WO2010032851A1 - Method for producing hydrophilized microparticles, and hydrophilized microparticles produced by the method - Google Patents

Method for producing hydrophilized microparticles, and hydrophilized microparticles produced by the method Download PDF

Info

Publication number
WO2010032851A1
WO2010032851A1 PCT/JP2009/066442 JP2009066442W WO2010032851A1 WO 2010032851 A1 WO2010032851 A1 WO 2010032851A1 JP 2009066442 W JP2009066442 W JP 2009066442W WO 2010032851 A1 WO2010032851 A1 WO 2010032851A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
fine particles
gas
particle
mass
Prior art date
Application number
PCT/JP2009/066442
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 一郎
竹林 仁
順司 高田
佐々木 令晋
和明 松本
勇人 池田
浅子 佳延
Original Assignee
東洋炭素株式会社
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社, 株式会社日本触媒 filed Critical 東洋炭素株式会社
Priority to CN2009801365804A priority Critical patent/CN102159625B/en
Priority to JP2010529826A priority patent/JP5698978B2/en
Publication of WO2010032851A1 publication Critical patent/WO2010032851A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention relates to a method for producing hydrophilic fine particles by subjecting the surface of base particles to hydrophilicity treatment.
  • Vinyl-based (co) polymer fine particles are usually produced by radical polymerization using a raw material such as a (meth) acrylic monomer that is a polymerization raw material or a vinyl monomer composition such as styrene as a raw material. Or by adding inorganic components or non-polymerizable components to the vinyl monomer composition, the mechanical strength, heat resistance, optical properties, surface shape, porosity, etc. of the fine particles Various physical properties can be controlled.
  • the polymerization method can be appropriately selected from suspension polymerization, emulsion polymerization, seed polymerization, dispersion polymerization, etc., and vinyl polymer fine particles having a controlled particle diameter and particle size distribution are produced over a wide range. be able to. Vinyl polymer fine particles have been used in a wide range of industrial fields such as paint additives and film additives because of their ease of control of various properties as described above and economic significance among polymer fine particles. .
  • Patent Document 1 describes a method of reacting a crosslinked polymer fine particle having a reactive functional group on the surface with a modified or unmodified polyethylene glycol having a reactive group capable of causing a chemical reaction with these functional groups.
  • a modified or unmodified polyethylene glycol having a reactive group capable of causing a chemical reaction with these functional groups has been.
  • the reactive functional group of the crosslinked polymer fine particle is introduced into the polymer by a (meth) acrylic monomer having a reactive functional group.
  • concentration of the functional group-containing monomer is increased, fine particles and coarse particles There is a problem that generation, secondary aggregation, etc.
  • Patent Document 2 describes a technique for making a surface of fluororesin particles hydrophilic by adsorbing a surfactant. Since this technique simply adsorbs the surfactant on the surface of the fluororesin particles, it is difficult to permanently maintain the hydrophilic state and the degree of hydrophilicity is low.
  • Patent Document 3 describes a method of hydrophilizing by dispersing fine particles in ozone water in which ozone gas is dissolved in water. In this method, there is a problem that the strength and heat resistance of the particles are lowered when sufficiently hydrophilized.
  • Patent Documents 1 to 3 are treatments in a liquid phase, secondary aggregation of fine particles is likely to occur, and uniform treatment cannot be performed, so that it is difficult to obtain fine particles having a high degree of hydrophilicity.
  • Patent Documents 4 and 5 describe a method of performing a hydrophilic treatment using ozone gas.
  • Patent Document 6 describes a method for hydrophilizing the surface of fine particles by a low-temperature plasma treatment using argon gas. In these methods, electrostatic aggregation easily occurs due to treatment in a charged gas, and it is difficult to uniformly hydrophilize the particle surface.
  • the production method for obtaining the polymer fine particles and the provision of such hydrophilized fine particles were raised as problems.
  • the present inventors diligently studied the method for hydrophilizing vinyl polymer fine particles, and as a result, by treating the vinyl polymer fine particles in a specific gas atmosphere, the vinyl polymer fine particles The present inventors have found that particles having extremely high hydrophilicity can be obtained without impairing excellent properties such as mechanical properties of the present invention.
  • the method for producing hydrophilized fine particles of the present invention that has solved the above-described problem is that a base material is subjected to a treatment in which a mixed gas containing a fluorine gas and a gas containing a compound containing oxygen atoms is brought into contact with the base material.
  • oxygen gas is preferable.
  • moisture content alkaline aqueous solution and / or water and / or water vapor
  • the present invention includes hydrophilized fine particles obtained by the above production method.
  • the surface of the vinyl polymer fine particles can be made uniform and highly hydrophilic without impairing the excellent mechanical properties of the vinyl polymer fine particles.
  • this production method is a simple method and can be highly hydrophilized in a short time, so that it is excellent in economic efficiency. Therefore, the production method of the present invention can provide vinyl polymer fine particles having a uniform and highly hydrophilic surface at low cost.
  • the surface of the base particle is hydrophilized by subjecting the base particle to contact with a mixed gas that essentially contains a fluorine gas and a compound gas containing oxygen atoms.
  • a mixed gas that essentially contains a fluorine gas and a compound gas containing oxygen atoms.
  • —C (F) ⁇ O is more efficiently converted to a carboxyl group.
  • water an alkaline aqueous solution and / or water and / or water vapor are preferable.
  • the surface of the hydrophilized fine particles obtained by the production method of the present invention has —C (F) ⁇ O and / or a carboxyl group, and in addition to these groups on the surface or inside of the particle,
  • a fluorine component covalently bonded to hydrocarbon carbon also referred to as covalent bond fluorine
  • the covalently bonded fluorine has an effect of suppressing secondary aggregation between particles by coexisting with —C (F) ⁇ O and / or a carboxyl group, it is preferably present even in a trace amount.
  • the hydrophilized fine particles obtained by the production method of the present invention may have hydrogen fluoride (HF) attached as a fluorine component. Since this HF may be harmful in handling the hydrophilized fine particles of the present invention, its content is preferably as small as possible. More preferably, no HF is attached.
  • HF hydrogen fluoride
  • fluorine components can be distinguished by the eluting fluorine content and the non-eluting fluorine content. That is, in the dissolution test described later, fluorine ionized and eluted in the solvent is referred to as eluting fluorine, and the content thereof is defined as the eluting fluorine content.
  • the eluting fluorine includes fluorine derived from the above-mentioned attached (free) hydrogen fluoride and fluorine derived from —C (F) ⁇ O.
  • non-eluting fluorine fluorine that cannot be eluted
  • its content is the non-eluting fluorine amount.
  • the non-eluting fluorine usually corresponds to the above-described covalently bonded fluorine, but may contain a free fluorine component that is incorporated into the particles and cannot be eluted.
  • the eluting fluorine content and the non-eluting fluorine content are expressed in terms of fluorine atom content (mg / g) contained per 1 g of particles.
  • non-eluting fluorine exists to some extent. Specifically, the range of 0.1 to 50 mg / g is preferable because the above-described effect of suppressing secondary aggregation is exhibited. However, if the amount is too large, the hydrophilicity may be insufficient or the mechanical properties of the particles may be deteriorated.
  • a more preferable non-eluting fluorine content is 1 to 40 mg / g, and further preferably 2 to 20 mg / g.
  • the eluting fluorine content is preferably small or absent when handling the hydrophilized fine particles, and specifically, it is preferably less than 1 mg / g. It is more preferably 0.5 mg / g or less, further preferably 0.2 mg / g or less, still more preferably 0.1 mg / g or less, and particularly preferably 0.01 mg / g or less.
  • the degree of hydrophilicity can be expressed by an acid value (KOH neutralization amount: mgKOH / g).
  • the acid value of the hydrophilized fine particles of the present invention is preferably 0.05 mgKOH / g or more. If it is less than 0.05 mgKOH / g, the dispersibility in an aqueous medium may be insufficient.
  • the acid value is more preferably 0.1 mgKOH / g or more, and further preferably 1 mgKOH / g or more.
  • the acid value of the hydrophilized fine particles is defined as the amount (mg) of KOH required for neutralizing 1 g of particles, and is measured by the method described later.
  • the substrate particles are highly hydrophobic and do not get wet with water, so that they cannot be dispersed in an aqueous medium and the acid value cannot be measured. Moreover, when the alkali washing mentioned later is performed, the hydrogen atom of the carboxyl group produced
  • the degree of hydrophilicity of the particles can also be expressed by the degree of hydrophobicity, and the degree of hydrophobicity of the particles obtained by the method of the present invention is preferably 10 or less, and most preferably 0.
  • the degree of hydrophobicity can be determined as follows.
  • the hydrophilization treatment is not particularly limited as long as the base material particles and the mixed gas are in contact with each other.
  • a method of introducing the mixed gas into a container that can hold the base material particles and treating the base particles in a sealed state (sealing) A contact method) or a method in which a mixed gas is circulated and continuously supplied in a container capable of holding substrate particles (continuous supply method) is preferable.
  • the treatment it is preferable to increase the contact efficiency between the mixed gas and the base material particles, and to make the mixture uniformly hydrophilic in a short time.
  • it is preferable to diffuse the mixed gas into the processing container and examples thereof include a method in which the mixed gas is stirred in a stream using a stirring device such as a fan, or a method in which base particles are spread thinly on a pallet or the like. .
  • you may stir a base particle, The method etc. which rotate a processing container using a drum rotary apparatus etc., or make a base particle flow with a stirrer etc. are mentioned.
  • a plurality of these contact efficiency improving means may be used in combination.
  • the thickness of the base particle layer is set to 2 mm or less in the processing container in order to perform the hydrophilic treatment uniformly and without variation among the particles. It is preferable to load. A more preferable particle layer thickness is 0.5 mm or less.
  • the concentration of fluorine gas in the mixed gas is 0.01 to 1.0% by volume. If the fluorine gas concentration is less than 0.01% by volume, there may be particles that are insufficiently hydrophilized. In view of excellent uniformity of the hydrophilization treatment, the fluorine gas concentration is preferably 0.08% by volume or more. When the concentration of the fluorine gas is set to 1.0% by volume or less, even if it is white or colored, there is little. More preferably, it is 0.3 volume% or less.
  • the gas of the compound containing oxygen atoms is an essential component together with the fluorine gas.
  • Preferred examples of the compound gas containing oxygen atoms include oxygen, sulfur dioxide, carbon dioxide, carbon monoxide, and nitrogen dioxide. Among these, oxygen gas is preferable in terms of high hydrophilization efficiency even under mild processing conditions.
  • an inert gas such as nitrogen, helium, or argon can be used in addition to the fluorine gas and the compound gas containing oxygen atoms.
  • nitrogen gas as an inert gas from the viewpoint of preventing dust explosion in the treatment in the gas phase and performing the hydrophilic treatment industrially and safely.
  • the mixed gas preferably has a composition comprising a fluorine gas, a compound gas containing oxygen atoms, and an inert gas, and more preferably a mixed gas containing fluorine gas, oxygen gas and nitrogen gas.
  • the base particles that are the object of the present invention can be hydrophilized.
  • the gas concentration of the compound containing oxygen atoms is less than 0.1% by volume, there is a possibility that particles having insufficient hydrophilicity exist.
  • the gas concentration of the compound containing oxygen atoms is 0.1% by volume. It is preferable that the amount be 0.5% by volume or more.
  • the high concentration of oxygen-containing compound gas does not adversely affect the hydrophilization of the particles, but the reason why dust explosion can be prevented in the hydrophilization treatment and the hydrophilization treatment can be performed safely.
  • the concentration of the inert gas is not particularly limited, and may be appropriately selected within a range that does not impair the effect of the hydrophilization treatment with a fluorine gas and a compound gas containing oxygen atoms. . Usually, 99 volume% or less is preferable. If it exceeds 99% by volume, there is a possibility that particles having insufficient hydrophilicity may exist.
  • the concentration of the inert gas is preferably 90% by volume or more, and more preferably 94% by mass or more from the reason that the occurrence of dust explosion in the hydrophilic treatment can be suppressed and the hydrophilic treatment can be performed safely.
  • the partial pressure of the fluorine gas in the mixed gas is 8 Pa (0.06 Torr) or more, the uniformity of the hydrophilic treatment is excellent, which is preferable. More preferably, it is 24 Pa (0.18 Torr) or more, and more preferably 64 Pa (0.48 Torr) or more. From the viewpoint of suppressing the decomposition and coloring of the vinyl polymer skeleton due to the hydrophilic treatment, the partial pressure of the fluorine gas is preferably 1000 Pa (7.5 Torr) or less, more preferably 700 Pa (5.25 Torr) or less. .
  • the partial pressure of oxygen gas is preferably 70 Pa (0.53 Torr) to 85000 Pa (637.6 Torr) from the viewpoint of performing the hydrophilic treatment uniformly. From the viewpoint of industrially and safely hydrophilizing treatment, it is preferably 70 Pa to 7998 Pa (60 Torr), and more preferably 70 Pa to 3999 Pa (30 Torr). The preferable range is the same with respect to the partial pressure of the gas of the compound containing an oxygen atom.
  • the partial pressure of the nitrogen gas is preferably 3199 Pa (24 Torr) to 79180 Pa (594 Torr), more preferably 71918 Pa from the viewpoint of industrially and safely hydrophilizing treatment. (540 Torr) to 79180 Pa (594 Torr).
  • the preferable range of the partial pressure of the other inert gas is the same.
  • the total pressure of the mixed gas is preferably 101.3 kPa (760 Torr) or less in order to safely perform the hydrophilic treatment. If it exceeds 101.3 kPa, the mixed gas may leak out of the container.
  • the ratio of the mixed gas to the base particles is preferably 30 L to 4000 L, more preferably 1000 L to 3000 L, in terms of normal temperature and normal pressure, with respect to 1 kg of the base particles.
  • the total flow rate from 30 L to 15000 L, more preferably from 1000 L to 10000 L, in terms of normal temperature and normal pressure, with respect to 1 kg of the base particles.
  • the base particles put in a container that can be sealed as it is or put in a container are decompressed, and after reducing the pressure, the mixed gas is introduced and the treatment is performed for a predetermined time. If moisture remains, HF is generated and dangerous. Therefore, it is preferable to sufficiently evacuate when decompressing. In the case of the continuous supply type, the mixed gas may be introduced for a predetermined time.
  • reaction temperature is preferably about ⁇ 20 ° C. to 200 ° C., more preferably about 0 ° C. to 100 ° C., and further preferably 10 ° C. to 40 ° C. If the reaction temperature exceeds 200 ° C, the vinyl polymer particles may be decomposed. On the other hand, if the reaction temperature is lower than -20 ° C, the hydrophilization treatment may be insufficient. In addition, reaction temperature means the temperature of the gas in a chamber.
  • a compound gas containing oxygen atoms or other gas other than fluorine gas may be first introduced into the chamber, and then fluorine gas may be introduced, or a premixed gas may be introduced. Good.
  • the contact time (treatment time) between the base particles and the mixed gas is not particularly limited, and the treatment may be performed until a desired degree of hydrophilicity is achieved, but the treatment is completed in about 10 to 60 minutes. After the treatment, it is preferable to perform a step of reducing the pressure again to about 0.13 Pa (0.001 Torr) and then introducing nitrogen gas. When this step is completed, the pressure is released to atmospheric pressure.
  • the particles after contact with the mixed gas are further brought into contact with moisture.
  • the —C (F) ⁇ O formed on the particle surface by contact with the mixed gas is more efficiently converted to a carboxyl group by contacting with moisture. Further, HF generated at this time and HF or F 2 adsorbed on the particle surface can be effectively removed.
  • the moisture is preferably an alkaline aqueous solution and / or water and / or water vapor.
  • the mode in which the particles after contact with the mixed gas are brought into contact with water is any of the mode in which an alkaline aqueous solution is used as the water; the mode in which water and / or water vapor is used; May be.
  • an embodiment using an alkaline aqueous solution and water and / or water vapor is preferable.
  • the order of contact is not particularly limited, but from the viewpoint of efficiently removing HF or F 2 adsorbed on the particle surface, the particle is brought into contact with an alkaline aqueous solution and then brought into contact with water and / or water vapor. Is desirable.
  • an alkali metal salt or amine salt of a carboxylic acid (hereinafter sometimes referred to as a carboxylate salt) is formed on the particle surface.
  • This carboxylate is preferable because it further increases the hydrophilicity of the particles, and then the excess alkaline aqueous solution can be washed by contacting the particles with water and / or water vapor.
  • alkali treatment the case of bringing particles into contact with an alkaline aqueous solution
  • water may be referred to as warm water cleaning.
  • Method of dispersing and alkali treatment After contact with gas, particles removed from the chamber are dispersed in an alkaline aqueous solution and alkali treated, and then the particles are taken out and dispersed in water with a solvent containing water or water. The method of washing
  • the contact time with moisture is preferably about 1 to 600 minutes.
  • the temperature of (alkaline aqueous solution and / or water and / or water vapor) is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, still more preferably 60 ° C. or higher, and most preferably 80 ° C. or higher.
  • the particle concentration is preferably 0.5 to 50% by mass in a total of 100% by mass of the solvent and the particles. If the particle concentration is less than 0.5% by mass, the amount of fluorine-containing wastewater generated when washing a predetermined amount of particles increases, which may increase the cost industrially. If the particle concentration exceeds 50% by mass, cleaning may be insufficient. In order to efficiently clean the particles, it is also preferable to perform ultrasonic dispersion with the particles in a solvent.
  • eluent fluorine such as fluorine components adhering to the particle surface may cause problems such as corrosion due to the safety of the particle or contact with other materials, so remove it as much as possible.
  • the alkali treatment using an alkaline aqueous solution as the moisture is performed, the leachable fluorine adsorbed on the particle surface can be more efficiently removed.
  • alkaline aqueous solutions include aqueous solutions of water-soluble amines such as ammonia, monoethanolamine, and diethanolamine, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide, and lithium carbonate.
  • An aqueous solution containing an alkali metal ion in which an alkali metal compound such as an alkali metal carbonate such as sodium carbonate, potassium carbonate, rubidium carbonate or cesium carbonate is dissolved in water is preferably used.
  • aqueous solutions containing alkali metal ions are preferable, those containing sodium are more preferable, and sodium hydroxide aqueous solutions are particularly preferable.
  • the concentration of the alkaline aqueous solution is preferably 0.01N to 5N. More preferably, it is 0.05N to 2N, and still more preferably 0.1N to 1N.
  • the specific method of the alkali treatment is not particularly limited. For example, after contact with a gas, particles taken out from the chamber are dispersed in an alkaline aqueous solution having the above concentration, and then at a temperature of 80 ° C. or higher for 1 minute to 600 minutes. And a method of bringing the particles into contact with an alkaline aqueous solution.
  • the amount of fluorine atoms contained in the resulting hydrophilized fine particles (total fluorine amount), the amount of fluorine atoms ionized and liberated (elutable fluorine content), and the fluorine atoms that are incorporated into the particle skeleton by chemical bonding and are not liberated
  • the amount (non-eluting fluorine content) can be measured by the following method.
  • Total fluorine content oxygen combustion flask method 2 mg of particles are weighed on a 3 cm ⁇ 2 cm filter paper and wrapped so that the particles do not scatter.
  • the platinum basket attached to the oxygen flask is heated with a Bunsen burner and kept in a red hot state for about 5 seconds. When the basket cools, pack the filter paper wrapped in particles into the basket.
  • 15 ml of distilled water is put into a 500 ml oxygen flask and the inner wall of the flask is wetted, the inside of the flask is replaced with an oxygen atmosphere. Light the filter paper in the basket and quickly insert it into the flask.
  • the flask After combustion, the flask is shaken a few times and allowed to stand for 30 minutes, after which the contents of the flask are transferred to a polypropylene beaker with a capacity of 100 ml, and further distilled water is added to adjust the total volume to 50 ml.
  • the pH was adjusted to a constant level by adding 5 ml of a buffer solution, and the fluorine ion concentration was measured with an ion meter while stirring with a magnetic stirrer to determine the total fluorine amount (mg / g).
  • “Orion1115000 4-Star” manufactured by Thermo Fisher Scientific
  • “Orion 9609BNWP” manufactured by the same company
  • Non-eluting fluorine content (total fluorine content)-(eluting fluorine content)
  • the presence or absence of the generation of carboxyl groups on the particle surface after the hydrophilization treatment is determined by an X-ray photoelectron analyzer (ESCA: for example, a scanning X-ray photoelectron analyzer “PHIPQuanteraMSXM (registered trademark)” manufactured by ULVAC-PHI). Can be measured. In the present invention, the determination was made based on the presence or absence of a peak at 288 eV.
  • ESA X-ray photoelectron analyzer
  • the substrate particles used in the method of the present invention are not particularly limited as long as they are particles containing a vinyl polymer, and particles made of only a vinyl polymer, or an organic / inorganic composite made of a material in which an organic material and an inorganic material are combined. Any of the particles can be used.
  • the vinyl of the present invention includes (meth) acryloyl.
  • the vinyl polymer fine particles include particles composed only of vinyl polymers such as (meth) acrylic (co) polymers, (meth) acrylic-styrene copolymers, and polymerizable ( Meaning of containing vinyl group; the same applies hereinafter) Organic radical composite particles and / or condensation polymers of alkoxysilane, and organic-inorganic composite particles such as a copolymer of polymerizable alkoxysilane and vinyl monomer.
  • the term “vinyl polymer” means an organic-only polymer obtained by polymerizing vinyl monomers.
  • the “vinyl polymer fine particles” as used in the present invention means particles containing a component or a skeleton made of “vinyl polymer”.
  • Vinyl polymer particles are obtained by polymerizing a monomer composition containing a monomer mixture containing a vinyl monomer.
  • the vinyl monomer contained in the monomer mixture is a non-crosslinkable monomer having one vinyl group in one molecule, and a crosslinkable monomer having two or more vinyl groups in one molecule. Any of these can be used.
  • non-crosslinkable monomer examples include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, Pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, glycidyl (meth) acrylate, cyclohex (Meth) acrylates such as xyl (meth) acrylate, stearyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl
  • non-crosslinkable monomer when (meth) acrylic acid is used as the non-crosslinkable monomer, it may be partially neutralized with an alkali metal.
  • non-crosslinkable monomers may be used alone or in combination of two or more.
  • a monomer having no ester bond in the molecule is preferably used as an essential component, and among them, a styrene monomer is preferable, and styrene, ⁇ -methylstyrene are particularly preferable. Ethyl vinyl benzene and the like are preferable.
  • crosslinkable monomer examples include trimethylolpropane triacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, decaethylene glycol dimethacrylate, pentadecaethylene glycol dimethacrylate, pentacontact ethylene glycol dimethacrylate.
  • crosslinkable monomers may be used alone or in combination of two or more. Among these, it is preferable to use a monomer having no ester bond in the molecule as an essential component. Among them, an aromatic divinyl compound is preferable, and divinylbenzene is particularly preferable.
  • the content of the crosslinkable monomer in the monomer mixture is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and 50% by mass or less. More preferably, it is 40 mass% or less, More preferably, it is 30 mass% or less.
  • a polymerization initiator or a dispersion stabilizer may be used as necessary.
  • the polymerization initiator any of those usually used for polymerization can be used.
  • a peroxide initiator, an azo initiator, or the like can be used.
  • the peroxide initiator include hydrogen peroxide, peracetic acid, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide.
  • Oxide t-butylperoxy-2-ethylhexanoate, di-t-butylperoxide, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, methyl ethyl ketone peroxide, diisopropyl
  • examples thereof include peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, and the like.
  • azo initiator examples include dimethyl 2,2-azobisisobutyronitrile, azobiscyclohexacarbonitrile, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl). Valeronitrile), 2,2′-azobis (2,3-dimethylbutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,3,3-trimethyl) Butyronitrile), 2,2′-azobis (2-isopropylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (4-methoxy-2,4- Dimethylvaleronitrile), 2- (carbamoylazo) isobutyronitrile, 2,2′-azobis (2-amidinopropane) dihydrochloride, 4,4′-azobis (4-cyano) Pentane acid), 4,4'-azobis (4-cyanovaleric acid), dimethyl
  • These polymerization initiators may be used alone or in combination of two or more.
  • the addition amount of these polymerization initiators is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, and 5 parts by mass or less with respect to 100 parts by mass of the monomer mixture. It is preferable that it is 3 parts by mass or less.
  • the dispersion stabilizer is used to stabilize the droplet diameter of the monomer composition during the polymerization reaction when the monomer composition is polymerized using a suspension polymerization method or the like.
  • the dispersion stabilizer may be dissolved or dispersed in a solvent (for example, an aqueous solvent) as a dispersion medium without being contained in the monomer composition.
  • a solvent for example, an aqueous solvent
  • any of an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant may be used.
  • a dispersion stabilizer may be used independently and may use 2 or more types together.
  • fatty acid oils such as sodium oleate and castor oil potassium
  • alkyl sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate
  • polyoxyethylene distyryl phenyl ether sulfate ammonium salt polyoxyethylene distyryl phenyl ether sulfate
  • Polyoxyethylene distyryl phenyl ether sulfate such as sodium salt
  • alkylbenzene sulfonate such as sodium dodecylbenzene sulfonate
  • alkyl naphthalene sulfonate, alkane sulfonate, dialkyl sulfosuccinate, alkyl phosphate ester, naphthalene Anion such as sulfonic acid formalin condensate, polyoxyethylene alkyl phenyl ether sulfate, polyoxyethylene alkyl sulfate Emissions surfactants
  • the amount of the dispersion stabilizer may be appropriately adjusted according to the desired size of the vinyl polymer particles.
  • the addition amount of the dispersion stabilizer may be 0.1 parts by mass or more with respect to 100 parts by mass of the monomer mixture.
  • it is 0.5 parts by mass or more, more preferably 1 part by mass or more, preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and further preferably 3 parts by mass or less.
  • pigments, plasticizers, polymerization stabilizers, fluorescent brighteners, magnetic powders, ultraviolet absorbers, antistatic agents, flame retardants, and the like may be added to the monomer composition.
  • the amount of these additives used is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and still more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the monomer mixture. It is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and still more preferably 3 parts by mass or less.
  • Method for producing vinyl polymer particles In the method for producing vinyl polymer particles, a monomer composition containing the monomer mixture as described above is polymerized.
  • a polymerization method well-known polymerization methods, such as suspension polymerization, seed polymerization, and emulsion polymerization, can be employ
  • the solvent used is not particularly limited as long as it does not completely dissolve the monomer composition, but an aqueous medium is preferably used. These solvents can be appropriately used within a range of usually 20 parts by mass or more and 10,000 parts by mass or less with respect to 100 parts by mass of the monomer composition.
  • a method for producing vinyl polymer particles a method in which a monomer composition containing a monomer mixture and a polymerization initiator is suspended and polymerized in an aqueous solvent in which a dispersion stabilizer is dissolved or dispersed is preferable. It is.
  • the polymerization temperature of the suspension polymerization is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, further preferably 60 ° C. or higher, preferably 95 ° C. or lower, more preferably 90 ° C. or lower, still more preferably. Is 85 ° C. or lower.
  • the polymerization reaction time is preferably 1 hour or longer, more preferably 2 hours or longer, further preferably 3 hours or longer, preferably 10 hours or shorter, more preferably 8 hours or shorter, still more preferably. 5 hours or less.
  • the polymerization reaction is preferably performed after regulating the droplet diameter of the monomer composition or while regulating the droplet diameter.
  • the regulation of the droplet diameter of the monomer composition is, for example, that a suspension in which the monomer composition is dispersed in an aqueous medium is changed to T.P. K. It can be carried out by stirring with a high-speed stirrer such as a homomixer or a line mixer.
  • the vinyl polymer particles produced by the polymerization reaction may be dried and further subjected to a classification process or the like if necessary. In addition, it is preferable to perform drying at 150 degrees C or less, More preferably, it is 120 degrees C or less, More preferably, it is 100 degrees C or less.
  • the seed polymerization method it is preferable to use a styrene-based or (meth) acrylate-based polymer as the seed particle, and it is more preferable to use a non-crosslinked type or a fine particle having a low degree of crosslinking.
  • the average particle diameter of the seed particles is preferably 0.1 ⁇ m to 10 ⁇ m, and the value (CV value) represented by 100 ⁇ particle diameter standard deviation / average particle diameter is preferably 10 or less.
  • a conventionally used method can be employed, and examples thereof include soap-free emulsion polymerization and dispersion polymerization.
  • the charged amount of the monomer composition in the seed polymerization is preferably 0.5 to 50 parts by mass with respect to 1 part by mass of the seed particles. If the charged amount of the monomer composition is too small, the increase in the particle size due to polymerization is small, and if it is too large, the monomer composition is not completely absorbed by the seed particles and polymerizes independently in the medium. May produce abnormal particles. In addition, about the polymerization temperature and the drying conditions of the obtained particle
  • Organic-inorganic composite particles are particles comprising an organic part derived from a vinyl polymer and an inorganic part.
  • organic-inorganic composite particles an aspect in which inorganic fine particles such as metal oxides such as silica, alumina and titania, metal nitrides, metal sulfides and metal carbides are dispersed and contained in the vinyl polymer;
  • Organo A mode in which a metalloxane chain (molecular chain containing a “metal-oxygen-metal” bond) such as polysiloxane and polytitanoxane and an organic molecule are combined at the molecular level; a vinyl polymer such as vinyltrimethoxysilane is formed.
  • an embodiment composed of organic-inorganic composite particles including a vinyl polymer skeleton and a polysiloxane skeleton is particularly preferable.
  • composite particles organic-inorganic composite particles containing a vinyl polymer skeleton and a polysiloxane skeleton (hereinafter sometimes simply referred to as “composite particles”) will be described in detail.
  • the vinyl polymer skeleton is a vinyl polymer having a main chain composed of a repeating unit represented by the following formula (1), having a side chain, having a branched structure, and further having a crosslinked structure. It may be a thing.
  • the hardness of the composite particles can be controlled appropriately.
  • polysiloxane skeleton is defined as a portion in which a siloxane unit represented by the following formula (2) is continuously chemically bonded to form a network of a network structure.
  • the amount of SiO 2 constituting the polysiloxane skeleton is preferably 0.1% by mass or more, more preferably 1% by mass or more, and preferably 25% by mass or less with respect to the mass of the composite particles. More preferably, it is 10 mass% or less.
  • the amount of SiO 2 constituting the polysiloxane skeleton is a mass percentage obtained by measuring the mass before and after firing the particles at a temperature of 800 ° C. or higher in an oxidizing atmosphere such as air.
  • the composite particles can be arbitrarily adjusted by appropriately changing the ratio of the polysiloxane skeleton part and the vinyl polymer skeleton part with respect to each of the mechanical properties such as hardness and breaking strength.
  • the polysiloxane skeleton in the composite particles is preferably obtained by hydrolytic condensation reaction of a silane compound having a hydrolyzable group.
  • R ′ may have a substituent and represents at least one group selected from the group consisting of an alkyl group, an aryl group, an aralkyl group and an unsaturated aliphatic group, and X represents a hydroxyl group, an alkoxy group. And represents at least one group selected from the group consisting of a group and an acyloxy group, and m is an integer from 0 to 3.
  • the derivative of the silane compound represented by the general formula (3) is not particularly limited.
  • a part of X is substituted with a group capable of forming a chelate compound such as a carboxyl group and a ⁇ -dicarbonyl group.
  • examples thereof include compounds and low condensates obtained by partially hydrolyzing the silane compound.
  • the hydrolyzable silane compound may be used alone or in combination of two or more.
  • the hydrolyzable silane compound It is necessary to use those having an organic group containing a vinyl bond.
  • Examples of the organic group containing a vinyl bond include organic groups represented by the following general formulas (4), (5), and (6).
  • CH 2 C (-R a ) -COOR b- (4)
  • R a represents a hydrogen atom or a methyl group
  • R b represents a divalent organic group having 1 to 20 carbon atoms which may have a substituent.
  • CH 2 C (-R c )-(5)
  • R c represents a hydrogen atom or a methyl group.
  • CH 2 C (-R d ) -R e- (6)
  • R d represents a hydrogen atom or a methyl group
  • R e represents a divalent organic group having 1 to 20 carbon atoms which may have a substituent.
  • Examples of the organic group of the general formula (4) include a (meth) acryloxy group, and the silane compound of the general formula (3) having a (meth) acryloxy group includes, for example, ⁇ -methacryloxypropyltrimethoxy.
  • Examples of the organic group of the general formula (5) include a vinyl group and an isopropenyl group.
  • Examples of the silane compound of the general formula (3) having these organic groups include vinyl trimethoxysilane, Examples include vinyltriethoxysilane, vinyltriacetoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, and vinylmethyldiacetoxysilane. These may be used alone or in combination of two or more.
  • Examples of the organic group of the general formula (6) include 1-alkenyl group or vinylphenyl group, isoalkenyl group or isopropenylphenyl group, and the silane of the general formula (3) having these organic groups.
  • Examples of the compound include 1-hexenyltrimethoxysilane, 1-hexenyltriethoxysilane, 1-octenyltrimethoxysilane, 1-decenyltrimethoxysilane, ⁇ -trimethoxysilylpropyl vinyl ether, ⁇ -trimethoxysilylundecane.
  • Examples include acid vinyl ester, p-trimethoxysilylstyrene, 1-hexenylmethyldimethoxysilane, 1-hexenylmethyldiethoxysilane, and the like. These may be used alone or in combination of two or more.
  • the vinyl polymer skeleton contained in the composite particles is obtained by allowing the particles having a polysiloxane skeleton obtained by the hydrolysis-condensation reaction of (I) silane compound to absorb the vinyl monomer component and then polymerizing the particles. be able to.
  • the silane compound has an organic group containing a vinyl bond together with a hydrolyzable group, it can also be obtained by polymerizing this after the hydrolysis condensation reaction of the (II) silane compound.
  • the composite particle has (i) a form in which the polysiloxane skeleton has an organosilicon atom in which a silicon atom is directly chemically bonded to at least one carbon atom in the vinyl polymer skeleton (chemical bond type).
  • the form (IPN type) does not have such an organosilicon atom in the molecule, and is not particularly limited, but the form (i) is preferred.
  • the vinyl polymer skeleton is obtained together with the polysiloxane skeleton by the method (I)
  • composite particles having the form (ii) are obtained.
  • the silane compound has a vinyl bond together with a hydrolyzable group.
  • composite particles having both the forms (i) and (ii) can be obtained. Further, when the vinyl polymer skeleton is obtained together with the polysiloxane skeleton as in (II), composite particles having the form (i) are obtained.
  • examples of the monomer that can be absorbed by the particles having a polysiloxane skeleton include the vinyl monomers described above, and depending on the desired physical properties of the composite particles. It can be selected appropriately. These may be used alone or in combination of two or more.
  • a hydrophobic vinyl-based monomer is preferable because a stable emulsion in which the monomer component is emulsified and dispersed can be generated when the monomer component is absorbed into particles having a polysiloxane skeleton.
  • the crosslinkable monomer described above is used, the mechanical properties of the resulting composite particles can be easily adjusted, and the solvent resistance of the composite particles can be improved.
  • the crosslinkable monomer those exemplified as those used for the vinyl polymer particles can be used.
  • the method for producing composite particles preferably includes a hydrolysis-condensation step and a polymerization step, and more preferably includes an absorption step for absorbing the polymerizable monomer after the hydrolysis and condensation step and before the polymerization step. .
  • the absorption step By including the absorption step, the content of the vinyl polymer skeleton component in the composite particles and the refractive index of the vinyl polymer skeleton contained can be adjusted.
  • the silane compound used in the hydrolysis-condensation step does not have an element that constitutes a vinyl polymer skeleton together with an element that can constitute a polysiloxane skeleton structure, the absorption step is essential, and this absorption step is followed.
  • a vinyl polymer skeleton is formed in the polymerization process.
  • the hydrolysis-condensation step is a step of performing a reaction in which a silane compound is hydrolyzed in a solvent containing water to undergo condensation polymerization.
  • a silane compound is hydrolyzed in a solvent containing water to undergo condensation polymerization.
  • particles having a polysiloxane skeleton can be obtained.
  • Hydrolysis and polycondensation can employ any method such as batch, split, and continuous.
  • basic catalysts such as ammonia, urea, ethanolamine, tetramethylammonium hydroxide, alkali metal hydroxide, and alkaline earth metal hydroxide can be preferably used as the catalyst.
  • an organic solvent can be contained in addition to water and the catalyst.
  • the organic solvent include alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, 1,4-butanediol; acetone, Examples thereof include ketones such as methyl ethyl ketone; esters such as ethyl acetate; (cyclo) paraffins such as isooctane and cyclohexane; aromatic hydrocarbons such as benzene and toluene. These may be used alone or in combination of two or more.
  • anionic, cationic and nonionic surfactants and polymer dispersants such as polyvinyl alcohol and polyvinylpyrrolidone can be used in combination. These may be used alone or in combination of two or more.
  • Hydrolytic condensation is performed by mixing the silane compound as a raw material with a solvent containing a catalyst, water, and an organic solvent, and then at a temperature of 0 ° C. to 100 ° C., preferably 0 ° C. to 70 ° C., for 30 minutes to 100 hours. It can carry out by stirring below. Thereby, polysiloxane particles are obtained. Moreover, after producing a particle by performing a hydrolysis-condensation reaction to a desired degree, this may be used as a seed particle, and a silane compound may be further added to the reaction system to grow the seed particle.
  • the absorption process is not particularly limited as long as it proceeds in the presence of the monomer component in the presence of the polysiloxane particles. Therefore, the monomer component may be added to the solvent in which the polysiloxane particles are dispersed, or the polysiloxane particles may be added to the solvent containing the monomer component. Especially, it is preferable to add a monomer component in the solvent which disperse
  • the method of adding the monomer component to the reaction liquid without taking out the polysiloxane particles obtained in the hydrolysis and condensation process from the reaction liquid (polysiloxane particle dispersion) does not complicate the process. It is preferable because of its excellent properties.
  • the monomer component is absorbed in the structure of the polysiloxane particle, but the concentration of each of the polysiloxane particle and the monomer component is increased so that the absorption of the monomer component proceeds quickly, It is preferable that the mixing ratio of the polysiloxane and the monomer component, the processing method and means for mixing, the temperature and time at the time of mixing, the processing method and means after mixing, etc. are appropriately set and performed under the conditions.
  • the amount of the monomer component added is preferably 0.01 to 100 times by mass with respect to the mass of the silane compound used as the raw material for the polysiloxane particles. More preferably, they are 0.5 times or more and 30 times or less, More preferably, they are 1 time or more and 20 times or less. If the amount added is less than the above range, the amount of monomer component absorption of the polysiloxane particles is reduced, the mechanical properties of the resulting composite particles may be insufficient, if exceeding the above range, There is a tendency that it is difficult to completely absorb the added monomer component in the polysiloxane particles, and the unabsorbed monomer component remains, and thus aggregation between particles is likely to occur in the subsequent polymerization stage. There is.
  • the timing of addition of the monomer component is not particularly limited, and may be added all at once, may be added in several times, or may be fed at an arbitrary rate.
  • either the monomer component alone or the solution of the monomer component may be added, but the monomer component is previously added to water or an aqueous medium with an emulsifier. It is preferable to mix the emulsified and emulsified liquid into the polysiloxane particles because the polysiloxane particles can be more efficiently absorbed.
  • the emulsifier is not particularly limited.
  • These emulsifiers may be used alone or in combination of two or more.
  • the amount of the emulsifier used is not particularly limited, and specifically, it is preferably 0.01 parts by mass or more, more preferably 0 with respect to 100 parts by mass of the total mass of the monomer components to be emulsified. 0.05 parts by mass or more, more preferably 1 part by mass or more, preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and further preferably 5 parts by mass or less. When the amount is less than 0.01 parts by mass, a stable emulsion may not be obtained. When the amount exceeds 10 parts by mass, emulsion polymerization or the like may occur as a side reaction. In order to obtain an emulsified liquid, the monomer component may be made into an emulsion state in water using a homomixer or an ultrasonic homogenizer together with the emulsifier.
  • water or a water-soluble organic solvent that is 0.3 to 10 times the mass of the monomer component.
  • the water-soluble organic solvent include alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, 1,4-butanediol; acetone And ketones such as methyl ethyl ketone; esters such as ethyl acetate;
  • the absorption step is preferably performed in the temperature range of 0 ° C. to 60 ° C. with stirring for 5 minutes to 720 minutes. These conditions may be set as appropriate depending on the type of polysiloxane particles and monomers to be used, and these conditions may be used alone or in combination of two or more.
  • the absorption process for determining whether the monomer component has been absorbed by the polysiloxane particles, for example, before adding the monomer component and after the absorption step, observe the particles with a microscope to absorb the monomer component. Thus, it can be easily determined by confirming that the particle size is increased.
  • the polymerization step is a step of obtaining particles having a vinyl polymer skeleton by polymerizing a monomer component.
  • a silane compound having an organic group having a vinyl bond it is a step of polymerizing the vinyl bond of the organic group to form a vinyl polymer skeleton.
  • the polymerization reaction may be performed in the middle of the hydrolysis-condensation step or the absorption step, and may be performed after one or both of the steps, and is not particularly limited, but usually after the hydrolysis-condensation step (the absorption step). If done, of course, start after the absorption step).
  • the polymerization method is not particularly limited, and for example, any of a method using a radical polymerization initiator, a method of irradiating ultraviolet rays or radiation, a method of applying heat, and the like can be adopted. Although it does not specifically limit as said radical polymerization initiator, For example, what is used for superposition
  • the amount of the radical polymerization initiator used is preferably 0.001 part by mass or more, more preferably 0.01 part by mass or more, and still more preferably 0.001 part by mass with respect to 100 parts by mass of the total mass of the monomer components. It is 1 part by mass or more, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 5 parts by mass or less. When the usage-amount of a radical polymerization initiator is less than 0.001 mass part, the polymerization degree of a monomer component may not rise.
  • the method of charging the radical polymerization initiator into the solvent is not particularly limited, and is a method in which the entire amount is initially charged (before the reaction is started) (the mode in which the radical polymerization initiator is emulsified and dispersed together with the monomer component, A mode in which a radical polymerization initiator is charged after absorption); a method in which a part is charged first, and the rest is continuously fed, or intermittently pulsed, or a combination of these, etc. Any known method can be employed.
  • the reaction temperature for carrying out radical polymerization is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, preferably 100 ° C. or lower, more preferably 80 ° C. or lower. If the reaction temperature is too low, the degree of polymerization does not increase sufficiently and the mechanical properties of the composite particles tend to be insufficient. On the other hand, if the reaction temperature is too high, aggregation between particles occurs during the polymerization. It tends to happen easily.
  • the reaction time for performing radical polymerization may be appropriately changed according to the type of polymerization initiator to be used, but is usually preferably 5 minutes or more, more preferably 10 minutes or more, and preferably 600 minutes or less. More preferably, it is 300 minutes or less. When the reaction time is too short, the degree of polymerization may not be sufficiently increased, and when the reaction time is too long, aggregation tends to occur between particles.
  • base particles composed of vinyl polymer fine particles having desirable characteristics (such as mechanical characteristics and particle size distribution characteristics) described later can be obtained.
  • the shape of the base particle used in the present invention is not particularly limited, and may be any of spherical, spheroid, scallop, thin plate, needle, eyebrows, and the particle surface has a smooth shape.
  • the shape may be any of a shape, a bowl shape and a porous shape. Among them, the spherical shape is preferable because it has many industrial uses.
  • size of a base particle shall be 1 mm (1000 micrometers) or less by a mass mean particle diameter. This is because particles exceeding 1 mm have limited applications and few industrial fields of use.
  • the mass average particle diameter is preferably 0.05 to 500 ⁇ m, more preferably 0.1 to 100 ⁇ m, and further preferably 0.5 to 30 ⁇ m.
  • the mass average particle size means a value obtained as a volume average particle size in a conventionally known particle size distribution measurement method, and specifically, a precise particle size distribution measurement apparatus (for example, trade name “Coulter Multi” using the Coulter principle). It is a value measured by “Sizer III” manufactured by Beckman Coulter, Inc.
  • the coefficient of variation (CV value) in the particle diameter of the substrate particles used in the present invention is preferably 40% or less. If the CV value exceeds 40%, the particle size variation is too large, and there is a risk of unevenness in the hydrophilic treatment.
  • the CV value is a value obtained by applying the mass average particle diameter of the base material particle measured by a precision particle size distribution measuring apparatus using the Coulter principle and the standard deviation of the particle diameter of the base material particle to the following formula. is there.
  • Coefficient of variation (%) of substrate particles 100 ⁇ standard deviation of particle diameter / mass average particle diameter
  • the preferred range of the mass average particle diameter and coefficient of variation of the hydrophilized fine particles is the same as that of the base particles.
  • the base particles are hydrophilized by the method described above.
  • the dispersibility, mechanical characteristics, hue, and particle size distribution characteristics (CV value) of the base particles and the hydrophilized fine particles are preferably approximately the same, and preferably not changed before and after the hydrophilization treatment.
  • the dispersibility is a property that the particles are not fixed or fused.
  • the mechanical characteristics can be evaluated by, for example, a compression elastic modulus, a compression fracture load, a recovery rate, and the like.
  • the compression elastic modulus of the present invention is the elastic modulus (N / mm 2 : MPa) when a particle is loaded and deformed by 10%, and the compressive fracture load is the load (mN) when compression is strengthened to cause fracture.
  • the recovery rate is the recovery rate after compression (%).
  • Substrate particles, in any of the hydrophilic fine particles the compression modulus is preferably 1000 N / mm 2 or more, more preferably 2000N / mm 2 or more, 3000N / mm 2 or more is more preferable.
  • the compressive breaking load is preferably 1 mN or more, more preferably 3 mN or more, and further preferably 5 mN or more.
  • the recovery rate is preferably 0.5% or more, more preferably 1% or more, and further preferably 5% or more.
  • Synthesis example 1 In a four-necked flask equipped with a condenser, a thermometer, and a dripping port, 400 parts of ion-exchanged water, 6 parts of 25% aqueous ammonia and 180 parts of methanol are placed, and this solution is stirred with 3-methacryloxypropyltrimethoxy. 100 parts of silane was added from the dropping port, and a hydrolytic condensation reaction of 3-methacryloxypropyltrimethoxysilane was performed to obtain an emulsion of polysiloxane particles.
  • the obtained emulsion was added to an emulsion of polysiloxane particles and further stirred. Two hours after the addition of the emulsion, the reaction solution was sampled and observed with a microscope. As a result, it was confirmed that the polysiloxane particles were enlarged by absorbing the monomer component.
  • the reaction solution was heated to 65 ° C. under a nitrogen atmosphere and held at 65 ° C. for 2 hours to perform radical polymerization of the monomer component.
  • the emulsion after radical polymerization was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol.
  • the substrate particles 1 (organic inorganic composite particles) were obtained by vacuum drying at 80 ° C. for 12 hours.
  • the particle diameter of the substrate particle 1 was measured by Coulter Multisizer III type (manufactured by Beckman Coulter, Inc.), the mass average particle diameter was 3.8 ⁇ m, and the coefficient of variation (CV value) was 2.9%.
  • the average particle size of the base particles was determined by measuring the particle size of 30000 particles using a Coulter Multisizer III type (manufactured by Beckman Coulter, Inc.).
  • the CV value (%) of the particle diameter was determined according to the following formula.
  • Synthesis example 2 An emulsion of polysiloxane particles was prepared in the same manner as in Synthesis Example 1 except that the amount of 3-methacryloxypropyltrimethoxysilane added to the flask was 50 parts.
  • the obtained emulsion was added to an emulsion of polysiloxane particles and further stirred. Two hours after the addition of the emulsion, the reaction solution was sampled and observed with a microscope. As a result, it was confirmed that the polysiloxane particles were enlarged by absorbing the monomer component.
  • the reaction solution was heated to 65 ° C. under a nitrogen atmosphere and held at 65 ° C. for 2 hours to perform radical polymerization of the monomer component.
  • the emulsion after radical polymerization was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol.
  • the substrate particles 2 were obtained by vacuum drying at 80 ° C. for 12 hours.
  • the base material particle 2 had a mass average particle diameter of 3.8 ⁇ m and a CV value of 3.3%.
  • Synthesis example 3 Substrate particles in the same manner as in Synthesis Example 2, except that the amount of 25% aqueous ammonia was 20 parts, and 75 parts of styrene and 75 parts of 1,6-hexanedimethacrylate were used when preparing the emulsion of the monomer component. 3 (organic inorganic composite particles) was obtained.
  • the base particle 3 had a mass average particle diameter of 2.1 ⁇ m and a CV value of 5.2%.
  • Synthesis example 4 Base material particles 4 (organic / inorganic composite particles) were obtained in the same manner as in Synthesis Example 1 except that the amount of 25% aqueous ammonia was 20 parts.
  • the base particle 4 had a mass average particle diameter of 2.0 ⁇ m and a CV value of 5.3%.
  • Synthesis example 5 A four-necked flask equipped with a cooling tube, a thermometer, and a dropping port was charged with 150 parts of an ion exchange aqueous solution in which 2 parts of the above-mentioned “Hytenol NF-08” was dissolved as a dispersion stabilizer. 100 parts of divinylbenzene and 2 parts of “V-65” were added, and the mixture was emulsified and dispersed at 5000 rpm for 5 minutes with the TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) to prepare a suspension.
  • TK homomixer manufactured by Tokushu Kika Kogyo Co., Ltd.
  • Base particles 5 (vinyl polymer particles) were obtained by vacuum drying the classified particles at 80 ° C. for 12 hours.
  • the base particle 5 had a mass average particle diameter of 2.1 ⁇ m and a CV value of 25.0%.
  • Substrate particles 6 (vinyl polymer particles) in the same manner as in Synthesis Example 5 except that a monomer mixture comprising 30 parts of styrene and 70 parts of 1,6-hexanediol dimethacrylate was used instead of 100 parts of divinylbenzene.
  • the base particle 6 had a mass average particle diameter of 2.8 ⁇ m and a CV value of 19.0%.
  • Synthesis example 7 Substrate particles 7 (vinyl polymer particles) in the same manner as in Synthesis Example 5 except that a monomer mixture comprising 70 parts of styrene and 30 parts of 1,6-hexanediol dimethacrylate was used instead of 100 parts of divinylbenzene. )
  • the base particle 7 had a mass average particle diameter of 2.3 ⁇ m and a CV value of 23.5%.
  • Substrate particles 8 (vinyl polymer particles) were obtained in the same manner as in Synthesis Example 5 except that a monomer mixture consisting of 70 parts of methyl methacrylate and 30 parts of ethylene glycol dimethacrylate was used instead of 100 parts of divinylbenzene. It was.
  • the base particle 8 had a mass average particle diameter of 3.2 ⁇ m and a CV value of 30.0%.
  • Base material particles 9 (organic inorganic composite particles) were obtained in the same manner as in Synthesis Example 1 except that the amount of 25% aqueous ammonia was 10 parts.
  • the mass average particle diameter of the substrate particles 10 was 3.0 ⁇ m, and the CV value was 2.5%.
  • the base particle 10 (organic matter) was prepared in the same manner as in Synthesis Example 1 except that the amount of 25% aqueous ammonia was 10 parts, and that the monomer component emulsion was prepared with 100 parts of 1,6-hexanediol dimethacrylate. Inorganic composite particles) were obtained.
  • the base particle 10 had a mass average particle size of 3.0 ⁇ m and a CV value of 2.7%.
  • Example 1 120 g of the base particle 1 obtained in Synthesis Example 1 was placed in a chamber type processing container having a capacity of 500 L. The thickness of the particle layer was 0.5 mm. After reducing the pressure in the chamber to 1 Pa, fluorine (F 2 ) and oxygen (O 2 ) were introduced so that F 2 : 13.33 Pa (0.1 Torr) and O 2 : 80 kPa (600 Torr). F 2 is 0.017% by volume, and the balance is O 2 . Then, the process was performed for 60 minutes at 30 degreeC. Thereafter, the inside of the chamber was replaced with nitrogen and then returned to atmospheric pressure.
  • fluorine (F 2 ) and oxygen (O 2 ) were introduced so that F 2 : 13.33 Pa (0.1 Torr) and O 2 : 80 kPa (600 Torr). F 2 is 0.017% by volume, and the balance is O 2 . Then, the process was performed for 60 minutes at 30 degreeC. Thereafter, the inside of the chamber was replaced with nitrogen and then returned to atmospheric pressure.
  • Example 2 A hydrophilization treatment was performed in the same manner as in Example 1 except that F 2 was changed to 133.3 Pa (1 Torr) and 0.17% by volume to obtain hydrophilized fine particles 2 according to Example 2.
  • Example 3 Hydrophilic microparticles 3 according to Example 3 were obtained in the same manner as in Example 2 except that the base particle 2 was used instead of the base particle 1.
  • Example 4 Hydrophilic microparticles 4 according to Example 4 were obtained in the same manner as in Example 1 except that F 2 was changed to 0.67 kPa (5 Torr) and 0.83% by volume.
  • Examples 5 to 11 Hydrophilic microparticles 5 to 11 according to Examples 5 to 11 were obtained in the same manner as in Example 4 except that the base particles 2 to 8 obtained in Synthesis Examples 2 to 8 were used instead of the base particles 1. .
  • Comparative Example 1 The hydrophilization treatment 1 was carried out in the same manner as in Example 1 except that F 2 was changed to 1.33 kPa (10 Torr) and 1.64 vol% to obtain comparative hydrophilized fine particles 1 according to Comparative Example 1. It was.
  • Comparative Example 2 5 g of the base particle 1 obtained in Synthesis Example 1 was taken, dispersed in 45 g of methanol, 0.5 g of 3-aminopropyltrimethoxysilane was added, and the mixture was heated at 100 ⁇ 2 ° C. for 2 hours with stirring. After cooling to room temperature, it was filtered and the resulting cake was washed with methanol. Vacuum drying was performed at 80 ° C. for 12 hours to obtain comparative hydrophilized fine particles 2 according to Comparative Example 2.
  • Comparative Example 3 0.5 g of the base particle 1 obtained in Synthesis Example 1 is taken and added to 100 ml of an oxidation treatment mixture prepared in advance so as to be 200 ml / l of sulfuric acid and 400 g / l of chromic acid, followed by heat treatment at 70 ° C. for 5 minutes. went. After cooling to room temperature, the mixture was filtered, and the resulting fine particles were washed with water. Vacuum drying was performed at 80 ° C. for 12 hours to obtain comparative hydrophilized fine particles 3 according to Comparative Example 3.
  • Mass average particle diameter, CV value The mass average particle diameter and CV value were measured by the same method as in Synthesis Example 1.
  • Hydrophobic degree (%) methanol introduction amount (cc) ⁇ 100 / ⁇ amount of water (cc) + methanol introduction amount (cc) ⁇
  • Total fluorine content, elutable fluorine content, non-eluting fluorine content The total fluorine amount and the eluting fluorine content were determined by the above-described method, and the difference was defined as the non-eluting fluorine content.
  • Relative surface abundance of C atoms (%) 100 ⁇ [abundance of C atoms (mol%) / (abundance of C atoms (mol%) + abundance of O atoms (mol%) + abundance of F atoms (mol) %))]
  • Relative surface abundance of O atoms (%) 100 ⁇ [abundance of O atoms (mol%) / (abundance of C atoms (mol%) + abundance of O atoms (mol%) + abundance of F atoms (mol %))]
  • F-relative surface abundance (%) 100 ⁇ [F atom abundance (mol%) / (C atom abundance (mol%) + O atom abundance (mol%) + F atom abundance (mol %))]
  • the hydrophilized fine particles obtained in Examples 1 to 11 had a degree of hydrophobicity of 0 due to the hydrophilization treatment, and there was almost no change in color.
  • each hydrophilized fine particle was analyzed by XPS (ESCA)
  • a carbon peak corresponding to a carboxyl group was observed at 288 eV.
  • the mechanical strength of each fine particle hardly changed before and after the treatment.
  • Comparative Example 1 since the volume% of fluorine in the mixed gas exceeded the specified range, the particle skeleton was damaged by oxidation and turned black.
  • Comparative Example 2 the particles were subjected to silane coupling treatment. However, hydrophilicity was insufficient and non-uniform, and many particles were not dispersed in water.
  • Examples 12-17 120 g of the base particle 9 obtained in Synthesis Example 9 was placed in a chamber type processing container having a capacity of 500 L. Except that the composition of the mixed gas and the temperature of the gas in the chamber were the conditions shown in Table 4, gas treatment was performed in the same manner as in Example 1 to obtain hydrophilized fine particles 12 to 17. In Examples 12 to 17, the cleaning treatment with ion-exchanged water after the gas treatment was not performed.
  • Reference Example 1 shows the measurement results of various physical properties of the base particle 9.
  • the fine particles obtained in Examples 12 to 17 had a hydrophobicity of 0 due to the hydrophilization treatment. That is, it can be seen that when the mixed gas contains an inert gas, the hydrophilization treatment proceeds in the same manner, and hydrophilized fine particles are obtained. In addition, the mechanical strength of each fine particle hardly changed before and after the treatment. Further, when the surfaces of the hydrophilized fine particles of Examples 12 to 17 were analyzed using XPS (ESCA), a carbon peak corresponding to a carboxyl group was observed at 288 eV. Furthermore, from the result of the relative surface abundance ratio (%) of each atom, the base particle after the hydrophilization treatment has a relatively increased oxygen atom amount compared with that before the hydrophilization treatment, and a carboxyl group is generated. It was confirmed that
  • the amount of elution fluorine was measured, it was 1.83 mg / g for the hydrophilized fine particles 12, and 1.50 mg / g for the hydrophilized fine particles 14.
  • Example 18-21 Same as Example 16 except that the temperature of the mixed gas was changed to ⁇ 20 ° C. (Example 18), 0 ° C. (Example 19), 20 ° C. (Example 20), and 40 ° C. (Example 21). Then, gas treatment was performed to obtain hydrophilized fine particles 18 to 21. Also in Examples 18 to 21, washing with ion-exchanged water after gas treatment was not performed.
  • Examples 22 and 23 7 g of hydrophilized fine particles 12 were immersed in 85 ° C. ion exchange water, and washed with stirring at 85 ° C. for 3 hours (particle concentration: 6.3% by mass). Thereafter, washing with ion-exchanged water and methanol was performed in this order, and further, vacuum drying was performed at 80 ° C. for 12 hours to obtain hydrophilic fine particles 22.
  • the hydrophilic fine particles 14 were also washed in the same warm water to obtain hydrophilic fine particles 23.
  • Examples 24 and 25 7 g of hydrophilized fine particles 12 were immersed in a 0.25N aqueous sodium hydroxide solution (particle concentration: 2% by mass) and subjected to alkali treatment at 85 ° C. for 3 hours with stirring. After filtering the particles, they were immersed in ion-exchanged water at 85 ° C. (particle concentration: 6.3% by mass) and washed at the same temperature for 3 hours. After cooling to room temperature, the particles were filtered, washed with ion-exchanged water and methanol in this order, and further vacuum-dried at 80 ° C. for 12 hours to obtain hydrophilized fine particles 24.
  • the hydrophilic fine particles 14 were also subjected to the same alkali treatment and warm water washing to obtain the hydrophilic fine particles 25.
  • the eluting fluorine amount of the hydrophilized fine particles 12, 14 and 22 to 25 was measured. The results are shown in Table 6.
  • the amount of elutable fluorine is the largest in Examples 12 and 14 where no alkali treatment or warm water washing was performed, and can be reduced by performing alkali treatment or warm water washing. Moreover, it turns out that the reduction effect of the amount of elution fluorine becomes high in order of warm water washing
  • Examples 26-28 120 g of the base particle 10 obtained in Synthesis Example 10 was placed in a chamber type processing container having a capacity of 500 L. Hydrophilic particles 26 to 28 were obtained by carrying out gas treatment in the same manner as in Example 1 except that the composition of the mixed gas and the temperature of the gas in the chamber were the conditions shown in Table 4. In Examples 26 to 28, no cleaning treatment with ion-exchanged water after gas treatment was performed.
  • Reference Example 2 shows the measurement results of various physical properties of the base particle 10.
  • the microparticles obtained in Examples 26 to 28 had a hydrophobicity of 0 due to the hydrophilization treatment. That is, it can be seen that when the mixed gas contains an inert gas, the hydrophilization treatment proceeds in the same manner, and hydrophilized fine particles are obtained. In addition, the mechanical strength of each fine particle hardly changed before and after the treatment.
  • the surface of the hydrophilized fine particles obtained in Examples 26 to 28 was analyzed using XPS (ESCA), a carbon peak corresponding to a carboxyl group was observed at 288 eV.
  • the base particle after the hydrophilization treatment has a relatively increased oxygen atom amount as compared with that before the hydrophilization treatment, and the formation of carboxyl groups It could be confirmed.
  • the elution fluorine amount of the hydrophilized fine particles 26 was 3.76 mg / g.
  • the monomer component is styrene-based (aromatic compared to acrylate-based substrate particles).
  • the base particles of the divinyl compound have a greater increase in the presence of O atoms after hydrophilization than the original base particles (before hydrophilization) under the same hydrophilization conditions, and the presence of F atoms. It can be seen that the ratio is high, the monomer component is highly reactive to the mixed gas of styrene-based substrate particles, and is easily hydrophilized.
  • Example 29 7 g of the hydrophilized fine particles 26 were immersed in 85 ° C. ion exchange water (particle concentration: 6.3% by mass) and washed with stirring at 85 ° C. for 3 hours. Thereafter, ion-exchanged water and methanol were washed in this order, and further vacuum-dried at 80 ° C. for 12 hours to obtain hydrophilized fine particles 29.
  • ion exchange water particle concentration: 6.3% by mass
  • Example 30 7 g of hydrophilized fine particles 26 were immersed in a 0.25N aqueous sodium hydroxide solution (particle concentration: 2% by mass) and subjected to alkali treatment at 85 ° C. for 3 hours with stirring. After filtering the particles, they were immersed in ion-exchanged water at 85 ° C. (particle concentration: 6.3% by mass) and washed at the same temperature for 3 hours. After cooling to room temperature, the particles were filtered, washed with ion-exchanged water and methanol in this order, and further vacuum-dried at 80 ° C. for 12 hours to obtain hydrophilized fine particles 30. The amount of elution fluorine of the obtained hydrophilized fine particles 26, 29 and 30 was measured. The results are shown in Table 8.
  • the method of the present invention is a useful method that can increase the degree of hydrophilicity of the particle surface by a simple method without impairing the excellent mechanical properties of the particle. Since the hydrophilized fine particles obtained by the method of the present invention have extremely high hydrophilicity, they can be used as various fine particles in the field of electronic materials such as additives for water-based paints or conductive particle substrates.

Abstract

Disclosed is a method for producing vinyl polymer microparticles each having a highly hydrophilized surface without deteriorating excellent physical properties including mechanical properties and other properties including particle-size-controlling properties inherent in vinyl polymer microparticles.  Also disclosed are the hydrophilized particles.  Specifically disclosed is a method for producing hydrophilized microparticles, which is characterized by comprising contacting a mixed gas essentially comprising a fluorine gas and a gas of a compound containing an oxygen atom with base particles to render the surfaces of the base particles hydrophilic, wherein the base particles comprise vinyl polymer microparticles having a mass average particle diameter of 1000 μm or less and the mixed gas contains the fluorine gas at a concentration of 0.01 to 1.0 vol%.

Description

親水化微粒子の製造方法および該方法で得られた親水化微粒子Method for producing hydrophilized fine particles and hydrophilized fine particles obtained by the method
 本発明は、基材粒子の表面に親水性付与処理を行って、親水化微粒子を製造する方法に関するものである。 The present invention relates to a method for producing hydrophilic fine particles by subjecting the surface of base particles to hydrophilicity treatment.
 ビニル系(共)重合体微粒子は、通常、重合原料である(メタ)アクリル系モノマーやスチレン等のビニル系モノマー組成物を原料としてラジカル重合することにより製造され、用いるビニル系モノマーの種類、組み合わせ等を選択することによって、あるいは、前記ビニル系モノマー組成物に無機系成分や非重合性成分等を添加することによって、微粒子の機械的強度、耐熱性、光学特性、表面形状、多孔性等の各種物性を制御することができる。また、重合方法としては、懸濁重合、乳化重合、シード重合、分散重合等適宜選択することができ、広い範囲に亘って、粒子径、粒度分布の制御されたビニル系重合体微粒子を製造することができる。ビニル系重合体微粒子は、高分子微粒子の中でも、上述したような各種特性の制御し易さ、経済的な有意性から、塗料添加剤、フィルム添加剤等、広範な産業分野で使用されてきた。 Vinyl-based (co) polymer fine particles are usually produced by radical polymerization using a raw material such as a (meth) acrylic monomer that is a polymerization raw material or a vinyl monomer composition such as styrene as a raw material. Or by adding inorganic components or non-polymerizable components to the vinyl monomer composition, the mechanical strength, heat resistance, optical properties, surface shape, porosity, etc. of the fine particles Various physical properties can be controlled. The polymerization method can be appropriately selected from suspension polymerization, emulsion polymerization, seed polymerization, dispersion polymerization, etc., and vinyl polymer fine particles having a controlled particle diameter and particle size distribution are produced over a wide range. be able to. Vinyl polymer fine particles have been used in a wide range of industrial fields such as paint additives and film additives because of their ease of control of various properties as described above and economic significance among polymer fine particles. .
 近年、環境問題に基づく塗料の水系化等を背景として、また、ビニル系重合体微粒子の優れた特性を活かせる新たな用途分野への展開を目指して、ビニル系重合体微粒子の表面を親水化する試みが行われている。 In recent years, the surface of vinyl polymer fine particles has been made hydrophilic with the background of water-based paints based on environmental issues, etc., and with the aim of expanding into new application fields that can make use of the excellent properties of vinyl polymer fine particles. Attempts have been made.
 このような微粒子の親水化処理としては、以下の方法が知られている。例えば、特許文献1には、表面に反応性官能基を有する架橋重合体微粒子に対し、これらの官能基と化学反応を起こし得る反応性基を有する変性または未変性ポリエチレングリコールを反応させる方法が記載されている。この技術では、変性または未変性ポリエチレングリコールを反応させる際に、微粒子が二次凝集を起こし易い。また、架橋重合体微粒子の反応性官能基は、反応性官能基を有する(メタ)アクリル系モノマーにより重合体に導入されるが、この官能基含有モノマーを高濃度にすると、微粒や粗大粒子の生成、二次凝集の発生等が起こりやすく、粒度分布の制御が困難となったり、粒子の機械的特性が低下したりする問題がある。このため、微粒子表面に高濃度で反応性官能基を導入することが困難であった。また、化学的な表面処理反応であるため、均一に親水化された微粒子が得られない。その結果として、親水基を均一にかつ高密度に有する微粒子を得ることができないという問題があった。 The following methods are known as the hydrophilic treatment of such fine particles. For example, Patent Document 1 describes a method of reacting a crosslinked polymer fine particle having a reactive functional group on the surface with a modified or unmodified polyethylene glycol having a reactive group capable of causing a chemical reaction with these functional groups. Has been. In this technique, when the modified or unmodified polyethylene glycol is reacted, the fine particles are liable to cause secondary aggregation. In addition, the reactive functional group of the crosslinked polymer fine particle is introduced into the polymer by a (meth) acrylic monomer having a reactive functional group. However, when the concentration of the functional group-containing monomer is increased, fine particles and coarse particles There is a problem that generation, secondary aggregation, etc. are likely to occur, and it becomes difficult to control the particle size distribution, and the mechanical properties of the particles are deteriorated. For this reason, it was difficult to introduce a reactive functional group at a high concentration on the surface of the fine particles. Moreover, since it is a chemical surface treatment reaction, it is not possible to obtain fine particles that are uniformly hydrophilized. As a result, there has been a problem that fine particles having a hydrophilic group uniformly and at a high density cannot be obtained.
 特許文献2には、界面活性剤を吸着させてフッ素樹脂粒子の表面を親水化する技術が記載されている。この技術は、単に界面活性剤をフッ素樹脂粒子表面に吸着させるだけなので、恒久的に親水化状態を維持することが困難であり、親水性の程度も低い。 Patent Document 2 describes a technique for making a surface of fluororesin particles hydrophilic by adsorbing a surfactant. Since this technique simply adsorbs the surfactant on the surface of the fluororesin particles, it is difficult to permanently maintain the hydrophilic state and the degree of hydrophilicity is low.
 特許文献3には、オゾンガスを水に溶解させたオゾン水に微粒子を分散させて親水化処理する方法が記載されている。この方法では、充分に親水化を行うと、粒子の強度や耐熱性が低下する問題がある。 Patent Document 3 describes a method of hydrophilizing by dispersing fine particles in ozone water in which ozone gas is dissolved in water. In this method, there is a problem that the strength and heat resistance of the particles are lowered when sufficiently hydrophilized.
 以上の特許文献1~3は、いずれも液相での処理なので、微粒子の二次凝集が起こりやすく、均一な処理を行えないため、親水性の度合いの高い微粒子が得にくい。 Since all of the above Patent Documents 1 to 3 are treatments in a liquid phase, secondary aggregation of fine particles is likely to occur, and uniform treatment cannot be performed, so that it is difficult to obtain fine particles having a high degree of hydrophilicity.
 特許文献4、5には、オゾンガスを用いて親水化処理を行う方法が記載されている。特許文献6には、アルゴンガスを用いた低温プラズマ処理で微粒子表面を親水化処理する方法が記載されている。これらの方法は、電荷を持ったガス中での処理のため静電凝集が起こり易く、粒子表面を均一に親水化処理するのが難しい。 Patent Documents 4 and 5 describe a method of performing a hydrophilic treatment using ozone gas. Patent Document 6 describes a method for hydrophilizing the surface of fine particles by a low-temperature plasma treatment using argon gas. In these methods, electrostatic aggregation easily occurs due to treatment in a charged gas, and it is difficult to uniformly hydrophilize the particle surface.
特開平5-1106号公報JP-A-5-1106 特開2005-336241号公報JP 2005-336241 A 特開2007-326935号公報JP 2007-326935 A 特開2001-212447号公報JP 2001-212447 A 特開2005-239915号公報JP 2005-239915 A 特開2007-184278号公報JP 2007-184278 A
 本発明では、上述したようなビニル系重合体微粒子の有する優れた機械的特性、耐熱性等の各種物性、粒子径の制御性等の特性を損なうことなく、表面の親水化の度合いが高いビニル系重合体微粒子を得るための製造方法、およびこのような親水化微粒子の提供を課題として掲げた。 In the present invention, vinyl having a high degree of hydrophilicity on the surface without impairing the excellent mechanical properties, various physical properties such as heat resistance, properties such as controllability of particle diameter, etc. possessed by the vinyl polymer fine particles as described above. The production method for obtaining the polymer fine particles and the provision of such hydrophilized fine particles were raised as problems.
 本発明者等は、上記課題を解決すべく、ビニル系重合体微粒子の親水化方法に関し鋭意検討した結果、特定のガス雰囲気下でビニル系重合体微粒子を処理することによって、ビニル系重合体微粒子の有する機械的特性等の優れた特性を損なわずに、極めて親水性の高い粒子とすることができることを見出し、本発明を完成させた。 In order to solve the above-mentioned problems, the present inventors diligently studied the method for hydrophilizing vinyl polymer fine particles, and as a result, by treating the vinyl polymer fine particles in a specific gas atmosphere, the vinyl polymer fine particles The present inventors have found that particles having extremely high hydrophilicity can be obtained without impairing excellent properties such as mechanical properties of the present invention.
 上記課題を解決し得た本発明の親水化微粒子の製造方法は、基材粒子に、フッ素ガスと酸素原子を含む化合物のガスとを必須的に含む混合ガスを接触させる処理を行って基材粒子の表面を親水化することにより親水化微粒子を製造する方法であって、質量平均粒子径1000μm以下のビニル系重合体微粒子を基材粒子とし、混合ガス中のフッ素ガス濃度を0.01~1.0体積%とするところに特徴を有する。 The method for producing hydrophilized fine particles of the present invention that has solved the above-described problem is that a base material is subjected to a treatment in which a mixed gas containing a fluorine gas and a gas containing a compound containing oxygen atoms is brought into contact with the base material. A method for producing hydrophilized microparticles by hydrophilizing the surface of the particles, wherein vinyl polymer microparticles having a mass average particle diameter of 1000 μm or less are used as substrate particles, and the fluorine gas concentration in the mixed gas is 0.01 to It is characterized by 1.0% by volume.
 上記酸素原子を含む化合物のガスとしては、酸素ガスが好ましい。また、基材粒子に上記混合ガスを接触させる処理の後に、さらに水分と接触させる処理を行うことが好ましい。この水分としては、アルカリ性水溶液、および/または、水および/または水蒸気が好ましい。 As the compound gas containing oxygen atoms, oxygen gas is preferable. Moreover, it is preferable to perform the process which makes it contact with a water | moisture content after the process which makes the said mixed gas contact the base material particle | grains. As this water | moisture content, alkaline aqueous solution and / or water and / or water vapor | steam are preferable.
 本発明には、上記製造方法で得られる親水化微粒子が含まれる。 The present invention includes hydrophilized fine particles obtained by the above production method.
 本発明の製造方法では、ビニル系重合体微粒子が有する優れた機械的特性等を損なうことなく、ビニル系重合体微粒子の表面を均一、かつ高度に親水化することができる。しかも、この製造方法は簡便な方法であり、短時間で高度な親水化処理を行えるため、経済性に優れている。従って、本発明の製造方法によって、均一かつ高度な親水性表面を有するビニル系重合体微粒子を安価に提供することができるようになった。 In the production method of the present invention, the surface of the vinyl polymer fine particles can be made uniform and highly hydrophilic without impairing the excellent mechanical properties of the vinyl polymer fine particles. In addition, this production method is a simple method and can be highly hydrophilized in a short time, so that it is excellent in economic efficiency. Therefore, the production method of the present invention can provide vinyl polymer fine particles having a uniform and highly hydrophilic surface at low cost.
 本発明の製造方法は、基材粒子にフッ素ガスと酸素原子を含む化合物のガスとを必須的に含む混合ガスを接触させる処理を行って基材粒子の表面を親水化するものである。この処理により、炭素に結合している水素が酸素とフッ素に置換されて-C(F)=Oとなり、その後、その一部または全部がカルボキシル基に転換すると考えられる。このため、親水化微粒子の表面近傍には多数の-C(F)=Oおよび/またはカルボキシル基が生成し、著しく親水性が高まるのである。また、上記-C(F)=Oやカルボキシル基の生成と共に、一部粒子骨格中のCH結合が、CF結合に変換される反応も起こる。なお、これらの官能基や結合の存在は、X線光電子分析装置(ESCA)等により確認することができる。 In the production method of the present invention, the surface of the base particle is hydrophilized by subjecting the base particle to contact with a mixed gas that essentially contains a fluorine gas and a compound gas containing oxygen atoms. By this treatment, it is considered that hydrogen bonded to carbon is substituted with oxygen and fluorine to become —C (F) ═O, and then a part or all thereof is converted to a carboxyl group. For this reason, a large number of —C (F) ═O and / or carboxyl groups are generated in the vicinity of the surface of the hydrophilized fine particles, and the hydrophilicity is remarkably increased. Further, along with the generation of the above-mentioned —C (F) ═O and carboxyl group, a reaction in which CH bonds in a part of the particle skeleton are converted into CF bonds also occurs. The presence of these functional groups and bonds can be confirmed by an X-ray photoelectron analyzer (ESCA) or the like.
 基材粒子に上記混合ガスを接触させる処理の後、さらに水分と接触させる処理を行うことが好ましい。水分との接触によって、-C(F)=Oがより効率的にカルボキシル基に転換される。水分としては、アルカリ性水溶液、および/または、水および/または水蒸気が好ましい。 It is preferable to perform a treatment of bringing the mixed gas into contact with moisture after the treatment of bringing the mixed gas into contact with the substrate particles. Upon contact with moisture, —C (F) ═O is more efficiently converted to a carboxyl group. As water, an alkaline aqueous solution and / or water and / or water vapor are preferable.
 本発明の製造方法で得られる親水化微粒子の表面には、-C(F)=Oおよび/またはカルボキシル基を有するものであるが、さらに、粒子表面または内部に、これらの基に加えて、フッ素成分として、炭化水素の炭素に共有結合しているフッ素成分(共有結合フッ素ともいう)を有し得る。共有結合フッ素は、-C(F)=Oおよび/またはカルボキシル基と共存することにより、粒子同士の二次凝集を抑制する等の効果を有するため、微量でも存在していることが好ましい。 The surface of the hydrophilized fine particles obtained by the production method of the present invention has —C (F) ═O and / or a carboxyl group, and in addition to these groups on the surface or inside of the particle, As the fluorine component, a fluorine component covalently bonded to hydrocarbon carbon (also referred to as covalent bond fluorine) may be included. Since the covalently bonded fluorine has an effect of suppressing secondary aggregation between particles by coexisting with —C (F) ═O and / or a carboxyl group, it is preferably present even in a trace amount.
 また、本発明の製造方法で得られる親水化微粒子は、フッ素成分として、フッ化水素(HF)が付着していることがある。このHFは、本発明の親水化微粒子を扱う上で有害となるおそれがあるため、その含有量は少ないほど好ましい。HFが全く付着していないことがより好ましい。 Further, the hydrophilized fine particles obtained by the production method of the present invention may have hydrogen fluoride (HF) attached as a fluorine component. Since this HF may be harmful in handling the hydrophilized fine particles of the present invention, its content is preferably as small as possible. More preferably, no HF is attached.
 これらのフッ素成分は、溶出性フッ素含有量と非溶出性フッ素含有量とにより区別することができる。すなわち、後述する溶出試験において、イオン化して溶媒中に溶出するフッ素を溶出性フッ素と称し、その含有量を溶出性フッ素含有量とする。溶出性フッ素には、上記の付着(遊離)フッ化水素に由来するフッ素と、-C(F)=Oに由来するフッ素が含まれる。 These fluorine components can be distinguished by the eluting fluorine content and the non-eluting fluorine content. That is, in the dissolution test described later, fluorine ionized and eluted in the solvent is referred to as eluting fluorine, and the content thereof is defined as the eluting fluorine content. The eluting fluorine includes fluorine derived from the above-mentioned attached (free) hydrogen fluoride and fluorine derived from —C (F) ═O.
 一方、溶出試験において、溶出し得ないフッ素は非溶出性フッ素であり、その含有量が非溶出性フッ素量である。非溶出性フッ素は、通常、前記した共有結合フッ素に該当するが、粒子内に取り込まれて溶出できない遊離フッ素成分が含まれることもある。 On the other hand, in the dissolution test, fluorine that cannot be eluted is non-eluting fluorine, and its content is the non-eluting fluorine amount. The non-eluting fluorine usually corresponds to the above-described covalently bonded fluorine, but may contain a free fluorine component that is incorporated into the particles and cannot be eluted.
 溶出性フッ素含有量および非溶出性フッ素含有量は、粒子1g当たりに含有されるフッ素原子換算の含有量(mg/g)で表される。 The eluting fluorine content and the non-eluting fluorine content are expressed in terms of fluorine atom content (mg / g) contained per 1 g of particles.
 親水化微粒子の安全性や特性を検討した結果、非溶出性フッ素はある程度存在するのが好ましい。具体的には、0.1~50mg/gの範囲であると、上記した二次凝集を抑制する効果が発現するため好ましい。ただし、多すぎると親水性が不充分となったり、粒子の機械的特性が低下するおそれがある。より好ましい非溶出性フッ素含有量は1~40mg/gであり、さらに好ましくは2~20mg/gである。 As a result of examining the safety and characteristics of the hydrophilized fine particles, it is preferable that non-eluting fluorine exists to some extent. Specifically, the range of 0.1 to 50 mg / g is preferable because the above-described effect of suppressing secondary aggregation is exhibited. However, if the amount is too large, the hydrophilicity may be insufficient or the mechanical properties of the particles may be deteriorated. A more preferable non-eluting fluorine content is 1 to 40 mg / g, and further preferably 2 to 20 mg / g.
 一方、溶出性フッ素含有量は、親水化微粒子を取り扱う上で少ないか、もしくは存在しないことが好ましく、具体的には、1mg/g未満であることが好ましい。0.5mg/g以下であることがより好ましく、0.2mg/g以下であることがさらに好ましく、0.1mg/g以下であることがより一層好ましく、0.01mg/g以下が特に好ましい。 On the other hand, the eluting fluorine content is preferably small or absent when handling the hydrophilized fine particles, and specifically, it is preferably less than 1 mg / g. It is more preferably 0.5 mg / g or less, further preferably 0.2 mg / g or less, still more preferably 0.1 mg / g or less, and particularly preferably 0.01 mg / g or less.
 親水性の度合いは、酸価(KOH中和量:mgKOH/g)で表すことができる。本発明の親水化微粒子の酸価は0.05mgKOH/g以上であることが好ましい。0.05mgKOH/gより小さいと、水系媒体への分散性が不足するおそれがある。酸価は、0.1mgKOH/g以上がより好ましく、1mgKOH/g以上がさらに好ましい。親水化微粒子の酸価は、粒子1gの中和に要したKOHの量(mg)と定義され、後述する方法によって測定される。なお、基材粒子は疎水性が高く、水に濡れないため水系媒体へ分散させることができず、酸価の測定はできない。また、後述するアルカリ洗浄を行った場合には、基材粒子に生成したカルボキシル基の水素原子がアルカリ金属原子で置換されている。したがって、アルカリ洗浄後の親水化微粒子では、酸価により親水性の度合いを評価することはできない。 The degree of hydrophilicity can be expressed by an acid value (KOH neutralization amount: mgKOH / g). The acid value of the hydrophilized fine particles of the present invention is preferably 0.05 mgKOH / g or more. If it is less than 0.05 mgKOH / g, the dispersibility in an aqueous medium may be insufficient. The acid value is more preferably 0.1 mgKOH / g or more, and further preferably 1 mgKOH / g or more. The acid value of the hydrophilized fine particles is defined as the amount (mg) of KOH required for neutralizing 1 g of particles, and is measured by the method described later. The substrate particles are highly hydrophobic and do not get wet with water, so that they cannot be dispersed in an aqueous medium and the acid value cannot be measured. Moreover, when the alkali washing mentioned later is performed, the hydrogen atom of the carboxyl group produced | generated by the base particle is substituted by the alkali metal atom. Therefore, it is impossible to evaluate the degree of hydrophilicity by the acid value in the hydrophilized fine particles after alkali washing.
 粒子の親水化度合いは、疎水化度で表すこともでき、本発明法で得られる粒子の疎水化度は、10以下が好ましく、0であることが最も好ましい。疎水化度は、以下のようにして求めることができる。 The degree of hydrophilicity of the particles can also be expressed by the degree of hydrophobicity, and the degree of hydrophobicity of the particles obtained by the method of the present invention is preferably 10 or less, and most preferably 0. The degree of hydrophobicity can be determined as follows.
 [疎水化度]
 底部に撹拌子を置いた200ccのガラスビーカーにイオン交換水50ccを投入し、水面に粒子0.2gを浮かべた後、ビーカー内の水中にビュレットの先端を沈め、撹拌子を緩やかに回転させながら、前記粒子添加から5分後に、ビュレットからメタノールを徐々に導入する。水面の粒子の全量が完全に水中に沈むまでメタノールの導入を続け、水中に粒子が完全に沈んだときのメタノールの導入量(cc)を測定し、下式に基づき疎水化度を求める。
 疎水化度(%)=メタノール導入量(cc)×100/{水の量(cc)+メタノール導入量(cc)}
[Hydrophobicity]
Put 50 cc of ion-exchanged water in a 200 cc glass beaker with a stirrer on the bottom, float 0.2 g of particles on the water surface, sink the tip of the burette in the water in the beaker, and gently rotate the stirrer 5 minutes after the addition of the particles, methanol is gradually introduced from the burette. Methanol is continuously introduced until the total amount of particles on the water surface is completely submerged in water, the amount of methanol introduced (cc) when the particles are completely submerged in water is measured, and the degree of hydrophobicity is determined based on the following equation.
Hydrophobic degree (%) = methanol introduction amount (cc) × 100 / {amount of water (cc) + methanol introduction amount (cc)}
 ここで、ビュレットからメタノールを添加する前に、水面に浮かべた粒子が水中に完全に沈んだ場合は、疎水化度0と判定した。 Here, before adding methanol from the burette, when the particles floating on the water surface completely sink in the water, it was determined that the degree of hydrophobicity was zero.
 なお、親水化微粒子の形状、平均粒子径、粒子径のCV値、機械的特性の好ましい形態および範囲は、後述する基材粒子の説明における好ましい形態および範囲と同様である。 It should be noted that the preferred form and range of the shape, average particle diameter, CV value of the particle diameter, and mechanical properties of the hydrophilized fine particles are the same as the preferred form and range in the description of the base particle described later.
 [親水化処理]
 親水化処理は、基材粒子と混合ガスが接触すればよく、その方法は特に限定されないが、基材粒子を保持できる容器内に混合ガスを導入して密封状態で所定時間処理する方法(密封接触法)か、基材粒子を保持できる容器内に、混合ガスを流通させ、連続的に供給する方法(連続供給法)が好ましい。
[Hydrophilic treatment]
The hydrophilization treatment is not particularly limited as long as the base material particles and the mixed gas are in contact with each other. However, a method of introducing the mixed gas into a container that can hold the base material particles and treating the base particles in a sealed state (sealing) A contact method) or a method in which a mixed gas is circulated and continuously supplied in a container capable of holding substrate particles (continuous supply method) is preferable.
 処理の際には、混合ガスと基材粒子との接触効率を高めて、短時間で均一に親水化することが好ましい。接触効率を高めるには、混合ガスを処理容器内に拡散することが好ましく、ファン等の撹拌装置を用いて混合ガスを気流撹拌したり、パレット等に基材粒子を薄く敷く方法等が挙げられる。また、基材粒子を撹拌してもよく、ドラム回転式装置等を用いて処理容器を回転させたり、撹拌装置で基材粒子を流動させる方法等が挙げられる。これらの接触効率向上手段は、複数を組み合わせて用いても良い。 In the treatment, it is preferable to increase the contact efficiency between the mixed gas and the base material particles, and to make the mixture uniformly hydrophilic in a short time. In order to increase the contact efficiency, it is preferable to diffuse the mixed gas into the processing container, and examples thereof include a method in which the mixed gas is stirred in a stream using a stirring device such as a fan, or a method in which base particles are spread thinly on a pallet or the like. . Moreover, you may stir a base particle, The method etc. which rotate a processing container using a drum rotary apparatus etc., or make a base particle flow with a stirrer etc. are mentioned. A plurality of these contact efficiency improving means may be used in combination.
 パレット等に基材粒子を薄く敷き詰める場合には、粒子間でバラツキなく均一に、かつ短時間で親水化処理するために、処理容器内に基材粒子層の厚さが2mm以下となるように、装填することが好ましい。より好ましい粒子層の厚さは0.5mm以下である。 When the base particles are spread thinly on a pallet or the like, the thickness of the base particle layer is set to 2 mm or less in the processing container in order to perform the hydrophilic treatment uniformly and without variation among the particles. It is preferable to load. A more preferable particle layer thickness is 0.5 mm or less.
 混合ガスにおけるフッ素ガスの濃度は、0.01~1.0体積%とする。フッ素ガス濃度が0.01体積%より少ないと、親水化処理が不充分な粒子が存在するおそれがある。親水化処理の均一性に優れる点からは、フッ素ガスの濃度を0.08体積%以上とすることが好ましい。フッ素ガスの濃度を1.0体積%以下にすると、白色または着色してもわずかである。0.3体積%以下とするのがより好ましい。 The concentration of fluorine gas in the mixed gas is 0.01 to 1.0% by volume. If the fluorine gas concentration is less than 0.01% by volume, there may be particles that are insufficiently hydrophilized. In view of excellent uniformity of the hydrophilization treatment, the fluorine gas concentration is preferably 0.08% by volume or more. When the concentration of the fluorine gas is set to 1.0% by volume or less, even if it is white or colored, there is little. More preferably, it is 0.3 volume% or less.
 混合ガスにおいては、フッ素ガスと共に、酸素原子を含む化合物のガスも必須成分である。酸素原子を含む化合物のガスとしては、酸素、二酸化硫黄、二酸化炭素、一酸化炭素、二酸化窒素等が好ましいものとして挙げられる。これらの中でも、マイルドな処理条件でも親水化処理効率が高い点で、酸素ガスが好ましい。混合ガスには、フッ素ガスおよび酸素原子を含む化合物のガス以外に、窒素、ヘリウム、アルゴン等の不活性ガスも使用可能である。なお、気相中での処理における粉塵爆発を防止して、親水化処理を工業的且つ安全に行う観点からは、不活性ガスとして窒素ガスを使用することが好ましい。したがって、混合ガスとしては、フッ素ガス、酸素原子を含む化合物のガスおよび不活性ガスからなる組成を有するものが好ましく、さらに、フッ素ガス、酸素ガスおよび窒素ガスを含む混合ガスがより好ましい。 In the mixed gas, the gas of the compound containing oxygen atoms is an essential component together with the fluorine gas. Preferred examples of the compound gas containing oxygen atoms include oxygen, sulfur dioxide, carbon dioxide, carbon monoxide, and nitrogen dioxide. Among these, oxygen gas is preferable in terms of high hydrophilization efficiency even under mild processing conditions. As the mixed gas, an inert gas such as nitrogen, helium, or argon can be used in addition to the fluorine gas and the compound gas containing oxygen atoms. In addition, it is preferable to use nitrogen gas as an inert gas from the viewpoint of preventing dust explosion in the treatment in the gas phase and performing the hydrophilic treatment industrially and safely. Accordingly, the mixed gas preferably has a composition comprising a fluorine gas, a compound gas containing oxygen atoms, and an inert gas, and more preferably a mixed gas containing fluorine gas, oxygen gas and nitrogen gas.
 混合ガスにおける酸素原子を含む化合物のガスの濃度は、0.1体積%~99.99体積%であれば、本発明の目的である基材粒子の親水化を行うことができる。酸素原子を含む化合物のガスの濃度が0.1体積%より少ないと、親水化が不十分な粒子が存在する虞がある。親水化の程度が均一な粒子(粉体)を得るためには、また、高度に親水化された粒子を短時間で得るためには、酸素原子を含む化合物のガス濃度は0.1体積%以上であることが好ましく、さらに好ましくは0.5体積%以上である。一方、酸素原子を含む化合物のガスの濃度が高いことは、粒子の親水化に悪影響を与えることはないが、親水化処理における粉塵爆発の発生を抑止し、安全に親水化処理を行えるという理由からは、10体積%以下が好ましく、より好ましくは5体積%以下である。 If the gas concentration of the compound containing oxygen atoms in the mixed gas is 0.1 vol% to 99.99 vol%, the base particles that are the object of the present invention can be hydrophilized. When the gas concentration of the compound containing oxygen atoms is less than 0.1% by volume, there is a possibility that particles having insufficient hydrophilicity exist. In order to obtain particles (powder) having a uniform degree of hydrophilization, and in order to obtain highly hydrophilic particles in a short time, the gas concentration of the compound containing oxygen atoms is 0.1% by volume. It is preferable that the amount be 0.5% by volume or more. On the other hand, the high concentration of oxygen-containing compound gas does not adversely affect the hydrophilization of the particles, but the reason why dust explosion can be prevented in the hydrophilization treatment and the hydrophilization treatment can be performed safely. Is preferably 10% by volume or less, more preferably 5% by volume or less.
 混合ガスの成分として不活性ガスを用いる場合は、不活性ガスの濃度は特に限定されず、フッ素ガスと酸素原子を含む化合物のガスによる親水化処理の効果を損なわない範囲で適宜選択すればよい。通常、99体積%以下が好ましい。99体積%を超えると、親水化が不十分な粒子が存在する虞がある。また、親水化処理における粉塵爆発の発生を抑止し、安全に親水化処理を行えるという理由からは、不活性ガスの濃度は90体積%以上であるのが好ましく、94質量%以上がより好ましい。 When an inert gas is used as a component of the mixed gas, the concentration of the inert gas is not particularly limited, and may be appropriately selected within a range that does not impair the effect of the hydrophilization treatment with a fluorine gas and a compound gas containing oxygen atoms. . Usually, 99 volume% or less is preferable. If it exceeds 99% by volume, there is a possibility that particles having insufficient hydrophilicity may exist. In addition, the concentration of the inert gas is preferably 90% by volume or more, and more preferably 94% by mass or more from the reason that the occurrence of dust explosion in the hydrophilic treatment can be suppressed and the hydrophilic treatment can be performed safely.
 混合ガス中のフッ素ガスの分圧は、8Pa(0.06Torr)以上であると親水化処理の均一性に優れ、好ましい。より好ましくは、24Pa(0.18Torr)以上、さらに好ましくは、64Pa(0.48Torr)以上である。親水化処理によるビニル系重合体骨格の分解や着色を抑制するという観点からは、フッ素ガスの分圧を1000Pa(7.5Torr)以下とすることが好ましく、700Pa(5.25Torr)以下がより好ましい。 When the partial pressure of the fluorine gas in the mixed gas is 8 Pa (0.06 Torr) or more, the uniformity of the hydrophilic treatment is excellent, which is preferable. More preferably, it is 24 Pa (0.18 Torr) or more, and more preferably 64 Pa (0.48 Torr) or more. From the viewpoint of suppressing the decomposition and coloring of the vinyl polymer skeleton due to the hydrophilic treatment, the partial pressure of the fluorine gas is preferably 1000 Pa (7.5 Torr) or less, more preferably 700 Pa (5.25 Torr) or less. .
 混合ガスの成分として酸素ガスを用いる場合の酸素ガスの分圧は、親水化処理を均一に行う観点から、70Pa(0.53Torr)~85000Pa(637.6Torr)が好ましい。なお、工業的且つ安全に親水化処理を行う観点からは、70Pa~7998Pa(60Torr)とするのが好ましく、より好ましくは70Pa~3999Pa(30Torr)である。酸素原子を含む化合物のガスの分圧に関しても好ましい範囲は同様である。 In the case of using oxygen gas as a component of the mixed gas, the partial pressure of oxygen gas is preferably 70 Pa (0.53 Torr) to 85000 Pa (637.6 Torr) from the viewpoint of performing the hydrophilic treatment uniformly. From the viewpoint of industrially and safely hydrophilizing treatment, it is preferably 70 Pa to 7998 Pa (60 Torr), and more preferably 70 Pa to 3999 Pa (30 Torr). The preferable range is the same with respect to the partial pressure of the gas of the compound containing an oxygen atom.
 混合ガスの成分として窒素ガスを用いる場合の窒素ガスの分圧は、工業的且つ安全に親水化処理を行う観点から、3199Pa(24Torr)~79180Pa(594Torr)とするのが好ましく、より好ましくは71918Pa(540Torr)~79180Pa(594Torr)である。他の不活性ガスを用いる場合についても他の不活性ガスの分圧の好ましい範囲は同様である。 When nitrogen gas is used as a component of the mixed gas, the partial pressure of the nitrogen gas is preferably 3199 Pa (24 Torr) to 79180 Pa (594 Torr), more preferably 71918 Pa from the viewpoint of industrially and safely hydrophilizing treatment. (540 Torr) to 79180 Pa (594 Torr). In the case of using other inert gas, the preferable range of the partial pressure of the other inert gas is the same.
 混合ガスの全圧は、安全に親水化処理を行うためには、101.3kPa(760Torr)以下が好ましい。101.3kPaを超えると、混合ガスが容器外に漏れるおそれがある。 The total pressure of the mixed gas is preferably 101.3 kPa (760 Torr) or less in order to safely perform the hydrophilic treatment. If it exceeds 101.3 kPa, the mixed gas may leak out of the container.
 混合ガスと基材粒子との比率は、密封接触式の場合、基材粒子1kgに対し、常温常圧換算で、混合ガスを30L~4000Lとすることが好ましく、1000L~3000Lとすることがより好ましい。連続供給式の場合は、基材粒子1kgに対し、常温常圧換算で、トータル流量が30L~15000Lとなるように供給することが好ましく、1000L~10000Lとなるように供給することがさらに好ましい。 In the case of the sealed contact type, the ratio of the mixed gas to the base particles is preferably 30 L to 4000 L, more preferably 1000 L to 3000 L, in terms of normal temperature and normal pressure, with respect to 1 kg of the base particles. preferable. In the case of the continuous supply type, it is preferable to supply the total flow rate from 30 L to 15000 L, more preferably from 1000 L to 10000 L, in terms of normal temperature and normal pressure, with respect to 1 kg of the base particles.
 具体的には、密封接触式の場合は、密封可能なチャンバーに、そのまま、または容器に入れた基材粒子を入れ、減圧した後、混合ガスを導入して、所定時間処理を行う。水分が残存すると、HFが発生して危険なので、減圧の際には、充分に真空排気することが好ましい。連続供給式の場合は、所定時間混合ガスを導入すればよい。 Specifically, in the case of the sealed contact type, the base particles put in a container that can be sealed as it is or put in a container are decompressed, and after reducing the pressure, the mixed gas is introduced and the treatment is performed for a predetermined time. If moisture remains, HF is generated and dangerous. Therefore, it is preferable to sufficiently evacuate when decompressing. In the case of the continuous supply type, the mixed gas may be introduced for a predetermined time.
 密封接触式の場合は、混合ガスを導入する前に、予めチャンバー内を予熱しておいてもよい。反応温度は、-20℃~200℃程度が好ましく、0℃~100℃程度がより好ましく、10℃~40℃がさらに好ましい。反応温度が200℃を超えるとビニル重合体粒子が分解してしまう虞があり、一方、-20℃より低くなると親水化処理が不十分となる場合がある。なお、反応温度とは、チャンバー内のガスの温度を意味する。 In the case of the sealed contact type, the inside of the chamber may be preheated before introducing the mixed gas. The reaction temperature is preferably about −20 ° C. to 200 ° C., more preferably about 0 ° C. to 100 ° C., and further preferably 10 ° C. to 40 ° C. If the reaction temperature exceeds 200 ° C, the vinyl polymer particles may be decomposed. On the other hand, if the reaction temperature is lower than -20 ° C, the hydrophilization treatment may be insufficient. In addition, reaction temperature means the temperature of the gas in a chamber.
 混合ガスの導入時には、酸素原子を含む化合物のガスあるいはその他のフッ素ガス以外のガスを先にチャンバーへ導入し、その後でフッ素ガスを導入してもよいし、予め混合したガスを導入してもよい。 When introducing the mixed gas, a compound gas containing oxygen atoms or other gas other than fluorine gas may be first introduced into the chamber, and then fluorine gas may be introduced, or a premixed gas may be introduced. Good.
 基材粒子と混合ガスの接触時間(処理時間)は特に限定されず、所望の親水化度合いになるまで処理すればよいが、大体10分~60分程度で処理は完了する。処理後は、再び0.13Pa(0.001Torr)程度まで減圧し、その後、窒素ガスを導入するという工程を行うことが好ましい。この工程が終われば、大気圧に開放する。 The contact time (treatment time) between the base particles and the mixed gas is not particularly limited, and the treatment may be performed until a desired degree of hydrophilicity is achieved, but the treatment is completed in about 10 to 60 minutes. After the treatment, it is preferable to perform a step of reducing the pressure again to about 0.13 Pa (0.001 Torr) and then introducing nitrogen gas. When this step is completed, the pressure is released to atmospheric pressure.
 本発明の親水化微粒子の製造方法では、上記混合ガスによる接触処理の後に、混合ガス接触後の粒子を、さらに水分と接触させる処理を行うことが好ましい。混合ガスとの接触によって粒子表面に形成された-C(F)=Oが、水分と接触することで、より効率的にカルボキシル基に転換される。また、このとき生成するHFや粒子表面に吸着しているHFあるいはF2を有効に除去することもできる。上記水分は、アルカリ性水溶液、および/または、水および/または水蒸気であることが好ましい。 In the method for producing hydrophilized fine particles of the present invention, it is preferable that after the contact treatment with the mixed gas, the particles after contact with the mixed gas are further brought into contact with moisture. The —C (F) ═O formed on the particle surface by contact with the mixed gas is more efficiently converted to a carboxyl group by contacting with moisture. Further, HF generated at this time and HF or F 2 adsorbed on the particle surface can be effectively removed. The moisture is preferably an alkaline aqueous solution and / or water and / or water vapor.
 混合ガス接触後の粒子と水分とを接触させる態様としては、水分として、アルカリ性水溶液を用いる態様;水および/または水蒸気を用いる態様;アルカリ性水溶液と、水および/または水蒸気を用いる態様のいずれであってもよい。中でも、アルカリ性水溶液と、水および/または水蒸気を用いる態様が好ましい。また、接触順序は特に限定されないが、効率よく、粒子表面に吸着しているHFあるいはF2などを除去する観点からは、粒子をアルカリ性水溶液と接触させた後、水および/または水蒸気と接触させるのが望ましい。アルカリ性水溶液と接触させると、粒子表面にはカルボン酸のアルカリ金属塩やアミン塩(以下、カルボン酸塩ということがある。)が形成される。このカルボン酸塩は、粒子の親水性を一層高めるため好ましく、その後、粒子を、水および/または水蒸気と接触させることで、余分なアルカリ性水溶液を洗浄することができる。なお、本明細書では、以下、粒子とアルカリ性水溶液とを接触させる場合をアルカリ処理といい、粒子と水とを接触させる場合を温水洗浄ということがある。 The mode in which the particles after contact with the mixed gas are brought into contact with water is any of the mode in which an alkaline aqueous solution is used as the water; the mode in which water and / or water vapor is used; May be. Among these, an embodiment using an alkaline aqueous solution and water and / or water vapor is preferable. The order of contact is not particularly limited, but from the viewpoint of efficiently removing HF or F 2 adsorbed on the particle surface, the particle is brought into contact with an alkaline aqueous solution and then brought into contact with water and / or water vapor. Is desirable. When contacted with an alkaline aqueous solution, an alkali metal salt or amine salt of a carboxylic acid (hereinafter sometimes referred to as a carboxylate salt) is formed on the particle surface. This carboxylate is preferable because it further increases the hydrophilicity of the particles, and then the excess alkaline aqueous solution can be washed by contacting the particles with water and / or water vapor. In the present specification, hereinafter, the case of bringing particles into contact with an alkaline aqueous solution may be referred to as alkali treatment, and the case of bringing particles into contact with water may be referred to as warm water cleaning.
 カルボキシル基またはカルボン酸塩への転換を効率的に進め、また、粒子表面に吸着しているHFやF2を有効に除去し、溶出性フッ素を低減するための水分との接触処理方法としては、特に限定されないが、例えば、ガスとの接触に用いたチャンバーを大気圧に開放した後、チャンバー内に水蒸気を送り込み、粒子と水とを接触させる方法;ガスとの接触に用いたチャンバーを大気圧に開放した後、チャンバー内に水蒸気を送り込み、粒子と水とを接触させた後、さらに、粒子を取りだして水中に分散させて水や水を含む溶媒で洗浄する方法;ガスとの接触後、チャンバーから取りだした粒子を、別途水蒸気雰囲気中に浸したり、水や水を含む溶媒で洗浄する方法;ガスとの接触後、チャンバーから取り出した粒子をアルカリ性水溶液中に分散させてアルカリ処理する方法;ガスとの接触後、チャンバーから取り出した粒子をアルカリ性水溶液中に分散させてアルカリ処理した後、さらに、粒子を取りだして水中に分散させて水や水を含む溶媒で洗浄する方法等が挙げられる。水分との接触時間は1分~600分程度が好ましい。 As a method of contact treatment with moisture to efficiently promote conversion to a carboxyl group or carboxylate, effectively remove HF and F 2 adsorbed on the particle surface, and reduce eluting fluorine Although not particularly limited, for example, a method in which the chamber used for contact with the gas is opened to atmospheric pressure, and then water vapor is fed into the chamber to bring the particles into contact with water; After releasing to atmospheric pressure, water vapor is sent into the chamber to bring the particles into contact with water, and then the particles are taken out, dispersed in water and washed with a solvent containing water or water; after contact with the gas , A method in which particles taken out from the chamber are separately immersed in a water vapor atmosphere or washed with water or a solvent containing water; after contact with gas, the particles taken out from the chamber are placed in an alkaline aqueous solution. Method of dispersing and alkali treatment: After contact with gas, particles removed from the chamber are dispersed in an alkaline aqueous solution and alkali treated, and then the particles are taken out and dispersed in water with a solvent containing water or water. The method of washing | cleaning etc. are mentioned. The contact time with moisture is preferably about 1 to 600 minutes.
 -C(F)=Oのカルボキシル基またはカルボン酸塩への転換を効率的に進め、また、このとき生成するHFや粒子表面に吸着しているHFあるいはF2を有効に除去するため、水分(アルカリ性水溶液、および/または、水および/または水蒸気)の温度は、20℃以上が好ましく、より好ましくは40℃以上、さらに好ましくは60℃以上、最も好ましくは80℃以上である。 In order to efficiently convert —C (F) ═O to a carboxyl group or a carboxylate salt, and to effectively remove HF or F 2 adsorbed on the particle surface, The temperature of (alkaline aqueous solution and / or water and / or water vapor) is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, still more preferably 60 ° C. or higher, and most preferably 80 ° C. or higher.
 また、アルカリ性水溶液または水や水を含む溶媒で粒子を処理、洗浄する場合は、溶媒と粒子との合計100質量%中、粒子濃度を0.5~50質量%とすることが好ましい。粒子濃度が0.5質量%未満であると、所定量の粒子を洗浄する際に発生する含フッ素廃水の量が増大するため、工業的にコストがアップするおそれがある。粒子濃度が50質量%を超えると、洗浄が不十分となるおそれがある。粒子の洗浄を効率的に行うために、溶媒に粒子を入れた状態で超音波分散を行うことも好ましい。 Further, when the particles are treated and washed with an alkaline aqueous solution or water or a solvent containing water, the particle concentration is preferably 0.5 to 50% by mass in a total of 100% by mass of the solvent and the particles. If the particle concentration is less than 0.5% by mass, the amount of fluorine-containing wastewater generated when washing a predetermined amount of particles increases, which may increase the cost industrially. If the particle concentration exceeds 50% by mass, cleaning may be insufficient. In order to efficiently clean the particles, it is also preferable to perform ultrasonic dispersion with the particles in a solvent.
 上述のように、粒子表面に付着しているフッ素成分などの溶出性フッ素は、粒子の安全性、あるいは他の材料との接触により腐食などの問題を引き起こす虞があるため、できる限り除去することが好ましく、上記水分としてアルカリ性水溶液を使用したアルカリ処理を実施すると、粒子表面に吸着した溶出性フッ素を一層効率よく除去することができる。 As mentioned above, eluent fluorine such as fluorine components adhering to the particle surface may cause problems such as corrosion due to the safety of the particle or contact with other materials, so remove it as much as possible. When the alkali treatment using an alkaline aqueous solution as the moisture is performed, the leachable fluorine adsorbed on the particle surface can be more efficiently removed.
 アルカリ性水溶液としては、アンモニア、モノエタノールアミン、ジエタノールアミンなどの水溶性アミン類の水溶液、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムといったアルカリ金属水酸化物や、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウムといったアルカリ金属炭酸塩などのアルカリ金属化合物を水に溶解したアルカリ金属イオンを含有する水溶液が好ましく用いられる。上記アルカリ性水溶液の中でも、アルカリ金属イオンを含有する水溶液が好ましく、さらに、ナトリウムを含むものがより好ましく、特に、水酸化ナトリウム水溶液が好ましい。 Examples of alkaline aqueous solutions include aqueous solutions of water-soluble amines such as ammonia, monoethanolamine, and diethanolamine, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide, and lithium carbonate. An aqueous solution containing an alkali metal ion in which an alkali metal compound such as an alkali metal carbonate such as sodium carbonate, potassium carbonate, rubidium carbonate or cesium carbonate is dissolved in water is preferably used. Among the above alkaline aqueous solutions, aqueous solutions containing alkali metal ions are preferable, those containing sodium are more preferable, and sodium hydroxide aqueous solutions are particularly preferable.
 アルカリ性水溶液の濃度は0.01N~5Nであるのが好ましい。より好ましくは0.05N~2Nであり、さらに好ましくは0.1N~1Nである。アルカリ処理の具体的な方法は特に限定されないが、例えば、ガスとの接触後、チャンバーから取りだした粒子を上記濃度のアルカリ性水溶液に分散させた後、80℃以上の温度で、1分~600分間、粒子をアルカリ性水溶液と接触させる方法が挙げられる。 The concentration of the alkaline aqueous solution is preferably 0.01N to 5N. More preferably, it is 0.05N to 2N, and still more preferably 0.1N to 1N. The specific method of the alkali treatment is not particularly limited. For example, after contact with a gas, particles taken out from the chamber are dispersed in an alkaline aqueous solution having the above concentration, and then at a temperature of 80 ° C. or higher for 1 minute to 600 minutes. And a method of bringing the particles into contact with an alkaline aqueous solution.
 得られた親水化微粒子に含有されるフッ素原子の量(全フッ素量)、イオン化して遊離するフッ素原子の量(溶出性フッ素含有量)および化学結合により粒子骨格に取り込まれ、遊離しないフッ素原子の量(非溶出性フッ素含有量)は、以下の方法で測定できる。 The amount of fluorine atoms contained in the resulting hydrophilized fine particles (total fluorine amount), the amount of fluorine atoms ionized and liberated (elutable fluorine content), and the fluorine atoms that are incorporated into the particle skeleton by chemical bonding and are not liberated The amount (non-eluting fluorine content) can be measured by the following method.
 [全フッ素量:酸素燃焼フラスコ法]
 3cm×2cmの濾紙上に2mgの粒子を秤量し、粒子が飛散しないように包む。酸素フラスコに付属の白金製バスケットをブンゼンバーナーで加熱し、赤熱状態を5秒程度続ける。バスケットが冷えたら、粒子を包んだ濾紙をバスケットに詰める。容量500mlの酸素フラスコに15mlの蒸留水を入れ、フラスコ内壁を濡らしたら、フラスコ内を酸素雰囲気に置換する。バスケット内の濾紙に点火し、素早くフラスコ内に差し込む。燃焼後、フラスコを2,3回振盪させ、30分放置した後、容量100mlのポリプロピレン製ビーカーにフラスコの内容物を移し替え、さらに蒸留水を加えて合計50mlに調整する。緩衝液5mlを加えてpHを一定に調整し、マグネチックスターラーで撹拌しつつ、イオンメーターでフッ素イオン濃度を測定し、全フッ素量(mg/g)を求めた。ここで、イオンメーターは「Orion1115000 4-Star」(サーモフィッシャーサイエンティフィック社製)を、電極は「Orion 9609BNWP」(同社製)を用いた。
[Total fluorine content: oxygen combustion flask method]
2 mg of particles are weighed on a 3 cm × 2 cm filter paper and wrapped so that the particles do not scatter. The platinum basket attached to the oxygen flask is heated with a Bunsen burner and kept in a red hot state for about 5 seconds. When the basket cools, pack the filter paper wrapped in particles into the basket. When 15 ml of distilled water is put into a 500 ml oxygen flask and the inner wall of the flask is wetted, the inside of the flask is replaced with an oxygen atmosphere. Light the filter paper in the basket and quickly insert it into the flask. After combustion, the flask is shaken a few times and allowed to stand for 30 minutes, after which the contents of the flask are transferred to a polypropylene beaker with a capacity of 100 ml, and further distilled water is added to adjust the total volume to 50 ml. The pH was adjusted to a constant level by adding 5 ml of a buffer solution, and the fluorine ion concentration was measured with an ion meter while stirring with a magnetic stirrer to determine the total fluorine amount (mg / g). Here, “Orion1115000 4-Star” (manufactured by Thermo Fisher Scientific) was used as the ion meter, and “Orion 9609BNWP” (manufactured by the same company) was used as the electrode.
 [溶出性フッ素含有量:フッ素イオン電極法]
 容量100mlのポリプロピレン製ビーカーに50mlの蒸留水を投入し、さらに5mlの緩衝液を加えた。マグネチックスターラーで撹拌しつつ、液中にフッ素イオン電極を浸漬した。0.2gの粒子を投入し、投入後360分のフッ素イオン濃度を測定し、溶出性フッ素含有量(mg/g)とした。イオンメーターおよび電極は全フッ素量の測定の場合と同一のものを用いた。
[Elutable fluorine content: Fluorine ion electrode method]
50 ml of distilled water was put into a 100 ml polypropylene beaker, and 5 ml of buffer solution was further added. While stirring with a magnetic stirrer, the fluorine ion electrode was immersed in the liquid. 0.2 g of particles were added, and the fluorine ion concentration was measured for 360 minutes after the addition, and the elution fluorine content (mg / g) was obtained. The same ion meter and electrode as those used in the measurement of the total fluorine amount were used.
 [非溶出性フッ素含有量]
 非溶出性フッ素含有量(mg/g)は、下式により求めた。
 非溶出性フッ素含有量=(全フッ素量)-(溶出性フッ素含有量)
[Non-eluting fluorine content]
The non-eluting fluorine content (mg / g) was determined by the following formula.
Non-eluting fluorine content = (total fluorine content)-(eluting fluorine content)
 また、親水化処理後の粒子表面におけるカルボキシル基の生成の有無は、X線光電子分析装置(ESCA:例えばアルバック・ファイ社製の走査型X線光電子分析装置「PHI Quantera SXM(登録商標)」)を用いて測定することができる。本発明では288eVのピークの有無により、判定した。 In addition, the presence or absence of the generation of carboxyl groups on the particle surface after the hydrophilization treatment is determined by an X-ray photoelectron analyzer (ESCA: for example, a scanning X-ray photoelectron analyzer “PHIPQuanteraMSXM (registered trademark)” manufactured by ULVAC-PHI). Can be measured. In the present invention, the determination was made based on the presence or absence of a peak at 288 eV.
 次に、基材粒子について説明する。本発明法に用いられる基材粒子はビニル系重合体を含有する粒子であれば特に限定されず、ビニル系重合体のみからなる粒子や、有機質と無機質とが複合された材料からなる有機質無機質複合粒子のいずれも使用することができる。なお、本発明のビニルには、(メタ)アクリロイルも含まれる。ビニル系重合体微粒子としては、具体的には、(メタ)アクリル系(共)重合体、(メタ)アクリル系-スチレン系共重合体等のビニル系重合体のみからなる粒子や、重合性(ビニル基含有の意味;以下同じ)アルコキシシランのラジカル重合体および/または縮重合体、重合性アルコキシシランとビニル系モノマーとの共重合体等の有機質無機質複合粒子が挙げられる。以下の説明で「ビニル重合体」というときは、ビニル系モノマーが重合した有機質のみの重合体を意味する。また、本発明でいう「ビニル系重合体微粒子」は、「ビニル重合体」からなる成分や骨格を含む粒子を意味する。これらのビニル系重合体微粒子の製造方法の詳細は後述するが、乳化重合、懸濁重合、シード重合、ゾルゲル法等が採用でき、中でも、シード重合やゾルゲル法は粒度分布を小さくすることができるため好ましい。なお、微粒子の組成は、GC-MS等で確認することができる。 Next, the base particles will be described. The substrate particles used in the method of the present invention are not particularly limited as long as they are particles containing a vinyl polymer, and particles made of only a vinyl polymer, or an organic / inorganic composite made of a material in which an organic material and an inorganic material are combined. Any of the particles can be used. The vinyl of the present invention includes (meth) acryloyl. Specific examples of the vinyl polymer fine particles include particles composed only of vinyl polymers such as (meth) acrylic (co) polymers, (meth) acrylic-styrene copolymers, and polymerizable ( Meaning of containing vinyl group; the same applies hereinafter) Organic radical composite particles and / or condensation polymers of alkoxysilane, and organic-inorganic composite particles such as a copolymer of polymerizable alkoxysilane and vinyl monomer. In the following description, the term “vinyl polymer” means an organic-only polymer obtained by polymerizing vinyl monomers. The “vinyl polymer fine particles” as used in the present invention means particles containing a component or a skeleton made of “vinyl polymer”. Although details of the production method of these vinyl polymer fine particles will be described later, emulsion polymerization, suspension polymerization, seed polymerization, sol-gel method, etc. can be adopted, among which seed polymerization or sol-gel method can reduce the particle size distribution. Therefore, it is preferable. The composition of the fine particles can be confirmed by GC-MS or the like.
 [ビニル重合体粒子]
 ビニル重合体粒子は、ビニル系単量体を含有する単量体混合物を含む単量体組成物を重合して得られる。単量体混合物に含有させるビニル系単量体としては、1分子中に1個のビニル基を有する非架橋性単量体、1分子中に2個以上のビニル基を有する架橋性単量体のいずれも使用することができる。
[Vinyl polymer particles]
Vinyl polymer particles are obtained by polymerizing a monomer composition containing a monomer mixture containing a vinyl monomer. The vinyl monomer contained in the monomer mixture is a non-crosslinkable monomer having one vinyl group in one molecule, and a crosslinkable monomer having two or more vinyl groups in one molecule. Any of these can be used.
 前記非架橋性単量体としては、例えば、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、グリシジル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類等の(メタ)アクリル系単量体:スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、エチルビニルベンゼン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、パラヒドロキシスチレン等のスチレン系単量体:2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル等の水酸基含有ビニルエーテル類:2-ヒドロキシエチルアリルエーテル、4-ヒドロキシブチルアリルエーテル等の水酸基含有アリルエーテル類等が挙げられる。なお、前記非架橋性単量体として(メタ)アクリル酸を用いる場合には、部分的にアルカリ金属で中和してもよい。これらの非架橋性単量体は単独で使用しても良いし、2種以上を併用してもよい。これらの非架橋性単量体の中でも、分子内にエステル結合を有さない単量体を必須成分として用いることが好ましく、中でも、スチレン系単量体が好ましく、特に、スチレン、α-メチルスチレン、エチルビニルベンゼン等が好適である。 Examples of the non-crosslinkable monomer include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, Pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, glycidyl (meth) acrylate, cyclohex (Meth) acrylates such as xyl (meth) acrylate, stearyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, -(Meth) acrylic monomers such as hydroxyalkyl (meth) acrylates such as hydroxybutyl (meth) acrylate: styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ethylvinylbenzene, α- Styrene monomers such as methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, parahydroxystyrene, etc .: 2-hydroxyethyl Hydroxyl group-containing vinyl ethers such as vinyl ether and 4-hydroxybutyl vinyl ether: hydroxyl group-containing allyl ethers such as 2-hydroxyethyl allyl ether and 4-hydroxybutyl allyl ether. In addition, when (meth) acrylic acid is used as the non-crosslinkable monomer, it may be partially neutralized with an alkali metal. These non-crosslinkable monomers may be used alone or in combination of two or more. Among these non-crosslinkable monomers, a monomer having no ester bond in the molecule is preferably used as an essential component, and among them, a styrene monomer is preferable, and styrene, α-methylstyrene are particularly preferable. Ethyl vinyl benzene and the like are preferable.
 架橋性単量体としては、例えば、トリメチロールプロパントリアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、デカエチレングリコールジメタクリレート、ペンタデカエチレングリコールジメタクリレート、ペンタコンタヘクタエチレングリコールジメタクリレート、1,3-ブチレンジメタクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、アリルメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラアクリレート等の多官能(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;ジビニルベンゼン、ジビニルナフタレン、および、これらの誘導体等の芳香族ジビニル化合物;N,N-ジビニルアニリン、ジビニルエーテル、ジビニルサルファイド、ジビニルスルホン酸等の架橋剤;ポリブタジエン、ポリイソプレン不飽和ポリエステル等が挙げられる。これらの架橋性単量体は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、分子内にエステル結合を有さない単量体を必須成分として用いることが好ましく、中でも、芳香族ジビニル化合物が好ましく、特に、ジビニルベンゼンが好適である。 Examples of the crosslinkable monomer include trimethylolpropane triacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, decaethylene glycol dimethacrylate, pentadecaethylene glycol dimethacrylate, pentacontact ethylene glycol dimethacrylate. Methacrylate, 1,3-butylene dimethacrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, allyl methacrylate, tri Multifunctional (meth) acrylates such as methylolpropane trimethacrylate and pentaerythritol tetraacrylate; polyethylene glycol di (meth) Polyalkylene glycol di (meth) acrylates such as acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate; aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene, and derivatives thereof; N, Examples thereof include cross-linking agents such as N-divinylaniline, divinyl ether, divinyl sulfide, divinyl sulfonic acid; polybutadiene, polyisoprene unsaturated polyester, and the like. These crosslinkable monomers may be used alone or in combination of two or more. Among these, it is preferable to use a monomer having no ester bond in the molecule as an essential component. Among them, an aromatic divinyl compound is preferable, and divinylbenzene is particularly preferable.
  非架橋性単量体としてスチレン系単量体、架橋性単量体として芳香族ジビニル化合物を用いた場合には、本発明法による粒子の親水化効果が得られやすいため好ましい。 When a styrene monomer is used as the non-crosslinkable monomer and an aromatic divinyl compound is used as the crosslinkable monomer, it is preferable because the effect of making the particles hydrophilic by the method of the present invention is easily obtained.
 また、前記単量体混合物中の架橋性単量体の含有率は1質量%以上とすることが好ましく、より好ましくは5質量%以上、さらに好ましくは10質量%以上であり、50質量%以下とすることが好ましく、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。前記単量体混合物中の架橋性単量体の含有率を1質量%以上とすることにより、ビニル重合体粒子の耐溶剤性や耐熱性が高まり、また架橋性単量体の含有率を50質量%以下とすることにより、粒子としての硬度を適切にすることができる。 The content of the crosslinkable monomer in the monomer mixture is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and 50% by mass or less. More preferably, it is 40 mass% or less, More preferably, it is 30 mass% or less. By setting the content of the crosslinkable monomer in the monomer mixture to 1% by mass or more, the solvent resistance and heat resistance of the vinyl polymer particles are increased, and the content of the crosslinkable monomer is set to 50%. By setting the mass% or less, the hardness of the particles can be made appropriate.
 また単量体組成物を重合する際には、必要に応じて、重合開始剤や分散安定剤を用いてもよい。重合開始剤としては、通常、重合に用いられるものはいずれも使用可能であり、例えば、過酸化物系開始剤や、アゾ系開始剤等が使用可能である。前記過酸化物系開始剤としては、過酸化水素、過酢酸、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、キュメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t-ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等が挙げられる。 Further, when the monomer composition is polymerized, a polymerization initiator or a dispersion stabilizer may be used as necessary. As the polymerization initiator, any of those usually used for polymerization can be used. For example, a peroxide initiator, an azo initiator, or the like can be used. Examples of the peroxide initiator include hydrogen peroxide, peracetic acid, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide. Oxide, t-butylperoxy-2-ethylhexanoate, di-t-butylperoxide, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, methyl ethyl ketone peroxide, diisopropyl Examples thereof include peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, and the like.
 アゾ系開始剤としては、ジメチル2,2-アゾビスイソブチロニトリル、アゾビスシクロヘキサカルボニトリル、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,3-ジメチルブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2’-アゾビス(2-イソプロピルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(4-メチキシ-2,4-ジメチルバレロニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2,2’-アゾビス(2-アミジノプロパン)・二塩酸塩、4,4’-アゾビス(4-シアノペンタン酸)、4,4’-アゾビス(4-シアノバレリン酸)、ジメチル-2,2’-アゾビスイソブチレート等が挙げられる。 Examples of the azo initiator include dimethyl 2,2-azobisisobutyronitrile, azobiscyclohexacarbonitrile, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl). Valeronitrile), 2,2′-azobis (2,3-dimethylbutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,3,3-trimethyl) Butyronitrile), 2,2′-azobis (2-isopropylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (4-methoxy-2,4- Dimethylvaleronitrile), 2- (carbamoylazo) isobutyronitrile, 2,2′-azobis (2-amidinopropane) dihydrochloride, 4,4′-azobis (4-cyano) Pentane acid), 4,4'-azobis (4-cyanovaleric acid), dimethyl-2,2'-azobis isobutyrate, and the like.
 これらの重合開始剤は、単独でも、2種以上を併用してもよい。なお、これらの重合開始剤の添加量は、単量体混合物100質量部に対して0.1質量部以上とすることが好ましく、より好ましくは1質量部以上であり、5質量部以下とすることが好ましく、より好ましくは3質量部以下である。 These polymerization initiators may be used alone or in combination of two or more. The addition amount of these polymerization initiators is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, and 5 parts by mass or less with respect to 100 parts by mass of the monomer mixture. It is preferable that it is 3 parts by mass or less.
 分散安定剤は、懸濁重合法等を用いて単量体組成物を重合させる場合に、重合反応時に単量体組成物の液滴径の安定化を図るために使用されるものである。なお、分散安定剤は、単量体組成物に含有させずに、分散媒体である溶媒(例えば、水系溶媒)に溶解または分散させておいてもよい。分散安定剤としては、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤のいずれを用いても良い。分散安定剤は、単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油;ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩;ポリオキシエチレンジスチリルフェニルエーテル硫酸エステルアンモニウム塩、ポリオキシエチレンジスチリルフェニルエーテル硫酸エステルナトリウム塩等のポリオキシエチレンジスチリルフェニルエーテル硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩等のアニオン性界面活性剤が好適である。 The dispersion stabilizer is used to stabilize the droplet diameter of the monomer composition during the polymerization reaction when the monomer composition is polymerized using a suspension polymerization method or the like. The dispersion stabilizer may be dissolved or dispersed in a solvent (for example, an aqueous solvent) as a dispersion medium without being contained in the monomer composition. As the dispersion stabilizer, any of an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant may be used. A dispersion stabilizer may be used independently and may use 2 or more types together. Among these, fatty acid oils such as sodium oleate and castor oil potassium; alkyl sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate; polyoxyethylene distyryl phenyl ether sulfate ammonium salt, polyoxyethylene distyryl phenyl ether sulfate Polyoxyethylene distyryl phenyl ether sulfate such as sodium salt; alkylbenzene sulfonate such as sodium dodecylbenzene sulfonate; alkyl naphthalene sulfonate, alkane sulfonate, dialkyl sulfosuccinate, alkyl phosphate ester, naphthalene Anion such as sulfonic acid formalin condensate, polyoxyethylene alkyl phenyl ether sulfate, polyoxyethylene alkyl sulfate Emissions surfactants are preferred.
 分散安定剤は、所望するビニル重合体粒子のサイズに応じてその添加量を適宜調整すればよい。例えば、平均粒子径3μm以上30μm以下のビニル系重合体粒子を得たい場合であれば、分散安定剤の添加量を単量体混合物100質量部に対して0.1質量部以上とすることが好ましく、より好ましくは0.5質量部以上、さらに好ましくは1質量部以上であり、10質量部以下とすることが好ましく、より好ましくは5質量部以下、さらに好ましくは3質量部以下である。 The amount of the dispersion stabilizer may be appropriately adjusted according to the desired size of the vinyl polymer particles. For example, if it is desired to obtain vinyl polymer particles having an average particle diameter of 3 μm or more and 30 μm or less, the addition amount of the dispersion stabilizer may be 0.1 parts by mass or more with respect to 100 parts by mass of the monomer mixture. Preferably, it is 0.5 parts by mass or more, more preferably 1 part by mass or more, preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and further preferably 3 parts by mass or less.
 また、単量体組成物には、顔料、可塑剤、重合安定剤、蛍光増白剤、磁性粉、紫外線吸収剤、帯電防止剤、難燃剤等を添加しても良い。これらの添加剤の使用量は、単量体混合物100質量部に対して0.01質量部以上とすることが好ましく、より好ましくは0.1質量部以上、さらに好ましくは0.5質量部以上であり、10質量部以下とすることが好ましく、より好ましくは5質量部以下、さらに好ましくは3質量部以下である。 In addition, pigments, plasticizers, polymerization stabilizers, fluorescent brighteners, magnetic powders, ultraviolet absorbers, antistatic agents, flame retardants, and the like may be added to the monomer composition. The amount of these additives used is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and still more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the monomer mixture. It is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and still more preferably 3 parts by mass or less.
 [ビニル重合体粒子の製造方法]
 ビニル重合体粒子の製造方法は、前記したような単量体混合物を含む単量体組成物を重合させるものである。なお、重合方法としては、懸濁重合、シード重合、乳化重合等の公知の重合方法を採用することができ、これらの中でも懸濁重合、シード重合が好ましい。
[Method for producing vinyl polymer particles]
In the method for producing vinyl polymer particles, a monomer composition containing the monomer mixture as described above is polymerized. In addition, as a polymerization method, well-known polymerization methods, such as suspension polymerization, seed polymerization, and emulsion polymerization, can be employ | adopted, Among these, suspension polymerization and seed polymerization are preferable.
 懸濁重合法を採用する場合、用いられる溶媒としては、単量体組成物を完全に溶解しないものであれば特に限定されないが、好ましくは水系媒体が用いられる。これらの溶媒は、単量体組成物100質量部に対して、通常20質量部以上10000質量部以下の範囲内で適宜使用することができる。ビニル重合体粒子の製造方法としては、単量体混合物と重合開始剤とを含有する単量体組成物を、分散安定剤を溶解または分散させた水系溶媒に懸濁させて重合させる方法が好適である。 When the suspension polymerization method is employed, the solvent used is not particularly limited as long as it does not completely dissolve the monomer composition, but an aqueous medium is preferably used. These solvents can be appropriately used within a range of usually 20 parts by mass or more and 10,000 parts by mass or less with respect to 100 parts by mass of the monomer composition. As a method for producing vinyl polymer particles, a method in which a monomer composition containing a monomer mixture and a polymerization initiator is suspended and polymerized in an aqueous solvent in which a dispersion stabilizer is dissolved or dispersed is preferable. It is.
 懸濁重合の重合温度は50℃以上とすることが好ましく、より好ましくは55℃以上、さらに好ましくは60℃以上であり、95℃以下とすることが好ましく、より好ましくは90℃以下、さらに好ましくは85℃以下である。また、重合反応時間は1時間以上とすることが好ましく、より好ましくは2時間以上、さらに好ましくは3時間以上であり、10時間以下とすることが好ましく、より好ましくは8時間以下、さらに好ましくは5時間以下である。また、生成するビニル重合体の粒子径をコントロールするため、重合反応は単量体組成物の液滴径の規制を行った後あるいは液滴径の規制を行いながら反応を行うことが好ましい。この単量体組成物の液滴径の規制は、例えば、単量体組成物を水性媒体に分散させた懸濁液を、T.K.ホモミキサー、ラインミキサー等の高速撹拌機によって撹拌することにより行うことができる。そして、重合反応により生成したビニル系重合体粒子は、乾燥、さらに必要により分級等工程に供してもよい。なお、乾燥は150℃以下で行うのが好ましく、より好ましくは120℃以下、さらに好ましくは100℃以下である。 The polymerization temperature of the suspension polymerization is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, further preferably 60 ° C. or higher, preferably 95 ° C. or lower, more preferably 90 ° C. or lower, still more preferably. Is 85 ° C. or lower. The polymerization reaction time is preferably 1 hour or longer, more preferably 2 hours or longer, further preferably 3 hours or longer, preferably 10 hours or shorter, more preferably 8 hours or shorter, still more preferably. 5 hours or less. In order to control the particle diameter of the vinyl polymer to be produced, the polymerization reaction is preferably performed after regulating the droplet diameter of the monomer composition or while regulating the droplet diameter. The regulation of the droplet diameter of the monomer composition is, for example, that a suspension in which the monomer composition is dispersed in an aqueous medium is changed to T.P. K. It can be carried out by stirring with a high-speed stirrer such as a homomixer or a line mixer. The vinyl polymer particles produced by the polymerization reaction may be dried and further subjected to a classification process or the like if necessary. In addition, it is preferable to perform drying at 150 degrees C or less, More preferably, it is 120 degrees C or less, More preferably, it is 100 degrees C or less.
 シード重合法を採用する場合は、シード粒子としては、スチレン系、(メタ)アクリレート系の重合体を用いることが好ましく、非架橋型または架橋度の小さい微粒子であることがより好ましい。またシード粒子の平均粒子径は0.1μm~10μmが好ましく、且つ、100×粒子径標準偏差/平均粒子径で表される値(CV値)が10以下であることが好ましい。このようなシード粒子の製造方法は、従来用いられる方法を採用することができ、例えば、ソープフリー乳化重合、分散重合等が挙げられる。 When employing the seed polymerization method, it is preferable to use a styrene-based or (meth) acrylate-based polymer as the seed particle, and it is more preferable to use a non-crosslinked type or a fine particle having a low degree of crosslinking. The average particle diameter of the seed particles is preferably 0.1 μm to 10 μm, and the value (CV value) represented by 100 × particle diameter standard deviation / average particle diameter is preferably 10 or less. As a method for producing such seed particles, a conventionally used method can be employed, and examples thereof include soap-free emulsion polymerization and dispersion polymerization.
 シード重合における単量体組成物の仕込み量は、シード粒子1質量部に対して0.5質量部~50質量部とすることが好ましい。単量体組成物の仕込み量が、少なすぎると重合による粒子径の増加が小さくなり、また、多すぎると単量体組成物が完全にシード粒子に吸収されず、媒体中で独自に重合して異常粒子を生成するおそれがある。なお、重合温度や得られた粒子の乾燥条件については、前記懸濁重合と同様の条件が適用できる。 The charged amount of the monomer composition in the seed polymerization is preferably 0.5 to 50 parts by mass with respect to 1 part by mass of the seed particles. If the charged amount of the monomer composition is too small, the increase in the particle size due to polymerization is small, and if it is too large, the monomer composition is not completely absorbed by the seed particles and polymerizes independently in the medium. May produce abnormal particles. In addition, about the polymerization temperature and the drying conditions of the obtained particle | grains, the conditions similar to the said suspension polymerization are applicable.
 [有機無機複合粒子]
 有機無機複合粒子は、ビニル重合体に由来する有機質部分と、無機質部分とを含んでなる粒子である。前記有機無機複合粒子の態様としては、シリカ、アルミナ、チタニア等の金属酸化物、金属窒化物、金属硫化物、金属炭化物等の無機質微粒子が、ビニル重合体中に分散含有されてなる態様;(オルガノ)ポリシロキサン、ポリチタノキサン等のメタロキサン鎖(「金属-酸素-金属」結合を含む分子鎖)と有機分子が分子レベルで複合してなる態様;ビニルトリメトキシシラン等のビニル系重合体を形成し得るビニル基を有するオルガノアルコキシシランが加水分解縮合反応やビニル基の重合反応を起こすことで得られる粒子や加水分解性シリル基を有するシラン化合物を原料とするポリシロキサンとビニル基を有する重合性単量体等と反応させて得られる粒子のように、ビニル重合体骨格とポリシロキサン骨格とを含む有機質無機質複合粒子からなる態様等が挙げられる。これらの中でも、特にビニル重合体骨格とポリシロキサン骨格とを含む有機質無機質複合粒子からなる態様が好ましい。
[Organic inorganic composite particles]
Organic-inorganic composite particles are particles comprising an organic part derived from a vinyl polymer and an inorganic part. As an aspect of the organic-inorganic composite particles, an aspect in which inorganic fine particles such as metal oxides such as silica, alumina and titania, metal nitrides, metal sulfides and metal carbides are dispersed and contained in the vinyl polymer; Organo) A mode in which a metalloxane chain (molecular chain containing a “metal-oxygen-metal” bond) such as polysiloxane and polytitanoxane and an organic molecule are combined at the molecular level; a vinyl polymer such as vinyltrimethoxysilane is formed. Polymeric unit having a vinyl group and polysiloxane using particles obtained by causing an organoalkoxysilane having a vinyl group to undergo a hydrolysis condensation reaction or a polymerization reaction of a vinyl group or a silane compound having a hydrolyzable silyl group. Organic-inorganic composite containing vinyl polymer skeleton and polysiloxane skeleton, such as particles obtained by reacting with polymer Aspects such as made of the child and the like. Among these, an embodiment composed of organic-inorganic composite particles including a vinyl polymer skeleton and a polysiloxane skeleton is particularly preferable.
 以下、ビニル重合体骨格とポリシロキサン骨格とを含む有機質無機質複合粒子(以下、単に「複合粒子」ということがある。)について詳述する。 Hereinafter, organic-inorganic composite particles containing a vinyl polymer skeleton and a polysiloxane skeleton (hereinafter sometimes simply referred to as “composite particles”) will be described in detail.
 前記ビニル重合体骨格は、下記式(1)で表される繰り返し単位により構成される主鎖を有するビニル重合体であり、側鎖を有するもの、分岐構造を有するもの、さらには架橋構造を有するものであってもよい。複合粒子の硬度を適度に制御できる。 The vinyl polymer skeleton is a vinyl polymer having a main chain composed of a repeating unit represented by the following formula (1), having a side chain, having a branched structure, and further having a crosslinked structure. It may be a thing. The hardness of the composite particles can be controlled appropriately.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、ポリシロキサン骨格は、下記式(2)で表されるシロキサン単位が連続的に化学結合して、網目構造のネットワークを構成した部分と定義される。 Further, the polysiloxane skeleton is defined as a portion in which a siloxane unit represented by the following formula (2) is continuously chemically bonded to form a network of a network structure.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ポリシロキサン骨格を構成するSiO2の量は、複合粒子の質量に対して0.1質量%以上であることが好ましく、より好ましくは1質量%以上であり、25質量%以下であることが好ましく、より好ましくは10質量%以下である。ポリシロキサン骨格中のSiO2の量が上記範囲であれば、複合粒子の硬度の制御が容易となる。なお、ポリシロキサン骨格を構成するSiO2の量は、粒子を空気等の酸化性雰囲気中で800℃以上の温度で焼成した前後の質量を測定することにより求めた質量百分率である。 The amount of SiO 2 constituting the polysiloxane skeleton is preferably 0.1% by mass or more, more preferably 1% by mass or more, and preferably 25% by mass or less with respect to the mass of the composite particles. More preferably, it is 10 mass% or less. When the amount of SiO 2 in the polysiloxane skeleton is in the above range, the hardness of the composite particles can be easily controlled. The amount of SiO 2 constituting the polysiloxane skeleton is a mass percentage obtained by measuring the mass before and after firing the particles at a temperature of 800 ° C. or higher in an oxidizing atmosphere such as air.
 複合粒子は、その硬度や破壊強度等といった機械的特性それぞれについて、ポリシロキサン骨格部分やビニル重合体骨格部分の割合を適宜変化させることにより任意に調節することができる。複合粒子におけるポリシロキサン骨格は、加水分解性基を有するシラン化合物を加水分解縮合反応させて得ることが好ましい。 The composite particles can be arbitrarily adjusted by appropriately changing the ratio of the polysiloxane skeleton part and the vinyl polymer skeleton part with respect to each of the mechanical properties such as hardness and breaking strength. The polysiloxane skeleton in the composite particles is preferably obtained by hydrolytic condensation reaction of a silane compound having a hydrolyzable group.
 加水分解性を有するシラン化合物としては、特に限定はされないが、例えば、下記一般式(3)で表されるシラン化合物およびその誘導体等が挙げられる。
R’mSiX4-m     (3)
(式中、R’は置換基を有していてもよく、アルキル基、アリール基、アラルキル基および不飽和脂肪族基からなる群より選ばれる少なくとも1種の基を表し、Xは水酸基、アルコキシ基およびアシロキシ基からなる群より選ばれる少なくとも1種の基を表し、mは0から3までの整数である。)
Although it does not specifically limit as a silane compound which has hydrolyzability, For example, the silane compound represented by following General formula (3), its derivative (s), etc. are mentioned.
R ' m SiX 4-m (3)
(In the formula, R ′ may have a substituent and represents at least one group selected from the group consisting of an alkyl group, an aryl group, an aralkyl group and an unsaturated aliphatic group, and X represents a hydroxyl group, an alkoxy group. And represents at least one group selected from the group consisting of a group and an acyloxy group, and m is an integer from 0 to 3.)
 一般式(3)で表されるシラン化合物としては、特に限定はされないが、例えば、m=0のものとしては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等の4官能性シラン;m=1のものとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン、ベンジルトリメトキシシラン、ナフチルトリメトキシシラン、メチルトリアセトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン等の3官能性シラン;m=2のものとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジアセトキシジメチルシラン、ジフェニルシランジオール等の2官能性シラン;m=3のものとしては、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルシラノール等の1官能性シラン等が挙げられる。 Although it does not specifically limit as a silane compound represented by General formula (3), For example, as m = 0, tetrafunctional silane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, etc. Silanes having m = 1 are methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, phenyltrimethoxysilane, benzyltrimethoxysilane Naphthyltrimethoxysilane, methyltriacetoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, 3- (meth) acryloxypropi Trifunctional silanes such as trimethoxysilane and 3,3,3-trifluoropropyltrimethoxysilane; those with m = 2 include dimethyldimethoxysilane, dimethyldiethoxysilane, diacetoxydimethylsilane, diphenylsilanediol, etc. Examples of bifunctional silanes: m = 3 include monofunctional silanes such as trimethylmethoxysilane, trimethylethoxysilane, and trimethylsilanol.
 一般式(3)で表されるシラン化合物の誘導体としては、特に限定はされないが、例えば、Xの一部がカルボキシル基、β-ジカルボニル基等のキレート化合物を形成し得る基で置換された化合物や、前記シラン化合物を部分的に加水分解して得られる低縮合物等が挙げられる。 The derivative of the silane compound represented by the general formula (3) is not particularly limited. For example, a part of X is substituted with a group capable of forming a chelate compound such as a carboxyl group and a β-dicarbonyl group. Examples thereof include compounds and low condensates obtained by partially hydrolyzing the silane compound.
 加水分解性を有するシラン化合物は、1種のみ用いても2種以上を適宜組み合わせて使用してもよい。なお、一般式(3)において、m=3であるシラン化合物およびその誘導体のみを原料として使用する場合は、複合粒子は得られない。 The hydrolyzable silane compound may be used alone or in combination of two or more. In addition, in the general formula (3), when only the silane compound in which m = 3 and its derivative are used as raw materials, composite particles cannot be obtained.
 複合粒子のポリシロキサン骨格が、ビニル系重合体骨格中の少なくとも1個の炭素原子にケイ素原子が直接結合した有機ケイ素原子を分子内に有する形態の場合は、前記加水分解性を有するシラン化合物としては、ビニル結合を含有する有機基を有するものを用いる必要がある。 When the polysiloxane skeleton of the composite particle has an organosilicon atom in which a silicon atom is directly bonded to at least one carbon atom in the vinyl polymer skeleton, the hydrolyzable silane compound It is necessary to use those having an organic group containing a vinyl bond.
 ビニル結合を含有する有機基としては、例えば、下記一般式(4)、(5)および(6)で表される有機基等を挙げることができる。
CH2=C(-Ra)-COORb-     (4)
(式中、Raは水素原子またはメチル基を表し、Rbは置換基を有していてもよい炭素数1~20の2価の有機基を表す。)
CH2=C(-Rc)-          (5)
(式中、Rcは水素原子またはメチル基を表す。)
CH2=C(-Rd)-Re-        (6)
(式中、Rdは水素原子またはメチル基を表し、Reは置換基を有していてもよい炭素数1~20の2価の有機基を表す。)
Examples of the organic group containing a vinyl bond include organic groups represented by the following general formulas (4), (5), and (6).
CH 2 = C (-R a ) -COOR b- (4)
(In the formula, R a represents a hydrogen atom or a methyl group, and R b represents a divalent organic group having 1 to 20 carbon atoms which may have a substituent.)
CH 2 = C (-R c )-(5)
(In the formula, R c represents a hydrogen atom or a methyl group.)
CH 2 = C (-R d ) -R e- (6)
(In the formula, R d represents a hydrogen atom or a methyl group, and R e represents a divalent organic group having 1 to 20 carbon atoms which may have a substituent.)
 一般式(4)の有機基としては、例えば、(メタ)アクリロキシ基等が挙げられ、(メタ)アクリロキシ基を有する一般式(3)のシラン化合物としては、例えば、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリアセトキシシラン、γ-メタクリロキシエトキシプロピルトリメトキシシラン(または、γ-トリメトキシシリルプロピル-β-メタクリロキシエチルエーテルともいう)、γ-(メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-アクリロキシプロピルメチルジメトキシシラン等を挙げることができる。これらは1種のみ用いても2種以上を併用してもよい。 Examples of the organic group of the general formula (4) include a (meth) acryloxy group, and the silane compound of the general formula (3) having a (meth) acryloxy group includes, for example, γ-methacryloxypropyltrimethoxy. Silane, γ-methacryloxypropyltriethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxypropyltriethoxysilane, γ-methacryloxypropyltriacetoxysilane, γ-methacryloxyethoxypropyltrimethoxysilane (or γ-trimethoxysilylpropyl-β-methacryloxyethyl ether), γ- (methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-acryloxypropylmethyldimethoxysilane, etc. These may be used alone or in combination of two or more.
 前記一般式(5)の有機基としては、例えば、ビニル基、イソプロペニル基等が挙げられ、これらの有機基を有する前記一般式(3)のシラン化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジアセトキシシラン等を挙げることができる。これらは1種のみ用いても2種以上を併用してもよい。 Examples of the organic group of the general formula (5) include a vinyl group and an isopropenyl group. Examples of the silane compound of the general formula (3) having these organic groups include vinyl trimethoxysilane, Examples include vinyltriethoxysilane, vinyltriacetoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, and vinylmethyldiacetoxysilane. These may be used alone or in combination of two or more.
 前記一般式(6)の有機基としては、例えば、1-アルケニル基もしくはビニルフェニル基、イソアルケニル基もしくはイソプロペニルフェニル基等が挙げられ、これらの有機基を有する前記一般式(3)のシラン化合物としては、例えば、1-ヘキセニルトリメトキシシラン、1-ヘキセニルトリエトキシシラン、1-オクテニルトリメトキシシラン、1-デセニルトリメトキシシラン、γ-トリメトキシシリルプロピルビニルエーテル、ω-トリメトキシシリルウンデカン酸ビニルエステル、p-トリメトキシシリルスチレン、1-ヘキセニルメチルジメトキシシラン、1-ヘキセニルメチルジエトキシシラン等を挙げることができる。これらは1種のみ用いても2種以上を併用してもよい。 Examples of the organic group of the general formula (6) include 1-alkenyl group or vinylphenyl group, isoalkenyl group or isopropenylphenyl group, and the silane of the general formula (3) having these organic groups. Examples of the compound include 1-hexenyltrimethoxysilane, 1-hexenyltriethoxysilane, 1-octenyltrimethoxysilane, 1-decenyltrimethoxysilane, γ-trimethoxysilylpropyl vinyl ether, ω-trimethoxysilylundecane. Examples include acid vinyl ester, p-trimethoxysilylstyrene, 1-hexenylmethyldimethoxysilane, 1-hexenylmethyldiethoxysilane, and the like. These may be used alone or in combination of two or more.
 複合粒子に含まれるビニル重合体骨格は、(I)シラン化合物の加水分解縮合反応により得られたポリシロキサン骨格を有する粒子に、ビニル系単量体成分を吸収させた後、重合させることで得ることができる。また、特に前記シラン化合物が、加水分解性基とともに、ビニル結合を含有する有機基を有する場合には、(II)シラン化合物の加水分解縮合反応後に、これを重合することでも得ることができる。 The vinyl polymer skeleton contained in the composite particles is obtained by allowing the particles having a polysiloxane skeleton obtained by the hydrolysis-condensation reaction of (I) silane compound to absorb the vinyl monomer component and then polymerizing the particles. be able to. In particular, when the silane compound has an organic group containing a vinyl bond together with a hydrolyzable group, it can also be obtained by polymerizing this after the hydrolysis condensation reaction of the (II) silane compound.
 前記複合粒子は、(i)ポリシロキサン骨格がビニル系重合体骨格中の少なくとも1個の炭素原子にケイ素原子が直接化学結合した有機ケイ素原子を分子内に有している形態(化学結合タイプ)であってもよいし、(ii)このような有機ケイ素原子を分子内に有していない形態(IPNタイプ)であってもよく、特に限定はされないが、(i)の形態が好ましい。なお、前記(I)の方法でポリシロキサン骨格とともにビニル重合体骨格を得た場合は、(ii)の形態を有する複合粒子が得られ、特に前記シラン化合物が、加水分解性基とともに、ビニル結合を含有する有機基を有していれば、前記(i)と(ii)の形態を併せ持った複合粒子が得られる。また、前記(II)のようにしてポリシロキサン骨格とともにビニル重合体骨格を得た場合は、(i)の形態を有する複合粒子が得られる。 The composite particle has (i) a form in which the polysiloxane skeleton has an organosilicon atom in which a silicon atom is directly chemically bonded to at least one carbon atom in the vinyl polymer skeleton (chemical bond type). (Ii) The form (IPN type) does not have such an organosilicon atom in the molecule, and is not particularly limited, but the form (i) is preferred. In addition, when the vinyl polymer skeleton is obtained together with the polysiloxane skeleton by the method (I), composite particles having the form (ii) are obtained. In particular, the silane compound has a vinyl bond together with a hydrolyzable group. If it has an organic group containing, composite particles having both the forms (i) and (ii) can be obtained. Further, when the vinyl polymer skeleton is obtained together with the polysiloxane skeleton as in (II), composite particles having the form (i) are obtained.
 前記(I)や(II)の方法において、ポリシロキサン骨格を有する粒子に吸収させることのできる単量体としては、前記したビニル系単量体が挙げられ、所望する複合粒子の物性に応じて適宜選択することができる。これらは1種のみ用いても2種以上を併用してもよい。 In the methods (I) and (II), examples of the monomer that can be absorbed by the particles having a polysiloxane skeleton include the vinyl monomers described above, and depending on the desired physical properties of the composite particles. It can be selected appropriately. These may be used alone or in combination of two or more.
 例えば、疎水性のビニル系単量体は、ポリシロキサン骨格を有する粒子に単量体成分を吸収させる際に、単量体成分を乳化分散させた安定なエマルションを生成させ得るので好ましい。また、前記した架橋性単量体を使用すれば、得られる複合粒子の機械的特性の調節が容易にでき、また、複合粒子の耐溶剤性を向上させることもできる。架橋性単量体としては、前記ビニル重合体粒子に用いられるものとして例示したものを用いることができる。 For example, a hydrophobic vinyl-based monomer is preferable because a stable emulsion in which the monomer component is emulsified and dispersed can be generated when the monomer component is absorbed into particles having a polysiloxane skeleton. Moreover, if the crosslinkable monomer described above is used, the mechanical properties of the resulting composite particles can be easily adjusted, and the solvent resistance of the composite particles can be improved. As the crosslinkable monomer, those exemplified as those used for the vinyl polymer particles can be used.
 複合粒子の製造方法は、加水分解縮合工程と、重合工程とを含むことが好ましく、加水分解、縮合工程後、重合工程前に、重合性単量体を吸収させる吸収工程を含めることがより好ましい。吸収工程を含めることにより、複合粒子中のビニル重合体骨格成分の含有量や含有されるビニル重合体骨格の屈折率を調整できる。なお、加水分解縮合工程に用いるシラン化合物が、ポリシロキサン骨格構造を構成し得る要素とともにビニル重合体骨格を構成する要素を併せ持ったものでない場合は、前記吸収工程を必須とし、この吸収工程に続く重合工程においてビニル重合体骨格が形成される。 The method for producing composite particles preferably includes a hydrolysis-condensation step and a polymerization step, and more preferably includes an absorption step for absorbing the polymerizable monomer after the hydrolysis and condensation step and before the polymerization step. . By including the absorption step, the content of the vinyl polymer skeleton component in the composite particles and the refractive index of the vinyl polymer skeleton contained can be adjusted. In addition, when the silane compound used in the hydrolysis-condensation step does not have an element that constitutes a vinyl polymer skeleton together with an element that can constitute a polysiloxane skeleton structure, the absorption step is essential, and this absorption step is followed. A vinyl polymer skeleton is formed in the polymerization process.
 前記加水分解縮合工程とは、シラン化合物を、水を含む溶媒中で加水分解して縮重合させる反応を行う工程である。加水分解縮合工程により、ポリシロキサン骨格を有する粒子(ポリシロキサン粒子)を得ることができる。加水分解と縮重合は、一括、分割、連続等、任意の方法を採用できる。加水分解し、縮重合させるにあたっては、触媒としてアンモニア、尿素、エタノールアミン、テトラメチルアンモニウムハイドロオキサイド、アルカリ金属水酸化物、アルカリ土類金属水酸化物等の塩基性触媒を好ましく用いることができる。 The hydrolysis-condensation step is a step of performing a reaction in which a silane compound is hydrolyzed in a solvent containing water to undergo condensation polymerization. By the hydrolysis condensation step, particles having a polysiloxane skeleton (polysiloxane particles) can be obtained. Hydrolysis and polycondensation can employ any method such as batch, split, and continuous. In the hydrolysis and condensation polymerization, basic catalysts such as ammonia, urea, ethanolamine, tetramethylammonium hydroxide, alkali metal hydroxide, and alkaline earth metal hydroxide can be preferably used as the catalyst.
 前記水を含む溶媒中には、水や触媒以外に有機溶剤を含めることができる。有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル等のエステル類;イソオクタン、シクロへキサン等の(シクロ)パラフィン類;ベンゼン、トルエン等の芳香族炭化水素類等を挙げることができる。これらは単独で用いても2種以上を併用してもよい。 In the solvent containing water, an organic solvent can be contained in addition to water and the catalyst. Examples of the organic solvent include alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, 1,4-butanediol; acetone, Examples thereof include ketones such as methyl ethyl ketone; esters such as ethyl acetate; (cyclo) paraffins such as isooctane and cyclohexane; aromatic hydrocarbons such as benzene and toluene. These may be used alone or in combination of two or more.
 加水分解縮合工程ではまた、アニオン性、カチオン性、非イオン性の界面活性剤や、ポリビニルアルコール、ポリビニルピロリドン等の高分子分散剤を併用することもできる。これらは単独で用いても2種以上を併用してもよい。 In the hydrolysis-condensation step, anionic, cationic and nonionic surfactants and polymer dispersants such as polyvinyl alcohol and polyvinylpyrrolidone can be used in combination. These may be used alone or in combination of two or more.
 加水分解縮合は、原料となる前記シラン化合物と、触媒や水および有機溶剤を含む溶媒を混合した後、温度0℃以上100℃以下、好ましくは0℃以上70℃以下で、30分以上100時間以下撹拌することにより行うことができる。これによりポリシロキサン粒子が得られる。また、所望の程度まで加水分解縮合反応を行って粒子を製造した後、これを種粒子として、反応系にさらにシラン化合物を添加して種粒子を成長させてもよい。 Hydrolytic condensation is performed by mixing the silane compound as a raw material with a solvent containing a catalyst, water, and an organic solvent, and then at a temperature of 0 ° C. to 100 ° C., preferably 0 ° C. to 70 ° C., for 30 minutes to 100 hours. It can carry out by stirring below. Thereby, polysiloxane particles are obtained. Moreover, after producing a particle by performing a hydrolysis-condensation reaction to a desired degree, this may be used as a seed particle, and a silane compound may be further added to the reaction system to grow the seed particle.
 吸収工程は、ポリシロキサン粒子の存在下に、単量体成分を存在させた状態で進行するものであれば特に限定されない。したがって、ポリシロキサン粒子を分散させた溶媒中に単量体成分を加えてもよいし、単量体成分を含む溶媒中にポリシロキサン粒子を加えてもよい。なかでも、前者のように、予めポリシロキサン粒子を分散させた溶媒中に、単量体成分を加えるのが好ましい。特に、加水分解、縮合工程で得られたポリシロキサン粒子を反応液(ポリシロキサン粒子分散液)から取り出すことなく、この反応液に単量体成分を加える方法は、工程が複雑にならず、生産性に優れるため好ましい。 The absorption process is not particularly limited as long as it proceeds in the presence of the monomer component in the presence of the polysiloxane particles. Therefore, the monomer component may be added to the solvent in which the polysiloxane particles are dispersed, or the polysiloxane particles may be added to the solvent containing the monomer component. Especially, it is preferable to add a monomer component in the solvent which disperse | distributed polysiloxane particle | grains previously like the former. In particular, the method of adding the monomer component to the reaction liquid without taking out the polysiloxane particles obtained in the hydrolysis and condensation process from the reaction liquid (polysiloxane particle dispersion) does not complicate the process. It is preferable because of its excellent properties.
 なお、吸収工程においては、ポリシロキサン粒子の構造中に単量体成分を吸収させるが、単量体成分の吸収が速やかに進行するように、ポリシロキサン粒子および単量体成分それぞれの濃度や、ポリシロキサンと単量体成分の混合比、混合の処理方法、手段、混合時の温度や時間、混合後の処理方法、手段等を適宜設定し、その条件のもとで行うのが好ましい。 In the absorption step, the monomer component is absorbed in the structure of the polysiloxane particle, but the concentration of each of the polysiloxane particle and the monomer component is increased so that the absorption of the monomer component proceeds quickly, It is preferable that the mixing ratio of the polysiloxane and the monomer component, the processing method and means for mixing, the temperature and time at the time of mixing, the processing method and means after mixing, etc. are appropriately set and performed under the conditions.
 これらの条件は、用いるポリシロキサン粒子や単量体成分の種類等によって、適宜その必要性を考慮すればよい。また、これら条件は1種のみ適用しても2種以上を合わせて適用してもよい。 These requirements may be appropriately determined depending on the type of polysiloxane particles and monomer components used. These conditions may be applied singly or in combination of two or more.
 前記吸収工程における、単量体成分の添加量は、ポリシロキサン粒子の原料として使用したシラン化合物の質量に対して、質量で0.01倍以上100倍以下とするのが好ましい。より好ましくは0.5倍以上30倍以下であり、さらに好ましくは1倍以上20倍以下である。添加量が前記範囲に満たない場合は、ポリシロキサン粒子の単量体成分の吸収量が少なくなり、生成する複合粒子の機械的特性が不充分となることがあり、前記範囲を超える場合は、添加した単量体成分をポリシロキサン粒子に完全に吸収させることが困難となる傾向があり、未吸収の単量体成分が残存するため後の重合段階において粒子間の凝集が発生しやすくなるおそれがある。 In the absorption step, the amount of the monomer component added is preferably 0.01 to 100 times by mass with respect to the mass of the silane compound used as the raw material for the polysiloxane particles. More preferably, they are 0.5 times or more and 30 times or less, More preferably, they are 1 time or more and 20 times or less. If the amount added is less than the above range, the amount of monomer component absorption of the polysiloxane particles is reduced, the mechanical properties of the resulting composite particles may be insufficient, if exceeding the above range, There is a tendency that it is difficult to completely absorb the added monomer component in the polysiloxane particles, and the unabsorbed monomer component remains, and thus aggregation between particles is likely to occur in the subsequent polymerization stage. There is.
 前記吸収工程において、単量体成分の添加のタイミングは特に限定されず、一括で加えてもよいし、数回に分けて加えてもよいし、任意の速度でフィードしてもよい。また、単量体成分を加えるにあたっては、単量体成分のみを添加しても単量体成分の溶液を添加してもいずれでもよいが、単量体成分を予め乳化剤で水または水性媒体に乳化分散させた乳化液をポリシロキサン粒子に混合することが、ポリシロキサン粒子への吸収がより効率よく行われるため好ましい。 In the absorption step, the timing of addition of the monomer component is not particularly limited, and may be added all at once, may be added in several times, or may be fed at an arbitrary rate. In addition, when adding the monomer component, either the monomer component alone or the solution of the monomer component may be added, but the monomer component is previously added to water or an aqueous medium with an emulsifier. It is preferable to mix the emulsified and emulsified liquid into the polysiloxane particles because the polysiloxane particles can be more efficiently absorbed.
 前記乳化剤は特に限定されないが、例えば、前記分散安定剤として例示したアニオン性界面活性剤や、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロックポリマー等のノニオン性界面活性剤が、ポリシロキサン粒子、単量体成分を吸収した後のポリシロキサン粒子および複合粒子の分散状態を安定化させることもできるので好ましい。これら乳化剤は、1種のみを使用しても2種以上を併用してもよい。 The emulsifier is not particularly limited. For example, the anionic surfactants exemplified as the dispersion stabilizer, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan Dispersion of polysiloxane particles and composite particles after nonionic surfactants such as fatty acid esters, polyoxyethylene alkylamines, glycerin fatty acid esters, oxyethylene-oxypropylene block polymers have absorbed the polysiloxane particles and monomer components This is preferable because the state can be stabilized. These emulsifiers may be used alone or in combination of two or more.
 乳化剤の使用量は特に限定されるものではなく、具体的には、乳化すべき単量体成分の総質量100質量部に対して0.01質量部以上とすることが好ましく、より好ましくは0.05質量部以上、さらに好ましくは1質量部以上であり、10質量部以下とすることが好ましく、より好ましくは8質量部以下、さらに好ましくは5質量部以下である。0.01質量部未満の場合は、安定な乳化液が得られないことがあり、10質量部を超える場合は、乳化重合等が副反応として併発してしまうおそれがある。乳化液を得るには、単量体成分を乳化剤とともにホモミキサーや超音波ホモジナイザー等を用いて水中で乳濁状態とすればよい。 The amount of the emulsifier used is not particularly limited, and specifically, it is preferably 0.01 parts by mass or more, more preferably 0 with respect to 100 parts by mass of the total mass of the monomer components to be emulsified. 0.05 parts by mass or more, more preferably 1 part by mass or more, preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and further preferably 5 parts by mass or less. When the amount is less than 0.01 parts by mass, a stable emulsion may not be obtained. When the amount exceeds 10 parts by mass, emulsion polymerization or the like may occur as a side reaction. In order to obtain an emulsified liquid, the monomer component may be made into an emulsion state in water using a homomixer or an ultrasonic homogenizer together with the emulsifier.
 また、単量体成分を乳化剤で乳化分散させる際には、単量体成分の質量に対して0.3倍以上10倍以下の水や水溶性有機溶剤を使用するのが好ましい。前記水溶性有機溶剤としては、メタノール、エタノール、イソプロパノール、n‐ブタノール、イソブタノール、sec‐ブタノール、t‐ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、1,4‐ブタンジオール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル等のエステル類等が挙げられる。 Further, when emulsifying and dispersing the monomer component with an emulsifier, it is preferable to use water or a water-soluble organic solvent that is 0.3 to 10 times the mass of the monomer component. Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol, 1,4-butanediol; acetone And ketones such as methyl ethyl ketone; esters such as ethyl acetate;
 吸収工程は、0℃以上60℃以下の温度範囲で、5分間以上720分間以下、撹拌しながら行うのが好ましい。これらの条件は、用いるポリシロキサン粒子や単量体の種類等によって、適宜設定すればよく、これらの条件は1種のみ、あるいは2種以上を合わせて採用してもよい。 The absorption step is preferably performed in the temperature range of 0 ° C. to 60 ° C. with stirring for 5 minutes to 720 minutes. These conditions may be set as appropriate depending on the type of polysiloxane particles and monomers to be used, and these conditions may be used alone or in combination of two or more.
 吸収工程において、単量体成分がポリシロキサン粒子に吸収されたかどうかの判断については、例えば、単量体成分を加える前および吸収段階終了後に、顕微鏡により粒子を観察し、単量体成分の吸収により粒子径が大きくなっていることを確認することで容易に判断できる。 In the absorption process, for determining whether the monomer component has been absorbed by the polysiloxane particles, for example, before adding the monomer component and after the absorption step, observe the particles with a microscope to absorb the monomer component. Thus, it can be easily determined by confirming that the particle size is increased.
 重合工程は、単量体成分を重合反応させて、ビニル重合体骨格を有する粒子を得る工程である。具体的には、シラン化合物としてビニル結合を有する有機基を持つものを用いた場合は、該有機基のビニル結合を重合させてビニル重合体骨格を形成する工程であり、吸収工程を経た場合は、吸収させた単量体成分、または吸収させた単量体成分とポリシロキサン骨格が有するビニル結合とを重合させてビニル(系)重合体骨格を形成する工程であるが、両方に該当する場合はどちらの反応によってもビニル(系)重合体骨格を形成する工程となり得る。 The polymerization step is a step of obtaining particles having a vinyl polymer skeleton by polymerizing a monomer component. Specifically, when a silane compound having an organic group having a vinyl bond is used, it is a step of polymerizing the vinyl bond of the organic group to form a vinyl polymer skeleton. Is a process of polymerizing the absorbed monomer component, or the absorbed monomer component and the vinyl bond of the polysiloxane skeleton to form a vinyl (system) polymer skeleton, if both fall under Can be a step of forming a vinyl (system) polymer skeleton by either reaction.
 重合反応は、加水分解縮合工程や吸収工程の途中で行ってもよいし、いずれかまたは両方の工程後に行ってもよく、特に限定はされないが、通常は、加水分解縮合工程後(吸収工程を行った場合はもちろん吸収工程後)に開始するようにする。 The polymerization reaction may be performed in the middle of the hydrolysis-condensation step or the absorption step, and may be performed after one or both of the steps, and is not particularly limited, but usually after the hydrolysis-condensation step (the absorption step). If done, of course, start after the absorption step).
 重合法は特に限定されないが、例えば、ラジカル重合開始剤を用いる方法、紫外線や放射線を照射する方法、熱を加える方法等、いずれも採用可能である。前記ラジカル重合開始剤としては、特に限定されないが、例えば、前記ビニル重合体粒子の重合に使用されるものを挙げることができる。これらラジカル重合開始剤は、単独で用いても2種以上を併用してもよい。 The polymerization method is not particularly limited, and for example, any of a method using a radical polymerization initiator, a method of irradiating ultraviolet rays or radiation, a method of applying heat, and the like can be adopted. Although it does not specifically limit as said radical polymerization initiator, For example, what is used for superposition | polymerization of the said vinyl polymer particle can be mentioned. These radical polymerization initiators may be used alone or in combination of two or more.
 ラジカル重合開始剤の使用量は、単量体成分の総質量100質量部に対して、0.001質量部以上とすることが好ましく、より好ましくは0.01質量部以上、さらに好ましくは0.1質量部以上であり、20質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下である。ラジカル重合開始剤の使用量が、0.001質量部未満の場合は、単量体成分の重合度が上がらない場合がある。ラジカル重合開始剤の溶媒に対する仕込み方については、特に限定はなく、最初(反応開始前)に全量仕込む方法(ラジカル重合開始剤を単量体成分と共に乳化分散させておく態様、単量体成分が吸収された後にラジカル重合開始剤を仕込む態様);最初に一部を仕込んでおき、残りを連続フィード添加する方法、または、断続的にパルス添加する方法、あるいは、これらを組み合わせた手法等、従来公知の手法はいずれも採用することができる。 The amount of the radical polymerization initiator used is preferably 0.001 part by mass or more, more preferably 0.01 part by mass or more, and still more preferably 0.001 part by mass with respect to 100 parts by mass of the total mass of the monomer components. It is 1 part by mass or more, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 5 parts by mass or less. When the usage-amount of a radical polymerization initiator is less than 0.001 mass part, the polymerization degree of a monomer component may not rise. The method of charging the radical polymerization initiator into the solvent is not particularly limited, and is a method in which the entire amount is initially charged (before the reaction is started) (the mode in which the radical polymerization initiator is emulsified and dispersed together with the monomer component, A mode in which a radical polymerization initiator is charged after absorption); a method in which a part is charged first, and the rest is continuously fed, or intermittently pulsed, or a combination of these, etc. Any known method can be employed.
 ラジカル重合を行う際の反応温度は40℃以上が好ましく、より好ましくは50℃以上であり、100℃以下が好ましく、より好ましくは80℃以下である。反応温度が低すぎる場合には、重合度が十分に上がらず複合粒子の機械的特性が不充分となる傾向があり、一方、反応温度が高すぎる場合には、重合中に粒子間の凝集が起こりやすくなる傾向がある。なお、ラジカル重合を行う際の反応時間は、用いる重合開始剤の種類に応じて適宜変更すればよいが、通常、5分以上が好ましく、より好ましくは10分以上であり、600分以下が好ましく、より好ましくは300分以下である。反応時間が短すぎる場合には、重合度が十分に上がらない場合があり、反応時間が長すぎる場合には、粒子間で凝集が起こり易くなる傾向がある。 The reaction temperature for carrying out radical polymerization is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, preferably 100 ° C. or lower, more preferably 80 ° C. or lower. If the reaction temperature is too low, the degree of polymerization does not increase sufficiently and the mechanical properties of the composite particles tend to be insufficient. On the other hand, if the reaction temperature is too high, aggregation between particles occurs during the polymerization. It tends to happen easily. The reaction time for performing radical polymerization may be appropriately changed according to the type of polymerization initiator to be used, but is usually preferably 5 minutes or more, more preferably 10 minutes or more, and preferably 600 minutes or less. More preferably, it is 300 minutes or less. When the reaction time is too short, the degree of polymerization may not be sufficiently increased, and when the reaction time is too long, aggregation tends to occur between particles.
 上述した製法によれば、後述する好ましい特性(機械的特性や粒度分布特性等)を有するビニル系重合体微粒子からなる基材粒子が得られる。 According to the above-mentioned production method, base particles composed of vinyl polymer fine particles having desirable characteristics (such as mechanical characteristics and particle size distribution characteristics) described later can be obtained.
 本発明に用いられる基材粒子の形状は特に限定されるものではなく、例えば球状、回転楕円体状、金平糖状、薄板状、針状、まゆ状のいずれでもよく、粒子表面の形状も、平滑状、襞状、多孔状のいずれでもよい。中でも、工業的に用途が多い点で球状が好適である。基材粒子の大きさは、質量平均粒子径で1mm(1000μm)以下とする。1mmを超える粒子は用途が限られ、工業上の利用分野も少ないためである。質量平均粒子径は、0.05~500μmが好ましく、0.1~100μmがより好ましく、0.5~30μmがさらに好ましい。質量平均粒子径は、従来公知の粒度分布測定法において、体積平均粒子径として求められる値を意味し、具体的には、コールター原理を使用した精密粒度分布測定装置(例えば、商品名「コールターマルチサイザーIII型」、ベックマンコールター株式会社製)により測定される値とする。 The shape of the base particle used in the present invention is not particularly limited, and may be any of spherical, spheroid, scallop, thin plate, needle, eyebrows, and the particle surface has a smooth shape. The shape may be any of a shape, a bowl shape and a porous shape. Among them, the spherical shape is preferable because it has many industrial uses. The magnitude | size of a base particle shall be 1 mm (1000 micrometers) or less by a mass mean particle diameter. This is because particles exceeding 1 mm have limited applications and few industrial fields of use. The mass average particle diameter is preferably 0.05 to 500 μm, more preferably 0.1 to 100 μm, and further preferably 0.5 to 30 μm. The mass average particle size means a value obtained as a volume average particle size in a conventionally known particle size distribution measurement method, and specifically, a precise particle size distribution measurement apparatus (for example, trade name “Coulter Multi” using the Coulter principle). It is a value measured by “Sizer III” manufactured by Beckman Coulter, Inc.
 また本発明に用いられる基材粒子の粒子径における変動係数(CV値)は、40%以下が好ましい。CV値が40%を超えると、粒子径のバラツキが大きすぎて親水化処理にムラが出るおそれがある。なお、CV値は、コールター原理を使用した精密粒度分布測定装置により測定される基材粒子の質量平均粒子径と、基材粒子の粒子径の標準偏差とを下記式に当てはめて求められる値である。
基材粒子の変動係数(%)=100×粒子径の標準偏差/質量平均粒子径
Further, the coefficient of variation (CV value) in the particle diameter of the substrate particles used in the present invention is preferably 40% or less. If the CV value exceeds 40%, the particle size variation is too large, and there is a risk of unevenness in the hydrophilic treatment. The CV value is a value obtained by applying the mass average particle diameter of the base material particle measured by a precision particle size distribution measuring apparatus using the Coulter principle and the standard deviation of the particle diameter of the base material particle to the following formula. is there.
Coefficient of variation (%) of substrate particles = 100 × standard deviation of particle diameter / mass average particle diameter
 親水化微粒子の質量平均粒子径や変動係数の好適範囲も、基材粒子と同範囲である。 The preferred range of the mass average particle diameter and coefficient of variation of the hydrophilized fine particles is the same as that of the base particles.
 基材粒子は、前記した方法で親水化処理される。基材粒子と親水化微粒子の分散性、機械的特性、色相、粒度分布特性(CV値)は同程度であることが好ましく、親水化処理の前後で変化しないことが好ましい。なお、分散性とは、粒子が固着したり融着したりすることのない性質である。 The base particles are hydrophilized by the method described above. The dispersibility, mechanical characteristics, hue, and particle size distribution characteristics (CV value) of the base particles and the hydrophilized fine particles are preferably approximately the same, and preferably not changed before and after the hydrophilization treatment. The dispersibility is a property that the particles are not fixed or fused.
 機械的特性は、例えば、圧縮弾性率、圧縮破壊荷重、回復率等で評価できる。本発明の圧縮弾性率は、粒子に負荷を加え10%変形したときの弾性率(N/mm2:MPa)であり、圧縮破壊荷重は、圧縮を強めて破壊に至ったときの荷重(mN)であり、回復率は圧縮後の回復率(%)である。これらの測定方法については、実施例で詳述する。基材粒子、親水化微粒子のいずれにおいても、圧縮弾性率は、1000N/mm2以上が好ましく、2000N/mm2以上がより好ましく、3000N/mm2以上がさらに好ましい。同様に、圧縮破壊荷重は、1mN以上が好ましく、3mN以上がより好ましく、5mN以上がさらに好ましい。また、回復率は、0.5%以上が好ましく、1%以上がより好ましく、5%以上がさらに好ましい。 The mechanical characteristics can be evaluated by, for example, a compression elastic modulus, a compression fracture load, a recovery rate, and the like. The compression elastic modulus of the present invention is the elastic modulus (N / mm 2 : MPa) when a particle is loaded and deformed by 10%, and the compressive fracture load is the load (mN) when compression is strengthened to cause fracture. The recovery rate is the recovery rate after compression (%). These measurement methods will be described in detail in Examples. Substrate particles, in any of the hydrophilic fine particles, the compression modulus is preferably 1000 N / mm 2 or more, more preferably 2000N / mm 2 or more, 3000N / mm 2 or more is more preferable. Similarly, the compressive breaking load is preferably 1 mN or more, more preferably 3 mN or more, and further preferably 5 mN or more. Further, the recovery rate is preferably 0.5% or more, more preferably 1% or more, and further preferably 5% or more.
 以下、実施例により本発明をより詳細に説明する。なお、本発明は下記実施例により限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更実施する限り、本発明の範囲に含まれる。なお、以下においては、特に断らない限り、「部」は「質量部」を、「%」は「質量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited by the following Example, As long as it changes and implements in the range which does not deviate from the meaning of this invention, it is contained in the scope of the present invention. In the following, “part” means “part by mass” and “%” means “% by mass” unless otherwise specified.
 合成例1
 冷却管、温度計、滴下口を備えた四つ口フラスコに、イオン交換水400部、25%アンモニア水6部、メタノール180部を入れ、攪拌しながら、この溶液に3-メタクリロキシプロピルトリメトキシシラン100部を滴下口から添加して、3-メタクリロキシプロピルトリメトキシシランの加水分解縮合反応を行い、ポリシロキサン粒子の乳濁液を得た。
Synthesis example 1
In a four-necked flask equipped with a condenser, a thermometer, and a dripping port, 400 parts of ion-exchanged water, 6 parts of 25% aqueous ammonia and 180 parts of methanol are placed, and this solution is stirred with 3-methacryloxypropyltrimethoxy. 100 parts of silane was added from the dropping port, and a hydrolytic condensation reaction of 3-methacryloxypropyltrimethoxysilane was performed to obtain an emulsion of polysiloxane particles.
 次いで、乳化剤としてポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩(第一工業製薬社製:「ハイテノール(登録商標)NF-08」)0.35部をイオン交換水175部で溶解した溶液に、ジビニルベンゼン70部、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製:「V-65」)3.4部を溶解した溶液を加え、TKホモミキサー(特殊機化工業社製)により6000rpmで5分間、乳化分散させて、単量体成分の乳化液を調製した。 Subsequently, 0.35 part of polyoxyethylene styrenated phenyl ether sulfate ammonium salt (Daiichi Kogyo Seiyaku Co., Ltd .: “Hytenol (registered trademark) NF-08”) as an emulsifier was dissolved in 175 parts of ion-exchanged water. A solution in which 70 parts of divinylbenzene and 3.4 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd .: “V-65”) are added is added to a TK homomixer ( The emulsion of the monomer component was prepared by emulsifying and dispersing at 6000 rpm for 5 minutes using a special machine chemical industry).
 得られた乳化液を、ポリシロキサン粒子の乳濁液中に添加して、さらに攪拌を行った。乳化液の添加から2時間後、反応液をサンプリングして顕微鏡で観察を行ったところ、ポリシロキサン粒子が単量体成分を吸収して肥大化していることが確認された。 The obtained emulsion was added to an emulsion of polysiloxane particles and further stirred. Two hours after the addition of the emulsion, the reaction solution was sampled and observed with a microscope. As a result, it was confirmed that the polysiloxane particles were enlarged by absorbing the monomer component.
 次いで、反応液を窒素雰囲気下で65℃に昇温させ、65℃で2時間保持し、単量体成分のラジカル重合を行った。ラジカル重合後の乳濁液を固液分離し、得られたケーキをイオン交換水、メタノールで洗浄した。80℃で12時間真空乾燥させることにより、基材粒子1(有機質無機質複合粒子)を得た。この基材粒子1の粒子径をコールターマルチサイザーIII型(ベックマンコールター社製)で測定したところ、質量平均粒子径は3.8μm、変動係数(CV値)は2.9%であった。なお、基材粒子の平均粒子径は、コールターマルチサイザーIII型(ベックマンコールター社製)により、30000個の粒子の粒子径を測定し、平均粒子径を求めた。粒子径のCV値(%)は、下記式に従って求めた。 Next, the reaction solution was heated to 65 ° C. under a nitrogen atmosphere and held at 65 ° C. for 2 hours to perform radical polymerization of the monomer component. The emulsion after radical polymerization was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol. The substrate particles 1 (organic inorganic composite particles) were obtained by vacuum drying at 80 ° C. for 12 hours. When the particle diameter of the substrate particle 1 was measured by Coulter Multisizer III type (manufactured by Beckman Coulter, Inc.), the mass average particle diameter was 3.8 μm, and the coefficient of variation (CV value) was 2.9%. The average particle size of the base particles was determined by measuring the particle size of 30000 particles using a Coulter Multisizer III type (manufactured by Beckman Coulter, Inc.). The CV value (%) of the particle diameter was determined according to the following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 合成例2
 フラスコに添加した3-メタクリロキシプロピルトリメトキシシランの量を50部にした以外は、合成例1と同様にして、ポリシロキサン粒子の乳濁液を調製した。
Synthesis example 2
An emulsion of polysiloxane particles was prepared in the same manner as in Synthesis Example 1 except that the amount of 3-methacryloxypropyltrimethoxysilane added to the flask was 50 parts.
 次いで、前記「ハイテノールNF-08」0.75部をイオン交換水175部で溶解した溶液に、スチレン125部、1,6-ヘキサンジオールジメタクリレート25部および前記「V-65」4部からなる溶液を加え、TKホモミキサー(特殊機化工業社製)により6000rpmで5分間、乳化分散させて、単量体成分の乳化液を調製した。後は合成例1と同様にして、基材粒子2(有機質無機質複合粒子)を得た。 Next, from a solution obtained by dissolving 0.75 part of “Hytenol NF-08” in 175 parts of ion-exchanged water, from 125 parts of styrene, 25 parts of 1,6-hexanediol dimethacrylate and 4 parts of “V-65”. The resulting solution was added and emulsified and dispersed at 6000 rpm for 5 minutes using a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) to prepare an emulsion of monomer components. Thereafter, in the same manner as in Synthesis Example 1, substrate particles 2 (organic / inorganic composite particles) were obtained.
 得られた乳化液を、ポリシロキサン粒子の乳濁液中に添加して、さらに攪拌を行った。乳化液の添加から2時間後、反応液をサンプリングして顕微鏡で観察を行ったところ、ポリシロキサン粒子が単量体成分を吸収して肥大化していることが確認された。 The obtained emulsion was added to an emulsion of polysiloxane particles and further stirred. Two hours after the addition of the emulsion, the reaction solution was sampled and observed with a microscope. As a result, it was confirmed that the polysiloxane particles were enlarged by absorbing the monomer component.
 次いで、反応液を窒素雰囲気下で65℃に昇温させ、65℃で2時間保持し、単量体成分のラジカル重合を行った。ラジカル重合後の乳濁液を固液分離し、得られたケーキをイオン交換水、メタノールで洗浄した。80℃で12時間真空乾燥させることにより、基材粒子2を得た。この基材粒子2の質量平均粒子径は3.8μm、CV値は3.3%であった。 Next, the reaction solution was heated to 65 ° C. under a nitrogen atmosphere and held at 65 ° C. for 2 hours to perform radical polymerization of the monomer component. The emulsion after radical polymerization was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol. The substrate particles 2 were obtained by vacuum drying at 80 ° C. for 12 hours. The base material particle 2 had a mass average particle diameter of 3.8 μm and a CV value of 3.3%.
 合成例3
 25%アンモニア水の量を20部とし、単量体成分の乳化液調製の際に、スチレン75部、1,6-ヘキサンジメタクリレート75部とした以外は合成例2と同様にして基材粒子3(有機質無機質複合粒子)を得た。この基材粒子3の質量平均粒子径は2.1μm、CV値は5.2%であった。
Synthesis example 3
Substrate particles in the same manner as in Synthesis Example 2, except that the amount of 25% aqueous ammonia was 20 parts, and 75 parts of styrene and 75 parts of 1,6-hexanedimethacrylate were used when preparing the emulsion of the monomer component. 3 (organic inorganic composite particles) was obtained. The base particle 3 had a mass average particle diameter of 2.1 μm and a CV value of 5.2%.
 合成例4
 25%アンモニア水の量を20部とした以外は合成例1と同様にして基材粒子4(有機質無機質複合粒子)を得た。この基材粒子4の質量平均粒子径は2.0μm、CV値は5.3%であった。
Synthesis example 4
Base material particles 4 (organic / inorganic composite particles) were obtained in the same manner as in Synthesis Example 1 except that the amount of 25% aqueous ammonia was 20 parts. The base particle 4 had a mass average particle diameter of 2.0 μm and a CV value of 5.3%.
 合成例5
 冷却管、温度計、滴下口を備えた四つ口フラスコに、分散安定剤として前記「ハイテノールNF-08」を2部溶解したイオン交換水溶液150部を仕込んだ。ジビニルベンゼン100部と前記「V-65」2部を追加し、前記TKホモミキサー(特殊機化工業社製)により5000rpmで5分間、乳化分散させて、懸濁液を調製した。
Synthesis example 5
A four-necked flask equipped with a cooling tube, a thermometer, and a dropping port was charged with 150 parts of an ion exchange aqueous solution in which 2 parts of the above-mentioned “Hytenol NF-08” was dissolved as a dispersion stabilizer. 100 parts of divinylbenzene and 2 parts of “V-65” were added, and the mixture was emulsified and dispersed at 5000 rpm for 5 minutes with the TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) to prepare a suspension.
 この懸濁液にイオン交換水250部を加え、窒素雰囲気下で65℃に昇温させ、65℃で2時間保持し、ラジカル重合を行った。ラジカル重合後の乳濁液を固液分離し、得られたケーキをイオン交換水、メタノールで洗浄し、さらに分級操作を行った。分級後の粒子を80℃で12時間真空乾燥させることにより、基材粒子5(ビニル重合体粒子)を得た。この基材粒子5の質量平均粒子径は2.1μm、CV値は25.0%であった。 To this suspension, 250 parts of ion-exchanged water was added, the temperature was raised to 65 ° C. under a nitrogen atmosphere, and the mixture was held at 65 ° C. for 2 hours to perform radical polymerization. The emulsion after radical polymerization was subjected to solid-liquid separation, and the resulting cake was washed with ion-exchanged water and methanol, and further classified. Base particles 5 (vinyl polymer particles) were obtained by vacuum drying the classified particles at 80 ° C. for 12 hours. The base particle 5 had a mass average particle diameter of 2.1 μm and a CV value of 25.0%.
 合成例6
 ジビニルベンゼン100部に替えて、スチレン30部と1,6-ヘキサンジオールジメタクリレート70部からなる単量体混合物を用いた以外は合成例5と同様にして、基材粒子6(ビニル重合体粒子)を得た。この基材粒子6の質量平均粒子径は2.8μm、CV値は19.0%であった。
Synthesis Example 6
Substrate particles 6 (vinyl polymer particles) in the same manner as in Synthesis Example 5 except that a monomer mixture comprising 30 parts of styrene and 70 parts of 1,6-hexanediol dimethacrylate was used instead of 100 parts of divinylbenzene. ) The base particle 6 had a mass average particle diameter of 2.8 μm and a CV value of 19.0%.
 合成例7
 ジビニルベンゼン100部に替えて、スチレン70部と1,6-ヘキサンジオールジメタクリレート30部からなる単量体混合物を用いた以外は合成例5と同様にして、基材粒子7(ビニル重合体粒子)を得た。この基材粒子7の質量平均粒子径は2.3μm、CV値は23.5%であった。
Synthesis example 7
Substrate particles 7 (vinyl polymer particles) in the same manner as in Synthesis Example 5 except that a monomer mixture comprising 70 parts of styrene and 30 parts of 1,6-hexanediol dimethacrylate was used instead of 100 parts of divinylbenzene. ) The base particle 7 had a mass average particle diameter of 2.3 μm and a CV value of 23.5%.
 合成例8
 ジビニルベンゼン100部に替えて、メチルメタクリレート70部とエチレングリコールジメタクリレート30部からなる単量体混合物を用いた以外は合成例5と同様にして、基材粒子8(ビニル重合体粒子)を得た。この基材粒子8の質量平均粒子径は3.2μm、CV値は30.0%であった。
Synthesis example 8
Substrate particles 8 (vinyl polymer particles) were obtained in the same manner as in Synthesis Example 5 except that a monomer mixture consisting of 70 parts of methyl methacrylate and 30 parts of ethylene glycol dimethacrylate was used instead of 100 parts of divinylbenzene. It was. The base particle 8 had a mass average particle diameter of 3.2 μm and a CV value of 30.0%.
 合成例9
 25%アンモニア水の量を10部とした以外は合成例1と同様にして基材粒子9(有機質無機質複合粒子)を得た。この基材粒子10の質量平均粒子径は3.0μm、CV値は2.5%であった。
Synthesis Example 9
Base material particles 9 (organic inorganic composite particles) were obtained in the same manner as in Synthesis Example 1 except that the amount of 25% aqueous ammonia was 10 parts. The mass average particle diameter of the substrate particles 10 was 3.0 μm, and the CV value was 2.5%.
 合成例10
 25%アンモニア水の量を10部とし、単量体成分の乳化液調製の際に、1,6-ヘキサンジオールジメタクリレート100部とした以外は合成例1と同様にして基材粒子10(有機質無機質複合粒子)を得た。この基材粒子10の質量平均粒子径は3.0μm、CV値は2.7%であった。
Synthesis Example 10
The base particle 10 (organic matter) was prepared in the same manner as in Synthesis Example 1 except that the amount of 25% aqueous ammonia was 10 parts, and that the monomer component emulsion was prepared with 100 parts of 1,6-hexanediol dimethacrylate. Inorganic composite particles) were obtained. The base particle 10 had a mass average particle size of 3.0 μm and a CV value of 2.7%.
 実施例1
 合成例1で得られた基材粒子1を120g、容量500Lのチャンバー式処理容器に入れた。粒子層の厚みは0.5mmであった。チャンバー内を1Paに減圧した後、フッ素(F2)および酸素(O2)を、F2:13.33Pa(0.1Torr)、O2:80kPa(600Torr)となるように導入した。F2は0.017体積%、残部はO2である。その後、30℃で60分間処理を行った。その後、チャンバー内を窒素置換した後、大気圧に戻した。ガス処理後の粒子のうち7gを、500mlのセパラブルフラスコに入れ、イオン交換水を加えて350gとし(粒子濃度2質量%)、常温(25℃程度)で10分間超音波分散を行った。次いで、85℃に加温し、3時間熱処理を行い、粒子の洗浄(水分との接触処理)を行った。室温まで冷却した後、粒子を濾過し、得られたケーキに、イオン交換水、メタノールの順で掛け洗いを行った後、80℃で12時間真空乾燥を行って、実施例1に係る親水化微粒子1を得た。
Example 1
120 g of the base particle 1 obtained in Synthesis Example 1 was placed in a chamber type processing container having a capacity of 500 L. The thickness of the particle layer was 0.5 mm. After reducing the pressure in the chamber to 1 Pa, fluorine (F 2 ) and oxygen (O 2 ) were introduced so that F 2 : 13.33 Pa (0.1 Torr) and O 2 : 80 kPa (600 Torr). F 2 is 0.017% by volume, and the balance is O 2 . Then, the process was performed for 60 minutes at 30 degreeC. Thereafter, the inside of the chamber was replaced with nitrogen and then returned to atmospheric pressure. Of the particles after gas treatment, 7 g was put into a 500 ml separable flask, and ion-exchanged water was added to 350 g (particle concentration 2 mass%), and ultrasonic dispersion was performed at room temperature (about 25 ° C.) for 10 minutes. Subsequently, it heated at 85 degreeC, heat-processed for 3 hours, and wash | cleaned the particle | grains (contact process with a water | moisture content). After cooling to room temperature, the particles were filtered, and the cake obtained was washed in the order of ion-exchanged water and methanol, and then vacuum-dried at 80 ° C. for 12 hours to make hydrophilic according to Example 1. Fine particles 1 were obtained.
 実施例2
 F2を133.3Pa(1Torr)、0.17体積%となるように変更した以外は、実施例1と同様にして親水化処理を行い、実施例2に係る親水化微粒子2を得た。
Example 2
A hydrophilization treatment was performed in the same manner as in Example 1 except that F 2 was changed to 133.3 Pa (1 Torr) and 0.17% by volume to obtain hydrophilized fine particles 2 according to Example 2.
 実施例3
 基材粒子1に替えて基材粒子2を用いた以外は実施例2と同様にして実施例3に係る親水化微粒子3を得た。
Example 3
Hydrophilic microparticles 3 according to Example 3 were obtained in the same manner as in Example 2 except that the base particle 2 was used instead of the base particle 1.
 実施例4
 F2を0.67kPa(5Torr)、0.83体積%となるように変更した以外は、実施例1と同様にして実施例4に係る親水化微粒子4を得た。
Example 4
Hydrophilic microparticles 4 according to Example 4 were obtained in the same manner as in Example 1 except that F 2 was changed to 0.67 kPa (5 Torr) and 0.83% by volume.
 実施例5~11
 基材粒子1に替えて合成例2~8で得られた基材粒子2~8を用いた以外は実施例4と同様にして実施例5~11に係る親水化微粒子5~11を得た。
Examples 5 to 11
Hydrophilic microparticles 5 to 11 according to Examples 5 to 11 were obtained in the same manner as in Example 4 except that the base particles 2 to 8 obtained in Synthesis Examples 2 to 8 were used instead of the base particles 1. .
 比較例1
 F2を1.33kPa(10Torr)、1.64体積%となるように変更した以外は、実施例1と同様にして親水化処理を行い、比較例1に係る比較用親水化微粒子1を得た。
Comparative Example 1
The hydrophilization treatment 1 was carried out in the same manner as in Example 1 except that F 2 was changed to 1.33 kPa (10 Torr) and 1.64 vol% to obtain comparative hydrophilized fine particles 1 according to Comparative Example 1. It was.
 比較例2
 合成例1で得られた基材粒子1を5g取り、メタノール45gに分散させ、3-アミノプロピルトリメトキシシラン0.5gを添加して、撹拌しながら100±2℃で2時間加熱した。室温まで冷却した後、濾過し、得られたケーキをメタノールで洗浄した。80℃で12時間真空乾燥を行い、比較例2に係る比較用親水化微粒子2を得た。
Comparative Example 2
5 g of the base particle 1 obtained in Synthesis Example 1 was taken, dispersed in 45 g of methanol, 0.5 g of 3-aminopropyltrimethoxysilane was added, and the mixture was heated at 100 ± 2 ° C. for 2 hours with stirring. After cooling to room temperature, it was filtered and the resulting cake was washed with methanol. Vacuum drying was performed at 80 ° C. for 12 hours to obtain comparative hydrophilized fine particles 2 according to Comparative Example 2.
 比較例3
 合成例1で得られた基材粒子1を0.5g取り、予め硫酸200ml/l、クロム酸400g/lとなるように調製した酸化処理混合液100mlに加え、70℃で5分間加熱処理を行った。室温まで冷却した後、濾過し、得られた微粒子を水で洗浄した。80℃で12時間真空乾燥を行い、比較例3に係る比較用親水化微粒子3を得た。
Comparative Example 3
0.5 g of the base particle 1 obtained in Synthesis Example 1 is taken and added to 100 ml of an oxidation treatment mixture prepared in advance so as to be 200 ml / l of sulfuric acid and 400 g / l of chromic acid, followed by heat treatment at 70 ° C. for 5 minutes. went. After cooling to room temperature, the mixture was filtered, and the resulting fine particles were washed with water. Vacuum drying was performed at 80 ° C. for 12 hours to obtain comparative hydrophilized fine particles 3 according to Comparative Example 3.
 <特性評価方法>
 各合成例で得た基材粒子と実施例および比較例で得た親水化微粒子について、下記特性を評価し、表1~表3に示した。
<Characteristic evaluation method>
The following characteristics were evaluated for the base particles obtained in each synthesis example and the hydrophilized fine particles obtained in the examples and comparative examples, and are shown in Tables 1 to 3.
 [質量平均粒子径、CV値]
 質量平均粒子径とCV値は、前記合成例1と同様の方法で測定した。
[Mass average particle diameter, CV value]
The mass average particle diameter and CV value were measured by the same method as in Synthesis Example 1.
 [粒子形状]
 電子顕微鏡を用いて粒子の観察を行い、形状を目視で判定した。
[Particle shape]
The particles were observed using an electron microscope, and the shape was visually determined.
 [水への分散性]
 イオン交換水30gを容量50ccのスクリュー管に入れ、粒子0.1gを添加して、水中への粒子の分散状態を目視で観察した。粒子がほぼ完全に水になじんでいるものを○、ほとんどの粒子が水になじんでいるが、一部水の上に浮いたままの粒子がある場合を△、ほとんどの粒子が水の上に浮いているものを×として評価した。
[Dispersibility in water]
30 g of ion-exchanged water was put into a screw tube having a capacity of 50 cc, 0.1 g of particles were added, and the dispersion state of the particles in water was visually observed. ○ when most of the particles are familiar with water, △ when most of the particles are familiar with water, but some particles remain floating on the water △, most of the particles are above the water The floating thing was evaluated as x.
 [疎水化度]
 底部に撹拌子を置いた200ccのガラスビーカーにイオン交換水50ccを投入し、水面に粒子0.2gを浮かべた後、ビーカー内の水中にビュレットの先端を沈め、撹拌子を緩やかに回転させながら、前記粒子添加から5分後に、ビュレットからメタノールを徐々に導入した。水面の粒子の全量が完全に水中に沈むまでメタノールの導入を続け、水中に粒子が完全に沈んだときのメタノールの導入量(cc)を測定し、下式に基づき疎水化度を求めた。なお、前記ビュレットからメタノールを添加する前に、水面に浮かべた粒子が水中に完全に沈んだ場合は、疎水化度0とした。
 疎水化度(%)=メタノール導入量(cc)×100/{水の量(cc)+メタノール導入量(cc)}
[Hydrophobicity]
Put 50 cc of ion-exchanged water in a 200 cc glass beaker with a stirrer on the bottom, float 0.2 g of particles on the water surface, sink the tip of the burette in the water in the beaker, and gently rotate the stirrer 5 minutes after the addition of the particles, methanol was gradually introduced from the burette. The introduction of methanol was continued until the total amount of particles on the water surface was completely submerged, and the amount of methanol introduced (cc) when the particles completely submerged in water was measured, and the degree of hydrophobicity was determined based on the following equation. In addition, before adding methanol from the burette, when the particles floating on the water surface completely sink in water, the degree of hydrophobicity was set to zero.
Hydrophobic degree (%) = methanol introduction amount (cc) × 100 / {amount of water (cc) + methanol introduction amount (cc)}
 [色目の変化]
 親水化処理前後の粒子の色目を目視観察により評価した。色目の変化のないものを○、わずかに黄色みを帯びるものを△、完全に変色したものを×とした。
[Changes in color]
The color of the particles before and after the hydrophilic treatment was evaluated by visual observation. A sample with no change in color was marked with ◯, a sample with a slight yellowish color was marked with Δ, and a sample with a completely discolored color was marked with ×.
 [全フッ素量、溶出性フッ素含有量、非溶出性フッ素含有量]
 前記した方法で全フッ素量と溶出性フッ素含有量を求め、その差を非溶出性フッ素含有量とした。
[Total fluorine content, elutable fluorine content, non-eluting fluorine content]
The total fluorine amount and the eluting fluorine content were determined by the above-described method, and the difference was defined as the non-eluting fluorine content.
 [酸価(KOH中和量)]
 秤量した0.5gの試料粒子に超純水(オルガノ社製「PURELITE」PRA-0015-000型で調製、18.2MΩ・cm以下)を加えて全量を50gに調整した後、超音波処理を10分間行った。次いで、自動滴定装置(平沼産業社製、COM-1600)を用いて中和滴定を行い、電位変化量が最大になるときの適定液の添加量を求め、下式により酸価を算出した。なお、滴定液には、濃度0.005MのKOH水溶液を用いた。
[Acid value (KOH neutralization amount)]
Ultrapure water (prepared with “PURELITE” PRA-0015-000 manufactured by Organo Corporation, 18.2 MΩ · cm or less) was added to the weighed 0.5 g of sample particles to adjust the total amount to 50 g, followed by sonication. 10 minutes. Next, neutralization titration was performed using an automatic titrator (Hiranuma Sangyo Co., Ltd., COM-1600), the amount of addition of the titration solution when the potential change amount was maximized, and the acid value was calculated by the following formula. . As the titrant, a 0.005M KOH aqueous solution was used.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 [カルボキシル基およびカルボン酸塩の確認]
 X線光電子分光分析装置(ESCA;アルバック-ファイ社製;走査型X線光電子分光装置;PHI Quantera SXMTM(Scanning X-ray Microprobe))を使用して、親水化処理後の基材粒子表面におけるカルボキシル基およびカルボン酸塩の生成の有無を確認した。
[Confirmation of carboxyl group and carboxylate]
Using an X-ray photoelectron spectrometer (ESCA; manufactured by ULVAC-PHI; scanning X-ray photoelectron spectrometer; PHI Quantera SXM (Scanning X-ray Microprobe)) on the surface of the base material particles after hydrophilization treatment The presence or absence of the formation of carboxyl groups and carboxylates was confirmed.
 [C,O,F原子の表面存在率]
 X線光電子分光分析装置(ESCA;JEOL社製;JPS-9000MC)を使用して、基材粒子および親水化微粒子表面におけるC,OおよびF原子の存在率(モル%)を測定し、下記式により各原子の相対表面存在率(%)を算出した。
[Surface existence rate of C, O, F atoms]
Using an X-ray photoelectron spectrometer (ESCA; manufactured by JEOL; JPS-9000MC), the abundance (mol%) of C, O and F atoms on the surface of the base particles and the hydrophilized fine particles was measured. Was used to calculate the relative surface abundance (%) of each atom.
 C原子の相対表面存在率(%)=100×[C原子の存在率(モル%)/(C原子の存在率(モル%)+O原子の存在率(モル%)+F原子の存在率(モル%))]
 O原子の相対表面存在率(%)=100×[O原子の存在率(モル%)/(C原子の存在率(モル%)+O原子の存在率(モル%)+F原子の存在率(モル%))]
 F原子の相対表面存在率(%)=100×[F原子の存在率(モル%)/(C原子の存在率(モル%)+O原子の存在率(モル%)+F原子の存在率(モル%))]
Relative surface abundance of C atoms (%) = 100 × [abundance of C atoms (mol%) / (abundance of C atoms (mol%) + abundance of O atoms (mol%) + abundance of F atoms (mol) %))]
Relative surface abundance of O atoms (%) = 100 × [abundance of O atoms (mol%) / (abundance of C atoms (mol%) + abundance of O atoms (mol%) + abundance of F atoms (mol %))]
F-relative surface abundance (%) = 100 × [F atom abundance (mol%) / (C atom abundance (mol%) + O atom abundance (mol%) + F atom abundance (mol %))]
[10%圧縮弾性率(10%K値:硬度)]
 島津微小圧縮試験機(島津製作所社製,「MCTW‐500」)により、室温(25℃)において、試料台(材質:SKS平板)上に散布した試料粒子1個について、直径50μmの円形平板圧子(材質:ダイヤモンド)を用いて、粒子の中心方向へ一定の負荷速度(2.275mN/秒)で荷重をかけて、圧縮変位が粒子径の10%となるまで粒子を変形させたときの荷重と変位量(mm)を測定する。測定した圧縮荷重、粒子の圧縮変位、粒子の半径を、下記式:
[10% compression modulus (10% K value: hardness)]
A circular plate indenter with a diameter of 50 μm per sample particle spread on a sample table (material: SKS flat plate) at room temperature (25 ° C.) by a Shimadzu micro-compression tester (manufactured by Shimadzu Corporation, “MCTW-500”) (Material: diamond) Using a load at a constant load speed (2.275 mN / sec) toward the center of the particle, the load when the particle is deformed until the compression displacement becomes 10% of the particle diameter And the amount of displacement (mm) is measured. The measured compression load, particle compression displacement, and particle radius are expressed as follows:
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 (ここで、E:圧縮弾性率(N/mm2)、F:圧縮荷重(N)、S:圧縮変位(mm)、R:粒子の半径(mm)である。)に代入し、値を算出する。この操作を、異なる3個の粒子について行い、その平均値を基材粒子の10%圧縮弾性率とする。 (Where E: compression elastic modulus (N / mm 2 ), F: compression load (N), S: compression displacement (mm), R: radius of particle (mm)). calculate. This operation is performed on three different particles, and the average value is set as the 10% compression modulus of the base particles.
[圧縮破壊荷重]
 圧縮弾性率と同様にして粒子に荷重をかけ、粒子が変形により破壊したときの荷重(mN)を圧縮破壊荷重とした。
[Compressive fracture load]
A load was applied to the particles in the same manner as the compression modulus, and the load (mN) when the particles were broken by deformation was taken as the compression failure load.
[圧縮変形回復率(回復率)]
 微小圧縮試験機(島津製作所製:「MCTW‐500」)を用いて、試料粒子を反転荷重9.8mNまで圧縮した後、荷重を減らしていくときの荷重値と圧縮変位との関係を測定して得られる値であり、荷重を除く際の終点を原点荷重値0.098mNとし、負荷および除負荷における圧縮(回復)速度を1.486mN/秒として測定したときに、反転の点までの変位(L1)と、反転の点から原点荷重値をとる点までの変位(L2)との比(L1/L2)(%)として表した値である。
[Compression deformation recovery rate (recovery rate)]
Using a micro-compression tester (manufactured by Shimadzu Corporation: “MCTW-500”), after compressing the sample particles to a reverse load of 9.8 mN, measure the relationship between the load value and the compression displacement when the load is reduced. Displacement to the point of reversal when measuring the end point when removing the load as the origin load value of 0.098 mN and the compression (recovery) speed at load and removal as 1.486 mN / sec. It is a value expressed as a ratio (L1 / L2) (%) between (L1) and the displacement (L2) from the reversal point to the point where the origin load value is taken.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~11で得られた親水化微粒子は、親水化処理によって疎水化度が0となっており、色目の変化もほとんどなかった。各親水化微粒子について、XPS(ESCA)で分析したところ、288eVにカルボキシル基に相当する炭素のピークが観測された。また、各微粒子についての機械的強度は、処理前後でほとんど変化なかった。一方、比較例1は、混合ガス中におけるフッ素の体積%が規定範囲を超えているため、粒子骨格が酸化によるダメージを受けて黒変した。また、比較例2では、粒子にシランカップリング処理を行ったが、親水化が不充分・不均一であり、水に分散しない粒子が多く認められた。また、クロム酸による酸化・親水化処理を行った比較例3では、粒子表面の親水化は充分であったが、クロム酸処理前に比べて粒子の圧縮破壊荷重や回復率等が低下してしまうことがわかった。 The hydrophilized fine particles obtained in Examples 1 to 11 had a degree of hydrophobicity of 0 due to the hydrophilization treatment, and there was almost no change in color. When each hydrophilized fine particle was analyzed by XPS (ESCA), a carbon peak corresponding to a carboxyl group was observed at 288 eV. Further, the mechanical strength of each fine particle hardly changed before and after the treatment. On the other hand, in Comparative Example 1, since the volume% of fluorine in the mixed gas exceeded the specified range, the particle skeleton was damaged by oxidation and turned black. In Comparative Example 2, the particles were subjected to silane coupling treatment. However, hydrophilicity was insufficient and non-uniform, and many particles were not dispersed in water. Further, in Comparative Example 3 in which the oxidation / hydrophilization treatment with chromic acid was performed, the surface of the particles was sufficiently hydrophilic, but the compressive fracture load and recovery rate of the particles decreased compared with those before the chromic acid treatment. I found out.
 実施例12~17
 合成例9で得られた基材粒子9を120g、容量500Lのチャンバー式処理容器に入れた。混合ガスの組成およびチャンバー内のガスの温度を表4に示す条件としたこと以外は、実施例1と同様にしてガス処理を行って、親水化微粒子12~17を得た。なお、実施例12~17では、ガス処理後のイオン交換水による洗浄処理は行わなかった。
Examples 12-17
120 g of the base particle 9 obtained in Synthesis Example 9 was placed in a chamber type processing container having a capacity of 500 L. Except that the composition of the mixed gas and the temperature of the gas in the chamber were the conditions shown in Table 4, gas treatment was performed in the same manner as in Example 1 to obtain hydrophilized fine particles 12 to 17. In Examples 12 to 17, the cleaning treatment with ion-exchanged water after the gas treatment was not performed.
Figure JPOXMLDOC01-appb-T000009
 表4中、参考例1は基材粒子9の各種物性の測定結果を示すものである。
Figure JPOXMLDOC01-appb-T000009
In Table 4, Reference Example 1 shows the measurement results of various physical properties of the base particle 9.
 表4より、実施例12~17で得られた微粒子は親水化処理によって疎水化度が0となっていた。すなわち、混合ガスが不活性ガスを含む場合においても同様に親水化処理が進行し、親水化微粒子が得られることが分かる。なお、各微粒子の機械的強度は、処理前後でほとんど変化がなかった。また、XPS(ESCA)を使用して、実施例12~17の親水化微粒子表面を分析したところ、288eVにカルボキシル基に相当する炭素のピークが観察された。さらに、各原子の相対表面存在率(%)の結果から、親水化処理後の基材粒子は親水化処理前と比較して相対的に酸素原子量が増加しており、カルボキシル基が生成していることが確認できた。 From Table 4, the fine particles obtained in Examples 12 to 17 had a hydrophobicity of 0 due to the hydrophilization treatment. That is, it can be seen that when the mixed gas contains an inert gas, the hydrophilization treatment proceeds in the same manner, and hydrophilized fine particles are obtained. In addition, the mechanical strength of each fine particle hardly changed before and after the treatment. Further, when the surfaces of the hydrophilized fine particles of Examples 12 to 17 were analyzed using XPS (ESCA), a carbon peak corresponding to a carboxyl group was observed at 288 eV. Furthermore, from the result of the relative surface abundance ratio (%) of each atom, the base particle after the hydrophilization treatment has a relatively increased oxygen atom amount compared with that before the hydrophilization treatment, and a carboxyl group is generated. It was confirmed that
 また、溶出性フッ素量を測定したところ、親水化微粒子12では1.83mg/gであり、親水化微粒子14では1.50mg/gであった。 Further, when the amount of elution fluorine was measured, it was 1.83 mg / g for the hydrophilized fine particles 12, and 1.50 mg / g for the hydrophilized fine particles 14.
 実施例18~21
 混合ガスの温度を-20℃(実施例18)、0℃(実施例19)、20℃(実施例20)、40℃(実施例21)にそれぞれ変更したこと以外は、実施例16と同様にしてガス処理を行って、親水化微粒子18~21を得た。実施例18~21でも、ガス処理後のイオン交換水による洗浄は行わなかった。
Examples 18-21
Same as Example 16 except that the temperature of the mixed gas was changed to −20 ° C. (Example 18), 0 ° C. (Example 19), 20 ° C. (Example 20), and 40 ° C. (Example 21). Then, gas treatment was performed to obtain hydrophilized fine particles 18 to 21. Also in Examples 18 to 21, washing with ion-exchanged water after gas treatment was not performed.
 XPS(ESCA)を使用して、親水化処理後の基材粒子表面における各種原子の存在量の分析を行ったところ、288eVにカルボキシル基に相当する炭素のピークが観察された。また、親水化処理を行う際の混合ガスの温度が上昇するにつれて、相対的に酸素原子量が増加し、フッ素原子量が低下することが確認された(表5)。 When XPS (ESCA) was used to analyze the abundance of various atoms on the surface of the base particles after the hydrophilic treatment, a carbon peak corresponding to a carboxyl group was observed at 288 eV. Moreover, it was confirmed that the oxygen atom amount relatively increased and the fluorine atom amount decreased as the temperature of the mixed gas during the hydrophilization treatment increased (Table 5).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例22,23
 親水化微粒子12を7g、85℃のイオン交換水に浸漬させ、攪拌下、85℃で3時間洗浄した(粒子濃度6.3質量%)。その後、イオン交換水、メタノールの順で掛け洗いを行い、さらに、80℃で12時間真空乾燥を行って、親水化微粒子22を得た。
 親水化微粒子14についても、同様の温水洗浄を行って、親水化微粒子23を得た。
Examples 22 and 23
7 g of hydrophilized fine particles 12 were immersed in 85 ° C. ion exchange water, and washed with stirring at 85 ° C. for 3 hours (particle concentration: 6.3% by mass). Thereafter, washing with ion-exchanged water and methanol was performed in this order, and further, vacuum drying was performed at 80 ° C. for 12 hours to obtain hydrophilic fine particles 22.
The hydrophilic fine particles 14 were also washed in the same warm water to obtain hydrophilic fine particles 23.
 実施例24,25
 親水化微粒子12を7g、0.25Nの水酸化ナトリウム水溶液中に浸漬させ(粒子濃度2質量%)、攪拌下、85℃で3時間アルカリ処理を行った。粒子をろ過した後、85℃のイオン交換水に浸漬させ(粒子濃度6.3質量%)、同温度で3時間洗浄処理を行った。室温まで冷却した後、粒子をろ過し、イオン交換水、メタノールの順で掛け洗いを行い、さらに、80℃で12時間真空乾燥を行って、親水化微粒子24を得た。
Examples 24 and 25
7 g of hydrophilized fine particles 12 were immersed in a 0.25N aqueous sodium hydroxide solution (particle concentration: 2% by mass) and subjected to alkali treatment at 85 ° C. for 3 hours with stirring. After filtering the particles, they were immersed in ion-exchanged water at 85 ° C. (particle concentration: 6.3% by mass) and washed at the same temperature for 3 hours. After cooling to room temperature, the particles were filtered, washed with ion-exchanged water and methanol in this order, and further vacuum-dried at 80 ° C. for 12 hours to obtain hydrophilized fine particles 24.
 親水化微粒子14についても、同様のアルカリ処理および温水洗浄を行って、親水化微粒子25を得た。
 親水化微粒子12,14および22~25の溶出性フッ素量を測定した。結果を表6に示す。
The hydrophilic fine particles 14 were also subjected to the same alkali treatment and warm water washing to obtain the hydrophilic fine particles 25.
The eluting fluorine amount of the hydrophilized fine particles 12, 14 and 22 to 25 was measured. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表6より、溶出性フッ素量は、アルカリ処理や温水洗浄を行わなかった実施例12,14で最も多く、アルカリ処理や温水洗浄を行うことで低減できることが分かる。また、溶出性フッ素量の低減効果は、温水洗浄、アルカリ処理と温水洗浄の順で高くなることが分かる。 From Table 6, it can be seen that the amount of elutable fluorine is the largest in Examples 12 and 14 where no alkali treatment or warm water washing was performed, and can be reduced by performing alkali treatment or warm water washing. Moreover, it turns out that the reduction effect of the amount of elution fluorine becomes high in order of warm water washing | cleaning, an alkali treatment, and warm water washing | cleaning.
 実施例26~28
 合成例10で得られた基材粒子10を120g、容量500Lのチャンバー式処理容器に入れた。混合ガスの組成およびチャンバー内のガスの温度を表4に示す条件としたこと以外は、実施例1と同様にしてガス処理を行って、親水化微粒子26~28を得た。なお、実施例26~28では、ガス処理後のイオン交換水による洗浄処理は行わなかった。
Examples 26-28
120 g of the base particle 10 obtained in Synthesis Example 10 was placed in a chamber type processing container having a capacity of 500 L. Hydrophilic particles 26 to 28 were obtained by carrying out gas treatment in the same manner as in Example 1 except that the composition of the mixed gas and the temperature of the gas in the chamber were the conditions shown in Table 4. In Examples 26 to 28, no cleaning treatment with ion-exchanged water after gas treatment was performed.
Figure JPOXMLDOC01-appb-T000012
 表7中、参考例2は基材粒子10の各種物性の測定結果を示すものである。
Figure JPOXMLDOC01-appb-T000012
In Table 7, Reference Example 2 shows the measurement results of various physical properties of the base particle 10.
 表7より、実施例26~28で得られた微粒子は親水化処理によって疎水化度が0となっていた。すなわち、混合ガスが不活性ガスを含む場合においても同様に親水化処理が進行し、親水化微粒子が得られることが分かる。なお、各微粒子の機械的強度は、処理前後でほとんど変化がなかった。XPS(ESCA)を使用して、実施例26~28で得られた親水化微粒子表面を分析したところ、288eVにカルボキシル基に相当する炭素のピークが観察された。また、各原子の相対表面存在率(%)の結果から、親水化処理後の基材粒子は親水化処理前と比較して、相対的に酸素原子量が増加しており、カルボキシル基の生成が確認できた。なお、親水化微粒子26の溶出性フッ素量は3.76mg/gであった。 From Table 7, the microparticles obtained in Examples 26 to 28 had a hydrophobicity of 0 due to the hydrophilization treatment. That is, it can be seen that when the mixed gas contains an inert gas, the hydrophilization treatment proceeds in the same manner, and hydrophilized fine particles are obtained. In addition, the mechanical strength of each fine particle hardly changed before and after the treatment. When the surface of the hydrophilized fine particles obtained in Examples 26 to 28 was analyzed using XPS (ESCA), a carbon peak corresponding to a carboxyl group was observed at 288 eV. In addition, from the results of the relative surface abundance ratio (%) of each atom, the base particle after the hydrophilization treatment has a relatively increased oxygen atom amount as compared with that before the hydrophilization treatment, and the formation of carboxyl groups It could be confirmed. In addition, the elution fluorine amount of the hydrophilized fine particles 26 was 3.76 mg / g.
 実施例15,16(表4)と、実施例27,28(表7)のXPS(ESCA)分析結果より、モノマー成分がアクリレート系の基材粒子に比べて、モノマー成分がスチレン系(芳香族ジビニル化合物)の基材粒子の方が、同一親水化処理条件において元の基材粒子(親水化処理前)に対する親水化処理後のO原子の存在率の増加度合いが大きく、且つ、F原子存在率が高く、モノマー成分がスチレン系の基材粒子の混合ガスに対する反応性が高く、親水化処理されやすいことが分かる。 From the XPS (ESCA) analysis results of Examples 15 and 16 (Table 4) and Examples 27 and 28 (Table 7), the monomer component is styrene-based (aromatic compared to acrylate-based substrate particles). The base particles of the divinyl compound) have a greater increase in the presence of O atoms after hydrophilization than the original base particles (before hydrophilization) under the same hydrophilization conditions, and the presence of F atoms. It can be seen that the ratio is high, the monomer component is highly reactive to the mixed gas of styrene-based substrate particles, and is easily hydrophilized.
 実施例29
 親水化微粒子26を7g、85℃のイオン交換水に浸漬させ(粒子濃度6.3質量%)、攪拌下、85℃で3時間洗浄処理した。その後、イオン交換水、メタノールの順で掛け洗いを行い、さらに、80℃で12時間真空乾燥を行って、親水化微粒子29を得た。
Example 29
7 g of the hydrophilized fine particles 26 were immersed in 85 ° C. ion exchange water (particle concentration: 6.3% by mass) and washed with stirring at 85 ° C. for 3 hours. Thereafter, ion-exchanged water and methanol were washed in this order, and further vacuum-dried at 80 ° C. for 12 hours to obtain hydrophilized fine particles 29.
 実施例30
 親水化微粒子26を7g、0.25Nの水酸化ナトリウム水溶液中に浸漬させ(粒子濃度2質量%)、攪拌下、85℃で3時間アルカリ処理を行った。粒子をろ過した後、85℃のイオン交換水に浸漬させ(粒子濃度6.3質量%)、同温度で3時間洗浄処理を行った。室温まで冷却した後、粒子をろ過し、イオン交換水、メタノールの順で掛け洗いを行い、さらに、80℃で12時間真空乾燥を行って、親水化微粒子30を得た。
 得られた親水化微粒子26,29および30の溶出性フッ素量を測定した。結果を表8に示す。
Example 30
7 g of hydrophilized fine particles 26 were immersed in a 0.25N aqueous sodium hydroxide solution (particle concentration: 2% by mass) and subjected to alkali treatment at 85 ° C. for 3 hours with stirring. After filtering the particles, they were immersed in ion-exchanged water at 85 ° C. (particle concentration: 6.3% by mass) and washed at the same temperature for 3 hours. After cooling to room temperature, the particles were filtered, washed with ion-exchanged water and methanol in this order, and further vacuum-dried at 80 ° C. for 12 hours to obtain hydrophilized fine particles 30.
The amount of elution fluorine of the obtained hydrophilized fine particles 26, 29 and 30 was measured. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表8より、溶出性フッ素量は、洗浄処理により低減できることが分かる、また、洗浄処理によるフッ素低減効果は、基材粒子がスチレン系モノマーを含む場合と同様、温水洗浄、アルカリ洗浄と温水洗浄の両方を行った場合、の順に高まることが分かる。
 また、実施例24、25、30で得られた各粒子に関して、XPS(ESCA)で表面元素分析を行った結果、Naの存在が確認された。
From Table 8, it can be seen that the amount of leaching fluorine can be reduced by the washing treatment, and the fluorine reduction effect by the washing treatment is similar to that in the case where the substrate particles contain a styrene-based monomer. It turns out that it increases in order of when both are performed.
In addition, as a result of performing surface elemental analysis on each particle obtained in Examples 24, 25, and 30 by XPS (ESCA), the presence of Na was confirmed.
 本発明法は、粒子の有する優れた機械的特性等を損なうことなく、簡単な方法で粒子表面の親水化度を高めることができる有用な方法である。本発明法によって得られる親水化微粒子は、親水性が極めて高いため、水系塗料用の添加剤、あるいは導電粒子基材等の電子材料分野の各種微粒子として利用できる。 The method of the present invention is a useful method that can increase the degree of hydrophilicity of the particle surface by a simple method without impairing the excellent mechanical properties of the particle. Since the hydrophilized fine particles obtained by the method of the present invention have extremely high hydrophilicity, they can be used as various fine particles in the field of electronic materials such as additives for water-based paints or conductive particle substrates.

Claims (6)

  1.  基材粒子に、フッ素ガスと酸素原子を含む化合物のガスとを必須的に含む混合ガスを接触させる処理を行って基材粒子の表面を親水化することにより親水化微粒子を製造する方法であって、
     質量平均粒子径1000μm以下のビニル系重合体微粒子を基材粒子とし、混合ガス中のフッ素ガス濃度を0.01~1.0体積%とすることを特徴とする親水化微粒子の製造方法。
    This is a method for producing hydrophilized fine particles by hydrophilizing the surface of the base particle by subjecting the base particle to contact with a mixed gas essentially containing a fluorine gas and a compound gas containing oxygen atoms. And
    A method for producing hydrophilized fine particles, characterized in that vinyl polymer fine particles having a mass average particle diameter of 1000 μm or less are used as substrate particles, and the fluorine gas concentration in the mixed gas is 0.01 to 1.0% by volume.
  2.  上記酸素原子を含む化合物のガスが酸素ガスである請求項1に記載の親水化微粒子の製造方法。 The method for producing hydrophilized fine particles according to claim 1, wherein the gas of the compound containing oxygen atoms is oxygen gas.
  3.  上記基材粒子に上記混合ガスを接触させる処理の後に、さらに水分と接触させる処理を行うものである請求項1または2に記載の親水化微粒子の製造方法。 The method for producing hydrophilized fine particles according to claim 1 or 2, wherein after the treatment of bringing the mixed gas into contact with the base material particles, a treatment of bringing into contact with moisture is performed.
  4.  上記水分が、アルカリ性水溶液である請求項3に記載の親水化微粒子の製造方法。 The method for producing hydrophilized fine particles according to claim 3, wherein the moisture is an alkaline aqueous solution.
  5.  上記水分が、水および/または水蒸気である請求項3または4に記載の親水化微粒子の製造方法。 The method for producing hydrophilized fine particles according to claim 3 or 4, wherein the moisture is water and / or water vapor.
  6.  請求項1~5のいずれかに記載の製造方法により得られるものであることを特徴とする親水化微粒子。 A hydrophilized fine particle obtained by the production method according to any one of claims 1 to 5.
PCT/JP2009/066442 2008-09-19 2009-09-18 Method for producing hydrophilized microparticles, and hydrophilized microparticles produced by the method WO2010032851A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801365804A CN102159625B (en) 2008-09-19 2009-09-18 Method for producing hydrophilized microparticles, and hydrophilized microparticles produced by same
JP2010529826A JP5698978B2 (en) 2008-09-19 2009-09-18 Method for producing hydrophilized fine particles and hydrophilized fine particles obtained by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-241734 2008-09-19
JP2008241734 2008-09-19

Publications (1)

Publication Number Publication Date
WO2010032851A1 true WO2010032851A1 (en) 2010-03-25

Family

ID=42039669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066442 WO2010032851A1 (en) 2008-09-19 2009-09-18 Method for producing hydrophilized microparticles, and hydrophilized microparticles produced by the method

Country Status (5)

Country Link
JP (1) JP5698978B2 (en)
KR (1) KR20110069785A (en)
CN (1) CN102159625B (en)
TW (1) TWI464186B (en)
WO (1) WO2010032851A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046679A1 (en) * 2010-10-05 2012-04-12 東洋炭素株式会社 Method for producing hydrophilized microparticles
JP2014211429A (en) * 2013-04-03 2014-11-13 日精株式会社 Capillary blood-collection device
JP6072259B2 (en) * 2013-08-09 2017-02-01 株式会社日本触媒 Surface-coated inorganic particles and method for producing the same, surface-coating agent, and method for producing hydraulic composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6993975B2 (en) 2015-12-30 2022-01-14 サイテック インダストリーズ インコーポレイテッド Surface-treated polymer particles, slurries containing the particles, and their use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109171A (en) * 1983-11-16 1985-06-14 Sanyo Electric Co Ltd Separator for battery
JPH04318041A (en) * 1991-04-17 1992-11-09 Onoda Cement Co Ltd Method for treating surface of filler for composite material
JPH07173310A (en) * 1993-12-21 1995-07-11 Diafoil Co Ltd Hard coat film and its production
JPH08224451A (en) * 1995-02-21 1996-09-03 Mitsubishi Chem Corp Production of porous high-molecular membrane
JP2005105129A (en) * 2003-09-30 2005-04-21 Inoac Corp Open cell foam having polar liquid-affinitive surface, polar liquid supplier, its manufacturing method and fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659308B2 (en) * 2001-09-28 2011-03-30 日東電工株式会社 Porous film
CN1942545B (en) * 2004-04-12 2010-12-01 大金工业株式会社 Anti-fouling coating composition
JP4318041B2 (en) * 2005-01-11 2009-08-19 清水建設株式会社 Tower structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109171A (en) * 1983-11-16 1985-06-14 Sanyo Electric Co Ltd Separator for battery
JPH04318041A (en) * 1991-04-17 1992-11-09 Onoda Cement Co Ltd Method for treating surface of filler for composite material
JPH07173310A (en) * 1993-12-21 1995-07-11 Diafoil Co Ltd Hard coat film and its production
JPH08224451A (en) * 1995-02-21 1996-09-03 Mitsubishi Chem Corp Production of porous high-molecular membrane
JP2005105129A (en) * 2003-09-30 2005-04-21 Inoac Corp Open cell foam having polar liquid-affinitive surface, polar liquid supplier, its manufacturing method and fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046679A1 (en) * 2010-10-05 2012-04-12 東洋炭素株式会社 Method for producing hydrophilized microparticles
CN103154099A (en) * 2010-10-05 2013-06-12 东洋炭素株式会社 Method for producing hydrophilized microparticles
JP5629779B2 (en) * 2010-10-05 2014-11-26 東洋炭素株式会社 Method for producing hydrophilized fine particles
KR101509633B1 (en) * 2010-10-05 2015-04-07 토요 탄소 가부시키가이샤 Method for producing hydrophilized microparticles
JP2014211429A (en) * 2013-04-03 2014-11-13 日精株式会社 Capillary blood-collection device
JP6072259B2 (en) * 2013-08-09 2017-02-01 株式会社日本触媒 Surface-coated inorganic particles and method for producing the same, surface-coating agent, and method for producing hydraulic composition

Also Published As

Publication number Publication date
CN102159625B (en) 2013-12-11
KR20110069785A (en) 2011-06-23
TWI464186B (en) 2014-12-11
CN102159625A (en) 2011-08-17
JP5698978B2 (en) 2015-04-08
TW201026726A (en) 2010-07-16
JPWO2010032851A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5539887B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5634031B2 (en) POLYMER PARTICLE AND POLYMER PARTICLE-CONTAINING COMPOSITION USING THE SAME
JP5000613B2 (en) Organic particle-containing composition
JP7128250B2 (en) Method for producing silica particle dispersion and silica particle-containing resin composition
EP2657274A1 (en) Hollow particles, process for producing the hollow particles, and use of the hollow particles
JP5427437B2 (en) Polymer fine particles, production method thereof, conductive fine particles, and anisotropic conductive material
JP5698978B2 (en) Method for producing hydrophilized fine particles and hydrophilized fine particles obtained by the method
JP5559555B2 (en) Polymer fine particles and uses thereof
JP2013139506A (en) Method for manufacturing core-shell type particle
JP6116818B2 (en) POLYMER PARTICLE AND POLYMER PARTICLE-CONTAINING COMPOSITION
JP5860689B2 (en) Organic particles for light diffusion media
JP5607407B2 (en) Organic-inorganic composite particles, coating composition, and production method thereof
JP5450316B2 (en) POLYMER PARTICLE AND POLYMER PARTICLE-CONTAINING COMPOSITION USING THE SAME
JP2011173965A (en) Polymer fine particle and manufacturing method of the same, and application thereof
JP2010072492A (en) Spacer and liquid crystal display plate
JP5704740B2 (en) Method for producing organic-inorganic composite particles
JP5629779B2 (en) Method for producing hydrophilized fine particles
JP2004307644A (en) Additive for optical resin and optical resin composition
Zungu Effect of monodispersed silica nanoparticles on colloid stability and adhesive properties of polyvinyl acetate-co-butyl acrylate processed through soapless emulsion polymerisation for coatings
JP7464385B2 (en) Hollow resin particles and method for producing same
JP5543722B2 (en) Method for producing polyorganosiloxane particles and organic-inorganic composite particles
JP6715080B2 (en) Polymer particles
JP2020142944A (en) Coated hollow particle and method for producing the same
JP2020142943A (en) Multilayer hollow particle, dispersion liquid containing the same, composite material and resin sheet, and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136580.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529826

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117006471

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814695

Country of ref document: EP

Kind code of ref document: A1