100 ° C. for 3 minutes so that the thickness of the coating film was 1.4 ⁇ m to prepare a sample. Further, the pigment dispersion composition was applied again in the same manner as described above 30 days after the dispersion, and the contrast was measured as follows.
  • a color luminance meter (BM-5 manufactured by Topcon Corporation) was used for the measurement of chromaticity. Two polarizing plates, a sample, and a color luminance meter are installed at a position 13 mm from the backlight, a polarizing plate is placed at a position 40 mm to 60 mm, a cylinder 11 mm in diameter and 20 mm in length, and the light transmitted through this. was measured on a color luminance meter installed at a position of 400 mm through a polarizing plate installed at a position of 100 mm. The measurement angle of the color luminance meter was set to 2 °. The amount of light of the backlight was set so that the luminance when the two polarizing plates were installed in parallel Nicol was 1280 cd / m 2 without the sample being installed.
  • the dispersion compositions 01 to 12 containing the pigment fine particles of the present embodiment exhibit a higher dispersant embedding rate and dispersant uptake rate than the comparative samples c1 to c5, and the amount of the dispersant is smaller than that of the pigment.
  • the amount used is high and the dissociation of the dispersing agent over time is suppressed to maintain a stable dispersion state, thereby achieving a low contrast change rate over time.
  • Example A-II Comparative Example A-II
  • a coating solution for a thermoplastic resin layer having the following formulation H1 was applied and dried using a slit nozzle.
  • an intermediate layer coating solution having the following formulation P1 was applied and dried.
  • a light-shielding resin composition K1 having the composition shown in Table 3 below was applied and dried, a thermoplastic resin layer having a dry film thickness of 15 ⁇ m on the temporary support, and a dry film thickness of 1.
  • a 6 ⁇ m intermediate layer and a light-shielding resin layer having a dry film thickness of 2.4 ⁇ m were provided, and a protective film (12 ⁇ m thick polypropylene film) was pressure-bonded.
  • a photosensitive resin transfer material in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), and the light-shielding resin layer are integrated is prepared, and the sample name is the photosensitive resin transfer material K1. .
  • the resin composition K1 having a light-shielding property is first weighed K pigment dispersion 1 and propylene glycol monomethyl ether acetate, mixed at a temperature of 24 ° C. ( ⁇ 2 ° C.) and stirred at 150 rpm for 10 minutes, and then binder 1 and hydroquinone monomethyl.
  • ⁇ K pigment dispersion 1> ⁇ Carbon black (Degussa, trade name Special Black250) 13.1 parts by mass-Pigment Dispersant A 0.65 parts by mass-Polymer (benzyl methacrylate / methacrylic acid 72/28 molar ratio random copolymer, molecular weight 37,000) 6.72 parts by mass propylene glycol 79.53 parts by mass of monomethyl ether acetate
  • a non-alkali glass substrate is washed with a rotating brush having nylon bristles while spraying a glass detergent solution adjusted to 25 ° C. for 20 seconds by showering.
  • silane coupling solution N- ⁇ (aminoethyl) A 0.3% by mass aqueous solution of ⁇ -aminopropyltrimethoxysilane, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM603 ⁇ -aminopropyltrimethoxysilane
  • a substrate heated at 100 ° C. for 2 minutes using a laminator manufactured by Hitachi Industries, Ltd. (Lamic II type)
  • a rubber roller temperature of 130 ° C. a wire Lamination was performed at a pressure of 100 N / cm and a conveyance speed of 2.2 m / min.
  • a proximity type exposure machine manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd. having an ultra-high pressure mercury lamp with the substrate and mask (quartz exposure mask with image pattern) standing vertically.
  • the distance between the mask surface and the thermoplastic resin layer was set to 200 ⁇ m, and pattern exposure was performed with an exposure amount of 100 mJ / cm 2 .
  • the mask shape is a lattice shape, and the radius of curvature of the corner protruding toward the light-shielding partition wall in the portion corresponding to the boundary line between the pixel and the light-shielding partition wall is 0.6 ⁇ m.
  • a detergent containing phosphate, silicate, nonionic surfactant, antifoaming agent and stabilizer, trade name “T-SD1 (manufactured by Fuji Photo Film Co., Ltd.)”
  • T-SD1 trade name “T-SD1 (manufactured by Fuji Photo Film Co., Ltd.)
  • cone type Residue removal was performed with a rotary brush having a shower and nylon hair at a nozzle pressure of 0.02 MPa to obtain a light-shielding partition.
  • the substrate was further post-exposed with light of 500 mJ / cm 2 with an ultra-high pressure mercury lamp from the resin layer side, and then heat treated at 240 ° C. for 50 minutes.
  • Plasma water repellency treatment was performed by the following method. Plasma water repellency treatment was performed on the substrate on which the light-shielding partition walls were formed using a cathode coupling parallel plate type plasma processing apparatus under the following conditions. Gas used: CF 4 Gas flow rate: 80sccm Pressure: 40Pa RF power: 50W Processing time: 30 sec
  • R ink c1 to c5 > R inks 2 to 12 and R inks c1 to c5 were prepared in the same manner except that 02 to 12 and c1 to c5 were used instead of the pigment dispersion composition 01 of R ink 1.
  • G pigment C.I.P.B.36
  • Polymer dispersant Solsperse 24000, manufactured by AVECIA
  • binder benzyl methacrylate-methacrylic acid copolymer
  • Dipentaerythritol pentaacrylate 2.0 parts by mass
  • Tripropylene glycol diacrylate 5.0 parts by mass 2-methyl-1- [4- (methylthio) phenyl] -2- Monforinopropen-1-one 2.0 parts by mass diethylene glycol monobutyl ether acetate, 29.9 dyn / cm 80 parts by mass
  • Each of the R inks obtained above was applied on a glass substrate at 100 ° C. for 10 minutes so as to have a coating film thickness of 2.0 ⁇ m to prepare a sample.
  • the contrast of the prepared sample was measured in the same manner as in Example AI. Further, the R ink was applied again in the same manner as described above 30 days after dispersion, and the contrast was measured. The rate of change with time was calculated from this time-dependent contrast and the contrast applied and measured immediately after fabrication. The results at that time are shown in Table 4A.
  • the ink-jet inks (R inks 1 to 12) of the present embodiment have both a high initial contrast and a low contrast change rate over time as compared with the comparative sample R inks c1 to c5.
  • Example A-III Comparative Example A-III
  • the R ink 1, G ink 1, and B ink 1 obtained above were first ejected into a recess surrounded by a light-shielding partition as follows using a piezo type head. And the color filter of this invention was obtained as follows.
  • the head has a nozzle density of 150 per 25.4 mm, and has 318 nozzles. By fixing these two nozzles in the nozzle row direction with a shift of 1/2 the nozzle interval, 25 heads are arranged on the substrate in the nozzle array direction. . 300 drops per 4 mm.
  • the head and ink are controlled so that the vicinity of the ejection portion is 50 ⁇ 0.5 ° C.
  • Ink ejection from the head is controlled by a piezo drive signal applied to the head, and ejection of 6 to 42 pl per droplet is possible.
  • the head is moved while the glass substrate is conveyed at a position 1 mm below the head. More drops.
  • the conveyance speed can be set in the range of 50 to 200 mm / s.
  • the piezo drive frequency can be up to 4.6 kHz, and the droplet ejection amount can be controlled by these settings.
  • Each of R, G, and B is desired by controlling the conveying speed and the driving frequency so that the coating amount of the pigment is 1.1 g / m 2 , 1.8 g / m 2 , and 0.75 g / m 2.
  • R, G, and B inks were ejected into the recesses corresponding to R, G, and B.
  • the ejected ink is conveyed to an exposure unit and exposed by an ultraviolet light emitting diode (UV-LED).
  • UV-LED ultraviolet light emitting diode
  • NCCU033 trade name manufactured by Nichia Corporation was used. This LED outputs ultraviolet light having a wavelength of 365 nm from one chip. When a current of about 500 mA is applied, light of about 100 mW is emitted from the chip.
  • a plurality of these are arranged at intervals of 7 mm, and a power of 0.3 W / cm 2 can be obtained on the surface.
  • the exposure time after the droplet ejection and the exposure time can be changed according to the transport speed of the medium and the distance between the head and the LED in the transport direction. After landing, the film was dried at 100 degrees for 10 minutes and then exposed. Depending on the setting of the distance and the conveyance speed, the exposure energy on the medium can be adjusted between 0.01 and 15 J / cm 2 . The exposure energy was adjusted according to the conveyance speed. For measurement of these exposure power and exposure energy, a spectroradiometer URS-40D (trade name) manufactured by USHIO ELECTRIC CO., LTD.
  • the glass substrate after droplet ejection was baked in an oven at 230 ° C. for 30 minutes, so that both the light-shielding partition and each pixel were completely cured.
  • a liquid crystal display device was produced using the produced color filter (referred to as color filter III01) and the display characteristics were evaluated.
  • the glass substrate on which the color filter is formed is put into a sputtering apparatus, and 1300 mm thick ITO (indium tin oxide) is vacuum-deposited on the entire surface at 100 ° C., and then annealed at 240 ° C. for 90 minutes to crystallize the ITO.
  • a transparent electrode was formed.
  • Spacer formation A spacer was formed on the ITO transparent electrode produced above by the same method as the spacer forming method described in [Example 1] of JP-A-2004-240335.
  • a liquid crystal alignment control protrusion was formed on the ITO transparent electrode on which the spacer was formed, using the following positive photosensitive resin layer coating solution. However, the following methods were used for exposure, development, and baking.
  • a proximity exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) is arranged so that the predetermined photomask is at a distance of 100 ⁇ m from the surface of the photosensitive resin layer, and the irradiation energy is 150 mJ / Proximity exposure was performed at cm 2 . Subsequently, a 2.38% tetramethylammonium hydroxide aqueous solution was developed by spraying it on a substrate at 33 ° C.
  • the liquid crystal alignment control protrusions made of the photosensitive resin layer patterned into a desired shape are formed on the color filter side substrate.
  • a display device substrate was obtained.
  • the liquid crystal alignment control projection on which the liquid crystal alignment control protrusion was formed was baked at 230 ° C. for 30 minutes to form a cured liquid crystal alignment control protrusion on the liquid crystal display substrate.
  • the color filter III02 is exactly the same as the color filter and the liquid crystal display device, except that the R ink 1 used in manufacturing the liquid crystal display device III01 from the color filter III01 is changed to R inks 2 to 12 and c1 to c5, respectively.
  • R ink 1 used in manufacturing the liquid crystal display device III01 from the color filter III01 is changed to R inks 2 to 12 and c1 to c5, respectively.
  • IIIc1 to IIIc5 and liquid crystal display devices III0 to III12 and IIIc1 to IIIc5 were prepared and evaluated in the same manner.
  • the color filter and liquid crystal display device produced using the color filter inkjet ink of this embodiment showed high contrast. Furthermore, the liquid crystal display device of the present invention can express black with little leakage light during black display, and as a result, exhibits high descriptive power.
  • Colored photosensitive resin compositions for color filters 02 to 12, and c1 to c5 were prepared in the same manner as described above except that the pigment dispersion compositions 02 to 12 and c1 to c5 were used instead of the pigment dispersion composition 01, respectively. did.
  • the colored photosensitive composition for producing the color filter was applied on a glass substrate using a spin coater and dried at 100 ° C. for 2 minutes to form a film having a thickness of about 2 ⁇ m.
  • the contrast of the prepared sample was measured in the same manner as in Example AI.
  • the colored photosensitive composition was applied again in the same manner as described above 30 days after dispersion, and the contrast was measured.
  • the rate of change with time was calculated from this time-dependent contrast and the contrast applied and measured immediately after fabrication. Table 6 shows the results at that time. The results are shown in Table 6A below.
  • the colored photosensitive resin compositions for color filters 01 to 12 of the present invention achieve both a high contrast and a low contrast change rate as compared with the comparative samples c1 to c5.
  • a heat-treated pixel R was formed on the substrate on which the image K was formed using the colored photosensitive resin composition R1 having the composition shown in Table 8A below in the same process as the formation of the black (K) image.
  • the film thickness of the photosensitive resin layer R1 and the coating amount of the pigment are shown below.
  • the procedure for preparing the colored photosensitive resin composition is the same as that for the colored photosensitive resin composition K2.
  • Photosensitive resin film thickness ( ⁇ m) 1.60 Pigment coating amount (g / m 2 ) 1.00 C. I. P. R. 254 coating amount (g / m 2 ) 0.80 C. I. P. R. 177 coating amount (g / m 2 ) 0.20
  • ⁇ R pigment dispersion composition 01> -Pigment dispersion composition 01 of Example A-1 (C.I.P.R.254) 11 parts by mass Propylene glycol monomethyl ether acetate 68.2 parts by mass ⁇ R pigment dispersion 2> ⁇ C. I. P. R. 177 (Product name: Chromophthal Red A2B, Ciba Specialty Chemicals Co., Ltd.) 18 parts by mass Polymer (benzyl methacrylate / methacrylic acid 72/28 molar ratio random copolymer, molecular weight 30,000) 12 parts by mass / 70 parts by mass of propylene glycol monomethyl ether acetate
  • G pigment dispersion 1 “trade name: GT-2” manufactured by Fuji Film Electronics Materials Co., Ltd. was used.
  • Y pigment dispersion 1 “trade name: CF Yellow EX3393” manufactured by Mikuni Color Co., Ltd. was used.
  • a colored photosensitive resin composition B1 having the composition shown in Table 10A below is used on the substrate on which the image K, the pixel R, and the pixel G are formed, and is heat-treated in the same process as the formation of the black (K) image. Pixel B was formed, and the target color filter A was obtained.
  • the film thickness of the photosensitive resin layer B1 and the coating amount of the pigment are shown below.
  • the film thickness of the photosensitive resin layer R1 and the coating amount of the pigment are shown below.
  • the procedure for preparing the colored photosensitive resin composition is the same as that for the colored photosensitive resin composition K2.
  • B pigment dispersion 1 “trade name: CF Bull-EX3357” manufactured by Mikuni Dye Co., Ltd. was used.
  • B pigment dispersion 2 “trade name: CF Bull-EX3383” manufactured by Mikuni Dye Co., Ltd. was used.
  • R pigment dispersions 02 to 12, and c1 to c5 were prepared using the pigment compositions 02 to 12, and c1 to c5, respectively.
  • the color filters V02 to V12 and Vc1 to Vc5 are prepared in the same manner as the above-described method for producing the color filter V01 except that R pigment dispersions V02 to V12 and Vc1 to Vc5 are used instead of the R pigment dispersion 01, respectively. Produced.
  • a liquid crystal display device was prepared using each of the above color filters, and the display characteristics were evaluated.
  • the color filter was put in a sputtering apparatus, and 1300 mm thick ITO (indium tin oxide) was vacuum-deposited on the entire surface at 100 ° C., and then annealed at 240 ° C. for 90 minutes to crystallize the ITO to form an ITO transparent electrode.
  • ITO indium tin oxide
  • Spacer formation A spacer was formed on the ITO transparent electrode produced above by the same method as the spacer forming method described in [Example 1] of JP-A-2004-240335.
  • a liquid crystal alignment control protrusion was formed on the ITO transparent electrode on which the spacer was formed, using the following positive photosensitive resin layer coating solution. However, the following methods were used for exposure, development, and baking.
  • a proximity exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) is arranged so that the predetermined photomask is at a distance of 100 ⁇ m from the surface of the photosensitive resin layer, and the irradiation energy is 150 mJ / Proximity exposure was performed at cm 2 . Subsequently, a 2.38% tetramethylammonium hydroxide aqueous solution was developed by spraying it on a substrate at 33 ° C.
  • the liquid crystal alignment control protrusions made of the photosensitive resin layer patterned into a desired shape are formed on the color filter side substrate.
  • a display device substrate was obtained.
  • the liquid crystal alignment control projection on which the liquid crystal alignment control protrusion was formed was baked at 230 ° C. for 30 minutes to form a cured liquid crystal alignment control protrusion on the liquid crystal display substrate.
  • the liquid crystal display device substrate was taken out from the liquid crystal display device V01, and the contrast was measured in the same manner as in Example AI.
  • Liquid crystal display devices V02 to V12 and Vc1 to c5 were produced in the same manner except that the color filter V01 was changed to the color filters V02 to V12 and Vc1 to c5, respectively, and evaluated in the same manner.
  • the color filter and liquid crystal display device produced using the color filter inkjet ink of this embodiment showed high contrast.
  • Example A-VI Comparative Example A-VI
  • Example A-10 Pigment Green 36, Pigment Green 58, Pigment Blue 15: 6, Pigment Blue 79, Pigment Blue 80, and Pigment Yellow 185 are used in place of Pigment Red 254 in the preparation of Pigment Dispersion Composition 01 in Example 1, respectively.
  • Dispersion compositions O, P, Q, R, S, and T were prepared.
  • the dispersant embedding rate and the dispersant uptake rate were calculated in the same manner as in Example AI. As a result, all the pigment dispersion compositions were 5%. The above dispersant embedding rate and 10% or more dispersant uptake rate were shown.
  • each dispersion composition showed a high contrast and a low rate of change in contrast with time.
  • a pigment composition for comparison was prepared in the same manner as in Comparative Example I using the pigment types used in Pigment Dispersion Compositions O, P, Q, R, S, and T. The contrast was lower than that, and the contrast greatly decreased over time.
  • Example A-11 ⁇ Preparation of pigment dispersion composition U> [Preparation of pigment dispersion] To 1000 ml of methanesulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd.), C.I. I. A pigment solution U was prepared by adding 50 g of Pigment Violet 23 (Hostaperm Violet RL-NF Clariant) and 30.0 g of the graft polymer P-1. As a result of measuring the viscosity of this pigment solution T using Viscomate VM-10A-L (trade name, manufactured by CBC Materials), the viscosity when the liquid temperature of the pigment solution T is 45.0 ° C. is 86. 2 mPa ⁇ s.
  • the pigment nanoparticle dispersion prepared by the above method was concentrated at 3000 rpm for 90 minutes using an H-122 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type ro cloth manufactured by Shikishima Canvas Co., Ltd.
  • the pigment nanoparticle concentrated paste was recovered.
  • the pigment nanoparticle concentrated paste was subjected to solvent removal at 100 ° C. on a hot plate to obtain an organic pigment powder U (solid content concentration: 96 mass%).
  • a pigment dispersion composition U having the following composition was prepared using the pigment powder.
  • Organic pigment powder U 8.8g Propylene glycol monomethyl ether acetate 36.7g
  • the pigment dispersion composition having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 1 hour at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm.
  • Synthesis Examples 2B-18B Polymers PB-2 to PB-18 were obtained in the same manner as in Synthesis Example 1B, except that the monomer composition and initiator composition shown in Synthesis Example 1B were changed to Table 1B.
  • MAA methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
  • AA Acrylic acid (Wako Pure Chemical Industries, Ltd.)
  • St Styrene (Wako Pure Chemical Industries, Ltd.)
  • StMA Stearyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • DMA dodecyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • HexMA Hexyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • MMA Methyl methacrylate (Wako Pure Chemical Industries, Ltd.) NMP; 1-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.)
  • Example B-1 To 1000 g of N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries), pigment C.I. I. 50 g of Pigment Red 254 (Irgaphor Red BT-CF, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.) is dispersed, and 52.3 g of a tetramethylammonium hydroxide 25% methanol solution is added dropwise to prepare a pigment solution. did.
  • Pigment Red 254 Irgaphor Red BT-CF, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.
  • the pigment nanoparticle dispersion liquid A prepared by the above procedure was concentrated at 5000 rpm for 90 minutes using an H-112 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type ro cloth manufactured by Shikishima Canvas Co., Ltd.
  • the resulting pigment nanoparticle concentrated paste A was recovered.
  • the pigment nanoparticle concentrated paste A was dried in an oven at 100 ° C. for 8 hours to obtain an organic pigment powder A (solid content concentration: 97 mass%) (organic pigment content: 58 mass%).
  • a pigment dispersion composition A having the following composition was prepared. 14.0 g of the organic pigment powder A 46.8g of propylene glycol monomethyl ether acetate
  • Pigment dispersion composition A having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm. Obtained.
  • Examples B-2 to B-9) In the pigment dispersion composition of Example B-1, pigment dispersion compositions B to O were prepared in the same manner as in Example 1 except that the graft polymer was changed to PB-2 to 15.
  • the pigment composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm to obtain a pigment dispersion composition P.
  • Example B-2 A pigment dispersion composition Q was prepared in the same manner as in Example B-1, except that the graft polymer of Example B-1 was changed to PB-17.
  • the temperature of the solution was controlled at 5 ° C.
  • the pigment solution was added to 1000 ml of ion-exchanged water containing hydrochloric acid as a poor solvent stirred at 500 rpm by a GK-0222-10 type Lamond Stirrer (trade name, manufactured by Fujisawa Pharmaceutical Co., Ltd.).
  • a KX-500 type large capacity non-pulsating flow pump (trade name, manufactured by Nippon Seimitsu Chemical Co., Ltd.)
  • the pigment nanoparticle aggregated liquid prepared by the above procedure was concentrated at 5000 rpm for 90 minutes using an H-112 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type cloth manufactured by Shikishima Canvas Co., Ltd.
  • the pigment nanoparticle concentrated paste was recovered.
  • the pigment nanoparticle concentrated paste was dried in an oven at 100 ° C. for 8 hours to obtain an organic pigment powder R (solid content concentration 94 mass%) (organic pigment content 59 mass%).
  • a pigment dispersion composition R having the following composition was prepared.
  • the organic pigment powder R 14.0 g 46.8g of propylene glycol monomethyl ether acetate Pigment dispersion composition A having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm. Obtained.
  • Pigment Dispersion Composition S was prepared in the same manner as in Example B-1, except that the graft polymer was polystyrene.
  • pigment dispersion composition T was prepared in the same manner as in Example B-1, except that the graft polymer was polyvinylpyrrolidone (K-30, trade name, manufactured by Wako Pure Chemical Industries, Ltd.). Was prepared.
  • a pigment dispersion composition U was prepared in the same manner as in Example B-1, except that the graft polymer of Example B-1 was changed to PB-16.
  • the intraparticle distribution of the dispersant was confirmed using solid state 13 C CP / MAS NMR measurement (AVANCE DSX-300 spectrometer [trade name] and 4 mm ⁇ HFX CP / MAS probe manufactured by Bruker BioSpin).
  • the solid 13 C CP / MAS NMR measurement was performed as follows.
  • the pigment dispersion compositions A to U are each suction filtered using a membrane filter (MILLIPORE cut size: 0.05 ⁇ m), and further washed with a dispersion solvent to prepare a concentrated paste.
  • the concentrated paste was set on a solid 13 C CP / MAS NMR sample stage, and based on the Goldman-Shen pulse sequence, 1 H 90 ° pulse width 4.5 ⁇ s, waiting time 200 ⁇ s for initial solvent selection, CP contact time 1
  • the measurement was carried out by changing the spin diffusion time from 0.5 to 200 ms.
  • the number of integrations was 4,096 times, and the repetition time was 3 to 10 seconds with 5 times the 1 H spin-lattice relaxation time of the sample as a guide.
  • the rotation speed of magic angle spinning was 8000 to 10,000 Hz depending on the sample.
  • the peak areas of the pigment and the dispersant are calculated by peak separation of the spectrum at each spin diffusion time, and the diffusion distance L assuming a one-dimensional diffusion model is calculated with respect to the spin diffusion time t m .
  • the concentrated 13 C CP / MAS NMR measurement of the concentrated paste is performed to measure the peak intensity derived from the steric repulsion chain.
  • the concentrated paste is dried at 100 ° C. for 8 hours to produce a dry powder, and similarly, the peak intensity derived from the steric repulsion chain is measured from solid 13 C CP / MAS NMR measurement, and the ratio of each peak intensity is excluded.
  • Estimated the extension rate. (Outward extension ratio) (Stereo-repulsive chain-derived peak intensity in concentrated paste) / (Stereo-repulsive chain-derived peak intensity in dry powder) ⁇ 100.
  • Table 2B the unit in the table is% by mass).
  • the pigment dispersion compositions A to U were each coated on a glass substrate at 100 ° C. for 3 minutes so that the thickness of the coating film was 1.4 ⁇ m, and samples were prepared (with regard to the contrast measurement method).
  • the pigment dispersion compositions A to U were applied again in the same manner as described above 30 days after the dispersion, and the contrast was measured, and the time-dependent contrast and the contrast applied and measured immediately after dispersion were used to determine the time.
  • the dispersion composition of pigment fine particles (embodiment, reference example) using an embedding dispersant having a specific interaction group attracting to the pigment compound showed a higher dispersant uptake rate than other samples.
  • the dispersion composition of the fine pigment particles of the example in which the structural part having the steric repulsive group is applied to the embedding dispersant is different from the comparative example and the reference example, and the dispersant is unevenly distributed on the outer side of the particle. Buried.
  • Example B-II Comparative Example B-II
  • Color dispersion photosensitive resin composition A for color filters was prepared by mixing pigment dispersion composition A with other components so as to have the composition shown in Table A below.
  • Colored photosensitive resin compositions B to U for color filters were prepared in the same manner as described above except that pigment dispersion compositions B to U were used instead of pigment dispersion composition A, respectively.
  • the colored photosensitive compositions A to U for color filter preparation were applied on a glass substrate using a spin coater and dried at 100 ° C. for 2 minutes to form a film having a thickness of about 2 ⁇ m.
  • the contrast of the prepared sample was measured in the same manner as in Example B-1.
  • the colored photosensitive compositions A to N were applied again in the same manner as described above 30 days after dispersion, and the contrast was measured.
  • the colored photosensitive resin composition for color filters (Examples) using the fine particles of this embodiment has both a high contrast and a low rate of change with time compared to the comparative sample (Comparative Example). It can be seen that both good dispersibility and stability over time are achieved.
  • Example B-III Comparative Example B-III
  • K black (K) image
  • the alkali-free glass substrate was cleaned with a UV cleaning apparatus, then brush-cleaned with a cleaning agent, and further ultrasonically cleaned with ultrapure water.
  • the substrate was heat-treated at 120 ° C. for 3 minutes to stabilize the surface state.
  • the composition described in Table 4B below is applied on a glass substrate coater (manufactured by FS Asia Co., Ltd., trade name: MH-1600) having a slit-like nozzle.
  • a colored photosensitive resin composition K2 was applied.
  • a heat-treated pixel R was formed on the substrate on which the image K was formed using the colored photosensitive resin composition R1 having the composition described in Table 5B below, in the same process as the formation of the black (K) image.
  • the film thickness of the photosensitive resin layer R1 and the coating amount of the pigment are shown below.
  • the procedure for preparing the colored photosensitive resin composition is the same as that for the colored photosensitive resin composition K2.
  • Photosensitive resin film thickness ( ⁇ m) 1.60 Pigment coating amount (g / m 2 ) 1.00 C. I. P. R. 254 coating amount (g / m 2 ) 0.80 C. I. P. R. 177 coating amount (g / m 2 ) 0.20
  • ⁇ R pigment dispersion 2> ⁇ C. I. P. R. 177 (Product name: Chromophthal Red A2B, Ciba Specialty Chemicals Co., Ltd.) 18 parts by mass Polymer (benzyl methacrylate / methacrylic acid 72/28 molar ratio random copolymer, molecular weight 30,000) 12 parts by mass / 70 parts by mass of propylene glycol monomethyl ether acetate
  • G pigment dispersion 1 “trade name: GT-2” manufactured by Fuji Film Electronics Materials Co., Ltd. was used.
  • Y pigment dispersion 1 “trade name: CF Yellow EX3393” manufactured by Mikuni Color Co., Ltd. was used.
  • the substrate on which the image K, the pixel R, and the pixel G are formed uses the colored photosensitive resin composition B1 having the composition described in Table 7BE below, and is heat-treated in the same process as the formation of the black (K) image. Pixel B was formed, and the target color filter A was obtained.
  • the film thickness of the photosensitive resin layer B1 and the coating amount of the pigment are shown below.
  • the film thickness of the photosensitive resin layer R1 and the coating amount of the pigment are shown below.
  • the procedure for preparing the colored photosensitive resin composition is the same as that for the colored photosensitive resin composition K2.
  • Photosensitive resin film thickness ( ⁇ m) 1.60 Pigment application amount (g / m 2 ) 0.75 C. I. P. B. 15: 6 coating amount (g / m 2 ) 0.705 C. I. P. V. 23 coating amount (g / m 2 ) 0.045
  • B pigment dispersion 1 “trade name: CF Bull-EX3357” manufactured by Mikuni Dye Co., Ltd. was used.
  • B pigment dispersion 2 “trade name: CF Bull-EX3383” manufactured by Mikuni Dye Co., Ltd. was used.
  • R pigment dispersions B to U were prepared using pigment compositions B to U, respectively. Then, color filters B to U were produced in the same manner as the production method of the color filter A except that R pigment dispersions B to U were used instead of the R pigment dispersion A, respectively. The contrast of the produced color filters A to U was measured in the same manner as in Example B-1. Further, after 30 days of dispersion of the colored photosensitive compositions A to U, a color filter was prepared again by the same method as described above, and the temporal contrast was measured. The rate of change with time was calculated from this time-dependent contrast and the contrast applied and measured immediately after fabrication.
  • a liquid crystal display device was manufactured using the color filters A to U, and the display characteristics were evaluated.
  • the color filter A was put in a sputtering apparatus, and 1300 mm thick ITO (indium tin oxide) was vacuum-deposited on the entire surface at 100 ° C., and then annealed at 240 ° C. for 90 minutes to crystallize the ITO to form an ITO transparent electrode. .
  • Spacer formation A spacer was formed on the ITO transparent electrode produced above by the same method as the spacer forming method described in [Example 1] of JP-A-2004-240335.
  • a liquid crystal alignment control protrusion was formed on the ITO transparent electrode on which the spacer was formed, using the following positive photosensitive resin layer coating solution. However, the following methods were used for exposure, development, and baking.
  • a proximity exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) is arranged so that the predetermined photomask is at a distance of 100 ⁇ m from the surface of the photosensitive resin layer, and the irradiation energy is 150 mJ / Proximity exposure was performed at cm 2 .
  • a 2.38% tetramethylammonium hydroxide aqueous solution was developed by spraying it on a substrate at 33 ° C. for 30 seconds in a shower type developing device.
  • the liquid crystal alignment control protrusions made of the photosensitive resin layer patterned into a desired shape are formed on the color filter side substrate.
  • a display device substrate was obtained.
  • the liquid crystal alignment control projection on which the liquid crystal alignment control protrusion was formed was baked at 230 ° C. for 30 minutes to form a cured liquid crystal alignment control protrusion on the liquid crystal display substrate.
  • Liquid crystal display devices B to U were produced in the same manner except that the color filter A was changed to the color filters B to U, respectively, and evaluated in the same manner. As a result, it was confirmed that the liquid crystal display devices A to O provided with the color filter produced using the fine particles of the present embodiment showed high contrast, and as a result, the blackness was good and the drawing power was high.
  • Example B-IV Comparative Example B-IV
  • Example B-16 By using Pigment Green 36, Pigment Green 58, Pigment Blue 15: 6, Pigment Blue 79, Pigment Blue 80, and Pigment Yellow 185 instead of Pigment Red 254 in the preparation of Pigment Dispersion Composition A in Example 1
  • pigment dispersion compositions V, W, X, Y, Z and AA were prepared.
  • the pigment dispersion compositions V, W, X, Y, Z, and AA were measured for the dispersant uptake rate and outward uneven distribution in the same manner as in Example BI. As a result, all the pigment dispersion compositions showed 10%.
  • the dispersion agent uptake ratio exceeded, and 80% by mass or more of the embedded dispersant was unevenly distributed in the outer region from the particle surface of the fine particles to 50% of the particle radius. Further, when the contrast and the change in contrast with time were measured in the same manner as in Example BI, all the dispersion compositions showed high contrast and low contrast change rate with time. On the other hand, a pigment composition for comparison was prepared in the same manner as B-1 to B-5 in Comparative Example BI, using the pigment types used in Pigment Dispersion Composition V, W, X, Y, Z, and AA. Each of them was produced, but the contrast was lower than that of the above example, and the contrast was significantly lowered with time.
  • the Reynolds number under this condition is 89.
  • the pigment nanoparticle dispersion prepared by the above method was concentrated at 3000 rpm for 90 minutes using an H-122 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type ro cloth manufactured by Shikishima Canvas Co., Ltd.
  • the pigment nanoparticle concentrated paste was recovered.
  • the pigment nanoparticle concentrated paste was solvent-removed on a hot plate at 100 ° C. to obtain an organic pigment powder AB (solid content concentration 96% by mass).
  • a pigment dispersion composition AB having the following composition was prepared using the pigment powder.
  • Organic pigment powder AB 8.8g Propylene glycol monomethyl ether acetate 36.7g
  • the pigment dispersion composition having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 1 hour at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm.
  • the pigment dispersion composition AB was measured for the dispersant uptake rate and outward distribution in the same manner as in Example BI. As a result, all of the pigment dispersion compositions showed a dispersant uptake rate of more than 10%. More than 80% by mass of the encapsulated dispersant was unevenly distributed in the outer region from the particle surface of the fine particles to 50% of the particle radius. Further, when the contrast and the change in contrast with time were measured in the same manner as in Example BI, all the dispersion compositions showed high contrast and low contrast change rate with time. On the other hand, a pigment composition for comparison was prepared in the same manner as B-1 to B-5 in Comparative Example BI using the pigment type used in Pigment Dispersion Composition AB. The contrast was lower than that, and the contrast greatly decreased over time.

Abstract

Fine particles of a water-insoluble compound which are formed either by mixing a solution of a water-insoluble compound in a good solvent with a poor solvent with a dispersant dissolved in the good solvent and/or the poor solvent or by preparing a solution of a dispersant in a good solvent separately and mixing this solution with both a solution of a water-insoluble compound in a good solvent and a poor solvent and which contain the dispersant embedded therein, characterized in that the dispersant is embedded in the fine particles in an amount of 5 to 200mass% relative to the mass of the water-insoluble compound; and fine particles of a water-insoluble compound which are constituted of a water-insoluble compound and a dispersant, characterized in that at least 80mass% of the dispersant embedded in the fine particles is unevenly distributed in outside regions spreading from the surfaces of the fine particles to depths of 50% of the radii thereof.

Description

水不溶性化合物の微粒子、その分散物、及びその製造方法Fine particles of water-insoluble compound, dispersion thereof, and production method thereof
 本発明は、基材上に形成されるレジストやインクに好適に用いられる水不溶性化合物の微粒子、その分散物、及びその製造方法に関する。 The present invention relates to fine particles of a water-insoluble compound suitably used for resists and inks formed on a substrate, a dispersion thereof, and a production method thereof.
 顔料粒子を微細化すると、光散乱の影響が少なくなり、光透過性が改善される。このため、インクジェット記録用インキやカラーフィルタ用顔料分散組成物に適用する色材として、100ナノメートル以下に顔料を微粒子化することが望まれている。通常、顔料の微粒子化はサンドミルやロールミル、ボールミル等の分散機を用いて機械的な力によって行うが、この方法では顔料を上記のサイズにまで微細化することは難しい。また、粒子径を小さくしようとすればするほど分散に長時間を要し、多大なコストがかかるばかりか、均一な品質のものを得るのも困難になる。 If the pigment particles are made finer, the effect of light scattering is reduced and the light transmission is improved. For this reason, as a coloring material applied to an ink for inkjet recording or a pigment dispersion composition for a color filter, it is desired to make the pigment fine particles to 100 nanometers or less. Usually, the pigment is finely divided by a mechanical force using a disperser such as a sand mill, a roll mill, or a ball mill. However, it is difficult to make the pigment fine to the above size by this method. In addition, the smaller the particle size, the longer the dispersion takes, and the higher the cost, the more difficult it becomes to obtain a uniform quality.
 一方、顔料を一度溶解させた後に再び析出させて顔料の微粒子を作るという方法(再沈法)が提案されている。この再沈法を利用して、サイズの均一性に優れたナノメートルオーダーの微粒子の形成が可能となってきている。ところが、粒子が微細になるほど、粒子の単位質量当りの粒子表面積が累積的に増大し、微粒子は急激に凝集しやすくなる。そのため、ナノメートル領域の粒子を安定に分散させることは極めて難しい。これに対し、単に分散剤の使用量を多くすると、分散性は高まる傾向にあるが、着色性や色純度が劣る。また、分散剤を単に粒子表面に吸着させただけでは脱離しやすいため、その微粒子分散物や組成物を貯蔵すると粒子凝集や増粘が起こることがある。その結果、貯蔵後に例えば、塗料やインキとして用いたときに、光沢不足、着色力の不足等の不都合をきたすこととなる。 On the other hand, a method (reprecipitation method) has been proposed in which a pigment is dissolved once and then precipitated again to form fine particles of the pigment. By using this reprecipitation method, it has become possible to form nanometer-order fine particles having excellent size uniformity. However, as the particles become finer, the particle surface area per unit mass of the particles increases cumulatively, and the fine particles tend to agglomerate rapidly. Therefore, it is extremely difficult to stably disperse particles in the nanometer region. On the other hand, if the amount of the dispersant used is simply increased, the dispersibility tends to increase, but the colorability and color purity are poor. In addition, since the dispersing agent is easily adsorbed on the surface of the particles, it can be easily detached. Therefore, storage of the fine particle dispersion or composition may cause particle aggregation or thickening. As a result, for example, when used as a paint or ink after storage, there are problems such as insufficient gloss and insufficient coloring power.
 分散剤を用いた例として、分散剤と有機顔料をアルカリの存在下で非プロトン性有機溶媒に溶解した顔料溶液と水とを混合して顔料含有粒子の水性分散体を形成し、これに凝集処理及び再分散性の付与のための処理などを行うことで、顔料の一次粒子の大きさに依存しない、サイズの均一性を持つ微細な顔料分散体が開示されている(特許文献1参照)。ここで得られた粒子30は、図2に示すように、分散剤22の中に顔料(色材粒子)11が内包された構造である。このような粒子構造とすることで、インクジェット記録用インキ液として、該粒子を用いた場合に、透明性、色濃度、保存性、インクジェットの吐出耐久性等が優れるとされる。 As an example of using a dispersant, an aqueous dispersion of pigment-containing particles is formed by mixing a pigment solution prepared by dissolving a dispersant and an organic pigment in an aprotic organic solvent in the presence of an alkali with water, and agglomerating the mixture. A fine pigment dispersion having a uniform size independent of the size of the primary particles of the pigment is disclosed by performing treatment and treatment for imparting redispersibility (see Patent Document 1). . As shown in FIG. 2, the obtained particles 30 have a structure in which the pigment (coloring material particles) 11 are included in the dispersant 22. With such a particle structure, when the particles are used as an ink liquid for ink jet recording, transparency, color density, storage stability, ink jet discharge durability and the like are excellent.
 そのほか、フタロシアニン系顔料微粒子の表面にブロック共重合体を付着させる試み(特許文献2)、水不溶性色材と荷電性樹脂擬似粒子を一体化させる試み(特許文献3)、顔料粒子表面に高分子鎖がグラフト化する試み(特許文献4)等が開示されている。これらにより所定の効果は認められるものの、粒子形成の工程は煩雑である。 In addition, an attempt to attach a block copolymer to the surface of phthalocyanine pigment fine particles (Patent Document 2), an attempt to integrate a water-insoluble colorant and a chargeable resin pseudo particle (Patent Document 3), a polymer on the pigment particle surface An attempt to graft a chain (Patent Document 4) is disclosed. Although the predetermined effect is recognized by these, the particle formation process is complicated.
 分散安定性を改良する試みとして、粒子を形成した後に、粒子の表面を化学的に修飾することにより、分散安定性を改良する試みがなされてきた。例えば、過酸化物を用いた有機顔料の表面親水化をおこないインクジエット記録液に適用するもの(特許文献5参照)、顔料表面にジアゾ系の中間体を介して特定の官能基を化学結合させたものが開示され(特許文献6等参照)、長期の分散安定性に優れることが示されている。しかし、これらの粒子を直接化学修飾する方法は、化学修飾をおこなうのとは別の段階で粒子を十分に分散させないと化学修飾が均質にできないことや、化学修飾の反応性が粒子の種類によっては起こりにくいこと、さらに化学修飾の反応が複雑であること等の理由により、ナノメートルサイズ領域の粒子への応用には適していない。 As an attempt to improve the dispersion stability, attempts have been made to improve the dispersion stability by chemically modifying the surface of the particles after forming the particles. For example, the surface of an organic pigment using a peroxide is hydrophilized and applied to an ink jet recording liquid (see Patent Document 5). A specific functional group is chemically bonded to the pigment surface via a diazo-based intermediate. Are disclosed (see Patent Document 6, etc.), and are shown to be excellent in long-term dispersion stability. However, in the method of directly chemically modifying these particles, the chemical modification cannot be made homogeneous unless the particles are sufficiently dispersed at a stage different from the chemical modification, and the reactivity of the chemical modification depends on the type of particle. Is not suitable for application to particles in the nanometer size region because it is difficult to occur and the chemical modification reaction is complicated.
特開2004-43776号公報JP 2004-43776 A 特開2005-314498号公報JP 2005-314498 A 特開2004-331946号公報JP 2004-331946 A 特開2007-327014号公報JP 2007-327014 A 特許2002-105352号公報Japanese Patent No. 2002-105352 米国特許5554739号公報US Pat. No. 5,554,739
 ナノメートルサイズ領域の粒子を安定に分散させるためには、上記従来技術では未だ十分満足できるとはいえない。たとえば、添加される分散剤の量が多く必要であったり、化学的反応を伴いプロセスが煩雑になったり、あるいは均質な分散性の付与ができないなどといった解決しなければならない課題が多くある。これを解決し、高性能インクや精密光学素子等に求められる色味や耐久性といった色材としての性能とともに、良好な分散性を付与する技術の開発が望まれる。 In order to stably disperse particles in the nanometer size region, it cannot be said that the above-described conventional technology is still satisfactory. For example, there are many problems that need to be solved, such as requiring a large amount of a dispersant to be added, complicating the process with a chemical reaction, or imparting uniform dispersibility. It is desired to develop a technique that solves this problem and imparts good dispersibility as well as performance as a color material such as color and durability required for high-performance inks and precision optical elements.
 ところで、上記特許文献1の粒子は、図2に示したとおり、高分子分散剤内に顔料粒子を取り込ませた構造を有するとされるが、本発明者らの確認によると、このような構造では分散媒体に相当量の分散剤が遊離してしまうため、分散安定性が十分ではないことが分かってきた(後記比較例4参照)。また、特許文献1には色材粒子を形成した後に重合性化合物の重合をおこなうことで該重合体の中に、粒子を内包させる手順も開示されているものの、化学修飾の反応を伴うため、粒子の形成工程が複雑になる。また、これらの方法ではいずれにせよ分散剤で色材粒子を覆い包むようにするため、分散剤の使用量が多くなりすぎるという点も改善が望まれた。 By the way, as shown in FIG. 2, the particles of Patent Document 1 are said to have a structure in which pigment particles are incorporated into a polymer dispersant. However, since a considerable amount of the dispersant is liberated in the dispersion medium, it has been found that the dispersion stability is not sufficient (see Comparative Example 4 described later). In addition, although Patent Document 1 discloses a procedure for encapsulating particles in the polymer by polymerizing a polymerizable compound after forming colorant particles, it involves a chemical modification reaction. The particle formation process is complicated. Further, in any of these methods, since the colorant particles are covered with the dispersant, any improvement in the amount of the dispersant used is desired.
 上記の点に鑑み、本発明は、媒体中で安定に分散する微粒子の提供を目的とし、特に経時の分散安定性に優れた水不溶性化合物の微粒子及びその分散物の提供を目的とする。また、本発明は、煩雑な操作や特別な処理を要さず簡便な粒子形成工程と必要により分散工程とによって、少ない分散剤量で作製しうる、上記の優れた特性を有する水不溶性化合物微粒子、その分散物、及びその製造方法の提供を目的とする。 In view of the above points, an object of the present invention is to provide fine particles that are stably dispersed in a medium, and in particular, to provide fine particles of a water-insoluble compound excellent in dispersion stability with time and a dispersion thereof. The present invention also provides water-insoluble compound fine particles having the above-mentioned excellent characteristics that can be produced with a small amount of a dispersant by a simple particle formation step and, if necessary, a dispersion step without requiring complicated operations and special treatments. , Its dispersion, and its manufacturing method.
 上記課題は、下記の手段によって達成された。
(1)良溶媒に水不溶性化合物を溶解した溶液と貧溶媒とを混合するにつき、(i)良溶媒側及び/又は貧溶媒側に分散剤を溶解して前記両液を混合して、又は(ii)これらとは別に良溶媒に分散剤を溶解した溶液を準備し前記両液とともに混合して生成させた、前記分散剤を埋包する微粒子であって、
 前記分散剤が前記水不溶性化合物の質量に対して5~200質量%埋包されていることを特徴とする水不溶性化合物の微粒子。
(2)微粒子形成時に溶解させた前記分散剤の10質量%以上100質量%以下が取り込まれて微粒子に埋包されたことを特徴とする(1)に記載の微粒子。
(3)前記良溶媒及び貧溶媒に溶解される分散剤の総量が、水不溶性化合物100質量部に対して10~300質量部であることを特徴とする(1)又は(2)に記載の微粒子。
(4)水不溶性化合物と分散剤とを有して構成される微粒子において、前記分散剤のうち微粒子に埋包されている分散剤の80質量%以上が、前記微粒子の粒子表面から粒子半径の50%までの外側領域に偏在していることを特徴とする水不溶性化合物の微粒子。
(5)前記微粒子が、良溶媒に前記水不溶性化合物を溶解した溶液と貧溶媒とを混合するにつき、(i)良溶媒側及び/又は貧溶媒側に前記分散剤を含有させて前記両液を混合して、又は(ii)これらとは別に良溶媒に前記分散剤を溶解した溶液を準備し前記両液とともに混合して生成させた、前記分散剤を埋包するビルドアップ微粒子であることを特徴とする(4)に記載の微粒子。
(6)前記分散剤が前記水不溶性化合物の質量に対して5~200質量%埋包されていることを特徴とする(4)又は(5)に記載の微粒子。
(7)前記分散剤が、質量平均分子量1000以上の高分子分散剤であることを特徴とする(1)~(6)のいずれか1項に記載の微粒子。
(8)前記分散剤がヘテロ環状炭化水素基を分子内に少なくとも1つ有する高分子分散剤であることを特徴とする(1)~(7)のいずれか1項に記載の微粒子。
(9)前記分散剤が、芳香環と含窒素環状炭化水素基及び/又は4級アンモニウム基とからなる前記水不溶性化合物と引き合う相互作用を示す構造部分を有する高分子分散剤であることを特徴とする(1)~(8)のいずれか1項に記載の微粒子。
(10)前記分散剤が、カルボン酸基、水酸基、スルホン酸基、リン酸基、アミド基、スルホンアミド基、及びアルキレンオキサイド基からなる群より選ばれる少なくとも1種の親水性の基を有することを特徴とする(1)~(9)のいずれか1項に記載の微粒子。
(11)前記分散剤が、さらに前記水不溶性化合物を分散媒体中に分散させるための、エステル結合、エーテル結合、及びアミド結合から選ばれる少なくとも1種の結合部を有する部位、または芳香環を有する部位を含む繰り返し単位を有する立体反発性の部位を有する高分子分散剤であることを特徴とする(9)又は(10)に記載の微粒子。
(12)前記埋包された分散剤の前記立体反発性のある部位が微粒子外方に延在する(11)に記載の微粒子。
(13)前記水不溶性化合物が顔料であることを特徴とする(1)~(7)のいずれか1項に記載の微粒子。
(14)前記良溶媒が酸性溶媒、アルカリ性溶媒、極性有機溶媒、及び超臨界流体からなる群より選ばれる少なくとも1種の溶媒、またはその混合物であることを特徴とする請求項(1)~(13)のいずれか1項に記載の微粒子。
(15)前記貧溶媒が水を主成分とする溶媒であることを特徴とする(1)~(14)のいずれか1項に記載の微粒子。
(16)平均粒子径が100nm以下であることを特徴とする(1)~(15)のいずれか1項に記載の微粒子。
(17)主要成分が、(a)水性媒体、(b)エステル化合物溶媒、ケトン化合物溶媒、及びアルコール化合物溶媒から選ばれる有機溶剤、並びに(c)反応性希釈剤からなる群より選ばれる少なくとも1種からなる溶媒に、(1)~(16)のいずれか1項に記載の微粒子を分散させたことを特徴とする水不溶性化合物の微粒子分散物。
(18)前記微粒子に埋包されていない分散剤を含有することを特徴とする(17)に記載の微粒子分散物。
(19)基材上に形成されるレジストまたはインキ作製用であることを特徴とする(17)又は(18)に記載の微粒子分散物。
(20)良溶媒に前記水不溶性化合物を溶解した溶液と貧溶媒とを混合するにつき、(i)良溶媒側及び/又は貧溶媒側に分散剤を溶解して前記両液を混合して、又は(ii)これらとは別に良溶媒に分散剤を溶解した溶液を準備し前記両液とともに混合して前記水不溶性化合物の微粒子を生成させるに当たり、
 前記分散剤として水不溶性化合物と引き合う相互作用を示す構造部位を有する高分子分散剤を用い、微粒子形成時に溶解させた前記分散剤の10質量%以上100質量%以下を微粒子に埋包させることを特徴とする水不溶性化合物の微粒子の製造方法。
(21)前記分散剤が、芳香環と含窒素環状炭化水素基及び/又は4級アンモニウム基とからなる前記水不溶性化合物と引き合う相互作用を示す構造部分を有する高分子分散剤であることを特徴とする(20)に記載の微粒子の製造方法。
(22)良溶媒に水不溶性化合物を溶解した溶液と貧溶媒とを混合して分散剤を埋包する前記水不溶性化合物の微粒子を生成させるに当たり、(i)良溶媒側及び/又は貧溶媒側に前記分散剤を含有させて前記両液を混合して、又は(ii)これらとは別に良溶媒に分散剤を溶解した溶液を準備し前記両液とともに混合して、前記埋包されている分散剤の80質量%以上が前記微粒子の粒子表面から粒子半径の50%までの外側領域に偏在するようにすることを特徴とする水不溶性化合物の微粒子の製造方法。
(23)前記分散剤が、芳香環と含窒素環状炭化水素基及び/又は4級アンモニウム基とからなり前記水不溶性化合物と引き合う相互作用性を示す部位と、前記水不溶性化合物を分散媒体中に分散させるための、エステル結合、エーテル結合、及びアミド結合から選ばれる少なくとも1種の結合部を含む繰り返し単位を有する立体反発性の部位とを有する高分子分散剤であることを特徴とする(22)に記載の微粒子の製造方法。
The above problems have been achieved by the following means.
(1) When mixing a solution in which a water-insoluble compound is dissolved in a good solvent and a poor solvent, (i) dissolving the dispersant on the good solvent side and / or the poor solvent side and mixing the two solutions, or (Ii) Apart from these, fine particles embedding the dispersant, prepared by preparing a solution in which the dispersant is dissolved in a good solvent and mixing with the two solutions,
Fine particles of a water-insoluble compound, wherein the dispersant is embedded in an amount of 5 to 200% by mass based on the mass of the water-insoluble compound.
(2) The fine particles according to (1), wherein 10% by mass or more and 100% by mass or less of the dispersant dissolved at the time of fine particle formation is taken in and embedded in the fine particles.
(3) The total amount of the dispersant dissolved in the good solvent and the poor solvent is 10 to 300 parts by mass with respect to 100 parts by mass of the water-insoluble compound, as described in (1) or (2) Fine particles.
(4) In the fine particles composed of a water-insoluble compound and a dispersing agent, 80% by mass or more of the dispersing agent embedded in the fine particles out of the dispersing agent has a particle radius from the particle surface of the fine particles. Fine particles of a water-insoluble compound characterized by being unevenly distributed in an outer region of up to 50%.
(5) When the fine particles are mixed with a poor solvent and a solution obtained by dissolving the water-insoluble compound in a good solvent, (i) the two liquids containing the dispersant on the good solvent side and / or the poor solvent side. Or (ii) a build-up fine particle embedding the dispersant, prepared by preparing a solution in which the dispersant is dissolved in a good solvent separately from these and mixing with the two solutions. Fine particles according to (4), characterized in that
(6) The fine particles according to (4) or (5), wherein the dispersant is embedded in an amount of 5 to 200% by mass based on the mass of the water-insoluble compound.
(7) The fine particles according to any one of (1) to (6), wherein the dispersant is a polymer dispersant having a mass average molecular weight of 1000 or more.
(8) The fine particles according to any one of (1) to (7), wherein the dispersant is a polymer dispersant having at least one heterocyclic hydrocarbon group in the molecule.
(9) The dispersant is a polymer dispersant having a structural portion showing an interaction attracting the water-insoluble compound composed of an aromatic ring and a nitrogen-containing cyclic hydrocarbon group and / or a quaternary ammonium group. The fine particles according to any one of (1) to (8).
(10) The dispersant has at least one hydrophilic group selected from the group consisting of a carboxylic acid group, a hydroxyl group, a sulfonic acid group, a phosphoric acid group, an amide group, a sulfonamide group, and an alkylene oxide group. The fine particles according to any one of (1) to (9), wherein
(11) The dispersant further has a site having at least one bond selected from an ester bond, an ether bond, and an amide bond for dispersing the water-insoluble compound in a dispersion medium, or an aromatic ring. The fine particle according to (9) or (10), which is a polymer dispersant having a steric repulsive part having a repeating unit containing a part.
(12) The fine particles according to (11), wherein the steric repulsive portion of the embedded dispersant extends outward from the fine particles.
(13) The fine particles according to any one of (1) to (7), wherein the water-insoluble compound is a pigment.
(14) The good solvent is at least one solvent selected from the group consisting of an acidic solvent, an alkaline solvent, a polar organic solvent, and a supercritical fluid, or a mixture thereof. The fine particles according to any one of 13).
(15) The fine particles according to any one of (1) to (14), wherein the poor solvent is a solvent containing water as a main component.
(16) The fine particles according to any one of (1) to (15), wherein the average particle size is 100 nm or less.
(17) At least one selected from the group consisting of (a) an aqueous medium, (b) an organic solvent selected from an ester compound solvent, a ketone compound solvent, and an alcohol compound solvent, and (c) a reactive diluent. A fine particle dispersion of a water-insoluble compound, wherein the fine particles according to any one of (1) to (16) are dispersed in a solvent comprising a seed.
(18) The fine particle dispersion according to (17), which contains a dispersant not embedded in the fine particles.
(19) The fine particle dispersion according to (17) or (18), which is used for preparing a resist or ink formed on a substrate.
(20) For mixing a solution obtained by dissolving the water-insoluble compound in a good solvent and a poor solvent, (i) dissolving the dispersant on the good solvent side and / or the poor solvent side and mixing the both solutions, Or (ii) separately from these, in preparing a solution in which a dispersant is dissolved in a good solvent and mixing with both the liquids to produce fine particles of the water-insoluble compound,
A polymer dispersing agent having a structural part that exhibits an interaction attracting a water-insoluble compound is used as the dispersing agent, and 10% by mass or more and 100% by mass or less of the dispersing agent dissolved at the time of forming the fine particles is embedded in the fine particles. A method for producing fine particles of a water-insoluble compound.
(21) The dispersant is a polymer dispersant having a structural portion showing an interaction attracting the water-insoluble compound composed of an aromatic ring and a nitrogen-containing cyclic hydrocarbon group and / or a quaternary ammonium group. The method for producing fine particles according to (20).
(22) In producing a fine particle of the water-insoluble compound in which a solution obtained by dissolving a water-insoluble compound in a good solvent and a poor solvent are mixed to embed the dispersant, (i) the good solvent side and / or the poor solvent side Or the mixture of the two liquids, or (ii) preparing a solution in which the dispersant is dissolved in a good solvent separately from these, mixing the liquids together, and embedding them. A method for producing fine particles of a water-insoluble compound, wherein 80% by mass or more of the dispersant is unevenly distributed in an outer region from the particle surface of the fine particles to 50% of the particle radius.
(23) The dispersing agent comprises an aromatic ring and a nitrogen-containing cyclic hydrocarbon group and / or a quaternary ammonium group, exhibiting an interaction property that attracts the water-insoluble compound, and the water-insoluble compound in the dispersion medium. It is a polymer dispersant having a steric repulsion part having a repeating unit containing at least one type of bond selected from an ester bond, an ether bond, and an amide bond for dispersion (22 ) Production method of the fine particles described in the above.
 本発明の水不溶性化合物の微粒子及びその分散物は、分散媒体中での微粒子同士の凝集が抑えられ、分散剤の使用量が少なくても、きわめて良好な分散性を示すという優れた作用効果を奏する。さらに、上記の良好な分散状態を長期間にわたって維持することができ、従来困難であった少ない分散剤の使用量における高い分散性と特に高い経時の分散及び保存安定性との両立を実現することができる。また、本発明の製造方法によれば、上記の優れた特性を有する水不溶性化合物の微粒子及びその分散物を、煩雑な操作や特別な処理を要さず簡便な粒子形成工程と必要により分散工程とによって、少ない分散剤の使用量で作製することができ、高性能インクやカラーフィルタ等の精密光学素子材料として、工業的な利用のための大量生産にも好適に対応することができる。 The fine particles of the water-insoluble compound of the present invention and the dispersion thereof have an excellent effect of suppressing aggregation of the fine particles in the dispersion medium and exhibit extremely good dispersibility even when the amount of the dispersant used is small. Play. Furthermore, the above-mentioned good dispersion state can be maintained over a long period of time, and it is possible to achieve both high dispersibility in a small amount of dispersant, which has been difficult in the past, and particularly high dispersion and storage stability over time. Can do. Further, according to the production method of the present invention, the water-insoluble compound fine particles having the above-mentioned excellent characteristics and the dispersion thereof can be easily formed without any complicated operation or special treatment, and if necessary, a dispersion step. Therefore, it can be produced with a small amount of dispersant, and can be suitably adapted to mass production for industrial use as a precision optical element material such as high-performance ink and color filter.
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings as appropriate.
本発明の第1実施形態の微粒子の構造を模式的に示す断面図Sectional drawing which shows typically the structure of the microparticles | fine-particles of 1st Embodiment of this invention. 本発明の第2実施形態の微粒子の構造を模式的に示す断面図Sectional drawing which shows typically the structure of the microparticles | fine-particles of 2nd Embodiment of this invention. 従来の(特許文献1に開示された)粒子の構造を模式的に示す断面図Sectional drawing which shows the structure of the conventional particle | grains (disclosed in patent document 1) typically
 以下に、本発明の好ましい実施態様について第1実施形態と第2実施形態とに分けて説明するが、本発明はこれに限定して解釈されるものではない。なお、前記両実施形態に共通する点は第1実施形態において述べる。 Hereinafter, preferred embodiments of the present invention will be described separately for the first embodiment and the second embodiment, but the present invention should not be construed as being limited thereto. The points common to both the embodiments will be described in the first embodiment.
〔第1実施形態〕
 本実施形態の微粒子は分散剤を埋包する。ここで埋包とは、分散剤の分子の一部もしくは全部が微粒子内に取り込まれた状態をいう。例えば図1-1に基づいていうと、分散剤の全部が取り込まれた状態とは添加した分散剤の分子全体が微粒子10内に内包された状態であり(内在埋包分散剤2b参照)、一部取り込まれた状態とは添加した分散剤の一部分または官能基が粒子内に内包されその残部が粒子外方に延在する状態であり(外在埋包分散剤2a参照)、埋包というときにはこの両者を含む。
[First Embodiment]
The fine particles of this embodiment embed a dispersant. Here, the term “embedding” refers to a state in which part or all of the molecules of the dispersing agent are taken into the fine particles. For example, referring to FIG. 1-1, the state in which all of the dispersant is incorporated is a state in which the entire molecule of the added dispersant is encapsulated in the fine particles 10 (see the embedded embedding dispersant 2b). The part-incorporated state is a state in which a part or functional group of the added dispersant is encapsulated in the particle and the remaining part extends outward from the particle (see the external embedding dispersant 2a). Both of these are included.
 本実施形態の微粒子は、良溶媒および貧溶媒の少なくとも一方に特定の分散剤を共存させ、これとともに又は別に水不溶性化合物を良溶媒に溶解し、上記良溶媒側の液と貧溶媒側の液とを混合し、分散剤が粒子に埋包されたビルドアップ微粒子である。前記分散剤は、質量平均分子量が1000以上の高分子分散剤が好ましく、さらに後述するような特定の構造部位を有する高分子分散剤がより好ましい。 In the fine particles of the present embodiment, a specific dispersant coexists in at least one of a good solvent and a poor solvent, and a water-insoluble compound is dissolved in the good solvent together with or separately from the good solvent and the poor solvent side liquid. And build-up fine particles in which the dispersant is embedded in the particles. The dispersant is preferably a polymer dispersant having a mass average molecular weight of 1000 or more, and more preferably a polymer dispersant having a specific structural site as described later.
 本実施形態において、粒子内部に一部又は全部取り込まれた分散剤は、従来のように粒子表面に例えば単に物理吸着しているのではなく、粒子内に固定化され不可逆的に取り込まれているため、微粒子が破壊されたり溶解されたりしないかぎり通常は分散媒体および/または組成物溶媒中で遊離や脱離がおきないという特徴を有する。そのため、分散剤が埋包された微粒子は、粒子同士の凝集が抑えられるという分散効果の持続性が高く、分散剤の使用量が少なくても、分散安定性がきわめて高い。このような本実施形態の分散剤を埋包した微粒子の特性は例えば、分散剤が溶解する溶媒で洗浄を繰り返しても分散剤が脱離しない、この量を測定することで確認することができる。 In this embodiment, the dispersing agent partially or wholly incorporated into the inside of the particle is not simply merely physically adsorbed on the particle surface as in the prior art, but is immobilized and irreversibly incorporated within the particle. For this reason, unless the fine particles are destroyed or dissolved, the dispersion medium and / or the composition solvent usually does not release or desorb. Therefore, the fine particles embedded with the dispersant have a high dispersion effect that the aggregation of the particles can be suppressed, and the dispersion stability is extremely high even if the amount of the dispersant used is small. The characteristics of the fine particles embedded with the dispersing agent of this embodiment can be confirmed by measuring the amount of the dispersing agent that does not desorb even after repeated washing with a solvent in which the dispersing agent dissolves. .
 分散剤を粒子に効率的に埋包させる方法は特に限定されないが、例えば特定の分散剤を選択して用いるか、あるいは、流路混合法などのプロセス条件を調節するなどして行うことができる。以下に、分散剤を粒子に埋包させる好ましい実施態様について詳細に説明する。 The method for efficiently embedding the dispersing agent in the particles is not particularly limited. For example, a specific dispersing agent can be selected and used, or by adjusting process conditions such as a channel mixing method. . Below, the preferable embodiment which embeds a dispersing agent in particle | grains is demonstrated in detail.
 通常の再沈法で分散剤を粒子に埋包させるためには、特定の分散剤を用いるのが好ましい。このとき、全ての分散剤分子が粒子に内包され、分散に必要な官能基までもがすべて粒子に内包されてしまうと、分散剤の分散性付与の役割を十分に果たせないことがある。そのため、上記分散に必要な官能基のすべてが粒子に内包されないようにすることが好ましい。分散剤を微粒子に適度に内包させ、分散安定性を付与するためには、下記の要件を満足する分散剤を用いることが好ましい。すなわち、
(1)分散剤を溶解しうる媒体が、組み合わせて用いられる水不溶性化合物が溶解しうる媒体と相溶性がある関係にあること、
(2)分散剤が、質量平均分子量が1000以上の高分子分散剤であること、
(3)分散剤が、貧溶媒との混合により析出するが、その析出速度は水不溶性化合物の析出より遅いものであること、
(4)分散剤が、水不溶性化合物と引き合う相互作用性を有する官能基を少なくとも1つ含有すること、
の要件を達成することにより、上記分散剤を粒子に効率的かつ適度に内包させることができる。
In order to embed the dispersant in the particles by the usual reprecipitation method, it is preferable to use a specific dispersant. At this time, if all the dispersant molecules are encapsulated in the particles and all the functional groups necessary for the dispersion are also encapsulated in the particles, it may not be possible to sufficiently fulfill the role of imparting the dispersibility of the dispersant. Therefore, it is preferable that all the functional groups necessary for the dispersion are not included in the particles. In order to appropriately encapsulate the dispersant in the fine particles and impart dispersion stability, it is preferable to use a dispersant that satisfies the following requirements. That is,
(1) The medium in which the dispersant can be dissolved is compatible with the medium in which the water-insoluble compound used in combination can be dissolved;
(2) The dispersant is a polymer dispersant having a mass average molecular weight of 1000 or more,
(3) The dispersant is precipitated by mixing with a poor solvent, but the deposition rate is slower than the precipitation of the water-insoluble compound.
(4) The dispersant contains at least one functional group having an interactive property attracting a water-insoluble compound,
By achieving the above requirements, the dispersant can be efficiently and moderately encapsulated in the particles.
 本実施形態に用いられる上記埋包させる分散剤は、水不溶性化合物を溶解させる良溶媒、これとは別に用意した良溶媒、又は、貧溶媒に溶解させて用いることが好ましい。上記分散剤の溶解及び混合の好ましい実施態様としては以下の方法が挙げられる。
(1)分散剤を水不溶性化合物とともに良溶媒に共溶解させて、貧溶媒と接触させ、析出させる方法
(2)水不溶性化合物溶解液と分散剤溶解液とを別々に作成しておき、貧溶媒と接触させ、析出させる方法
(3)水不溶性化合物溶解液と貧溶媒とにそれぞれ分散剤を溶解した液どうしを接触させ、析出させる方法、などが挙げられる。
 本発明の微粒子は、これらのいずれの方法で作製してもよいが、分散剤溶解溶液が水不溶性化合物の溶解溶液と相溶性があることが好ましい。分散剤溶解液と水不溶性化合物の溶解液が相溶しないと、貧溶媒との混合により、十分に分散剤が粒子内に取り込ませることができないことがある。上記の方法の中では、上記(1)(2)の方法が特に好ましく用いられる。
The dispersant to be embedded used in the present embodiment is preferably used after being dissolved in a good solvent for dissolving the water-insoluble compound, a good solvent prepared separately from this, or a poor solvent. The following method is mentioned as a preferable embodiment of dissolution and mixing of the dispersant.
(1) A method in which a dispersant is co-dissolved in a good solvent together with a water-insoluble compound, brought into contact with a poor solvent, and precipitated. (2) A water-insoluble compound solution and a dispersant solution are prepared separately. (3) A method in which a solution obtained by dissolving a dispersant in a water-insoluble compound solution and a poor solvent is brought into contact with each other to cause precipitation.
The fine particles of the present invention may be prepared by any of these methods, but it is preferable that the dispersant-dissolved solution is compatible with the water-insoluble compound solution. If the dispersant solution and the water-insoluble compound solution are not compatible with each other, the dispersant may not be sufficiently incorporated into the particles by mixing with the poor solvent. Among the above methods, the methods (1) and (2) are particularly preferably used.
 本実施形態において、分散剤を粒子内に取り込ませるためには、分散剤の質量平均分子量が1000以上の高分子分散剤であることが好ましく、さらに好ましくは3000以上30万以下、特に好ましいのは5000以上10万以下である。分散剤の分子量が低すぎると分散剤の粒子内取り込みの割合が低下することがあり、多すぎると分散剤の凝集が大きくなり、再分散性が悪化することがある。分散剤の分散度は、狭い、すなわち、単分散性のものが好ましく用いられる。分散剤の分散度は、数平均分子量と質量平均分子量の比で表され、分散度が1.0~5.0の範囲の分散剤が好ましく、特に好ましくは1.0~4.0の範囲のものが用いられる。 In the present embodiment, in order to incorporate the dispersant into the particles, the dispersant is preferably a polymer dispersant having a mass average molecular weight of 1000 or more, more preferably 3000 to 300,000, and particularly preferably It is 5000 or more and 100,000 or less. If the molecular weight of the dispersant is too low, the proportion of the dispersant incorporated into the particle may decrease, and if it is too large, aggregation of the dispersant may increase and redispersibility may deteriorate. The dispersion of the dispersant is preferably narrow, that is, monodisperse. The degree of dispersion of the dispersant is represented by a ratio of the number average molecular weight to the mass average molecular weight, and a dispersant having a dispersity in the range of 1.0 to 5.0 is preferable, and a range of 1.0 to 4.0 is particularly preferable. Is used.
 本実施形態で用いられる微粒子内に埋包させる分散剤(以下、これを単なる分散剤と区別して「埋包分散剤」ということがある。)はあらかじめ溶媒に溶解し、これを貧溶媒と混合することで析出させることができる。同様に水不溶性化合物も良溶媒に溶解し、これを貧溶媒と接触することで析出させ、微粒子とすることができる。このような微粒子形成段階において、分散剤の析出速度が、水不溶性化合物の析出速度よりも早い場合、分散剤が十分に粒子に取り込まれる前に析出してしまうため、分散剤が粒子に取り込まれにくい。分散剤を粒子に十分に取り込ませるためには、水不溶性化合物の析出速度よりも、分散剤の析出速度が遅いことが好ましい。そして、必要によりこのように埋包分散剤の析出速度を調節することで、微粒子内に該分散剤を取り込ませる状態を制御することができる。上記共晶のようにして分散剤を微粒子内に取り込ませる観点から、埋包分散剤の析出速度は、水不溶性化合物よりも遅いことが好ましく、その好適な速度は、水不溶性化合物の種類、水不溶性化合物と分散剤の親和性、水不溶性化合物の析出速度、分散剤の構造、良溶媒と貧溶媒の溶媒親和性等に依存し、水不溶性化合物と分散剤との析出速度比を、各粒子形成条件に基づき定めることが好ましい。 The dispersant embedded in the fine particles used in the present embodiment (hereinafter, sometimes referred to as “embedding dispersant” to be distinguished from a simple dispersant) is dissolved in a solvent in advance and mixed with a poor solvent. It can be made to precipitate. Similarly, a water-insoluble compound can also be dissolved in a good solvent and precipitated by contact with a poor solvent to form fine particles. In such a fine particle formation stage, when the deposition rate of the dispersant is faster than the deposition rate of the water-insoluble compound, the dispersant is deposited before it is sufficiently incorporated into the particles, so that the dispersant is incorporated into the particles. Hateful. In order to sufficiently incorporate the dispersant into the particles, it is preferable that the deposition rate of the dispersant is lower than the deposition rate of the water-insoluble compound. And the state which takes in this dispersing agent in microparticles | fine-particles can be controlled by adjusting the deposition rate of the embedding dispersing agent in this way as needed. From the viewpoint of incorporating the dispersant into the fine particles as in the above eutectic, the deposition rate of the embedding dispersant is preferably slower than that of the water-insoluble compound. Depending on the affinity between the insoluble compound and the dispersant, the precipitation rate of the water-insoluble compound, the structure of the dispersant, the solvent affinity between the good solvent and the poor solvent, etc., the precipitation rate ratio between the water-insoluble compound and the dispersant is determined for each particle. It is preferable to determine based on formation conditions.
 次に、埋包分散剤を粒子に取り込ませ、さらに分散媒体や組成物媒体中で、埋包された分散剤が遊離しないための好ましい分散剤の構造及びその作用について説明する。
 埋包分散剤を粒子に適度に埋包させるためには、該分散剤と水不溶性化合物とが混合工程を経て析出される段階で、両者が引き合う相互作用を示すように埋包分散剤の化学構造を設計することが好ましい。本発明では、溶媒に溶解した状態で埋包分散剤と水不溶性化合物とを混合させることが好ましいが、このとき該分散剤と水不溶性化合物との上記相互作用が小さいと、分散剤の粒子内への取り込み率が小さくなりすぎたり、埋包された分散剤が、分散媒体や組成物媒体中で遊離しやすくなったり、分散安定性が悪化したりすることがある。そのため、水不溶性化合物と強く引き合い相互作用する構造部位を有する埋包分散剤を用いることが好ましく、この相互作用を強くして同伴性を高め分散剤を粒子にしっかりと固定化することが好ましい。
Next, the structure and the action of a preferable dispersing agent for incorporating the embedding dispersant into the particles and further preventing the embedded dispersing agent from being released in the dispersion medium or the composition medium will be described.
In order to embed the embedding dispersant appropriately in the particles, the chemistry of the embedding dispersant is shown so that the dispersing agent and the water-insoluble compound are precipitated through a mixing process so as to exhibit an attractive interaction between them. It is preferable to design the structure. In the present invention, it is preferable to mix the embedding dispersant and the water-insoluble compound in a state dissolved in a solvent. At this time, if the interaction between the dispersant and the water-insoluble compound is small, In some cases, the incorporation rate into the composition may be too small, or the embedded dispersant may be easily released in the dispersion medium or the composition medium, or the dispersion stability may deteriorate. For this reason, it is preferable to use an embedding dispersant having a structure site that strongly attracts and interacts with the water-insoluble compound, and it is preferable to strengthen this interaction to enhance entrainment and firmly fix the dispersant to the particles.
 本実施形態の微粒子においては、微粒子形成時に系内に投入された埋包分散剤の10質量%以上が埋包されていることが好ましい。すなわち、添加した埋包分散剤の質量(A)に対して、粒子に取り込まれて埋包された該分散剤の質量(B)の割合の百分率((B)/(A)×100)(以下、この率を「分散剤取込率」ということがある。)が10質量%以上であることが好ましい。さらに、上記分散剤取込率((B)/(A))は20質量%以上がより好ましく、30質量%以上であることが特に好ましい。分散取込率の上限は特にないが計算上の上限が100質量%であり、98質量%以下であることが実際的である。本発明において、上記「分散剤取込率」の測定および算出は、特に断らない限り、以下の実施例に記載の方法に従って行うものとする。 In the microparticles of the present embodiment, it is preferable that 10% by mass or more of the embedding dispersant introduced into the system at the time of microparticle formation is embedded. That is, with respect to the mass (A) of the added embedding dispersant, the percentage of the mass (B) of the dispersant incorporated and embedded in the particles ((B) / (A) × 100) ( Hereinafter, this rate may be referred to as “dispersing agent uptake rate.”) Is preferably 10% by mass or more. Further, the dispersant uptake rate ((B) / (A)) is more preferably 20% by mass or more, and particularly preferably 30% by mass or more. Although there is no particular upper limit on the dispersion uptake rate, the upper limit in calculation is 100% by mass, and it is practical that it is 98% by mass or less. In the present invention, the measurement and calculation of the above-mentioned “dispersing agent uptake rate” is performed according to the method described in the following examples unless otherwise specified.
 本実施形態の微粒子は、上記のように従来にないほど多量の分散剤が粒子内に取込まれたため、初期の分散性のみならず経時の分散安定性が極めて高い。また、言うまでもないが、分散剤の使用量を減らすことができ製造コストを低減することができ、また溶媒切替により不要となる分散剤成分を大幅に減らすことができ環境適合性にも優れる。 The fine particles of the present embodiment have extremely high dispersion stability over time as well as initial dispersibility because a larger amount of dispersant is incorporated into the particles than ever before. Needless to say, the amount of the dispersant used can be reduced, the manufacturing cost can be reduced, and unnecessary dispersant components can be greatly reduced by switching the solvent, which is excellent in environmental compatibility.
 上記の取り込まれた埋包分散剤の量を微粒子の該分散剤以外の成分の質量に対する比率、つまり微粒子を分散相をなす埋包分散剤と水不溶性化合物等がなす連続相とからなるとしてみたときその微粒子の連続相の質量(Y)に対して、上記分散相をなす埋包分散剤の質量(X)の比率の百分率((X)/(Y)×100)(以下、この比率を「分散剤埋包率」ということがある。)としていうと、5~200質量%であり(第2実施形態においてはこの点は任意である。)、8~160質量%であることがより好ましい。この「分散剤埋包率」の測定および算出は、特に断らない限り、以下の実施例に記載の方法に従って行うものとする。 The amount of the embedded embedding dispersant is assumed to be the ratio of the fine particles to the mass of components other than the dispersant, that is, the embedding dispersant forming the fine particles as a dispersed phase and the continuous phase formed by a water-insoluble compound or the like. Sometimes the percentage of the ratio of the mass (X) of the embedding dispersant constituting the dispersed phase to the mass (Y) of the continuous phase of the fine particles ((X) / (Y) × 100) (hereinafter this ratio is (It may be referred to as “dispersing agent embedding ratio”). It is 5 to 200% by mass (this point is optional in the second embodiment), and more preferably 8 to 160% by mass. preferable. The measurement and calculation of the “dispersing agent embedding rate” is performed according to the method described in the following examples unless otherwise specified.
〔第2実施形態〕
 本実施形態の微粒子は、水不溶性化合物と分散剤とを有して構成される微粒子において、その粒子表面から粒子半径の50%(この比率は、粒子半径線の粒子表面からその粒子内部の所定点までの距離を粒子中心から前記粒子表面までの距離(半径)で除した値の百分率であり、図1-2に示した[半径外側距離r/半径R]の百分率に相当する。なお、粒子が球体でないときには、粒子のおよその中心点から外表面までの距離を上記半径とみなして評価することができる。この詳細についてはさらに詳しく後述する。)以内の外方領域に、微粒子内に埋包されている分散剤の80質量%以上が偏在化して存在している。ここで埋包とは、微粒子の内部に分散剤の成分の一部、もしくは全部が粒子内に取り込まれた状態のことをいう。例えば図1-2に基づいていうと、分散剤の全部が取込まれた状態とは添加した分散剤の分子全体が粒子20内に内包された状態であり(内在埋包分散剤2b参照)、一部取込まれた状態とは添加した分散剤の一部分または官能基が粒子内に内包されその残部粒子外方に延在する状態であり(外在埋包分散剤2a参照)、埋包というときにはこの両者を含む。そして、粒子外側領域Aoへの偏在化とは、粒子の中心近傍には分散剤がほとんど内包されておらず、かつ粒子表面近傍にのみ大部分の分散剤が内包されている状態のことをいう。本発明の偏在化した分散剤の分布は、粒子表面から粒子半径の50%(r/R)以内の外方領域Aoで規定され、好ましくは粒子表面から粒子半径の40%(r/R)以内の外方領域Aoで規定され、さらに好ましくは粒子表面から粒子半径の30%(r/R)以内の外方領域Aoで規定される。
[Second Embodiment]
The fine particle of the present embodiment is a fine particle composed of a water-insoluble compound and a dispersant, and is 50% of the particle radius from the particle surface (this ratio is determined from the particle surface of the particle radius line to the inside of the particle). This is the percentage of the value obtained by dividing the distance to the fixed point by the distance (radius) from the particle center to the particle surface, and corresponds to the percentage of [radius outside distance r 2 / radius R] shown in FIG. When the particle is not a sphere, the distance from the approximate center point of the particle to the outer surface can be regarded as the radius, which will be described in detail later). 80% by mass or more of the dispersing agent embedded in is unevenly distributed. Here, embedding means a state in which a part or all of the components of the dispersant are taken into the particles. For example, referring to FIG. 1-2, the state in which all of the dispersant is incorporated is a state in which the entire molecule of the added dispersant is encapsulated in the particles 20 (see the embedded embedding dispersant 2b). The partially incorporated state is a state in which a part of the added dispersant or a functional group is encapsulated in the particle and extends to the outside of the remaining particle (see the embedded embedding dispersant 2a). Sometimes both are included. The uneven distribution in the particle outer region Ao means a state in which almost no dispersant is encapsulated in the vicinity of the center of the particle and most of the dispersant is encapsulated only in the vicinity of the particle surface. . The distribution of the unevenly distributed dispersant of the present invention is defined by an outer region Ao within 50% (r 2 / R) of the particle radius from the particle surface, preferably 40% (r 2 / R of the particle radius from the particle surface). R) is defined by the outer region Ao within the range, and more preferably is defined by the outer region Ao within 30% (r 2 / R) of the particle radius from the particle surface.
 本実施形態において、粒子内部に偏在化した分散剤の分布の測定法は、透過型電子顕微鏡や核磁気共鳴スペクトルなどが挙げられるが、特に固体13C CP/MAS NMRを用いた測定が好適である。 In this embodiment, measurement of the distribution of uneven distribution and dispersion agent inside the particles, although such a transmission electron microscope and nuclear magnetic resonance spectra are mentioned, a particularly suitably measured using a solid 13 C CP / MAS NMR is there.
 分散剤の取り込みに関する微粒子の調製、取込率及び埋包率の定義、測定・算出方法、好ましい範囲については第1実施形態と同様である。 The fine particle preparation relating to the uptake of the dispersant, the definition of the uptake rate and the embedding rate, the measurement / calculation method, and the preferred range are the same as in the first embodiment.
〔埋包分散剤〕
 上記埋包分散剤ないしその構造部位として好ましい水不溶性化合物と引き合う相互作用とは、分子の間又はその構造部位同士の吸着性ないしは親和性における相互作用を意味し、具体的には水素結合相互作用、π-π相互作用、イオン間相互作用、双極子相互作用、ロンドン分散力(ファンデルワールス力)、電荷移動相互作用がある。そのほかに、熱力学的要因に基づく疎水相互作用などが挙げられる。上記分散剤ないしその構造部位と水不溶性化合物とが互いに引き合う相互作用として、上記のいずれの相互作用を利用してもよく限定はされないが、特に、水素結合相互作用、π-π相互作用、イオン間相互作用であることが有効である。したがって、埋包分散剤の部分構造として、上記の相互作用を強く示す部位を導入することが好ましく、これにより該分散剤が粒子内に取り込まれ適度に埋包された状態にしやすくなる。
(Embedding dispersant)
The interaction that attracts the embedding dispersant or a water-insoluble compound that is preferable as a structural site thereof means an interaction between molecules or between the structural sites in terms of adsorptivity or affinity, specifically hydrogen bonding interaction. , Π-π interaction, ion-ion interaction, dipole interaction, London dispersion force (Van der Waals force), and charge transfer interaction. Other examples include hydrophobic interaction based on thermodynamic factors. Any of the above-described interactions may be used as the interaction between the dispersant or the structural site thereof and the water-insoluble compound, and is not particularly limited, but in particular, hydrogen bonding interaction, π-π interaction, ion It is effective that it is an interaction. Therefore, it is preferable to introduce a site exhibiting the above-mentioned interaction as a partial structure of the embedding / dispersing agent, whereby the dispersing agent is easily taken into the particles and easily embedded.
 以下に、水素結合相互作用、π-π相互作用、イオン間相互作用の実施態様を例に挙げ、これらの相互作用性を付与するための分散剤の分子構造及びその設計について述べる。 In the following, embodiments of hydrogen bond interaction, π-π interaction, and ion-ion interaction are taken as examples, and the molecular structure and design of the dispersant for imparting these interactions are described.
 水素結合相互作用は、フッ素や酸素や窒素など電気陰性度の高い原子に水素が共有結合している分子において起こり、この場合、極性分子が生じる。このとき水素原子は1よりも小さな正電荷に帯電し、その結果、付近の別の分子に含まれる酸素など負に帯電した原子吸着しようとすると相互作用を起こすのである。この結果、2つの分子を結びつける安定した結合が生じる。例えば、水不溶性化合物と水素結合を介して上記相互作用を生じやすい官能基を有する分散剤を用いると、分散剤の微粒子内への取り込み率を高めることができる。 The hydrogen bond interaction occurs in a molecule in which hydrogen is covalently bonded to an atom having high electronegativity such as fluorine, oxygen, or nitrogen, and in this case, a polar molecule is generated. At this time, the hydrogen atom is charged to a positive charge smaller than 1, and as a result, an interaction occurs when an attempt is made to adsorb a negatively charged atom such as oxygen contained in another nearby molecule. This results in a stable bond that connects the two molecules. For example, when a dispersant having a functional group that easily causes the above-described interaction via a hydrogen bond with a water-insoluble compound is used, the incorporation rate of the dispersant into the fine particles can be increased.
 π-π相互作用とは、有機化合物分子の芳香環の間に働く分散力であり、スタッキング相互作用とも呼ばれる。例えば、芳香族化合物は堅固な平面構造をとり、π電子系により非局在化した電子が豊富に存在する為、とくにロンドン分散力が強く発現する。したがって、π電子が増えるほど互いに引き合う力が強くなる。例えば、水不溶性化合物とπ-π相互作用しやすい官能基を有する分散剤を用いると、分散剤の微粒子内への取り込み率を高めることができる。 Π-π interaction is a dispersion force acting between aromatic rings of organic compound molecules, and is also called stacking interaction. For example, aromatic compounds have a strong planar structure and abundant electrons delocalized by the π-electron system, so that the London dispersion force is particularly strong. Therefore, the force attracting each other increases as the number of π electrons increases. For example, when a dispersant having a functional group that easily interacts with a water-insoluble compound and π-π can be used, the incorporation rate of the dispersant into the fine particles can be increased.
 イオン間相互作用とは、帯電したイオンの間で生じる相互作用である。例えば、異なる電荷は引き合うため、分散媒体中で、分散剤が、水不溶性対象物質と異なる電荷を持つように分子設計すれば、分散剤と水不溶性化合物とが引き合う相互作用が強まり、分散剤の微粒子内への取込み率を高めることができる。 The ion-ion interaction is an interaction that occurs between charged ions. For example, since different charges attract each other, if the molecular design is such that the dispersant has a charge different from that of the water-insoluble target substance in the dispersion medium, the interaction between the dispersant and the water-insoluble compound is enhanced, The uptake rate into the fine particles can be increased.
 本発明では、埋包分散剤と水不溶性化合物とが、上記の複数の相互作用を示すように分子設計したものを用いることが好ましい。該分散剤の好ましい分子構造は、対象とする水不溶性化合物の種類により異なるが、例えば、水不溶性化合物が有機顔料である場合、水素結合性相互作用を付与するためには、ヘテロ環状部位を有する高分子化合物を好ましく用いることができ、特に含窒素ヘテロ環状部位を有する高分子化合物が好ましい。さらには、π-π相互作用性や疎水相互作用を付与するために、芳香環を部分構造として有する分散剤が好ましい。また、同一分子骨格にヘテロ環と芳香環を同時に有するものが特に好ましい。 In the present invention, it is preferable to use a material in which the embedding dispersant and the water-insoluble compound are molecularly designed so as to exhibit the plurality of interactions described above. The preferred molecular structure of the dispersant varies depending on the type of the water-insoluble compound of interest. For example, when the water-insoluble compound is an organic pigment, it has a heterocyclic moiety in order to impart a hydrogen bonding interaction. A polymer compound can be preferably used, and a polymer compound having a nitrogen-containing heterocyclic moiety is particularly preferred. Furthermore, a dispersant having an aromatic ring as a partial structure is preferable in order to impart π-π interaction or hydrophobic interaction. Moreover, what has a heterocycle and an aromatic ring simultaneously in the same molecular skeleton is especially preferable.
 本発明で用いられる好ましい分散剤のヘテロ環状部分構造の具体例としては、以下に挙げる部位(I-1)から(I-29)およびフタロシアニン系、不溶性アゾ系、アゾレーキ系、アントラキノン系、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリジン系、アンサンスロン系、インダンスロン系、フラバンスロン系、ペリノン系、ペリレン系、チオインジゴ系などの有機色素構造が挙げられるが、本発明では特にこれらに限定されることはない。これらの部位を有するユニットは、高分子化合物を構成するユニット全体の1.0~99.0モル%であることが好ましく、3.0~95.0モル%であることがより好ましく、5.0~90.0モル%の範囲で導入されることが特に好ましい。 Specific examples of the heterocyclic partial structure of a preferable dispersant used in the present invention include the following sites (I-1) to (I-29), phthalocyanine-based, insoluble azo-based, azo lake-based, anthraquinone-based, quinacridone-based Organic dye structures such as dioxazine, diketopyrrolopyrrole, anthrapyridine, ansanthrone, indanthrone, flavanthrone, perinone, perylene, thioindigo, and the like in the present invention. It is not limited to. The unit having these sites is preferably 1.0 to 99.0 mol%, more preferably 3.0 to 95.0 mol% of the entire unit constituting the polymer compound. Particularly preferably, it is introduced in the range of 0 to 90.0 mol%.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、本発明に用いられる分散剤には、イオン間相互作用を目的として、以下に挙げる部位(II-1)から(II-4)を有する分散剤を用いることもできるが、特にこれらに限定されることはない。これらの部位を有するユニットは、高分子化合物を構成するユニット全体の1.0~99.0モル%であることが好ましく、3.0~95.0モル%であることがより好ましく、5.0~90.0モル%の範囲で導入されることが特に好ましい。 In addition, as the dispersant used in the present invention, a dispersant having the following sites (II-1) to (II-4) can be used for the purpose of interaction between ions, but it is particularly limited to these. It will never be done. The unit having these sites is preferably 1.0 to 99.0 mol%, more preferably 3.0 to 95.0 mol% of the entire unit constituting the polymer compound. Particularly preferably, it is introduced in the range of 0 to 90.0 mol%.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記埋包分散剤は、上述の相互作用基を部分構造に有する高分子化合物が好ましいが、さらに有機溶剤系媒体(例えば、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、スルホキシド系溶媒、エステル系溶媒、アミド系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ニトリル系溶媒、またはこれらの混合物などが好適に挙げられるが、なかでも、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、またはこれらの混合物などがより好ましい。ケトン系溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノン等が挙げられる。エーテル系溶媒としては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。エステル系溶媒としては、例えば、1,3-ブチレングリコールジアセテート、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセルソルブアセテート、乳酸エチル、酢酸ブチル、エチルカルビトールアセテート、ブチルカルビトールアセテート等が挙げられる。芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン等が挙げられる。脂肪族炭化水素系溶媒としては、例えば、シクロヘキサン、n-オクタン等が挙げられる。これらの溶媒は、単独で用いてもあるいは2種以上組み合わせて用いてもよい。また沸点が180℃~250℃である溶剤を必要によって使用することができる。もしくは反応性希釈剤(例えば、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、N-ビニル-2-ピロリドン、N-アクリロイルモルフォリン等の重合性化合物。)などの分散媒体に親和性が高い部分構造(親和性部位)も有していることが好ましい。立体反発性の部位が分散媒体に親和性があることにより、埋包分散剤の粒子外に出ている部分(図1-1中 2o部位)によって、分散媒体中で分散性を付与することができる。 The embedding / dispersing agent is preferably a polymer compound having the above-described interaction group in a partial structure, but further includes an organic solvent medium (for example, an alcohol solvent, a ketone solvent, an ether solvent, a sulfoxide solvent, an ester solvent). Preferable examples include solvents, amide solvents, aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, nitrile solvents, and mixtures thereof. Among them, ketone solvents, ether solvents, ester solvents An aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, or a mixture thereof is more preferable, and examples of the ketone solvent include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, and the like. Examples of the solvent include propylene glycol monomethyl ether and propylene glycol. Examples include ester solvents such as 1,3-butylene glycol diacetate, methyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, and ethyl cellosolve acetate. , Ethyl lactate, butyl acetate, ethyl carbitol acetate, butyl carbitol acetate, etc. Examples of the aromatic hydrocarbon solvent include toluene, xylene, etc. Examples of the aliphatic hydrocarbon solvent include , Cyclohexane, n-octane, etc. These solvents may be used alone or in combination of two or more, and a solvent having a boiling point of 180 ° C. to 250 ° C. may be used if necessary. Or reactive diluent (eg 2-hydroxyethyl (meth) acrylate, benzyl (meth) acrylate, ethoxylated phenyl (meth) acrylate, isobornyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, N-vinyl- It is also preferred that the dispersion medium such as 2-pyrrolidone, N-acryloylmorpholine, etc.) also has a partial structure (affinity site) with high affinity. Due to the affinity, dispersibility can be imparted in the dispersion medium by the portion (2o site in FIG. 1-1) of the embedding dispersant outside the particles.
 前記分散媒体との親和性部位としては特に限定されないが、化合物の種類(類)としていえば例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、スチレン類、ビニルエーテル類、ビニルケトン類、オレフィン類、マレイミド類、(メタ)アクリロニトリルなどが好ましい例として挙げられる。なお、本明細書において「アクリル、メタクリル」のいずれか或いは双方を示す場合「(メタ)アクリル」と記載することがある。 The affinity site with the dispersion medium is not particularly limited, but examples of the type (s) of the compound include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid. Preferred examples include diesters, itaconic acid diesters, (meth) acrylamides, styrenes, vinyl ethers, vinyl ketones, olefins, maleimides, (meth) acrylonitrile and the like. In addition, in this specification, when showing either or both of "acryl and methacryl", it may describe as "(meth) acryl".
 (メタ)アクリル酸エステル類の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸シクロヘキシル、(メタ)ア(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-(2-メトキシエトキシ)エチル、(メタ)アクリル酸3-フェノキシ-2-ヒドロキシプロピル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシシクロヘキシルメチル、(メタ)アクリル酸ビニル、(メタ)アクリル酸2-フェニルビニル、(メタ)アクリル酸1-プロペニル、(メタ)アクリル酸アリル、(メタ)アクリル酸2-アリロキシエチル、(メタ)アクリル酸プロパルギル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジエチレングリコールモノメチルエーテル、(メタ)アクリル酸ジエチレングリコールモノエチルエーテル、(メタ)アクリル酸トリエチレングリコールモノメチルエーテル、(メタ)アクリル酸トリエチレングリコールモノエチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノメチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノエチルエーテル、(メタ)アクリル酸β-フェノキシエトキシエチル、(メタ)アクリル酸ノニルフェノキシポリエチレングリコール、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸トリフロロエチル、(メタ)アクリル酸オクタフロロペンチル、(メタ)アクリル酸パーフロロオクチルエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸トリブロモフェニル、(メタ)アクリル酸トリブロモフェニルオキシエチル、(メタ)アクリル酸γ-ブチロラクトンなどが挙げられる。 Examples of (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate , Isobutyl (meth) acrylate, t-butyl (meth) acrylate, amyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate (meth) acrylate, phenyl (meth) acrylate , 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-methoxyethyl (meth) acrylate , 2- (Ethoxyethyl) (meth) acrylate, 2- (2-methoxyeth) (meth) acrylate B) ethyl, 3-methoxy-2-hydroxypropyl (meth) acrylate, 2-chloroethyl (meth) acrylate, glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, (meth) Vinyl acrylate, 2-phenylvinyl (meth) acrylate, 1-propenyl (meth) acrylate, allyl (meth) acrylate, 2-allyloxyethyl (meth) acrylate, propargyl (meth) acrylate, (meta ) Acrylic acid benzyl, (meth) acrylic acid diethylene glycol monomethyl ether, (meth) acrylic acid diethylene glycol monoethyl ether, (meth) acrylic acid triethylene glycol monomethyl ether, (meth) acrylic acid triethylene glycol monoethyl ether, (meth) Ak Polyethylene glycol monomethyl ether, polyethylene glycol monoethyl (meth) acrylate, β-phenoxyethoxyethyl (meth) acrylate, nonylphenoxy polyethylene glycol (meth) acrylate, dicyclopentenyl (meth) acrylate, (meth ) Dicyclopentenyloxyethyl acrylate, trifluoroethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, (meth) Examples thereof include tribromophenyl acrylate, tribromophenyloxyethyl (meth) acrylate, and γ-butyrolactone (meth) acrylate.
 クロトン酸エステル類の例としては、クロトン酸ブチル、およびクロトン酸ヘキシル等が挙げられる。 Examples of crotonates include butyl crotonate and hexyl crotonate.
 ビニルエステル類の例としては、ビニルアセテート、ビニルクロロアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、および安息香酸ビニルなどが挙げられる。 Examples of vinyl esters include vinyl acetate, vinyl chloroacetate, vinyl propionate, vinyl butyrate, vinyl methoxyacetate, and vinyl benzoate.
 マレイン酸ジエステル類の例としては、マレイン酸ジメチル、マレイン酸ジエチル、およびマレイン酸ジブチルなどが挙げられる。 Examples of maleic acid diesters include dimethyl maleate, diethyl maleate, and dibutyl maleate.
 フマル酸ジエステル類の例としては、フマル酸ジメチル、フマル酸ジエチル、およびフマル酸ジブチルなどが挙げられる。 Examples of fumaric acid diesters include dimethyl fumarate, diethyl fumarate, and dibutyl fumarate.
 イタコン酸ジエステル類の例としては、イタコン酸ジメチル、イタコン酸ジエチル、およびイタコン酸ジブチルなどが挙げられる。 Examples of itaconic acid diesters include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.
 (メタ)アクリルアミド類としては、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-シクロヘキシル(メタ)アクリルアミド、N-(2-メトキシエチル)(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-ニトロフェニルアクリルアミド、N-エチル-N-フェニルアクリルアミド、N-ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミド、N-メチロールアクリルアミド、N-ヒドロキシエチルアクリルアミド、ビニル(メタ)アクリルアミド、N,N-ジアリル(メタ)アクリルアミド、N-アリル(メタ)アクリルアミドなどが挙げられる。 (Meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nn-butyl (Meth) acrylamide, Nt-butyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N- (2-methoxyethyl) (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N- Diethyl (meth) acrylamide, N-phenyl (meth) acrylamide, N-nitrophenyl acrylamide, N-ethyl-N-phenyl acrylamide, N-benzyl (meth) acrylamide, (meth) acryloylmorpholine, diacetone acrylamide, N-methylo Le acrylamide, N- hydroxyethyl acrylamide, vinyl (meth) acrylamide, N, N- diallyl (meth) acrylamide, such as N- allyl (meth) acrylamide.
 スチレン類の例としては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えばt-Bocなど)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、およびα-メチルスチレンなどが挙げられる。 Examples of styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, isopropyl styrene, butyl styrene, hydroxy styrene, methoxy styrene, butoxy styrene, acetoxy styrene, chlorostyrene, dichlorostyrene, bromostyrene, chloromethyl Examples thereof include styrene, hydroxystyrene protected with a group that can be deprotected by an acidic substance (for example, t-Boc and the like), methyl vinylbenzoate, and α-methylstyrene.
 ビニルエーテル類の例としては、メチルビニルエーテル、エチルビニルエーテル、2-クロロエチルビニルエーテル、ヒドロキシエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、オクチルビニルエーテル、メトキシエチルビニルエーテルおよびフェニルビニルエーテルなどが挙げられる。 Examples of vinyl ethers include methyl vinyl ether, ethyl vinyl ether, 2-chloroethyl vinyl ether, hydroxyethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, octyl vinyl ether, methoxyethyl vinyl ether, and phenyl vinyl ether.
 ビニルケトン類の例としては、メチルビニルケトン、エチルビニルケトン、プロピルビニルケトン、フェニルビニルケトンなどが挙げられる。 Examples of vinyl ketones include methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, and phenyl vinyl ketone.
 オレフィン類の例としては、エチレン、プロピレン、イソブチレン、ブタジエン、イソプレンなどが挙げられる。 Examples of olefins include ethylene, propylene, isobutylene, butadiene, and isoprene.
 マレイミド類の例としては、マレイミド、ブチルマレイミド、シクロヘキシルマレイミド、フェニルマレイミドなどが挙げられる。 Examples of maleimides include maleimide, butyl maleimide, cyclohexyl maleimide, and phenyl maleimide.
 (メタ)アクリロニトリル、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、ビニルカプロラクトン等も使用できる。 (Meth) acrylonitrile, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, vinylcaprolactone, etc. can also be used.
 次に、埋包分散剤を粒子に取り込ませ、さらに取り込んだ分散剤が粒子外側領域に偏在化するための好ましい分散剤の構造及びその作用について説明する。
 埋包分散剤を粒子表面近傍に偏在化させるためには、上述の相互作用基の他に繰り返し単位を有する立体反発性の部位を有する埋包型分散剤を用いることが好ましい。
 本発明では、溶媒に溶解した状態で、上述の相互作用する構造部位を有する埋包分散剤と水不溶性化合物とを混合させることが好ましいが、このとき該内包分散剤に立体反発性の部位がないと、取り込んだ分散剤の上に新たに水不溶性化合物が析出していき、結果的に粒子中心部にまで埋包分散剤を取り込んだ微粒子となる。そのため、埋包分散剤を粒子に取り込ませるために上述の相互作用する構造部位と、取り込んだ分散剤の上に新たに水不溶性化合物が析出しないように繰り返し単位を有する立体反発作用を有する構造部位を合わせ持つことが好ましい。
Next, the structure of the preferable dispersing agent and its function for allowing the embedding dispersant to be incorporated into the particles and for the incorporated dispersing agent to be unevenly distributed in the outer region of the particles will be described.
In order to make the embedding dispersant unevenly distributed in the vicinity of the particle surface, it is preferable to use an embedding type dispersing agent having a steric repulsive site having a repeating unit in addition to the above-mentioned interactive group.
In the present invention, it is preferable to mix the embedding dispersant having the above-described interacting structural site and the water-insoluble compound in a state dissolved in a solvent. At this time, the encapsulated dispersant has a steric repulsive site. Otherwise, a water-insoluble compound is newly deposited on the incorporated dispersant, and as a result, fine particles are obtained in which the embedding dispersant is incorporated into the center of the particle. Therefore, the above-described interacting structural part for incorporating the embedding dispersant into the particles and the structural part having a steric repulsive action having a repeating unit so that a new water-insoluble compound does not precipitate on the incorporated dispersing agent. It is preferable to have both.
 上記埋包分散剤は、上述の相互作用基と立体反発基を部分構造に有する高分子化合物が好ましいが、さらに立体反発性のある部位が、分散媒体及び/又は組成物媒体が有機溶剤系媒体(例えば、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、スルホキシド系溶媒、エステル系溶媒、アミド系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ニトリル系溶媒、またはこれらの混合物などが好適に挙げられるが、なかでも、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、またはこれらの混合物などがより好ましい。ケトン系溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノン等が挙げられる。エーテル系溶媒としては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。エステル系溶媒としては、例えば、1,3-ブチレングリコールジアセテート、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセルソルブアセテート、乳酸エチル、酢酸ブチル、エチルカルビトールアセテート、ブチルカルビトールアセテート等が挙げられる。芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン等が挙げられる。脂肪族炭化水素系溶媒としては、例えば、シクロヘキサン、n-オクタン等が挙げられる。これらの溶媒は、単独で用いてもあるいは2種以上組み合わせて用いてもよい。また沸点が180℃~250℃である溶剤を必要によって使用することができる。)もしくは反応性希釈剤(例えば、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、N-ビニル-2-ピロリドン、N-アクリロイルモルフォリン等の重合性化合物。)に親和性が高いことが好ましい。立体反発性の部位が分散媒体に親和性があることにより、立体反発部位に埋包分散剤を粒子外側領域に偏在させる効果と、該粒子を分散媒体に分散させる効果の2つを同時に持たせることができるので、より少ない分散剤量で良好な分散性を示すことができる。 The embedding dispersant is preferably a polymer compound having the above-mentioned interaction group and steric repulsion group in a partial structure, but the portion having steric repulsion is a dispersion medium and / or composition medium is an organic solvent-based medium. (For example, alcohol solvents, ketone solvents, ether solvents, sulfoxide solvents, ester solvents, amide solvents, aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, nitrile solvents, or mixtures thereof, etc. Among them, a ketone solvent, an ether solvent, an ester solvent, an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, or a mixture thereof is more preferable. Examples include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, etc. Examples of ether solvents include Examples include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc. Examples of ester solvents include 1,3-butylene glycol diacetate, methyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3- Examples include ethyl ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, butyl acetate, ethyl carbitol acetate, butyl carbitol acetate, etc. Examples of aromatic hydrocarbon solvents include toluene, xylene, and the like. Examples of the group hydrocarbon solvent include cyclohexane, n-octane, etc. These solvents may be used alone or in combination of two or more, and have a boiling point of 180 ° C. to 250 ° C. is there Or reactive diluents (eg 2-hydroxyethyl (meth) acrylate, benzyl (meth) acrylate, ethoxylated phenyl (meth) acrylate, isobornyl (meth) acrylate, phenoxyethyl) (Meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, polymerizable compounds such as N-vinyl-2-pyrrolidone, N-acryloylmorpholine) are preferred. Since the steric repulsion part has an affinity for the dispersion medium, the steric repulsion part has both the effect of unevenly distributing the embedding dispersant in the outer region of the particle and the effect of dispersing the particle in the dispersion medium. Therefore, good dispersibility can be exhibited with a smaller amount of dispersant.
 本発明において、粒子外側領域に偏在化した埋包分散剤は、分散に寄与する部位となる立体反発部位が粒子内部に取り込まれる割合が小さくなりやすく、そうすると立体反発部位が有効に分散に寄与しうる。そのため、粒子の中心部まで分散剤が取り込まれた場合に比べ、分散剤の使用量が少なくても分散性が極めて高くなり好ましい。上記微粒子内に埋包している分散剤の立体反発部位のうち、分散剤2の立体反発部位の質量(P)に対する、微粒子外方に延在している部位(図1中2o)の質量(O)の割合の百分率((O)/(P)×100)(以下、この率を「外方延在率」)としていうと、40~100質量%が好ましい。埋包分散剤の立体反発鎖が粒子の外方に出ている程度を示す上記外方延在率が小さいと、分散に寄与できる立体反発鎖の割合が小さくなり、分散直後の微粒子の分散性が十分でないことがある。さらに、上記外方延在率は50~100質量%がより好ましく、60~100質量%であることが特に好ましい。外方延在率の上限は特にないが計算上の上限が100質量%であり、99質量%以下であることが実際的である。本発明において、上記分散剤取込率は、特に断らない限り、以下の実施例に記載の方法に従って行うものとする。 In the present invention, the embedding dispersant that is unevenly distributed in the outer region of the particle tends to reduce the proportion of the steric repulsion site that contributes to the dispersion into the particle, and the steric repulsion site contributes to the dispersion effectively. sell. Therefore, compared with the case where the dispersant is taken up to the center of the particle, the dispersibility is extremely high even if the amount of the dispersant used is small, which is preferable. Of the steric repulsion sites of the dispersant embedded in the fine particles, the mass of the portion (2o in FIG. 1) extending outward from the fine particles with respect to the mass (P) of the steric repulsion sites of the dispersant 2 The percentage of (O) ((O) / (P) × 100) (hereinafter, this rate is referred to as “outward extension rate”) is preferably 40 to 100% by mass. If the above-mentioned outward extension ratio indicating the degree to which the steric repulsion chain of the embedding dispersant is exposed to the outside of the particle is small, the ratio of the steric repulsion chain that can contribute to the dispersion becomes small, and the dispersibility of the fine particles immediately after dispersion is reduced. May not be enough. Further, the outward extension ratio is more preferably 50 to 100% by mass, and particularly preferably 60 to 100% by mass. Although there is no particular upper limit for the outward extension rate, the upper limit for calculation is 100% by mass, and it is practical that it is 99% by mass or less. In the present invention, the dispersant uptake rate is determined according to the method described in the following examples unless otherwise specified.
 上記の立体反発性の部位は、エステル結合、エーテル結合、アミド結合から選ばれる少なくとも1種の結合部を有する部位、または芳香環を有する部位を含む繰り返し単位からなることが好ましい。これら立体反発性分散基をなす繰り返し単位のからなる構造部位の例としては、以下の(III-1)~(III-5)が挙げられるが、本発明では特にこれらに限定されることはない。上記立体反発性の構造部分は、高分子化合物を構成するユニット全体の1.0~99.0モル%であることが好ましく、3.0~95.0モル%であることがより好ましく、5.0~90.0モル%の範囲で導入されることが特に好ましい。なお、式中mは3~200であることが好ましく、5~120であることがより好ましい。
 また、これら立体反発性の部位は1種でも良いし、2種以上用いても良い。
The steric repulsive part is preferably composed of a repeating unit including a part having at least one bond selected from an ester bond, an ether bond and an amide bond, or a part having an aromatic ring. Examples of the structural moiety composed of the repeating unit constituting these steric repulsive dispersing groups include the following (III-1) to (III-5), but are not particularly limited in the present invention. . The steric repulsive structural portion is preferably 1.0 to 99.0 mol%, more preferably 3.0 to 95.0 mol% of the entire unit constituting the polymer compound. It is particularly preferable to introduce in the range of 0.0 to 90.0 mol%. In the formula, m is preferably 3 to 200, and more preferably 5 to 120.
These steric repulsive sites may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記の他の官能基としては、これらの中でも特に炭素数4以上の炭化水素基を有するビニルモノマーの重合体、もしくは共重合体であることがより好ましく、さらに炭素数6以上24以下の炭化水素基を有するモノマーの重合体、もしくは共重合体であることが特に好ましい。上記その他の官能基の好ましいものとして、具体的には上記モノマーu-1~u-12を重合させてなる官能基が挙げられる。 Among these, the other functional group is more preferably a vinyl monomer polymer or copolymer having a hydrocarbon group having 4 or more carbon atoms, and more preferably a hydrocarbon having 6 to 24 carbon atoms. Particularly preferred is a polymer or copolymer of a monomer having a group. Preferable examples of the other functional groups include functional groups obtained by polymerizing the monomers u-1 to u-12.
 更に、イオン性官能基を含有するモノマーを利用することができる。イオン性ビニルモノマー(アニオン性ビニルモノマー、カチオン性ビニルモノマー)のなかで、アニオン性ビニルモノマーとして、前記酸性基を有するビニルモノマーのアルカリ金属塩や、有機アミン(例えば、トリエチルアミン、ジメチルアミノエタノール等の3級アミン)との塩などが挙げられ、カチオン性ビニルモノマーとしては、前記含窒素ビニルモノマーを、ハロゲン化アルキル(アルキル基:C1~18、ハロゲン原子:塩素原子、臭素原子又はヨウ素原子):塩化ベンジル、臭化ベンジル等のハロゲン化ベンジル;メタンスルホン酸等のアルキルスルホン酸エステル(アルキル基:C1~18);ベンゼンスルホン酸、トルエンスルホン酸等のアリールスルホン酸アルキルエステル(アルキル基:C1~18);硫酸ジアルキル(アルキル基:C1~4)等で4級化させたもの、ジアルキルジアリルアンモニウム塩などが挙げられる。 Furthermore, a monomer containing an ionic functional group can be used. Among the ionic vinyl monomers (anionic vinyl monomers, cationic vinyl monomers), as the anionic vinyl monomer, alkali metal salts of vinyl monomers having the acidic group, organic amines (for example, triethylamine, dimethylaminoethanol, etc.) And the like. As the cationic vinyl monomer, the nitrogen-containing vinyl monomer is an alkyl halide (alkyl group: C1-18, halogen atom: chlorine atom, bromine atom or iodine atom): Benzyl halides such as benzyl chloride and benzyl bromide; alkylsulfonic acid esters such as methanesulfonic acid (alkyl group: C1-18); arylsulfonic acid alkylesters such as benzenesulfonic acid and toluenesulfonic acid (alkyl group: C1— 18); dialky sulfate (Alkyl group: C1 ~ 4) that is quaternized with such, like dialkyl diallyl ammonium salts.
 本発明の微粒子は、インクジェット記録インク用の着色剤としても用いることができる。この場合、分散媒体及び/または組成物媒体の主成分は水系溶媒(例えば、水および水/水溶性有機溶媒混合液。水溶性有機溶媒の例として、グリセリン、1,2,6-ヘキサントリオール、トリメチロールプロパン、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ジプロピレングリコール、2-ブテン-1,4-ジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、1,2-オクタンジオール、1,2-ヘキサンジオール、1,2-ペンタンジオール、4-メチル-1,2-ペンタンジオール等のアルカンジオール(多価アルコール類);グルコース、マンノース、フルクトース、リボース、キシロース、アラビノース、ガラクトース、アルドン酸、グルシトール、マルトース、セロビオース、ラクトース、スクロース、トレハロース、マルトトリオース等の糖類;糖アルコール類;ヒアルロン酸類;尿素類等のいわゆる固体湿潤剤;エタノール、メタノール、ブタノール、プロパノール、イソプロパノールなどの炭素数1~4のアルキルアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-iso-プロピルエーテル、ジエチレングリコールモノ-iso-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-t-ブチルエーテル、ジエチレングリコールモノ-t-ブチルエーテル、1-メチル-1-メトキシブタノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-iso-プロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-iso-プロピルエーテルなどのグリコールエーテル類;2-ピロリドン、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ホルムアミド、アセトアミド、ジメチルスルホキシド、ソルビット、ソルビタン、アセチン、ジアセチン、トリアセチン、スルホラン等が挙げられ、これらの1種又は2種以上を用いることができる。
 乾燥防止剤や湿潤剤の目的としては,多価アルコール類が有用であり、例えば、グリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,3-ブタンジオール、1,5-ペンタンジオール、テトラエチレングリコール、1,6-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、ポリエチレングリコール、1,2,4-ブタントリオール、1,2,6-ヘキサントリオール、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい)である場合には、静電反発作用により微粒子間の凝集を抑制することが可能であり、前記酸性基、塩基性基、イオン性官能基を導入することにより水系媒体中で分散が可能となる。
The fine particles of the present invention can also be used as a colorant for inkjet recording ink. In this case, the main component of the dispersion medium and / or the composition medium is an aqueous solvent (for example, water and a water / water-soluble organic solvent mixture. Examples of the water-soluble organic solvent include glycerin, 1,2,6-hexanetriol, Trimethylolpropane, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, dipropylene glycol, 2-butene-1,4-diol, 2-ethyl-1,3-hexanediol, 2 Alkanediols such as methyl-2,4-pentanediol, 1,2-octanediol, 1,2-hexanediol, 1,2-pentanediol, 4-methyl-1,2-pentanediol (polyhydric alcohols) ); Glucose, Mannose, Fructose, Ribo Sugars such as xylose, arabinose, galactose, aldonic acid, glucitol, maltose, cellobiose, lactose, sucrose, trehalose, maltotriose; sugar alcohols; hyaluronic acids; so-called solid wetting agents such as ureas; ethanol, methanol, butanol Alkyl alcohols having 1 to 4 carbon atoms such as propanol and isopropanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono- n-propyl ether, ethylene glycol mono-iso-propyl ether , Diethylene glycol mono-iso-propyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-t-butyl ether, diethylene glycol mono-t-butyl ether, 1-methyl-1-methoxybutanol, propylene glycol monomethyl ether, propylene glycol monoethyl Ether, propylene glycol mono-t-butyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-iso-propyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether Glycol ethers such as dipropylene glycol mono-iso-propyl ether; 2 -Pyrrolidone, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, formamide, acetamide, dimethyl sulfoxide, sorbitol, sorbitan, acetin, diacetin, triacetin, sulfolane, etc., one of these Or 2 or more types can be used.
Polyhydric alcohols are useful for the purpose of drying inhibitors and wetting agents. For example, glycerin, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-butanediol 2,3-butanediol, 1,4-butanediol, 3-methyl-1,3-butanediol, 1,5-pentanediol, tetraethylene glycol, 1,6-hexanediol, 2-methyl-2, Examples thereof include 4-pentanediol, polyethylene glycol, 1,2,4-butanetriol, 1,2,6-hexanetriol, and the like. These may be used singly or in combination of two or more), and it is possible to suppress aggregation between fine particles by electrostatic repulsion, and the acidity By introducing a group, basic group, or ionic functional group, dispersion in an aqueous medium becomes possible.
 前記相互作用基、立体反発性分散基、各種の官能基を有する埋包分散剤の重合形態としては、特に限定されないが、前記相互作用基を有するユニット、立体反発性分散基を有するユニット、各種の官能基を有するユニットの各ビニルモノマーの重合体もしくは共重合体(例えば、メタクリル酸アルキルの単独重合体、スチレン類の単独重合体、メタクリル酸アルキル/スチレン類の共重合体、ポリビニルブチラールなど)、エステル系ポリマー(例えば、ポリカプロラクトンなど)、エーテル系ポリマー(例えば、ポリテトラメチレンオキシドなど)、ウレタン系ポリマー(例えば、テトラメチレングリコールとヘキサメチレンジイソシアネートからなるポリウレタンなど)、アミド系ポリマー(例えば、ポリアミド6、ポリアミド66など)、シリコーン系ポリマー(例えば、ポリジメチルシロキサンなど)、カーボネート系ポリマー(例えば、ビスフェノールAとホスゲンから合成されるポリカーボネートなど)などが挙げられる。 The form of polymerization of the embedding dispersant having the interaction group, the steric repulsion dispersing group, and various functional groups is not particularly limited, but the unit having the interaction group, the unit having the steric repulsion dispersion group, various types Polymers or copolymers of vinyl monomers in units having functional groups (for example, alkyl methacrylate homopolymers, styrene homopolymers, alkyl methacrylate / styrene copolymers, polyvinyl butyral, etc.) , Ester polymers (eg, polycaprolactone), ether polymers (eg, polytetramethylene oxide), urethane polymers (eg, polyurethane made of tetramethylene glycol and hexamethylene diisocyanate), amide polymers (eg, Polyamide 6 and polyamide 66 ), Silicone polymer (e.g., polydimethylsiloxane, etc.), carbonate-based polymers (e.g., polycarbonate synthesized from bisphenol A and phosgene), and the like.
 前記高分子化合物としては、これらの中でも特に、各ビニルモノマーの重合体もしくは共重合体、エステル系ポリマー、エーテル系ポリマーおよびこれらの変性物もしくは共重合体が好ましい。溶媒への溶解性調整、コスト、合成的な容易さ等の観点から、前記高分子化合物としては、各ビニルモノマーの重合体もしくは共重合体が最も好ましい。 Among these, the polymer compound is preferably a polymer or copolymer of each vinyl monomer, an ester polymer, an ether polymer, or a modified product or copolymer thereof. From the viewpoint of adjusting solubility in a solvent, cost, ease of synthesis, etc., the polymer compound is most preferably a polymer or copolymer of each vinyl monomer.
 各ビニルモノマーの重合体もしくは共重合体の製造には、例えばラジカル重合法による方法を適用することができる。ラジカル重合法でビニルモノマーの重合体もしくは共重合体を製造する際の温度、圧力、ラジカル開始剤の種類及びその量、溶媒の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めるようにすることもできる。 For the production of the polymer or copolymer of each vinyl monomer, for example, a method by radical polymerization can be applied. Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing a vinyl monomer polymer or copolymer by radical polymerization can be easily set by those skilled in the art. The conditions can also be determined experimentally.
 上記埋包分散剤として用いられる高分子分散剤は、どのような結合形態を取っているものでも、使用することができる。具体的には、ランダム(共)重合体、ブロック(共)重合体、グラフト(共)重合体のいずれの(共)重合体も用いることができるが、特に、ブロック(共)重合体、グラフト(共)重合体が好ましい。 The polymer dispersant used as the embedding dispersant can be used in any binding form. Specifically, any (co) polymers of random (co) polymers, block (co) polymers, and graft (co) polymers can be used. In particular, block (co) polymers, grafts (Co) polymers are preferred.
 本発明の水不溶性化合物の微粒子は、上記特定の構造部位を有する埋包分散剤を主として用い、微粒子に埋包させたものであることが好ましいが、埋包されない分散剤を併用してもよい。併用する分散剤は、例えば、分散物の粘度調製・光現像性付与、上記埋包分散剤との反応性付与、上記埋包分散剤との相互作用性付与、分散媒体との親和性付与、貧溶媒で析出した粒子の解凝集をおこなう目的、微粒子のサイズを調製する目的、良溶媒と貧溶媒の親和性を調整する目的、分散媒体との親和性付与の目的で用いることができる。界面活性剤、低分子分散剤、高分子分散剤など、通常の分散剤を併用して用いることができる。併用する分散剤の使用割合、使用数は特に限定されるものではないが、上記水不溶性化合物1質量%に対して0.01~195質量%の範囲で用いるのが好ましく、0.05~190質量%の範囲で用いるのがより好ましい。更に併用する分散剤数は1種以上が好ましい。 The fine particles of the water-insoluble compound of the present invention are preferably those in which the embedding dispersant having the above specific structure site is mainly used and embedded in the fine particles, but a non-embedded dispersant may be used in combination. . Dispersant used in combination, for example, viscosity adjustment of the dispersion, photodevelopment imparting, reactivity with the embedding dispersant, interaction with the embedding dispersant, affinity with the dispersion medium, It can be used for the purpose of deaggregating particles precipitated in a poor solvent, the purpose of adjusting the size of fine particles, the purpose of adjusting the affinity between a good solvent and a poor solvent, and the purpose of imparting affinity to a dispersion medium. Ordinary dispersants such as surfactants, low molecular dispersants and polymer dispersants can be used in combination. The use ratio and the number of the dispersant used in combination are not particularly limited, but it is preferably used in the range of 0.01 to 195% by mass with respect to 1% by mass of the water-insoluble compound. It is more preferable to use in the range of mass%. Furthermore, the number of dispersants used in combination is preferably one or more.
 併用される分散剤として高分子化合物を用いることができ、具体的にはスチレン、スチレン誘導体、ビニルナフタレン、ビニルナフタレン誘導体、α,β-エチレン性不飽和カルボン酸の脂肪族アルコールエステル等、アクリル酸、アクリル酸誘導体、メタクリル酸、メタクリル酸誘導体、マレイン酸、マレイン酸誘導体、アルケニルスルホン酸、ビニルアミン、アリルアミン、イタコン酸、イタコン酸誘導体、フマール酸、フマール酸誘導体、酢酸ビニル、ビニルホスホン酸、ビニルピロリドン、アクリルアミド、N-ビニルアセトアミド、N-ビニルホルムアミド及びその誘導体等から選ばれた少なくとも2つ以上の単量体(このうち少なくとも1つはカルボン酸基、スルホン酸基、リン酸基、水酸基、アルキレンオキサイドのいずれかになる官能基を有する単量体)から構成されるブロック共重合体、或いはランダム共重合体、グラフト共重合体、又はこれらの変性物、及びこれらの塩等が挙げられる。或いは、アルブミン、ゼラチン、ロジン、シェラック、デンプン、アラビアゴム、アルギン酸ソーダ等の天然高分子化合物、およびこれらの変性物も併用することができる。 As the dispersant used in combination, a polymer compound can be used. Specifically, styrene, styrene derivatives, vinyl naphthalene, vinyl naphthalene derivatives, aliphatic alcohol esters of α, β-ethylenically unsaturated carboxylic acid, acrylic acid, etc. , Acrylic acid derivative, methacrylic acid, methacrylic acid derivative, maleic acid, maleic acid derivative, alkenyl sulfonic acid, vinylamine, allylamine, itaconic acid, itaconic acid derivative, fumaric acid, fumaric acid derivative, vinyl acetate, vinylphosphonic acid, vinylpyrrolidone , Acrylamide, N-vinylacetamide, N-vinylformamide and derivatives thereof, etc. (of which at least one is a carboxylic acid group, sulfonic acid group, phosphoric acid group, hydroxyl group, alkylene) Any of the oxides A block copolymer composed of a monomer having a functional group), a random copolymer, a graft copolymer, a modified product thereof, a salt thereof, and the like. Alternatively, natural polymer compounds such as albumin, gelatin, rosin, shellac, starch, gum arabic and sodium alginate, and modified products thereof can be used in combination.
〔非埋包分散剤〕
 上記埋包分散剤と併用して用いられ、水不溶性化合物の微粒子に埋包されない分散剤として下記A~Dの特定の高分子化合物を用いることが好ましく、その質量平均分子量は(各高分子化合物におけるより好ましい範囲は必要により個々に述べるが)、1000~500000であることが好ましく、2000~300000であることがより好ましく、3000~200000であることが特に好ましい。本発明においては特に断らない限り分子量及び分散度は実施例で測定した方法による。
(Non-embedding dispersant)
It is preferable to use the following specific polymer compounds A to D as dispersants that are used in combination with the embedding dispersant and are not embedded in the fine particles of the water-insoluble compound. The more preferable range in is described individually if necessary), but is preferably from 1,000 to 500,000, more preferably from 2,000 to 300,000, and particularly preferably from 3,000 to 200,000. In the present invention, the molecular weight and the degree of dispersion are determined by the methods measured in the examples unless otherwise specified.
[高分子化合物A]
 本実施態様においては、側鎖に複素環を有する高分子化合物であることが好ましい。このような高分子化合物としては、下記一般式(1)で表される単量体、または、マレイミド、マレイミド誘導体からなる単量体に由来する重合単位を含む重合体であることが好ましく、下記一般式(1)で表される単量体に由来する重合単位を含む重合体であることが特に好ましい。
[Polymer Compound A]
In this embodiment, a polymer compound having a heterocyclic ring in the side chain is preferable. Such a polymer compound is preferably a monomer represented by the following general formula (1) or a polymer containing a polymer unit derived from a monomer comprising a maleimide or a maleimide derivative. A polymer containing a polymer unit derived from the monomer represented by the general formula (1) is particularly preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記一般式(1)中、Rは、水素原子、又は置換若しくは無置換のアルキル基を表す。Rは、単結合、又は2価の連結基を表す。Yは、-CO-、-C(=O)O-、-CONH-、-OC(=O)-、又はフェニレン基を表す。Zは含窒素複素環構造を有する基を表す。
 Rのアルキル基としては、炭素数1~12のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、炭素数1~4のアルキル基が特に好ましい。
 Rで表されるアルキル基が置換基を有する場合、該置換基としては、例えば、ヒドロキシ基、アルコキシ基(好ましくは炭素数1~5、より好ましくは炭素数1~3がより好ましい。)メトキシ基、エトキシ基、シクロヘキシロキシ基等が挙げられる。
In the general formula (1), R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group. R 2 represents a single bond or a divalent linking group. Y represents —CO—, —C (═O) O—, —CONH—, —OC (═O) —, or a phenylene group. Z represents a group having a nitrogen-containing heterocyclic structure.
The alkyl group for R 1 is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, and particularly preferably an alkyl group having 1 to 4 carbon atoms.
When the alkyl group represented by R 1 has a substituent, examples of the substituent include a hydroxy group and an alkoxy group (preferably having 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms). A methoxy group, an ethoxy group, a cyclohexyloxy group, etc. are mentioned.
 Rで表される好ましいアルキル基として具体的には、例えば、メチル基、エチル基、プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ヘキシル基、シクロヘキシル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、2-ヒドロキシプロピル基、2-メトキシエチル基が挙げられる。
 Rとしては、水素原子又はメチル基が最も好ましい。
Specific examples of preferable alkyl group represented by R 1 include, for example, methyl group, ethyl group, propyl group, n-butyl group, i-butyl group, t-butyl group, n-hexyl group, cyclohexyl group, 2 -Hydroxyethyl group, 3-hydroxypropyl group, 2-hydroxypropyl group, 2-methoxyethyl group.
R 1 is most preferably a hydrogen atom or a methyl group.
 一般式(1)中、Rは、単結合又は2価の連結基を表す。該2価の連結基としては、置換若しくは無置換のアルキレン基が好ましい。該アルキレン基としては、炭素数1~12のアルキレン基が好ましく、炭素数1~12のアルキレン基がより好ましく、炭素数1~8のアルキレン基が更に好ましく、炭素数1~4のアルキレン基が特に好ましい。
 Rで表されるアルキレン基は、ヘテロ原子(例えば、酸素原子、窒素原子、又は硫黄原子)を介して2以上連結したものであってもよい。
 Rで表される好ましいアルキレン基として具体的には、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基が挙げられる。
 Rで表される好ましいアルキレン基が置換基を有する場合、該置換基としては、例えば、ヒドロキシ基、等が挙げられる。
In general formula (1), R 2 represents a single bond or a divalent linking group. The divalent linking group is preferably a substituted or unsubstituted alkylene group. The alkylene group is preferably an alkylene group having 1 to 12 carbon atoms, more preferably an alkylene group having 1 to 12 carbon atoms, still more preferably an alkylene group having 1 to 8 carbon atoms, and an alkylene group having 1 to 4 carbon atoms. Particularly preferred.
Two or more alkylene groups represented by R 2 may be linked via a hetero atom (for example, an oxygen atom, a nitrogen atom, or a sulfur atom).
Specific examples of the preferable alkylene group represented by R 2 include a methylene group, an ethylene group, a propylene group, a trimethylene group, and a tetramethylene group.
When the preferable alkylene group represented by R 2 has a substituent, examples of the substituent include a hydroxy group.
 Rで表される2価の連結基としては、上記のアルキレン基の末端において、-O-、-S-、-C(=O)O-、-CONH-、-C(=O)S-、-NHCONH-、-NHC(=O)O-、-NHC(=O)S-、-OC(=O)-、-OCONH-、及び-NHCO-から選ばれるヘテロ原子又はヘテロ原子を含む部分構造を有し、該ヘテロ原子又はヘテロ原子を含む部分構造を介してZと連結するものであってもよい。 Examples of the divalent linking group represented by R 2 include —O—, —S—, —C (═O) O—, —CONH—, —C (═O) S at the terminal of the alkylene group. A heteroatom or a heteroatom selected from-, -NHCONH-, -NHC (= O) O-, -NHC (= O) S-, -OC (= O)-, -OCONH-, and -NHCO- It may have a partial structure and be linked to Z via the heteroatom or a partial structure containing a heteroatom.
 一般式(1)中、Zは複素環構造を有する基を表す。複素環構造を有する基としては、例えば、フタロシアニン系、不溶性アゾ系、アゾレーキ系、アントラキノン系、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリジン系、アンサンスロン系、インダンスロン系、フラバンスロン系、ペリノン系、ペリレン系、チオインジゴ系の色素構造や、例えば、チオフェン、フラン、キサンテン、ピロール、ピロリン、ピロリジン、ジオキソラン、ピラゾール、ピラゾリン、ピラゾリジン、イミダゾール、オキサゾール、チアゾール、オキサジアゾール、トリアゾール、チアジアゾール、ピラン、ピリジン、ピペリジン、ジオキサン、モルホリン、ピリダジン、ピリミジン、ピペラジン、トリアジン、トリチアン、イソインドリン、イソインドリノン、ベンズイミダゾロン、ベンゾチアゾール、コハクイミド、フタルイミド、ナフタルイミド、ヒダントイン、インドール、キノリン、カルバゾール、アクリジン、アクリドン、アントラキノン、ピラジン、テトラゾール、フェノチアジン、フェノキサジン、ベンズイミダゾール、ベンズトリアゾール、環状アミド、環状ウレア、環状イミド等の複素環構造が挙げられる。これらの複素環構造は、置換基を有していてもよく、該置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、脂肪族エステル基、芳香族エステル基、アルコキシカルボニル基、等が挙げられる。 In general formula (1), Z represents a group having a heterocyclic structure. Examples of the group having a heterocyclic structure include phthalocyanine series, insoluble azo series, azo lake series, anthraquinone series, quinacridone series, dioxazine series, diketopyrrolopyrrole series, anthrapyridine series, ansanthrone series, indanthrone series, and flavan. Throne, perinone, perylene, thioindigo dye structures, such as thiophene, furan, xanthene, pyrrole, pyrroline, pyrrolidine, dioxolane, pyrazole, pyrazoline, pyrazolidine, imidazole, oxazole, thiazole, oxadiazole, triazole, Thiadiazole, pyran, pyridine, piperidine, dioxane, morpholine, pyridazine, pyrimidine, piperazine, triazine, trithiane, isoindoline, isoindolinone, benzimidazolone, Heterocycles such as zothiazole, succinimide, phthalimide, naphthalimide, hydantoin, indole, quinoline, carbazole, acridine, acridone, anthraquinone, pyrazine, tetrazole, phenothiazine, phenoxazine, benzimidazole, benztriazole, cyclic amide, cyclic urea, cyclic imide Structure is mentioned. These heterocyclic structures may have a substituent, and examples of the substituent include an alkyl group, an alkoxy group, a halogen atom, an aliphatic ester group, an aromatic ester group, an alkoxycarbonyl group, and the like. Can be mentioned.
 Zは、炭素数が6以上である含窒素複素環構造を有する基であることがより好ましく、炭素数が6以上12以下である含窒素複素環構造を有する基であることが特に好ましい。炭素数が6以上である含窒素複素環構造として具体的には、フェノチアジン環、フェノキサジン環、アクリドン環、アントラキノン環、ベンズイミダゾール構造、ベンズトリアゾール構造、ベンズチアゾール構造、環状アミド構造、環状ウレア構造、及び環状イミド構造が好ましく、下記(2)、(3)又は(4)で表される構造であることが特に好ましい。 Z is more preferably a group having a nitrogen-containing heterocyclic structure having 6 or more carbon atoms, and particularly preferably a group having a nitrogen-containing heterocyclic structure having 6 to 12 carbon atoms. Specific examples of the nitrogen-containing heterocyclic structure having 6 or more carbon atoms include phenothiazine ring, phenoxazine ring, acridone ring, anthraquinone ring, benzimidazole structure, benztriazole structure, benzthiazole structure, cyclic amide structure, and cyclic urea structure. And a cyclic imide structure are preferable, and a structure represented by the following (2), (3) or (4) is particularly preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(2)中、Xは、単結合、アルキレン基(例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基など)、-O-、-S-、-NR-、及び-C(=O)-からなる群より選ばれるいずれかである。ここでRは、水素原子又はアルキル基を表す。Rがアルキル基を表す場合のアルキル基は、好ましくは炭素数1~18のアルキル基、より好ましくは炭素数1~6のアルキル基であり、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、n-オクタデシル基などが挙げられる。
 上記した中でも、一般式(2)におけるXとしては、単結合、メチレン基、-O-、又は-C(=O)-が好ましく、-C(=O)-が特に好ましい。
In the general formula (2), X represents a single bond, an alkylene group (for example, a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, etc.), —O—, —S—, —NR A —, and One selected from the group consisting of —C (═O) —. Here, R A represents a hydrogen atom or an alkyl group. When R A represents an alkyl group, the alkyl group is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, or an n-propyl group. I-propyl group, n-butyl group, t-butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group, n-octadecyl group and the like.
Among the above, X in the general formula (2) is preferably a single bond, a methylene group, —O— or —C (═O) —, particularly preferably —C (═O) —.
 一般式(4)中、Y及びZは、各々独立に、-N=、-NH-、-N(R)-、-S-、又は-O-を表す。Rはアルキル基を表し、Rがアルキル基を表す場合のアルキル基は、好ましくは炭素数1~18のアルキル基、より好ましくは炭素数1~6のアルキル基であり、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、n-オクタデシル基などが挙げられる。
 上記した中でも、一般式(4)における、Y及びZとしては、-N=、-NH-、及び-N(R)-が特に好ましい。Y及びZの組み合わせとしては、Y及びZのいずれか一方が-N=であり他方が-NH-である組み合わせ、イミダゾリル基が挙げられる。
In the general formula (4), Y and Z each independently represent —N═, —NH—, —N (R B ) —, —S—, or —O—. R B represents an alkyl group, and when R B represents an alkyl group, the alkyl group is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, such as a methyl group Ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group, n-octadecyl group and the like.
Among the above, as Y and Z in the general formula (4), —N═, —NH—, and —N (R B ) — are particularly preferable. Examples of the combination of Y and Z include a combination in which one of Y and Z is —N═ and the other is —NH—, and an imidazolyl group.
 一般式(2)、(3)、および(4)で、環A、環B、環C、及び環Dは、各々独立に、芳香環を表す。該芳香環としては、例えば、ベンゼン環、ナフタレン環、インデン環、アズレン環、フルオレン環、アントラセン環、ピリジン環、ピラジン環、ピリミジン環、ピロール環、イミダゾール環、インドール環、キノリン環、アクリジン環、フェノチアジン環、フェノキサジン環、アクリドン環、アントラキノン環等が挙げられ、中でも、ベンゼン環、ナフタレン環、アントラセン環、ピリジン環、フェノキサジン環、アクリジン環、フェノチアジン環、フェノキサジン環、アクリドン環、アントラキノン環が好ましく、ベンゼン環、ナフタレン環、ピリジン環が特に好ましい。 In general formulas (2), (3), and (4), ring A, ring B, ring C, and ring D each independently represent an aromatic ring. Examples of the aromatic ring include a benzene ring, naphthalene ring, indene ring, azulene ring, fluorene ring, anthracene ring, pyridine ring, pyrazine ring, pyrimidine ring, pyrrole ring, imidazole ring, indole ring, quinoline ring, acridine ring, Examples include phenothiazine ring, phenoxazine ring, acridone ring, anthraquinone ring, among others, benzene ring, naphthalene ring, anthracene ring, pyridine ring, phenoxazine ring, acridine ring, phenothiazine ring, phenoxazine ring, acridone ring, anthraquinone ring. Are preferable, and a benzene ring, a naphthalene ring, and a pyridine ring are particularly preferable.
 具体的には、一般式(2)における環A及び環Bとしては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピラジン環、等が挙げられる。一般式(3)における環Cとしては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピラジン環、等が挙げられる。一般式(4)における環Dとしては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピラジン環、等が挙げられる。 Specifically, examples of the ring A and ring B in the general formula (2) include a benzene ring, a naphthalene ring, a pyridine ring, a pyrazine ring, and the like. Examples of the ring C in the general formula (3) include a benzene ring, a naphthalene ring, a pyridine ring, and a pyrazine ring. Examples of the ring D in the general formula (4) include a benzene ring, a naphthalene ring, a pyridine ring, a pyrazine ring, and the like.
 一般式(2)、(3)および(4)で表される構造の中でも、分散性、分散液の経時安定性の点からは、ベンゼン環、ナフタレン環がより好ましく、一般式(2)又は(4)においては、ベンゼン環がさらに好ましく、一般式(3)においては、ナフタレン環がさらに好ましい。 Among the structures represented by the general formulas (2), (3) and (4), a benzene ring and a naphthalene ring are more preferable from the viewpoint of dispersibility and stability over time of the dispersion, and the general formula (2) or In (4), a benzene ring is more preferable, and in the general formula (3), a naphthalene ring is more preferable.
 本実施態様の側鎖に複素環を有する高分子化合物において、下記一般式(1)で表される単量体、マレイミド、マレイミド誘導体の好ましい具体例を以下に挙げるが、本発明はこれらに制限されるものではない。 In the polymer compound having a heterocyclic ring in the side chain of this embodiment, preferred specific examples of the monomer, maleimide, and maleimide derivative represented by the following general formula (1) are listed below, but the present invention is not limited thereto. Is not to be done.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本実施態様に用いられる側鎖に複素環を有する高分子化合物は、一般式(1)で表される単量体、マレイミド、マレイミド誘導体に由来する共重合単位を、1種のみ含むものであってもよいし、2種以上を含んでもよい。本実施態様の側鎖に複素環を有する高分子化合物において、一般式(1)で表される単量体、マレイミド、マレイミド誘導体に由来する共重合単位の含有量は、特に制限はないが、本実施態様の側鎖に複素環を有する高分子化合物に含有される全構造単位を100質量%とした場合に、一般式(1)で表される単量体、マレイミド、マレイミド誘導体に由来する共重合単位を5質量%以上含有することが好ましく、10~50質量%含有することがより好ましい。一般式(1)で表される単量体、マレイミド、マレイミド誘導体の中でも、一般式(1)で表される単量体が水不溶性化合物への吸着性が高いことから好ましい。 The polymer compound having a heterocyclic ring in the side chain used in this embodiment contains only one type of copolymer unit derived from the monomer represented by the general formula (1), maleimide, and maleimide derivative. It may also include two or more. In the polymer compound having a heterocyclic ring in the side chain of the present embodiment, the content of the copolymer unit derived from the monomer represented by the general formula (1), maleimide, and maleimide derivative is not particularly limited. When the total structural unit contained in the polymer compound having a heterocyclic ring in the side chain of this embodiment is 100% by mass, it is derived from the monomer represented by the general formula (1), the maleimide, and the maleimide derivative. The copolymer unit is preferably contained in an amount of 5% by mass or more, more preferably 10 to 50% by mass. Among the monomers represented by the general formula (1), maleimide, and maleimide derivatives, the monomer represented by the general formula (1) is preferable because of its high adsorptivity to water-insoluble compounds.
 即ち、水不溶性化合物の1次粒子の凝集体である2次凝集体の生成を効果的に抑制、あるいは、2次凝集体の凝集力を効果的に弱めるためには、一般式(1)で表される単量体、マレイミド、マレイミド誘導体に由来する共重合単位の含有量は5質量%以上であることが好ましい。また、分散組成物を含有する光硬化性組成物によりカラーフィルタを製造する際の現像性の観点からは、一般式(1)で表される単量体に由来する共重合単位の含有量は50質量%以下であることが好ましい。 That is, in order to effectively suppress the formation of secondary aggregates, which are aggregates of primary particles of a water-insoluble compound, or to effectively weaken the cohesive force of the secondary aggregates, the general formula (1) The content of the copolymer unit derived from the monomer, maleimide, and maleimide derivative represented is preferably 5% by mass or more. From the viewpoint of developability when producing a color filter with a photocurable composition containing a dispersion composition, the content of copolymer units derived from the monomer represented by the general formula (1) is It is preferable that it is 50 mass% or less.
 本実施態様の側鎖に複素環を有する高分子化合物は、更に、酸基を有する単量体に由来する共重合単位を含むことが好ましい。高分子化合物がさらに酸基を有する単量体に由来する共重合単位を含むことで、水不溶性化合物の分散組成物を感光性組成物に適用した場合において、未露光部の現像除去性に優れる。
 酸基を有する単量体としては、アクリル酸、メタクリル酸、クロトン酸、α-クロルアクリル酸、けい皮酸等の不飽和モノカルボン酸類;マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、メサコン酸等の不飽和ジカルボン酸またはその無水物類;3価以上の不飽和多価カルボン酸またはその無水物類;こはく酸モノ(2-アクリロイロキシエチル)、こはく酸モノ(2-メタクリロイロキシエチル)、フタル酸モノ(2-アクリロイロキシエチル)、フタル酸モノ(2-メタクリロイロキシエチル)等の2価以上の多価カルボン酸のモノ〔(メタ)アクリロイロキシアルキル〕エステル類;ω-カルボキシ-ポリカプロラクトンモノアクリレート、ω-カルボキシ-ポリカプロラクトンモノメタクリレート等の両末端カルボキシポリマーのモノ(メタ)アクリレート類等を挙げることができる。本実施態様の高分子化合物は、酸基を有する単量体に由来する共重合単位を、1種のみ含むものであってもよいし、2種以上を含んでもよい。
The polymer compound having a heterocyclic ring in the side chain of this embodiment preferably further contains a copolymer unit derived from a monomer having an acid group. When the polymer compound further contains a copolymer unit derived from a monomer having an acid group, when the dispersion composition of the water-insoluble compound is applied to the photosensitive composition, it is excellent in the development removability of the unexposed area. .
Examples of the monomer having an acid group include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, α-chloroacrylic acid, cinnamic acid; maleic acid, maleic anhydride, fumaric acid, itaconic acid, anhydrous Unsaturated dicarboxylic acids such as itaconic acid, citraconic acid, citraconic anhydride and mesaconic acid or their anhydrides; trivalent or higher unsaturated polycarboxylic acids or their anhydrides; succinic acid mono (2-acryloyloxyethyl) ), Succinic acid mono (2-methacryloyloxyethyl), phthalic acid mono (2-acryloyloxyethyl), phthalic acid mono (2-methacryloyloxyethyl) mono (2-methacryloyloxyethyl) mono [ (Meth) acryloyloxyalkyl] esters; ω-carboxy-polycaprolactone monoacrylate, ω-carboxy-polycaprolacto It can be mentioned mono (meth) acrylates such as both terminal carboxy polymers such monomethacrylate. The polymer compound of this embodiment may include only one type of copolymer unit derived from a monomer having an acid group, or may include two or more types.
 本実施態様の側鎖に複素環を有する高分子化合物において、酸基を有する単量体に由来する共重合単位の含有量は、好ましくは50~200mgKOH/gであり、特に好ましくは80~200mgKOH/gである。より好ましい範囲は100~180mgKOH/gである。即ち、現像液中での析出物の生成抑制という点では、酸基を有する単量体に由来する共重合単位の含有量は50mgKOH/g以上であることが好ましい。酸価が200mgKOH/g以上であると酸基間の凝集が強くなり、加工顔料間の凝集が生じ、分散性が劣化し、となって好ましくない。水不溶性化合物の1次粒子の凝集体である2次凝集体の生成を効果的に抑制、あるいは、2次凝集体の凝集力を効果的に弱めるためには、酸基を有する単量体に由来する共重合単位の含有量は上記範囲が好ましい。 In the polymer compound having a heterocyclic ring in the side chain of this embodiment, the content of the copolymer unit derived from the monomer having an acid group is preferably 50 to 200 mgKOH / g, particularly preferably 80 to 200 mgKOH. / G. A more preferred range is 100 to 180 mg KOH / g. That is, in terms of suppressing the formation of precipitates in the developer, the content of copolymer units derived from the monomer having an acid group is preferably 50 mgKOH / g or more. When the acid value is 200 mgKOH / g or more, aggregation between acid groups becomes strong, aggregation between processed pigments occurs, and dispersibility deteriorates. In order to effectively suppress the formation of secondary aggregates, which are aggregates of primary particles of water-insoluble compounds, or to effectively weaken the cohesive force of secondary aggregates, a monomer having an acid group is used. The content of the derived copolymer unit is preferably in the above range.
 本実施態様における側鎖に複素環を有する高分子化合物は、その効果を損なわない範囲において、更に、共重合可能なビニルモノマーに由来する共重合単位を含んでいてもよい。
 ここで使用可能なビニルモノマーとしては、特に制限されないが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類、(メタ)アクリロニトリルなどが好ましい。このようなビニルモノマーの具体例としては、先に埋包分散剤の説明において分散媒体との親和性部位として挙げた、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、スチレン類、又はビニルエーテル類の各化合物が挙げられる。
The polymer compound having a heterocyclic ring in the side chain in the present embodiment may further contain copolymer units derived from a copolymerizable vinyl monomer as long as the effect is not impaired.
Although it does not restrict | limit especially as a vinyl monomer which can be used here, For example, (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters, itaconic acid diesters, ( Preference is given to (meth) acrylamides, vinyl ethers, esters of vinyl alcohol, styrenes, (meth) acrylonitrile and the like. Specific examples of such vinyl monomers include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid, which have been mentioned as the affinity sites with the dispersion medium in the description of the embedding dispersant. Examples thereof include diesters, fumaric acid diesters, itaconic acid diesters, styrenes, and vinyl ethers.
 本実施態様に係る側鎖に複素環を有する高分子化合物の好ましい分子量は、質量平均分子量(Mw)で1,000~100,000の範囲、数平均分子量(Mn)で400~50,000の範囲であることが好ましい。質量平均分子量(Mw)で5,000~50,000の範囲、数平均分子量(Mn)で2,000~30,000の範囲であることがより好ましい。特に、質量平均分子量(Mw)で8,000~30,000の範囲、数平均分子量(Mn)で4,000~12,000の範囲であることが最も好ましい。 The preferred molecular weight of the polymer compound having a heterocyclic ring in the side chain according to this embodiment is in the range of 1,000 to 100,000 in terms of mass average molecular weight (Mw) and in the range of 400 to 50,000 in terms of number average molecular weight (Mn). A range is preferable. More preferably, the weight average molecular weight (Mw) is in the range of 5,000 to 50,000, and the number average molecular weight (Mn) is in the range of 2,000 to 30,000. In particular, the mass average molecular weight (Mw) is most preferably in the range of 8,000 to 30,000, and the number average molecular weight (Mn) is in the range of 4,000 to 12,000.
 即ち、水不溶性化合物の1次粒子の凝集体である2次凝集体の生成を効果的に抑制、あるいは、2次凝集体の凝集力を効果的に弱めるための観点からは、本実施態様の側鎖に複素環を有する高分子化合物の質量平均分子量(Mw)は1,000以上であることが好ましい。また、水不溶性化合物の分散組成物を含有する光硬化性組成物によりカラーフィルタを製造する際の現像性の観点からは、本実施態様の側鎖に複素環を有する高分子化合物の質量平均分子量(Mw)は100,000以下であることが好ましい。
 本実施態様の水不溶性化合物の分散組成物中、複素環を有する高分子化合物の含有量としては質量比で、水不溶性化合物側鎖に複素環を有する高分子化合物=1:0.01~1:2が好ましく、より好ましくは、1:0.05~1:1であり、さらに好ましくは、1:0.1~1:0.6である。
That is, from the viewpoint of effectively suppressing the formation of secondary aggregates, which are aggregates of primary particles of water-insoluble compounds, or effectively reducing the cohesive force of secondary aggregates, The mass average molecular weight (Mw) of the polymer compound having a heterocyclic ring in the side chain is preferably 1,000 or more. In addition, from the viewpoint of developability when producing a color filter with a photocurable composition containing a dispersion composition of a water-insoluble compound, the mass average molecular weight of the polymer compound having a heterocyclic ring in the side chain of the present embodiment (Mw) is preferably 100,000 or less.
In the dispersion composition of the water-insoluble compound of the present embodiment, the content of the polymer compound having a heterocyclic ring is, as a mass ratio, the polymer compound having a heterocyclic ring in the water-insoluble compound side chain = 1: 0.01 to 1. : 2 is preferable, more preferably 1: 0.05 to 1: 1, and still more preferably 1: 0.1 to 1: 0.6.
 該複素環を有する高分子化合物は、例えば、一般式(1)で表される単量体と、重合性オリゴマー(マクロモノマー)と、共重合成分として他のラジカル重合性化合物と用い、通常のラジカル重合法によって製造することができる。一般的には、懸濁重合法あるいは溶液重合法などを用いる。このような重合体を合成する際に用いられる溶媒としては、例えば、エチレンジクロリド、シクロヘキサノン、メチルエチルケトン、アセトン、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2-メトキシエチルアセテート、1-メトキシ-2-プロパノール、1-メトキシ-2-プロピルアセテート、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、トルエン、酢酸エチル、乳酸メチル、乳酸エチルなどが挙げられる。これらの溶媒は単独あるいは2種以上混合してもよい。 The polymer compound having a heterocyclic ring is, for example, a monomer represented by the general formula (1), a polymerizable oligomer (macromonomer), and another radical polymerizable compound as a copolymerization component. It can be produced by a radical polymerization method. In general, a suspension polymerization method or a solution polymerization method is used. Solvents used in the synthesis of such polymers include, for example, ethylene dichloride, cyclohexanone, methyl ethyl ketone, acetone, methanol, ethanol, propanol, butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 2-methoxyethyl. Examples include acetate, 1-methoxy-2-propanol, 1-methoxy-2-propyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, toluene, ethyl acetate, methyl lactate, and ethyl lactate. . These solvents may be used alone or in combination of two or more.
 該ラジカル重合の際、ラジカル重合開始剤を使用することができ、また、さらに連鎖移動剤(例、2-メルカプトエタノールおよびドデシルメルカプタン)を使用することができる。 In the radical polymerization, a radical polymerization initiator can be used, and a chain transfer agent (eg, 2-mercaptoethanol and dodecyl mercaptan) can be further used.
[高分子化合物B]
 本実施態様においては、下記一般式(I)及び(II)のいずれかで表される繰り返し単位から選択される少なくとも1種の繰り返し単位を含む高分子化合物(以下、「特定重合体」と称する場合がある。)を含有することが好ましい。
[Polymer Compound B]
In this embodiment, a polymer compound (hereinafter referred to as “specific polymer”) containing at least one repeating unit selected from repeating units represented by any one of the following general formulas (I) and (II): In some cases).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記一般式(I)及び(II)中、R~Rは、各々独立に、水素原子、又は1価の有機基を表し、X及びXは、各々独立に、-CO-、-C(=O)O-、-CONH-、-OC(=O)-、又はフェニレン基を表し、L及びLは、各々独立に、単結合、又は2価の有機連結基を表し、A及びAは、各々独立に、1価の有機基を表し、m及びnは、各々独立に、2~8の整数を表し、p及びqは、各々独立に、1~100の整数を表す。 In the general formulas (I) and (II), R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group, and X 1 and X 2 each independently represent —CO—, —C (═O) O—, —CONH—, —OC (═O) —, or a phenylene group, and L 1 and L 2 each independently represent a single bond or a divalent organic linking group. , A 1 and A 2 each independently represents a monovalent organic group, m and n each independently represents an integer of 2 to 8, and p and q each independently represents 1 to 100 Represents an integer.
 R~Rは、各々独立に、水素原子、又は1価の有機基を表す。1価の有機基としては、置換若しくは無置換のアルキル基が好ましい。アルキル基としては、炭素数1~12のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、炭素数1~4のアルキル基が特に好ましい。
 アルキル基が置換基を有する場合、該置換基としては、例えば、ヒドロキシ基、アルコキシ基(好ましくは炭素数1~5、より好ましくは炭素数1~3がより好ましい。)メトキシ基、エトキシ基、シクロヘキシロキシ基等が挙げられる。
 好ましいアルキル基として、具体的には、例えば、メチル基、エチル基、プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ヘキシル基、シクロヘキシル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、2-ヒドロキシプロピル基、2-メトキシエチル基が挙げられる。
 R、R、R、及びRとしては、水素原子が好ましく、R及びRとしては、水素原子又はメチル基が、水不溶性化合物の粒子表面への吸着効率の点からも最も好ましい。
R 1 to R 6 each independently represents a hydrogen atom or a monovalent organic group. As the monovalent organic group, a substituted or unsubstituted alkyl group is preferable. As the alkyl group, an alkyl group having 1 to 12 carbon atoms is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is particularly preferable.
When the alkyl group has a substituent, examples of the substituent include a hydroxy group and an alkoxy group (preferably having a carbon number of 1 to 5, more preferably 1 to 3 carbon atoms), a methoxy group, an ethoxy group, Examples include a cyclohexyloxy group.
Specific examples of preferred alkyl groups include methyl, ethyl, propyl, n-butyl, i-butyl, t-butyl, n-hexyl, cyclohexyl, 2-hydroxyethyl, Examples include 3-hydroxypropyl group, 2-hydroxypropyl group, and 2-methoxyethyl group.
R 1 , R 2 , R 4 , and R 5 are preferably hydrogen atoms, and R 3 and R 6 are most preferably hydrogen atoms or methyl groups from the viewpoint of adsorption efficiency of water-insoluble compounds on the particle surface. preferable.
 X及びXは、各々独立に、-CO-、-C(=O)O-、-CONH-、-OC(=O)-、又はフェニレン基を表す。中でも、-C(=O)O-、-CONH-、フェニレン基が、水不溶性化合物の粒子への吸着性の観点で好ましく、-C(=O)O-が最も好ましい。 X 1 and X 2 each independently represents —CO—, —C (═O) O—, —CONH—, —OC (═O) —, or a phenylene group. Among them, —C (═O) O—, —CONH—, and a phenylene group are preferable from the viewpoint of the adsorptivity of water-insoluble compounds to particles, and —C (═O) O— is most preferable.
 L及びLは、各々独立に、単結合、又は2価の有機連結基を表す。2価の有機連結基としては、置換若しくは無置換のアルキレン基や、該アルキレン基とヘテロ原子又はヘテロ原子を含む部分構造とからなる2価の有機連結基が好ましい。ここで、アルキレン基としては、炭素数1~12のアルキレン基が好ましく、炭素数1~8のアルキレン基が更に好ましく、炭素数1~4のアルキレン基が特に好ましい。また、ヘテロ原子を含む部分構造におけるヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子があげられ、中でも、酸素原子、窒素原子が好ましい。
 好ましいアルキレン基として、具体的には、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基が挙げられる。
 アルキレン基が置換基を有する場合、該置換基としては、例えば、ヒドロキシ基等が挙げられる。
 2価の有機連結基としては、上記のアルキレン基の末端に、-C(=O)-、-OC(=O)-、-NHC(=O)-から選ばれるヘテロ原子又はヘテロ原子を含む部分構造を有し、該ヘテロ原子又はヘテロ原子を含む部分構造を介して、隣接した酸素原子と連結したものが、水不溶性化合物の粒子への吸着性の点から好ましい。ここで、隣接した酸素原子とは、一般式(I)におけるL、及び一般式(II)におけるLに対し、側鎖末端側で結合する酸素原子を意味する。
L 1 and L 2 each independently represents a single bond or a divalent organic linking group. The divalent organic linking group is preferably a substituted or unsubstituted alkylene group or a divalent organic linking group comprising the alkylene group and a hetero atom or a partial structure containing a hetero atom. Here, the alkylene group is preferably an alkylene group having 1 to 12 carbon atoms, more preferably an alkylene group having 1 to 8 carbon atoms, and particularly preferably an alkylene group having 1 to 4 carbon atoms. In addition, examples of the hetero atom in the partial structure containing a hetero atom include an oxygen atom, a nitrogen atom, and a sulfur atom, and among them, an oxygen atom and a nitrogen atom are preferable.
Specific examples of preferable alkylene groups include a methylene group, an ethylene group, a propylene group, a trimethylene group, and a tetramethylene group.
When the alkylene group has a substituent, examples of the substituent include a hydroxy group.
The divalent organic linking group includes a heteroatom or a heteroatom selected from —C (═O) —, —OC (═O) —, and —NHC (═O) — at the end of the above alkylene group. A substance having a partial structure and connected to an adjacent oxygen atom via the heteroatom or a partial structure containing a heteroatom is preferable from the viewpoint of the adsorptivity to water-insoluble compound particles. Here, the adjacent oxygen atom means an oxygen atom that is bonded to L 1 in the general formula (I) and L 2 in the general formula (II) on the side chain end side.
 A及びAは、各々独立に、1価の有機基を表す。1価の有機基としては、置換もしくは非置換のアルキル基、又は、置換もしくは非置換のアリール基が好ましい。
 好ましいアルキル基の例としては、炭素原子数が1から20までの直鎖状、分岐状、および環状のアルキル基を挙げることができ、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロヘキシル基、シクロペンチル基、2-ノルボルニル基を挙げることができる。
A 1 and A 2 each independently represents a monovalent organic group. As the monovalent organic group, a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group is preferable.
Examples of preferable alkyl groups include linear, branched, and cyclic alkyl groups having 1 to 20 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, Butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, hexadecyl, octadecyl, eicosyl, isopropyl, isobutyl, s-butyl, Examples thereof include t-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclohexyl group, cyclopentyl group and 2-norbornyl group.
 置換アルキル基の置換基としては、水素を除く1価の非金属原子団の基が用いられ、好ましい例としては、ハロゲン原子(-F、-Br、-Cl、-I)、ヒドロキシル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、アミノ基、N-アルキルアミノ基、N,N-ジアルキルアミノ基、N-アリールアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、N-アルキルカルバモイルオキシ基、N-アリールカルバモイルオキシ基、N,N-ジアルキルカルバモイルオキシ基、N,N-ジアリールカルバモイルオキシ基、N-アルキル-N-アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルオキシ基、アシルチオ基、アシルアミノ基、N-アルキルアシルアミノ基、N-アリールアシルアミノ基、ウレイド基、N’-アルキルウレイド基、N’,N’-ジアルキルウレイド基、N’-アリールウレイド基、N’,N’-ジアリールウレイド基、N’-アルキル-N’-アリールウレイド基、N-アルキルウレイド基、N-アリールウレイド基、N’-アルキル-N-アルキルウレイド基、N’-アルキル-N-アリールウレイド基、N’,N’-ジアルキル-N-アルキルウレイド基、N’,N’-ジアルキル-N-アリールウレイド基、N’-アリール-N-アルキルウレイド基、N’-アリール-N-アリールウレイド基、N’,N’-ジアリール-N-アルキルウレイド基、N’,N’-ジアリール-N-アリールウレイド基、N’-アルキル-N’-アリール-N-アルキルウレイド基、N’-アルキル-N’-アリール-N-アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N-アルキル-N-アルコキシカルボニルアミノ基、N-アルキル-N-アリーロキシカルボニルアミノ基、N-アリール-N-アルコキシカルボニルアミノ基、N-アリール-N-アリーロキシカルボニルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(-SOH)およびその共役塩基基(以下、スルホナト基と称す)、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N-アルキルスルフィナモイル基、N,N-ジアルキルスルフィナモイル基、N-アリールスルフィナモイル基、N,N-ジアリールスルフィナモイル基、N-アルキル-N-アリールスルフィナモイル基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、ホスホノ基(-PO)及びその共役塩基基(以下、ホスホナト基と称す)、ジアルキルホスホノ基(-PO(alkyl))、ジアリールホスホノ基(-PO(aryl))、アルキルアリールホスホノ基(-PO(alkyl)(aryl))、モノアルキルホスホノ基(-POH(alkyl))及びその共役塩基基(以後、アルキルホスホナト基と称す)、モノアリールホスホノ基(-POH(aryl))及びその共役塩基基(以後、アリールホスホナト基と称す)、ホスホノオキシ基(-OPO)及びその共役塩基基(以後、ホスホナトオキシ基と称す)、ジアルキルホスホノオキシ基(-OPO(alkyl))、ジアリールホスホノオキシ基(-OPO(aryl))、アルキルアリールホスホノオキシ基(-OPO(alkyl)(aryl))、モノアルキルホスホノオキシ基(-OPOH(alkyl))及びその共役塩基基(以後、アルキルホスホナトオキシ基と称す)、モノアリールホスホノオキシ基(-OPOH(aryl))及びその共役塩基基(以後、アリールホスホナトオキシ基と称す)、シアノ基、ニトロ基、アリール基、ヘテロアリール基、アルケニル基、アルキニル基、シリル基が挙げられる。
 これらの置換基における、アルキル基の具体例としては、前述のアルキル基が挙げられ、これらは更に置換基を有していてもよい。
 置換基としては、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、N,N-ジアルキルアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、アリール基、ヘテロアリール基、アルケニル基、アルキニル基、シリル基が、分散安定性の点から好ましい。
As the substituent of the substituted alkyl group, a monovalent non-metallic atomic group other than hydrogen is used. Preferred examples include halogen atoms (—F, —Br, —Cl, —I), hydroxyl groups, alkoxy groups. Group, aryloxy group, mercapto group, alkylthio group, arylthio group, alkyldithio group, aryldithio group, amino group, N-alkylamino group, N, N-dialkylamino group, N-arylamino group, N, N-diaryl Amino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, N-alkylcarbamoyloxy group, N-arylcarbamoyloxy group, N, N-dialkylcarbamoyloxy group, N, N-diarylcarbamoyloxy Group, N-alkyl-N-arylcarbamoyloxy group, alkylsulfoxy Arylsulfoxy group, acyloxy group, acylthio group, acylamino group, N-alkylacylamino group, N-arylacylamino group, ureido group, N′-alkylureido group, N ′, N′-dialkylureido group, N '-Arylureido group, N', N'-diarylureido group, N'-alkyl-N'-arylureido group, N-alkylureido group, N-arylureido group, N'-alkyl-N-alkylureido group N′-alkyl-N-arylureido group, N ′, N′-dialkyl-N-alkylureido group, N ′, N′-dialkyl-N-arylureido group, N′-aryl-N-alkylureido group N′-aryl-N-arylureido group, N ′, N′-diaryl-N-alkylureido group, N ′, N′-diaryl-N-aryluree group Id group, N′-alkyl-N′-aryl-N-alkylureido group, N′-alkyl-N′-aryl-N-arylureido group, alkoxycarbonylamino group, aryloxycarbonylamino group, N-alkyl- N-alkoxycarbonylamino group, N-alkyl-N-aryloxycarbonylamino group, N-aryl-N-alkoxycarbonylamino group, N-aryl-N-aryloxycarbonylamino group, formyl group, acyl group, carboxyl group , Alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group, N, N-dialkylcarbamoyl group, N-arylcarbamoyl group, N, N-diarylcarbamoyl group, N-alkyl-N-arylcarbamoyl group An alkylsulfinyl group, Arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, sulfo group (—SO 3 H) and its conjugate base group (hereinafter referred to as sulfonate group), alkoxysulfonyl group, aryloxysulfonyl group, sulfinamoyl group, N-alkyls Rufinamoyl group, N, N-dialkylsulfinamoyl group, N-arylsulfinamoyl group, N, N-diarylsulfinamoyl group, N-alkyl-N-arylsulfinamoyl group, sulfamoyl group, N-alkyl Sulfamoyl group, N, N-dialkylsulfamoyl group, N-arylsulfamoyl group, N, N-diarylsulfamoyl group, N-alkyl-N-arylsulfamoyl group, phosphono group (—PO 3 H 2) and its conjugated base group (hereinafter referred to as phosphonato group) Dialkylphosphono group (-PO 3 (alkyl) 2) , diaryl phosphono group (-PO 3 (aryl) 2) , alkyl aryl phosphono group (-PO 3 (alkyl) (aryl )), monoalkyl phosphono group (—PO 3 H (alkyl)) and its conjugate base group (hereinafter referred to as alkylphosphonate group), monoarylphosphono group (—PO 3 H (aryl)) and its conjugate base group (hereinafter referred to as arylphosphonate) Group), a phosphonooxy group (—OPO 3 H 2 ) and its conjugate base group (hereinafter referred to as phosphonatoxy group), a dialkylphosphonooxy group (—OPO 3 (alkyl) 2 ), a diarylphosphonooxy group (— OPO 3 (aryl) 2), alkylaryl phosphono group (-OPO 3 (alkyl) (aryl ) , Monoalkyl phosphono group (-OPO 3 H (alkyl)) and its conjugated base group (hereinafter referred to as alkylphosphonato group), monoarylphosphono group (-OPO 3 H (aryl)) and its Examples thereof include a conjugated base group (hereinafter referred to as arylphosphonatoxy group), a cyano group, a nitro group, an aryl group, a heteroaryl group, an alkenyl group, an alkynyl group, and a silyl group.
Specific examples of the alkyl group in these substituents include the alkyl groups described above, and these may further have a substituent.
Examples of the substituent include alkoxy group, aryloxy group, alkylthio group, arylthio group, N, N-dialkylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, aryl group, hetero An aryl group, an alkenyl group, an alkynyl group, and a silyl group are preferable from the viewpoint of dispersion stability.
 アリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、クロロフェニル基、ブロモフェニル基、クロロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、エトキシフェニル基、フェノキシフェニル基、アセトキシフェニル基、ベンゾイロキシフェニル基、メチルチオフェニル基、フェニルチオフェニル基、メチルアミノフェニル基、ジメチルアミノフェニル基、アセチルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、エトキシフェニルカルボニル基、フェノキシカルボニルフェニル基、N-フェニルカルバモイルフェニル基、フェニル基、シアノフェニル基、スルホフェニル基、スルホナトフェニル基、ホスフォノフェニル基、ホスフォナトフェニル基等を挙げることができる。 Specific examples of the aryl group include phenyl, biphenyl, naphthyl, tolyl, xylyl, mesityl, cumenyl, chlorophenyl, bromophenyl, chloromethylphenyl, hydroxyphenyl, methoxyphenyl, ethoxy Phenyl group, phenoxyphenyl group, acetoxyphenyl group, benzoyloxyphenyl group, methylthiophenyl group, phenylthiophenyl group, methylaminophenyl group, dimethylaminophenyl group, acetylaminophenyl group, carboxyphenyl group, methoxycarbonylphenyl group, Ethoxyphenylcarbonyl group, phenoxycarbonylphenyl group, N-phenylcarbamoylphenyl group, phenyl group, cyanophenyl group, sulfophenyl group, sulfonatophenyl group, phosphonophenyl , Can be exemplified phosphonophenyl phenyl group.
 A及びAとしては、分散安定性、現像性の点から、炭素原子数1から20までの直鎖状、炭素原子数3から20までの分岐状、ならびに炭素原子数5から20までの環状のアルキル基が好ましく、炭素原子数4から15までの直鎖状、炭素原子数4から15までの分岐状、ならびに炭素原子数6から10までの環状のアルキル基がより好ましく、炭素原子数6から10までの直鎖状、炭素原子数6から12までの分岐状のアルキル基が更に好ましい。 As A 1 and A 2 , from the viewpoint of dispersion stability and developability, a straight chain having 1 to 20 carbon atoms, a branched structure having 3 to 20 carbon atoms, and a number having 5 to 20 carbon atoms Cyclic alkyl groups are preferable, linear alkyl groups having 4 to 15 carbon atoms, branched alkyl groups having 4 to 15 carbon atoms, and cyclic alkyl groups having 6 to 10 carbon atoms are more preferable. More preferred are linear alkyl groups of 6 to 10 and branched alkyl groups of 6 to 12 carbon atoms.
 m及びnは、各々独立に、2~8の整数を表す。分散安定性、現像性の点から、4~6が好ましく、5が最も好ましい。 M and n each independently represents an integer of 2 to 8. From the viewpoint of dispersion stability and developability, 4 to 6 is preferable, and 5 is most preferable.
 p及びqは、各々独立に、1~100の整数を表す。pの異なるもの、qの異なるものが2種以上、混合されてもよい。p及びqは、分散安定性、現像性の点から、5~60が好ましく、5~40がより好ましく、5~20が更に好ましい。 P and q each independently represents an integer of 1 to 100. Two or more different p and different q may be mixed. p and q are preferably 5 to 60, more preferably 5 to 40, and still more preferably 5 to 20 from the viewpoints of dispersion stability and developability.
 本実施態様における特定重合体としては、分散安定性の点から、前記一般式(I)で表される繰り返し単位を含むものが好ましい。 The specific polymer in this embodiment is preferably a polymer containing a repeating unit represented by the general formula (I) from the viewpoint of dispersion stability.
 また、一般式(I)で表される繰り返し単位としては、下記一般式(I)-2で表される繰り返し単位であることがより好ましい。 The repeating unit represented by the general formula (I) is more preferably a repeating unit represented by the following general formula (I) -2.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(I)-2中、R~Rは、各々独立に、水素原子、又は1価の有機基を表し、Laは、炭素数2~10のアルキレン基を表し、Lbは、-C(=O)-、又は-NHC(=O)-を表し、Aは、1価の有機基を表し、mは、2~8の整数を表し、pは、1~100の整数を表す。 In the general formula (I) -2, R 1 to R 3 each independently represent a hydrogen atom or a monovalent organic group, La represents an alkylene group having 2 to 10 carbon atoms, and Lb represents —C (═O) — or —NHC (═O) —, A 1 represents a monovalent organic group, m represents an integer of 2 to 8, and p represents an integer of 1 to 100 Represents.
 一般式(I)、(II)、又は、(I)-2で表される繰り返し単位は、それぞれ、下記一般式(i)、(ii)、又は、(i)-2で表される単量体を、重合あるいは共重合することにより、高分子化合物の繰り返し単位として導入される。 The repeating unit represented by the general formula (I), (II), or (I) -2 is a simple unit represented by the following general formula (i), (ii), or (i) -2, respectively. The polymer is introduced as a repeating unit of the polymer compound by polymerization or copolymerization.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記一般式(i)、(ii)、及び(i)-2中、R~Rは、各々独立に、水素原子、又は1価の有機基を表し、X及びXは、各々独立に、-CO-、-C(=O)O-、-CONH-、-OC(=O)-、又はフェニレン基を表し、L及びLは、各々独立に、単結合、又は2価の有機連結基を表し、Laは、炭素数2~10のアルキレン基を表し、Lbは、-C(=O)-、又は-NHC(=O)-を表し、A及びAは、各々独立に、1価の有機基を表し、m及びnは、各々独立に、2~8の整数を表し、p及びqは、各々独立に、1~100の整数を表す。 In the general formulas (i), (ii), and (i) -2, R 1 to R 6 each independently represent a hydrogen atom or a monovalent organic group, and X 1 and X 2 are each Independently represents —CO—, —C (═O) O—, —CONH—, —OC (═O) —, or a phenylene group, and L 1 and L 2 each independently represent a single bond or 2 A valent organic linking group, La represents an alkylene group having 2 to 10 carbon atoms, Lb represents —C (═O) — or —NHC (═O) —, and A 1 and A 2 represent Each independently represents a monovalent organic group, m and n each independently represents an integer of 2 to 8, and p and q each independently represents an integer of 1 to 100.
 以下に、一般式(i)、(ii)、又は(i)-2で表される単量体の好ましい具体例〔単量体(A-1)~(A-23)〕を以下に挙げるが、本発明はこれらに制限されるものではない。 Specific preferred examples of the monomer represented by the general formula (i), (ii), or (i) -2 [monomers (A-1) to (A-23)] are listed below. However, the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本実施態様における特定重合体は、一般式(I)及び(II)のいずれかで表される繰り返し単位から選択される少なくとも1種の繰り返し単位を含んでいればよく、1種のみ含むものであってもよいし、2種以上を含んでもよい。 The specific polymer in this embodiment should just contain the at least 1 sort (s) of repeating unit selected from the repeating unit represented by either of general formula (I) and (II), and contains only 1 type. There may be two or more kinds.
 また、特定重合体において、一般式(I)及び(II)のいずれかで表される繰り返し単位の含有量は、特に制限はないが、重合体に含有される全繰り返し単位を100質量%とした場合に、一般式(I)及び(II)のいずれかで表される繰り返し単位を5質量%以上含有することが好ましく、50質量%含有することがより好ましく、50質量%~80質量%含有することが更に好ましい。 In the specific polymer, the content of the repeating unit represented by any one of the general formulas (I) and (II) is not particularly limited, but the total repeating unit contained in the polymer is 100% by mass. In this case, the repeating unit represented by any one of the general formulas (I) and (II) is preferably contained in an amount of 5% by mass or more, more preferably 50% by mass, and 50% by mass to 80% by mass. It is more preferable to contain.
 本実施態様における特定重合体は、水不溶性化合物の粒子への吸着を高める目的で、吸着し得る官能基を有する単量体と、前述の一般式(i)、(ii)、(i)-2で表される単量体と、を共重合した高分子化合物であることが好ましい。水不溶性化合物の粒子に吸着し得る官能基を有する単量体としては、具体的には、有機色素構造あるいは複素環構造を有するモノマー、酸性基を有するモノマー、塩基性窒素原子を有するモノマー、イオン性基を有するモノマーなどを挙げることができる。中でも、吸着力の点で、有機色素構造あるいは複素環構造を有するモノマーが好ましい。 The specific polymer in the present embodiment includes a monomer having a functional group capable of being adsorbed, and the aforementioned general formulas (i), (ii), (i)- It is preferably a polymer compound obtained by copolymerizing the monomer represented by 2. Specific examples of the monomer having a functional group that can be adsorbed to water-insoluble compound particles include a monomer having an organic dye structure or a heterocyclic structure, a monomer having an acidic group, a monomer having a basic nitrogen atom, and an ion. And monomers having a functional group. Among these, monomers having an organic dye structure or a heterocyclic structure are preferable in terms of adsorption power.
 有機色素構造あるいは複素環構造を有するモノマーとしては、前記高分子化合物Aの高で説明した記一般式(1)で表される単量体、マレイミド、及びマレイミド誘導体からなる群より選択される1種であることが好ましい。好ましい範囲も上記と同義である。 The monomer having an organic dye structure or a heterocyclic structure is selected from the group consisting of the monomer represented by the general formula (1) described in the high part of the polymer compound A, maleimide, and a maleimide derivative. Preferably it is a seed. The preferred range is also as defined above.
 酸性基を有するモノマーの例としては、カルボキシル基を有するビニルモノマーやスルホン酸基を有するビニルモノマーが挙げられる。
 カルボキシル基を有するビニルモノマーとして、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマーなどが挙げられる。また、2-ヒドロキシエチル(メタ)アクリレートなどの水酸基を有する単量体と無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物のような環状無水物との付加反応物、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレートなども利用できる。また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸などの無水物含有モノマーを用いてもよい。なおこれらの内では、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
Examples of the monomer having an acidic group include a vinyl monomer having a carboxyl group and a vinyl monomer having a sulfonic acid group.
Examples of the vinyl monomer having a carboxyl group include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, and acrylic acid dimer. Also, an addition reaction product of a monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate and a cyclic anhydride such as maleic anhydride, phthalic anhydride, or cyclohexanedicarboxylic anhydride, ω-carboxy-polycaprolactone Mono (meth) acrylates can also be used. Moreover, you may use anhydride containing monomers, such as maleic anhydride, itaconic anhydride, and citraconic anhydride, as a precursor of a carboxyl group. Of these, (meth) acrylic acid is particularly preferable from the viewpoints of copolymerizability, cost, solubility, and the like.
 また、スルホン酸基を有するビニルモノマーとして、2-アクリルアミド-2-メチルプロパンスルホン酸などが挙げられ、リン酸基を有するビニルモノマーとして、リン酸モノ(2-アクリロイルオキシエチルエステル)、リン酸モノ(1-メチル-2-アクリロイルオキシエチルエステル)などが挙げられる。 Examples of the vinyl monomer having a sulfonic acid group include 2-acrylamido-2-methylpropanesulfonic acid, and examples of the vinyl monomer having a phosphoric acid group include phosphoric acid mono (2-acryloyloxyethyl ester) and phosphoric acid mono (1-methyl-2-acryloyloxyethyl ester) and the like.
 本実施態様における特定重合体は、上述のような酸性基を有するモノマーに由来する繰り返し単位を含むことが好ましい。このような繰り返し単位を含むことにより、本発明の分散物を着色感光性組成物に適用した場合において、未露光部の現像除去性に優れる。 The specific polymer in this embodiment preferably includes a repeating unit derived from a monomer having an acidic group as described above. By including such a repeating unit, when the dispersion of the present invention is applied to a colored photosensitive composition, the development removability of an unexposed portion is excellent.
 本実施態様における特定重合体は、酸性基を有するモノマーに由来する繰り返し単位を、1種のみ含むものであってもよいし、2種以上を含んでもよい。
 特定重合体において、酸性基を有するモノマーに由来する繰り返し単位の含有量は、好ましくは50mgKOH/g以上であり、特に好ましくは50mgKOH/g~200mgKOH/gである。即ち、現像液中での析出物の生成抑制という点では、酸性基を有するモノマーに由来する繰り返し単位の含有量は50mgKOH/g以上であることが好ましい。水不溶性化合物の1次粒子の凝集体である2次凝集体の生成を効果的に抑制、あるいは、2次凝集体の凝集力を効果的に弱めるためには、酸性基を有するモノマーに由来する繰り返し単位の含有量は50mgKOH/g~200mgKOH/gであることが好ましい。
The specific polymer in this embodiment may include only one type of repeating unit derived from a monomer having an acidic group, or may include two or more types.
In the specific polymer, the content of the repeating unit derived from the monomer having an acidic group is preferably 50 mgKOH / g or more, particularly preferably 50 mgKOH / g to 200 mgKOH / g. That is, in terms of suppressing the formation of precipitates in the developer, the content of the repeating unit derived from the monomer having an acidic group is preferably 50 mgKOH / g or more. In order to effectively suppress the formation of secondary aggregates, which are aggregates of primary particles of a water-insoluble compound, or to effectively weaken the cohesive force of secondary aggregates, it is derived from a monomer having an acidic group. The content of the repeating unit is preferably 50 mgKOH / g to 200 mgKOH / g.
 塩基性窒素原子を有するモノマーとしては、先に埋包分散剤の説明においてその官能基として挙げた、塩基性基をなすモノマーにおける各例示化合物、ウレア基、ウレタン基、配位性酸素原子を有する炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、水酸基を有するモノマーにおける各例示化合物(特に例示化合物u-1~u-12)を挙げることができる。さらに同様に先に例示したイオン性基を有するモノマーにおける各例示化合物も挙げられる。 As the monomer having a basic nitrogen atom, each exemplified compound, urea group, urethane group, and coordinating oxygen atom in the monomer that forms a basic group, which has been mentioned as the functional group in the description of the embedding dispersant previously, Examples of each compound (especially exemplified compounds u-1 to u-12) in monomers having a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group, an isocyanate group, and a hydroxyl group can be given. Furthermore, each example compound in the monomer which has the ionic group illustrated previously similarly is also mentioned.
 水不溶性化合物の粒子に吸着し得る官能基を有するモノマーは、分散する水不溶性化合物の種類に応じて、適宜選択することができ、これらは単独で用いてもよく、2種以上を併用してもよい。 The monomer having a functional group capable of adsorbing to the particles of the water-insoluble compound can be appropriately selected according to the type of the water-insoluble compound to be dispersed. These may be used alone or in combination of two or more. Also good.
 本実施態様における特定重合体は、その効果を損なわない範囲において、更に、共重合可能なビニルモノマーに由来する繰り返し単位を含んでいてもよい。 The specific polymer in this embodiment may further contain a repeating unit derived from a copolymerizable vinyl monomer as long as the effect is not impaired.
 ここで使用可能なビニルモノマーとしては、先に埋包分散剤の説明において分散媒体との親和性部位として挙げた、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、スチレン類、又はビニルエーテル類の各化合物が挙げられる。 Examples of vinyl monomers that can be used here include (meth) acrylic acid esters, crotonic acid esters, vinyl esters, and maleic acid diesters that have been cited as the affinity sites for the dispersion medium in the description of the embedding dispersant. , Fumaric acid diesters, itaconic acid diesters, styrenes, or vinyl ethers.
 本実施態様における特定共重合体の好ましい態様は、少なくとも一般式(i)、(ii)、又は(i)-2で表される単量体と、有機色素構造あるいは複素環構造を有するモノマーと、を共重合したもので、更に好ましくは、少なくとも前述の一般式(i)-2で表される単量体と、前述の一般式(11)で表される単量体と、酸基を有するモノマーと、を共重合したものである。
 この態様により、水不溶性化合物の粒子への吸着に優れ、且つ、現像性に優れた分散組成物を与えることができる。
Preferred embodiments of the specific copolymer in this embodiment include at least a monomer represented by the general formula (i), (ii), or (i) -2, and a monomer having an organic dye structure or a heterocyclic structure. More preferably, at least the monomer represented by the above general formula (i) -2, the monomer represented by the above general formula (11), and an acid group And a monomer having a copolymer.
According to this embodiment, a dispersion composition excellent in adsorption of water-insoluble compounds to particles and excellent in developability can be provided.
 本実施態様に係る側鎖に複素環を有する高分子化合物の好ましい分子量は、質量平均分子量(Mw)で1,000~100,000の範囲、数平均分子量(Mn)で400~50,000の範囲であることが好ましい。質量平均分子量(Mw)で5,000~50,000の範囲、数平均分子量(Mn)で2,000~30,000の範囲であることがより好ましい。特に、質量平均分子量(Mw)で8,000~30,000の範囲、数平均分子量(Mn)で4,000~12,000の範囲であることが最も好ましい。
 即ち、水不溶性化合物の1次粒子の凝集体である2次凝集体を効果的にほぐし、あるいは、再凝集を効果的に弱めるための観点からは、特定重合体の質量平均分子量(Mw)は1000以上であることが好ましい。また、分散組成物を含有する着色感光性組成物によりカラーフィルタを製造する際の現像性の観点からは、特定重合体の質量平均分子量(Mw)は30000以下であることが好ましい。
The preferred molecular weight of the polymer compound having a heterocyclic ring in the side chain according to this embodiment is a mass average molecular weight (Mw) in the range of 1,000 to 100,000, and a number average molecular weight (Mn) of 400 to 50,000. A range is preferable. More preferably, the weight average molecular weight (Mw) is in the range of 5,000 to 50,000, and the number average molecular weight (Mn) is in the range of 2,000 to 30,000. In particular, the mass average molecular weight (Mw) is most preferably in the range of 8,000 to 30,000, and the number average molecular weight (Mn) is in the range of 4,000 to 12,000.
That is, from the viewpoint of effectively loosening secondary aggregates, which are aggregates of primary particles of water-insoluble compounds, or effectively weakening reaggregation, the mass average molecular weight (Mw) of the specific polymer is It is preferable that it is 1000 or more. Moreover, from the viewpoint of developability when producing a color filter with a colored photosensitive composition containing a dispersion composition, the mass average molecular weight (Mw) of the specific polymer is preferably 30000 or less.
 本実施態様における特定重合体は、例えば、下記一般式(i)、(ii)、又は、(i)-2で表される単量体と、共重合成分として他のラジカル重合性化合物(前述のような各種モノマー)と、を用い、通常のラジカル重合法によって製造することができる。一般的には、懸濁重合法あるいは溶液重合法などを用いる。このような特定重合体を合成する際に用いられる溶媒としては、例えば、エチレンジクロリド、シクロヘキサノン、メチルエチルケトン、アセトン、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2-メトキシエチルアセテート、1-メトキシ-2-プロパノール、1-メトキシ-2-プロピルアセテート、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、トルエン、酢酸エチル、乳酸メチル、乳酸エチルなどが挙げられる。これらの溶媒は単独あるいは2種以上混合してもよい。なお、ラジカル重合の際、ラジカル重合開始剤を使用することができ、また、更に連鎖移動剤(例、2-メルカプトエタノールおよびドデシルメルカプタン)を使用することができる。 The specific polymer in this embodiment includes, for example, a monomer represented by the following general formula (i), (ii), or (i) -2, and another radical polymerizable compound (described above) as a copolymerization component. Can be produced by a normal radical polymerization method. In general, a suspension polymerization method or a solution polymerization method is used. Solvents used in the synthesis of such a specific polymer include, for example, ethylene dichloride, cyclohexanone, methyl ethyl ketone, acetone, methanol, ethanol, propanol, butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 2-methoxy Examples include ethyl acetate, 1-methoxy-2-propanol, 1-methoxy-2-propyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, toluene, ethyl acetate, methyl lactate, and ethyl lactate. It is done. These solvents may be used alone or in combination of two or more. In the radical polymerization, a radical polymerization initiator can be used, and a chain transfer agent (eg, 2-mercaptoethanol and dodecyl mercaptan) can be further used.
 本実施態様の水不溶性化合物の分散組成物中、特定重合体の含有量としては質量比で、水不溶性化合物:特定重合体=1:0.1~1:2が好ましく、より好ましくは、1:0.2~1:1であり、更に好ましくは、1:0.4~1:0.7である。 In the dispersion composition of the water-insoluble compound of this embodiment, the content of the specific polymer is preferably a mass ratio of water-insoluble compound: specific polymer = 1: 0.1 to 1: 2, more preferably 1 : 0.2 to 1: 1, more preferably 1: 0.4 to 1: 0.7.
 また、本実施態様の効果を損なわない範囲において、必要に応じて、上述の特定共重合体の他に、他の高分子化合物を同時に使用してもよい。他の高分子化合物としては、天然樹脂、変性天然樹脂、合成樹脂、天然樹脂で変性された合成樹脂等が用いられる。天然樹脂としてはロジンが代表的であり、変性天然樹脂としては、ロジン誘導体、繊維素誘導体、ゴム誘導体、タンパク誘導体およびそれらのオリゴマーが挙げられる。合成樹脂としては、エポキシ樹脂、アクリル樹脂、マレイン酸樹脂、ブチラール樹脂、ポリエステル樹脂、メラミン樹脂、フェノール樹脂、ポリウレタン樹脂等が挙げられる。天然樹脂で変性された合成樹脂としては、ロジン変性マレイン酸樹脂、ロジン変性フェノール樹脂等が挙げられる。合成樹脂としては、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、ポリウレタン、ポリエステル、ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物が挙げられる。 In addition, other polymer compounds may be used at the same time in addition to the above-mentioned specific copolymer as necessary, as long as the effects of the present embodiment are not impaired. As other polymer compounds, natural resins, modified natural resins, synthetic resins, synthetic resins modified with natural resins, and the like are used. The natural resin is typically rosin, and the modified natural resin includes rosin derivatives, fiber derivatives, rubber derivatives, protein derivatives and oligomers thereof. Examples of the synthetic resin include an epoxy resin, an acrylic resin, a maleic acid resin, a butyral resin, a polyester resin, a melamine resin, a phenol resin, and a polyurethane resin. Examples of synthetic resins modified with natural resins include rosin-modified maleic acid resins and rosin-modified phenolic resins. Synthetic resins include polyamidoamine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, polyurethane, polyester, poly (meth) acrylate, (meth) acrylic copolymer, naphthalenesulfonic acid formalin condensate Is mentioned.
[高分子化合物C]
 本実施態様の高分子化合物は、アクリル酸を主鎖に有し、アクリル酸の含有量は5~30質量%であることが好ましく、質量平均分子量1,000~100,000の範囲のグラフト型高分子化合物であることが好ましい。
[Polymer Compound C]
The polymer compound of this embodiment preferably has acrylic acid in the main chain, the acrylic acid content is preferably 5 to 30% by mass, and the graft type has a mass average molecular weight in the range of 1,000 to 100,000. A polymer compound is preferred.
 特定グラフト重合体については、アクリル酸基を主鎖に含んでいればよい。またアクリル酸基を、さらに枝部に含んでもよい。特定グラフト重合体の合成方法は、新高分子実験学第2巻(共立出版、1995年)などにあるように、一般的な方法として(1)主鎖高分子から枝モノマーを重合させる方法、(2)主鎖高分子に枝高分子を結合させる方法(3)主鎖モノマーを枝高分子と共重合させる方法などが使用可能である。即ち、特定グラフト重合体は、アクリル酸と重合性オリゴマー(以下、マクロモノマーと称する)と他の共重合可能なモノマーと共重合させて得られるものであることが好ましい。 As for the specific graft polymer, an acrylic acid group may be contained in the main chain. Further, an acrylic acid group may be further included in the branch part. As a method for synthesizing a specific graft polymer, as described in New Polymer Experiments Vol. 2 (Kyoritsu Shuppan, 1995), etc., as a general method, (1) a method of polymerizing a branch monomer from a main chain polymer, ( 2) A method of bonding a branched polymer to a main chain polymer (3) A method of copolymerizing a main chain monomer with a branched polymer can be used. That is, the specific graft polymer is preferably obtained by copolymerizing acrylic acid, a polymerizable oligomer (hereinafter referred to as macromonomer) and another copolymerizable monomer.
 アクリル酸の導入量は、分散性の観点から、5~30質量%が好ましい。30質量%よりも多くなると、共重合されるマクロモノマー量が相対的に少なくなるため立体反発鎖が寄与せず十分な分散安定性を得られない。一方、5質量%以下では、高分子化合物全体として十分な柔軟性が得られず、分散安定性、現像性が良化する効果が得られにくい。さらに、アクリル酸の導入量は、マクロモノマーの種類や分子量などにも依るが、10~30質量%が好ましく、10~25質量%が最も好ましい。 The amount of acrylic acid introduced is preferably 5 to 30% by mass from the viewpoint of dispersibility. If it exceeds 30% by mass, the amount of macromonomer to be copolymerized becomes relatively small, so that the steric repulsion chain does not contribute and sufficient dispersion stability cannot be obtained. On the other hand, if it is 5% by mass or less, sufficient flexibility cannot be obtained as a whole polymer compound, and it is difficult to obtain the effects of improving dispersion stability and developability. Furthermore, the amount of acrylic acid introduced is preferably 10 to 30% by mass, and most preferably 10 to 25% by mass, although it depends on the type and molecular weight of the macromonomer.
[高分子化合物D]
 本実施態様の高分子化合物は、下記一般式(31)及び(32)から選択される繰り返し単位を有することが好ましく、該繰り返し単位が5~100質量%含有されるものであることがより好ましく、質量平均分子量1,000~100,000の高分子化合物であることが好ましい。
[Polymer Compound D]
The polymer compound of this embodiment preferably has a repeating unit selected from the following general formulas (31) and (32), and more preferably contains 5 to 100% by mass of the repeating unit. A polymer compound having a mass average molecular weight of 1,000 to 100,000 is preferable.
一般式(31)
 -Q-Q-Z-
  ここで Qは -(C=O)- または -SO- を、
      Qは -NH- または -CHR- を、
      Zは -(C=O)-R- または -SO-R- を示す。
  また  Rは 水素原子、ハロゲン原子、シアノ基、またはアルキル基を、
      Rは アルキレン基、シクロアルキレン基、またはアリーレン基を示す。
      また、RとRとは互いに連結基を介して連結してもよい。
一般式(32)
 -Rf-OH
  ここで、Rfは 少なくとも1つのフッ素原子が置換したアルキレン基を示す。
General formula (31)
-Q 1 -Q 2 -Z-
Where Q 1 represents — (C═O) — or —SO 2 —,
Q 2 represents —NH— or —CHR 1 —,
Z represents — (C═O) —R 2 — or —SO 2 —R 2 —.
R 1 represents a hydrogen atom, a halogen atom, a cyano group, or an alkyl group,
R 2 represents an alkylene group, a cycloalkylene group, or an arylene group.
R 1 and R 2 may be linked to each other via a linking group.
Formula (32)
-Rf-OH
Here, Rf represents an alkylene group substituted with at least one fluorine atom.
 一般式(31)で表される部分構造(以下酸基あるいは酸基構造と称することがある)の具体例としては、下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000016
Specific examples of the partial structure represented by the general formula (31) (hereinafter sometimes referred to as an acid group or an acid group structure) include the following structures.
Figure JPOXMLDOC01-appb-C000016
 一般式(32)で表される酸基としては、例えば、-C(CFOH、-C(C252OH、-C(CF3)(CH3)OH、-CH(CF3)OH等が挙げられ、-C(CF32OHが好ましい。 Examples of the acid group represented by the general formula (32) include —C (CF 3 ) 2 OH, —C (C 2 F 5 ) 2 OH, —C (CF 3 ) (CH 3 ) OH, —CH (CF 3 ) OH and the like can be mentioned, and —C (CF 3 ) 2 OH is preferable.
 この高分子化合物に含まれる一般式(31)および一般式(32)の酸基の量は、分散する水不溶性化合物の種類に応じて適宜調整することができる。酸基を含む繰返し単位の量は、5~100質量%が好ましく、10~80質量%が好ましく、20~60質量%がより好ましい。好ましい酸価としては、30~300mgKOH/g、より好ましくは50~200mgKOH/gである。酸価が30mgKOH/g未満では現像ができなかったり、現像残りが生じる。酸価が300mgKOH/gを超えると、分散性安定性が不良になったり、アルカリ現像での速度が早くなり過ぎて、適切な現像ラチチュードが得られない。
 酸価は、高分子化合物1gを中和するのに要する水酸化カリウムの量(mg)の測定によるものである。モノマーが有する酸基の数、モノマーの分子量、モノマーの組成比などを調整し、高分子化合物が有する酸性基の数を制御することで、所望の酸価の高分子化合物を得ることができる。
The amount of the acid groups of the general formula (31) and the general formula (32) contained in the polymer compound can be appropriately adjusted according to the type of the water-insoluble compound to be dispersed. The amount of the repeating unit containing an acid group is preferably 5 to 100% by mass, preferably 10 to 80% by mass, and more preferably 20 to 60% by mass. The acid value is preferably 30 to 300 mgKOH / g, more preferably 50 to 200 mgKOH / g. When the acid value is less than 30 mgKOH / g, development cannot be performed or a development residue occurs. When the acid value exceeds 300 mgKOH / g, the dispersibility stability becomes poor, or the speed in alkali development becomes too fast, and an appropriate development latitude cannot be obtained.
The acid value is based on the measurement of the amount (mg) of potassium hydroxide required to neutralize 1 g of the polymer compound. A polymer compound having a desired acid value can be obtained by adjusting the number of acid groups possessed by the monomer, the molecular weight of the monomer, the composition ratio of the monomers, and the like, and controlling the number of acidic groups possessed by the polymer compound.
 高分子化合物は、具体的には下記一般式(G-I)~(G-III)で表される単量体を重合することによって、一般式(31)および(32)を導入することができ、好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(G-I)~(G-III)で、Rは水素原子、またはメチル基を表す。Sは上記一般式(1-a)~(1-f)で表される連結基を表す。Rは、置換基を有していても良いアルキル基、シクロアルキル基またはアリール基を表す。Rfは、少なくとも1つのフッ素原子が置換したアルキレン基を示す。Wは、単結合または、
Figure JPOXMLDOC01-appb-C000018
 (Z、Zは水素原子、ハロゲン原子、炭素原子数1~6のアルキル基、シアノ基、ヒドロキシル基を表し、Zは水素原子、炭素原子数1~18のアルキル基、炭素原子数6~20のアリール基を表す。)等の原子団から選ばれた単独の連結基もしくは任意の組合せで構成された連結基を表す。
Specifically, the polymer compounds may introduce the general formulas (31) and (32) by polymerizing monomers represented by the following general formulas (GI) to (G-III). It is possible and preferable.
Figure JPOXMLDOC01-appb-C000017
In the general formulas (GI) to (G-III), R 3 represents a hydrogen atom or a methyl group. S 1 represents a linking group represented by the general formulas (1-a) to (1-f). R represents an alkyl group, a cycloalkyl group or an aryl group which may have a substituent. Rf represents an alkylene group substituted with at least one fluorine atom. W 2 is a single bond or
Figure JPOXMLDOC01-appb-C000018
(Z 1 and Z 2 represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, and a hydroxyl group, and Z 3 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, and the number of carbon atoms. Represents a 6-20 aryl group), or a single linking group selected from an atomic group such as linking group or any combination thereof.
 一般式(G-I)~(G-III)は、さらに下記一般式(G-IV)~(G-VII)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 (Wはアルキレン、アルコキシ、エステルから選ばれた単独の連結基もしくは任意の組合せで構成された連結基を表す。Sは上記一般式(1-a)~(1-f)で表される連結基を表す。R1は、置換基を有していても良いアルキル基、シクロアルキル基または
アリール基を表す。Rは水素原子、ハロゲン原子、炭素原子数1~6のアルキル基、アルコキシ基、シアノ基を表す。Rは水素原子、またはメチル基を表す。Rfは、少なくとも1つのフッ素原子が置換したアルキレン基を示す。)
The general formulas (GI) to (G-III) are preferably represented by the following general formulas (G-IV) to (G-VII).
Figure JPOXMLDOC01-appb-C000019
(W 1 represents a single linking group selected from alkylene, alkoxy and ester, or a linking group composed of any combination. S 1 is represented by the above general formulas (1-a) to (1-f). R 1 represents an optionally substituted alkyl group, cycloalkyl group or aryl group, R 2 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, An alkoxy group and a cyano group, R 3 represents a hydrogen atom or a methyl group, and Rf represents an alkylene group substituted with at least one fluorine atom.
 以下に、一般式(G-III)~(G-VII)の具体例を示す。Rは水素原子、またはメチル基を表す。
Figure JPOXMLDOC01-appb-C000020
Specific examples of general formulas (G-III) to (G-VII) are shown below. R 3 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000020
 本実施態様の高分子化合物は、既述のようなモノマーを重合しても合成できるし、前駆体の高分子化合物と、酸基を有する低分子化合物を反応させて合成することもできる。
 本実施態様の高分子化合物は、ブロック型高分子、グラフト型高分子、及び末端変性型高分子から選択される少なくとも一種であることがより好ましい。
The polymer compound of this embodiment can be synthesized by polymerizing monomers as described above, or can be synthesized by reacting a precursor polymer compound with a low molecular compound having an acid group.
The polymer compound of this embodiment is more preferably at least one selected from a block polymer, a graft polymer, and a terminal-modified polymer.
 本実施態様の高分子化合物は、分散工程において、水不溶性化合物の粒子表面に吸着し、再凝集を防止する様に作用するものと思われる。そのため、本実施態様の高分子化合物は直鎖のランダム共重合体でも良いが、より効果が大きいブロック型高分子、グラフト型高分子、末端変性型高分子が好ましい構造として挙げることができる。 The polymer compound of this embodiment is considered to act to adsorb on the particle surface of the water-insoluble compound and prevent reaggregation in the dispersion step. Therefore, the polymer compound of this embodiment may be a linear random copolymer, but a block polymer, a graft polymer, and a terminal-modified polymer that are more effective can be cited as preferred structures.
(直鎖型ランダム共重合体)
 直鎖型ランダム共重合体は、上記一般式(G-I)~(G-III)に示した酸基を含むモノマーを、他の共重合可能なモノマーとラジカル重合等の任意の重合法により得ることができる。他の共重合可能なモノマーとしては、ブロック型高分子の項で詳述するが、(i)有機色素構造あるいは複素環構造を有するモノマー、(ii)酸性基を有するモノマー、(iii)塩基性窒素原子を有するモノマー、(iv)ウレア基、ウレタン基、配
位性酸素原子を有する、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、水酸基を有するモノマー、(v)イオン性官能基を含有するモノマー、(vi)(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、スチレン類、ビニルエーテル類、ビニルケトン類、オレフィン類、マレイミド類、(メタ)アクリロニトリル などのモノマーを1種以上任意に選択できる。(i)から(iii)のモノマー群から選ばれた1種以上を含むことが好ましい。
(Linear type random copolymer)
A linear random copolymer is obtained by subjecting a monomer containing an acid group represented by the above general formulas (GI) to (G-III) to any other copolymerizable monomer by any polymerization method such as radical polymerization. Obtainable. Other copolymerizable monomers are described in detail in the section of block type polymer. (I) Monomer having organic dye structure or heterocyclic structure, (ii) Monomer having acidic group, (iii) Basic A monomer having a nitrogen atom, (iv) a monomer having a urea group, a urethane group, a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group, an isocyanate group, or a hydroxyl group, (v) Monomers containing ionic functional groups, (vi) (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, Styrenes, vinyl ethers, vinyl ketones, olefins, maleimides, (meth) acrylonitrile, etc. Monomers optionally may be selected one or more. It is preferable to include at least one selected from the monomer groups (i) to (iii).
 直鎖型ランダム共重合体の好ましい質量平均分子量は、特に制限されないが、好ましくは1,000~100,000の範囲とすることが好ましく、3,000~50,000の範囲がより好ましい。質量平均分子量が1,000以上であると、安定化効果をより効果的に得ることができ、また、質量平均分子量が100,000以下であると、より効果的に吸着して良好な分散性を発揮することができる。 The preferred mass average molecular weight of the linear random copolymer is not particularly limited, but is preferably in the range of 1,000 to 100,000, and more preferably in the range of 3,000 to 50,000. When the mass average molecular weight is 1,000 or more, a stabilizing effect can be obtained more effectively, and when the mass average molecular weight is 100,000 or less, it is more effectively adsorbed and has good dispersibility. Can be demonstrated.
(ブロック型高分子)
 ブロック型高分子としては、特に限定されないが、水不溶性化合物吸着ブロック(a)と、酸基を有するブロック(b)と、水不溶性化合物粒子に吸着しないブロック(c)とからなるブロック型高分子が挙げられる。
 吸着ブロック(a)を構成する単量体としては、特に制限されないが、例えば、水不溶性化合物の粒子に吸着し得る官能基を有するモノマーが挙げられる。具体的には、有機色素構造あるいは複素環構造を有するモノマー、酸性基を有するモノマー、塩基性窒素原子を有するモノマーなどを挙げることができる。
(Block type polymer)
Although it does not specifically limit as a block type polymer, The block type polymer which consists of a water-insoluble compound adsorption block (a), the block (b) which has an acid group, and the block (c) which does not adsorb | suck to a water-insoluble compound particle | grain. Is mentioned.
Although it does not restrict | limit especially as a monomer which comprises adsorption block (a), For example, the monomer which has a functional group which can adsorb | suck to the particle | grains of a water-insoluble compound is mentioned. Specific examples include a monomer having an organic dye structure or a heterocyclic structure, a monomer having an acidic group, and a monomer having a basic nitrogen atom.
 有機色素構造あるいは複素環構造を有するモノマーとしては、例えば、フタロシアニン系、不溶性アゾ系、アゾレーキ系、アントラキノン系、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリジン系、アンサンスロン系、インダンスロン系、フラバンスロン系、ペリノン系、ペリレン系、チオインジゴ系の色素構造や、例えば、チオフェン、フラン、キサンテン、ピロール、ピロリン、ピロリジン、ジオキソラン、ピラゾール、ピラゾリン、ピラゾリジン、イミダゾール、オキサゾール、チアゾール、オキサジアゾール、トリアゾール、チアジアゾール、ピラン、ピリジン、ピペリジン、ジオキサン、モルホリン、ピリダジン、ピリミジン、ピペラジン、トリアジン、トリチアン、イソインドリン、イソインドリノン、ベンズイミダゾロン、ベンゾチアゾール、コハクイミド、フタルイミド、ナフタルイミド、ヒダントイン、インドール、キノリン、カルバゾール、アクリジン、アクリドン、アントラキノン等の複素環構造を有するモノマーを挙げることができる。より具体的には、特に制限されないが、以下のような構造のモノマーを挙げることができる。 Examples of the monomer having an organic dye structure or a heterocyclic structure include, for example, phthalocyanine series, insoluble azo series, azo lake series, anthraquinone series, quinacridone series, dioxazine series, diketopyrrolopyrrole series, anthrapyridine series, anthanthrone series, Ron, flavanthrone, perinone, perylene, and thioindigo dye structures such as thiophene, furan, xanthene, pyrrole, pyrroline, pyrrolidine, dioxolane, pyrazole, pyrazoline, pyrazolidine, imidazole, oxazole, thiazole, oxadi Azole, triazole, thiadiazole, pyran, pyridine, piperidine, dioxane, morpholine, pyridazine, pyrimidine, piperazine, triazine, trithiane, isoindoline, isoindolin Emissions, benzimidazolone, benzothiazole, succinimide, may phthalimide, naphthalimide, hydantoin, indole, quinoline, carbazole, acridine, acridone, be mentioned a monomer having a heterocyclic structure anthraquinone. More specifically, although not particularly limited, monomers having the following structures can be exemplified.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 酸性基を有するモノマーとしては、カルボキシル基を有するビニルモノマーや、スルホン酸基あるいはリン酸基を有するビニルモノマーを含んでも良い。具体的には前記高分子化合物Bの特定重合体をなす酸性基を有するモノマーとして挙げた各化合物が挙げられる。なお、酸基は、上記した酸性基とは別に導入することができる。 Examples of the monomer having an acidic group may include a vinyl monomer having a carboxyl group and a vinyl monomer having a sulfonic acid group or a phosphoric acid group. Specifically, each compound mentioned as a monomer which has the acidic group which makes the specific polymer of the said high molecular compound B is mentioned. The acid group can be introduced separately from the acid group described above.
 塩基性窒素原子を有するモノマーとして、複素環を有するモノマーとして、ビニルピリジン、ビニルイミダゾール、ビニルトリアゾールなどが挙げられ、この他に、塩基性窒素原子を有するモノマーとしては、先に埋包分散剤の説明においてその官能基として挙げた、塩基性基をなすモノマーにおける各例示化合物、ウレア基、ウレタン基、配位性酸素原子を有する炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、水酸基を有するモノマーにおける各例示化合物(特に例示化合物u-1~u-12)を挙げることができる。さらに同様に先に例示したイオン性基を有するモノマーにおける各例示化合物も挙げられる。 Examples of the monomer having a basic nitrogen atom include vinylpyridine, vinylimidazole, vinyltriazole and the like as the monomer having a heterocyclic ring. In addition to this, as the monomer having a basic nitrogen atom, In the description, each exemplified compound in the monomer that forms a basic group mentioned as the functional group, urea group, urethane group, hydrocarbon group having 4 or more carbon atoms having a coordinating oxygen atom, alkoxysilyl group, epoxy group, isocyanate Specific examples of the monomer having a group or a hydroxyl group (particularly exemplified compounds u-1 to u-12) can be given. Furthermore, each example compound in the monomer which has the ionic group illustrated previously similarly is also mentioned.
 更に、先に埋包分散剤の説明においてその官能基として挙げたイオン性官能基を含有するモノマーを利用することができる。 Furthermore, the monomer containing the ionic functional group previously mentioned as the functional group in the description of the embedding dispersant can be used.
 水不溶性化合物の粒子に吸着し得る官能基を有するモノマーは、分散する水不溶性化合物の種類に応じて、適宜選択することができ、これらは単独で用いてもよく、2種以上を併用してもよい。 The monomer having a functional group capable of adsorbing to the particles of the water-insoluble compound can be appropriately selected according to the type of the water-insoluble compound to be dispersed. These may be used alone or in combination of two or more. Also good.
 酸基を有するブロック(b)を構成する単量体としては、既述のものが挙げられる。好ましくは、上記一般式(G-I)~(G-III)で表される単量体から構成される。
 酸基を有するモノマーは、分散する水不溶性化合物の種類に応じて、適宜選択することができ、これらは単独で用いてもよく、2種以上を併用してもよい。
Examples of the monomer constituting the block (b) having an acid group include those already described. Preferably, it is composed of monomers represented by the above general formulas (GI) to (G-III).
The monomer having an acid group can be appropriately selected according to the type of the water-insoluble compound to be dispersed, and these may be used alone or in combination of two or more.
 水不溶性化合物の粒子に吸着しないブロック(c)を構成する単量体としては、特に制限されないが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、スチレン類、ビニルエーテル類、ビニルケトン類、オレフィン類、マレイミド類、(メタ)アクリロニトリルなどを挙げることができる。これらの単量体は単独で用いてもよく、2種以上を併用してもよい。 The monomer constituting the block (c) that is not adsorbed on the water-insoluble compound particles is not particularly limited. For example, (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, Examples thereof include fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, styrenes, vinyl ethers, vinyl ketones, olefins, maleimides, and (meth) acrylonitrile. These monomers may be used independently and may use 2 or more types together.
 具体的には、先に埋包分散剤の説明において分散媒体との親和性部位として挙げた、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、スチレン類、ビニルエーテル類、ビニルケトン類、オレフィン類、又はマレイミド類における各化合物、(メタ)アクリロニトリル、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、ビニルカプロラクトン等が挙げられる。 Specifically, (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters mentioned above as the affinity sites with the dispersion medium in the description of the embedding dispersant. , Itaconic acid diesters, styrenes, vinyl ethers, vinyl ketones, olefins, maleimides, (meth) acrylonitrile, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, vinylcaprolactone, etc. Can be mentioned.
 ブロック型高分子を得る方法としては、従来公知の方法が利用して得ることができる。例えば、リビング重合、イニファータ法等が知られており、更に他の方法として、吸着基を有する単量体又は吸着基を有しない単量体をラジカル重合する際に、チオールカルボン酸又は2-アセチルチオエチルエーテル、10-アセチルチオデカンチオール等の分子内にチオエステルとチオール基とを含有する化合物を共存させて重合して得られた重合体を水酸化ナトリウムやアンモニア等のアルカリで処理して、片末端にチオール基を有する重合体とし、得られた片末端にチオール基を有する重合体の存在下でもう一方のブロックの単量体成分をラジカル重合する方法も知られている。これらの中でも、リビング重合が好適である。 As a method for obtaining a block type polymer, a conventionally known method can be used. For example, living polymerization, iniferter method and the like are known, and as another method, thiolcarboxylic acid or 2-acetyl is used in radical polymerization of a monomer having an adsorbing group or a monomer having no adsorbing group. A polymer obtained by polymerizing a compound containing a thioester and a thiol group in a molecule such as thioethyl ether or 10-acetylthiodecanethiol is treated with an alkali such as sodium hydroxide or ammonia, There is also known a method in which a polymer having a thiol group at one end and radical polymerization of the monomer component of the other block in the presence of the obtained polymer having a thiol group at one end. Among these, living polymerization is preferable.
 ブロック型高分子の質量平均分子量は、特に制限されないが、好ましくは1,000~100,000の範囲とすることが好ましく、5,000~50,000の範囲がより好ましい。質量平均分子量が1,000以上であると、安定化効果をより効果的に得ることができ、また、質量平均分子量が100,000以下であると、より効果的に吸着して良好な分散性を発揮することができる。 The mass average molecular weight of the block polymer is not particularly limited, but is preferably in the range of 1,000 to 100,000, and more preferably in the range of 5,000 to 50,000. When the mass average molecular weight is 1,000 or more, a stabilizing effect can be obtained more effectively, and when the mass average molecular weight is 100,000 or less, it is more effectively adsorbed and has good dispersibility. Can be demonstrated.
(グラフト型高分子)
 グラフト型高分子については、上記の酸基を主鎖あるいは枝部、または両方のいずれかに含んでいれば良い。グラフト型高分子の合成方法は、新高分子実験学第2巻(共立出版、1995年)などにあるように、一般的な方法として、主鎖高分子から枝モノマーを重合させる方法、主鎖高分子に枝高分子を結合させる方法、および主鎖モノマーを枝高分子と共重合させる方法などが使用可能である。
(Graft type polymer)
The graft polymer may contain the acid group described above in either the main chain or the branch, or both. The method for synthesizing the graft polymer is, as described in New Polymer Experiments Vol. 2 (Kyoritsu Shuppan, 1995), as a general method of polymerizing a branch monomer from a main chain polymer, A method of bonding a branched polymer to a molecule, a method of copolymerizing a main chain monomer with a branched polymer, and the like can be used.
 即ち、本実施態様で使用できるグラフト型高分子は、主鎖あるいは枝部のいずれかに、または両方に、上記一般式(G-I)~(G-III)に示した酸基を含むモノマー1種以上を、他の共重合可能なモノマーと共重合させて得られるものである。
 他の共重合可能なモノマーとしては、前述の(i)有機色素構造あるいは複素環構造を有するモノマー、(ii)酸性基を有するモノマー、(iii)塩基性窒素原子を有する
モノマー、(iv)ウレア基、ウレタン基、配位性酸素原子を有する、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、水酸基を有するモノマー、(v)イオン性官能基を含有するモノマー、(vi)(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、スチレン類、ビニルエーテル類、ビニルケトン類、オレフィン類、マレイミド類、(メタ)アクリロニトリル などのモノマーを1種以上任意に選択できる。
That is, the graft-type polymer that can be used in this embodiment is a monomer containing an acid group represented by the above general formulas (GI) to (G-III) in either the main chain or the branch or both. It is obtained by copolymerizing one or more kinds with other copolymerizable monomers.
Other copolymerizable monomers include the above-mentioned (i) monomers having an organic dye structure or a heterocyclic structure, (ii) monomers having an acidic group, (iii) monomers having a basic nitrogen atom, (iv) urea A group having 4 or more carbon atoms, a urethane group, a coordinating oxygen atom, an alkoxysilyl group, an epoxy group, an isocyanate group, a hydroxyl group-containing monomer, (v) a monomer containing an ionic functional group, vi) (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, styrenes, vinyl ethers, vinyl ketones, olefins , Maleimides, (meth) acrylonitrile and other monomers It can be.
 本実施態様のグラフト型高分子において好ましい形態として、下記形態が挙げられる。
・前述の(i)~(iv)で表されるモノマー、上記一般式(G-I)~(G-III)に示した酸基を含むモノマー、重合性オリゴマー(以下、マクロモノマーと称する)を共重合成分とするグラフト型高分子。
・前述の(i)~(iv)で表されるモノマー、上記一般式(G-I)~(G-III)に示した酸基を含む重合性オリゴマー(以下、マクロモノマーと称する)を共重合成分とするグラフト型高分子。
・前述の(i)~(iv)で表されるモノマー、上記一般式(G-I)~(G-III)に示した酸基を含むモノマー、上記一般式(G-I)~(G-III)に示した酸基を含む重合性オリゴマー(以下、マクロモノマーと称する)を共重合成分とするグラフト型高分子。
As a preferable form in the graft type polymer of this embodiment, the following forms may be mentioned.
-Monomers represented by the aforementioned (i) to (iv), monomers containing acid groups represented by the above general formulas (GI) to (G-III), polymerizable oligomers (hereinafter referred to as macromonomers) Graft-type polymer having a copolymer component.
A monomer represented by the above (i) to (iv) and a polymerizable oligomer (hereinafter referred to as a macromonomer) containing an acid group represented by the general formulas (GI) to (G-III) are combined. Graft type polymer as a polymerization component.
The above-mentioned monomers represented by (i) to (iv), monomers containing acid groups represented by the above general formulas (GI) to (G-III), the above general formulas (GI) to (G A graft-type polymer comprising a polymerizable oligomer (hereinafter referred to as a macromonomer) containing an acid group shown in -III) as a copolymerization component.
 上記グラフト型高分子の質量平均分子量は、特に制限されないが、好ましくは1,000~100,000の範囲とすることが好ましく、5,000~50,000の範囲がより好ましい。質量平均分子量が1,000以上であると、安定化効果をより効果的に得ることができ、また、質量平均分子量が100,000以下であると、より効果的に吸着して良好な分散性を発揮することができる。
 特に枝部の質量平均分子量は、300~30,000が好ましい。より好ましくは1,000~20,000である。上記範囲に枝部の分子量があると、現像性が特に良好であり、現像ラチチュードが広い。
The mass average molecular weight of the graft polymer is not particularly limited, but is preferably in the range of 1,000 to 100,000, and more preferably in the range of 5,000 to 50,000. When the mass average molecular weight is 1,000 or more, a stabilizing effect can be obtained more effectively, and when the mass average molecular weight is 100,000 or less, it is more effectively adsorbed and has good dispersibility. Can be demonstrated.
In particular, the weight average molecular weight of the branch is preferably 300 to 30,000. More preferably, it is 1,000 to 20,000. When the molecular weight of the branch portion is in the above range, the developability is particularly good and the development latitude is wide.
(末端変性型高分子)
 末端変性型高分子としては、主鎖に本実施態様の酸基を有する繰返し単位を含み、末端に水不溶性化合物と親和性の高い官能基がある高分子である。即ち、主鎖は、前述の直鎖型ランダム共重合体をそのまま使用することができる。共重合に用いられるモノマーとしては、例えば、ラジカル重合性モノマーとしては、前記「酸基を有する単量体(b)」および「水不溶性化合物の粒子に吸着しないブロックを構成する単量体(c)」を用いることができる。本実施態様で使用可能な末端変性型高分子は、この直鎖型ランダム共重合体の末端に、下記に記載する変性を施して得られた高分子である。
(Terminal modified polymer)
The terminal-modified polymer is a polymer having a repeating unit having the acid group of this embodiment in the main chain and having a functional group having a high affinity for a water-insoluble compound at the terminal. That is, as the main chain, the above-mentioned linear random copolymer can be used as it is. As the monomer used for copolymerization, for example, as the radical polymerizable monomer, the above-mentioned “monomer having acid group (b)” and “monomer constituting a block that is not adsorbed to water-insoluble compound particles (c ) "Can be used. The terminal-modified polymer that can be used in this embodiment is a polymer obtained by subjecting the terminal of this linear random copolymer to the modification described below.
 ポリマーの末端に官能基を有する高分子を合成する方法は、特に限定されないが、例えば、以下の方法およびこれらを組み合わせた方法などを挙げることができる。
 1.官能基含有の重合開始剤を用いて重合(例えば、ラジカル重合、アニオン重合、カチオン重合など)で合成する方法
 2.官能基含有の連鎖移動剤を用いてラジカル重合で合成する方法
 ここで導入する官能基は、有機色素構造、複素環構造、酸性基、塩基性窒素原子を有する基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、水酸基およびイオン性官能基から選択される基などが挙げられる。
A method for synthesizing a polymer having a functional group at the end of the polymer is not particularly limited, and examples thereof include the following methods and a combination thereof.
1. 1. A method of synthesizing by polymerization (for example, radical polymerization, anionic polymerization, cationic polymerization, etc.) using a functional group-containing polymerization initiator. Method of synthesizing by radical polymerization using a functional group-containing chain transfer agent The functional groups introduced here are organic dye structures, heterocyclic structures, acidic groups, groups having basic nitrogen atoms, urea groups, urethane groups, coordination groups Examples thereof include groups having a coordinated oxygen atom, hydrocarbon groups having 4 or more carbon atoms, alkoxysilyl groups, epoxy groups, isocyanate groups, hydroxyl groups, and ionic functional groups.
 ポリマー末端に官能基を導入できる連鎖移動剤としては、例えば、メルカプト化合物(例えばチオグリコール酸、チオリンゴ酸、チオサリチル酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、3-メルカプト酪酸、N-(2-メルカプトプロピオニル)グリシン、2-メルカプトニコチン酸、3-〔N-(2-メルカプトエチル)カルバモイル〕プロピオン酸、3-〔N-(2-メルカプトエチル)アミノ〕プロピオン酸、N-(3-メルカプトプロピオニル)アラニン、2-メルカプトエタンスルホン酸、3-メカルプトプロパンスルホン酸、4-メルカプトブタンスルホン酸、2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、1-メルカプト-2-プロパノール、3-メルカプト-2-ブタノール、メルカプトフェノール、2-メルカプトエチルアミン、2-メカルプルイミダゾール、2-メルカプト-3-ピリジノール、ベンゼンチオール、トルエンチオール、メルカプトアセトフェノン、ナフタレンチオール、ナフタレンメタンチオール等)またはこれらメルカプト化合物の酸化体であるジスルフィド化合物、およびハロゲン化合物(例えば、2-ヨードエタンスルホン酸、3-ヨードプロパンスルホン酸など)が挙げられる。 Examples of the chain transfer agent capable of introducing a functional group at the polymer terminal include mercapto compounds (for example, thioglycolic acid, thiomalic acid, thiosalicylic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, 3-mercaptobutyric acid, N- ( 2-mercaptopropionyl) glycine, 2-mercaptonicotinic acid, 3- [N- (2-mercaptoethyl) carbamoyl] propionic acid, 3- [N- (2-mercaptoethyl) amino] propionic acid, N- (3- Mercaptopropionyl) alanine, 2-mercaptoethanesulfonic acid, 3-mecaptopropanesulfonic acid, 4-mercaptobutanesulfonic acid, 2-mercaptoethanol, 3-mercapto-1,2-propanediol, 1-mercapto-2-propanol 3-mercapto-2-pig , Mercaptophenol, 2-mercaptoethylamine, 2-mercapruimidazole, 2-mercapto-3-pyridinol, benzenethiol, toluenethiol, mercaptoacetophenone, naphthalenethiol, naphthalenemethanethiol, etc.) or oxidized products of these mercapto compounds Certain disulfide compounds and halogen compounds (for example, 2-iodoethanesulfonic acid, 3-iodopropanesulfonic acid, etc.) can be mentioned.
 また、ポリマー末端に官能基を導入できる重合開始剤としては、例えば、2,2’-アゾビス(2-シアノプロパノール)、2,2’-アゾビス(2-シアノペンタノール)、4,4’-アゾビス(4-シアノ吉草酸)、4,4’-アゾビス(4-シアノ吉草酸クロライド)、2,2’-アゾビス〔2-(5-メチル-2-イミダゾリン-2-イル)プロパン〕、2,2’-アゾビス〔2-(2-イミダゾリン-2-イル)プロパン〕、2,2’-アゾビス〔2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン〕、2,2’-アゾビス{2-〔1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル〕プロパン}、2,2’-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕等又はこれらの誘導体等が挙げられる。 Examples of the polymerization initiator capable of introducing a functional group into the polymer terminal include 2,2′-azobis (2-cyanopropanol), 2,2′-azobis (2-cyanopentanol), 4,4′- Azobis (4-cyanovaleric acid), 4,4′-azobis (4-cyanovaleric acid chloride), 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane], 2 , 2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [2- (3,4,5,6-tetrahydropyrimidin-2-yl) propane], 2, 2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane}, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide ] Or this Derivatives of al the like.
 上記の末端変性型高分子の分子量としては、質量平均分子量1,000~50,000であることが好ましい。上記数平均分子量が1,000以上であると、水不溶性化合物の分散剤としての立体反発効果をより効果的に得ることができ、50,000以下であると、より効果的に立体効果を抑制し、水不溶性化合物の粒子への吸着の時間をより短縮できる。 The molecular weight of the above terminal-modified polymer is preferably a mass average molecular weight of 1,000 to 50,000. When the number average molecular weight is 1,000 or more, a steric repulsion effect as a dispersant for a water-insoluble compound can be obtained more effectively, and when it is 50,000 or less, the steric effect is more effectively suppressed. In addition, the time for adsorption of the water-insoluble compound to the particles can be further shortened.
 本発明において用いられる水不溶性化合物は特に限定されないが、具体的に例えば、有機顔料、有機色素、フラーレン、ポリジアセチレン、ポリイミドなどの高分子有機材料、芳香族炭化水素もしくは脂肪族炭化水素(例えば、配向性を有する芳香族炭化水素もしくは脂肪族炭化水素、または昇華性を有する芳香族炭化水素もしくは脂肪族炭化水素)などからなる粒子が挙げられ、有機顔料、有機色素、または高分子有機材料が好ましく、有機顔料が特に好ましい。また、有機粒子は、単独で用いても、複数であっても、これらを組み合わせたものであっても良いし、複数の水不溶性化合物を用いて、多層粒子構造にすることも可能である。 Although the water-insoluble compound used in the present invention is not particularly limited, specifically, for example, organic pigments, organic dyes, fullerenes, polydiacetylenes, polyimides and other high molecular organic materials, aromatic hydrocarbons or aliphatic hydrocarbons (for example, Particles composed of aromatic hydrocarbons or aliphatic hydrocarbons having orientation, or aromatic hydrocarbons or aliphatic hydrocarbons having sublimability), and organic pigments, organic dyes, or polymeric organic materials are preferred. Organic pigments are particularly preferred. Further, the organic particles may be used singly, or a plurality of organic particles may be combined, or a plurality of water-insoluble compounds may be used to form a multilayer particle structure.
 有機顔料は、色相的に限定されるものではなく、例えば、ペリレン、ペリノン、キナクリドン、キナクリドンキノン、アントラキノン、アントアントロン、ベンズイミダゾロン、ジスアゾ縮合、ジスアゾ、アゾ、インダントロン、フタロシアニン、トリアリールカルボニウム、ジオキサジン、アミノアントラキノン、ジケトピロロピロール、チオインジゴ、イソインドリン、イソインドリノン、ピラントロンもしくはイソビオラントロン化合物顔料、またはそれらの混合物などが挙げられる。 The organic pigment is not limited in hue, for example, perylene, perinone, quinacridone, quinacridonequinone, anthraquinone, anthanthrone, benzimidazolone, disazo condensation, disazo, azo, indanthrone, phthalocyanine, triarylcarbonium , Dioxazine, aminoanthraquinone, diketopyrrolopyrrole, thioindigo, isoindoline, isoindolinone, pyranthrone or isoviolanthrone compound pigment, or a mixture thereof.
 更に詳しくは、たとえば、C.I.ピグメントレッド190(C.I.番号71140)、C.I.ピグメントレッド224(C.I.番号71127)、C.I.ピグメントバイオレット29(C.I.番号71129)等のペリレン化合物顔料、C.I.ピグメントオレンジ43(C.I.番号71105)、もしくはC.I.ピグメントレッド194(C.I.番号71100)等のペリノン化合物顔料、C.I.ピグメントバイオレット19(C.I.番号73900)、C.I.ピグメントバイオレット42、C.I.ピグメントレッド122(C.I.番号73915)、C.I.ピグメントレッド192、C.I.ピグメントレッド202(C.I.番号73907)、C.I.ピグメントレッド207(C.I.番号73900、73906)、もしくはC.I.ピグメントレッド209(C.I.番号73905)のキナクリドン化合物顔料、C.I.ピグメントレッド206(C.I.番号73900/73920)、C.I.ピグメントオレンジ48(C.I.番号73900/73920)、もしくはC.I.ピグメントオレンジ49(C.I.番号73900/73920)等のキナクリドンキノン化合物顔料、C.I.ピグメントイエロー147(C.I.番号60645)等のアントラキノン化合物顔料、C.I.ピグメントレッド168(C.I.番号59300)等のアントアントロン化合物顔料、C.I.ピグメントブラウン25(C.I.番号12510)、C.I.ピグメントバイオレット32(C.I.番号12517)、C.I.ピグメントイエロー180(C.I.番号21290)、C.I.ピグメントイエロー181(C.I.番号11777)、C.I.ピグメントオレンジ62(C.I.番号11775)、もしくはC.I.ピグメントレッド185(C.I.番号12516)等のベンズイミダゾロン化合物顔料、C.I.ピグメントイエロー93(C.I.番号20710)、C.I.ピグメントイエロー94(C.I.番号20038)、C.I.ピグメントイエロー95(C.I.番号20034)、C.I.ピグメントイエロー128(C.I.番号20037)、C.I.ピグメントイエロー166(C.I.番号20035)、C.I.ピグメントオレンジ34(C.I.番号21115)、C.I.ピグメントオレンジ13(C.I.番号21110)、C.I.ピグメントオレンジ31(C.I.番号20050)、C.I.ピグメントレッド144(C.I.番号20735)、C.I.ピグメントレッド166(C.I.番号20730)、C.I.ピグメントレッド220(C.I.番号20055)、C.I.ピグメントレッド221(C.I.番号20065)、C.I.ピグメントレッド242(C.I.番号20067)、C.I.ピグメントレッド248、C.I.ピグメントレッド262、もしくはC.I.ピグメントブラウン23(C.I.番号20060)等のジスアゾ縮合化合物顔料、C.I.ピグメントイエロー13(C.I.番号21100)、C.I.ピグメントイエロー83(C.I.番号21108)、もしくはC.I.ピグメントイエロー188(C.I.番号21094)等のジスアゾ化合物顔料、C.I.ピグメントレッド187(C.I.番号12486)、C.I.ピグメントレッド170(C.I.番号12475)、C.I.ピグメントイエロー74(C.I.番号11714)、C.I.ピグメントイエロー150(C.I.番号48545)、C.I.ピグメントレッド48(C.I.番号15865)、C.I.ピグメントレッド53(C.I.番号15585)、C.I.ピグメントオレンジ64(C.I.番号12760)、もしくはC.I.ピグメントレッド247(C.I.番号15915)等のアゾ化合物顔料、C.I.ピグメントブルー60(C.I.番号69800)等のインダントロン化合物顔料、C.I.ピグメントグリーン7(C.I.番号74260)、C.I.ピグメントグリーン36(C.I.番号74265)、C.I.ピグメントグリーン37(C.I.番号74255)、C.I.ピグメントグリーン58、C.I.ピグメントブルー16(C.I.番号74100)、C.I.ピグメントブルー75(C.I.番号74160:2)、C.I.ピグメントブルー79(C.I.番号761300)、C.I.ピグメントブルー15:6(C.I.番号74160)、もしくはC.I.ピグメントブルー15:3(C.I.番号74160)等のフタロシアニン化合物顔料、C.I.ピグメントブルー56(C.I.番号42800)、もしくはC.I.ピグメントブルー61(C.I.番号42765:1)等のトリアリールカルボニウム化合物顔料、C.I.ピグメントバイオレット23(C.I.番号51319)、もしくはC.I.ピグメントバイオレット37(C.I.番号51345)、ピグメントブルー80等のジオキサジン化合物顔料、C.I.ピグメントレッド177(C.I.番号65300)等のアミノアントラキノン化合物顔料、C.I.ピグメントレッド254(C.I.番号56110)、C.I.ピグメントレッド255(C.I.番号561050)、C.I.ピグメントレッド264、C.I.ピグメントレッド272(C.I.番号561150)、C.I.ピグメントオレンジ71、もしくはC.I.ピグメントオレンジ73等のジケトピロロピロール化合物顔料、C.I.ピグメントレッド88(C.I.番号73312)等のチオインジゴ化合物顔料、C.I.ピグメントイエロー139(C.I.番号56298)、C.I.ピグメントオレンジ66(C.I.番号48210)等のイソインドリン化合物顔料、C.I.ピグメントイエロー109(C.I.番号56284)、C.I.ピグメントイエロー185(C.I.番号56290)、もしくはC.I.ピグメントオレンジ61(C.I.番号11295)等のイソインドリノン化合物顔料、C.I.ピグメントオレンジ40(C.I.番号59700)、もしくはC.I.ピグメントレッド216(C.I.番号59710)等のピラントロン化合物顔料、C.I.ピグメントイエロー138等のキノフタロン系顔料、またはC.I.ピグメントバイオレット31(60010)等のイソビオラントロン化合物顔料が挙げられる。なかでも、キナクリドン化合物顔料、ジケトピロロピロール化合物顔料、ジオキサジン化合物顔料、フタロシアニン化合物顔料、またはアゾ化合物顔料であることが好ましく、ジケトピロロピロール化合物顔料、ジオキサジン化合物顔料、フタロシアニン化合物顔料(亜鉛フタロシアニン、アルミニウムフタロシアニン等)がより好ましい。 For more details, for example, C.I. I. Pigment red 190 (C.I. No. 71140), C.I. I. Pigment red 224 (C.I. No. 71127), C.I. I. Perylene compound pigments such as C.I. Pigment Violet 29 (C.I. No. 71129); I. Pigment orange 43 (C.I. No. 71105), or C.I. I. Perinone compound pigments such as C.I. Pigment Red 194 (C.I. No. 71100); I. Pigment violet 19 (C.I. No. 73900), C.I. I. Pigment violet 42, C.I. I. Pigment red 122 (C.I. No. 73915), C.I. I. Pigment red 192, C.I. I. Pigment red 202 (C.I. No. 73907), C.I. I. Pigment Red 207 (C.I. No. 73900, 73906) or C.I. I. Pigment Red 209 (C.I. No. 73905), a quinacridone compound pigment; I. Pigment red 206 (C.I. No. 73900/73920), C.I. I. Pigment orange 48 (C.I. No. 73900/73920), or C.I. I. Quinacridonequinone compound pigments such as CI Pigment Orange 49 (C.I. No. 73900/73920); I. Anthraquinone compound pigments such as C.I. Pigment Yellow 147 (C.I. No. 60645); I. Anthanthrone compound pigments such as CI Pigment Red 168 (C.I. No. 59300); I. Pigment brown 25 (C.I. No. 12510), C.I. I. Pigment violet 32 (C.I. No. 12517), C.I. I. Pigment yellow 180 (C.I. No. 21290), C.I. I. Pigment yellow 181 (C.I. No. 11777), C.I. I. Pigment orange 62 (C.I. No. 11775), or C.I. I. Benzimidazolone compound pigments such as CI Pigment Red 185 (C.I. No. 12516); I. Pigment yellow 93 (C.I. No. 20710), C.I. I. Pigment yellow 94 (C.I. No. 20038), C.I. I. Pigment yellow 95 (C.I. No. 20034), C.I. I. Pigment yellow 128 (C.I. No. 20037), C.I. I. Pigment yellow 166 (C.I. No. 20035), C.I. I. Pigment orange 34 (C.I. No. 21115), C.I. I. Pigment orange 13 (C.I. No. 21110), C.I. I. Pigment orange 31 (C.I. No. 20050), C.I. I. Pigment red 144 (C.I. No. 20735), C.I. I. Pigment red 166 (C.I. No. 20730), C.I. I. Pigment red 220 (C.I. No. 20055), C.I. I. Pigment red 221 (C.I. No. 20065), C.I. I. Pigment red 242 (C.I. No. 20067), C.I. I. Pigment red 248, C.I. I. Pigment red 262, or C.I. I. Disazo condensed compound pigments such as CI Pigment Brown 23 (C.I. No. 20060); I. Pigment yellow 13 (C.I. No. 21100), C.I. I. Pigment yellow 83 (C.I. No. 21108), or C.I. I. Disazo compound pigments such as CI Pigment Yellow 188 (C.I. No. 21094); I. Pigment red 187 (C.I. No. 12486), C.I. I. Pigment red 170 (C.I. No. 12475), C.I. I. Pigment yellow 74 (C.I. No. 11714), C.I. I. Pigment yellow 150 (C.I. No. 48545), C.I. I. Pigment red 48 (C.I. No. 15865), C.I. I. Pigment red 53 (C.I. No. 15585), C.I. I. Pigment orange 64 (C.I. No. 12760), or C.I. I. Azo compound pigments such as CI Pigment Red 247 (C.I. No. 15915), C.I. I. Indanthrone compound pigments such as C.I. Pigment Blue 60 (C.I. No. 69800); I. Pigment green 7 (C.I. No. 74260), C.I. I. Pigment green 36 (C.I. No. 74265), C.I. I. Pigment green 37 (C.I. No. 74255), C.I. I. Pigment green 58, C.I. I. Pigment blue 16 (C.I. No. 74100), C.I. I. Pigment blue 75 (C.I. No. 74160: 2), C.I. I. Pigment blue 79 (C.I. No. 761300), C.I. I. Pigment Blue 15: 6 (C.I. No. 74160), or C.I. I. Phthalocyanine compound pigments such as C.I. Pigment Blue 15: 3 (C.I. No. 74160); I. Pigment blue 56 (C.I. No. 42800), or C.I. I. Pigment Blue 61 (C.I. No. 42765: 1) and the like triarylcarbonium compound pigments, C.I. I. Pigment violet 23 (C.I. No. 51319) or C.I. I. Pigment Violet 37 (C.I. No. 51345), Pigment Blue 80 and other dioxazine compound pigments, C.I. I. Aminoanthraquinone compound pigments such as C.I. Pigment Red 177 (C.I. No. 65300); I. Pigment red 254 (C.I. No. 56110), C.I. I. Pigment Red 255 (C.I. No. 561050), C.I. I. Pigment red 264, C.I. I. Pigment red 272 (C.I. No. 561150), C.I. I. Pigment orange 71, or C.I. I. Diketopyrrolopyrrole compound pigments such as C.I. Pigment Orange 73; I. Thioindigo compound pigments such as C.I. Pigment Red 88 (C.I. No. 7313); I. Pigment yellow 139 (C.I. No. 56298), C.I. I. Pigment Orange 66 (C.I. No. 48210), an isoindoline compound pigment such as C.I. I. Pigment yellow 109 (C.I. No. 56284), C.I. I. Pigment yellow 185 (C.I. No. 56290), or C.I. I. Pigment Orange 61 (C.I. No. 11295) and the like, an inindolinone compound pigment such as C.I. I. Pigment Orange 40 (C.I. No. 59700), or C.I. I. Pyranthrone compound pigments such as C.I. Pigment Red 216 (C.I. No. 59710); I. Quinophthalone pigments such as CI Pigment Yellow 138; I. And isoviolanthrone compound pigments such as CI Pigment Violet 31 (60010). Among these, quinacridone compound pigments, diketopyrrolopyrrole compound pigments, dioxazine compound pigments, phthalocyanine compound pigments, or azo compound pigments are preferable, and diketopyrrolopyrrole compound pigments, dioxazine compound pigments, phthalocyanine compound pigments (zinc phthalocyanine, More preferred are aluminum phthalocyanine and the like.
 本発明の微粒子ないしその分散物においては、2種類以上の水不溶性化合物またはその固溶体を組み合わせて用いることもでき、また通常の染料と組み合わせて用いることもできる。本発明の微粒子を含む分散物において水不溶性化合物の含有率は、1~60質量%であることが好ましく、2~50質量%であることがより好ましい。 In the fine particles of the present invention or dispersions thereof, two or more water-insoluble compounds or solid solutions thereof can be used in combination, or can be used in combination with ordinary dyes. In the dispersion containing fine particles of the present invention, the content of the water-insoluble compound is preferably 1 to 60% by mass, and more preferably 2 to 50% by mass.
 本発明で得られる微粒子は、水に不溶な化合物で、分散媒体中にて安定に分散できるものが望ましい。微粒子の粒径に関しては、計測法により数値化して集団の平均の大きさを表現する方法があるが、よく使用されるものとして、分布の最大値を示すモード径、積分分布曲線の中央値に相当するメジアン径、各種の平均径(数平均、長さ平均、面積平均、質量平均、体積平均等)などがあり、本発明においては、特に断りのない限り、平均粒径とは数平均径をいう。本発明の微粒子(一次粒子)の平均粒径は100nm以下が好ましく、75nm以下がより好ましく、50nm以下であることが特に好ましい。本発明の微粒子は、その大きさの単結晶または多結晶、会合体でありであり、微粒子は結晶質粒子でも非晶質粒子でもよく、またはこれらの混合物でもよい。 The fine particles obtained in the present invention are desirably water-insoluble compounds that can be stably dispersed in a dispersion medium. Regarding the particle size of fine particles, there is a method of expressing the average size of the population by quantifying by a measurement method, but it is often used that the mode diameter indicating the maximum value of the distribution, the median value of the integral distribution curve There are corresponding median diameters, various average diameters (number average, length average, area average, mass average, volume average, etc.), etc. In the present invention, unless otherwise specified, the average particle diameter is the number average diameter. Say. The average particle size of the fine particles (primary particles) of the present invention is preferably 100 nm or less, more preferably 75 nm or less, and particularly preferably 50 nm or less. The fine particles of the present invention are single crystals, polycrystals or aggregates of that size, and the fine particles may be crystalline particles, amorphous particles, or a mixture thereof.
 本発明の微粒子は、模式化していえば図1-1、1-2に示したような水不溶性化合物1を連続相として分散相となる特定の分散剤2を埋包するものとして説明することができるが、その他の成分を取り込んでまたは付着するなどして有していてもよい。このとき、埋包された分散剤2として、その分子全体が内包された内在埋包分散剤2bとその一部が外方に延在する外在埋包分散剤2aとが示されている。この外在埋包分散剤2aの外方延在部2oは内在部2iと連続しており、該外方延在部2oに立体反発性の部位を有し、他方、内在部2iに水不溶性化合物と引き合う相互作用を示す部位を有することが好ましい。そのような分子構造及びその設計の実施態様は先に述べたとおりである。 The fine particles of the present invention can be described as being embedding a specific dispersant 2 as a disperse phase with the water-insoluble compound 1 as shown in FIGS. However, other components may be incorporated or adhered. At this time, as the embedded dispersing agent 2, there are shown an embedded embedding dispersant 2b in which the whole molecule is encapsulated and an outer embedding dispersing agent 2a in which a part thereof extends outward. The outward extending portion 2o of the external embedding dispersant 2a is continuous with the internal portion 2i, and the outward extending portion 2o has a steric repulsive portion, while the internal portion 2i is insoluble in water. It preferably has a site that exhibits an interaction that attracts the compound. Such molecular structure and its design embodiments are as described above.
 本発明の微粒子においては、先に述べたとおり、粒子表面から粒子半径の50%(r/R)にある外方領域Ao(つまり図1-2に示したものでいうと、中心点cから区分線kまでの半径内側距離rと該区分線kから表面所定点hまでの半径外側距離rとが等しくなる区分線kの外方の領域(好ましくはr/Rが40%、より好ましくはr/Rが30%の領域))に埋包されている分散剤2の80%以上が存在する。換言すれば、内方領域Aiにある埋包分散剤2が20%未満である。本発明において、上記埋包分散剤が外方領域に偏在する表面偏在性の測定及び評価は、特に断らない限り、以下の実施例に記載の方法に従って行うものとする。 In the fine particles of the present invention, as described above, the outer region Ao located at 50% (r 2 / R) of the particle radius from the particle surface (that is, the center point c in FIG. 1-2). An area outside the segment line k where the radius inner distance r 1 from the segment line k to the segment outer line k is equal to the radius outer distance r 2 from the segment line k to the surface predetermined point h (preferably r 2 / R is 40% More preferably, 80% or more of the dispersant 2 embedded in the region where r 2 / R is 30%)). In other words, the embedding dispersant 2 in the inner region Ai is less than 20%. In the present invention, measurement and evaluation of surface uneven distribution in which the embedding dispersant is unevenly distributed in the outer region are performed according to the methods described in the following examples unless otherwise specified.
 粒子の均一性(単分散性)を表す指標として、本発明においては、特に断りのない限り、体積平均粒径(Mv)と数平均粒径(Mn)の比(Mv/Mn)を用いる。本発明の有機ナノ粒子(一次粒子)の単分散性(本発明において、単分散性とは粒径が揃っている度合いをいう。)、つまりMv/Mnは1.0~2.0であることが好ましく、1.0~1.8であることがより好ましく、1.0~1.5であることが特に好ましい。 In the present invention, the ratio (Mv / Mn) of the volume average particle diameter (Mv) and the number average particle diameter (Mn) is used as an index representing the uniformity (monodispersity) of the particles, unless otherwise specified. The monodispersity of the organic nanoparticles (primary particles) of the present invention (in the present invention, monodispersity means the degree of uniform particle size), that is, Mv / Mn is 1.0 to 2.0. It is preferably 1.0 to 1.8, more preferably 1.0 to 1.5.
 有機粒子の粒径の測定方法としては、顕微鏡法、質量法、光散乱法、光遮断法、電気抵抗法、音響法、動的光散乱法が挙げられ、顕微鏡法、動的光散乱法が特に好ましい。顕微鏡法に用いられる顕微鏡としては、例えば、走査型電子顕微鏡、透過型電子顕微鏡などが挙げられる。動的光散乱法による粒子測定装置として、例えば、日機装社製ナノトラックUPA-EX150、大塚電子社製ダイナミック光散乱光度計DLS-7000シリーズ(いずれも商品名)などが挙げられる。 Examples of the method for measuring the particle size of the organic particles include microscopy, mass method, light scattering method, light blocking method, electrical resistance method, acoustic method, and dynamic light scattering method. Particularly preferred. Examples of the microscope used for the microscopy include a scanning electron microscope and a transmission electron microscope. Examples of the particle measuring apparatus using the dynamic light scattering method include Nikkiso's Nanotrac UPA-EX150 and Otsuka Electronics' dynamic light scattering photometer DLS-7000 series (both are trade names).
 本発明の水不溶性化合物の微粒子は、良溶媒に前記水不溶性化合物を溶解した溶液と貧溶媒とを混合するにつき、(i)良溶媒側及び/又は貧溶媒側に前記分散剤を含有させて混合して、又は(ii)これらとは別に良溶媒に前記分散剤を溶解した溶液を準備し前記両液とともに混合して、生成させた前記分散剤を埋包するビルドアップ微粒子であることが好ましい。 The fine particles of the water-insoluble compound of the present invention contain (i) the dispersing agent on the good solvent side and / or the poor solvent side when mixing the solution in which the water-insoluble compound is dissolved in the good solvent and the poor solvent. Mixed or (ii) a build-up fine particle that embeds the produced dispersant by preparing a solution in which the dispersant is dissolved in a good solvent separately and mixing with both the solutions preferable.
 上記埋包分散剤の使用量は特に限定されないが、水不溶性化合物の微粒子を析出させるに際し、系内に添加する量として、水不溶性化合物100質量部に対して10~300質量部の範囲であることが好ましく、10~120質量部の範囲であることがより好ましく、20~100質量部の範囲であることが特に好ましい。本発明の微粒子においては、上述のように、上記再沈法に投入される埋包分散剤の10質量%以上が埋包されることが好ましい。前記埋包分散剤は、1種を単独で用いても2種以上を併用して用いてもよい。本発明の分散物において埋包分散剤の含有量は特に限定されないが、その上限値が上記系ないに添加した量であり、下限値が微粒子に埋包された量であることが実際的であり、具体的には1~294質量%であることが好ましく、2~99質量%であることがより好ましい。 The amount of the embedding dispersant used is not particularly limited, but the amount added to the system when the fine particles of the water-insoluble compound are precipitated is in the range of 10 to 300 parts by mass with respect to 100 parts by mass of the water-insoluble compound. The range of 10 to 120 parts by mass is more preferable, and the range of 20 to 100 parts by mass is particularly preferable. In the fine particles of the present invention, as described above, it is preferable that 10% by mass or more of the embedding dispersant to be added to the reprecipitation method is embedded. The embedding dispersant may be used alone or in combination of two or more. The content of the embedding dispersant in the dispersion of the present invention is not particularly limited, but the upper limit is an amount added to the above system, and the lower limit is practically an amount embedded in fine particles. Specifically, it is preferably 1 to 294% by mass, more preferably 2 to 99% by mass.
 良溶媒は、前記の水不溶性化合物及び又は埋包分散剤を溶解することが可能で、貧溶媒と相溶する(均一に混ざる)ものであれば特に限定されない。良溶媒に対する水不溶性化合物の溶解度は、0.2質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。この溶解度に特に上限はないが、通常用いられる水不溶性化合物を考慮すると50質量%以下であることが実際的である。また良溶媒に対する埋包分散剤の溶解度は4.0質量%以上であることが好ましく、10.0質量%以上であることがより好ましい。この溶解度に特に上限はないが、通常用いられる高分子化合物を考慮すると70質量%以下であることが実際的である。 The good solvent is not particularly limited as long as it can dissolve the water-insoluble compound and / or the embedding dispersant, and is compatible with the poor solvent (mixed uniformly). The solubility of the water-insoluble compound in the good solvent is preferably 0.2% by mass or more, and more preferably 0.5% by mass or more. Although there is no particular upper limit to the solubility, it is practical that the solubility is 50% by mass or less in consideration of a commonly used water-insoluble compound. Further, the solubility of the embedding dispersant in the good solvent is preferably 4.0% by mass or more, and more preferably 10.0% by mass or more. Although there is no particular upper limit to the solubility, it is practical that the solubility is 70% by mass or less in consideration of a commonly used polymer compound.
 良溶媒と貧溶媒との相溶性は、良溶媒の貧溶媒に対する溶解量が30質量%以上であることが好ましく、50質量%以上であることがより好ましい。良溶媒の貧溶媒に対する溶解量に特に上限はないが、任意の割合で混じり合うことが実際的である。なお、水不溶性化合物の溶液と埋包分散剤の溶液とを別々に準備するときには、両者の溶解に用いる溶液を上記良溶媒(第1溶媒)の範囲に属する水から選択することが好ましく、両溶媒を同一種の溶媒とすることが好ましい。 The compatibility between the good solvent and the poor solvent is preferably 30% by mass or more, and more preferably 50% by mass or more, with respect to the poor solvent. There is no particular upper limit to the amount of good solvent dissolved in the poor solvent, but it is practical to mix them in an arbitrary ratio. When preparing the solution of the water-insoluble compound and the solution of the embedding dispersant separately, it is preferable to select the solution used for dissolving both from water belonging to the range of the good solvent (first solvent). The solvent is preferably the same type of solvent.
 良溶媒としては、特に限定されないが、有機酸(例えば、ギ酸、ジクロロ酢酸、メタンスルホン酸等)、有機塩基(例えば、ジアザビシクロウンデセン(DBU)、テトラブチルアンモニウムヒドロキサイド、テトラメチルアンモニウムヒドロキサイド、ナトリウムメトキシド等)、水系溶媒(例えば、水、または塩酸、水酸化ナトリウム水溶液)、アルコール系溶媒(例えば、メタノール、エタノール、n-プロパノール等)、ケトン系溶媒(例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エーテル系溶媒(例えば、テトラヒドロフラン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等)、スルホキシド系溶媒(例えば、ジメチルスルホキシド、ヘキサメチレンスルホキシド、スルホラン等)、エステル系溶媒(例えば、酢酸エチル、酢酸-n-ブチル、乳酸エチル等)、アミド系溶媒(例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン等)、芳香族炭化水素系溶媒(例えば、トルエン、キシレン等)、脂肪族炭化水素系溶媒(例えば、オクタン等)、ニトリル系溶媒(例えば、アセトニトリル等)、ハロゲン系溶媒(例えば、四塩化炭素、ジクロロメタン等)、イオン性液体(例えば、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート等)、二硫化炭素溶媒、またはこれらの混合物などが好適に挙げられる。 The good solvent is not particularly limited, but an organic acid (eg, formic acid, dichloroacetic acid, methanesulfonic acid, etc.), an organic base (eg, diazabicycloundecene (DBU), tetrabutylammonium hydroxide, tetramethylammonium hydroxide). Side, sodium methoxide, etc.), aqueous solvent (eg, water, hydrochloric acid, sodium hydroxide aqueous solution), alcohol solvent (eg, methanol, ethanol, n-propanol, etc.), ketone solvent (eg, methyl ethyl ketone, methyl isobutyl) Ketones, cyclohexanone, etc.), ether solvents (eg, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.), sulfoxide solvents (eg, dimethyl sulfoxide, Samethylene sulfoxide, sulfolane, etc.), ester solvents (eg, ethyl acetate, n-butyl acetate, ethyl lactate, etc.), amide solvents (eg, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, etc.) , Aromatic hydrocarbon solvents (eg, toluene, xylene, etc.), aliphatic hydrocarbon solvents (eg, octane, etc.), nitrile solvents (eg, acetonitrile, etc.), halogen solvents (eg, carbon tetrachloride, dichloromethane) Etc.), ionic liquids (for example, 1-ethyl-3-methylimidazolium tetrafluoroborate, etc.), carbon disulfide solvents, or mixtures thereof.
 これらの中でも、有機酸、有機塩基、水系溶媒、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、スルホキシド系溶媒、エステル系溶媒、アミド系溶媒、またはこれらの混合物がより好ましく、有機酸、有機塩基、スルホキシド系溶媒、アミド系溶媒、またはこれらの混合物が特に好ましい。 Among these, an organic acid, an organic base, an aqueous solvent, an alcohol solvent, a ketone solvent, an ether solvent, a sulfoxide solvent, an ester solvent, an amide solvent, or a mixture thereof is more preferable, and an organic acid, an organic base , Sulfoxide solvents, amide solvents, or mixtures thereof are particularly preferred.
 具体的には、特開2009-79158号公報の段落[0076]~[0087]記載の化合物等が挙げられ、好ましい範囲も同様である。 Specific examples include compounds described in paragraphs [0076] to [0087] of JP-A-2009-79158, and preferred ranges are also the same.
 水不溶性化合物溶液の調製条件に特に制限はなく、常圧から亜臨界、超臨界条件の範囲を選択できる。常圧での温度は-10~150℃が好ましく、-5~130℃がより好ましく、0~100℃が特に好ましい。 There are no particular restrictions on the conditions for preparing the water-insoluble compound solution, and a range from normal pressure to subcritical and supercritical conditions can be selected. The temperature at normal pressure is preferably −10 to 150 ° C., more preferably −5 to 130 ° C., and particularly preferably 0 to 100 ° C.
 水不溶性化合物を、良溶媒中に均一に溶解するとき、一般に分子内にアルカリ性で解離可能な基を有する顔料の場合はアルカリ性が、アルカリ性で解離する基が存在せず、プロトンが付加しやすい窒素原子を分子内に多く有するときは酸性が用いられることが好ましい。例えば、キナクリドン、ジケトピロロピロール、ジスアゾ縮合化合物顔料、ハロゲン化フタロシアニン化合物は、アルカリ性で、フタロシアニン化合物顔料は酸性で溶解することができる。 When water-insoluble compounds are uniformly dissolved in a good solvent, in general, in the case of pigments having an alkaline dissociable group in the molecule, there is no alkali, but there is no alkaline dissociable group, and nitrogen is easily added with protons. When there are many atoms in the molecule, it is preferable to use acidity. For example, quinacridone, diketopyrrolopyrrole, disazo condensation compound pigments and halogenated phthalocyanine compounds are alkaline, and phthalocyanine compound pigments are acidic.
 アルカリ性で溶解するときに用いられる塩基として、前記有機塩基以外に、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウムなどの無機塩基を用いることも可能である。使用する塩基の量は特に限定されないが、無機塩基の場合、水不溶性化合物に対して1.0~30モル当量であることが好ましく、1.0~25モル当量であることがより好ましく、1.0~20モル当量であることが特に好ましい。有機塩基の場合、水不溶性化合物に対して1.0~100モル当量であることが好ましく、5.0~100モル当量であることがより好ましく、20~100モル当量であることが特に好ましい。 In addition to the organic base, inorganic bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, and barium hydroxide can also be used as the base used when dissolving with alkali. The amount of the base used is not particularly limited, but in the case of an inorganic base, it is preferably 1.0 to 30 molar equivalents, more preferably 1.0 to 25 molar equivalents relative to the water-insoluble compound. Particularly preferred is 0.0 to 20 molar equivalents. In the case of an organic base, the amount is preferably 1.0 to 100 molar equivalents, more preferably 5.0 to 100 molar equivalents, and particularly preferably 20 to 100 molar equivalents with respect to the water-insoluble compound.
 酸性で溶解するときに用いられる酸として、前記有機酸以外に、硫酸、塩酸、燐酸などの無機酸を用いることも可能である。使用する酸の量は特に限定されないが、塩基に比べて過剰量用いられる場合が多く、水不溶性化合物に対して3~500モル当量であることが好ましく、10~500モル当量であることがより好ましく、30~200モル当量であることが特に好ましい。 In addition to the organic acids, inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid can be used as the acid used when dissolving in an acidic state. The amount of the acid to be used is not particularly limited, but it is often used in an excessive amount compared to the base, and is preferably 3 to 500 molar equivalents relative to the water-insoluble compound, more preferably 10 to 500 molar equivalents. It is preferably 30 to 200 molar equivalents.
 無機塩基または無機酸を有機溶媒と混合して、水不溶性化合物の良溶媒として用いる際は、アルカリまたは酸を完全に溶解させるため、若干の水や低級アルコールなどのアルカリまたは酸に対して高い溶解度をもつ溶剤を、有機溶媒に添加することができる。水や低級アルコールの量は、水不溶性化合物溶液全量に対して、50質量%以下が好ましく、30質量%以下がより好ましい。具体的には、水、メタノール、エタノール、n-プロパノール、イソプロパノール、ブチルアルコールなどを用いることができる。 When an inorganic base or an inorganic acid is mixed with an organic solvent and used as a good solvent for a water-insoluble compound, the alkali or acid is completely dissolved, so that it has a high solubility in some water or lower alcohol or other alkali or acid. A solvent with can be added to the organic solvent. The amount of water or lower alcohol is preferably 50% by mass or less, more preferably 30% by mass or less, based on the total amount of the water-insoluble compound solution. Specifically, water, methanol, ethanol, n-propanol, isopropanol, butyl alcohol and the like can be used.
 水不溶性化合物溶液の粘度は0.5~100.0mPa・sであることが好ましく1.0~50.0mPa・sであることがより好ましい。 The viscosity of the water-insoluble compound solution is preferably 0.5 to 100.0 mPa · s, and more preferably 1.0 to 50.0 mPa · s.
 水不溶性化合物溶液は、良溶媒に水不溶性化合物と必要により高分子化合物とを溶解したものであれば特に限定されず、他の成分を含んでいても構わない。
 他の成分としては、特に限定されないが、酸性基を有する有機化合物、塩基性を有する有機化合物などが好適に挙げられる。これらの成分は、前記水不溶性化合物溶液と前記貧溶媒とを混合することにより顔料を析出させた際に、析出させた顔料に素早く吸着し、顔料表面を酸性あるいは塩基性に処理する作用を有するものである。上記他の成分の前記貧溶媒への溶解性は特に制限されない。
The water-insoluble compound solution is not particularly limited as long as it dissolves a water-insoluble compound and, if necessary, a polymer compound in a good solvent, and may contain other components.
Although it does not specifically limit as another component, The organic compound which has an acidic group, the organic compound which has basicity etc. are mentioned suitably. These components have the action of adsorbing quickly to the deposited pigment when the pigment is precipitated by mixing the water-insoluble compound solution and the poor solvent, and treating the pigment surface to be acidic or basic. Is. The solubility of the other components in the poor solvent is not particularly limited.
 本発明に用いうる酸性基を有する有機化合物の酸性基としては、カルボン酸基、スルホン酸基、スルフィン酸基、スルフェン酸基、ホスホン酸基、水酸基、スルフィド基、などがあげられるがこれらに限定されるものではない。また、分子中に1種単独でも、2種以上の同一、または異なる官能基を含んでいてもよい。またこれら酸性基を有する有機化合物は1種単独で用いても2種以上併用してもよい。これらの中でも、カルボン酸基、スルホン酸基、リン酸基を有するものが好ましい。 Examples of the acidic group of the organic compound having an acidic group that can be used in the present invention include a carboxylic acid group, a sulfonic acid group, a sulfinic acid group, a sulfenic acid group, a phosphonic acid group, a hydroxyl group, and a sulfide group. Is not to be done. Moreover, 1 type may be individual in a molecule | numerator, or 2 or more types may contain the same or different functional group. These organic compounds having an acidic group may be used alone or in combination of two or more. Among these, those having a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group are preferable.
 具体的には、特開2009-79158号公報の段落[0063]~[0067]記載の化合物等が挙げられる。 Specific examples include compounds described in paragraphs [0063] to [0067] of JP-A-2009-79158.
 本発明において、酸性基を有する有機化合物の添加量として、水不溶性化合物に対し0.01~30質量%の範囲にあることが好ましく、0.05~20質量%の範囲にあることがより好ましく、0.05~15質量%の範囲にあることが特に好ましい。 In the present invention, the addition amount of the organic compound having an acidic group is preferably in the range of 0.01 to 30% by mass, more preferably in the range of 0.05 to 20% by mass with respect to the water-insoluble compound. The range of 0.05 to 15% by mass is particularly preferable.
 塩基性基を有する有機化合物としては、アルキルアミン、アリールアミン、アラルキルアミン、ピラゾール誘導体、イミダゾール誘導体、トリアゾール誘導体、テトラゾール誘導体、オキサゾール誘導体、チアゾール誘導体、ピリジン誘導体、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体などが挙げられ、好ましくはアルキルアミン、アリールアミン、イミダゾール誘導体が挙げられる。 Organic compounds having a basic group include alkylamines, arylamines, aralkylamines, pyrazole derivatives, imidazole derivatives, triazole derivatives, tetrazole derivatives, oxazole derivatives, thiazole derivatives, pyridine derivatives, pyridazine derivatives, pyrimidine derivatives, pyrazine derivatives, triazines. Derivatives and the like can be mentioned, and alkylamine, arylamine and imidazole derivatives are preferable.
 前記塩基性基を有する有機化合物の炭素数としては、6以上が好ましく、より好ましくは8以上であり、さらに好ましくは10以上である。
 前記塩基性基を有する有機化合物としては、具体的には特開2009-79158号公報の段落[0054]~[0056]記載の化合物が挙げられ、好ましい範囲も同様である。
As carbon number of the organic compound which has the said basic group, 6 or more are preferable, More preferably, it is 8 or more, More preferably, it is 10 or more.
Specific examples of the organic compound having a basic group include compounds described in paragraphs [0054] to [0056] of JP-A-2009-79158, and preferred ranges thereof are also the same.
 前記塩基性基を有する有機化合物としては、水不溶性化合物に対し0.01~30質量%の範囲にあることが好ましく、0.05~20質量%の範囲にあることがより好ましく、0.05~15質量%の範囲にあることが特に好ましい。 The organic compound having a basic group is preferably in the range of 0.01 to 30% by mass, more preferably in the range of 0.05 to 20% by mass, based on the water-insoluble compound. It is particularly preferably in the range of ˜15% by mass.
 また塩基性基と複素環基とで構成される有機化合物を添加することも好ましい。
 このような有機化合物としては、例えば特開2009-79158号公報の段落[0060]~[0087]記載の化合物が挙げられ、好ましい範囲も同様である。
It is also preferable to add an organic compound composed of a basic group and a heterocyclic group.
Examples of such an organic compound include compounds described in paragraphs [0060] to [0087] of JP-A-2009-79158, and preferred ranges thereof are also the same.
 前記塩基性基と複素環基とで構成される有機化合物の添加量としては、水不溶性化合物に対し0.01~30質量%の範囲にあることが好ましく、0.05~20質量%の範囲にあることがより好ましく、0.05~15質量%の範囲にあることが特に好ましい。 The addition amount of the organic compound composed of the basic group and the heterocyclic group is preferably in the range of 0.01 to 30% by mass, and in the range of 0.05 to 20% by mass with respect to the water-insoluble compound. More preferably, it is in the range of 0.05 to 15% by mass.
 上記に挙げた以外にも特開2007-9096号公報や特開平7-331182号公報等に記載の顔料誘導体を挙げることができる。ここで言う顔料誘導体とは、親物質としての有機顔料から誘導され、その親構造を化学修飾することで製造される顔料誘導体型の化合物、あるいは化学修飾された顔料前駆体の顔料化反応により得られる顔料誘導体型の化合物を指す。市販品としては、例えば、EFKA社製「EFKA6745(フタロシアニン誘導体))」、ルーブリゾール社製「ソルスパース5000(フタロシアニン誘導体)」等を挙げることができる(いずれも商品名)。顔料誘導体を用いる場合、その使用量としては、顔料に対し0.5~30質量%の範囲にあることが好ましく、3~20質量%の範囲にあることがより好ましく、5~15質量%の範囲にあることが特に好ましい。 In addition to the above, pigment derivatives described in JP-A No. 2007-9096 and JP-A No. 7-331182 can be exemplified. The pigment derivative referred to here is derived from a pigment derivative compound derived from an organic pigment as a parent substance and manufactured by chemically modifying the parent structure, or by a pigmentation reaction of a chemically modified pigment precursor. Refers to a pigment derivative type compound. Examples of commercially available products include “EFKA 6745 (phthalocyanine derivative)” manufactured by EFKA, “Solsperse 5000 (phthalocyanine derivative)” manufactured by Lubrizol (all are trade names), and the like. When a pigment derivative is used, the amount used is preferably in the range of 0.5 to 30% by weight, more preferably in the range of 3 to 20% by weight, and more preferably in the range of 5 to 15% by weight with respect to the pigment. It is especially preferable that it is in the range.
 貧溶媒は特に限定されないが、貧溶媒に対する水不溶性化合物の溶解度は、0.02質量%以下であることが好ましく、0.01質量%以下であることがより好ましい。水不溶性化合物の貧溶媒への溶解度にとくに下限はないが、通常用いられる水不溶性化合物を考慮すると0.0001質量%以上が実際的である。また貧溶媒に対する上記自己分散化高分子化合物の溶解度は、2.0質量%以下(不溶性)であり、1.0質量%以下であることが好ましい。水不溶性化合物の貧溶媒への溶解度にとくに下限はないが、通常用いられる高分子化合物を考慮すると0.001質量%以上が実際的である。 The poor solvent is not particularly limited, but the solubility of the water-insoluble compound in the poor solvent is preferably 0.02% by mass or less, and more preferably 0.01% by mass or less. Although there is no particular lower limit to the solubility of the water-insoluble compound in the poor solvent, 0.0001% by mass or more is practical in consideration of a commonly used water-insoluble compound. The solubility of the self-dispersing polymer compound in the poor solvent is 2.0% by mass or less (insoluble), and preferably 1.0% by mass or less. Although there is no particular lower limit to the solubility of the water-insoluble compound in the poor solvent, 0.001% by mass or more is practical in consideration of a commonly used polymer compound.
 貧溶媒としては、特に限定されないが、水系溶媒(例えば、水、または塩酸、水酸化ナトリウム水溶液)、アルコール系溶媒(例えば、メタノール、エタノール、n-プロパノール等)、ケトン系溶媒(例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エーテル系溶媒(例えば、テトラヒドロフラン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等)、スルホキシド系溶媒(例えば、ジメチルスルホキシド、ヘキサメチレンスルホキシド、スルホラン等)、エステル系溶媒(例えば、酢酸エチル、酢酸-n-ブチル、乳酸エチル等)、アミド系溶媒(例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン等)、芳香族炭化水素系溶媒(例えば、トルエン、キシレン等)、脂肪族炭化水素系溶媒(例えば、オクタン等)、ニトリル系溶媒(例えば、アセトニトリル等)、ハロゲン系溶媒(例えば、四塩化炭素、ジクロロメタン等)、イオン性液体(例えば、1-エチル-3
-メチルイミダゾリウムテトラフルオロボレート等)、二硫化炭素溶媒、またはこれらの混合物などが好適に挙げられる。
 これらの中でも、水系溶媒、アルコール系溶媒、ケトン系溶媒、スルホキシド系溶媒、エステル系溶媒、アミド系溶媒、ニトリル系溶媒、またはこれらの混合物がより好ましく、水性媒体、アルコール系溶媒、またはこれらの混合物が特に好ましい。
The poor solvent is not particularly limited, but an aqueous solvent (for example, water, hydrochloric acid, sodium hydroxide aqueous solution), an alcohol solvent (for example, methanol, ethanol, n-propanol, etc.), a ketone solvent (for example, methyl ethyl ketone, Methyl isobutyl ketone, cyclohexanone, etc.), ether solvents (eg, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.), sulfoxide solvents (eg, dimethyl sulfoxide, hexamethylene sulfoxide, sulfolane, etc.), ester solvents ( For example, ethyl acetate, n-butyl acetate, ethyl lactate, etc.), amide solvents (eg, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, etc.), aromatic hydrocarbon solvents (eg, Toluene, xylene, etc.), aliphatic hydrocarbon solvents (eg, octane, etc.), nitrile solvents (eg, acetonitrile, etc.), halogen solvents (eg, carbon tetrachloride, dichloromethane, etc.), ionic liquids (eg, 1-ethyl-3
-Methylimidazolium tetrafluoroborate, etc.), carbon disulfide solvent, or a mixture thereof.
Among these, an aqueous solvent, an alcohol solvent, a ketone solvent, a sulfoxide solvent, an ester solvent, an amide solvent, a nitrile solvent, or a mixture thereof is more preferable, and an aqueous medium, an alcohol solvent, or a mixture thereof. Is particularly preferred.
 水性媒体とは、水単独または水と水に可溶な有機溶媒や無機塩の溶解液をいう、例えば、水、塩酸、水酸化ナトリウム水溶液、水酸化カリウム水溶液などが挙げられる。
 アルコール系溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-プロピルアルコール、1-メトキシ-2-プロパノールなどが挙げられる。
The aqueous medium refers to water alone or water and water-soluble organic solvent or inorganic salt solution, for example, water, hydrochloric acid, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and the like.
Examples of the alcohol solvent include methanol, ethanol, isopropyl alcohol, n-propyl alcohol, 1-methoxy-2-propanol and the like.
 良溶媒の具体例として列挙したものと貧溶媒として列挙したものとで共通するものもあるが、良溶媒及び貧溶媒として同じものを組み合わせることはなく、採用する各水不溶性化合物および高分子化合物との関係で良溶媒に対する溶解度が貧溶媒に対する溶解度より十分高ければよく、水不溶性化合物に関しては、例えば、その溶解度差が0.2質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。良溶媒と貧溶媒に対する溶解度の差に特に上限はないが、通常用いられる水不溶性化合物を考慮すると50質量%以下であることが実際的である。高分子化合物に関しては、例えば、その溶解度差が2.0質量%以上であることが好ましく、5.0質量%以上であることがより好ましい。良溶媒と貧溶媒に対する溶解度の差に特に上限はないが、通常用いられる高分子化合物を考慮すると70質量%以下であることが実際的である。 Although there are things common between those listed as specific examples of good solvents and those listed as poor solvents, the same thing as a good solvent and a poor solvent is not combined, and each water-insoluble compound and polymer compound employed are Therefore, the solubility in the good solvent should be sufficiently higher than the solubility in the poor solvent. For the water-insoluble compound, for example, the solubility difference is preferably 0.2% by mass or more, and 0.5% by mass or more. It is more preferable. There is no particular upper limit on the difference in solubility between the good solvent and the poor solvent, but it is practical that it is 50% by mass or less in consideration of a commonly used water-insoluble compound. For the polymer compound, for example, the solubility difference is preferably 2.0% by mass or more, and more preferably 5.0% by mass or more. Although there is no particular upper limit to the difference in solubility between the good solvent and the poor solvent, it is practical that the difference is 70% by mass or less in consideration of a commonly used polymer compound.
 貧溶媒の状態は特に限定されず、常圧から亜臨界、超臨界条件の範囲を選択できる。常圧での温度は-30~100℃が好ましく、-10~60℃がより好ましく、0~30℃が特に好ましい。水不溶性化合物溶液の粘度は0.5~100.0mPa・sであることが好ましく1.0~50.0mPa・sであることがより好ましい。 The state of the poor solvent is not particularly limited, and a range from normal pressure to subcritical and supercritical conditions can be selected. The temperature at normal pressure is preferably −30 to 100 ° C., more preferably −10 to 60 ° C., and particularly preferably 0 to 30 ° C. The viscosity of the water-insoluble compound solution is preferably 0.5 to 100.0 mPa · s, and more preferably 1.0 to 50.0 mPa · s.
 水不溶性化合物溶液と貧溶媒とを混合する際、両者のどちらを添加して混合してもよいが、水不溶性化合物溶液を貧溶媒に噴流して混合することが好ましく、その際に貧溶媒が撹拌された状態であることが好ましい。撹拌速度は100~10000rpmが好ましく150~8000rpmがより好ましく、200~6000rpmが特に好ましい。添加にはポンプ等を用いることもできるし、用いなくてもよい。また、液中添加でも液外添加でもよいが、液中添加がより好ましい。さらに供給管を介してポンプで液中に連続供給することが好ましい。供給管の内径は0.1~200mmが好ましく0.2~100mmがより好ましい。供給管から液中に供給される速度としては1~10000ml/minが好ましく、5~5000ml/minがより好ましい。 When mixing the water-insoluble compound solution and the poor solvent, either of them may be added and mixed. However, it is preferable to jet the water-insoluble compound solution into the poor solvent and mix the poor solvent. A stirred state is preferred. The stirring speed is preferably 100 to 10000 rpm, more preferably 150 to 8000 rpm, and particularly preferably 200 to 6000 rpm. A pump or the like may be used for the addition, or it may not be used. Moreover, although addition in a liquid or addition outside a liquid may be sufficient, addition in a liquid is more preferable. Further, it is preferable to continuously supply the liquid into the liquid through a supply pipe. The inner diameter of the supply pipe is preferably 0.1 to 200 mm, more preferably 0.2 to 100 mm. The rate at which the liquid is supplied from the supply pipe is preferably 1 to 10,000 ml / min, more preferably 5 to 5000 ml / min.
 水不溶性化合物溶液と貧溶媒との混合に当り、レイノルズ数を調節することにより、析出生成させる顔料ナノ粒子の粒子径を制御することができる。ここでレイノルズ数は流体の流れの状態を表す無次元数であり次式で表される。
         Re=ρUL/μ   ・・・ 数式(1)
 数式(1)中、Reはレイノルズ数を表し、ρは水不溶性化合物溶液の密度[kg/m]を表し、Uは水不溶性化合物溶液と貧溶媒とが出会う時の相対速度[m/s]を表し、Lは水不溶性化合物溶液と貧溶媒とが出会う部分の流路もしくは供給口の等価直径[m]を表し、μは水不溶性化合物溶液の粘性係数[Pa・s]を表す。
By adjusting the Reynolds number when mixing the water-insoluble compound solution and the poor solvent, it is possible to control the particle diameter of the pigment nanoparticles that are formed by precipitation. Here, the Reynolds number is a dimensionless number representing the state of fluid flow and is represented by the following equation.
Re = ρUL / μ Equation (1)
In Equation (1), Re represents the Reynolds number, ρ represents the density [kg / m 3 ] of the water-insoluble compound solution, and U represents the relative velocity [m / s when the water-insoluble compound solution and the poor solvent meet. L represents the equivalent diameter [m] of the flow path or supply port where the water-insoluble compound solution meets the poor solvent, and μ represents the viscosity coefficient [Pa · s] of the water-insoluble compound solution.
 等価直径Lとは、任意断面形状の配管の開口径や流路に対し等価な円管を想定するとき、その等価円管の直径をいう。等価直径Lは、配管の断面積をA、配管のぬれぶち長さ(周長)または流路の外周をpとすると下記数式(2)で表される。
         L=4A/p  ・・・ 数式(2)
 配管を通じて水不溶性化合物溶液を貧溶媒中に注入して粒子を形成することが好ましく、配管に円管を用いた場合には等価直径は円管の直径と一致する。例えば、液体供給口の開口径を変化させて等価直径を調節することができる。等価直径Lの値は特に限定されないが、例えば、上述した供給口の好ましい内径と同義である。
The equivalent diameter L refers to the diameter of the equivalent circular pipe when assuming an opening diameter of a pipe having an arbitrary cross-sectional shape or a circular pipe equivalent to the flow path. The equivalent diameter L is expressed by the following equation (2), where A is the cross-sectional area of the pipe, p is the wetted length (circumferential length) of the pipe, or p is the outer periphery of the flow path.
L = 4 A / p Formula (2)
It is preferable to form particles by injecting a water-insoluble compound solution into a poor solvent through a pipe. When a circular pipe is used for the pipe, the equivalent diameter matches the diameter of the circular pipe. For example, the equivalent diameter can be adjusted by changing the opening diameter of the liquid supply port. Although the value of the equivalent diameter L is not specifically limited, For example, it is synonymous with the preferable internal diameter of the supply port mentioned above.
 水不溶性化合物溶液と貧溶媒とが出会う時の相対速度Uは、両者が出会う部分の面に対して垂直方向の相対速度で定義される。すなわち、例えば静止している貧溶媒中に水不溶性化合物溶液を注入して混合する場合は、供給口から注入する速度が相対速度Uに等しくなる。相対速度Uの値は特に限定されないが、例えば、0.5~100m/sとすることが好ましく、1.0~50m/sとすることがより好ましい。 The relative speed U when the water-insoluble compound solution and the poor solvent meet is defined by the relative speed in the direction perpendicular to the surface of the part where both meet. That is, for example, when a water-insoluble compound solution is injected and mixed in a stationary poor solvent, the speed of injection from the supply port becomes equal to the relative speed U. The value of the relative speed U is not particularly limited, but is preferably 0.5 to 100 m / s, and more preferably 1.0 to 50 m / s.
 水不溶性化合物溶液の密度ρは、選択される材料の種類により定められる値であるが、例えば、0.8~2.0kg/mであることが実際的である。また、水不溶性化合物溶液の粘性係数μについても用いられる材料や環境温度等により定められる値であるが、その好ましい範囲は、上述した水不溶性化合物溶液の好ましい粘度と同義である。 The density ρ of the water-insoluble compound solution is a value determined by the type of material selected, but is practically, for example, 0.8 to 2.0 kg / m 3 . Further, the viscosity coefficient μ of the water-insoluble compound solution is also a value determined by the material used, the ambient temperature, etc., but the preferred range is synonymous with the preferred viscosity of the water-insoluble compound solution described above.
 レイノルズ数(Re)の値は、小さいほど層流を形成しやすく、大きいほど乱流を形成しやすい。例えば、レイノルズ数を60以上で調節して顔料ナノ粒子の粒子径を制御して得ることができ、100以上とすることが好ましく、150以上とすることがより好ましい。レイノズル数に特に上限はないが、例えば、100000以下の範囲で調節して制御することで良好な顔料ナノ粒子を制御して得ることができ好ましい。あるいは、得られるナノ粒子の平均粒径が60nm以下となるようにレイノルズ数を高めた条件としてもよい。このとき、上記の範囲内においては、通常レイノルズ数を高めることで、より粒径の小さな顔料ナノ粒子を制御して得ることができる。 The smaller the Reynolds number (Re) value, the easier it is to form laminar flow, and the larger the value, the easier it is to form turbulent flow. For example, it can be obtained by adjusting the Reynolds number to 60 or more to control the particle diameter of the pigment nanoparticles, preferably 100 or more, and more preferably 150 or more. Although there is no particular upper limit to the number of lay nozzles, for example, favorable pigment nanoparticles can be obtained by controlling and controlling in the range of 100,000 or less, which is preferable. Or it is good also as conditions which raised Reynolds number so that the average particle diameter of the nanoparticle obtained may be 60 nm or less. At this time, within the above range, it is possible to control and obtain pigment nanoparticles having a smaller particle size by increasing the Reynolds number.
 水不溶性化合物溶液と貧溶媒との混合比は体積比で1/50~2/3が好ましく、1/40~1/2がより好ましく、1/20~3/8が特に好ましい。有機微粒子を析出させた場合の液中の粒子濃度は特に制限されないが、溶媒1000mlに対して有機粒子が10~40000mgの範囲であることが好ましく、より好ましくは20~30000mgの範囲であり、特に好ましくは50~25000mgの範囲である。また、微粒子を生成させる際の調製スケールは、特に限定されないが、貧溶媒の混合量が10~2000Lの調製スケールであることが好ましく、50~1000Lの調製スケールであることがより好ましい。 The mixing ratio of the water-insoluble compound solution and the poor solvent is preferably 1/50 to 2/3 in volume ratio, more preferably 1/40 to 1/2, and particularly preferably 1/20 to 3/8. The particle concentration in the liquid when organic fine particles are precipitated is not particularly limited, but the organic particles are preferably in the range of 10 to 40,000 mg, more preferably in the range of 20 to 30000 mg, particularly with respect to 1000 ml of the solvent. The range is preferably 50 to 25000 mg. Further, the preparation scale for generating fine particles is not particularly limited, but the preparation amount of the poor solvent is preferably 10 to 2000 L, more preferably 50 to 1000 L.
 水不溶性化合物微粒子を析出させ分散液を調製するに当り、水不溶性化合物溶液及び貧溶媒の少なくとも一方に、少なくとも貧溶媒が良溶媒(貧溶媒に対する溶解度が4.0質量%以上)となるような化合物(以下、粒径調整剤と称することがある)を含有させてもよい。 In preparing a dispersion by precipitating water-insoluble compound fine particles, at least one poor solvent becomes a good solvent (solubility in the poor solvent is 4.0% by mass or more) in at least one of the water-insoluble compound solution and the poor solvent. A compound (hereinafter sometimes referred to as a particle size adjusting agent) may be contained.
 高分子粒径調整剤としては、例えば、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルメチルエーテル、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド、ビニルアルコール-酢酸ビニル共重合体、ポリビニルアルコール-部分ホルマール化物、ポリビニルアルコール-部分ブチラール化物、ビニルピロリドン-酢酸ビニル共重合体、ポリエチレンオキシド/プロピレンオキシドブロック共重合体、ポリアクリル酸、ポリアクリル酸ナトリウム塩、ポリビニル硫酸塩、ポリ(4-ビニルピリジン)塩、ポリアリルアミン、ポリアリルアミン塩酸塩、ポリビニルアミン塩酸塩、アリルアミン塩酸塩/ジアリルアミン塩酸塩共重合体、ジアリルアミン系モノマー/SO共重合体、ジアリルアミン塩酸塩/マレイン酸共重合体、ポリジアリルメチルアミン塩酸塩、ポリジアリルジメチルアンモニウムクロリド、ジアリルジメチルアンモニウムクロリド/アクリルアミド共重合体、縮合ナフタレンスルホン酸塩、セルロース誘導体、澱粉誘導体などが挙げられる。その他、アルギン酸塩、ゼラチン、アルブミン、カゼイン、アラビアゴム、トンガントゴム、リグニンスルホン酸塩などの天然高分子類も使用できる。なかでも、ポリビニルピロリドン、ポリアクリル酸、ポリアリルアミン、ポリアリルアミン塩酸塩、ポリビニルアミン塩酸塩、アリルアミン塩酸塩/ジアリルアミン塩酸塩共重合体、ジアリルアミン系モノマー/SO共重合体などが好ましい。これら粒径調整剤は、1種単独であるいは2種以上を組み合わせて用いることができる。
 質量平均分子量が1,000~500,000であることが好ましく、10,000~500,000であることがより好ましく、10,000~100,000であることが特に好ましい。
Examples of the polymer particle size adjusting agent include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene glycol, polypropylene glycol, polyacrylamide, vinyl alcohol-vinyl acetate copolymer, polyvinyl alcohol-partial formalized product, polyvinyl alcohol-part. Butyral product, vinylpyrrolidone-vinyl acetate copolymer, polyethylene oxide / propylene oxide block copolymer, polyacrylic acid, sodium polyacrylate, polyvinyl sulfate, poly (4-vinylpyridine) salt, polyallylamine, polyallylamine hydrochloride, polyvinylamine hydrochloride, allylamine hydrochloride / diallylamine hydrochloride copolymer, a diallylamine monomer / SO 2 copolymers, diallylamine hydrochloride / Ma Examples thereof include oleic acid copolymer, polydiallylmethylamine hydrochloride, polydiallyldimethylammonium chloride, diallyldimethylammonium chloride / acrylamide copolymer, condensed naphthalene sulfonate, cellulose derivative, starch derivative and the like. In addition, natural polymers such as alginate, gelatin, albumin, casein, gum arabic, tongant gum, lignin sulfonate, etc. can be used. Of these, polyvinylpyrrolidone, polyacrylic acid, polyallylamine, polyallylamine hydrochloride, polyvinylamine hydrochloride, allylamine hydrochloride / diallylamine hydrochloride copolymer, diallylamine monomer / SO 2 copolymer, and the like are preferable. These particle size adjusting agents can be used singly or in combination of two or more.
The mass average molecular weight is preferably from 1,000 to 500,000, more preferably from 10,000 to 500,000, and particularly preferably from 10,000 to 100,000.
 アニオン粒径調整剤(アニオン性界面活性剤)としては、N-アシル-N-アルキルタウリン塩、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等を挙げることができる。なかでも、N-アシル-N-アルキルタウリン塩が好ましい。N-アシル-N-アルキルタウリン塩としては、特開平3-273067号明細書に記載されているものが好ましい。これらアニオン性の粒径調整剤は、単独であるいは2種以上を組み合わせて用いることができる。 As an anionic particle size adjusting agent (anionic surfactant), N-acyl-N-alkyl taurine salt, fatty acid salt, alkyl sulfate ester salt, alkylbenzene sulfonate, alkyl naphthalene sulfonate, dialkyl sulfosuccinate, alkyl Examples thereof include phosphoric acid ester salts, naphthalenesulfonic acid formalin condensate, polyoxyethylene alkyl sulfate ester salts and the like. Of these, N-acyl-N-alkyltaurine salts are preferred. As the N-acyl-N-alkyl taurine salts, those described in JP-A-3-273067 are preferable. These anionic particle size regulators can be used alone or in combination of two or more.
 カチオン性の粒径調整剤(カチオン性界面活性剤)には、四級アンモニウム塩、アルコキシル化ポリアミン、脂肪族アミンポリグリコールエーテル、脂肪族アミン、脂肪族アミンと脂肪族アルコールから誘導されるジアミンおよびポリアミン、脂肪酸から誘導されるイミダゾリンのカチオン性物質の塩が挙げられる。これらカチオン性粒径調整剤は、単独であるいは2種以上を組み合わせて用いることができる。 Cationic particle size modifiers (cationic surfactants) include quaternary ammonium salts, alkoxylated polyamines, aliphatic amine polyglycol ethers, aliphatic amines, diamines derived from aliphatic amines and fatty alcohols, and Examples include salts of cationic substances of imidazoline derived from polyamines and fatty acids. These cationic particle size regulators can be used alone or in combination of two or more.
 両イオン性の粒径調整剤は、前記アニオン性の粒径調整剤が分子内に有するアニオン基部分とカチオン性の粒径調整剤が分子内に有するカチオン基部分を共に分子内に有する粒径調整剤である。 The amphoteric particle size regulator is a particle size in which the anionic particle size regulator has both an anion group moiety in the molecule and a cationic group moiety in the molecule of the cationic particle size modifier. It is a regulator.
 ノニオン性の粒径調整剤(ノニオン性界面活性剤)としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステルなどを挙げることができる。なかでも、ポリオキシエチレンアルキルアリールエーテルが好ましい。これらノニオン性の粒径調整剤は、単独であるいは2種以上を組み合わせて用いることができる。 Nonionic particle size adjusting agents (nonionic surfactants) include polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene Examples thereof include alkylamines and glycerin fatty acid esters. Of these, polyoxyethylene alkylaryl ether is preferable. These nonionic particle size regulators may be used alone or in combination of two or more.
 粒径調整剤の含有量は、水不溶性化合物微粒子の粒径制御をより一層向上させるために、顔料に対して0.1~100質量%の範囲であることが好ましく、より好ましくは0.1~50質量%の範囲であり、さらに好ましくは0.1~20質量%の範囲である。また粒径調整剤は、単独で用いても、複数のものを組み合わせて用いてもよい。 The content of the particle size adjusting agent is preferably in the range of 0.1 to 100% by mass with respect to the pigment, more preferably 0.1% in order to further improve the particle size control of the water-insoluble compound fine particles. It is in the range of ˜50 mass%, more preferably in the range of 0.1 to 20 mass%. In addition, the particle size adjusting agents may be used alone or in combination.
 上記良溶媒(第1溶媒)および貧溶媒(第2溶媒)から切り替えて用いられる第3溶媒の種類は特に限定されないが、有機溶媒であることが好ましく、例えば、エステル化合物溶媒、アルコール化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒が好ましく、エステル化合物溶媒、芳香族化合物溶媒または脂肪族化合物溶媒がより好ましく、エステル化合物溶媒が特に好ましい。また、該第3溶媒は上記溶媒による純溶媒であっても、複数の溶媒による混合溶媒であってもよい。
 なお、本発明においては、上記の第3溶媒に限らず後述する第4溶媒を含め、分散組成物の媒体とされる、前記良溶媒及び前記貧溶媒のいずれとも異なる溶媒を総称して「第3の溶媒」という。
The type of the third solvent used by switching from the good solvent (first solvent) and the poor solvent (second solvent) is not particularly limited, but is preferably an organic solvent, such as an ester compound solvent, an alcohol compound solvent, Aromatic compound solvents and aliphatic compound solvents are preferred, ester compound solvents, aromatic compound solvents and aliphatic compound solvents are more preferred, and ester compound solvents are particularly preferred. The third solvent may be a pure solvent based on the above solvent or a mixed solvent composed of a plurality of solvents.
In the present invention, not only the above-mentioned third solvent but also a fourth solvent described later, a solvent different from both the good solvent and the poor solvent, which is a medium of the dispersion composition, is collectively referred to as “first solvent”. 3 solvent ".
 エステル化合物溶媒としては、例えば、2-(1-メトキシ)プロピルアセテート、酢酸エチル、乳酸エチルなどが挙げられる。アルコール化合物溶媒としては、例えば、メタノール、エタノール、n-ブタノール、イソブタノールなどが挙げられる。芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。脂肪族化合物溶媒としては、例えば、n-ヘキサン、シクロヘキサンなどが挙げられる。 Examples of the ester compound solvent include 2- (1-methoxy) propyl acetate, ethyl acetate, and ethyl lactate. Examples of the alcohol compound solvent include methanol, ethanol, n-butanol, isobutanol and the like. Examples of the aromatic compound solvent include benzene, toluene, xylene and the like. Examples of the aliphatic compound solvent include n-hexane and cyclohexane.
 なかでも、乳酸エチル、酢酸エチル、エタノール、2-(1-メトキシ)プロピルアセテートが好ましく、乳酸エチル、2-(1-メトキシ)プロピルアセテートがより好ましい。これらは、1種単独で使用してもよいし、2種以上併用してもよい。なお第3溶媒が良溶媒もしくは貧溶媒と同じものであることはない。 Of these, ethyl lactate, ethyl acetate, ethanol, and 2- (1-methoxy) propyl acetate are preferable, and ethyl lactate and 2- (1-methoxy) propyl acetate are more preferable. These may be used alone or in combination of two or more. The third solvent is not the same as the good solvent or the poor solvent.
 第3溶媒の添加の時機は水不溶性化合物微粒子の析出後であれば特に限定されないが、微粒子を析出させた混合液に添加しても良いし、混合液の溶媒分の一部、を除去してから加えても良いし、あるいは全部を予め除去(濃縮)してから添加してもよい。
 すなわち、第3溶媒を置換用溶媒として用い、微粒子を析出させた分散液中の良溶媒及び貧溶媒からなる溶媒分を第3溶媒で置換することができる。
 あるいは、良溶媒および貧溶媒を完全に除去(濃縮)し、顔料粒子粉末として取り出してから、第3溶媒を加えることもできる。
The timing of adding the third solvent is not particularly limited as long as it is after the precipitation of the water-insoluble compound fine particles, but it may be added to the mixed liquid in which the fine particles are precipitated, or a part of the solvent in the mixed liquid may be removed. It may be added after the removal, or all may be added after removing (concentrating) in advance.
That is, the third solvent can be used as a substitution solvent, and the solvent component consisting of the good solvent and the poor solvent in the dispersion liquid in which the fine particles are precipitated can be substituted with the third solvent.
Alternatively, the third solvent can be added after the good solvent and the poor solvent are completely removed (concentrated) and taken out as pigment particle powder.
 また、後述する顔料分散組成物とするときに、1度目の溶媒分の除去工程(第1除去)を経た後、第3溶媒を添加して溶媒置換し、2度目の溶媒分の除去工程(第2除去)により溶媒分を除去し粉末化してもよい。そして、その後顔料分散剤及び/又は溶媒を添加して所望の顔料分散組成物とすることができる。
 あるいは良溶媒および貧溶媒を完全に除去(濃縮)し、顔料粒子粉末として取り出してから、第3溶媒及び/又は顔料分散剤を添加して、所望の顔料分散組成物とすることができる。
 第3溶媒の添加量は特に限定されないが、水不溶性化合物の微粒子100質量部に対して、100~300000質量部であることが好ましく、500~10000質量部であることがより好ましい。
In addition, when the pigment dispersion composition described later is used, after the first solvent removal step (first removal), the third solvent is added to replace the solvent, and the second solvent removal step ( The solvent may be removed and powdered by the second removal). Thereafter, a pigment dispersant and / or a solvent can be added to obtain a desired pigment dispersion composition.
Alternatively, the good solvent and the poor solvent are completely removed (concentrated) and taken out as pigment particle powder, and then the third solvent and / or the pigment dispersant can be added to obtain a desired pigment dispersion composition.
The amount of the third solvent added is not particularly limited, but is preferably 100 to 300,000 parts by mass, more preferably 500 to 10,000 parts by mass with respect to 100 parts by mass of the water-insoluble compound fine particles.
 水不溶性化合物微粒子析出後の混合液からの溶媒分の除去工程としては、特に限定されないが、例えば、フィルタなどによりろ過する方法、遠心分離によって水不溶性化合物微粒子を沈降させて濃縮する方法などが挙げられる。
 フィルタろ過の装置は、例えば、減圧あるいは加圧ろ過のような装置を用いることができる。好ましいフィルタとしては、ろ紙、ナノフィルタ、ウルトラフィルタなどを挙げることができる。
 遠心分離機は水不溶性化合物微粒子を沈降させることができればどのような装置を用いてもよい。例えば、汎用の装置の他にもスキミング機能(回転中に上澄み層を吸引し、系外に排出する機能)付きのものや、連続的に固形物を排出する連続遠心分離機などが挙げられる。遠心分離条件は、遠心力(重力加速度の何倍の遠心加速度がかかるかを表す値)で50~10000が好ましく、100~8000がより好ましく、150~6000が特に好ましい。遠心分離時の温度は、分散液の溶剤種によるが、-10~80℃が好ましく、-5~70℃がより好ましく、0~60℃が特に好ましい。
 また、溶媒分の除去工程として、真空凍結乾燥により溶媒を昇華させて濃縮する方法、加熱ないし減圧による溶媒を乾燥させて濃縮する方法、それらを組合せた方法などを用いることもできる。
The process for removing the solvent component from the mixed solution after the precipitation of the water-insoluble compound fine particles is not particularly limited, and examples thereof include a method of filtering with a filter and the like, a method of precipitating and concentrating the water-insoluble compound fine particles by centrifugation. It is done.
As an apparatus for filter filtration, for example, an apparatus such as reduced pressure or pressure filtration can be used. Examples of preferable filters include filter paper, nanofilters, and ultrafilters.
Any device may be used as the centrifuge as long as the water-insoluble compound fine particles can be precipitated. For example, in addition to a general-purpose device, a device having a skimming function (a function of sucking the supernatant layer during rotation and discharging it out of the system), a continuous centrifuge that continuously discharges solid matter, and the like can be mentioned. Centrifugation conditions are preferably 50 to 10,000, more preferably 100 to 8000, and particularly preferably 150 to 6000 in terms of centrifugal force (a value representing how many times the gravity acceleration is applied). The temperature at the time of centrifugation depends on the solvent type of the dispersion, but is preferably −10 to 80 ° C., more preferably −5 to 70 ° C., and particularly preferably 0 to 60 ° C.
In addition, as the solvent removal step, a method of concentrating the solvent by sublimation by vacuum freeze-drying, a method of drying and concentrating the solvent by heating or decompression, a method combining them, or the like can also be used.
 水不溶性化合物の微粒子は例えばビヒクル中で分散させた状態で用いることができる。前記ビヒクルとは、塗料でいえば、液体状態にあるときに水不溶性化合物を分散させている媒質の部分をいい、液状であって前記水不溶性化合物と結合して塗膜を固める部分(バインダー)と、これを溶解希釈する成分(有機溶媒)とを含む。なお本発明においては、微粒子形成時に用いる高分子化合物および/または再分散化に用いる水不溶性化合物分散剤とを総称してバインダーと称する。 The fine particles of the water-insoluble compound can be used in a state dispersed in a vehicle, for example. The vehicle refers to a part of a medium in which a water-insoluble compound is dispersed in a liquid state when it is a paint, and is a part that is liquid and binds to the water-insoluble compound to harden a coating film (binder). And a component (organic solvent) for dissolving and diluting it. In the present invention, the polymer compound used for forming the fine particles and / or the water-insoluble compound dispersant used for redispersion are collectively referred to as a binder.
 再分散化後の微粒子の分散組成物の微粒子濃度は目的に応じて適宜定められるが、好ましくは分散組成物全量に対して微粒子が2~30質量%であることが好ましく、4~20質量%であることがより好ましく、5~15質量%であることが特に好ましい。上記のようなビヒクル中に分散させる場合に、バインダーおよび溶解希釈成分の量は水不溶性化合物の種類などにより適宜定められるが、分散組成物全量に対して、バインダーは1~30質量%であることが好ましく、3~20質量%であることがより好ましく、5~15質量%であることが特に好ましい。溶解希釈成分は5~80質量%であることが好ましく、10~70質量%であることがより好ましい。 The concentration of fine particles in the dispersion composition of fine particles after redispersion is appropriately determined according to the purpose, but preferably the fine particles are 2 to 30% by mass, and preferably 4 to 20% by mass with respect to the total amount of the dispersion composition. More preferred is 5 to 15% by mass. When dispersed in the vehicle as described above, the amount of the binder and the dissolved diluent component is appropriately determined depending on the type of the water-insoluble compound and the like, but the binder is 1 to 30% by mass with respect to the total amount of the dispersion composition. It is preferably 3 to 20% by mass, more preferably 5 to 15% by mass. The dissolved and diluted component is preferably 5 to 80% by mass, and more preferably 10 to 70% by mass.
 本発明の水不溶性化合物の微粒子を第3の溶媒に再分散させるとき、別の分散剤等を添加しなくても、第3の溶媒中で水不溶性化合物微粒子の凝集状態が自発的に解かれ媒体中に分散する性質を有することが好ましく、この性質があることを「自己分散しうる」ないし「自己分散性を有する」という。ただし、本発明において再分散性を一層向上させるために、微粒子の再分散時に顔料分散剤等を添加してもよい。 When the fine particles of the water-insoluble compound of the present invention are redispersed in the third solvent, the aggregation state of the water-insoluble compound fine particles is spontaneously solved in the third solvent without adding another dispersant or the like. It preferably has a property of being dispersed in a medium, and this property is referred to as “self-dispersible” or “self-dispersible”. However, in order to further improve the redispersibility in the present invention, a pigment dispersant or the like may be added during redispersion of the fine particles.
 このような凝集状態にある微粒子を再分散する方法として、例えば超音波による分散方法や物理的なエネルギーを加える方法を用いることができる。用いられる超音波照射装置は10kHz以上の超音波を印加できる機能を有することが好ましく、例えば、超音波ホモジナイザー、超音波洗浄機などが挙げられる。超音波照射中に液温が上昇すると、ナノ粒子の熱凝集が起こるため、液温を1~100℃とすることが好ましく、5~60℃がより好ましい。温度の制御方法は、分散液温度の制御、分散液を温度制御する温度調整層の温度制御、などによって行うことができる。
 物理的なエネルギーを加えて顔料ナノ粒子を分散させる際に使用する分散機としては、特に制限はなく、例えば、ニーダー、ロールミル、アトライダー、スーパーミル、ディゾルバ、ホモミキサー、サンドミル等の分散機が挙げられる。また、高圧分散法や、微小粒子ビーズの使用による分散方法も好適なものとして挙げられる。
As a method of redispersing the fine particles in such an aggregated state, for example, a dispersion method using ultrasonic waves or a method of applying physical energy can be used. The ultrasonic irradiation device used preferably has a function capable of applying an ultrasonic wave of 10 kHz or higher, and examples thereof include an ultrasonic homogenizer and an ultrasonic cleaner. When the liquid temperature rises during ultrasonic irradiation, thermal aggregation of the nanoparticles occurs. Therefore, the liquid temperature is preferably 1 to 100 ° C., more preferably 5 to 60 ° C. The temperature control method can be performed by controlling the dispersion temperature, controlling the temperature of the temperature adjusting layer that controls the temperature of the dispersion, and the like.
There are no particular restrictions on the disperser used when dispersing the pigment nanoparticles by applying physical energy, for example, dispersers such as kneaders, roll mills, atriders, super mills, dissolvers, homomixers, and sand mills. Can be mentioned. In addition, a high-pressure dispersion method and a dispersion method using fine particle beads are also preferable.
 顔料分散組成物には、顔料の分散性をより向上させる目的で、従来から公知の顔料分散剤や界面活性剤等の分散剤などを本発明の効果を損なわない限りにおいて加えることもできる。
 顔料分散剤としては、高分子分散剤(例えば、直鎖状高分子、ブロック型高分子、グラフト型高分子、末端変性型高分子等)、界面活性剤(ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンアルキルアミン、アルカノールアミン等)、顔料誘導体等を挙げることができる。分散剤は、顔料の表面に吸着し、再凝集を防止する様に作用する。そのため、顔料表面へのアンカー部位を有するブロック型高分子、グラフト型高分子、末端変性型高分子が好ましい構造として挙げることができる。一方で、顔料誘導体は顔料表面を改質することで、高分子分散剤の吸着を促進させる効果を有する。
 高分子化合物の例として、ブロック型高分子としては、BYK Chemie社製「Disperbyk-2000、2001」、EFKA社製「EFKA4330、4340」等を挙げることができる。グラフト型高分子の例としては、ルーブリゾール社製「ソルスパース24000、28000、32000、38500、39000、55000」、BYK Chemie社製「Disperbyk-161、171、174」等が挙げられる。末端変性型高分子の例としては、ルーブリゾール社製「ソルスパース3000、17000、27000」等を挙げることができる(いずれも商品名)。
For the purpose of further improving the dispersibility of the pigment, conventionally known dispersants such as pigment dispersants and surfactants can be added to the pigment dispersion composition as long as the effects of the present invention are not impaired.
Examples of pigment dispersants include polymer dispersants (for example, linear polymers, block polymers, graft polymers, terminal-modified polymers, etc.), surfactants (polyoxyethylene alkyl phosphate ester, poly Oxyethylene alkylamine, alkanolamine, etc.), pigment derivatives and the like. The dispersant acts to adsorb on the surface of the pigment and prevent reaggregation. For this reason, a block polymer, a graft polymer, and a terminal-modified polymer having an anchor site to the pigment surface can be cited as preferred structures. On the other hand, the pigment derivative has an effect of promoting the adsorption of the polymer dispersant by modifying the pigment surface.
Examples of the polymer compound include “Disperbyk-2000, 2001” manufactured by BYK Chemie, “EFKA 4330, 4340” manufactured by EFKA, and the like. Examples of the graft polymer include “Solsperse 24000, 28000, 32000, 38500, 39000, 55000” manufactured by Lubrizol, “Disperbyk-161, 171, 174” manufactured by BYK Chemie, and the like. Examples of the terminal-modified polymer include “Solsperse 3000, 17000, 27000” manufactured by Lubrizol (all are trade names).
 本発明において顔料誘導体(以下、「顔料誘導体型分散剤」ともいう)とは、親物質としての有機顔料から誘導され、その親構造を化学修飾することで製造される顔料誘導体型分散剤、あるいは化学修飾された顔料前駆体の顔料化反応により得られる顔料誘導体型分散剤と定義する。一般に、シナジスト型分散剤ともいわれている。 In the present invention, the pigment derivative (hereinafter also referred to as “pigment derivative type dispersant”) is derived from an organic pigment as a parent substance, and is manufactured by chemically modifying the parent structure, or It is defined as a pigment derivative type dispersant obtained by a pigmentation reaction of a chemically modified pigment precursor. Generally, it is also called a synergist type dispersant.
 特に限定されないが、例えば、特開2007-9096号公報や、特開平7-331182号公報等に記載の酸性基を有する顔料誘導体、塩基性基を有する顔料誘導体、フタルイミドメチル基などの官能基を導入した顔料誘導体などが好適に用いられる。 Although not particularly limited, for example, a functional group such as a pigment derivative having an acidic group, a pigment derivative having a basic group, or a phthalimidomethyl group described in JP-A-2007-9096, JP-A-7-331182, or the like. The introduced pigment derivative is preferably used.
 市販品としては、EFKA社製「EFKA6745(フタロシアニン誘導体)、6750(アゾ顔料誘導体)」、ルーブリゾール社製「ソルスパース5000(フタロシアニン誘導体)、22000(アゾ顔料誘導体)」等を挙げることができる(いずれも商品名)。
 線状高分子としては、後述するアルカリ可溶性樹脂を挙げることができ、上記顔料誘導体と併用することも好ましい。
 顔料分散剤は、一種のみを用いてもよく、二種以上を併用して使用してもよい。
Examples of commercially available products include “EFKA 6745 (phthalocyanine derivative) and 6750 (azo pigment derivative)” manufactured by EFKA, “Solsperse 5000 (phthalocyanine derivative) and 22000 (azo pigment derivative)” manufactured by Lubrizol (any) Also product name).
Examples of the linear polymer include an alkali-soluble resin described later, and it is also preferable to use the linear polymer in combination with the pigment derivative.
Only one pigment dispersant may be used, or two or more pigment dispersants may be used in combination.
 光硬化性組成物は、前記水不溶性化合物の微粒子の分散組成物と、光重合性化合物と、光重合開始剤(以下、光重合開始剤系と称する場合もある)とを含み、好ましくは、更に、アルカリ可溶性樹脂を含む。以下、光硬化性組成物の各成分について説明する。 The photocurable composition contains a dispersion composition of fine particles of the water-insoluble compound, a photopolymerizable compound, and a photopolymerization initiator (hereinafter sometimes referred to as a photopolymerization initiator system), preferably, Furthermore, an alkali-soluble resin is included. Hereinafter, each component of the photocurable composition will be described.
 水不溶性化合物微粒子および、その分散組成物を作製する方法については既に詳細に述べた。光硬化性組成物中の微粒子の含有量は、全固形分(本発明において、全固形分とは、有機溶媒を除く組成物合計をいう。)に対し、3~90質量%が好ましく、20~80質量%がより好ましく、25~60質量%がさらに好ましい。この量が多すぎると分散液の粘度が上昇し製造適性上問題になることがある。少なすぎると着色力が十分でない。また、調色のために通常の顔料と組み合わせて用いてもよい。顔料は上記で記述したものを用いることができる。 The water-insoluble compound fine particles and the method for producing the dispersion composition have already been described in detail. The content of the fine particles in the photocurable composition is preferably 3 to 90% by mass with respect to the total solid content (in the present invention, the total solid content means the total composition excluding the organic solvent), and 20 More preferably, it is ˜80% by mass, and further preferably 25-60% by mass. If this amount is too large, the viscosity of the dispersion increases, which may cause problems in production suitability. If the amount is too small, coloring power is not sufficient. Moreover, you may use it in combination with a normal pigment for toning. As the pigment, those described above can be used.
 光重合性化合物(以下、重合性モノマーあるいは重合性オリゴマーと称する場合がある)としては、エチレン性不飽和二重結合を2個以上有し、光の照射によって付加重合する多官能モノマーであることが好ましい。そのような光重合性化合物としては、分子中に少なくとも1個の付加重合可能なエチレン性不飽和基を有し、沸点が常圧で100℃以上の化合物を挙げることができる。その例としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート及びフェノキシエチル(メタ)アクリレートなどの単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート;トリメチロールプロパンやグリセリン等の多官能アルコールにエチレンオキシド又はプロピレンオキシドを付加した後(メタ)アクリレート化したもの等の多官能アクリレートや多官能メタクリレートを挙げることができる。また、特開平10-62986号公報に一般式(1)および(2)に記載のように、多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後(メタ)アクリレート化した化合物も好適なものとして挙げられる。 The photopolymerizable compound (hereinafter sometimes referred to as a polymerizable monomer or a polymerizable oligomer) is a polyfunctional monomer that has two or more ethylenically unsaturated double bonds and undergoes addition polymerization upon irradiation with light. Is preferred. Examples of such a photopolymerizable compound include compounds having at least one addition-polymerizable ethylenically unsaturated group in the molecule and having a boiling point of 100 ° C. or higher at normal pressure. Examples include monofunctional acrylates and monofunctional methacrylates such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate and phenoxyethyl (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) ) Acrylate, trimethylolethane triacrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane diacrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, di Pentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, hexane All di (meth) acrylate, trimethylolpropane tri (acryloyloxypropyl) ether, tri (acryloyloxyethyl) isocyanurate, tri (acryloyloxyethyl) cyanurate, glycerin tri (meth) acrylate; multifunctional such as trimethylolpropane and glycerin Polyfunctional acrylates and polyfunctional methacrylates such as those obtained by adding ethylene oxide or propylene oxide to alcohol and then (meth) acrylated can be mentioned. Further, as described in JP-A-10-62986, general formulas (1) and (2), a compound obtained by adding ethylene oxide or propylene oxide to a polyfunctional alcohol and then (meth) acrylated is also suitable. As mentioned.
 更に特公昭48-41708号公報、特公昭50-6034号公報及び特開昭51-37193号公報に記載されているウレタンアクリレート類;特開昭48-64183号公報、特公昭49-43191号公報及び特公昭52-30490号公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレー卜やメタクリレートを挙げることができる。
 これらの中で、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが好ましい。
 また、この他、特開平11-133600号公報に記載の「重合性化合物B」も好適なものとして挙げることができる。
Further, urethane acrylates described in JP-B-48-41708, JP-B-50-6034 and JP-A-51-37193; JP-A-48-64183, JP-B-49-43191 And polyester acrylates described in JP-B-52-30490; polyfunctional acrylates such as epoxy acrylates which are reaction products of epoxy resin and (meth) acrylic acid, and methacrylates.
Among these, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are preferable.
In addition, “polymerizable compound B” described in JP-A-11-133600 can also be mentioned as a preferable example.
 光重合性化合物は、単独でも、二種類以上を混合して用いてもよく、光硬化性組成物の全固形分に対する含有量は5~50質量%が一般的であり、10~40質量%が好ましい。この量が多すぎると現像性の制御が困難になり製造適性上問題となる。少なすぎると露光時の硬化力が不足する。 The photopolymerizable compound may be used alone or in combination of two or more. The content of the photocurable composition with respect to the total solid content is generally 5 to 50% by mass, and 10 to 40% by mass. Is preferred. If this amount is too large, it becomes difficult to control the developability, which causes a problem in production suitability. If the amount is too small, the curing power at the time of exposure is insufficient.
 光重合開始剤又は光重合開始剤系(本発明において、光重合開始剤系とは複数の化合物の組み合わせで光重合開始の機能を発現する混合物をいう。)としては、米国特許第2367660号明細書に開示されているビシナルポリケタルドニル化合物、米国特許第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第2722512号明細書に記載のα-炭化水素で置換された芳香族アシロイン化合物、米国特許第3046127号明細書及び同第2951758号明細書に記載の多核キノン化合物、米国特許第3549367号明細書に記載のトリアリールイミダゾール二量体とp-アミノケトンの組み合わせ、特公昭51-48516号公報に記載のベンゾチアゾール化合物とトリハロメチル-s-トリアジン化合物、米国特許第4239850号明細書に記載されているトリハロメチル-トリアジン化合物、米国特許第4212976号明細書に記載されているトリハロメチルオキサジアゾール化合物等を挙げることができる。特に、トリハロメチル-s-トリアジン、トリハロメチルオキサジアゾール及びトリアリールイミダゾール二量体が好ましい。 As a photopolymerization initiator or a photopolymerization initiator system (in the present invention, a photopolymerization initiator system refers to a mixture that exhibits a photopolymerization initiation function by a combination of a plurality of compounds), U.S. Pat. No. 2,367,660 Vicinal polyketaldonyl compounds disclosed in US Pat. No. 2,448,828, acyloin ether compounds described in US Pat. No. 2,448,828, α-hydrocarbon substituted fragrances described in US Pat. No. 2,722,512 Group acyloin compounds, polynuclear quinone compounds described in US Pat. Nos. 3,046,127 and 2,951,758, triarylimidazole dimers described in US Pat. No. 3,549,367 and p-amino ketones, Benzothiazole compounds described in Japanese Patent No. 51-48516 and trihalomethyl-s-triazis Compounds, trihalomethyl are described in U.S. Patent No. 4239850 - triazine compounds include U.S. Patent trihalomethyl oxadiazole compounds described in No. 4,212,976 specification or the like. In particular, trihalomethyl-s-triazine, trihalomethyloxadiazole and triarylimidazole dimer are preferable.
 また、この他、特開平11-133600号公報に記載の「重合開始剤C」や、オキシム系として、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、O-ベンゾイル-4’-(ベンズメルカプト)ベンゾイル-ヘキシル-ケトキシム、2,4,6-トリメチルフェニルカルボニル-ジフェニルフォスフォニルオキサイド、ヘキサフルオロフォスフォロ-トリアルキルフェニルホスホニウム塩等も好適なものとしてあげることができる。 In addition, “polymerization initiator C” described in JP-A-11-133600, oxime-based compounds such as 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, O— Benzoyl-4 '-(benzmercapto) benzoyl-hexyl-ketoxime, 2,4,6-trimethylphenylcarbonyl-diphenylphosphonyl oxide, hexafluorophospho-trialkylphenylphosphonium salt, and the like may be mentioned as suitable ones. it can.
 光重合開始剤又は光重合開始剤系は、単独でも、2種類以上を混合して用いてもよいが、特に2種類以上を用いることが好ましい。少なくとも2種の光重合開始剤を用いると、表示特性、特に表示のムラが少なくできる。光硬化性組成物の全固形分に対する光重合開始剤又は光重合開始剤系の含有量は、0.5~20質量%が一般的であり、1~15質量%が好ましい。この量が多すぎると感度が高くなりすぎ制御が困難になる。少なすぎると露光感度が低くなりすぎる。 The photopolymerization initiator or the photopolymerization initiator system may be used alone or in combination of two or more, but it is particularly preferable to use two or more. When at least two kinds of photopolymerization initiators are used, display characteristics, particularly display unevenness, can be reduced. The content of the photopolymerization initiator or photopolymerization initiator system with respect to the total solid content of the photocurable composition is generally 0.5 to 20% by mass, and preferably 1 to 15% by mass. If this amount is too large, the sensitivity becomes too high and control becomes difficult. If the amount is too small, the exposure sensitivity becomes too low.
 アルカリ可溶性樹脂としては、光硬化性組成物ないし、カラーフィルタ用インクジェットインクの調製時に添加することもできるが、前記微粒子の分散組成物を製造する際、または微粒子形成時に添加することも好ましい。水不溶性化合物の溶液および水不溶性化合物の溶液を添加して水不溶性化合物の微粒子を生成させるための貧溶媒の両方もしくは一方にアルカリ可溶性樹脂を添加することもできる。またはアルカリ可溶性樹脂溶液を別系統で水不溶性化合物の微粒子形成時に添加することも好ましい。 The alkali-soluble resin can be added at the time of preparing a photocurable composition or an ink-jet ink for a color filter, but it is also preferably added at the time of producing the fine particle dispersion composition or at the time of forming fine particles. It is also possible to add the alkali-soluble resin to both or one of the poor solvents for adding the water-insoluble compound solution and the water-insoluble compound solution to form fine particles of the water-insoluble compound. Alternatively, it is also preferable to add an alkali-soluble resin solution when forming fine particles of a water-insoluble compound in a separate system.
 アルカリ可溶性樹脂としては、酸性基を有するバインダーが好ましく、側鎖にカルボン酸基やカルボン酸塩基などの極性基を有するアルカリ可溶性のポリマーが好ましい。その例としては、特開昭59-44615号公報、特公昭54-34327号公報、特公昭58-12577号公報、特公昭54-25957号公報、特開昭59-53836号公報及び特開昭59-71048号公報に記載されているようなメタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等を挙げることができる。また側鎖にカルボン酸基やカルボン酸塩などを有するセルロース誘導体も挙げることができ、またこの他にも、水酸基を有するポリマーに環状酸無水物を付加したものも好ましく使用することができる。また、特に好ましい例として、米国特許第4,139,391号明細書に記載のベンジル(メタ)アクリレートと(メタ)アクリル酸との共重合体や、ベンジル(メタ)アクリレートと(メタ)アクリル酸と他のモノマーとの多元共重合体を挙げることができる。 As the alkali-soluble resin, a binder having an acidic group is preferable, and an alkali-soluble polymer having a polar group such as a carboxylic acid group or a carboxylic acid group in the side chain is preferable. Examples thereof include JP-A-59-44615, JP-B-54-34327, JP-B-58-12577, JP-B-54-25957, JP-A-59-53836, and JP-A-57-36. Methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partially esterified maleic acid copolymer as described in JP-A-59-71048 Etc. Moreover, the cellulose derivative which has a carboxylic acid group, carboxylate, etc. in a side chain can also be mentioned, In addition to this, what added the cyclic acid anhydride to the polymer which has a hydroxyl group can also be used preferably. As particularly preferred examples, copolymers of benzyl (meth) acrylate and (meth) acrylic acid described in US Pat. No. 4,139,391, benzyl (meth) acrylate and (meth) acrylic acid are used. And multi-component copolymers with other monomers.
 アルカリ可溶性樹脂は、単独で用いてもよく、或いは通常の膜形成性のポリマーと併用する組成物の状態で使用してもよく、水不溶性化合物の微粒子100質量部に対する添加量は10~200質量部が一般的であり、25~100質量部が好ましい。 The alkali-soluble resin may be used alone or in the form of a composition used in combination with a normal film-forming polymer. The amount of water-insoluble compound added to 100 parts by mass of the fine particles is 10 to 200 masses. Parts are common, with 25 to 100 parts by weight being preferred.
 その他、架橋効率を向上させるために、アルカリ可溶性樹脂の側鎖に重合性基を有していてもよく、UV硬化性樹脂や、熱硬化性樹脂等も有用である。更に、アルカリ可溶性樹脂として、側鎖の一部に水溶性の原子団を有する樹脂を用いることもできる。 In addition, in order to improve the crosslinking efficiency, the side chain of the alkali-soluble resin may have a polymerizable group, and a UV curable resin or a thermosetting resin is also useful. Furthermore, as the alkali-soluble resin, a resin having a water-soluble atomic group in a part of the side chain can be used.
 光硬化性組成物においては、上記成分の他に、更に光硬化性組成物調製用の有機溶媒(第4溶媒)を用いてもよい。第4溶媒の例としては、特に限定されないが、例えば、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、スルホキシド系溶媒、エステル系溶媒、アミド系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ニトリル系溶媒、またはこれらの混合物などが好適に挙げられるが、なかでも、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、またはこれらの混合物などがより好ましい。
 ケトン系溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノン等が挙げられる。エーテル系溶媒としては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。エステル系溶媒としては、例えば、1,3-ブチレングリコールジアセテート、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセルソルブアセテート、乳酸エチル、酢酸ブチル、エチルカルビトールアセテート、ブチルカルビトールアセテート等が挙げられる。芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン等が挙げられる。脂肪族炭化水素系溶媒としては、例えば、シクロヘキサン、n-オクタン等が挙げられる。
 これらの溶媒は、単独で用いてもあるいは2種以上組み合わせて用いてもよい。また沸点が180℃~250℃である溶剤を必要によって使用することができる。有機溶媒の含有量は、光硬化性組成物全量に対して10~95質量%が好ましい。
In the photocurable composition, an organic solvent (fourth solvent) for preparing the photocurable composition may be used in addition to the above components. Examples of the fourth solvent include, but are not limited to, alcohol solvents, ketone solvents, ether solvents, sulfoxide solvents, ester solvents, amide solvents, aromatic hydrocarbon solvents, aliphatic hydrocarbons. Preferable examples include a system solvent, a nitrile solvent, or a mixture thereof. Among them, a ketone solvent, an ether solvent, an ester solvent, an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, or these More preferably, a mixture of
Examples of the ketone solvent include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone and the like. Examples of the ether solvent include propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate. Examples of the ester solvent include 1,3-butylene glycol diacetate, methyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, butyl acetate, ethyl Examples thereof include carbitol acetate and butyl carbitol acetate. Examples of the aromatic hydrocarbon solvent include toluene and xylene. Examples of the aliphatic hydrocarbon solvent include cyclohexane and n-octane.
These solvents may be used alone or in combination of two or more. A solvent having a boiling point of 180 ° C. to 250 ° C. can be used if necessary. The content of the organic solvent is preferably 10 to 95% by mass with respect to the total amount of the photocurable composition.
 また、光硬化性組成物中に適切な界面活性剤を含有させることが好ましい。界面活性剤としては、特開2003-337424号公報、特開平11-133600号公報に開示されている界面活性剤が、好適なものとして挙げられる。界面活性剤の含有量は、光硬化性組成物全量に対して5質量%以下が好ましい。 In addition, it is preferable that an appropriate surfactant is contained in the photocurable composition. Suitable surfactants include those disclosed in JP-A Nos. 2003-337424 and 11-133600. As for content of surfactant, 5 mass% or less is preferable with respect to photocurable composition whole quantity.
 光硬化性組成物は、熱重合防止剤を含むことが好ましい。該熱重合防止剤の例としては、ハイドロキノン、ハイドロキノンモノメチルエーテル、p-メトキシフェノール、ジ-t-ブチル-p-クレゾール、ピロガロール、t-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2-メルカプトベンズイミダゾール、フェノチアジン等が挙げられる。熱重合防止剤の含有量は、光硬化性組成物全量に対して1質量%以下が好ましい。 The photocurable composition preferably contains a thermal polymerization inhibitor. Examples of the thermal polymerization inhibitor include hydroquinone, hydroquinone monomethyl ether, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl) -6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2-mercaptobenzimidazole, phenothiazine and the like. The content of the thermal polymerization inhibitor is preferably 1% by mass or less with respect to the total amount of the photocurable composition.
 光硬化性組成物には、必要に応じ前記着色剤(顔料)に加えて、着色剤(染料、顔料)を添加することができる。着色剤のうち顔料を用いる場合には、光硬化性組成物中に均一に分散されていることが望ましい。染料ないし顔料としては、具体的には、前記顔料として、特開2005-17716号公報[0038]~[0040]に記載の色材や、特開2005-361447号公報[0068]~[0072]に記載の顔料や、特開2005-17521号公報[0080]~[0088]に記載の着色剤を好適に用いることができる。補助的に使用する染料もしくは顔料の含有量は、光硬化性組成物全量に対して5質量%以下が好ましい。 In addition to the colorant (pigment), a colorant (dye or pigment) can be added to the photocurable composition as necessary. In the case of using a pigment among the colorants, it is desirable that the pigment is uniformly dispersed in the photocurable composition. Specific examples of the dyes or pigments include the coloring materials described in JP-A-2005-17716 [0038]-[0040] and JP-A-2005-361447 [0068]-[0072]. And the colorants described in JP-A-2005-17521 [0080] to [0088] can be suitably used. The auxiliary dye or pigment content is preferably 5% by mass or less based on the total amount of the photocurable composition.
 光硬化性組成物には、必要に応じて紫外線吸収剤を含有することができる。紫外線吸収剤としては、特開平5-72724号公報記載の化合物のほか、サリシレート系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、ニッケルキレート系、ヒンダードアミン系などが挙げられる。紫外線吸収剤の含有量は、光硬化性組成物全量に対して5質量%以下が好ましい。 The photocurable composition can contain an ultraviolet absorber as necessary. Examples of the ultraviolet absorber include salicylate series, benzophenone series, benzotriazole series, cyanoacrylate series, nickel chelate series, hindered amine series and the like in addition to the compounds described in JP-A-5-72724. As for content of a ultraviolet absorber, 5 mass% or less is preferable with respect to the photocurable composition whole quantity.
 また、光硬化性組成物においては、上記添加剤の他に、特開平11-133600号公報に記載の「接着助剤」や、その他の添加剤等を含有させることができる。 In addition, the photocurable composition may contain “adhesion aid” described in JP-A No. 11-133600, other additives, and the like in addition to the above-described additives.
 光硬化性組成物はその組成を適宜に調節して、インクジェットインクとすることができる。インクジェットインクとしてはカラーフィルタ用以外にも、印字用等、通常のインクジェットインクとしてもよいが、なかでもカラーフィルタ用インクジェットインクとすることが好ましい。
 インクジェットインクは前記の水不溶性化合物微粒子を含むものであればよく、重合性モノマーおよび/または重合性オリゴマーを含む媒体に、前記の水不溶性化合物微粒子を含有させたものであることが好ましい。ここで重合性モノマーおよび/または重合性オリゴマーとしては、先に光硬化性組成物において説明したものを用いることができる。
 このとき、粘度の変動幅が±5%以内になるようインク温度を制御することが好ましい。射出時の粘度は5~25mPa・sであることが好ましく、8~22mPa・sであることがより好ましく、10~20mPa・sであることが特に好ましい(本発明において粘度は、特に断らない限り25℃のときの値である。)。前記射出温度の設定以外に、インクに含有させる成分の種類と添加量を調節することで、粘度の調整をすることができる。前記粘度は、例えば、円錐平板型回転粘度計やE型粘度計などの通常の装置により測定することができる。
 また、射出時のインクの表面張力は15~40mN/mであることが、画素の平坦性向上の観点から好ましい(本発明において表面張力は、特に断らない限り23℃のときの値である。)。より好ましくは、20~35mN/m、最も好ましくは、25~30mN/mである。表面張力は、界面活性剤の添加や、溶剤の種類により調整することができる。前記表面張力は、例えば、表面張力測定装置(協和界面科学株式会社製、CBVP-Z)や、全自動平衡式エレクトロ表面張力計ESB-V(協和科学社製)などの測定器を用いて白金プレート方法により測定することができる。
The photocurable composition can be made into an inkjet ink by adjusting the composition appropriately. In addition to the color filter, the inkjet ink may be a normal inkjet ink such as for printing, but among them, the inkjet ink for the color filter is preferable.
The ink-jet ink is not particularly limited as long as it contains the above-mentioned water-insoluble compound fine particles, and preferably contains the above-mentioned water-insoluble compound fine particles in a medium containing a polymerizable monomer and / or a polymerizable oligomer. Here, as the polymerizable monomer and / or polymerizable oligomer, those described above for the photocurable composition can be used.
At this time, it is preferable to control the ink temperature so that the fluctuation range of the viscosity is within ± 5%. The viscosity at the time of injection is preferably 5 to 25 mPa · s, more preferably 8 to 22 mPa · s, and particularly preferably 10 to 20 mPa · s (in the present invention, unless otherwise specified) It is a value at 25 ° C.). In addition to the setting of the injection temperature, the viscosity can be adjusted by adjusting the type and amount of components contained in the ink. The viscosity can be measured, for example, by a normal apparatus such as a conical plate type rotational viscometer or an E type viscometer.
Further, the surface tension of the ink upon ejection is preferably 15 to 40 mN / m from the viewpoint of improving the flatness of the pixel (in the present invention, the surface tension is a value at 23 ° C. unless otherwise specified). ). More preferably, it is 20 to 35 mN / m, and most preferably 25 to 30 mN / m. The surface tension can be adjusted by the addition of a surfactant and the type of solvent. For example, the surface tension is obtained by using a measuring device such as a surface tension measuring device (CBVP-Z, manufactured by Kyowa Interface Science Co., Ltd.) or a fully automatic balanced electro surface tension meter ESB-V (manufactured by Kyowa Scientific Co., Ltd.). It can be measured by the plate method.
 カラーフィルタ用インクジェットインクの吹き付けとしては、帯電したインクを連続的に噴射し電場によって制御する方法、圧電素子を用いて間欠的にインクを噴射する方法、インクを加熱しその発泡を利用して間欠的に噴射する方法等、各種の方法を採用できる。
 また、各画素形成のために用いるインクジェット法に関しては、インクを熱硬化させる方法、光硬化させる方法、あらかじめ基板上に透明な受像層を形成しておいてから打滴する方法など、通常の方法を用いることができる。
Ink jet ink for color filters can be sprayed by continuously ejecting charged ink and controlled by an electric field, intermittently ejecting ink using piezoelectric elements, or intermittently using ink by heating and foaming. Various methods such as a method of spraying can be employed.
In addition, regarding the ink jet method used for forming each pixel, a normal method such as a method of thermally curing ink, a method of photocuring, or a method of ejecting droplets after forming a transparent image receiving layer on a substrate in advance. Can be used.
 インクジェットヘッド(以下、単にヘッドともいう。)には、通常のものを適用でき、コンティニアスタイプ、ドットオンデマンドタイプが使用可能である。ドットオンデマンドタイプのうち、サーマルヘッドでは、吐出のため、特開平9-323420号に記載されているような稼動弁を持つタイプが好ましい。ピエゾヘッドでは、例えば、欧州特許A277,703号、欧州特許A278,590号などに記載されているヘッドを使うことができる。ヘッドはインクの温度が管理できるよう温調機能を持つものが好ましい。射出時の粘度は5~25mPa・sとなるよう射出温度を設定し、粘度の変動幅が±5%以内になるようインク温度を制御することが好ましい。また、駆動周波数としては、1~500kHzで稼動することが好ましい。 An ordinary ink jet head (hereinafter also simply referred to as a head) can be applied, and a continuous type or a dot on demand type can be used. Among the dot-on-demand types, the thermal head is preferably a type having an operation valve as described in JP-A-9-323420 for discharging. As the piezo head, for example, the heads described in European Patent A277,703, European Patent A278,590 and the like can be used. The head preferably has a temperature control function so that the temperature of the ink can be controlled. It is preferable to set the injection temperature so that the viscosity at the time of ejection is 5 to 25 mPa · s, and to control the ink temperature so that the fluctuation range of the viscosity is within ± 5%. The drive frequency is preferably 1 to 500 kHz.
 また、各画素を形成した後、加熱処理(いわゆるベーク処理)する加熱工程を設けることができる。即ち、光照射により光重合した層を有する基板を電気炉、乾燥器等の中で加熱する、あるいは赤外線ランプを照射する。加熱の温度及び時間は、感光性濃色組成物の組成や形成された層の厚みに依存するが、一般に充分な耐溶剤性、耐アルカリ性、及び紫外線吸光度を獲得する観点から、約120℃~約250℃で約10分~約120分間加熱することが好ましい。
 このようにして形成されたカラーフィルタのパターン形状は特に限定されるものではなく、一般的なブラックマトリックス形状であるストライプ状であっても、格子状であっても、さらにはデルタ配列状であってもよい。
In addition, after each pixel is formed, a heating step of performing heat treatment (so-called baking treatment) can be provided. That is, a substrate having a layer photopolymerized by light irradiation is heated in an electric furnace, a dryer or the like, or an infrared lamp is irradiated. The heating temperature and time depend on the composition of the photosensitive dark color composition and the thickness of the formed layer, but generally from about 120 ° C. to obtain sufficient solvent resistance, alkali resistance, and ultraviolet absorbance. Heating at about 250 ° C. for about 10 minutes to about 120 minutes is preferred.
The pattern shape of the color filter thus formed is not particularly limited, and may be a general black matrix stripe shape, a lattice shape, or a delta arrangement. May be.
 既述のカラーフィルタ用インクジェットインクを用いた画素形成工程の前に、予め隔壁を作成し、該隔壁に囲まれた部分にインクを付与する作製方法が好ましい。この隔壁はどのようなものでもよいが、カラーフィルタを作製する場合は、ブラックマトリクスの機能を持った遮光性を有する隔壁(以下、単に「隔壁」とも言う。)であることが好ましい。該隔壁は通常のカラーフィルタ用ブラックマトリクスと同様の素材、方法により作製することができる。例えば、特開2005-3861号公報の段落番号[0021]~[0074]や、特開2004-240039号公報の段落番号[0012]~[0021]に記載のブラックマトリクスや、特開2006-17980号公報の段落番号[0015]~[0020]や、特開2006-10875号公報の段落番号[0009]~[0044]に記載のインクジェット用ブラックマトリクスなどが挙げられる。 It is preferable to prepare a partition wall in advance before the pixel forming step using the color filter inkjet ink described above, and to apply ink to a portion surrounded by the partition wall. Any partition may be used, but in the case of manufacturing a color filter, it is preferably a light-blocking partition having a black matrix function (hereinafter also simply referred to as “partition”). The partition wall can be produced by the same material and method as those of a normal color filter black matrix. For example, paragraph numbers [0021] to [0074] of JP 2005-3861 A, black matrices described in paragraph numbers [0012] to [0021] of JP 2004-240039 A, and JP 2006-17980 A. And the inkjet black matrix described in paragraphs [0009] to [0044] of JP-A-2006-10875.
 光硬化性組成物を用いた塗布膜における含有成分については、既に記載したものと同様である。また、光硬化性組成物を用いた塗布膜の厚さは、その用途により適宜定めることができるが、0.5~5.0μmであることが好ましく、1.0~3.0μmであることがより好ましい。この光硬化性組成物を用いた塗布膜においては、前述のモノマーもしくはオリゴマーを重合させて光硬化性組成物の重合膜とし、それを有するカラーフィルタを作製することができる(カラーフィルタの作製については後述する。)。光重合性化合物の重合は、光照射により光重合開始剤又は光重合開始剤系を作用させて行うことができる。 The components contained in the coating film using the photocurable composition are the same as those already described. Further, the thickness of the coating film using the photocurable composition can be appropriately determined depending on the application, but is preferably 0.5 to 5.0 μm, and preferably 1.0 to 3.0 μm. Is more preferable. In the coating film using this photocurable composition, the above-mentioned monomer or oligomer can be polymerized to form a polymerized film of the photocurable composition, and a color filter having the polymerized film can be produced (about production of a color filter) Will be described later.) Polymerization of the photopolymerizable compound can be carried out by allowing a photopolymerization initiator or a photopolymerization initiator system to act upon irradiation with light.
 尚、上記塗布膜は、光硬化性組成物を、通常の塗布方法により塗布し乾燥することによって形成することができるが、本発明においては、液が吐出する部分にスリット状の穴を有するスリット状ノズルによって塗布することが好ましい。具体的には、特開2004-89851号公報、特開2004-17043号公報、特開2003-170098号公報、特開2003-164787号公報、特開2003-10767号公報、特開2002-79163号公報、特開2001-310147号公報等に記載のスリット状ノズル、及びスリットコータが好適に用いられる。 In addition, although the said coating film can be formed by apply | coating and drying a photocurable composition with a normal coating method, in this invention, it is a slit which has a slit-shaped hole in the part which discharges a liquid. It is preferable to apply by a nozzle. Specifically, JP 2004-89851 A, JP 2004-17043 A, JP 2003-170098 A, JP 2003-164787 A, JP 2003-10767 A, JP 2002-79163 A. Slit nozzles and slit coaters described in Japanese Patent Laid-Open No. 2001-310147 and the like are preferably used.
 光硬化性組成物の基板への塗布方法は、1~3μmの薄膜を均一に高精度に塗布できるという点からスピン塗布が優れており、カラーフィルタの作製に広く一般的に用いることができる。しかし、近年においては、液晶表示装置の大型化および量産化に伴って、製造効率および製造コストをより高めるために、スピン塗布よりも広幅で大面積な基板の塗布に適したスリット塗布がカラーフィルタの作製に採用されるようになってきている。尚、省液性という観点からもスリット塗布はスピン塗布よりも優れており、より少ない塗布液量で均一な塗膜を得ることができる。 As a method for applying the photocurable composition to the substrate, spin coating is excellent in that a thin film having a thickness of 1 to 3 μm can be uniformly applied with high accuracy, and it can be widely used for producing a color filter. However, in recent years, with the increase in size and mass production of liquid crystal display devices, slit coating suitable for coating a substrate that is wider and larger in area than spin coating has been used in order to increase manufacturing efficiency and manufacturing cost. It has come to be adopted in the production of. From the viewpoint of liquid-saving properties, slit coating is superior to spin coating, and a uniform coating film can be obtained with a smaller amount of coating liquid.
 スリット塗布は、先端に幅数十ミクロンのスリット(間隙)を有し且つ矩形基板の塗布幅に対応する長さの塗布ヘッドを、基板とのクリアランス(間隙)を数10~数100ミクロンに保持しながら、基板と塗布ヘッドとに一定の相対速度を持たせて、所定の吐出量でスリットから供給される塗布液を基板に塗布する塗布方式である。このスリット塗布は、(1)スピン塗布に比して液ロスが少ない、(2)塗布液の飛びちりがないため洗浄処理が軽減される、(3)飛び散った液成分の塗布膜への再混入がない、(4)回転の立ち上げ停止時間がないのでタクトタイムが短縮化できる、(5)大型の基板への塗布が容易である、等の利点を有する。これらの利点から、スリット塗布は大型画面液晶表示装置用のカラーフィルタの作製に好適であり、塗布液量の削減にとっても有利な塗布方式として期待されている。 For slit coating, a coating head having a slit (gap) with a width of several tens of microns at the tip and a length corresponding to the coating width of a rectangular substrate is maintained at a clearance (gap) of several tens to several hundreds of microns with the substrate. On the other hand, this is a coating method in which a coating liquid supplied from a slit is applied to a substrate with a predetermined discharge amount by giving a constant relative speed between the substrate and the coating head. This slit coating is (1) less liquid loss compared to spin coating, (2) cleaning process is reduced because there is no flying of the coating liquid, and (3) the scattered liquid components are applied to the coating film again. There is an advantage that there is no mixing, (4) the tact time can be shortened because there is no start-up stop time of rotation, and (5) application to a large substrate is easy. From these advantages, slit coating is suitable for producing a color filter for a large-screen liquid crystal display device, and is expected as an advantageous coating method for reducing the amount of coating liquid.
 尚、上記作製方法における塗布は、通常の塗布装置等によって行うことができるが、本発明においては、既に説明した、スリット状ノズルを用いた塗布装置(スリットコータ)によって行うことが好ましい。スリットコータの好ましい具体例等は、前記と同様である。 In addition, although application | coating in the said preparation method can be performed with a normal coating apparatus etc., in this invention, it is preferable to perform with the coating apparatus (slit coater) using the slit-shaped nozzle already demonstrated. Preferred specific examples of the slit coater are the same as described above.
 本発明の微粒子ないしその分散物を用いたカラーフィルタは、コントラストに優れることが好ましい。本発明においてコントラストとは、2枚の偏光板の間において、偏光軸が平行のときと、垂直のときとの透過光量の比を表す(「1990年第7回色彩光学コンファレンス、512色表示10.4”サイズTFT-LCD用カラーフィルタ、植木、小関、福永、山中」等参照。)。
 カラーフィルタのコントラストが高いということは液晶と組み合わせたときの明暗のディスクリミネーションが大きくできるということを意味しており、液晶ディスプレイがCRTに置き換わるためには非常に重要な性能である。
The color filter using the fine particles or dispersion thereof of the present invention is preferably excellent in contrast. In the present invention, the contrast represents the ratio of the amount of transmitted light between two polarizing plates when the polarization axis is parallel and when it is vertical (“1990 Seventh Color Optical Conference, 512-color display 10.4. "Refer to" Color TFT for TFT-LCD, Ueki, Koseki, Fukunaga, Yamanaka "etc.)
The high contrast of the color filter means that the bright and dark discrimination when combined with the liquid crystal can be increased, which is a very important performance in order to replace the liquid crystal display with a CRT.
 以下、実施例に基づき本発明についてさらに詳細に説明するが、本発明はこれにより限定されない。なお、以下の実施例において「部」および「%」とは特に断らない限りいずれも質量基準である。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. In the following examples, “part” and “%” are based on mass unless otherwise specified.
A・第1実施形態に係る実施例・比較例
<顔料分散液の調製>
[合成例1A]
(モノマーMM-1の合成)
 2-チオバルビツール酸45.28部、水酸化ナトリウム13.82部をジメチルスルホキシド200部に溶解させ、25℃に加熱する。これにクロロメチルスチレン57.53部を滴下し、55℃でさらに5時間加熱攪拌を行う。加熱攪拌後、この反応液にメタノール150部、蒸留水150部を加えて1時間攪拌し、続いてこの溶液を蒸留水2000部に攪拌しながら注ぎ、得られた析出物を濾別、洗浄することで、モノマーMM-1を80.1部得た。
(重合体PA-1の合成)
 下記のモノマー溶液を窒素置換した三口フラスコに導入し、攪拌機(新東科学(株):スリーワンモータ)にて攪拌し、窒素をフラスコ内に流しながら加熱して78℃まで昇温し30分攪拌する。続いて、下記の開始剤溶液を上記の液に添加し、2時間78℃で加熱攪拌する。加熱攪拌後、さらに下記開始剤溶液を添加し、78℃にて2時間加熱攪拌する操作を計2度繰り返す。最後の2時間攪拌後、引き続いて90度で2時間加熱攪拌する。得られた反応液をイソプロパノール1500部に攪拌しながら注ぎ、生じた沈殿を濾取して、加熱乾燥させることでグラフト重合体PA-1を得た。
A. Examples and Comparative Examples According to First Embodiment <Preparation of Pigment Dispersion>
[Synthesis Example 1A]
(Synthesis of monomer MM-1)
45.28 parts of 2-thiobarbituric acid and 13.82 parts of sodium hydroxide are dissolved in 200 parts of dimethyl sulfoxide and heated to 25 ° C. To this, 57.53 parts of chloromethylstyrene is dropped, and the mixture is further heated and stirred at 55 ° C. for 5 hours. After heating and stirring, 150 parts of methanol and 150 parts of distilled water are added to the reaction solution and stirred for 1 hour. Subsequently, this solution is poured into 2000 parts of distilled water while stirring, and the resulting precipitate is filtered and washed. As a result, 80.1 parts of monomer MM-1 was obtained.
(Synthesis of polymer PA-1)
The following monomer solution is introduced into a nitrogen-substituted three-necked flask and stirred with a stirrer (Shinto Kagaku Co., Ltd .: Three-One Motor). To do. Then, the following initiator solution is added to said liquid, and it heat-stirs at 78 degreeC for 2 hours. The following initiator solution is further added after heating and stirring, and the operation of heating and stirring at 78 ° C. for 2 hours is repeated twice in total. After the last 2 hours of stirring, the mixture is subsequently heated and stirred at 90 degrees for 2 hours. The obtained reaction solution was poured into 1500 parts of isopropanol while stirring, and the resulting precipitate was collected by filtration and dried by heating to obtain graft polymer PA-1.
(モノマー溶液)
・モノマーMM-1                     4.0部
・スチレン                        15.0部
・メタクリル酸                       2.0部
・1-メチル-2-ピロリドン              46.67部
(Monomer solution)
・ Monomer MM-1 4.0 parts ・ Styrene 15.0 parts ・ Methacrylic acid 2.0 parts ・ 1-Methyl-2-pyrrolidone 46.67 parts
(開始剤溶液)
・2.2’-アゾビス(イソ酪酸)ジメチル
   (和光純薬(株)製V-601)            0.8部
・1-メチル-2-ピロリドン                  2部
(Initiator solution)
・ 2.2'-azobis (isobutyrate) dimethyl (V-601, manufactured by Wako Pure Chemical Industries, Ltd.) 0.8 part ・ 1-methyl-2-pyrrolidone 2 parts
(合成例2A~9A)
 合成例1Aで示したモノマー組成及び開始剤組成を表1Aに変更した以外は上記合成例1Aと同様にして、重合体PA-2~PA-9、PA-c1、PA-c2を得た。
(Synthesis Examples 2A to 9A)
Polymers PA-2 to PA-9, PA-c1, and PA-c2 were obtained in the same manner as in Synthesis Example 1A, except that the monomer composition and initiator composition shown in Synthesis Example 1A were changed to Table 1A.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
(合成例10A)
(高分子化合物BのPA-10の合成)
 500mL三口フラスコに、ε-カプロラクトン160.0g、2-エチル-1-ヘキサノール18.3gを導入し、窒素を吹き込みながら、攪拌溶解した。モノブチル錫オキシド0.1gを加え、100℃に加熱した。8時間後、ガスクロマトグラフィーにて、原料が消失したのを確認後、80℃まで冷却した。2,6-ジt-ブチル-4-メチルフェノール0.1gを添加した後、2-メタクリロイロキシエチルイソシアネート22.2gを添加した。5時間後、H NMRにて原料が消失したのを確認後、室温まで冷却し、固体状の単量体(A-5)を200g得た。単量体(A-5)であることは、H NMR、IR、質量分析により確認した。
 得られた単量体(A-5)は、前述の一般式(i)、(ii)、又は(i)-2で表される単量体の好ましい具体例として挙げられたものである。
(Synthesis Example 10A)
(Synthesis of polymer compound B PA-10)
Into a 500 mL three-necked flask, 160.0 g of ε-caprolactone and 18.3 g of 2-ethyl-1-hexanol were introduced and dissolved with stirring while blowing nitrogen. Monobutyltin oxide 0.1g was added and it heated at 100 degreeC. After 8 hours, it was cooled to 80 ° C. after confirming disappearance of the raw material by gas chromatography. After adding 0.1 g of 2,6-di-t-butyl-4-methylphenol, 22.2 g of 2-methacryloyloxyethyl isocyanate was added. After 5 hours, the disappearance of the raw material was confirmed by H NMR, and then cooled to room temperature to obtain 200 g of a solid monomer (A-5). The monomer (A-5) was confirmed by H NMR, IR and mass spectrometry.
The obtained monomer (A-5) is mentioned as a preferred specific example of the monomer represented by the general formula (i), (ii), or (i) -2.
 単量体(A-5)37.5g、単量体M-11 5.0g、メタクリル酸7.5g、ドデシルメルカプタン1.3、及び1-メトキシ-2-プロパノール116.7gを、窒素置換した三口フラスコに導入し、攪拌機(新東科学(株):スリーワンモータ)にて攪拌し、窒素をフラスコ内に流しながら加熱して75℃まで昇温した。これに、2,2-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬(株)製の「V-65」)を0.3g加え、75℃にて2時間加熱攪拌を行った。2時間後、更にV-65を0.3g加え、3時加熱攪拌の後、高分子化合物の30%溶液を得た。
 得られた高分子化合物の質量平均分子量をポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィー法(GPC)により下記の条件で測定した結果、1.8万であった。下記表には、高分子化合物を合成する際に用いられる単量体とその仕込み量、合成された重合体の質量平均分子量、及び酸価について示す。
 <分子量測定条件>
  装置:HLC-8220GPC(東ソー(株)製)
  検出器:示差屈折計(RI検出器)
  プレカラム:TSKGUARDCOLUMN MP(XL)
  6mm×40mm(東ソー(株)製)
  サンプル側カラム:以下の2本を直結(全て東ソー(株)製)
  ・TSK-GEL Multipore-HXL-M 7.8mm×300mm
  リファレンス側カラム:サンプル側カラムに同じ
  恒温槽温度:40℃
  移動層:テトラヒドロフラン 
  サンプル側移動層流量:1.0mL/分
  リファレンス側移動層流量:0.3mL/分
  試料濃度:0.1重量%
  試料注入量:100μL
  データ採取時間:試料注入後16分~46分
  サンプリングピッチ:300msec
Monomer (A-5) 37.5 g, monomer M-11 5.0 g, methacrylic acid 7.5 g, dodecyl mercaptan 1.3 and 16.7-methoxy-2-propanol 116.7 g were purged with nitrogen. The mixture was introduced into a three-necked flask, stirred with a stirrer (Shinto Kagaku Co., Ltd .: Three-One Motor), heated to 75 ° C. while flowing nitrogen into the flask. To this was added 0.3 g of 2,2-azobis (2,4-dimethylvaleronitrile) (“V-65” manufactured by Wako Pure Chemical Industries, Ltd.), and the mixture was stirred with heating at 75 ° C. for 2 hours. Two hours later, 0.3 g of V-65 was further added, and after 3 hours of heating and stirring, a 30% solution of the polymer compound was obtained.
The mass average molecular weight of the obtained polymer compound was measured by gel permeation chromatography (GPC) using polystyrene as a standard substance under the following conditions, and was 18,000. The following table shows the monomers used when synthesizing the polymer compound and the amount charged, the mass average molecular weight of the synthesized polymer, and the acid value.
<Molecular weight measurement conditions>
Equipment: HLC-8220GPC (manufactured by Tosoh Corporation)
Detector: Differential refractometer (RI detector)
Pre-column: TSKGUARDCOLUMN MP (XL)
6mm x 40mm (manufactured by Tosoh Corporation)
Sample side column: The following two columns are directly connected (all manufactured by Tosoh Corporation)
・ TSK-GEL Multipore-HXL-M 7.8mm × 300mm
Reference side column: Same as sample side column Temperature chamber temperature: 40 ° C
Moving bed: Tetrahydrofuran
Sample-side moving bed flow rate: 1.0 mL / min Reference-side moving bed flow rate: 0.3 mL / min Sample concentration: 0.1% by weight
Sample injection volume: 100 μL
Data collection time: 16 to 46 minutes after sample injection Sampling pitch: 300 msec
(合成例11A)
(高分子化合物CのPA-11の合成)
 M-11 14.0g、上記A-5と同様の方法で合成したA-3 105.0g、アクリル酸 21.0g、n-ドデシルメルカプタン3.1gおよびメトキシプロピレングリコール327gを、窒素置換した三口フラスコに導入し、攪拌機(新東科学(株):スリーワンモータ)にて攪拌し、窒素をフラスコ内に流しながら加熱して75℃まで昇温する。これに2,2-アゾビス(2-メチルプロピオン酸ジメチル)(和光純薬(株)製、V-601)を1.2g加え、75℃にて2時間加熱攪拌を行った。その後、さらにV-601を1.2g加えて2時間過熱攪拌した後、90℃に昇温して2時加熱攪拌した後、重合体2の30%溶液を得た。
 得られた高分子化合物の重量平均分子量を、ポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィー法(GPC)により測定した結果、2.3万であった。また、水酸化ナトリウムを用いた滴定から、固形分あたりの酸価は、117mgKOH/g、H-NMRから求めた繰り返し単位組成比(質量比)は、20/65/15であった。
(Synthesis Example 11A)
(Synthesis of polymer compound C PA-11)
A three-necked flask in which 14.0 g of M-11, 105.0 g of A-3 synthesized in the same manner as in the above A-5, 21.0 g of acrylic acid, 3.1 g of n-dodecyl mercaptan and 327 g of methoxypropylene glycol were substituted with nitrogen The mixture is stirred with a stirrer (Shinto Kagaku Co., Ltd .: Three-One Motor), heated while flowing nitrogen into the flask, and heated to 75 ° C. To this was added 1.2 g of 2,2-azobis (dimethyl 2-methylpropionate) (V-601, manufactured by Wako Pure Chemical Industries, Ltd.), and the mixture was heated and stirred at 75 ° C. for 2 hours. Thereafter, 1.2 g of V-601 was further added, and the mixture was heated and stirred for 2 hours, then heated to 90 ° C. and stirred for 2 hours to obtain a 30% solution of polymer 2.
It was 23,000 as a result of measuring the weight average molecular weight of the obtained high molecular compound by the gel permeation chromatography method (GPC) which used polystyrene as the standard substance. From the titration with sodium hydroxide, the acid value per solid content was 117 mgKOH / g, and the repeating unit composition ratio (mass ratio) determined from 1 H-NMR was 20/65/15.
  [表P]    ()内は質量%
Figure JPOXMLDOC01-appb-I000024
 AA :アクリル酸
 MAA:メタクリル酸
[Table P] Figures in parentheses are mass%.
Figure JPOXMLDOC01-appb-I000024
AA: Acrylic acid MAA: Methacrylic acid
(合成例12A)
 (PA-12)
 特開2007-262378の実施例2-5で用いられた高分子分散剤C-18(下記化学式参照)を合成しPA-12として用いた。
(Synthesis Example 12A)
(PA-12)
The polymer dispersant C-18 (see the following chemical formula) used in Example 2-5 of JP-A-2007-262378 was synthesized and used as PA-12.
Figure JPOXMLDOC01-appb-C000025
(実施例A-I、比較例A-I)
[実施例A-1]
 N-メチルピロリドン(和光純薬社製)1000gに、顔料C.I.ピグメントレッド254(Irgaphor Red BT-CF、商品名、チバ・スペシャルティ・ケミカルズ(株)製)50gを分散させ、ここにテトラメチルアンモニウムヒドロキシド25%メタノール溶液52.3gを滴下して顔料溶液を調整した。N-メチルピロリドン(和光純薬社製)90gに、グラフト重合体PA-1を30.0g溶解させ、ここにテトラメチルアンモニウムヒドロキシド25%メタノール溶液17.8gを滴下してポリマー溶液01を調整した。上記顔料溶液とポリマー溶液01を混合し、顔料・ポリマー溶液01を作製した。この顔料・ポリマー溶液01を、ビスコメイトVM-10A-L(商品名、CBCマテリアルズ社製)を用いて粘土を測定した結果、顔料ポリマー溶液01の液温が24.5℃の時の粘度が14.3mPa・sであった。これとは別に貧溶媒として、1mol/l塩酸(和光純薬社製)19gを含有したイオン交換水1000mlを用意した。
 ここで、5℃に温度コントロールし、GK-0222-10型ラモンドスターラー(商品名、藤沢薬品工業社製)により500rpmで攪拌した貧溶媒の塩酸含有イオン交換水1000mlに、顔料・ポリマー溶液01をNP-KX-500型大容量無脈流ポンプ(商品名、日本精密化学社製)を用いて、流路径1.1mmの送液配管から流速400ml/minで100ml注入することにより、有機顔料粒子を形成し、顔料ナノ粒子分散液01を調製した。
 上記の手順で調製した、顔料ナノ粒子分散液01を(株)コクサン社製H-112型遠心濾過機および敷島カンバス(株)社製P89C型ロ布を用いて5000rpmで90分濃縮し、得られた顔料ナノ粒子濃縮ペースト01を回収した。
Figure JPOXMLDOC01-appb-C000025
(Example AI, Comparative Example AI)
[Example A-1]
To 1000 g of N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries), pigment C.I. I. 50 g of Pigment Red 254 (Irgaphor Red BT-CF, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.) is dispersed, and 52.3 g of a tetramethylammonium hydroxide 25% methanol solution is added dropwise to prepare a pigment solution. did. 30.0 g of graft polymer PA-1 was dissolved in 90 g of N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.), and 17.8 g of a tetramethylammonium hydroxide 25% methanol solution was added dropwise to prepare polymer solution 01. did. The pigment solution and the polymer solution 01 were mixed to prepare a pigment / polymer solution 01. As a result of measuring the clay of this pigment / polymer solution 01 using Viscomate VM-10A-L (trade name, manufactured by CBC Materials), the viscosity when the liquid temperature of the pigment polymer solution 01 is 24.5 ° C. Was 14.3 mPa · s. Separately, 1000 ml of ion-exchanged water containing 19 g of 1 mol / l hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was prepared as a poor solvent.
Here, the pigment / polymer solution 01 was added to 1000 ml of deionized hydrochloric acid-containing ion-exchanged water stirred at 500 rpm with a GK-0222-10 type Lamond Stirrer (trade name, manufactured by Fujisawa Pharmaceutical Co., Ltd.) under temperature control at 5 ° C. The organic pigment was injected at a flow rate of 400 ml / min using a NP-KX-500 large-capacity non-pulsating flow pump (trade name, manufactured by Nippon Seimitsu Chemical Co., Ltd.) at a flow rate of 400 ml / min. Particles were formed to prepare pigment nanoparticle dispersion liquid 01.
The pigment nanoparticle dispersion liquid 01 prepared by the above procedure was concentrated at 5000 rpm for 90 minutes using an H-112 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type ro cloth manufactured by Shikishima Canvas Co., Ltd. The obtained pigment nanoparticle concentrated paste 01 was recovered.
 上記顔料ナノ粒子濃縮ペースト01をオーブンにより100℃で8時間乾燥することにより有機顔料粉末01(固形分濃度96質量%)(有機顔料含有率59質量%)を得た。
 前記有機顔料粉末01を用い、下記組成の顔料分散組成物を調製した。
   前記有機顔料粉末01                14.0g
   プロピレングリコールモノメチルエーテルアセテート  46.3g
 上記組成の顔料分散組成物をモーターミルM-50(アイガー・ジャパン社製)で、直径0.65mmのジルコニアビーズを用い、周速9m/sで10時間分散し、顔料分散組成物01を得た。
The pigment nanoparticle concentrated paste 01 was dried in an oven at 100 ° C. for 8 hours to obtain an organic pigment powder 01 (solid content concentration: 96 mass%) (organic pigment content: 59 mass%).
Using the organic pigment powder 01, a pigment dispersion composition having the following composition was prepared.
Organic pigment powder 01 14.0 g
46.3 g of propylene glycol monomethyl ether acetate
The pigment dispersion composition having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm to obtain a pigment dispersion composition 01. It was.
[実施例A-2~A-9]
 実施例A-1の顔料分散組成物において、グラフト重合体をPA-2~PA-9にする以外は実施例A-1と同様にして顔料分散組成物02~09を調製した。
[Examples A-2 to A-9]
In the pigment dispersion composition of Example A-1, pigment dispersion compositions 02 to 09 were prepared in the same manner as in Example A-1, except that the graft polymers were PA-2 to PA-9.
[実施例A-10~A-12]
 実施例A-1の顔料分散組成物において、グラフト重合体PA-1の添加量を30.0gから10.0gに減らし、前記有機顔料粉末をプロピレングリコールモノメチルエーテルアセテート中に再分散させる際に重合体PA-10~12を20.0g添加する以外は実施例A-1と同様にして、顔料分散組成物10~12をそれぞれ調製した。
[Examples A-10 to A-12]
In the pigment dispersion composition of Example A-1, the amount of graft polymer PA-1 added was reduced from 30.0 g to 10.0 g, and the organic pigment powder was redispersed in propylene glycol monomethyl ether acetate. Pigment dispersion compositions 10 to 12 were prepared in the same manner as in Example A-1, except that 20.0 g of the combined PA-10 to 12 was added.
[比較例A-1]
 1,3ブチレングリコールジアセテート液中に塩化ナトリウム、顔料C.I.ピグメントレッド254(商品名Irgaphor Red BT-CF チバ・スペシャルティケミカルズ(株)製)の紛体10g、グラフト重合体P-1を6.0gを双腕型ニーダーに仕込み、80℃で15時間混練した。混練後80℃の1%塩酸水溶液700質量部に取り出し、1時間攪拌後、ろ過、湯洗、乾燥、粉砕した後、粉砕物1gに対しプロピレングリコールモノメチルエーテルアセテート2.4gを添加混合した。上記顔料組成物をモーターミルM-50(アイガー・ジャパン社製)で、直径0.65mmのジルコニアビーズを用い、周速9m/sで10時間分散し、顔料分散組成物c1を得た。
[Comparative Example A-1]
Sodium chloride and pigment C.I. in 1,3 butylene glycol diacetate solution. I. Pigment Red 254 (trade name: Irgaphor Red BT-CF, manufactured by Ciba Specialty Chemicals Co., Ltd.) 10 g of powder and 6.0 g of graft polymer P-1 were charged into a double-arm kneader and kneaded at 80 ° C. for 15 hours. After kneading, the mixture was taken out into 700 parts by mass of a 1% hydrochloric acid aqueous solution at 80 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized. Then, 2.4 g of propylene glycol monomethyl ether acetate was added to 1 g of the pulverized product and mixed. The pigment composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm to obtain a pigment dispersion composition c1.
[比較例A-2]
 実施例1の顔料分散組成物において、グラフト重合体をPA-c1にする以外は実施例A-1と同様にして顔料分散組成物c2を調整した。
[Comparative Example A-2]
In the pigment dispersion composition of Example 1, pigment dispersion composition c2 was prepared in the same manner as in Example A-1, except that the graft polymer was PA-c1.
[比較例A-3]
 N-メチルピロリドン(和光純薬社製)1000gに、顔料C.I.ピグメントレッド254(Irgaphor Red BT-CF、商品名、チバ・スペシャルティ・ケミカルズ(株)製)50g、およびPA-c2を30.0gを分散させ、ここにテトラメチルアンモニウムヒドロキシド25%メタノール溶液52.3gを滴下して顔料溶液を調整した。これとは別に貧溶媒として、イオン交換水1000mlを用意した。
 ここで、5℃に温度コントロールし、GK-0222-10型ラモンドスターラー(商品名、藤沢薬品工業社製)により500rpmで攪拌した貧溶媒の塩酸含有イオン交換水1000mlに、上記顔料溶液をNP-KX-500型大容量無脈流ポンプ(商品名、日本精密化学社製)を用いて、流路径1.1mmの送液配管から流速400ml/minで100ml注入することにより、有機顔料粒子を形成し、顔料ナノ粒子分散液c3を調製した。次いで顔料ナノ粒子分散液c3に5%硫酸水溶液を滴下してpHを4.0に調節して顔料ナノ粒子凝集液を調整した。
 上記の手順で調製した、顔料ナノ粒子凝集液を(株)コクサン社製H-112型遠心濾過機および敷島カンバス(株)社製P89C型ロ布を用いて5000rpmで90分濃縮し、得られた顔料ナノ粒子濃縮ペーストを回収した。
 上記顔料ナノ粒子濃縮ペーストをオーブンにより100℃で8時間乾燥することにより有機顔料粉末c3(固形分濃度94質量%)(有機顔料含有率58質量%)を得た。
[Comparative Example A-3]
To 1000 g of N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries), pigment C.I. I. 50 g of Pigment Red 254 (Irgaphor Red BT-CF, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.) and 30.0 g of PA-c2 are dispersed in this solution. 3 g was added dropwise to prepare a pigment solution. Separately, 1000 ml of ion-exchanged water was prepared as a poor solvent.
Here, the temperature of the solution was controlled at 5 ° C., and the above-mentioned pigment solution was added to 1000 ml of ion-exchanged water containing hydrochloric acid as a poor solvent stirred at 500 rpm by a GK-0222-10 type Lamond Stirrer (trade name, manufactured by Fujisawa Pharmaceutical Co., Ltd.). Using a KX-500 type large capacity non-pulsating flow pump (trade name, manufactured by Nippon Seimitsu Chemical Co., Ltd.), by injecting 100 ml at a flow rate of 400 ml / min from a liquid feed pipe having a flow path diameter of 1.1 mm, And pigment nanoparticle dispersion c3 was prepared. Subsequently, 5% sulfuric acid aqueous solution was dropped into the pigment nanoparticle dispersion c3 to adjust the pH to 4.0, thereby preparing a pigment nanoparticle aggregate.
The pigment nanoparticle aggregated liquid prepared by the above procedure was concentrated at 5000 rpm for 90 minutes using an H-112 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type cloth manufactured by Shikishima Canvas Co., Ltd. The pigment nanoparticle concentrated paste was recovered.
The pigment nanoparticle concentrated paste was dried in an oven at 100 ° C. for 8 hours to obtain an organic pigment powder c3 (solid content concentration 94 mass%) (organic pigment content 58 mass%).
 前記有機顔料粉末c3を用い、下記組成の顔料分散組成物c3を調製した。
   前記有機顔料粉末c3                14.0g
   プロピレングリコールモノメチルエーテルアセテート  46.3g
 上記組成の顔料分散組成物c3をモーターミルM-50(アイガー・ジャパン社製)で、直径0.65mmのジルコニアビーズを用い、周速9m/sで10時間分散し、顔料分散組成物c3を得た。
Using the organic pigment powder c3, a pigment dispersion composition c3 having the following composition was prepared.
14.0 g of the organic pigment powder c3
46.3 g of propylene glycol monomethyl ether acetate
The pigment dispersion composition c3 having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm. Obtained.
[比較例A-4]
 実施例A-1の顔料分散組成物において、グラフト重合体をポリスチレンにする以外は実施例1と同様にして顔料分散組成物c4を調整した。
[Comparative Example A-4]
In the pigment dispersion composition of Example A-1, pigment dispersion composition c4 was prepared in the same manner as in Example 1 except that the graft polymer was polystyrene.
[比較例A-5]
 実施例A-1の顔料分散組成物において、グラフト重合体をポリビニルピロリドン(K-30、商品名、和光純薬社製)にする以外は実施例A-1と同様にして顔料分散組成物c5を調整した。
[Comparative Example A-5]
In the pigment dispersion composition of Example A-1, pigment dispersion composition c5 was prepared in the same manner as in Example A-1, except that the graft polymer was polyvinylpyrrolidone (K-30, trade name, manufactured by Wako Pure Chemical Industries, Ltd.). Adjusted.
(埋包評価)
 分散剤が粒子内に埋包されているかの確認は、固体13C CP/MAS NMR測定(ブルカー・バイオスピン社製AVANCE DSX-300分光器と4 mmΦ HFX CP/MAS probe)を用いて行った。固体13C CP/MAS NMR測定は以下の通りに行った。
 前記顔料分散組成物を、それぞれメンブレンフィルター(MILLIPORE製 カットサイズ:0.05μm)を用いて吸引ろ過し、濃縮ペーストを作製する。前記濃縮ペーストを固体13C CP/MAS NMRの試料台にセットし、Goldman-shenパルス系列に基づき、H90°パルス幅4.5μs、初期の溶媒選択のための待ち時間200μs、CPコンタクトタイム1msとし、スピン拡散時間を0.5~200msまで変化させて測定を行った。積算回数は4096回、繰り返し時間は試料のHスピン-格子緩和時間の5倍を目安に3~10秒とした。マジックアングルスピニングの回転数は、試料により8000~10000Hzとした。
 各々のスピン拡散時間におけるスペクトルをピーク分離によって顔料及び分散剤のピーク面積を算出し、一次元拡散モデルを仮定した拡散距離Lは、スピン拡散時間tmに対して、
(Embedded evaluation)
It was confirmed whether the dispersant was embedded in the particles using solid 13 C CP / MAS NMR measurement (AVANCE DSX-300 spectrometer manufactured by Bruker BioSpin Co., Ltd. and 4 mmΦ HFX CP / MAS probe). . The solid 13 C CP / MAS NMR measurement was performed as follows.
The pigment dispersion composition is subjected to suction filtration using a membrane filter (MILLIPORE cut size: 0.05 μm) to prepare a concentrated paste. The concentrated paste was set on a solid 13 C CP / MAS NMR sample stage, and based on the Goldman-Shen pulse sequence, 1 H 90 ° pulse width 4.5 μs, waiting time 200 μs for initial solvent selection, CP contact time 1 ms The measurement was performed while changing the spin diffusion time from 0.5 to 200 ms. The number of integrations was 4,096 times, and the repetition time was 3 to 10 seconds with 5 times the 1 H spin-lattice relaxation time of the sample as a guide. The rotation speed of magic angle spinning was 8000 to 10000 Hz depending on the sample.
The peak areas of the pigment and the dispersant are calculated by peak separation of the spectrum at each spin diffusion time, and the diffusion distance L assuming a one-dimensional diffusion model is calculated with respect to the spin diffusion time tm.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
の関係にあることを用いて、溶媒分子からの距離に対するピーク面積のプロットから粒子構造を判断した。この評価により分散剤の埋包が認められたときには「○」、認められないときは「×」とし、結果を表2Aに示した。 The particle structure was judged from a plot of the peak area against the distance from the solvent molecule. When the embedding of the dispersant was recognized by this evaluation, “◯” was given, and when it was not recognized, “X” was given. The results are shown in Table 2A.
(分散剤取込率評価)
 前記顔料分散組成物を、メンブレンフィルター(MILLIPORE製 カットサイズ:0.05μm)で吸引ろ過した。得られたろ過後粉末1を、取り込んだ分散剤を溶解しうる任意の適当な溶媒に入れ、再度モーターミルM-50(アイガー・ジャパン社製)で、直径0.65mmのジルコニアビーズを用い、周速9m/sで3時間かけて分散処理した。その後、前記同様の方法で吸引ろ過して得られたろ過後粉末2のポリマー量と添加ポリマー量から分散剤取込率を下式により見積もった。なお、下記「ろ過後粉末含有ポリマー量」は「ろ過後粉末2の質量」と「下記添加顔料量」との質量の差で算出される。
 (分散剤取込率)=(ろ過後粉末含有ポリマー量)/(添加ポリマー量)×100
 その結果を表2Aに示す(表中の単位は質量%である。)。
(Dispersant uptake rate evaluation)
The pigment dispersion composition was subjected to suction filtration with a membrane filter (MILLIPORE cut size: 0.05 μm). The obtained powder 1 after filtration was put into any appropriate solvent capable of dissolving the incorporated dispersant, and again with a motor mill M-50 (manufactured by Eiger Japan), using zirconia beads having a diameter of 0.65 mm, The dispersion treatment was performed at a peripheral speed of 9 m / s over 3 hours. Thereafter, the dispersant uptake rate was estimated by the following equation from the polymer amount of the powder 2 after filtration and the added polymer amount obtained by suction filtration in the same manner as described above. In addition, the following “amount of polymer containing powder after filtration” is calculated by a difference in mass between “a mass of powder 2 after filtration” and “amount of pigment added below”.
(Dispersant uptake rate) = (Amount of polymer containing powder after filtration) / (Amount of added polymer) × 100
The results are shown in Table 2A (the unit in the table is% by mass).
(分散剤埋包率評価)
 前記ろ過後粉末含有ポリマー量(ろ過後粉末2の質量-添加顔料量)と顔料を析出させるときに添加した顔料の質量〔添加顔料量〕(添加した顔料が全量析出して微粒子化したとみなした。)から分散剤埋包率を下式により見積もった。
 (分散剤埋包率)=(ろ過後粉末含有ポリマー量)/(添加顔料量)×100
 その結果を表2に示す(表中の単位は質量%である。)。
(Dispersant embedding rate evaluation)
The amount of the polymer containing powder after filtration (mass of powder 2 after filtration−the amount of added pigment) and the mass of pigment added when the pigment is deposited [added pigment amount] The embedding rate of the dispersant was estimated from the following formula.
(Dispersant embedding rate) = (Amount of powder-containing polymer after filtration) / (Amount of added pigment) × 100
The results are shown in Table 2 (the unit in the table is% by mass).
(CR・経時CR評価)
 前記顔料分散組成物を、それぞれガラス基板上に100℃で3分間乾燥させた後の塗布膜の厚みが1.4μmになるように塗布し、サンプルを作製した。さらに上記顔料分散組成物を分散30日後に再度上記と同様の方法で塗布し、下記のようにしてコントラストを測定した。この経時コントラストと分散直後に塗布・測定したコントラストから経時コントラスト変化率を下式により算出した
 (経時変化率)=(初期コントラスト)/(経時コントラスト)
 その結果を表2Aに示す。
(CR / chronological CR evaluation)
The pigment dispersion composition was applied on a glass substrate at 100 ° C. for 3 minutes so that the thickness of the coating film was 1.4 μm to prepare a sample. Further, the pigment dispersion composition was applied again in the same manner as described above 30 days after the dispersion, and the contrast was measured as follows. The time-dependent contrast change rate was calculated from the time-dependent contrast and the contrast applied and measured immediately after dispersion by the following equation: (Time-dependent change rate) = (initial contrast) / (time-dependent contrast)
The results are shown in Table 2A.
[コントラスト測定]
 得られた顔料分散組成物試料を、それぞれガラス基板上に厚みが2μmになるように塗布し、サンプルを作製した。バックライトユニットとして3波長冷陰極管光源(東芝ライテック(株)社製FWL18EX-N)に拡散板を設置したものを用い、2枚の偏光板((株)サンリツ社製の偏光板HLC2-2518)の間にこのサンプルを置き、偏光軸が平行のときと、垂直のときとの透過光量を測定し、その比をコントラストとした(「1990年第7回色彩光学コンファレンス、512色表示10.4”サイズTFT-LCD用カラーフィルタ、植木、小関、福永、山中」等参照。)。色度の測定には色彩輝度計((株)トプコン社製BM-5)を用いた。2枚の偏光板、サンプル、色彩輝度計の設置位置は、バックライトから13mmの位置に偏光板を、40mm~60mmの位置に直径11mm長さ20mmの円筒を設置し、この中を透過した光を、65mmの位置に設置した測定サンプルに照射し、透過した光を、100mmの位置に設置した偏光板を通して、400mmの位置に設置した色彩輝度計で測定した。色彩輝度計の測定角は2°に設定した。バックライトの光量は、サンプルを設置しない状態で、2枚の偏光板をパラレルニコルに設置したときの輝度が1280cd/mになるように設定した。
[Contrast measurement]
The obtained pigment dispersion composition samples were each coated on a glass substrate so as to have a thickness of 2 μm, thereby preparing samples. As a backlight unit, a three-wavelength cold-cathode tube light source (FWL18EX-N manufactured by Toshiba Lighting & Technology Co., Ltd.) is used, and two polarizing plates (polarizing plates HLC2-2518 manufactured by Sanritsu Co., Ltd.) are used. ), The amount of transmitted light when the polarization axis is parallel and vertical is measured, and the ratio is defined as the contrast (“1990 Seventh Color Optical Conference, 512-color display 10. 4 ”size TFT-LCD color filter, Ueki, Koseki, Fukunaga, Yamanaka” etc.) A color luminance meter (BM-5 manufactured by Topcon Corporation) was used for the measurement of chromaticity. Two polarizing plates, a sample, and a color luminance meter are installed at a position 13 mm from the backlight, a polarizing plate is placed at a position 40 mm to 60 mm, a cylinder 11 mm in diameter and 20 mm in length, and the light transmitted through this. Was measured on a color luminance meter installed at a position of 400 mm through a polarizing plate installed at a position of 100 mm. The measurement angle of the color luminance meter was set to 2 °. The amount of light of the backlight was set so that the luminance when the two polarizing plates were installed in parallel Nicol was 1280 cd / m 2 without the sample being installed.
[平均粒径および単分散度(粒子サイズ分布)の測定]
 得られた分散液ないし組成物中の顔料微粒子の粒径(粒子サイズ)として体積平均粒径(Mv)を、5質量%に希釈した分散液試料を用い、日機装社製ナノトラックUPA-EX150(商品名)により測定した。また同様にして測定した数平均粒(Mn)から、粒子サイズ分布を表す単分散度(Mv/Mn)を算出した。
[Measurement of average particle size and monodispersity (particle size distribution)]
Using a dispersion sample obtained by diluting the volume average particle size (Mv) to 5 mass% as the particle size (particle size) of the pigment fine particles in the obtained dispersion or composition, Nanotrack UPA-EX150 (manufactured by Nikkiso Co., Ltd.) (Trade name). Moreover, the monodispersion degree (Mv / Mn) showing particle size distribution was computed from the number average particle | grain (Mn) measured similarly.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 本実施形態の顔料微粒子を含有する分散組成物01~12は、比較試料c1~c5に比べて高い分散剤埋包率及び分散剤取込率を示しており、顔料に対して少ない分散剤の使用量において高いコントラストと、経時による分散剤の脱離を抑えて安定な分散状態を維持し、低い経時によるコントラスト変化率を達成している。 The dispersion compositions 01 to 12 containing the pigment fine particles of the present embodiment exhibit a higher dispersant embedding rate and dispersant uptake rate than the comparative samples c1 to c5, and the amount of the dispersant is smaller than that of the pigment. The amount used is high and the dissociation of the dispersing agent over time is suppressed to maintain a stable dispersion state, thereby achieving a low contrast change rate over time.
(実施例A-II、比較例A-II)
<液晶表示装置の作製>
1.インクジェット法によるCF作製とそれを用いた液晶表示装置
〔感光性転写材料の作製〕
 厚さ75μmのポリエチレンテレフタレートフィルム仮支持体の上に、スリット状ノズルを用いて、下記処方H1からなる熱可塑性樹脂層用塗布液を塗布、乾燥させた。次に、下記処方P1から成る中間層用塗布液を塗布、乾燥させた。更に、下記表3に記載の組成よりなる遮光性を有する樹脂組成物K1を塗布、乾燥させ、該仮支持体の上に乾燥膜厚が15μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、乾燥膜厚が2.4μmの遮光性を有する樹脂層を設け、保護フイルム(厚さ12μmポリプロピレンフィルム)を圧着した。
 こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と遮光性を有する樹脂層とが一体となった感光性樹脂転写材料を作製し、サンプル名を感光性樹脂転写材料K1とした。
(Example A-II, Comparative Example A-II)
<Production of liquid crystal display device>
1. Fabrication of CF by inkjet method and liquid crystal display device using the same [Preparation of photosensitive transfer material]
On a 75 μm thick polyethylene terephthalate film temporary support, a coating solution for a thermoplastic resin layer having the following formulation H1 was applied and dried using a slit nozzle. Next, an intermediate layer coating solution having the following formulation P1 was applied and dried. Further, a light-shielding resin composition K1 having the composition shown in Table 3 below was applied and dried, a thermoplastic resin layer having a dry film thickness of 15 μm on the temporary support, and a dry film thickness of 1. A 6 μm intermediate layer and a light-shielding resin layer having a dry film thickness of 2.4 μm were provided, and a protective film (12 μm thick polypropylene film) was pressure-bonded.
In this way, a photosensitive resin transfer material in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), and the light-shielding resin layer are integrated is prepared, and the sample name is the photosensitive resin transfer material K1. .
*熱可塑性樹脂層用塗布液:処方H1
・メタノール                     11.1質量部
・プロピレングリコールモノメチルエーテルアセテート   6.4質量部
・メチルエチルケトン                 52.4質量部
・メチルメタクリレート/2-エチルヘキシルアクリレート/ベンジル
  メタクリレート/メタクリル酸共重合体(共重合組成比(モル比)
   =55/11.7/4.5/28.8、分子量=10万、Tg≒70℃)
                           5.83質量部
・スチレン/アクリル酸共重合体(共重合組成比(モル比)
    =63/37、分子量=1万、Tg≒100℃)  3.6質量部
・2,2-ビス[4-(メタクリロキシポリエトキシ)フェニル]
           プロパン(新中村化学工業(株)社製)
                            9.1質量部
・界面活性剤1                    0.54質量部
* Coating solution for thermoplastic resin layer: Formulation H1
Methanol 11.1 parts by mass Propylene glycol monomethyl ether acetate 6.4 parts by mass Methyl ethyl ketone 52.4 parts by mass Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio (molar ratio) )
= 55 / 11.7 / 4.5 / 28.8, molecular weight = 100,000, Tg≈70 ° C.)
5.83 parts by mass / styrene / acrylic acid copolymer (copolymerization composition ratio (molar ratio))
= 63/37, molecular weight = 10,000, Tg≈100 ° C.) 3.6 parts by mass. 2,2-bis [4- (methacryloxypolyethoxy) phenyl]
Propane (manufactured by Shin-Nakamura Chemical Co., Ltd.)
9.1 parts by mass / surfactant 1 0.54 parts by mass
<界面活性剤1>(メガファックF-780-F(大日本インキ化学工業(株)社製))・C13CHCHOCOCH=CH:40質量部と
 H(OCH(CH)CHOCOCH=CH:55質量部と
 H(OCHCHOCOCH=CH:5質量部と
                   共重合体(分子量3万)
                             30質量部
・メチルエチルケトン                   70質量部
<Surfactant 1> (Megafac F-780-F (manufactured by Dainippon Ink and Chemicals))) C 6 F 13 CH 2 CH 2 OCOCH = CH 2 : 40 parts by mass and H (OCH (CH 3 ) CH 2 ) 7 OCOCH═CH 2 : 55 parts by mass and H (OCH 2 CH 2 ) 7 OCOCH═CH 2 : 5 parts by mass and copolymer (molecular weight 30,000)
30 parts by mass, 70 parts by mass of methyl ethyl ketone
<中間層(酸素遮断層)用塗布液処方:P1>
・ポリビニルアルコール・・・・・・・・・・・・・・・・32.2質量部
  (PVA205(鹸化率=88%);(株)クラレ社製)
・ポリビニルピロリドン・・・・・・・・・・・・・・・・14.9質量部
  (PVP、K-30;アイエスピー・ジャパン株式会社製)
・メタノール・・・・・・・・・・・・・・・・・・・・・・429質量部
・蒸留水・・・・・・・・・・・・・・・・・・・・・・・・524質量部
<Intermediate layer (oxygen barrier layer) coating formulation: P1>
-Polyvinyl alcohol ... 32.2 parts by mass (PVA205 (saponification rate = 88%); manufactured by Kuraray Co., Ltd.)
・ Polyvinylpyrrolidone ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 14.9 parts by mass (PVP, K-30; manufactured by IPS Japan Ltd.)
・ Methanol ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 429 parts by mass ・ Distilled water ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・.... 524 parts by mass
  [表3A]
Figure JPOXMLDOC01-appb-I000028
[Table 3A]
Figure JPOXMLDOC01-appb-I000028
 遮光性を有する樹脂組成物K1は、まずK顔料分散物1、プロピレングリコールモノメチルエーテルアセテートをはかり取り、温度24℃(±2℃)で混合して150rpm10分間攪拌し、次いで、バインダー1、ハイドロキノンモノメチルエーテル、DPHA液、重合開始剤A(2,4-ビス(トリクロロメチル)-6-[4’-(N,N-ビスエトキシカルボニルメチル)アミノ-3’-ブロモフェニル]-s-トリアジン)、界面活性剤1をはかり取り、温度25℃(±2℃)でこの順に添加して、温度40℃(±2℃)で150rpm30分間攪拌することによって得られた。 The resin composition K1 having a light-shielding property is first weighed K pigment dispersion 1 and propylene glycol monomethyl ether acetate, mixed at a temperature of 24 ° C. (± 2 ° C.) and stirred at 150 rpm for 10 minutes, and then binder 1 and hydroquinone monomethyl. Ether, DPHA solution, polymerization initiator A (2,4-bis (trichloromethyl) -6- [4 ′-(N, N-bisethoxycarbonylmethyl) amino-3′-bromophenyl] -s-triazine), Surfactant 1 was weighed out, added in this order at a temperature of 25 ° C. (± 2 ° C.), and stirred at a temperature of 40 ° C. (± 2 ° C.) at 150 rpm for 30 minutes.
<K顔料分散物1>
・カーボンブラック
 (デグッサ社製、商品名Special Black250)
                           13.1質量部
・下記顔料分散剤A                  0.65質量部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比
   のランダム共重合物、分子量3.7万)      6.72質量部
・プロピレングリコールモノメチルエーテルアセテート 79.53質量部
<K pigment dispersion 1>
・ Carbon black (Degussa, trade name Special Black250)
13.1 parts by mass-Pigment Dispersant A 0.65 parts by mass-Polymer (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, molecular weight 37,000) 6.72 parts by mass propylene glycol 79.53 parts by mass of monomethyl ether acetate
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000029
<バインダー1>
・ポリマー(ベンジルメタクリレート/メタクリル酸=78/22モル比
             のランダム共重合物、分子量4万)
                             27質量部
・プロピレングリコールモノメチルエーテルアセテート    73質量部
<Binder 1>
-Polymer (benzyl methacrylate / methacrylic acid = 78/22 molar ratio random copolymer, molecular weight 40,000)
27 parts by mass / propylene glycol monomethyl ether acetate 73 parts by mass
<DPHA液>
・ジペンタエリスリトールヘキサアクリレート
  (重合禁止剤MEHQ 500ppm含有、
   日本化薬(株)社製、商品名:KAYARAD DPHA)
                             76質量部
・プロピレングリコールモノメチルエーテルアセテート    24質量部
<DPHA solution>
・ Dipentaerythritol hexaacrylate (containing 500 ppm of polymerization inhibitor MEHQ,
Nippon Kayaku Co., Ltd., trade name: KAYARAD DPHA)
76 parts by mass / propylene glycol monomethyl ether acetate 24 parts by mass
〔遮光性を有する隔壁の形成〕
 無アルカリガラス基板を、25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学工業(株)社製)をシャワーにより20秒間吹き付け、純水シャワー洗浄した。この基板を基板予備加熱装置で100℃2分加熱した。
[Formation of light-blocking partition walls]
A non-alkali glass substrate is washed with a rotating brush having nylon bristles while spraying a glass detergent solution adjusted to 25 ° C. for 20 seconds by showering. After washing with pure water, silane coupling solution (N-β (aminoethyl) A 0.3% by mass aqueous solution of γ-aminopropyltrimethoxysilane, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed for 20 seconds with a shower and washed with pure water. This substrate was heated at 100 ° C. for 2 minutes by a substrate preheating apparatus.
 前記感光性樹脂転写材料K1の保護フイルムを剥離後、ラミネータ(株式会社日立インダストリイズ社製(LamicII型))を用い、前記100℃で2分間加熱した基板に、ゴムローラー温度130℃、線圧100N/cm、搬送速度2.2m/分でラミネートした。
 仮支持体を剥離後、超高圧水銀灯を有するプロキシミティ型露光機(日立ハイテク電子エンジニアリング株式会社製)で、基板とマスク(画像パターンを有す石英露光マスク)を垂直に立てた状態で、露光マスク面と該熱可塑性樹脂層の間の距離を200μmに設定し、露光量100mJ/cmでパターン露光した。マスク形状は格子状で、画素と遮光性を有する隔壁との境界線に該当する部分における、遮光性を有する隔壁側に凸な角の曲率半径は0.6μmとした。
After peeling off the protective film of the photosensitive resin transfer material K1, a substrate heated at 100 ° C. for 2 minutes using a laminator (manufactured by Hitachi Industries, Ltd. (Lamic II type)), a rubber roller temperature of 130 ° C., a wire Lamination was performed at a pressure of 100 N / cm and a conveyance speed of 2.2 m / min.
After peeling off the temporary support, exposure is performed with a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultra-high pressure mercury lamp with the substrate and mask (quartz exposure mask with image pattern) standing vertically. The distance between the mask surface and the thermoplastic resin layer was set to 200 μm, and pattern exposure was performed with an exposure amount of 100 mJ / cm 2 . The mask shape is a lattice shape, and the radius of curvature of the corner protruding toward the light-shielding partition wall in the portion corresponding to the boundary line between the pixel and the light-shielding partition wall is 0.6 μm.
 次に、トリエタノールアミン系現像液(2.5%のトリエタノールアミン含有、ノニオン性界面活性剤含有、ポリプロピレン系消泡剤含有、商品名:T-PD1、富士写真フイルム株式会社製)にて30℃50秒、フラットノズル圧力0.04MPaでシャワー現像し熱可塑性樹脂層と中間層(酸素遮断層)を除去した。
 引き続き炭酸ナトリウム系現像液(0.06モル/リットルの炭酸水素ナトリウム、同濃度の炭酸ナトリウム、1%のジブチルナフタレンスルホン酸ナトリウム、アニオン性界面活性剤、消泡剤、安定剤含有、商品名:T-CD1、富士写真フイルム株式会社製)を用い、29℃30秒、コーン型ノズル圧力0.15MPaでシャワー現像し遮光性を有する樹脂層を現像しパターニング離画壁(遮光性を有する隔壁パターン)を得た。
Next, with a triethanolamine developer (2.5% triethanolamine-containing, nonionic surfactant-containing, polypropylene-based antifoaming agent, trade name: T-PD1, manufactured by Fuji Photo Film Co., Ltd.) Shower development was performed at 30 ° C. for 50 seconds and a flat nozzle pressure of 0.04 MPa to remove the thermoplastic resin layer and the intermediate layer (oxygen barrier layer).
Subsequently, sodium carbonate developer (0.06 mol / liter sodium bicarbonate, sodium carbonate of the same concentration, 1% sodium dibutylnaphthalenesulfonate, anionic surfactant, antifoaming agent, stabilizer, trade name: Using T-CD1, Fuji Photo Film Co., Ltd., shower development at 29 ° C. for 30 seconds and cone type nozzle pressure of 0.15 MPa to develop a light-shielding resin layer, and patterning separation wall (a partition pattern having a light-shielding property) )
 引き続き洗浄剤(燐酸塩・珪酸塩・ノニオン性界面活性剤・消泡剤・安定剤含有、商品名「T-SD1(富士写真フイルム株式会社製)」)を用い、33℃20秒、コーン型ノズル圧力0.02MPaでシャワーとナイロン毛を有す回転ブラシにより残渣除去を行い、遮光性を有する隔壁を得た。その後更に、該基板に対して該樹脂層の側から超高圧水銀灯で500mJ/cmの光でポスト露光後、240℃、50分熱処理した。 Subsequently, a detergent (containing phosphate, silicate, nonionic surfactant, antifoaming agent and stabilizer, trade name “T-SD1 (manufactured by Fuji Photo Film Co., Ltd.)”), 33 ° C., 20 seconds, cone type Residue removal was performed with a rotary brush having a shower and nylon hair at a nozzle pressure of 0.02 MPa to obtain a light-shielding partition. Thereafter, the substrate was further post-exposed with light of 500 mJ / cm 2 with an ultra-high pressure mercury lamp from the resin layer side, and then heat treated at 240 ° C. for 50 minutes.
〔プラズマ撥水化処理〕
 その後、下記方法によりプラズマ撥水化処理を行った。
 遮光性を有する隔壁を形成した前記基板に、カソードカップリング方式平行平板型プラズマ処理装置を用いて、以下の条件にてプラズマ撥水化処理を行った。
  使用ガス :CF
  ガス流量 :80sccm
  圧力 :40Pa
  RFパワー :50W
  処理時間 :30sec
[Plasma water repellency treatment]
Thereafter, plasma water repellency treatment was performed by the following method.
Plasma water repellency treatment was performed on the substrate on which the light-shielding partition walls were formed using a cathode coupling parallel plate type plasma processing apparatus under the following conditions.
Gas used: CF 4
Gas flow rate: 80sccm
Pressure: 40Pa
RF power: 50W
Processing time: 30 sec
〔カラーフィルタ用インクジェットインクの調製〕
 特開2002-201387号公報の実施例1を参考に以下の処方でカラーフィルタ用インクジェットインクを調製した。
[Preparation of inkjet ink for color filter]
An ink-jet ink for a color filter was prepared with the following formulation with reference to Example 1 of JP-A-2002-201387.
<Rインク1>
 顔料分散組成物 01                  51質量部
 ジペンタエリスリトールペンタアクリレート       2.0質量部
 トリプロピレングリコールジアクリレート        4.5質量部
 2-メチル-1-[4-(メチルチオ)フェニル]
     -2-モンフォリノプロペン-1-オン     2.0質量部
 ジエチレングリコールモノブチルエーテルアセテート、
                 29.9dyn/cm  44質量部
<R ink 1>
Pigment dispersion composition 01 51 parts by weight Dipentaerythritol pentaacrylate 2.0 parts by weight Tripropylene glycol diacrylate 4.5 parts by weight 2-methyl-1- [4- (methylthio) phenyl]
-2-Monfolinopropen-1-one 2.0 parts by mass Diethylene glycol monobutyl ether acetate,
29.9 dyn / cm 44 parts by mass
<Rインク2~12、Rインクc1~c5>
 Rインク1の顔料分散組成物01に代え02~12、c1~c5をそれぞれ用いた以外同様にして、Rインク2~12、Rインクc1~c5を調製した。
<R ink 2 to 12, R ink c1 to c5>
R inks 2 to 12 and R inks c1 to c5 were prepared in the same manner except that 02 to 12 and c1 to c5 were used instead of the pigment dispersion composition 01 of R ink 1.
<Gインク1>
 G顔料(C.I.P.B.36)            6.0質量部
 高分子分散剤(AVECIA社製 ソルスパース24000)
                            2.0質量部
 バインダー(ベンジルメタクリレート-メタクリル酸共重合体)
                            4.6質量部
 ジペンタエリスリトールペンタアクリレート       2.0質量部
 トリプロピレングリコールジアクリレート        5.0質量部
 2-メチル-1-[4-(メチルチオ)フェニル]-2-
              モンフォリノプロペン-1-オン
                            2.0質量部
 ジエチレングリコールモノブチルエーテルアセテート、
                  29.9dyn/cm 80質量部
<G ink 1>
G pigment (C.I.P.B.36) 6.0 parts by mass Polymer dispersant (Solsperse 24000, manufactured by AVECIA)
2.0 parts by weight binder (benzyl methacrylate-methacrylic acid copolymer)
4.6 parts by mass Dipentaerythritol pentaacrylate 2.0 parts by mass Tripropylene glycol diacrylate 5.0 parts by mass 2-methyl-1- [4- (methylthio) phenyl] -2-
Monforinopropen-1-one 2.0 parts by mass diethylene glycol monobutyl ether acetate,
29.9 dyn / cm 80 parts by mass
<Bインク1>
 G顔料(C.I.P.B.15.6)          6.0質量部
 高分子分散剤(AVECIA社製 ソルスパース24000)
                            2.0質量部
 バインダー(ベンジルメタクリレート-メタクリル酸共重合体)
                            4.6質量部
 ジペンタエリスリトールペンタアクリレート       2.0質量部
 トリプロピレングリコールジアクリレート        5.0質量部
 2-メチル-1-[4-(メチルチオ)フェニル]-2-
          モンフォリノプロペン-1-オン   2.0質量部
 ジエチレングリコールモノブチルエーテルアセテート、
               29.9dyn/cm    80質量部
<B ink 1>
G pigment (C.I.P.B.15.6) 6.0 parts by mass Polymer dispersant (Solsperse 24000, manufactured by AVECIA)
2.0 parts by weight binder (benzyl methacrylate-methacrylic acid copolymer)
4.6 parts by mass Dipentaerythritol pentaacrylate 2.0 parts by mass Tripropylene glycol diacrylate 5.0 parts by mass 2-methyl-1- [4- (methylthio) phenyl] -2-
Monforinopropen-1-one 2.0 parts by mass diethylene glycol monobutyl ether acetate,
29.9 dyn / cm 80 parts by mass
 上記表3の各成分の混合については、先ず、顔料及び高分子分散剤を溶剤の一部に投入、混合し、3本ロールとビーズミルを用いて攪拌して顔料分散液を得た。一方、他の配合成分を溶剤の残部に投入、攪拌して溶解分散し、バインダー溶液を得た。そして、顔料分散液または顔料分散組成物を少量ずつバインダー溶液中に添加しながらディソルバーで十分に攪拌し、カラーフィルタ用インクジェットインクを調製した。 Regarding the mixing of each component in Table 3 above, first, a pigment and a polymer dispersant were added to a part of the solvent, mixed, and stirred using a three roll and bead mill to obtain a pigment dispersion. On the other hand, other blending components were added to the remainder of the solvent, and dissolved and dispersed by stirring to obtain a binder solution. Then, while adding the pigment dispersion or the pigment dispersion composition little by little to the binder solution, the mixture was sufficiently stirred with a dissolver to prepare an inkjet ink for a color filter.
 上記で得られたRインクを、それぞれガラス基板上に100℃で10分間乾燥させた後の塗布膜の厚みが2.0μmになるように塗布し、サンプルを作製した。作製したサンプルのコントラストを実施例A-Iと同様に測定した。さらに、上記Rインクを分散30日後に再度上記と同様の方法で塗布し、コントラストを測定した。この経時コントラストと作製直後に塗布・測定したコントラストから経時変化率を算出した。その時の結果を表4Aに示す。 Each of the R inks obtained above was applied on a glass substrate at 100 ° C. for 10 minutes so as to have a coating film thickness of 2.0 μm to prepare a sample. The contrast of the prepared sample was measured in the same manner as in Example AI. Further, the R ink was applied again in the same manner as described above 30 days after dispersion, and the contrast was measured. The rate of change with time was calculated from this time-dependent contrast and the contrast applied and measured immediately after fabrication. The results at that time are shown in Table 4A.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 本実施形態のインクジェットインク(Rインク1~12)は、比較試料Rインクc1~c5に比べて高い初期コントラストと経時での低いコントラスト変化率を両立していることが分かる。 It can be seen that the ink-jet inks (R inks 1 to 12) of the present embodiment have both a high initial contrast and a low contrast change rate over time as compared with the comparative sample R inks c1 to c5.
(実施例A-III、比較例A-III)
〔画素形成〕
 上記で得られたRインク1、Gインク1、Bインク1をピエゾ方式のヘッドを用いて、まず以下のようにして遮光性隔壁に囲まれた凹部にインクを打滴した。そして下記のようにして、本発明のカラーフィルタを得た。
 ヘッドは25.4mmあたり150のノズル密度で、318ノズルを有しており、これを2個ノズル列方向にノズル間隔の1/2ずらして固定することにより、基板上にはノズル配列方向に25.4mmあたり300滴打滴される。
 ヘッドおよびインクは、ヘッド内に温水を循環させることにより吐出部分近辺が50±0.5℃となるように制御されている。
 ヘッドからのインク吐出は、ヘッドに付与されるピエゾ駆動信号により制御され、一滴あたり6~42plの吐出が可能であって、本実施例ではヘッドの下1mmの位置でガラス基板が搬送されながらヘッドより打滴される。搬送速度は50~200mm/sの範囲で設定可能である。またピエゾ駆動周波数は最大4.6kHzまでが可能であって、これらの設定により打滴量を制御することができる。
(Example A-III, Comparative Example A-III)
[Pixel formation]
The R ink 1, G ink 1, and B ink 1 obtained above were first ejected into a recess surrounded by a light-shielding partition as follows using a piezo type head. And the color filter of this invention was obtained as follows.
The head has a nozzle density of 150 per 25.4 mm, and has 318 nozzles. By fixing these two nozzles in the nozzle row direction with a shift of 1/2 the nozzle interval, 25 heads are arranged on the substrate in the nozzle array direction. . 300 drops per 4 mm.
The head and ink are controlled so that the vicinity of the ejection portion is 50 ± 0.5 ° C. by circulating hot water in the head.
Ink ejection from the head is controlled by a piezo drive signal applied to the head, and ejection of 6 to 42 pl per droplet is possible. In this embodiment, the head is moved while the glass substrate is conveyed at a position 1 mm below the head. More drops. The conveyance speed can be set in the range of 50 to 200 mm / s. The piezo drive frequency can be up to 4.6 kHz, and the droplet ejection amount can be controlled by these settings.
 R、G、Bそれぞれ、顔料の塗設量が、1.1g/m、1.8g/m、0.75g/mとなるように、搬送速度、駆動周波数を制御し、所望するR、G、Bに対応する凹部にR、G、Bのインクを打滴した。
 打滴されたインクは、露光部に搬送され、紫外発光ダイオード(UV-LED)により露光される。UV-LEDは日亜化学社製NCCU033(商品名)を用いた。本LEDは1チップから波長365nmの紫外光を出力するものであって、約500mAの電流を通電することにより、チップから約100mWの光が発光される。これを7mm間隔に複数個配列し、表面で0.3W/cmのパワーが得られる。打滴後露光されるまでの時間、および露光時間はメディアの搬送速度およびヘッドとLEDの搬送方向の距離により変更可能である。着弾後、100度で10分間乾燥させ、その後露光した。
 距離および搬送速度の設定に応じて、メディア上の露光エネルギーを0.01~15J/cmの間で調整することができる。搬送速度により露光エネルギーを調整した。
 これら露光パワー、露光エネルギーの測定にはウシオ電機製スペクトロラディオメータURS-40D(商品名)を用い、波長220nmから400nmの間を積分した値を用いた。
 打滴後のガラス基板を230℃オーブン中で30分ベークすることで、遮光性隔壁、各画素共に完全に硬化させた。
Each of R, G, and B is desired by controlling the conveying speed and the driving frequency so that the coating amount of the pigment is 1.1 g / m 2 , 1.8 g / m 2 , and 0.75 g / m 2. R, G, and B inks were ejected into the recesses corresponding to R, G, and B.
The ejected ink is conveyed to an exposure unit and exposed by an ultraviolet light emitting diode (UV-LED). As the UV-LED, NCCU033 (trade name) manufactured by Nichia Corporation was used. This LED outputs ultraviolet light having a wavelength of 365 nm from one chip. When a current of about 500 mA is applied, light of about 100 mW is emitted from the chip. A plurality of these are arranged at intervals of 7 mm, and a power of 0.3 W / cm 2 can be obtained on the surface. The exposure time after the droplet ejection and the exposure time can be changed according to the transport speed of the medium and the distance between the head and the LED in the transport direction. After landing, the film was dried at 100 degrees for 10 minutes and then exposed.
Depending on the setting of the distance and the conveyance speed, the exposure energy on the medium can be adjusted between 0.01 and 15 J / cm 2 . The exposure energy was adjusted according to the conveyance speed.
For measurement of these exposure power and exposure energy, a spectroradiometer URS-40D (trade name) manufactured by USHIO ELECTRIC CO., LTD. Was used, and a value obtained by integrating between wavelengths 220 nm and 400 nm was used.
The glass substrate after droplet ejection was baked in an oven at 230 ° C. for 30 minutes, so that both the light-shielding partition and each pixel were completely cured.
[液晶表示装置の作製]
 上記作製したカラーフィルタ(カラーフィルタIII01とする)を用いて液晶表示装置を作製し表示特性の評価を行った。
(ITO電極の形成)
 カラーフィルタが形成されたガラス基板をスパッタ装置に入れて、100℃で1300Å厚さのITO(インヂウム錫酸化物)を全面真空蒸着した後、240℃で90分間アニールしてITOを結晶化し、ITO透明電極を形成した。
(スペーサの形成)
 特開2004-240335号公報の[実施例1]に記載のスペーサ形成方法と同様の方法で、上記で作製したITO透明電極上にスペーサを形成した。
(液晶配向制御用突起の形成)
 下記のポジ型感光性樹脂層用塗布液を用いて、前記スペーサを形成したITO透明電極上に液晶配向制御用突起を形成した。
 但し、露光、現像、及び、ベーク工程は、以下の方法を用いた。
 所定のフォトマスクが感光性樹脂層の表面から100μmの距離となるようにプロキシミティ露光機(日立ハイテク電子エンジニアリング株式会社製)を配置し、該フォトマスクを介して超高圧水銀灯により照射エネルギー150mJ/cmでプロキシミティ露光した。
 続いて、2.38%テトラメチルアンモニウムヒドロキシド水溶液を、シャワー式現像装置にて33℃で30秒間基板に噴霧しながら現像した。こうして、感光性樹脂層の不要部(露光部)を現像除去することにより、カラーフィルタ側基板上に、所望の形状にパターニングされた感光性樹脂層よりなる液晶配向制御用突起が形成された液晶表示装置用基板を得た。
 次いで、該液晶配向制御用突起が形成された液晶表示装置用基板を230℃下で30分ベークすることにより、液晶表示装置用基板上に硬化された液晶配向制御用突起を形成した。
[Production of liquid crystal display devices]
A liquid crystal display device was produced using the produced color filter (referred to as color filter III01) and the display characteristics were evaluated.
(Formation of ITO electrode)
The glass substrate on which the color filter is formed is put into a sputtering apparatus, and 1300 mm thick ITO (indium tin oxide) is vacuum-deposited on the entire surface at 100 ° C., and then annealed at 240 ° C. for 90 minutes to crystallize the ITO. A transparent electrode was formed.
(Spacer formation)
A spacer was formed on the ITO transparent electrode produced above by the same method as the spacer forming method described in [Example 1] of JP-A-2004-240335.
(Formation of liquid crystal alignment control protrusions)
A liquid crystal alignment control protrusion was formed on the ITO transparent electrode on which the spacer was formed, using the following positive photosensitive resin layer coating solution.
However, the following methods were used for exposure, development, and baking.
A proximity exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) is arranged so that the predetermined photomask is at a distance of 100 μm from the surface of the photosensitive resin layer, and the irradiation energy is 150 mJ / Proximity exposure was performed at cm 2 .
Subsequently, a 2.38% tetramethylammonium hydroxide aqueous solution was developed by spraying it on a substrate at 33 ° C. for 30 seconds in a shower type developing device. In this way, by removing the unnecessary portion (exposed portion) of the photosensitive resin layer by developing and removing the liquid crystal, the liquid crystal alignment control protrusions made of the photosensitive resin layer patterned into a desired shape are formed on the color filter side substrate. A display device substrate was obtained.
Next, the liquid crystal alignment control projection on which the liquid crystal alignment control protrusion was formed was baked at 230 ° C. for 30 minutes to form a cured liquid crystal alignment control protrusion on the liquid crystal display substrate.
<ポジ型感光性樹脂層用塗布液処方>
・ポジ型レジスト液(富士フイルムエレクトロニクス
        マテリアルズ(株)社製FH-2413F)
                         : 53.3質量部
・メチルエチルケトン               : 46.7質量部
・メガファックF-780F(大日本インキ化学工業(株)社製)
                         : 0.04質量部
<Positive photosensitive resin layer coating solution formulation>
・ Positive resist solution (FH-2413F manufactured by FUJIFILM Electronics Materials Co., Ltd.)
: 53.3 parts by mass / Methyl ethyl ketone: 46.7 parts by mass / Megafac F-780F (Dainippon Ink Chemical Co., Ltd.)
: 0.04 parts by mass
(液晶表示装置の作成)
 上記で得られた液晶表示装置用基板上に更にポリイミドよりなる配向膜を設けた。
 その後、カラーフィルタの画素群を取り囲むように周囲に設けられたブラックマトリックス外枠に相当する位置にエポキシ樹脂のシール剤を印刷すると共に、MVAモード用液晶を滴下し、対向基板と貼り合わせた後、貼り合わされた基板を熱処理してシール剤を硬化させた。このようにして得た液晶セルの両面に、(株)サンリッツ社製の偏光板HLC2-2518を貼り付けた。次いで、3波長冷陰極管光源(東芝ライテック(株)社製FWL18EX-N)のバックライトを構成し、前記偏光板が設けられた液晶セルの背面となる側に配置し、液晶表示装置III01とした。
(Creation of liquid crystal display device)
An alignment film made of polyimide was further provided on the liquid crystal display substrate obtained above.
After that, an epoxy resin sealant is printed at a position corresponding to a black matrix outer frame provided around the pixel group of the color filter, and MVA mode liquid crystal is dropped and bonded to the counter substrate. The bonded substrate was heat treated to cure the sealant. Polarizing plates HLC2-2518 manufactured by Sanlitz Co., Ltd. were attached to both surfaces of the liquid crystal cell thus obtained. Next, a backlight of a three-wavelength cold-cathode tube light source (FWL18EX-N manufactured by Toshiba Lighting & Technology Co., Ltd.) was constructed and placed on the back side of the liquid crystal cell provided with the polarizing plate. did.
 カラーフィルタIII01から液晶表示装置III01を作製する際に用いたRインク1を、それぞれRインク2~12、c1~c5に変更する以外は上記カラーフィルタおよび上記液晶表示装置と全く同様にカラーフィルタIII02~III12、IIIc1~IIIc5および液晶表示装置III0~III12、IIIc1~IIIc5を作製し、同様に評価した。 The color filter III02 is exactly the same as the color filter and the liquid crystal display device, except that the R ink 1 used in manufacturing the liquid crystal display device III01 from the color filter III01 is changed to R inks 2 to 12 and c1 to c5, respectively. To III12, IIIc1 to IIIc5 and liquid crystal display devices III0 to III12 and IIIc1 to IIIc5 were prepared and evaluated in the same manner.
<インクおよび液晶表示装置の評価>
〔表示特性の評価〕
 液晶表示装置から液晶表示装置用基板上を取り出し、実施例A-Iと同様にコントラストを測定し、液晶表示装置の表示特性を評価した。
<Evaluation of ink and liquid crystal display device>
[Evaluation of display characteristics]
The liquid crystal display device substrate was taken out from the liquid crystal display device, and the contrast was measured in the same manner as in Example AI to evaluate the display characteristics of the liquid crystal display device.
 本実施形態のカラーフィルタ用インクジェットインクを用いて作製したカラーフィルタ及び液晶表示装置は、高いコントラストを示した。さらに、本発明の液晶表示装置は黒表示時に漏れ光が少ないしまった黒色を表現でき、その結果高い描写力を示した。 The color filter and liquid crystal display device produced using the color filter inkjet ink of this embodiment showed high contrast. Furthermore, the liquid crystal display device of the present invention can express black with little leakage light during black display, and as a result, exhibits high descriptive power.
2.着色感光性樹脂組成物によるCF作製とそれを用いた液晶表示装置
(実施例A-IV、比較例A-IV)
 顔料分散組成物01を下記表5Aの組成となるよう他の成分と混合して、カラーフィルタ用着色感光性樹脂組成物01を調製した。
2. Production of CF with colored photosensitive resin composition and liquid crystal display device using the same (Example A-IV, Comparative Example A-IV)
The pigment dispersion composition 01 was mixed with other components so as to have the composition shown in Table 5A below to prepare a colored photosensitive resin composition 01 for a color filter.
  [表5A]
Figure JPOXMLDOC01-appb-I000031
[Table 5A]
Figure JPOXMLDOC01-appb-I000031
 <バインダー2>
・ポリマー(ベンジルメタクリレート/メタクリル酸/メチルメタクリレート
    =38/25/37モル比のランダム共重合物、分子量4万)
                             27質量部
・プロピレングリコールモノメチルエーテルアセテート
                             73質量部
 <界面活性剤2>
・下記構造物1                      30質量部
・メチルエチルケトン                   70質量部
<Binder 2>
・ Polymer (benzyl methacrylate / methacrylic acid / methyl methacrylate = 38/25/37 molar ratio random copolymer, molecular weight 40,000)
27 parts by mass / propylene glycol monomethyl ether acetate 73 parts by mass <Surfactant 2>
・ The following structure 1 30 mass parts ・ Methyl ethyl ketone 70 mass parts
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 顔料分散組成物01に代え、顔料分散組成物02~12,c1~c5をそれぞれ用いた以外、上記と同様にして、カラーフィルタ用着色感光性樹脂組成物02~12,c1~c5をそれぞれ調製した。
 ガラス基板上に前記カラーフィルタ作製用の着色感光性組成物を、スピンコーターを用いて塗布し、100℃で2分間乾燥させて、約2μmの厚みの膜を形成した。作製したサンプルのコントラストを実施例A-Iと同様に測定した。さらに、上記着色感光性組成物を分散30日後に再度上記と同様の方法で塗布し、コントラストを測定した。この経時コントラストと作製直後に塗布・測定したコントラストから経時変化率を算出した。その時の結果を表6に示す。結果を、下記表6Aに示した。
Colored photosensitive resin compositions for color filters 02 to 12, and c1 to c5 were prepared in the same manner as described above except that the pigment dispersion compositions 02 to 12 and c1 to c5 were used instead of the pigment dispersion composition 01, respectively. did.
The colored photosensitive composition for producing the color filter was applied on a glass substrate using a spin coater and dried at 100 ° C. for 2 minutes to form a film having a thickness of about 2 μm. The contrast of the prepared sample was measured in the same manner as in Example AI. Furthermore, the colored photosensitive composition was applied again in the same manner as described above 30 days after dispersion, and the contrast was measured. The rate of change with time was calculated from this time-dependent contrast and the contrast applied and measured immediately after fabrication. Table 6 shows the results at that time. The results are shown in Table 6A below.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表6Aに示すように、本発明のカラーフィルタ用着色感光性樹脂組成物01~12は、比較試料c1~c5に比べて高いコントラストと低いコントラスト変化率とを両立して達成している。 As shown in Table 6A, the colored photosensitive resin compositions for color filters 01 to 12 of the present invention achieve both a high contrast and a low contrast change rate as compared with the comparative samples c1 to c5.
(実施例A-V、比較例A-V)
[カラーフィルタの作製(スリット状ノズルを用いた塗布による作製)]
 〔ブラック(K)画像の形成〕
 無アルカリガラス基板を、UV洗浄装置で洗浄後、洗浄剤を用いてブラシ洗浄し、更に超純水で超音波洗浄した。該基板を120℃3分熱処理して表面状態を安定化させた。
 該基板を冷却し23℃に温調後、スリット状ノズルを有すガラス基板用コーター(エフ・エー・エス・アジア社製、商品名:MH-1600)にて、下記表7Aに記載の組成よりなる着色感光性樹脂組成物K2を塗布した。引き続きVCD(真空乾燥装置;東京応化工業(株)社製)で30秒間、溶媒の一部を乾燥して塗布層の流動性を無くした後、120℃で3分間プリベークして膜厚2.4μmの感光性樹脂層K2を得た。なお、着色感光性樹脂組成物K2の調製手順は、先の樹脂組成物K1の手順と同様である。
(Examples AV and Comparative Examples AV)
[Preparation of color filter (preparation by application using slit nozzle)]
[Formation of black (K) image]
The alkali-free glass substrate was cleaned with a UV cleaning apparatus, then brush-cleaned with a cleaning agent, and further ultrasonically cleaned with ultrapure water. The substrate was heat-treated at 120 ° C. for 3 minutes to stabilize the surface state.
After cooling the substrate and adjusting the temperature to 23 ° C., the composition described in Table 7A below is applied on a glass substrate coater (manufactured by FS Asia Co., Ltd., trade name: MH-1600) having a slit-like nozzle. A colored photosensitive resin composition K2 was applied. Subsequently, a part of the solvent was dried by VCD (vacuum drying apparatus; manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 30 seconds to eliminate the fluidity of the coating layer, and then pre-baked at 120 ° C. for 3 minutes to obtain a film thickness of 2. A 4 μm photosensitive resin layer K2 was obtained. In addition, the preparation procedure of the colored photosensitive resin composition K2 is the same as the procedure of the previous resin composition K1.
  [表7A]
Figure JPOXMLDOC01-appb-I000034
[Table 7A]
Figure JPOXMLDOC01-appb-I000034
 超高圧水銀灯を有すプロキシミティ型露光機(日立ハイテク電子エンジニアリング(株)社製)で、基板とマスク(画像パターンを有す石英露光マスク)を垂直に立てた状態で、露光マスク面と該感光性樹脂層の間の距離を200μmに設定し、露光量300mJ/cmでパターン露光した。
 次に、純水をシャワーノズルにて噴霧して、該感光性樹脂層K1の表面を均一に湿らせた後、KOH系現像液(KOH、ノニオン界面活性剤含有、商品名:CDK-1、富士フィルムエレクトロニクスマテリアルズ社製)にて23℃で80秒、フラットノズル圧力0.04MPaでシャワー現像しパターニング画像を得た。引き続き、超純水を、超高圧洗浄ノズルにて9.8MPaの圧力で噴射して残渣除去を行い、ブラック(K)の画像Kを得た。引き続き、220℃で30分間熱処理した。
In a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultra-high pressure mercury lamp, with the substrate and mask (quartz exposure mask having an image pattern) standing vertically, the exposure mask surface and the mask The distance between the photosensitive resin layers was set to 200 μm, and pattern exposure was performed at an exposure amount of 300 mJ / cm 2 .
Next, pure water is sprayed with a shower nozzle to uniformly wet the surface of the photosensitive resin layer K1, and then a KOH-based developer (KOH, containing a nonionic surfactant, trade name: CDK-1, (Fuji Film Electronics Materials Co., Ltd.) was subjected to shower development at 23 ° C. for 80 seconds and a flat nozzle pressure of 0.04 MPa to obtain a patterning image. Subsequently, ultrapure water was sprayed at a pressure of 9.8 MPa with an ultrahigh pressure washing nozzle to remove the residue, and a black (K) image K was obtained. Subsequently, heat treatment was performed at 220 ° C. for 30 minutes.
 <K顔料分散物2>
・カーボンブラック(商品名:Nipex 35、デグサ ジャパン(株)社製)
                           13.1質量部
・分散剤(下記化合物2J)              0.65質量部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比
         のランダム共重合物、分子量3.7万)
                           6.72質量部
・プロピレングリコールモノメチルエーテルアセテート 79.53質量部
<K pigment dispersion 2>
・ Carbon black (trade name: Nipex 35, manufactured by Degussa Japan Co., Ltd.)
13.1 parts by mass-Dispersant (compound 2J below) 0.65 parts by mass-polymer (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, molecular weight 37,000)
6.72 parts by mass-79.53 parts by mass of propylene glycol monomethyl ether acetate
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 <バインダー3>
・ポリマー(ベンジルメタクリレート/メタクリル酸=78/22モル比
             のランダム共重合物、分子量3.8万)
                             27質量部
・プロピレングリコールモノメチルエーテルアセテート    73質量部
<Binder 3>
-Polymer (benzyl methacrylate / methacrylic acid = 78/22 molar ratio random copolymer, molecular weight 38,000)
27 parts by mass / propylene glycol monomethyl ether acetate 73 parts by mass
 〔レッド(R)画素の形成〕
 前記画像Kを形成した基板に、下記表8Aに記載の組成よりなる着色感光性樹脂組成物R1を用い、前記ブラック(K)画像の形成と同様の工程で、熱処理済み画素Rを形成した。該感光性樹脂層R1の膜厚及び顔料の塗布量を以下に示す。なお、着色感光性樹脂組成物の調製手順は、上記着色感光性樹脂組成物K2のときと同様である。
  感光性樹脂膜厚(μm)           1.60
  顔料塗布量(g/m)           1.00
  C.I.P.R.254塗布量(g/m)  0.80
  C.I.P.R.177塗布量(g/m)  0.20
[Formation of red (R) pixels]
A heat-treated pixel R was formed on the substrate on which the image K was formed using the colored photosensitive resin composition R1 having the composition shown in Table 8A below in the same process as the formation of the black (K) image. The film thickness of the photosensitive resin layer R1 and the coating amount of the pigment are shown below. The procedure for preparing the colored photosensitive resin composition is the same as that for the colored photosensitive resin composition K2.
Photosensitive resin film thickness (μm) 1.60
Pigment coating amount (g / m 2 ) 1.00
C. I. P. R. 254 coating amount (g / m 2 ) 0.80
C. I. P. R. 177 coating amount (g / m 2 ) 0.20
  [表8A]
Figure JPOXMLDOC01-appb-I000036
[Table 8A]
Figure JPOXMLDOC01-appb-I000036
 <R顔料分散組成物01>
・実施例A-1の顔料分散組成物01(C.I.P.R.254)
                             11質量部
・プロピレングリコールモノメチルエーテルアセテート  68.2質量部
 <R顔料分散物2>
・C.I.P.R.177(商品名:Cromophtal Red A2B、
     チバ・スペシャルティ・ケミカルズ(株)社製)  18質量部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比
                のランダム共重合物、分子量3万)
                             12質量部
・プロピレングリコールモノメチルエーテルアセテート    70質量部
<R pigment dispersion composition 01>
-Pigment dispersion composition 01 of Example A-1 (C.I.P.R.254)
11 parts by mass Propylene glycol monomethyl ether acetate 68.2 parts by mass <R pigment dispersion 2>
・ C. I. P. R. 177 (Product name: Chromophthal Red A2B,
Ciba Specialty Chemicals Co., Ltd.) 18 parts by mass Polymer (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, molecular weight 30,000)
12 parts by mass / 70 parts by mass of propylene glycol monomethyl ether acetate
 〔グリーン(G)画素の形成〕
 前記画像Kと画素Rを形成した基板に、下記表9Aに記載の組成よりなる着色感光性樹脂組成物G1を用い、前記ブラック(K)画像の形成と同様の工程で、熱処理済み画素Gを形成した。該感光性樹脂層G1の膜厚及び顔料の塗布量を以下に示す。なお、着色感光性樹脂組成物の調製手順は、上記着色感光性樹脂組成物K2のときと同様である。
  感光性樹脂膜厚(μm)           1.60
  顔料塗布量(g/m)           1.92
  C.I.P.G.36塗布量(g/m)   1.34
  C.I.P.Y.150塗布量(g/m)  0.58
[Formation of green (G) pixels]
Using the colored photosensitive resin composition G1 having the composition described in Table 9A below on the substrate on which the image K and the pixel R are formed, the heat-treated pixel G is formed in the same process as the formation of the black (K) image. Formed. The film thickness of the photosensitive resin layer G1 and the coating amount of the pigment are shown below. The procedure for preparing the colored photosensitive resin composition is the same as that for the colored photosensitive resin composition K2.
Photosensitive resin film thickness (μm) 1.60
Pigment application amount (g / m 2 ) 1.92
C. I. P. G. 36 coating amount (g / m 2 ) 1.34
C. I. P. Y. 150 coating amount (g / m 2 ) 0.58
  [表9A]
Figure JPOXMLDOC01-appb-I000037
[Table 9A]
Figure JPOXMLDOC01-appb-I000037
 G顔料分散物1は、富士フィルムエレクトロニクスマテリアルズ(株)社製の「商品名:GT-2」を用いた。Y顔料分散物1は、御国色素(株)社製の「商品名:CFイエローEX3393」を用いた。 As the G pigment dispersion 1, “trade name: GT-2” manufactured by Fuji Film Electronics Materials Co., Ltd. was used. As the Y pigment dispersion 1, “trade name: CF Yellow EX3393” manufactured by Mikuni Color Co., Ltd. was used.
 〔ブルー(B)画素の形成〕
 前記画像K、画素R及び画素Gを形成した基板に、下記表10Aに記載の組成よりなる着色感光性樹脂組成物B1を用い、前記ブラック(K)画像の形成と同様の工程で、熱処理済み画素Bを形成し、目的のカラーフィルタAを得た。該感光性樹脂層B1の膜厚及び顔料の塗布量を以下に示す。該感光性樹脂層R1の膜厚及び顔料の塗布量を以下に示す。なお、着色感光性樹脂組成物の調製手順は、上記着色感光性樹脂組成物K2のときと同様である。
  感光性樹脂膜厚(μm)            1.60
  顔料塗布量(g/m)            0.75
  C.I.P.B.15:6塗布量(g/m)  0.705
  C.I.P.V.23塗布量(g/m)    0.045
[Formation of blue (B) pixels]
A colored photosensitive resin composition B1 having the composition shown in Table 10A below is used on the substrate on which the image K, the pixel R, and the pixel G are formed, and is heat-treated in the same process as the formation of the black (K) image. Pixel B was formed, and the target color filter A was obtained. The film thickness of the photosensitive resin layer B1 and the coating amount of the pigment are shown below. The film thickness of the photosensitive resin layer R1 and the coating amount of the pigment are shown below. The procedure for preparing the colored photosensitive resin composition is the same as that for the colored photosensitive resin composition K2.
Photosensitive resin film thickness (μm) 1.60
Pigment application amount (g / m 2 ) 0.75
C. I. P. B. 15: 6 coating amount (g / m 2 ) 0.705
C. I. P. V. 23 coating amount (g / m 2 ) 0.045
  [表10A]
Figure JPOXMLDOC01-appb-I000038
[Table 10A]
Figure JPOXMLDOC01-appb-I000038
 B顔料分散物1は、御国色素(株)社製の「商品名:CFブル-EX3357」を用いた。B顔料分散物2は、御国色素(株)社製の「商品名:CFブル-EX3383」を用いた。 As B pigment dispersion 1, “trade name: CF Bull-EX3357” manufactured by Mikuni Dye Co., Ltd. was used. As the B pigment dispersion 2, “trade name: CF Bull-EX3383” manufactured by Mikuni Dye Co., Ltd. was used.
 <バインダー4>
・ポリマー(ベンジルメタクリレート/メタクリル酸/メチルメタクリレート
   =36/22/42モル比のランダム共重合物、分子量3.8万)
                             27質量部
・プロピレングリコールモノメチルエーテルアセテート    73質量部
<Binder 4>
・ Polymer (benzyl methacrylate / methacrylic acid / methyl methacrylate = random copolymer of 36/22/42 molar ratio, molecular weight 38,000)
27 parts by mass / propylene glycol monomethyl ether acetate 73 parts by mass
 R顔料分散物01に用いた顔料組成物01に代えて、それぞれ、顔料組成物02~12,c1~c5を用いてR顔料分散物02~12,c1~c5を調製した。そして上記のカラーフィルタV01の作製方法に対し、R顔料分散物01に代えてR顔料分散物V02~V12,Vc1~Vc5をそれぞれ用いた以外同様にして、カラーフィルタV02~V12,Vc1~Vc5を作製した。 Instead of the pigment composition 01 used for the R pigment dispersion 01, R pigment dispersions 02 to 12, and c1 to c5 were prepared using the pigment compositions 02 to 12, and c1 to c5, respectively. Then, the color filters V02 to V12 and Vc1 to Vc5 are prepared in the same manner as the above-described method for producing the color filter V01 except that R pigment dispersions V02 to V12 and Vc1 to Vc5 are used instead of the R pigment dispersion 01, respectively. Produced.
 [液晶表示装置の作製及び評価]
 上記の各カラーフィルタを用いて液晶表示装置を作製し表示特性の評価を行った。
(ITO電極の形成)
 カラーフィルタをスパッタ装置に入れて、100℃で1300Å厚さのITO(インヂウム錫酸化物)を全面真空蒸着した後、240℃で90分間アニールしてITOを結晶化し、ITO透明電極を形成した。
(スペーサの形成)
 特開2004-240335号公報の[実施例1]に記載のスペーサ形成方法と同様の方法で、上記で作製したITO透明電極上にスペーサを形成した。
(液晶配向制御用突起の形成)
 下記のポジ型感光性樹脂層用塗布液を用いて、前記スペーサを形成したITO透明電極上に液晶配向制御用突起を形成した。
 但し、露光、現像、及び、ベーク工程は、以下の方法を用いた。
 所定のフォトマスクが感光性樹脂層の表面から100μmの距離となるようにプロキシミティ露光機(日立ハイテク電子エンジニアリング株式会社製)を配置し、該フォトマスクを介して超高圧水銀灯により照射エネルギー150mJ/cmでプロキシミティ露光した。
 続いて、2.38%テトラメチルアンモニウムヒドロキシド水溶液を、シャワー式現像装置にて33℃で30秒間基板に噴霧しながら現像した。こうして、感光性樹脂層の不要部(露光部)を現像除去することにより、カラーフィルタ側基板上に、所望の形状にパターニングされた感光性樹脂層よりなる液晶配向制御用突起が形成された液晶表示装置用基板を得た。
 次いで、該液晶配向制御用突起が形成された液晶表示装置用基板を230℃下で30分ベークすることにより、液晶表示装置用基板上に硬化された液晶配向制御用突起を形成した。
[Production and Evaluation of Liquid Crystal Display]
A liquid crystal display device was prepared using each of the above color filters, and the display characteristics were evaluated.
(Formation of ITO electrode)
The color filter was put in a sputtering apparatus, and 1300 mm thick ITO (indium tin oxide) was vacuum-deposited on the entire surface at 100 ° C., and then annealed at 240 ° C. for 90 minutes to crystallize the ITO to form an ITO transparent electrode.
(Spacer formation)
A spacer was formed on the ITO transparent electrode produced above by the same method as the spacer forming method described in [Example 1] of JP-A-2004-240335.
(Formation of liquid crystal alignment control protrusions)
A liquid crystal alignment control protrusion was formed on the ITO transparent electrode on which the spacer was formed, using the following positive photosensitive resin layer coating solution.
However, the following methods were used for exposure, development, and baking.
A proximity exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) is arranged so that the predetermined photomask is at a distance of 100 μm from the surface of the photosensitive resin layer, and the irradiation energy is 150 mJ / Proximity exposure was performed at cm 2 .
Subsequently, a 2.38% tetramethylammonium hydroxide aqueous solution was developed by spraying it on a substrate at 33 ° C. for 30 seconds in a shower type developing device. In this way, by removing the unnecessary portion (exposed portion) of the photosensitive resin layer by developing and removing the liquid crystal, the liquid crystal alignment control protrusions made of the photosensitive resin layer patterned into a desired shape are formed on the color filter side substrate. A display device substrate was obtained.
Next, the liquid crystal alignment control projection on which the liquid crystal alignment control protrusion was formed was baked at 230 ° C. for 30 minutes to form a cured liquid crystal alignment control protrusion on the liquid crystal display substrate.
<ポジ型感光性樹脂層用塗布液処方>
・ポジ型レジスト液(富士フイルムエレクトロニクス
        マテリアルズ(株)社製FH-2413F)
                         : 53.3質量部
・メチルエチルケトン               : 46.7質量部
・メガファックF-780F(大日本インキ化学工業(株)社製)
                         : 0.04質量部
<Positive photosensitive resin layer coating solution formulation>
・ Positive resist solution (FH-2413F manufactured by FUJIFILM Electronics Materials Co., Ltd.)
: 53.3 parts by mass / Methyl ethyl ketone: 46.7 parts by mass / Megafac F-780F (Dainippon Ink Chemical Co., Ltd.)
: 0.04 parts by mass
(液晶表示装置の作成)
 上記で得られた液晶表示装置用基板上に更にポリイミドよりなる配向膜を設けた。
その後、カラーフィルタの画素群を取り囲むように周囲に設けられたブラックマトリックス外枠に相当する位置にエポキシ樹脂のシール剤を印刷すると共に、MVAモード用液晶を滴下し、対向基板と貼り合わせた後、貼り合わされた基板を熱処理してシール剤を硬化させた。このようにして得た液晶セルの両面に、(株)サンリッツ社製の偏光板HLC2-2518を貼り付けた。次いで、3波長冷陰極管光源(東芝ライテック(株)社製FWL18EX-N)のバックライトを構成し、前記偏光板が設けられた液晶セルの背面となる側に配置し、液晶表示装置V01とした。
(Creation of liquid crystal display device)
An alignment film made of polyimide was further provided on the liquid crystal display substrate obtained above.
After that, an epoxy resin sealant is printed at a position corresponding to a black matrix outer frame provided around the pixel group of the color filter, and MVA mode liquid crystal is dropped and bonded to the counter substrate. The bonded substrate was heat treated to cure the sealant. Polarizing plates HLC2-2518 manufactured by Sanlitz Co., Ltd. were attached to both surfaces of the liquid crystal cell thus obtained. Next, a backlight of a three-wavelength cold cathode tube light source (FWL18EX-N manufactured by Toshiba Lighting & Technology Co., Ltd.) is constructed and placed on the back side of the liquid crystal cell provided with the polarizing plate. did.
[液晶表示装置の作製及び評価]
 液晶表示装置V01から液晶表示装置用基板上を取り出し、実施例A-Iと同様にコントラストを測定した。
[Production and Evaluation of Liquid Crystal Display]
The liquid crystal display device substrate was taken out from the liquid crystal display device V01, and the contrast was measured in the same manner as in Example AI.
 カラーフィルタV01を、それぞれカラーフィルタV02~V12,Vc1~c5に変更する以外は全く同様に液晶表示装置V02~V12,Vc1~c5を作製し、同様に評価した。 Liquid crystal display devices V02 to V12 and Vc1 to c5 were produced in the same manner except that the color filter V01 was changed to the color filters V02 to V12 and Vc1 to c5, respectively, and evaluated in the same manner.
 本実施形態のカラーフィルタ用インクジェットインクを用いて作製したカラーフィルタ及び液晶表示装置は、高いコントラストを示した。さらに、黒表示時に漏れ光が少ないしまった黒色を表現でき、その結果高い描写力を示した。 The color filter and liquid crystal display device produced using the color filter inkjet ink of this embodiment showed high contrast. In addition, it was possible to express black with little leakage light when displaying black, and as a result, it showed high descriptive power.
(実施例A-VI、比較例A-VI)
(実施例A-10)
 実施例1における顔料分散組成物01の調製におけるピグメントレッド254に替えてピグメントグリーン36、ピグメントグリーン58、ピグメントブルー15:6、ピグメントブルー79、ピグメントブルー80、ピグメントイエロー185をそれぞれ用いることにより、顔料分散組成物O、P、Q、R、S、Tを調製した。
 前記顔料分散組成物O、P、Q、R、S、Tについて実施例A-Iと同様に分散剤埋包率及び分散剤取込率を算定した結果、いずれの顔料分散組成物も5%以上の分散剤埋包率と10%以上の分散剤取込率を示した。また実施例A-Iと同様にしてコントラスト、経時コントラスト変化を測定したところ、いずれの分散組成物も高いコントラスと低い経時コントラスト変化率とを示した。
 一方、顔料分散組成物O、P、Q、R、S、Tに用いた顔料種を用い、比較例Iと同様にして比較のための顔料組成物を作製したが、上記実施例のものに比べて低いコントラストであり、しかも経時においてそのコントラストが大幅に低下した。
(Example A-VI, Comparative Example A-VI)
(Example A-10)
Pigment Green 36, Pigment Green 58, Pigment Blue 15: 6, Pigment Blue 79, Pigment Blue 80, and Pigment Yellow 185 are used in place of Pigment Red 254 in the preparation of Pigment Dispersion Composition 01 in Example 1, respectively. Dispersion compositions O, P, Q, R, S, and T were prepared.
As for the pigment dispersion compositions O, P, Q, R, S, and T, the dispersant embedding rate and the dispersant uptake rate were calculated in the same manner as in Example AI. As a result, all the pigment dispersion compositions were 5%. The above dispersant embedding rate and 10% or more dispersant uptake rate were shown. Further, when the contrast and the change in contrast with time were measured in the same manner as in Example AI, each dispersion composition showed a high contrast and a low rate of change in contrast with time.
On the other hand, a pigment composition for comparison was prepared in the same manner as in Comparative Example I using the pigment types used in Pigment Dispersion Compositions O, P, Q, R, S, and T. The contrast was lower than that, and the contrast greatly decreased over time.
(実施例A-11)
<顔料分散組成物Uの調製>
[顔料分散液の調製]
 メタンスルホン酸(和光純薬社製)1000mlに、C.I.ピグメントバイオレット23(Hostaperm Violet RL-NF クラリアント社製)50g及びグラフト重合体P-1を30.0gを添加して、顔料溶液Uを調製した。この顔料溶液Tを、ビスコメイトVM-10A-L(商品名、CBCマテリアルズ社製)を用いて粘度を測定した結果、顔料溶液Tの液温が45.0℃の時の粘度が86.2mPa・sであった。これとは別に貧溶媒として、水1600mlを用意した。
 ここで、25℃に温度コントロールし、GK-0222-10型ラモンドスターラー(商品名、藤沢薬品工業社製)により500rpmで攪拌した貧溶媒の水1600mlに、顔料溶液MをNP-KX-500型大容量無脈流ポンプ(商品名、日本精密化学社製)を用いて、流路径0.25mmの送液配管から流速70ml/minで100ml注入することにより、有機顔料粒子を形成し、顔料分散液Uを調製した。なお、この条件のレイノルズ数は92である。
 上記方法で調製した、顔料ナノ粒子分散液を(株)コクサン社製H-122型遠心濾過機および敷島カンバス(株)社製P89C型ロ布を用いて3000rpmで90分濃縮し、得られた顔料ナノ粒子濃縮ペーストを回収した。
 前記顔料ナノ粒子濃縮ペーストをホットプレート上で100℃で溶媒除去することにより有機顔料粉末U(固形分濃度96質量%)を得た。
Example A-11
<Preparation of pigment dispersion composition U>
[Preparation of pigment dispersion]
To 1000 ml of methanesulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd.), C.I. I. A pigment solution U was prepared by adding 50 g of Pigment Violet 23 (Hostaperm Violet RL-NF Clariant) and 30.0 g of the graft polymer P-1. As a result of measuring the viscosity of this pigment solution T using Viscomate VM-10A-L (trade name, manufactured by CBC Materials), the viscosity when the liquid temperature of the pigment solution T is 45.0 ° C. is 86. 2 mPa · s. Separately from this, 1600 ml of water was prepared as a poor solvent.
Here, the temperature of the solution was controlled at 25 ° C., and the pigment solution M was added to NP-KX-500 in 1600 ml of poor solvent water stirred at 500 rpm with a GK-0222-10 type Lamond Stirrer (trade name, manufactured by Fujisawa Pharmaceutical Co., Ltd.). Organic pigment particles are formed by injecting 100 ml at a flow rate of 70 ml / min from a liquid feed pipe having a channel diameter of 0.25 mm using a large-capacity non-pulsating flow pump (trade name, manufactured by Nippon Seimitsu Chemical Co., Ltd.) Dispersion U was prepared. The Reynolds number under this condition is 92.
The pigment nanoparticle dispersion prepared by the above method was concentrated at 3000 rpm for 90 minutes using an H-122 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type ro cloth manufactured by Shikishima Canvas Co., Ltd. The pigment nanoparticle concentrated paste was recovered.
The pigment nanoparticle concentrated paste was subjected to solvent removal at 100 ° C. on a hot plate to obtain an organic pigment powder U (solid content concentration: 96 mass%).
 前記顔料粉末を用い、下記組成の顔料分散組成物Uを調製した。
  有機顔料粉末U                     8.8g
  プロピレングリコールモノメチルエーテルアセテート   36.7g
 上記組成の顔料分散組成物をモーターミルM-50(アイガー・ジャパン社製)で、直径0.65mmのジルコニアビーズを用い、周速9m/sで1時間分散した。
A pigment dispersion composition U having the following composition was prepared using the pigment powder.
Organic pigment powder U 8.8g
Propylene glycol monomethyl ether acetate 36.7g
The pigment dispersion composition having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 1 hour at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm.
 前記顔料分散組成物Uについて実施例A-Iと同様に分散剤埋包率及び分散剤取込率を算定した結果、いずれの顔料分散組成物も5%以上の分散剤埋包率と10%以上の分散剤取込率を示した。また実施例1と同様にしてコントラスト、経時コントラスト変化を測定したところ、いずれの分散組成物も高いコントラスと低い経時コントラスト変化率とを示した。
 一方、顔料分散組成物Uに用いた顔料種を用い、比較例A-Iと同様にして比較のための顔料組成物を作製したが、上記実施例のものに比べて低いコントラストであり、しかも経時においてそのコントラストが大幅に低下した。
As a result of calculating the dispersant embedding rate and the dispersant uptake rate for the pigment dispersion composition U in the same manner as in Example AI, all the pigment dispersion compositions had a dispersant embedding rate of 5% or more and 10%. The above dispersant uptake rate was shown. Further, when the contrast and temporal change in contrast were measured in the same manner as in Example 1, all the dispersion compositions showed high contrast and low contrast change rate with time.
On the other hand, a pigment composition for comparison was prepared in the same manner as in Comparative Example AI using the pigment type used in Pigment Dispersion Composition U. However, the contrast was lower than that of the above Examples, and The contrast greatly decreased with time.
B・第2実施形態に係る実施例・比較例
(実施例B-I、比較例B-I)
(合成例1B)
(モノマーM-1の合成)
 2-チオバルビツール酸45.28部、水酸化ナトリウム13.82部をジメチルスルホキシド200部に溶解させ、25℃に加熱する。これにクロロメチルスチレン57.53部を滴下し、55℃でさらに5時間加熱攪拌を行う。加熱攪拌後、この反応液にメタノール150部、蒸留水150部を加えて1時間攪拌し、続いてこの溶液を蒸留水2000部に攪拌しながら注ぎ、得られた析出物を濾別、洗浄することで、前記モノマーM-1を80.1部得た。
B. Examples and Comparative Examples according to Second Embodiment (Example BI, Comparative Example BI)
(Synthesis Example 1B)
(Synthesis of Monomer M-1)
45.28 parts of 2-thiobarbituric acid and 13.82 parts of sodium hydroxide are dissolved in 200 parts of dimethyl sulfoxide and heated to 25 ° C. To this, 57.53 parts of chloromethylstyrene is dropped, and the mixture is further heated and stirred at 55 ° C. for 5 hours. After heating and stirring, 150 parts of methanol and 150 parts of distilled water are added to the reaction solution and stirred for 1 hour. Subsequently, this solution is poured into 2000 parts of distilled water while stirring, and the resulting precipitate is filtered and washed. As a result, 80.1 parts of the monomer M-1 was obtained.
(重合体PB-1の合成)
 下記のモノマー溶液を窒素置換した三口フラスコに導入し、攪拌機(新東科学(株):スリーワンモータ)にて攪拌し、窒素をフラスコ内に流しながら加熱して78℃まで昇温し30分攪拌する。続いて、下記の開始剤溶液を上記の液に添加し、2時間78℃で加熱攪拌する。加熱攪拌後、さらに下記開始剤溶液を添加し、78℃にて2時間加熱攪拌する操作を計2度繰り返す。最後の2時間攪拌後、引き続いて90度で2時間加熱攪拌する。得られた反応液をイソプロパノール1500部に攪拌しながら注ぎ、生じた沈殿を濾取して、加熱乾燥させることでグラフト重合体PB-1を得た。
(Synthesis of polymer PB-1)
The following monomer solution is introduced into a nitrogen-substituted three-necked flask and stirred with a stirrer (Shinto Kagaku Co., Ltd .: Three-One Motor). To do. Then, the following initiator solution is added to said liquid, and it heat-stirs at 78 degreeC for 2 hours. The following initiator solution is further added after heating and stirring, and the operation of heating and stirring at 78 ° C. for 2 hours is repeated twice in total. After the last 2 hours of stirring, the mixture is subsequently heated and stirred at 90 degrees for 2 hours. The obtained reaction solution was poured into 1500 parts of isopropanol while stirring, and the resulting precipitate was collected by filtration and dried by heating to obtain a graft polymer PB-1.
(モノマー溶液)
・モノマーM-1                      4.0部
・AA-6                        16.0部
・メタクリル酸                       3.0部
・1-メチル-2-ピロリドン               46.0部
(Monomer solution)
Monomer M-1 4.0 parts AA-6 16.0 parts Methacrylic acid 3.0 parts 1-methyl-2-pyrrolidone 46.0 parts
(開始剤溶液)
・2.2’-アゾビス(イソ酪酸)ジメチル(和光純薬(株)製V-601)
                              0.1部
・1-メチル-2-ピロリドン                  2部
(Initiator solution)
2.2'-azobis (isobutyric acid) dimethyl (V-601 manufactured by Wako Pure Chemical Industries, Ltd.)
0.1 part 1-methyl-2-pyrrolidone 2 parts
(合成例2B~18B)
 合成例1Bで示したモノマー組成及び開始剤組成を表1Bに変更した以外は合成例1Bと同様にして、重合体PB-2~PB-18を得た。
(Synthesis Examples 2B-18B)
Polymers PB-2 to PB-18 were obtained in the same manner as in Synthesis Example 1B, except that the monomer composition and initiator composition shown in Synthesis Example 1B were changed to Table 1B.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
AA―6:片末端メタクリロイル化ポリメチルメタクリレートオリゴマー(Mn=6000、東亜合成化学工業(株)製)
AB-6:片末端メタクリロイル化ポリ-n-ブチルメタクリレートオリゴマー(Mn=6000、東亜合成化学工業(株)製)
AS-6:片末端メタクリロイル化ポリスチレンオリゴマー(Mn=6000、東亜合成化学工業(株)製)
PE-350;ブレンマーPE-350(商品名),ポリエチレングリコールモノメタクリレート(日油(株)製)
PP-1000;ブレンマーPP-1000(商品名)、ポリプロピレングリコールモノメタクリレート(日油(株)製)
PEP-350B;ブレンマー70PEP-350B(商品名)、ポリエチレングリコールポリプロピレングリコールモノメタクリレート(日油(株)製)、
FM5;プラクセル FM5(商品名)、ポリカプロラクトンモノメタクリレート(ダイセル化学工業(株)製)
AA-6: One-terminal methacryloylated polymethyl methacrylate oligomer (Mn = 6000, manufactured by Toa Gosei Chemical Co., Ltd.)
AB-6: One-terminal methacryloylated poly-n-butyl methacrylate oligomer (Mn = 6000, manufactured by Toa Gosei Chemical Co., Ltd.)
AS-6: One-end methacryloylated polystyrene oligomer (Mn = 6000, manufactured by Toa Gosei Chemical Co., Ltd.)
PE-350; Bremer PE-350 (trade name), polyethylene glycol monomethacrylate (manufactured by NOF Corporation)
PP-1000; BLEMMER PP-1000 (trade name), polypropylene glycol monomethacrylate (manufactured by NOF Corporation)
PEP-350B; Bremmer 70PEP-350B (trade name), polyethylene glycol polypropylene glycol monomethacrylate (manufactured by NOF Corporation),
FM5: Plaxel FM5 (trade name), polycaprolactone monomethacrylate (manufactured by Daicel Chemical Industries, Ltd.)
MAA:メタクリル酸(和光純薬社製)
AA:アクリル酸(和光純薬社製)
St:スチレン(和光純薬社製)
StMA:ステアリルメタクリレート(東京化成社製)
DMA:ドデシルメタクリレート(東京化成社製)
HexMA:ヘキシルメタクリレート(東京化成社製)
MMA:メチルメタクリレート(和光純薬社製)
NMP;1-メチル-2-ピロリドン(和光純薬社製)
MAA: methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
AA: Acrylic acid (Wako Pure Chemical Industries, Ltd.)
St: Styrene (Wako Pure Chemical Industries, Ltd.)
StMA: Stearyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
DMA: dodecyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
HexMA: Hexyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
MMA: Methyl methacrylate (Wako Pure Chemical Industries, Ltd.)
NMP; 1-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.)
(実施例B-1)
 N-メチルピロリドン(和光純薬社製)1000gに、顔料C.I.ピグメントレッド254(Irgaphor Red BT-CF、商品名、チバ・スペシャルティ・ケミカルズ(株)製)50gを分散させ、ここにテトラメチルアンモニウムヒドロキシド25%メタノール溶液52.3gを滴下して顔料溶液を調製した。N-メチルピロリドン(和光純薬社製)90gに、グラフト重合体PB-1を30.0g溶解させ、ここにテトラメチルアンモニウムヒドロキシド25%メタノール溶液16.7gを滴下してポリマー溶液Aを調製した。上記顔料溶液とポリマー溶液Aとを混合し、顔料・ポリマー溶液Aを作製した。この顔料・ポリマー溶液Aを、ビスコメイトVM-10A-L(商品名、CBCマテリアルズ社製)を用いて粘度を測定した結果、顔料ポリマー溶液Aの液温が24.5℃の時の粘度が17.1mPa・sであった。これとは別に貧溶媒として、1mol/l塩酸(和光純薬社製)19gを含有したイオン交換水1000mlを用意した。
 ここで、5℃に温度コントロールし、GK-0222-10型ラモンドスターラー(商品名、藤沢薬品工業社製)により500rpmで攪拌した貧溶媒の塩酸含有イオン交換水1000mlに、顔料・ポリマー溶液AをNP-KX-500型大容量無脈流ポンプ(商品名、日本精密化学社製)を用いて、流路径1.1mmの送液配管から流速400ml/minで100ml注入することにより、有機顔料粒子を形成し、顔料ナノ粒子分散液Aを調製した。
Example B-1
To 1000 g of N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries), pigment C.I. I. 50 g of Pigment Red 254 (Irgaphor Red BT-CF, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.) is dispersed, and 52.3 g of a tetramethylammonium hydroxide 25% methanol solution is added dropwise to prepare a pigment solution. did. 30.0 g of graft polymer PB-1 was dissolved in 90 g of N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.), and 16.7 g of a 25% methanol solution of tetramethylammonium hydroxide was added dropwise to prepare a polymer solution A. did. The pigment solution and the polymer solution A were mixed to prepare a pigment / polymer solution A. As a result of measuring the viscosity of this pigment / polymer solution A using Viscomate VM-10A-L (trade name, manufactured by CBC Materials), the viscosity when the liquid temperature of the pigment polymer solution A is 24.5 ° C. Was 17.1 mPa · s. Separately, 1000 ml of ion-exchanged water containing 19 g of 1 mol / l hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was prepared as a poor solvent.
Here, the temperature was controlled at 5 ° C., and the pigment / polymer solution A was added to 1000 ml of ion-exchanged water containing hydrochloric acid as a poor solvent stirred at 500 rpm by a GK-0222-10 type Lamond Stirrer (trade name, manufactured by Fujisawa Pharmaceutical Co., Ltd.). Is injected with 100 ml at a flow rate of 400 ml / min from a liquid feed pipe having a flow path diameter of 1.1 mm using a NP-KX-500 large capacity non-pulsating pump (trade name, manufactured by Nippon Seimitsu Chemical Co., Ltd.). Particles were formed to prepare pigment nanoparticle dispersion liquid A.
 上記の手順で調製した、顔料ナノ粒子分散液Aを(株)コクサン社製H-112型遠心濾過機および敷島カンバス(株)社製P89C型ロ布を用いて5000rpmで90分濃縮し、得られた顔料ナノ粒子濃縮ペーストAを回収した。
 上記顔料ナノ粒子濃縮ペーストAをオーブンにより100℃で8時間乾燥することにより有機顔料粉末A(固形分濃度97質量%)(有機顔料含有率58質量%)を得た。
The pigment nanoparticle dispersion liquid A prepared by the above procedure was concentrated at 5000 rpm for 90 minutes using an H-112 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type ro cloth manufactured by Shikishima Canvas Co., Ltd. The resulting pigment nanoparticle concentrated paste A was recovered.
The pigment nanoparticle concentrated paste A was dried in an oven at 100 ° C. for 8 hours to obtain an organic pigment powder A (solid content concentration: 97 mass%) (organic pigment content: 58 mass%).
 前記有機顔料粉末Aを用い、下記組成の顔料分散組成物Aを調製した。
   前記有機顔料粉末A                 14.0g
   プロピレングリコールモノメチルエーテルアセテート  46.8g
Using the organic pigment powder A, a pigment dispersion composition A having the following composition was prepared.
14.0 g of the organic pigment powder A
46.8g of propylene glycol monomethyl ether acetate
 上記組成の顔料分散組成物AをモーターミルM-50(アイガー・ジャパン社製)で、直径0.65mmのジルコニアビーズを用い、周速9m/sで10時間分散し、顔料分散組成物Aを得た。 Pigment dispersion composition A having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm. Obtained.
(実施例B-2~B-9)
 実施例B-1の顔料分散組成物において、グラフト重合体をPB-2~15にする以外は実施例1と同様にして顔料分散組成物B~Oを調整した。
(Examples B-2 to B-9)
In the pigment dispersion composition of Example B-1, pigment dispersion compositions B to O were prepared in the same manner as in Example 1 except that the graft polymer was changed to PB-2 to 15.
(比較例B-1)
 1,3ブチレングリコールジアセテート液中に塩化ナトリウム、顔料C.I.ピグメントレッド254(商品名Irgaphor Red BT-CF チバ・スペシャルティケミカルズ(株)製)の紛体10g、グラフト重合体PB-1を30.0gを双腕型ニーダーに仕込み、80℃で15時間混練した。混練後80℃の1%塩酸水溶液700質量部に取り出し、1時間攪拌後、ろ過、湯洗、乾燥、粉砕した後、粉砕物1gに対しプロピレングリコールモノメチルエーテルアセテート2.4gを添加混合した。上記顔料組成物をモーターミルM-50(アイガー・ジャパン社製)で、直径0.65mmのジルコニアビーズを用い、周速9m/sで10時間分散し、顔料分散組成物Pを得た。
(Comparative Example B-1)
Sodium chloride and pigment C.I. in 1,3 butylene glycol diacetate solution. I. 10 g of powder of Pigment Red 254 (trade name: Irgaphor Red BT-CF, manufactured by Ciba Specialty Chemicals Co., Ltd.) and 30.0 g of graft polymer PB-1 were charged in a double arm kneader and kneaded at 80 ° C. for 15 hours. After kneading, the mixture was taken out into 700 parts by mass of a 1% hydrochloric acid aqueous solution at 80 ° C., stirred for 1 hour, filtered, washed with hot water, dried and pulverized. Then, 2.4 g of propylene glycol monomethyl ether acetate was added to 1 g of the pulverized product and mixed. The pigment composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm to obtain a pigment dispersion composition P.
(比較例B-2)
 実施例B-1の顔料分散組成物において、グラフト重合体をPB-17にする以外は実施例B-1と同様にして顔料分散組成物Qを調整した。
(Comparative Example B-2)
A pigment dispersion composition Q was prepared in the same manner as in Example B-1, except that the graft polymer of Example B-1 was changed to PB-17.
(比較例B-3)
 N-メチルピロリドン(和光純薬社製)1000gに、顔料C.I.ピグメントレッド254(Irgaphor Red BT-CF、商品名、チバ・スペシャルティ・ケミカルズ(株)製)50g、およびPB-18を30.0gを分散させ、ここにテトラメチルアンモニウムヒドロキシド25%メタノール溶液52.3gを滴下して顔料溶液を調製した。これとは別に貧溶媒として、イオン交換水1000mlを用意した。
 ここで、5℃に温度コントロールし、GK-0222-10型ラモンドスターラー(商品名、藤沢薬品工業社製)により500rpmで攪拌した貧溶媒の塩酸含有イオン交換水1000mlに、上記顔料溶液をNP-KX-500型大容量無脈流ポンプ(商品名、日本精密化学社製)を用いて、流路径1.1mmの送液配管から流速400ml/minで100ml注入することにより、有機顔料粒子を形成し、顔料ナノ粒子分散液Rを調製した。次いで顔料ナノ粒子分散液Rに5%硫酸水溶液を滴下してpHを4.0に調節して顔料ナノ粒子凝集液を調整した。
 上記の手順で調製した、顔料ナノ粒子凝集液を(株)コクサン社製H-112型遠心濾過機および敷島カンバス(株)社製P89C型ロ布を用いて5000rpmで90分濃縮し、得られた顔料ナノ粒子濃縮ペーストを回収した。
 上記顔料ナノ粒子濃縮ペーストをオーブンにより100℃で8時間乾燥することにより有機顔料粉末R(固形分濃度94質量%)(有機顔料含有率59質量%)を得た。
(Comparative Example B-3)
To 1000 g of N-methylpyrrolidone (manufactured by Wako Pure Chemical Industries), pigment C.I. I. 50 g of Pigment Red 254 (Irgaphor Red BT-CF, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.) and 30.0 g of PB-18 are dispersed in this solution. 3 g was dropped to prepare a pigment solution. Separately, 1000 ml of ion-exchanged water was prepared as a poor solvent.
Here, the temperature of the solution was controlled at 5 ° C., and the pigment solution was added to 1000 ml of ion-exchanged water containing hydrochloric acid as a poor solvent stirred at 500 rpm by a GK-0222-10 type Lamond Stirrer (trade name, manufactured by Fujisawa Pharmaceutical Co., Ltd.). Using a KX-500 type large capacity non-pulsating flow pump (trade name, manufactured by Nippon Seimitsu Chemical Co., Ltd.), by injecting 100 ml at a flow rate of 400 ml / min from a liquid feed pipe having a flow path diameter of 1.1 mm, Then, a pigment nanoparticle dispersion liquid R was prepared. Subsequently, 5% sulfuric acid aqueous solution was added dropwise to the pigment nanoparticle dispersion R to adjust the pH to 4.0, thereby preparing a pigment nanoparticle aggregate.
The pigment nanoparticle aggregated liquid prepared by the above procedure was concentrated at 5000 rpm for 90 minutes using an H-112 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type cloth manufactured by Shikishima Canvas Co., Ltd. The pigment nanoparticle concentrated paste was recovered.
The pigment nanoparticle concentrated paste was dried in an oven at 100 ° C. for 8 hours to obtain an organic pigment powder R (solid content concentration 94 mass%) (organic pigment content 59 mass%).
 前記有機顔料粉末Rを用い、下記組成の顔料分散組成物Rを調製した。
   前記有機顔料粉末R                 14.0g
   プロピレングリコールモノメチルエーテルアセテート  46.8g
 上記組成の顔料分散組成物AをモーターミルM-50(アイガー・ジャパン社製)で、直径0.65mmのジルコニアビーズを用い、周速9m/sで10時間分散し、顔料分散組成物Rを得た。
Using the organic pigment powder R, a pigment dispersion composition R having the following composition was prepared.
The organic pigment powder R 14.0 g
46.8g of propylene glycol monomethyl ether acetate
Pigment dispersion composition A having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 10 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm. Obtained.
(比較例B-4)
 実施例B-1の顔料分散組成物において、グラフト重合体をポリスチレンにする以外は実施例B-1と同様にして顔料分散組成物Sを調整した。
(Comparative Example B-4)
In the pigment dispersion composition of Example B-1, Pigment Dispersion Composition S was prepared in the same manner as in Example B-1, except that the graft polymer was polystyrene.
(比較例B-5)
 実施例B-1の顔料分散組成物において、グラフト重合体をポリビニルピロリドン(K-30、商品名、和光純薬社製)にする以外は実施例B-1と同様にして顔料分散組成物Tを調製した。
(Comparative Example B-5)
In the pigment dispersion composition of Example B-1, pigment dispersion composition T was prepared in the same manner as in Example B-1, except that the graft polymer was polyvinylpyrrolidone (K-30, trade name, manufactured by Wako Pure Chemical Industries, Ltd.). Was prepared.
(参考例)
 実施例B-1の顔料分散組成物において、グラフト重合体をPB-16にする以外は実施例B-1と同様にして顔料分散組成物Uを調整した。
(Reference example)
A pigment dispersion composition U was prepared in the same manner as in Example B-1, except that the graft polymer of Example B-1 was changed to PB-16.
[分散剤取込率の測定及び評価]
 実施例A-Iと同様である。
[Measurement and evaluation of dispersant uptake rate]
Same as Example AI.
 [分散剤埋包率評価]
 実施例A-Iと同様である。
[Evaluation of dispersant embedding rate]
Same as Example AI.
[表面偏在性の測定及び評価]
 分散剤の粒子内分布の確認は、固体13C CP/MAS NMR測定(ブルカー・バイオスピン社製AVANCE DSX-300分光器[商品名]と4mmφ HFX CP/MAS probe)を用いて行った。固体13C CP/MAS NMR測定は以下の通りに行った。
 前記顔料分散組成物A~Uを、それぞれメンブレンフィルター(MILLIPORE製 カットサイズ:0.05μm)を用いて吸引ろ過し、さらに分散溶媒で洗浄を繰り返して、濃縮ペーストを作製する。前記濃縮ペーストを固体13C CP/MAS NMRの試料台にセットし、Goldman-shenパルス系列に基づき、H90°パルス幅4.5μs、初期の溶媒選択のための待ち時間200μs、CPコンタクトタイム1 msとし、スピン拡散時間を0.5~200 msまで変化させて測定を行った。積算回数は4096回、繰り返し時間は試料のHスピン-格子緩和時間の5倍を目安に3~10秒とした。マジックアングルスピニングの回転数は、試料により8000~10000 Hzとした。
 各々のスピン拡散時間におけるスペクトルをピーク分離によって顔料及び分散剤のピーク面積を算出し、一次元拡散モデルを仮定した拡散距離Lは、スピン拡散時間tに対して、
[Measurement and evaluation of surface uneven distribution]
The intraparticle distribution of the dispersant was confirmed using solid state 13 C CP / MAS NMR measurement (AVANCE DSX-300 spectrometer [trade name] and 4 mmφ HFX CP / MAS probe manufactured by Bruker BioSpin). The solid 13 C CP / MAS NMR measurement was performed as follows.
The pigment dispersion compositions A to U are each suction filtered using a membrane filter (MILLIPORE cut size: 0.05 μm), and further washed with a dispersion solvent to prepare a concentrated paste. The concentrated paste was set on a solid 13 C CP / MAS NMR sample stage, and based on the Goldman-Shen pulse sequence, 1 H 90 ° pulse width 4.5 μs, waiting time 200 μs for initial solvent selection, CP contact time 1 The measurement was carried out by changing the spin diffusion time from 0.5 to 200 ms. The number of integrations was 4,096 times, and the repetition time was 3 to 10 seconds with 5 times the 1 H spin-lattice relaxation time of the sample as a guide. The rotation speed of magic angle spinning was 8000 to 10,000 Hz depending on the sample.
The peak areas of the pigment and the dispersant are calculated by peak separation of the spectrum at each spin diffusion time, and the diffusion distance L assuming a one-dimensional diffusion model is calculated with respect to the spin diffusion time t m .
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
の関係にあることを用いて、溶媒分子からの距離に対するピーク面積のプロットから、粒子内に存在する分散剤総量の80質量%が存在する粒子表面からの距離の比率r/R(図1-2参照)(表中の*1)を算出した。 From the plot of the peak area against the distance from the solvent molecule, the ratio r 2 / R of the distance from the particle surface where 80% by mass of the total amount of the dispersant present in the particle is present (FIG. 1). -2) (* 1 in the table) was calculated.
[外方延在率の測定及び評価]
 立体反発鎖の粒子外方への延在程度(外方延在率)の確認は、固体13C CP/MAS NMR測定(ブルカー・バイオスピン社製AVANCE DSX-300分光器[商品名]と4mmφ HFX CP/MAS probe)を用いて行った。固体13C CP/MAS NMR測定は以下の通りに行った。
 前記顔料分散組成物A~Uを、それぞれメンブレンフィルター(MILLIPORE製 カットサイズ:0.05μm)を用いて吸引ろ過し、さらに分散溶媒で洗浄を繰り返して、濃縮ペーストを作製する。左記濃縮ペーストの固体13C CP/MAS NMR測定を行い、立体反発鎖に由来するピーク強度を測定する。次に、前記濃縮ペーストを100℃で8時間乾燥させ乾燥粉末を作製し、同様に固体13C CP/MAS NMR測定から立体反発鎖に由来するピーク強度を測定し、各ピーク強度の比から外方延在率を見積もった。(外方延在率)=(濃縮ペーストでの立体反発鎖由来ピーク強度)/(乾燥粉末での立体反発鎖由来ピーク強度)×100。その結果を表2Bに示す(表中の単位は質量%である。)。
[Measurement and evaluation of outward extension rate]
Confirmation of the extent of outward extension of the steric repulsion chain (outward extension rate) was carried out by solid-state 13 C CP / MAS NMR measurement (AVANCE DSX-300 spectrometer [trade name] manufactured by Bruker BioSpin Co., Ltd.) and 4 mmφ HFX CP / MAS probe). The solid 13 C CP / MAS NMR measurement was performed as follows.
The pigment dispersion compositions A to U are each suction filtered using a membrane filter (MILLIPORE cut size: 0.05 μm), and further washed with a dispersion solvent to prepare a concentrated paste. The concentrated 13 C CP / MAS NMR measurement of the concentrated paste is performed to measure the peak intensity derived from the steric repulsion chain. Next, the concentrated paste is dried at 100 ° C. for 8 hours to produce a dry powder, and similarly, the peak intensity derived from the steric repulsion chain is measured from solid 13 C CP / MAS NMR measurement, and the ratio of each peak intensity is excluded. Estimated the extension rate. (Outward extension ratio) = (Stereo-repulsive chain-derived peak intensity in concentrated paste) / (Stereo-repulsive chain-derived peak intensity in dry powder) × 100. The results are shown in Table 2B (the unit in the table is% by mass).
[CR・経時CR評価]
 前記顔料分散組成物A~Uを、それぞれガラス基板上に100℃で3分間乾燥させた後の塗布膜の厚みが1.4μmになるように塗布し、サンプルを作製した(コントラストの測定法に関しては以下のようにした。さらに上記顔料分散組成物A~Uを分散30日後に再度上記と同様の方法で塗布し、コントラストを測定した。この経時コントラストと分散直後に塗布・測定したコントラストから経時コントラスト変化率を算出した(経時コントラスト変化率)=(初期コントラスト)/(経時コントラスト)。その時の結果を表2Bに示す。
[CR / chronological CR evaluation]
The pigment dispersion compositions A to U were each coated on a glass substrate at 100 ° C. for 3 minutes so that the thickness of the coating film was 1.4 μm, and samples were prepared (with regard to the contrast measurement method). The pigment dispersion compositions A to U were applied again in the same manner as described above 30 days after the dispersion, and the contrast was measured, and the time-dependent contrast and the contrast applied and measured immediately after dispersion were used to determine the time. The contrast change rate was calculated (contrast change rate with time) = (initial contrast) / (contrast with time), and the results at that time are shown in Table 2B.
[コントラスト測定]
 実施例A-Iと同様である。
[Contrast measurement]
Same as Example AI.
[平均粒径および単分散度(粒子サイズ分布)の測定]
 実施例A-Iと同様である。
[Measurement of average particle size and monodispersity (particle size distribution)]
Same as Example AI.
Figure JPOXMLDOC01-appb-T000042
 
*1:埋包分散剤が80%以上存在する、外方領域Aoと内方領域Aiとを区分する半径線距離の比率(r/R)。
*2:外方領域区分率0%は分散剤が粒子内には存在せず、分散剤全ての部位が粒子外にある状態を指す。
Figure JPOXMLDOC01-appb-T000042

* 1: Radial distance ratio (r 2 / R) that separates the outer region Ao and the inner region Ai where the embedding dispersant is 80% or more.
* 2: Outer region segmentation rate of 0% refers to a state in which the dispersant is not present in the particle and all the parts of the dispersant are outside the particle.
 顔料化合物と引き合う特有の相互作用基を有する埋包分散剤を用いた顔料微粒子の分散組成物(実施例,参考例)は、その他の試料に比べて高い分散剤取込率を示した。そして、埋包分散剤に立体反発性基を合わせ持つ構造部位を導入適用した実施例の顔料微粒子の分散組成物は、比較例,参考例のものと異なり、粒子外側に分散剤が偏在化して埋包された。その結果、顔料に対して少ない分散剤の使用量であっても、高い分散安定性を達成していると考えられ、高い初期コントラストと、低い経時コントラストの変化率とを両立して達成していることが分かる。 The dispersion composition of pigment fine particles (embodiment, reference example) using an embedding dispersant having a specific interaction group attracting to the pigment compound showed a higher dispersant uptake rate than other samples. In addition, the dispersion composition of the fine pigment particles of the example in which the structural part having the steric repulsive group is applied to the embedding dispersant is different from the comparative example and the reference example, and the dispersant is unevenly distributed on the outer side of the particle. Buried. As a result, it is considered that high dispersion stability is achieved even with a small amount of dispersant used with respect to the pigment, achieving both a high initial contrast and a low rate of contrast change over time. I understand that.
(実施例B-II、比較例B-II)
 着色感光性樹脂組成物の作製
 顔料分散組成物Aを下記表Aの組成となるよう他の成分と混合して、カラーフィルタ用着色感光性樹脂組成物Aを調製した。
(Example B-II, Comparative Example B-II)
Preparation of colored photosensitive resin composition Color dispersion photosensitive resin composition A for color filters was prepared by mixing pigment dispersion composition A with other components so as to have the composition shown in Table A below.
  [表A]
Figure JPOXMLDOC01-appb-I000043
[Table A]
Figure JPOXMLDOC01-appb-I000043
 <バインダー2>
・ポリマー(ベンジルメタクリレート/メタクリル酸/メチルメタクリレート
    =38/25/37モル比のランダム共重合物、分子量4万)
                             27質量部
・プロピレングリコールモノメチルエーテルアセテート    73質量部
 <界面活性剤2>
・前記構造物1                      30質量部
・メチルエチルケトン                   70質量部
<Binder 2>
・ Polymer (benzyl methacrylate / methacrylic acid / methyl methacrylate = 38/25/37 molar ratio random copolymer, molecular weight 40,000)
27 parts by mass / propylene glycol monomethyl ether acetate 73 parts by mass <Surfactant 2>
-30 parts by mass of the structure 1-70 parts by mass of methyl ethyl ketone
 顔料分散組成物Aに代え、顔料分散組成物B~Uをそれぞれ用いた以外、上記と同様にして、カラーフィルタ用着色感光性樹脂組成物B~Uをそれぞれ調製した。
 ガラス基板上に前記カラーフィルタ作製用の着色感光性組成物A~Uを、スピンコーターを用いて塗布し、100℃で2分間乾燥させて、約2μmの厚みの膜を形成した。作製したサンプルのコントラストを実施例B-1と同様に測定した。さらに、上記着色感光性組成物A~Nを分散30日後に再度上記と同様の方法で塗布し、コントラストを測定した。この経時コントラストと作製直後に塗布・測定したコントラストから経時変化率を算出した(経時変化率)=(初期コントラスト)/(経時コントラスト)。その時の結果を表3Bに示す。
Colored photosensitive resin compositions B to U for color filters were prepared in the same manner as described above except that pigment dispersion compositions B to U were used instead of pigment dispersion composition A, respectively.
The colored photosensitive compositions A to U for color filter preparation were applied on a glass substrate using a spin coater and dried at 100 ° C. for 2 minutes to form a film having a thickness of about 2 μm. The contrast of the prepared sample was measured in the same manner as in Example B-1. Further, the colored photosensitive compositions A to N were applied again in the same manner as described above 30 days after dispersion, and the contrast was measured. The rate of change with time was calculated from this contrast with time and the contrast applied and measured immediately after production (rate of change with time) = (initial contrast) / (contrast with time). The results at that time are shown in Table 3B.
  [表3B]
Figure JPOXMLDOC01-appb-I000044
[Table 3B]
Figure JPOXMLDOC01-appb-I000044
 表3Bに示すように、本実施形態の微粒子を用いたカラーフィルタ用着色感光性樹脂組成物(実施例)は、比較試料(比較例)に比べて高いコントラストと低い経時変化率とを両立して達成しており、良好な分散性と経時安定性を両立していることが分かる。 As shown in Table 3B, the colored photosensitive resin composition for color filters (Examples) using the fine particles of this embodiment has both a high contrast and a low rate of change with time compared to the comparative sample (Comparative Example). It can be seen that both good dispersibility and stability over time are achieved.
(実施例B-III、比較例B-III)
[カラーフィルタ及び液晶表示装置の作製(スリット状ノズルを用いた塗布による作製)]
 〔ブラック(K)画像の形成〕
 無アルカリガラス基板を、UV洗浄装置で洗浄後、洗浄剤を用いてブラシ洗浄し、更に超純水で超音波洗浄した。該基板を120℃3分熱処理して表面状態を安定化させた。
 該基板を冷却し23℃に温調後、スリット状ノズルを有すガラス基板用コーター(エフ・エー・エス・アジア社製、商品名:MH-1600)にて、下記表4Bに記載の組成よりなる着色感光性樹脂組成物K2を塗布した。引き続きVCD(真空乾燥装置;東京応化工業(株)社製)で30秒間、溶媒の一部を乾燥して塗布層の流動性を無くした後、120℃で3分間プリベークして膜厚2.4μmの感光性樹脂層K2を得た。なお、着色感光性樹脂組成物K2の調製手順は、先の樹脂組成物K1の手順と同様である。
(Example B-III, Comparative Example B-III)
[Production of color filters and liquid crystal display devices (production by application using slit-like nozzles)]
[Formation of black (K) image]
The alkali-free glass substrate was cleaned with a UV cleaning apparatus, then brush-cleaned with a cleaning agent, and further ultrasonically cleaned with ultrapure water. The substrate was heat-treated at 120 ° C. for 3 minutes to stabilize the surface state.
After cooling the substrate and adjusting the temperature to 23 ° C., the composition described in Table 4B below is applied on a glass substrate coater (manufactured by FS Asia Co., Ltd., trade name: MH-1600) having a slit-like nozzle. A colored photosensitive resin composition K2 was applied. Subsequently, a part of the solvent was dried by VCD (vacuum drying apparatus; manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 30 seconds to eliminate the fluidity of the coating layer, and then pre-baked at 120 ° C. for 3 minutes to obtain a film thickness of 2. A 4 μm photosensitive resin layer K2 was obtained. In addition, the preparation procedure of the colored photosensitive resin composition K2 is the same as the procedure of the previous resin composition K1.
  [表4B]
Figure JPOXMLDOC01-appb-I000045
[Table 4B]
Figure JPOXMLDOC01-appb-I000045
 超高圧水銀灯を有すプロキシミティ型露光機(日立ハイテク電子エンジニアリング(株)社製)で、基板とマスク(画像パターンを有す石英露光マスク)を垂直に立てた状態で、露光マスク面と該感光性樹脂層の間の距離を200μmに設定し、露光量300mJ/cmでパターン露光した。
 次に、純水をシャワーノズルにて噴霧して、該感光性樹脂層K1の表面を均一に湿らせた後、KOH系現像液(KOH、ノニオン界面活性剤含有、商品名:CDK-1、富士フィルムエレクトロニクスマテリアルズ社製)にて23℃で80秒、フラットノズル圧力0.04MPaでシャワー現像しパターニング画像を得た。引き続き、超純水を、超高圧洗浄ノズルにて9.8MPaの圧力で噴射して残渣除去を行い、ブラック(K)の画像Kを得た。引き続き、220℃で30分間熱処理した。
In a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultra-high pressure mercury lamp, with the substrate and mask (quartz exposure mask having an image pattern) standing vertically, the exposure mask surface and the mask The distance between the photosensitive resin layers was set to 200 μm, and pattern exposure was performed at an exposure amount of 300 mJ / cm 2 .
Next, pure water is sprayed with a shower nozzle to uniformly wet the surface of the photosensitive resin layer K1, and then a KOH-based developer (KOH, containing a nonionic surfactant, trade name: CDK-1, (Fuji Film Electronics Materials Co., Ltd.) was subjected to shower development at 23 ° C. for 80 seconds and a flat nozzle pressure of 0.04 MPa to obtain a patterning image. Subsequently, ultrapure water was sprayed at a pressure of 9.8 MPa with an ultrahigh pressure washing nozzle to remove the residue, and a black (K) image K was obtained. Subsequently, heat treatment was performed at 220 ° C. for 30 minutes.
 <K顔料分散物2>
・カーボンブラック(商品名:Nipex 35、デグサ ジャパン(株)社製)
                           13.1質量部
・分散剤(前記化合物2J)              0.65質量部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比
         のランダム共重合物、分子量3.7万)
                           6.72質量部
・プロピレングリコールモノメチルエーテルアセテート 79.53質量部
<K pigment dispersion 2>
・ Carbon black (trade name: Nipex 35, manufactured by Degussa Japan Co., Ltd.)
13.1 parts by mass-Dispersant (compound 2J) 0.65 parts by mass-polymer (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, molecular weight 37,000)
6.72 parts by mass-79.53 parts by mass of propylene glycol monomethyl ether acetate
 <バインダー3>
・ポリマー(ベンジルメタクリレート/メタクリル酸=78/22モル比
             のランダム共重合物、分子量3.8万)
                             27質量部
・プロピレングリコールモノメチルエーテルアセテート    73質量部
<Binder 3>
-Polymer (benzyl methacrylate / methacrylic acid = 78/22 molar ratio random copolymer, molecular weight 38,000)
27 parts by mass / propylene glycol monomethyl ether acetate 73 parts by mass
 〔レッド(R)画素の形成〕
 前記画像Kを形成した基板に、下記表5Bに記載の組成よりなる着色感光性樹脂組成物R1を用い、前記ブラック(K)画像の形成と同様の工程で、熱処理済み画素Rを形成した。該感光性樹脂層R1の膜厚及び顔料の塗布量を以下に示す。なお、着色感光性樹脂組成物の調製手順は、上記着色感光性樹脂組成物K2のときと同様である。
  感光性樹脂膜厚(μm)           1.60
  顔料塗布量(g/m)           1.00
  C.I.P.R.254塗布量(g/m)  0.80
  C.I.P.R.177塗布量(g/m)  0.20
[Formation of red (R) pixels]
A heat-treated pixel R was formed on the substrate on which the image K was formed using the colored photosensitive resin composition R1 having the composition described in Table 5B below, in the same process as the formation of the black (K) image. The film thickness of the photosensitive resin layer R1 and the coating amount of the pigment are shown below. The procedure for preparing the colored photosensitive resin composition is the same as that for the colored photosensitive resin composition K2.
Photosensitive resin film thickness (μm) 1.60
Pigment coating amount (g / m 2 ) 1.00
C. I. P. R. 254 coating amount (g / m 2 ) 0.80
C. I. P. R. 177 coating amount (g / m 2 ) 0.20
  [表5B]
Figure JPOXMLDOC01-appb-I000046
[Table 5B]
Figure JPOXMLDOC01-appb-I000046
 <R顔料分散組成物A>
・実施例1の顔料分散組成物A(C.I.P.R.254)  11質量部
・プロピレングリコールモノメチルエーテルアセテート  68.2質量部
 <R顔料分散物2>
・C.I.P.R.177(商品名:Cromophtal Red A2B、
     チバ・スペシャルティ・ケミカルズ(株)社製)  18質量部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比
                のランダム共重合物、分子量3万)
                             12質量部
・プロピレングリコールモノメチルエーテルアセテート    70質量部
<R pigment dispersion composition A>
-11 parts by mass of pigment dispersion composition A (CIPR 254) of Example 1-68.2 parts by mass of propylene glycol monomethyl ether acetate <R pigment dispersion 2>
・ C. I. P. R. 177 (Product name: Chromophthal Red A2B,
Ciba Specialty Chemicals Co., Ltd.) 18 parts by mass Polymer (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, molecular weight 30,000)
12 parts by mass / 70 parts by mass of propylene glycol monomethyl ether acetate
 〔グリーン(G)画素の形成〕
 前記画像Kと画素Rを形成した基板に、下記表6Bに記載の組成よりなる着色感光性樹脂組成物G1を用い、前記ブラック(K)画像の形成と同様の工程で、熱処理済み画素Gを形成した。該感光性樹脂層G1の膜厚及び顔料の塗布量を以下に示す。なお、着色感光性樹脂組成物の調製手順は、上記着色感光性樹脂組成物K2のときと同様である。
  感光性樹脂膜厚(μm)           1.60
  顔料塗布量(g/m)           1.92
  C.I.P.G.36塗布量(g/m)   1.34
  C.I.P.Y.150塗布量(g/m)  0.58
[Formation of green (G) pixels]
Using the colored photosensitive resin composition G1 having the composition described in Table 6B below on the substrate on which the image K and the pixel R are formed, the heat-treated pixel G is formed in the same process as the formation of the black (K) image. Formed. The film thickness of the photosensitive resin layer G1 and the coating amount of the pigment are shown below. The procedure for preparing the colored photosensitive resin composition is the same as that for the colored photosensitive resin composition K2.
Photosensitive resin film thickness (μm) 1.60
Pigment application amount (g / m 2 ) 1.92
C. I. P. G. 36 coating amount (g / m 2 ) 1.34
C. I. P. Y. 150 coating amount (g / m 2 ) 0.58
  [表6B]
Figure JPOXMLDOC01-appb-I000047
[Table 6B]
Figure JPOXMLDOC01-appb-I000047
 G顔料分散物1は、富士フィルムエレクトロニクスマテリアルズ(株)社製の「商品名:GT-2」を用いた。Y顔料分散物1は、御国色素(株)社製の「商品名:CFイエローEX3393」を用いた。 As the G pigment dispersion 1, “trade name: GT-2” manufactured by Fuji Film Electronics Materials Co., Ltd. was used. As the Y pigment dispersion 1, “trade name: CF Yellow EX3393” manufactured by Mikuni Color Co., Ltd. was used.
 〔ブルー(B)画素の形成〕
 前記画像K、画素R及び画素Gを形成した基板に、下記表7BEに記載の組成よりなる着色感光性樹脂組成物B1を用い、前記ブラック(K)画像の形成と同様の工程で、熱処理済み画素Bを形成し、目的のカラーフィルタAを得た。該感光性樹脂層B1の膜厚及び顔料の塗布量を以下に示す。該感光性樹脂層R1の膜厚及び顔料の塗布量を以下に示す。なお、着色感光性樹脂組成物の調製手順は、上記着色感光性樹脂組成物K2のときと同様である。
  感光性樹脂膜厚(μm)            1.60
  顔料塗布量(g/m)            0.75
  C.I.P.B.15:6塗布量(g/m)  0.705
  C.I.P.V.23塗布量(g/m)    0.045
[Formation of blue (B) pixels]
The substrate on which the image K, the pixel R, and the pixel G are formed uses the colored photosensitive resin composition B1 having the composition described in Table 7BE below, and is heat-treated in the same process as the formation of the black (K) image. Pixel B was formed, and the target color filter A was obtained. The film thickness of the photosensitive resin layer B1 and the coating amount of the pigment are shown below. The film thickness of the photosensitive resin layer R1 and the coating amount of the pigment are shown below. The procedure for preparing the colored photosensitive resin composition is the same as that for the colored photosensitive resin composition K2.
Photosensitive resin film thickness (μm) 1.60
Pigment application amount (g / m 2 ) 0.75
C. I. P. B. 15: 6 coating amount (g / m 2 ) 0.705
C. I. P. V. 23 coating amount (g / m 2 ) 0.045
  [表7B]
Figure JPOXMLDOC01-appb-I000048
[Table 7B]
Figure JPOXMLDOC01-appb-I000048
 B顔料分散物1は、御国色素(株)社製の「商品名:CFブル-EX3357」を用いた。B顔料分散物2は、御国色素(株)社製の「商品名:CFブル-EX3383」を用いた。 As B pigment dispersion 1, “trade name: CF Bull-EX3357” manufactured by Mikuni Dye Co., Ltd. was used. As the B pigment dispersion 2, “trade name: CF Bull-EX3383” manufactured by Mikuni Dye Co., Ltd. was used.
 <バインダー4>
・ポリマー(ベンジルメタクリレート/メタクリル酸/メチルメタクリレート
   =36/22/42モル比のランダム共重合物、分子量3.8万)
                             27質量部
・プロピレングリコールモノメチルエーテルアセテート    73質量部
<Binder 4>
・ Polymer (benzyl methacrylate / methacrylic acid / methyl methacrylate = random copolymer of 36/22/42 molar ratio, molecular weight 38,000)
27 parts by mass / propylene glycol monomethyl ether acetate 73 parts by mass
 R顔料分散物Aに用いた顔料組成物Aに代えて、それぞれ、顔料組成物B~Uを用いてR顔料分散物B~Uを調製した。そして上記のカラーフィルタAの作製方法に対し、R顔料分散物Aに代えてR顔料分散物B~Uをそれぞれ用いた以外同様にして、カラーフィルタB~Uを作製した。作製したカラーフィルタA~Uのコントラストを実施例B-1と同様に測定した。さらに、上記着色感光性組成物A~Uを分散30日後に再度上記と同様の方法でカラーフィルタを作製し、経時コントラストを測定した。この経時コントラストと作製直後に塗布・測定したコントラストから経時変化率を算出した。 Instead of pigment composition A used for R pigment dispersion A, R pigment dispersions B to U were prepared using pigment compositions B to U, respectively. Then, color filters B to U were produced in the same manner as the production method of the color filter A except that R pigment dispersions B to U were used instead of the R pigment dispersion A, respectively. The contrast of the produced color filters A to U was measured in the same manner as in Example B-1. Further, after 30 days of dispersion of the colored photosensitive compositions A to U, a color filter was prepared again by the same method as described above, and the temporal contrast was measured. The rate of change with time was calculated from this time-dependent contrast and the contrast applied and measured immediately after fabrication.
  [表8B]
Figure JPOXMLDOC01-appb-I000049
[Table 8B]
Figure JPOXMLDOC01-appb-I000049
 [液晶表示装置の作製及び評価]
 カラーフィルタA~Uを用いて液晶表示装置を作製し表示特性の評価を行った。
(ITO電極の形成)
 カラーフィルタAをスパッタ装置に入れて、100℃で1300Å厚さのITO(インヂウム錫酸化物)を全面真空蒸着した後、240℃で90分間アニールしてITOを結晶化し、ITO透明電極を形成した。
(スペーサの形成)
 特開2004-240335号公報の[実施例1]に記載のスペーサ形成方法と同様の方法で、上記で作製したITO透明電極上にスペーサを形成した。
(液晶配向制御用突起の形成)
 下記のポジ型感光性樹脂層用塗布液を用いて、前記スペーサを形成したITO透明電極上に液晶配向制御用突起を形成した。
 但し、露光、現像、及び、ベーク工程は、以下の方法を用いた。
 所定のフォトマスクが感光性樹脂層の表面から100μmの距離となるようにプロキシミティ露光機(日立ハイテク電子エンジニアリング株式会社製)を配置し、該フォトマスクを介して超高圧水銀灯により照射エネルギー150mJ/cmでプロキシミティ露光した。
[Production and Evaluation of Liquid Crystal Display]
A liquid crystal display device was manufactured using the color filters A to U, and the display characteristics were evaluated.
(Formation of ITO electrode)
The color filter A was put in a sputtering apparatus, and 1300 mm thick ITO (indium tin oxide) was vacuum-deposited on the entire surface at 100 ° C., and then annealed at 240 ° C. for 90 minutes to crystallize the ITO to form an ITO transparent electrode. .
(Spacer formation)
A spacer was formed on the ITO transparent electrode produced above by the same method as the spacer forming method described in [Example 1] of JP-A-2004-240335.
(Formation of liquid crystal alignment control protrusions)
A liquid crystal alignment control protrusion was formed on the ITO transparent electrode on which the spacer was formed, using the following positive photosensitive resin layer coating solution.
However, the following methods were used for exposure, development, and baking.
A proximity exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) is arranged so that the predetermined photomask is at a distance of 100 μm from the surface of the photosensitive resin layer, and the irradiation energy is 150 mJ / Proximity exposure was performed at cm 2 .
 続いて、2.38%テトラメチルアンモニウムヒドロキシド水溶液を、シャワー式現像装置にて33℃で30秒間基板に噴霧しながら現像した。こうして、感光性樹脂層の不要部(露光部)を現像除去することにより、カラーフィルタ側基板上に、所望の形状にパターニングされた感光性樹脂層よりなる液晶配向制御用突起が形成された液晶表示装置用基板を得た。
 次いで、該液晶配向制御用突起が形成された液晶表示装置用基板を230℃下で30分ベークすることにより、液晶表示装置用基板上に硬化された液晶配向制御用突起を形成した。
Subsequently, a 2.38% tetramethylammonium hydroxide aqueous solution was developed by spraying it on a substrate at 33 ° C. for 30 seconds in a shower type developing device. In this way, by removing the unnecessary portion (exposed portion) of the photosensitive resin layer by developing and removing the liquid crystal, the liquid crystal alignment control protrusions made of the photosensitive resin layer patterned into a desired shape are formed on the color filter side substrate. A display device substrate was obtained.
Next, the liquid crystal alignment control projection on which the liquid crystal alignment control protrusion was formed was baked at 230 ° C. for 30 minutes to form a cured liquid crystal alignment control protrusion on the liquid crystal display substrate.
<ポジ型感光性樹脂層用塗布液処方>
・ポジ型レジスト液(富士フイルムエレクトロニクス
        マテリアルズ(株)社製FH-2413F) 
                         : 53.3質量部
・メチルエチルケトン               : 46.7質量部
・メガファックF-780F(大日本インキ化学工業(株)社製)
                         : 0.04質量部
<Positive photosensitive resin layer coating solution formulation>
・ Positive resist solution (FH-2413F manufactured by FUJIFILM Electronics Materials Co., Ltd.)
: 53.3 parts by mass / Methyl ethyl ketone: 46.7 parts by mass / Megafac F-780F (Dainippon Ink Chemical Co., Ltd.)
: 0.04 parts by mass
(液晶表示装置の作成)
 上記で得られた液晶表示装置用基板上に更にポリイミドよりなる配向膜を設けた。
 その後、カラーフィルタの画素群を取り囲むように周囲に設けられたブラックマトリックス外枠に相当する位置にエポキシ樹脂のシール剤を印刷すると共に、MVAモード用液晶を滴下し、対向基板と貼り合わせた後、貼り合わされた基板を熱処理してシール剤を硬化させた。このようにして得た液晶セルの両面に、(株)サンリッツ社製の偏光板HLC2-2518を貼り付けた。次いで、3波長冷陰極管光源(東芝ライテック(株)社製FWL18EX-N)のバックライトを構成し、前記偏光板が設けられた液晶セルの背面となる側に配置し、液晶表示装置Aとした。
(Creation of liquid crystal display device)
An alignment film made of polyimide was further provided on the liquid crystal display substrate obtained above.
After that, an epoxy resin sealant is printed at a position corresponding to a black matrix outer frame provided around the pixel group of the color filter, and MVA mode liquid crystal is dropped and bonded to the counter substrate. The bonded substrate was heat treated to cure the sealant. Polarizing plates HLC2-2518 manufactured by Sanlitz Co., Ltd. were attached to both surfaces of the liquid crystal cell thus obtained. Next, a backlight of a three-wavelength cold cathode tube light source (FWL18EX-N manufactured by Toshiba Lighting & Technology Co., Ltd.) is constructed and arranged on the back side of the liquid crystal cell provided with the polarizing plate. did.
 カラーフィルタAを、それぞれカラーフィルタB~Uに変更する以外は全く同様に液晶表示装置B~Uを作製し、同様に評価した。その結果、本実施形態の微粒子を用いて作製したカラーフィルタを備えた液晶表示装置A~Oは、高いコントラストを示し、その結果、黒のしまりが良く高い描写力を示すことを確認した。 Liquid crystal display devices B to U were produced in the same manner except that the color filter A was changed to the color filters B to U, respectively, and evaluated in the same manner. As a result, it was confirmed that the liquid crystal display devices A to O provided with the color filter produced using the fine particles of the present embodiment showed high contrast, and as a result, the blackness was good and the drawing power was high.
(実施例B-IV、比較例B-IV)
(実施例B-16)
 実施例1における顔料分散組成物Aの調製におけるピグメントレッド254に替えてピグメントグリーン36、ピグメントグリーン58、ピグメントブルー15:6、ピグメントブルー79、ピグメントブルー80、ピグメントイエロー185をそれぞれ用いることにより、実施例B-1と同様に顔料分散組成物V、W、X、Y、Z、AAを調製した。
 前記顔料分散組成物V、W、X、Y、Z、AAについて実施例B-Iと同様に分散剤取込率及び外方偏在性を測定した結果、いずれの顔料分散組成物も10%を越える分散剤取込率を示し、埋包されている分散剤の80質量%以上が、前記微粒子の粒子表面から粒子半径の50%までの外側領域に偏在していた。また実施例B-Iと同様にしてコントラスト、経時コントラスト変化を測定したところ、いずれの分散組成物も高いコントラスと低い経時コントラスト変化率とを示した。
 一方、顔料分散組成物V、W、X、Y、Z、AAに用いた顔料種を用い、比較例B-IのB-1~B-5と同様にして比較のための顔料組成物をそれぞれ作製したが、上記実施例のものに比べて低いコントラストであり、しかも経時においてそのコントラストが大幅に低下した。
(Example B-IV, Comparative Example B-IV)
(Example B-16)
By using Pigment Green 36, Pigment Green 58, Pigment Blue 15: 6, Pigment Blue 79, Pigment Blue 80, and Pigment Yellow 185 instead of Pigment Red 254 in the preparation of Pigment Dispersion Composition A in Example 1 In the same manner as in Example B-1, pigment dispersion compositions V, W, X, Y, Z and AA were prepared.
The pigment dispersion compositions V, W, X, Y, Z, and AA were measured for the dispersant uptake rate and outward uneven distribution in the same manner as in Example BI. As a result, all the pigment dispersion compositions showed 10%. The dispersion agent uptake ratio exceeded, and 80% by mass or more of the embedded dispersant was unevenly distributed in the outer region from the particle surface of the fine particles to 50% of the particle radius. Further, when the contrast and the change in contrast with time were measured in the same manner as in Example BI, all the dispersion compositions showed high contrast and low contrast change rate with time.
On the other hand, a pigment composition for comparison was prepared in the same manner as B-1 to B-5 in Comparative Example BI, using the pigment types used in Pigment Dispersion Composition V, W, X, Y, Z, and AA. Each of them was produced, but the contrast was lower than that of the above example, and the contrast was significantly lowered with time.
(実施例B-17)
<顔料分散組成物ABの調製>
[顔料分散液の調製]
 メタンスルホン酸(和光純薬社製)1000gに、C.I.ピグメントバイオレット23(Hostaperm Violet RL-NF クラリアント社製)50g及びグラフト重合体P-1を30.0gを添加して、顔料溶液ABを調製した。この顔料溶液ABを、ビスコメイトVM-10A-L(商品名、CBCマテリアルズ社製)を用いて粘度を測定した結果、顔料溶液ABの液温が45.0℃の時の粘度が84.5mPa・sであった。これとは別に貧溶媒として、水1600mlを用意した。
 ここで、25℃に温度コントロールし、GK-0222-10型ラモンドスターラー(商品名、藤沢薬品工業社製)により500rpmで攪拌した貧溶媒の水1600mlに、顔料溶液MをNP-KX-500型大容量無脈流ポンプ(商品名、日本精密化学社製)を用いて、流路径0.25mmの送液配管から流速70ml/minで100ml注入することにより、有機顔料粒子を形成し、顔料分散液ABを調製した。なお、この条件のレイノルズ数は89である。
 上記方法で調製した、顔料ナノ粒子分散液を(株)コクサン社製H-122型遠心濾過機および敷島カンバス(株)社製P89C型ロ布を用いて3000rpmで90分濃縮し、得られた顔料ナノ粒子濃縮ペーストを回収した。
 前記顔料ナノ粒子濃縮ペーストをホットプレート上で100℃で溶媒除去することにより有機顔料粉末AB(固形分濃度96質量%)を得た。
(Example B-17)
<Preparation of pigment dispersion composition AB>
[Preparation of pigment dispersion]
To 1000 g of methanesulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd.), C.I. I. Pigment violet 23 (Hostaperm Violet RL-NF manufactured by Clariant) 50 g and graft polymer P-1 30.0 g were added to prepare pigment solution AB. The viscosity of this pigment solution AB was measured using Viscomate VM-10A-L (trade name, manufactured by CBC Materials). As a result, the viscosity when the liquid temperature of the pigment solution AB was 45.0 ° C. was 84.degree. It was 5 mPa · s. Separately from this, 1600 ml of water was prepared as a poor solvent.
Here, the temperature of the solution was controlled at 25 ° C., and the pigment solution M was added to NP-KX-500 in 1600 ml of poor solvent water stirred at 500 rpm with a GK-0222-10 type Lamond Stirrer (trade name, manufactured by Fujisawa Pharmaceutical Co., Ltd.). Organic pigment particles are formed by injecting 100 ml at a flow rate of 70 ml / min from a liquid feed pipe having a channel diameter of 0.25 mm using a large-capacity non-pulsating flow pump (trade name, manufactured by Nippon Seimitsu Chemical Co., Ltd.) Dispersion AB was prepared. Note that the Reynolds number under this condition is 89.
The pigment nanoparticle dispersion prepared by the above method was concentrated at 3000 rpm for 90 minutes using an H-122 type centrifugal filter manufactured by Kokusan Co., Ltd. and a P89C type ro cloth manufactured by Shikishima Canvas Co., Ltd. The pigment nanoparticle concentrated paste was recovered.
The pigment nanoparticle concentrated paste was solvent-removed on a hot plate at 100 ° C. to obtain an organic pigment powder AB (solid content concentration 96% by mass).
 前記顔料粉末を用い、下記組成の顔料分散組成物ABを調製した。
  有機顔料粉末AB                    8.8g
  プロピレングリコールモノメチルエーテルアセテート   36.7g
 上記組成の顔料分散組成物をモーターミルM-50(アイガー・ジャパン社製)で、直径0.65mmのジルコニアビーズを用い、周速9m/sで1時間分散した。
A pigment dispersion composition AB having the following composition was prepared using the pigment powder.
Organic pigment powder AB 8.8g
Propylene glycol monomethyl ether acetate 36.7g
The pigment dispersion composition having the above composition was dispersed with a motor mill M-50 (manufactured by Eiger Japan) for 1 hour at a peripheral speed of 9 m / s using zirconia beads having a diameter of 0.65 mm.
 前記顔料分散組成物ABについて実施例B-Iと同様に分散剤取込率及び外方偏在性を測定した結果、いずれの顔料分散組成物も10%を越える分散剤取込率を示し、埋包されている分散剤の80質量%以上が、前記微粒子の粒子表面から粒子半径の50%までの外側領域に偏在していた。また実施例B-Iと同様にしてコントラスト、経時コントラスト変化を測定したところ、いずれの分散組成物も高いコントラスと低い経時コントラスト変化率とを示した。
 一方、顔料分散組成物ABに用いた顔料種を用い、比較例B-IのB-1~B-5と同様にして比較のための顔料組成物を作製したが、上記実施例のものに比べて低いコントラストであり、しかも経時においてそのコントラストが大幅に低下した。
The pigment dispersion composition AB was measured for the dispersant uptake rate and outward distribution in the same manner as in Example BI. As a result, all of the pigment dispersion compositions showed a dispersant uptake rate of more than 10%. More than 80% by mass of the encapsulated dispersant was unevenly distributed in the outer region from the particle surface of the fine particles to 50% of the particle radius. Further, when the contrast and the change in contrast with time were measured in the same manner as in Example BI, all the dispersion compositions showed high contrast and low contrast change rate with time.
On the other hand, a pigment composition for comparison was prepared in the same manner as B-1 to B-5 in Comparative Example BI using the pigment type used in Pigment Dispersion Composition AB. The contrast was lower than that, and the contrast greatly decreased over time.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2008年9月19日に日本国で特許出願された特願2008-241805、2008年9月19日に日本国で特許出願された特願2008-241810、及び2009年5月26日に日本国で特許出願された特願2009-126242に基づく優先権を主張するものであり、これらはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。 This application includes Japanese Patent Application No. 2008-241805 filed in Japan on September 19, 2008, Japanese Patent Application No. 2008-241810 filed in Japan on September 19, 2008, and May 26, 2009. Claiming priority based on Japanese Patent Application No. 2009-126242 filed in Japan, the contents of which are both incorporated herein by reference.
1 水不溶性化合物(連続相)
2 埋包分散剤(分散相)
10、20 水不溶性化合物の微粒子
1 Water-insoluble compound (continuous phase)
2 Embedding dispersant (dispersed phase)
10, 20 Fine particles of water-insoluble compounds

Claims (23)

  1.  良溶媒に水不溶性化合物を溶解した溶液と貧溶媒とを混合するにつき、(i)良溶媒側及び/又は貧溶媒側に分散剤を溶解して前記両液を混合して、又は(ii)これらとは別に良溶媒に分散剤を溶解した溶液を準備し前記両液とともに混合して生成させた、前記分散剤を埋包する微粒子であって、
     前記分散剤が前記水不溶性化合物の質量に対して5~200質量%埋包されていることを特徴とする水不溶性化合物の微粒子。
    When mixing the solution in which the water-insoluble compound is dissolved in the good solvent and the poor solvent, (i) mixing the both solutions by dissolving the dispersant on the good solvent side and / or the poor solvent side, or (ii) Apart from these, fine particles embedding the dispersant, prepared by preparing a solution in which the dispersant is dissolved in a good solvent and mixing together with the two solutions,
    Fine particles of a water-insoluble compound, wherein the dispersant is embedded in an amount of 5 to 200% by mass based on the mass of the water-insoluble compound.
  2.  微粒子形成時に溶解させた前記分散剤の10質量%以上100質量%以下が取り込まれて微粒子に埋包されたことを特徴とする請求項1に記載の微粒子。 The fine particles according to claim 1, wherein 10% by mass or more and 100% by mass or less of the dispersant dissolved at the time of fine particle formation is taken in and embedded in the fine particles.
  3.  前記良溶媒及び貧溶媒に溶解される分散剤の総量が、水不溶性化合物100質量部に対して10~300質量部であることを特徴とする請求項1又は2に記載の微粒子。 The fine particles according to claim 1 or 2, wherein the total amount of the dispersant dissolved in the good solvent and the poor solvent is 10 to 300 parts by mass with respect to 100 parts by mass of the water-insoluble compound.
  4.  水不溶性化合物と分散剤とを有して構成される微粒子において、前記分散剤のうち微粒子に埋包されている分散剤の80質量%以上が、前記微粒子の粒子表面から粒子半径の50%までの外側領域に偏在していることを特徴とする水不溶性化合物の微粒子。 In the fine particles composed of a water-insoluble compound and a dispersant, 80% by mass or more of the dispersant embedded in the fine particles out of the dispersant is from the particle surface of the fine particles to 50% of the particle radius. Fine particles of a water-insoluble compound characterized by being unevenly distributed in the outer region of
  5.  前記微粒子が、良溶媒に前記水不溶性化合物を溶解した溶液と貧溶媒とを混合するにつき、(i)良溶媒側及び/又は貧溶媒側に前記分散剤を含有させて前記両液を混合して、又は(ii)これらとは別に良溶媒に前記分散剤を溶解した溶液を準備し前記両液とともに混合して生成させた、前記分散剤を埋包するビルドアップ微粒子であることを特徴とする請求項4に記載の微粒子。 When the fine particles are mixed with a poor solvent and a solution in which the water-insoluble compound is dissolved in a good solvent, (i) the two solutions are mixed with the dispersant contained on the good solvent side and / or the poor solvent side. Or (ii) a build-up fine particle embedding the dispersant, prepared by preparing a solution in which the dispersant is dissolved in a good solvent separately from these and mixing with the two solutions. The fine particles according to claim 4.
  6.  前記分散剤が前記水不溶性化合物の質量に対して5~200質量%埋包されていることを特徴とする請求項4又は5に記載の微粒子。 6. The fine particles according to claim 4, wherein the dispersant is embedded in an amount of 5 to 200% by mass based on the mass of the water-insoluble compound.
  7.  前記分散剤が、質量平均分子量1000以上の高分子分散剤であることを特徴とする請求項1~6のいずれか1項に記載の微粒子。 The fine particle according to any one of claims 1 to 6, wherein the dispersant is a polymer dispersant having a mass average molecular weight of 1000 or more.
  8.  前記分散剤がヘテロ環状炭化水素基を分子内に少なくとも1つ有する高分子分散剤であることを特徴とする請求項1~7のいずれか1項に記載の微粒子。 The fine particle according to any one of claims 1 to 7, wherein the dispersant is a polymer dispersant having at least one heterocyclic hydrocarbon group in the molecule.
  9.  前記分散剤が、芳香環と含窒素環状炭化水素基及び/又は4級アンモニウム基とからなる前記水不溶性化合物と引き合う相互作用を示す構造部分を有する高分子分散剤であることを特徴とする請求項1~8のいずれか1項に記載の微粒子。 The polymer dispersant having a structural portion exhibiting an interaction attracting the water-insoluble compound composed of an aromatic ring and a nitrogen-containing cyclic hydrocarbon group and / or a quaternary ammonium group. Item 9. The fine particle according to any one of Items 1 to 8.
  10.  前記分散剤が、カルボン酸基、水酸基、スルホン酸基、リン酸基、アミド基、スルホンアミド基、及びアルキレンオキサイド基からなる群より選ばれる少なくとも1種の親水性の基を有することを特徴とする請求項1~9のいずれか1項に記載の微粒子。 The dispersant has at least one hydrophilic group selected from the group consisting of a carboxylic acid group, a hydroxyl group, a sulfonic acid group, a phosphoric acid group, an amide group, a sulfonamide group, and an alkylene oxide group. The fine particles according to any one of claims 1 to 9.
  11.  前記分散剤が、さらに前記水不溶性化合物を分散媒体中に分散させるための、エステル結合、エーテル結合、及びアミド結合から選ばれる少なくとも1種の結合部を有する部位、または芳香環を有する部位を含む繰り返し単位を有する立体反発性の部位を有する高分子分散剤であることを特徴とする請求項9又は10に記載の微粒子。 The dispersant further includes a site having at least one bond selected from an ester bond, an ether bond, and an amide bond, or a site having an aromatic ring, for dispersing the water-insoluble compound in a dispersion medium. The fine particle according to claim 9 or 10, which is a polymer dispersant having a steric repulsion part having a repeating unit.
  12.  前記埋包された分散剤の前記立体反発性のある部位が微粒子外方に延在する請求項11に記載の微粒子。 The fine particles according to claim 11, wherein the steric repulsive portion of the embedded dispersant extends outward from the fine particles.
  13.  前記水不溶性化合物が顔料であることを特徴とする請求項1~7のいずれか1項に記載の微粒子。 The fine particles according to any one of claims 1 to 7, wherein the water-insoluble compound is a pigment.
  14.  前記良溶媒が酸性溶媒、アルカリ性溶媒、極性有機溶媒、及び超臨界流体からなる群より選ばれる少なくとも1種の溶媒、またはその混合物であることを特徴とする請求項1~13のいずれか1項に記載の微粒子。 The good solvent is at least one solvent selected from the group consisting of an acidic solvent, an alkaline solvent, a polar organic solvent, and a supercritical fluid, or a mixture thereof. Fine particles described in 1.
  15.  前記貧溶媒が水を主成分とする溶媒であることを特徴とする請求項1~14のいずれか1項に記載の微粒子。 The fine particles according to any one of claims 1 to 14, wherein the poor solvent is a solvent containing water as a main component.
  16.  平均粒子径が100nm以下であることを特徴とする請求項1~15のいずれか1項に記載の微粒子。 The fine particles according to any one of claims 1 to 15, wherein the average particle size is 100 nm or less.
  17.  主要成分が、(a)水性媒体、(b)エステル化合物溶媒、ケトン化合物溶媒、及びアルコール化合物溶媒から選ばれる有機溶剤、並びに(c)反応性希釈剤からなる群より選ばれる少なくとも1種からなる溶媒に、請求項1~16のいずれか1項に記載の微粒子を分散させたことを特徴とする水不溶性化合物の微粒子分散物。 The main component comprises (a) an aqueous medium, (b) an organic solvent selected from an ester compound solvent, a ketone compound solvent, and an alcohol compound solvent, and (c) at least one selected from the group consisting of a reactive diluent. A fine particle dispersion of a water-insoluble compound, wherein the fine particles according to any one of claims 1 to 16 are dispersed in a solvent.
  18.  前記微粒子に埋包されていない分散剤を含有することを特徴とする請求項17に記載の微粒子分散物。 The fine particle dispersion according to claim 17, further comprising a dispersant that is not embedded in the fine particles.
  19.  基材上に形成されるレジストまたはインキ作製用であることを特徴とする請求項17又は18に記載の微粒子分散物。 The fine particle dispersion according to claim 17 or 18, wherein the fine particle dispersion is used for producing a resist or an ink formed on a substrate.
  20.  良溶媒に前記水不溶性化合物を溶解した溶液と貧溶媒とを混合するにつき、(i)良溶媒側及び/又は貧溶媒側に分散剤を溶解して前記両液を混合して、又は(ii)これらとは別に良溶媒に分散剤を溶解した溶液を準備し前記両液とともに混合して前記水不溶性化合物の微粒子を生成させるに当たり、
     前記分散剤として水不溶性化合物と引き合う相互作用を示す構造部位を有する高分子分散剤を用い、微粒子形成時に溶解させた前記分散剤の10質量%以上100質量%以下を微粒子に埋包させることを特徴とする水不溶性化合物の微粒子の製造方法。
    When mixing the solution in which the water-insoluble compound is dissolved in the good solvent and the poor solvent, (i) mixing the both solutions by dissolving the dispersant on the good solvent side and / or the poor solvent side, or (ii In addition to these, when preparing a solution in which a dispersant is dissolved in a good solvent and mixing with both the liquids to produce fine particles of the water-insoluble compound,
    A polymer dispersing agent having a structural part that exhibits an interaction attracting a water-insoluble compound is used as the dispersing agent, and 10% by mass or more and 100% by mass or less of the dispersing agent dissolved at the time of forming the fine particles is embedded in the fine particles. A method for producing fine particles of a water-insoluble compound.
  21.  前記分散剤が、芳香環と含窒素環状炭化水素基及び/又は4級アンモニウム基とからなる前記水不溶性化合物と引き合う相互作用を示す構造部分を有する高分子分散剤であることを特徴とする請求項20に記載の微粒子の製造方法。 The polymer dispersant is characterized in that the dispersant is a polymer dispersant having a structural portion showing an interaction attracting the water-insoluble compound composed of an aromatic ring and a nitrogen-containing cyclic hydrocarbon group and / or a quaternary ammonium group. Item 20. The method for producing fine particles according to Item 20.
  22.  良溶媒に水不溶性化合物を溶解した溶液と貧溶媒とを混合して分散剤を埋包する前記水不溶性化合物の微粒子を生成させるに当たり、(i)良溶媒側及び/又は貧溶媒側に前記分散剤を含有させて前記両液を混合して、又は(ii)これらとは別に良溶媒に分散剤を溶解した溶液を準備し前記両液とともに混合して、前記埋包されている分散剤の80質量%以上が前記微粒子の粒子表面から粒子半径の50%までの外側領域に偏在するようにすることを特徴とする水不溶性化合物の微粒子の製造方法。 In producing a fine particle of the water-insoluble compound in which a solution in which a water-insoluble compound is dissolved in a good solvent and a poor solvent are mixed to embed a dispersant, (i) the dispersion on the good solvent side and / or the poor solvent side Or (ii) preparing a solution in which a dispersant is dissolved in a good solvent separately from these and mixing together with both of the above-mentioned dispersants. A method for producing fine particles of a water-insoluble compound, wherein 80% by mass or more is unevenly distributed in an outer region from the particle surface of the fine particles to 50% of the particle radius.
  23.  前記分散剤が、芳香環と含窒素環状炭化水素基及び/又は4級アンモニウム基とからなり前記水不溶性化合物と引き合う相互作用性を示す部位と、前記水不溶性化合物を分散媒体中に分散させるための、エステル結合、エーテル結合、及びアミド結合から選ばれる少なくとも1種の結合部を含む繰り返し単位を有する立体反発性の部位とを有する高分子分散剤であることを特徴とする請求項22に記載の微粒子の製造方法。
     
    The dispersant is composed of an aromatic ring and a nitrogen-containing cyclic hydrocarbon group and / or a quaternary ammonium group, and exhibits a mutual interaction that attracts the water-insoluble compound, and the water-insoluble compound is dispersed in a dispersion medium. 23. The polymer dispersant having a steric repulsive portion having a repeating unit containing at least one type of bond selected from an ester bond, an ether bond, and an amide bond. Method for producing fine particles.
PCT/JP2009/066456 2008-09-19 2009-09-18 Fine particles of a water-insoluble compound, dispersion of same and process for production thereof WO2010032855A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-241810 2008-09-19
JP2008241805 2008-09-19
JP2008-241805 2008-09-19
JP2008241810 2008-09-19
JP2009126242A JP5591490B2 (en) 2008-09-19 2009-05-26 Fine particles of water-insoluble compound, dispersion thereof, and production method thereof
JP2009-126242 2009-05-26

Publications (1)

Publication Number Publication Date
WO2010032855A1 true WO2010032855A1 (en) 2010-03-25

Family

ID=42039673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066456 WO2010032855A1 (en) 2008-09-19 2009-09-18 Fine particles of a water-insoluble compound, dispersion of same and process for production thereof

Country Status (1)

Country Link
WO (1) WO2010032855A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209640A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Titanium black dispersion for wafer level lens, photosensitive resin composition containing the same, and wafer level lens
WO2014050998A1 (en) * 2012-09-28 2014-04-03 富士フイルム株式会社 Coloring composition, photosensitive coloring composition, color filter, method for producing color filter, solid-state imaging element, and image display device
CN112018400A (en) * 2020-08-28 2020-12-01 华中科技大学 Fullerene-based Fe and N doped porous carbon material and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013599A1 (en) * 2005-07-29 2007-02-01 Fujifilm Corporation Process for production of organic particles, process for production of organic particle dispersion compositions, and jet-printing inks containing organic particle dispersion compositions obtained by the process
WO2009054514A1 (en) * 2007-10-25 2009-04-30 Fujifilm Corporation Organic pigment microparticle, process for production of the organic pigment microparticle, pigment-dispersed composition, photocurable composition or ink-jet ink comprising the organic pigment microparticle, color filter comprising the pigment-dispersed composition, the photocurable composition or the ink-jet ink, and process for production of the color filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013599A1 (en) * 2005-07-29 2007-02-01 Fujifilm Corporation Process for production of organic particles, process for production of organic particle dispersion compositions, and jet-printing inks containing organic particle dispersion compositions obtained by the process
WO2009054514A1 (en) * 2007-10-25 2009-04-30 Fujifilm Corporation Organic pigment microparticle, process for production of the organic pigment microparticle, pigment-dispersed composition, photocurable composition or ink-jet ink comprising the organic pigment microparticle, color filter comprising the pigment-dispersed composition, the photocurable composition or the ink-jet ink, and process for production of the color filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209640A (en) * 2010-03-30 2011-10-20 Fujifilm Corp Titanium black dispersion for wafer level lens, photosensitive resin composition containing the same, and wafer level lens
WO2014050998A1 (en) * 2012-09-28 2014-04-03 富士フイルム株式会社 Coloring composition, photosensitive coloring composition, color filter, method for producing color filter, solid-state imaging element, and image display device
JP2014080578A (en) * 2012-09-28 2014-05-08 Fujifilm Corp Coloring composition, photosensitive coloring composition, color filter, method for producing color filter, solid-state imaging element, and image display device
CN112018400A (en) * 2020-08-28 2020-12-01 华中科技大学 Fullerene-based Fe and N doped porous carbon material and preparation method and application thereof
CN112018400B (en) * 2020-08-28 2022-05-31 华中科技大学 Fullerene-based Fe and N doped porous carbon material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2008139858A (en) Color filter, liquid crystal display device and ccd
JPWO2007013475A1 (en) Method for producing organic particle dispersion composition
WO2012053201A1 (en) Colored resin composition for use in color filter, color filter, display device, and solid-state imaging element
JP2007231247A (en) Method for producing phthalocyanine compound pigment micro-particle, phthalocyanine compound pigment micro-particle obtained by the same, ink-jet ink for color filter, coloring photosensitive resin composition and photosensitive resin transfer material comprising the same and color filter, liquid crystal display device and ccd device using the same
JP2009287002A (en) Pigment-dispersed composition, photo-setting composition using the same, color filter and method for producing the same, inkjet ink, and production method of pigment-dispersed composition
JP5438942B2 (en) Fine particles of water-insoluble compound and dispersion thereof, method for producing the fine particles and dispersion, and color filter using them
JP5227567B2 (en) Color filter and liquid crystal display device using the same
JP2010013562A (en) Organic pigment dispersion, colored photosensitive resin composition using the same, inkjet ink, photosensitive resin transfer material, and color filter and liquid crystal display device
JP5224785B2 (en) Method for producing organic pigment nanoparticles
JP2010174143A (en) Pigment material and pigment material dispersion
WO2010101210A1 (en) Pigment dispersion composition
JP5361142B2 (en) Method for producing organic pigment powder, method for producing organic pigment dispersion composition, method for producing pigment-dispersed photoresist, method for producing color filter for liquid crystal display device, and method for producing liquid crystal display device
JP5591490B2 (en) Fine particles of water-insoluble compound, dispersion thereof, and production method thereof
WO2010032855A1 (en) Fine particles of a water-insoluble compound, dispersion of same and process for production thereof
JP5385511B2 (en) Color filter and liquid crystal display device including the same
JP2007321110A (en) Method for producing pigment nanoparticle dispersion, colored photosensitive resin composition containing pigment nanoparticle, photosensitive transfer material, color filter using them, liquid crystal display device, ccd device and method for producing ink-jet ink for color filter
JP2008189731A (en) Method for producing dispersion of organic pigment nanoparticles, dispersion obtained thereby, and inkjet ink, colored photosensitive resin composition and photosensitive resin transfer material containing the same, and color filter and liquid crystal display using them
JP2009242687A (en) Pigment dispersion composition using nano particle, colored photosensitive composition, photosensitive resin transfer material, and color filter and liquid crystal display produced using them
JP2008202042A (en) Manufacturing method of organic pigment nanoparticle dispersion, organic pigment nanoparticle dispersion prepared therefrom, and, ink jet printing ink, colored photosensitive resin composition, and also photosensitive resin transferring material containing it, color filter and liquid crystal display unit using them
JP5486147B2 (en) Pigment dispersion composition, colored photosensitive resin composition and photosensitive resin transfer material containing the same, and color filter and liquid crystal display device using the same
JP5224762B2 (en) Pigment dispersion composition and photocurable composition for color filter obtained thereby
TWI475078B (en) Microparticles of a water insoluble compound, their dispersion and process for preparing the same
JP5739126B2 (en) Pigment fine particle dispersion, photocurable composition using the same, color filter, and method for producing pigment fine particle dispersion
JP2009227739A (en) Method for manufacturing organic pigment nanoparticle, organic pigment nanoparticle dispersion, colored photosensitive resin composition, photosensitive resin transfer material, and color filter and liquid crystal display using the same
JP2007321111A (en) Method for producing pigment nanoparticle, method for producing pigment nanoparticle dispersion, pigment nanoparticle dispersion containing pigment nanoparticle, colored photosensitive resin composition, photosensitive transfer material, color filter using them, liquid crystal display device and ccd device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814699

Country of ref document: EP

Kind code of ref document: A1