WO2010032715A1 - Polishing pad - Google Patents

Polishing pad Download PDF

Info

Publication number
WO2010032715A1
WO2010032715A1 PCT/JP2009/066046 JP2009066046W WO2010032715A1 WO 2010032715 A1 WO2010032715 A1 WO 2010032715A1 JP 2009066046 W JP2009066046 W JP 2009066046W WO 2010032715 A1 WO2010032715 A1 WO 2010032715A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
depth
layer
groove
polishing pad
Prior art date
Application number
PCT/JP2009/066046
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 充
菊池 博文
知大 岡本
晋哉 加藤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2010032715A1 publication Critical patent/WO2010032715A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved

Definitions

  • the present invention relates to a polishing pad useful for polishing a semiconductor wafer or the like.
  • a polishing pad used when mirror-finishing a semiconductor wafer or flattening unevenness of an insulating film or a conductor film at the time of manufacturing a semiconductor device a relatively soft non-woven fabric impregnated with polyurethane resin is used.
  • a polishing pad or a polishing pad made of foamed polyurethane is used (see, for example, Patent Documents 1 to 4).
  • the polishing rate of convex portions that are portions to be polished is increased, while the polishing rate of concave portions that are portions that should not be polished is reduced.
  • a relatively hard polishing pad made of polyurethane foam is employed.
  • the polishing side surface of this polishing pad is supplied with a uniform and sufficient supply of polishing slurry to the surface of the wafer to be polished, discharge of polishing debris that causes scratches on the wafer surface, and adsorption of the polishing pad Grooves and holes are formed for the purpose of preventing wafer breakage (see, for example, Patent Documents 2 to 4 above).
  • polishing pad for semiconductor device manufacturing use even if a large number of wafers are polished for a long time, the change in polishing performance is small and long life is required from the viewpoint of cost reduction, quality control, etc.
  • polishing pads With conventional polishing pads, the polishing performance tends to change when polishing is continued for a long time, and there is room for further improvement in order to extend the life of the polishing pad.
  • the present invention provides a high polishing rate, excellent polishing uniformity and flattening performance, excellent polishing performance such as less scratching, and small change in polishing performance even if polishing is continued for a long time.
  • An object is to provide a long-life polishing pad.
  • the present inventors have conducted intensive studies. As a result, in a polishing pad having a polishing layer in which grooves and holes are formed, it has been found that the above object can be achieved by making the depth of the grooves larger than the depth of the holes, and further studies are made based on the findings.
  • the present invention has been completed.
  • the opening area per one of the holes is 0.05 mm 2 or more,
  • [6] A total volume (a) of grooves opened on the polishing side surface of the polishing layer and a total volume (b) of holes opened on the polishing side surface of the polishing layer and having an opening area of 0.05 mm 2 or more.
  • [9] A method for polishing a semiconductor wafer using the polishing pad of any one of [1] to [8] above, [10] A method of manufacturing a semiconductor device using the polishing pad according to any one of [1] to [8].
  • a high polishing rate can be obtained, excellent polishing uniformity and planarization performance, excellent polishing performance such as less scratching, and even if polishing is continued for a long time, the polishing performance changes.
  • a small long-life polishing pad can be obtained.
  • (A) is a schematic diagram which shows the lattice-like groove
  • (b) is a schematic diagram which shows the cross-sectional shape of a groove
  • the polishing pad of the present invention has at least a polishing layer, and further has a groove opened on the polishing side surface of the polishing layer and a hole opened on the polishing side surface of the polishing layer.
  • a groove is provided on the polishing side surface of the polishing layer as in a conventional polishing pad, for example, a closed groove shape having no discharge path to the outside of the polishing pad, such as a concentric groove, has a low polishing dust discharging property. Therefore, scratches are likely to occur on the wafer surface.
  • polishing slurry is easily discharged, but polishing slurry is also easily discharged, so the polishing slurry is evenly and sufficiently supplied to the wafer surface. It becomes difficult to increase the supply amount of the polishing slurry, and as a result, the running cost tends to increase.
  • the polishing pad of the present invention can improve the polishing performance such as high polishing rate, excellent polishing uniformity, low scratch and the like in a well-balanced manner by having both grooves and holes opened on the polishing side surface of the polishing layer. .
  • the polishing pad of the present invention must satisfy the following (1), where X is the depth of the groove, Y is the depth of the hole, and Z is the thickness of the polishing layer. is there. (1) Z>X> Y (In the formula, X represents the depth of the groove, Y represents the depth of the hole, and Z represents the thickness of the polishing layer.)
  • X represents the depth of the groove
  • Y represents the depth of the hole
  • Z represents the thickness of the polishing layer.
  • the groove means that the distance (A) between the two most distant points of the continuous openings is 5 mm or more, and [the area of the opening / the area of the circle with the diameter A] is 0.4. It is the following opening, and the hole means an opening other than the groove.
  • the depth of the groove is the distance from the polishing side surface (plane) to the deepest part of the groove, and the depth of the hole is the distance from the polishing side surface (plane) to the deepest part of the hole.
  • the polishing layer is made of a hard material and has a non-foamed structure, processing is difficult compared to foamed resin, so when forming the through hole, burrs are generated or deformed around the through hole.
  • Cheap Even with non-through holes, if the thickness of the polishing layer at the bottom of the hole is reduced to form a deep hole, the back side of the polishing layer tends to swell at the hole when the hole is formed by cutting, etc. Unevenness is likely to occur, and both polishing uniformity and planarization performance tend to decrease.
  • the back side of the polishing layer is more easily deformed at the hole portion than the groove, so that the depth of the hole needs to be smaller than the depth of the groove.
  • channel and the depth of a hole satisfy
  • the depth of the groove and the thickness of the polishing layer preferably satisfy the following formulas (3) to (5).
  • X represents the depth of the groove
  • Z represents the thickness of the polishing layer
  • the unit of length is mm.
  • the depth of the groove is more preferably 0.55 mm or more, and further preferably 0.6 mm or more. Further, when the relationship of the above formula (4) is satisfied, that is, when the depth of the groove is 50 to 90% of the thickness of the polishing layer, or when the cushion layer is laminated on the lower layer, the polishing uniformity and flattening are achieved. It is preferable because performance can be made compatible. When the depth of the groove is less than 50% of the thickness of the polishing layer, the polishing uniformity tends to be lowered and the life of the polishing pad tends to be shortened. On the contrary, when the depth of the groove is larger than 90% of the thickness of the polishing layer, the planarization performance tends to be lowered.
  • the depth of the groove is 55 to 85% of the thickness of the polishing layer. Furthermore, when the relationship of the above formula (5) is satisfied, that is, when the difference between the thickness of the polishing layer and the depth of the groove is 0.2 mm or more, the thickness of the polishing layer at the bottom of the groove is secured to some extent. Even when a cushion layer is laminated on the lower layer, it is easy to ensure flattening performance by suppressing excessive deformation of the polishing layer.
  • the difference between the thickness of the polishing layer and the depth of the groove is more preferably 0.25 mm or more.
  • the hole depth preferably satisfies the following formulas (6) to (8).
  • Y represents the depth of the hole
  • Z represents the thickness of the polishing layer
  • the unit of length is mm.
  • the depth of the hole is more preferably 0.3 mm or more, and further preferably 0.4 mm or more.
  • the hole depth is 30 to 85% of the thickness of the polishing layer.
  • the life of the polishing pad tends to be shortened.
  • the depth of the hole is larger than 85% of the thickness of the polishing layer, the discharging property of the polishing debris from the hole becomes low, and the polishing debris accumulated in the hole comes out again with the abrasion of the polishing pad, There is a tendency for the occurrence of scratches to increase.
  • the depth of the hole is more preferably 35 to 80% of the thickness of the polishing layer. Furthermore, when the hole is formed by cutting or the like, it can be suppressed that the back side of the polishing layer swells at the bottom of the hole and unevenness in thickness occurs in the polishing layer, resulting in a decrease in polishing uniformity and planarization performance. From the viewpoint, it is preferable that the relational expression (8) is satisfied, that is, the difference between the thickness of the polishing layer and the depth of the hole is 0.4 mm or more. The thickness of the polishing layer and the depth of the hole More preferably, the difference is 0.45 mm or more.
  • the shape (pattern) of the groove opened on the polishing side surface of the polishing layer a known shape such as a lattice shape, a concentric circle shape, a spiral shape, a hexagonal shape, a triangular shape, or a combination thereof can be adopted. From the standpoint that scraps can be easily discharged out of the polishing pad and the ability to suppress the generation of scratches on the wafer surface is high, lattice-like grooves are preferable. Further, the cross-sectional shape of the groove is preferably rectangular because the groove width does not change even when the polishing pad is worn and the polishing performance hardly changes.
  • the width of the groove is preferably in the range of 0.1 to 5 mm, since it is excellent in the balance between polishing dust discharge and polishing slurry retention.
  • the width of the groove is smaller than 0.1 mm, the polishing dust discharge property is lowered and scratches tend to be generated on the wafer surface.
  • the width of the groove is larger than 5 mm, the polishing slurry tends to be excessively discharged outside the polishing pad, and it tends to be difficult to supply the polishing slurry uniformly and sufficiently to the wafer surface. As a result, it is necessary to increase the supply amount of the polishing slurry, and the running cost tends to increase.
  • the width of the groove is more preferably in the range of 0.15 to 4 mm, and still more preferably in the range of 0.2 to 3 mm. Further, since the groove pitch is in the range of 1 to 20 mm, the polishing slurry can be supplied uniformly and sufficiently to the wafer surface, and the polishing pad can be further improved in polishing rate and polishing uniformity. preferable.
  • the pitch of the grooves is more preferably in the range of 2 to 18 mm, and further preferably in the range of 3 to 16 mm.
  • the shape of the hole opened on the polishing side surface of the polishing pad is not particularly limited, and the shape of the opening on the polishing side surface of the polishing layer may be any of a circle, a triangle, a quadrangle, a hexagon, and the like. Further, the cross-sectional shape of the hole that appears when cut perpendicular to the polishing side surface of the polishing layer may be any of a rectangle, a trapezoid, a triangle, and the like. Among these, the hole processing is easy, and even if the polishing pad is worn, the hole area in the opening does not change and the polishing performance hardly changes.
  • a hole having a circular opening shape on the polishing side surface and a rectangular cross-sectional shape that appears when the polishing layer is cut perpendicularly to the polishing side surface is preferable.
  • the distribution of the holes formed on the polishing side surface of the polishing pad is not particularly limited, but it is preferable that the holes are uniformly distributed on the polishing side surface, for example, when the grooves are in a lattice shape. And one having one or more holes formed in each lattice.
  • the area of the opening of the hole on the polishing side surface of the polishing layer is such that the polishing slurry can be supplied uniformly and sufficiently to the wafer surface, and from the viewpoint of easy hole processing, 0.05 mm 2 or more, preferably within a range of 0.1 to 20 mm 2 , more preferably within a range of 0.3 to 15 mm 2 , and within a range of 0.5 to 12 mm 2. More preferably it is.
  • the individual holes opened on the polishing side surface of the polishing layer may all have the same opening shape, cross-sectional shape and opening area, but some or all of them may have the same shape. They may be different from each other.
  • the ratio (a / b) between the total volume (a) of the grooves opening on the polishing side surface of the polishing layer and the total volume (b) of the holes opening on the polishing side surface of the polishing layer is 50/50 to 90 / It is preferable that it is within the range of 10 because it is particularly excellent in the balance between the holding property of the polishing slurry, the uniform supply property to the wafer surface, and the discharge property of polishing waste.
  • the ratio (a / b) is smaller than 50/50, the uniform supply of polishing slurry to the wafer surface and the discharge of polishing debris are reduced, the polishing rate and polishing uniformity are reduced, and scratches are formed on the wafer surface. It tends to occur easily.
  • the ratio (a / b) is greater than 90/10, the retention of the polishing slurry tends to decrease, and the polishing rate and polishing uniformity tend to decrease.
  • the ratio (a / b) is more preferably in the range of 55/45 to 88/12, and still more preferably in the range of 60/40 to 86/14.
  • the thickness of the polishing layer is preferably in the range of 0.7 to 1.6 mm, and preferably in the range of 0.75 to 1.5 mm. Is more preferable, and a range of 0.8 to 1.4 mm is even more preferable. If the thickness of the polishing layer is less than 0.7 mm, the polishing layer may be affected by the hardness of the surface plate of the polishing apparatus or the hardness of the cushion layer when the cushion layer is laminated on the lower layer. There is a tendency that the polishing performance is not stable with wear.
  • the thickness of the polishing layer is larger than 1.6 mm, the bending rigidity of the polishing pad will increase, and even if a cushion layer is laminated on the lower layer, the polishing layer will not be easily deformed, resulting in a decrease in polishing uniformity. There is.
  • the polishing pad of the present invention has a higher hardness of the polishing layer and exhibits more excellent planarization performance, and the abrasive grains in the polishing slurry are aggregated in the pores due to the absence of pores exposed on the side surfaces of the grooves and holes.
  • the polishing layer preferably has a non-foamed structure from the standpoint that there is no risk of adhesion and generation of scratches on the wafer surface.
  • the D hardness of the polishing layer is preferably in the range of 50 to 80, more preferably in the range of 53 to 77, from the viewpoint of improving the planarization performance and suppressing the occurrence of scratches on the wafer surface. Preferably, it is in the range of 56 to 74. By measuring the D hardness of the material constituting the polishing layer, it can be regarded as the D hardness of the polishing layer.
  • the material constituting the polishing layer of the polishing pad of the present invention is not particularly limited, and a known synthetic or natural polymer may be used alone or in combination of two or more.
  • the polymer used as the material for the polishing layer include polyethylene, polypropylene, polybutadiene, ethylene-vinyl acetate copolymer, butyral resin, polystyrene, polyvinyl chloride, acrylic resin, epoxy resin, polyurethane, polyester, polyamide, etc. Is mentioned.
  • polyurethane is preferable because it is excellent in flattening performance and is particularly excellent in polishing performance such that scratches hardly occur on the wafer surface, and polymer diol, organic diisocyanate and chain extender are reacted.
  • the thermoplastic polyurethane obtained by this is more preferable.
  • polymer diol examples include polyether diols such as polyethylene glycol and polytetramethylene glycol; poly (nonamethylene adipate) diol, poly (2-methyl-1,8-octamethylene adipate) diol, and poly (2- Polyester diols such as methyl-1,8-octamethylene-co-nonamethylene adipate) diol, poly (methylpentamethylene adipate) diol; poly (hexamethylene carbonate) diol, poly (hexamethylene-co-2,2-dimethyl-) And polycarbonate diols such as 1,3-propylene carbonate) diol. These polymer diols may be used alone or in combination of two or more.
  • organic diisocyanate any of organic diisocyanates conventionally used in the production of ordinary polyurethanes may be used.
  • aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,5-naphthylene diisocyanate .
  • These organic diisocyanates may be used alone or in combination of two or more.
  • chain extender you may use any of the chain extenders conventionally used for manufacture of the usual polyurethane.
  • chain extender it is preferable to use a low molecular weight compound having a molecular weight of 350 or less having two or more active hydrogen atoms capable of reacting with an isocyanate group, for example, ethylene glycol, diethylene glycol, 1,2-propanediol.
  • the thermoplastic polyurethane can be produced by a known method such as a prepolymer method or a one-shot method using the above polymer diol, organic diisocyanate and chain extender as raw materials. It is preferably produced by melt-kneading the above-mentioned polymer diol, organic diisocyanate and chain extender at a predetermined ratio in the absence, and is produced by a continuous melt polymerization method using a multi-screw extruder. It is more preferable.
  • each component is appropriately determined in consideration of the physical properties to be imparted to the polishing layer made of thermoplastic polyurethane, such as abrasion resistance, but 1 mol of active hydrogen atoms contained in the polymer diol and the chain extender.
  • the ratio is less than 0.95 mol, the mechanical strength and abrasion resistance of the resulting polishing layer made of thermoplastic polyurethane tend to decrease, and when it exceeds 1.3 mol, the productivity of thermoplastic polyurethane and Storage stability tends to decrease.
  • thermoplastic polyurethane From the viewpoint of mechanical strength and abrasion resistance of the resulting polishing layer and productivity and storage stability of thermoplastic polyurethane, it is contained in organic diisocyanate with respect to 1 mol of active hydrogen atoms contained in polymer diol and chain extender. It is more preferable to use each component at a ratio of 0.96 to 1.1 mol of the isocyanate group, and it is even more preferable to use each component at a ratio of 0.97 to 1.05 mol.
  • the polishing layer may be formed from only the above-described polymer, but may contain other components other than the above-described polymer as long as the resulting polishing pad exhibits the effects of the present invention.
  • examples of such other components include a crosslinking agent, a filler, a crosslinking accelerator, a crosslinking aid, a softening agent, a tackifier, an anti-aging agent, a foaming agent, a processing aid, an adhesion promoter, and a crystal nucleus.
  • Agent heat stabilizer, weather stabilizer, antistatic agent, colorant, lubricant, flame retardant, flame retardant aid (antimony oxide, etc.), blooming inhibitor, mold release agent, thickener, antioxidant, conductive agent Etc.
  • the content of the other components in the polishing layer is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less.
  • the method for producing the polishing layer is not particularly limited, and one or two or more kinds of polymers or polymer compositions described above, or a polymer composition in which the above-described other components are further blended as necessary.
  • seat which consists of a thing can be manufactured and a polishing layer can be manufactured from the said sheet
  • the sheet can be produced by extruding the polymer or polymer composition with an extruder. Specifically, for example, using an extruder equipped with a T-die, the polymer or polymer composition can be produced. A method of melt-extruding a product can be employed. As an extruder, a single screw extruder, a twin screw extruder, etc. can be used.
  • the sheet can also be produced by previously producing a block made of the polymer or polymer composition described above and slicing it. If necessary, the obtained sheet can be processed into a desired size and shape by cutting, punching, cutting, or the like, or processed to a desired thickness by grinding or the like to form a polishing layer.
  • the formation method of the groove opened on the polishing side surface of the polishing layer is not particularly limited. Specifically, a method of forming a groove by cutting the above sheet; contacting the above sheet with a heated mold or metal wire, or irradiating a beam such as a laser beam, A method of forming a groove by dissolving, decomposing or volatilizing the part; using a mold having a convex part for forming the groove, and then pouring a melt of the polymer or polymer composition into the mold Examples of the method include a method of producing a sheet in which grooves are formed in advance by solidifying or pouring and curing an uncured polymer raw material.
  • the method for forming the hole opened on the polishing side surface of the polishing layer is not particularly limited. Specifically, a method of forming the sheet by cutting using a mechanical means such as a drill; the sheet is brought into contact with a heated mold or metal wire, or irradiated with a light beam such as a laser beam. For example, a method of forming a hole by dissolving, decomposing, or volatilizing the part can be used. Among these, since the processing accuracy is good and the material constituting the polishing layer is not easily deteriorated by heat, it is preferably formed by cutting.
  • the polishing pad of the present invention may have a single layer structure consisting only of a polishing layer having the above-described grooves and holes on the polishing side surface, but in order to improve polishing uniformity within the wafer surface, It is preferable to laminate a cushion layer on the surface opposite to the polishing side surface. Lamination of the cushion layer can be performed using a known pressure-sensitive adhesive or adhesive.
  • the cushion layer preferably has an A hardness of 30 to 90.
  • the material of the cushion layer is not particularly limited. For example, an elastomer having a non-foamed structure or a foamed structure, or a nonwoven fabric impregnated with a resin can be used.
  • the polishing pad of the present invention can be used for chemical mechanical polishing together with a known polishing slurry.
  • the polishing slurry contains, for example, a liquid medium such as water or oil; an abrasive such as silica, alumina, cerium oxide, zirconium oxide, or silicon carbide; a base, an acid, an oxidizing agent, a surfactant, a chelating agent, or the like. ing.
  • a liquid medium such as water or oil
  • an abrasive such as silica, alumina, cerium oxide, zirconium oxide, or silicon carbide
  • a base an acid, an oxidizing agent, a surfactant, a chelating agent, or the like.
  • Chemical mechanical polishing can be performed by using a known chemical mechanical polishing apparatus and bringing the surface to be polished and the polishing pad into contact with each other at a constant speed under a pressure for a certain period of time through a polishing slurry. It is preferable to condition the polishing pad using a dresser such as a diamond dresser before or during polishing.
  • the article to be polished is not particularly limited and includes, for example, quartz, silicon, glass, optical substrate, electronic circuit board, multilayer wiring board, hard disk, semiconductor wafer, etc.
  • the polishing pad of the present invention is a semiconductor wafer. Can be preferably used for polishing.
  • the polishing pad of the invention has an excellent polishing performance and has a long life, the polishing pad can be preferably used for the purpose of polishing such a semiconductor wafer.
  • polishing performance The polishing pad was installed in a polishing apparatus “MIRRA” manufactured by Applied Materials, and a diamond dresser (diamond count # 200) manufactured by Mitsubishi Materials Corporation was used. While flowing distilled water at a rate of 200 mL / min, the dresser rotation speed was 100 rpm, the platen The surface of the polishing pad was ground for 30 minutes at a rotation speed of 50 rpm (hereinafter referred to as “conditioning”).
  • One silicon wafer was polished for 60 seconds under the same conditions as described above.
  • Nonuniformity (%) ( ⁇ / R) ⁇ 100 (7) (However, ⁇ : Standard deviation of polishing rate at 49 points, R: Average value of polishing rate at 49 points.)
  • the number of defects having a size of 0.2 ⁇ m or more was measured using a defect inspection apparatus “ComPLUS” manufactured by Applied Materials Co., Ltd., on the wafers having PETEOS films polished on the ninth and nineteenth surfaces. Further, with respect to the wafers having the HDP oxide films with the patterns polished on the 10th and 20th sheets, the respective polishing rates were obtained from the amount of change in the oxide film thickness at the convex part and the concave part at the center of the wafer. The higher the polishing rate of the convex portion and the lower the polishing rate of the concave portion, the more preferable because the planarization of the wafer surface can be achieved in a short time and with a smaller polishing amount.
  • thermoplastic polyurethane melt was continuously extruded into water as strands, and then chopped with a pelletizer to obtain pellets.
  • the pellets were dehumidified and dried at 70 ° C. for 20 hours to produce a thermoplastic polyurethane.
  • Example 1 The thermoplastic polyurethane obtained in Production Example 1 was loaded into a single screw extruder, extruded from a T-die to form a 2 mm thick sheet, and then the surface of the obtained sheet was ground to a thickness of 0.9 mm A uniform sheet. The D hardness of this sheet was 63. Next, this sheet was cut out into a circular shape having a diameter of 51 cm, and a lattice-like groove (cross section) having a groove width of 1.0 mm, a groove depth of 0.65 mm, and a groove pitch (vertical and horizontal pitch) of 7.0 mm on one surface thereof.
  • a hole having a diameter of 2.5 mm and a depth of 0.45 mm was formed by cutting using a drill in the center of each lattice of the lattice-shaped grooves.
  • a foamed polyurethane sheet (A hardness 48) having a thickness of 1.0 mm was bonded to the surface opposite to the surface on which the grooves and holes were formed with an adhesive tape to prepare a polishing pad having a laminated structure.
  • the structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
  • Example 2 After obtaining a circular sheet having a thickness of 1.3 mm and a diameter of 51 cm in the same manner as in Example 1, a groove width of 0.5 mm, a groove depth of 0.9 mm, and a groove pitch (longitudinal and lateral) were formed on one surface thereof. Pitch) A 4.0 mm grid-like groove (cross-sectional shape is rectangular) is formed, and a hole with a diameter of 1.5 mm and a depth of 0.75 mm is cut using a drill in the center of each grid of the grid-like groove. Formed by.
  • a foamed polyurethane sheet (A hardness 48) having a thickness of 1.0 mm was bonded to the surface opposite to the surface on which the grooves and holes were formed with an adhesive tape to prepare a polishing pad having a laminated structure.
  • the structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
  • Table 2 As a result of evaluating the polishing performance by the above-mentioned method, as shown in Table 2 below, the polishing rate, the polishing uniformity and the flattening performance are excellent, the number of defects is small, and the change in the polishing performance when used for a long time is also observed. It was small.
  • Example 3 After obtaining a circular sheet having a thickness of 1.1 mm and a diameter of 51 cm in the same manner as in Example 1, a groove width of 1.0 mm, a groove depth of 0.8 mm, and a groove pitch (longitudinal and lateral) were formed on one surface thereof.
  • (Pitch) 12.0 mm grid-like grooves (cross-sectional shape is rectangular), and for each grid of the grid-like grooves, four intermediate points of the line segment connecting the center of the grid and the corners of the four corners and the grid
  • a hole having a diameter of 2.0 mm and a depth of 0.6 mm was formed by cutting using a drill at a total of five locations.
  • a foamed polyurethane sheet (A hardness 48) having a thickness of 1.0 mm was bonded to the surface opposite to the surface on which the grooves and holes were formed with an adhesive tape to prepare a polishing pad having a laminated structure.
  • the structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
  • Table 2 As a result of evaluating the polishing performance by the above-mentioned method, as shown in Table 2 below, the polishing rate, the polishing uniformity and the flattening performance are excellent, the number of defects is small, and the change in the polishing performance when used for a long time is also observed. It was small.
  • Example 1 a polishing pad having a laminated structure was produced in the same manner as in Example 1 except that the hole depth was 0.65 mm.
  • the structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
  • Table 2 As a result of evaluating the polishing performance by the above-described method, as shown in Table 2 below, the polishing rate, the polishing uniformity, and the planarization performance were inferior.
  • Example 2 a polishing pad having a laminated structure was produced in the same manner as in Example 1 except that the depth of the groove was 0.45 mm.
  • the structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
  • Table 2 As a result of evaluating the polishing performance by the above-described method, as shown in Table 2 below, the initial polishing rate, the polishing uniformity and the flattening performance were excellent, and the number of defects was small, but the polishing rate and the polishing were used when used for a long time. The uniformity decreased, the number of defects increased, and the polishing performance was insufficiently stable.
  • Example 2 a polishing pad having a laminated structure was produced in the same manner as in Example 2 except that the hole was a through hole (depth was 1.3 mm).
  • the structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
  • Table 2 As a result of evaluating the polishing performance by the above-described method, as shown in Table 2 below, the initial polishing rate, the polishing uniformity and the flattening performance were excellent, and the number of defects was small, but the polishing rate and the polishing were used when used for a long time. The uniformity decreased and the stability of the polishing performance was insufficient.
  • Example 2 a polishing pad having a laminated structure was produced in the same manner as in Example 2 except that no hole was formed.
  • the structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
  • Table 2 As a result of evaluating the polishing performance by the above method, as shown in Table 2 below, the polishing rate and the polishing uniformity were inferior, and the number of defects was slightly increased.
  • Example 5 a polishing pad having a laminated structure was prepared in the same manner as in Example 3 except that the groove width was 0.5 mm, the groove depth was 0.3 mm, and the hole depth was 0.3 mm. did.
  • the structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
  • Table 2 As a result of evaluating the polishing performance by the above-described method, as shown in Table 2 below, the polishing rate and the polishing uniformity were inferior, and the number of defects was increased. Moreover, the change of the polishing rate and polishing uniformity at the time of long-term use was large, and the stability of the polishing performance was insufficient.
  • a high polishing rate can be obtained, excellent polishing uniformity and planarization performance, excellent polishing performance such as less scratching, and even if polishing is continued for a long time, the polishing performance changes. Since a small and long-life polishing pad is provided, the polishing pad is particularly useful when chemically insulating an insulating film such as an oxide film or a metal film formed on a semiconductor wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Disclosed is a polishing pad comprising at least a polishing layer.  The polishing pad is characterized in that the polishing pad has grooves open to the surface of the polishing side of the polishing layer and holes open to the surface of the polishing side of the polishing layer, the area of the opening per hole is not less than 0.05 mm2, and the depth of the grooves, the depth of the holes, and the thickness of the polishing layer satisfy formula (1): (1) Z>X>Y wherein X represents the depth of the grooves; Y represents the depth of the holes; and Z represents the thickness of the polishing layer. The polishing pad is particularly useful, for example, for chemimechanical polishing of, for example, an insulating film such as an oxide film or a metal film formed on a semiconductor wafer, can realize a high polishing speed, high polishing evenness and flattening properties, is less likely to cause scratching, and causes no significant change in polishing properties even when the polishing is continued for a long period of time.

Description

研磨パッドPolishing pad
 本発明は、半導体ウェハ等を研磨する際に有用な研磨パッドに関する。 The present invention relates to a polishing pad useful for polishing a semiconductor wafer or the like.
 従来、半導体ウェハを鏡面加工したり、半導体デバイス製造時に絶縁膜や導電体膜の凹凸を平坦化加工したりする際に用いられる研磨パッドとしては、不織布にポリウレタン樹脂を含浸させた比較的軟質の研磨パッドや、発泡ポリウレタンからなる研磨パッドが使用されている(例えば、特許文献1~4等を参照)。
 このうち、半導体デバイス製造用途においては、研磨されるべき部分である凸部の研磨速度が大きくなる一方、研磨されるべきでない部分である凹部の研磨速度が小さくなる、いわゆる平坦化性能に対する高い要求に応える必要があり、この要求性能を達成するために、一般的には、発泡ポリウレタンからなる比較的硬質の研磨パッドが採用されている。
 通常、この研磨パッドの研磨側表面には、研磨されるウェハ表面への研磨スラリーの均一かつ十分な供給や、ウェハ表面のスクラッチ発生の原因となる研磨屑の排出、さらには研磨パッドの吸着によるウェハ破損の防止などを目的として、溝や穴が形成されている(例えば、上記特許文献2~4等を参照)。
Conventionally, as a polishing pad used when mirror-finishing a semiconductor wafer or flattening unevenness of an insulating film or a conductor film at the time of manufacturing a semiconductor device, a relatively soft non-woven fabric impregnated with polyurethane resin is used. A polishing pad or a polishing pad made of foamed polyurethane is used (see, for example, Patent Documents 1 to 4).
Of these, in semiconductor device manufacturing applications, the polishing rate of convex portions that are portions to be polished is increased, while the polishing rate of concave portions that are portions that should not be polished is reduced. In order to achieve this required performance, generally, a relatively hard polishing pad made of polyurethane foam is employed.
Normally, the polishing side surface of this polishing pad is supplied with a uniform and sufficient supply of polishing slurry to the surface of the wafer to be polished, discharge of polishing debris that causes scratches on the wafer surface, and adsorption of the polishing pad Grooves and holes are formed for the purpose of preventing wafer breakage (see, for example, Patent Documents 2 to 4 above).
 しかしながら、研磨パッドの表面に溝あるいは穴を単独で形成した場合には、上記の目的を全て満たすことが困難である。
 すなわち、研磨パッド表面に溝のみを形成した場合、一般的に採用されている同心円状の溝では、研磨屑の排出性が低いためにウェハ表面にスクラッチが発生しやすい。また、スクラッチの発生を抑制するために低圧高速回転の条件で研磨を行うとパッド/ウェハ間が流体潤滑となりやすく研磨速度が低下したり、ウェハの各地点において研磨速度にバラツキがない性能である研磨均一性が低下したりする傾向がある。また、格子状の溝では、研磨屑の排出性は良好なものの研磨スラリーも過度に排出されやすいため、ウェハ表面に研磨スラリーを均一かつ十分に供給することが困難になり、研磨スラリーの供給量を増やす必要が生じ、その結果、ランニングコストが高くなりやすい。
 一方、研磨パッド表面に穴のみを形成した場合は、同心円状の溝の場合と同様に、研磨屑の排出性が低いためウェハ表面にスクラッチが発生しやすい。その上、研磨パッド上での研磨スラリーの流動性が劣るため、ウェハ表面への研磨スラリーの供給性が低下して研磨速度や研磨均一性が低下しやすい。上記の問題を解決するため、溝と穴を併用することも行われているが(上記特許文献2および4を参照)、上記した課題の全てを満足できていない。
However, when grooves or holes are formed alone on the surface of the polishing pad, it is difficult to satisfy all of the above objects.
That is, when only the grooves are formed on the surface of the polishing pad, the concentric grooves that are generally employed tend to cause scratches on the wafer surface because of the low dischargeability of polishing debris. Also, if polishing is performed under conditions of low-pressure and high-speed rotation to suppress the generation of scratches, the pad / wafer is easily lubricated with fluid, and the polishing rate is reduced, or the polishing rate does not vary at various points on the wafer. There is a tendency for polishing uniformity to decrease. In addition, in the grid-like grooves, although the polishing dust is well discharged, the polishing slurry tends to be excessively discharged, and it becomes difficult to supply the polishing slurry uniformly and sufficiently to the wafer surface. As a result, the running cost tends to increase.
On the other hand, when only a hole is formed on the surface of the polishing pad, as in the case of the concentric groove, scratching is likely to occur on the wafer surface because of low polishing dust discharge. In addition, since the fluidity of the polishing slurry on the polishing pad is inferior, the supply property of the polishing slurry to the wafer surface is lowered, and the polishing rate and the polishing uniformity are likely to be lowered. In order to solve the above problem, a groove and a hole are also used in combination (see Patent Documents 2 and 4), but all of the above-mentioned problems cannot be satisfied.
 また、半導体デバイス製造用途の研磨パッドにおいては、多数のウェハを長時間に亘り研磨しても研磨性能の変化が小さく長寿命であることがコスト低減、品質管理などの観点から要求されるが、従来の研磨パッドでは長時間研磨を続けた際にその研磨性能が変化しやすく、研磨パッドの長寿命化のためには、さらなる改良の余地があった。 Also, in the polishing pad for semiconductor device manufacturing use, even if a large number of wafers are polished for a long time, the change in polishing performance is small and long life is required from the viewpoint of cost reduction, quality control, etc. With conventional polishing pads, the polishing performance tends to change when polishing is continued for a long time, and there is room for further improvement in order to extend the life of the polishing pad.
特開平5-8178号公報Japanese Patent Laid-Open No. 5-8178 特開平9-117855号公報JP-A-9-117855 特開2000-178374号公報JP 2000-178374 A 特開2002-160153号公報JP 2002-160153 A
 本発明は、高い研磨速度が得られ、研磨均一性および平坦化性能に優れ、スクラッチの発生も少ないなど優れた研磨性能を有し、しかも長時間研磨を続けても研磨性能の変化が小さい長寿命の研磨パッドを提供することを目的とする。 The present invention provides a high polishing rate, excellent polishing uniformity and flattening performance, excellent polishing performance such as less scratching, and small change in polishing performance even if polishing is continued for a long time. An object is to provide a long-life polishing pad.
 上記の目的を達成すべく本発明者らは鋭意検討を重ねてきた。その結果、溝および穴が形成された研磨層を有する研磨パッドにおいて、その溝の深さを穴の深さよりも大きくすることにより上記目的を達成できることを見出し、その知見に基づいてさらに検討を重ね、本発明を完成させた。 In order to achieve the above object, the present inventors have conducted intensive studies. As a result, in a polishing pad having a polishing layer in which grooves and holes are formed, it has been found that the above object can be achieved by making the depth of the grooves larger than the depth of the holes, and further studies are made based on the findings. The present invention has been completed.
 すなわち、本発明は、
[1]少なくとも研磨層を有する研磨パッドであって、
該研磨層の研磨側表面に開口する溝と、該研磨層の研磨側表面に開口する穴を有し、
該穴の1個あたりの開口部面積が0.05mm以上であり、
該溝の深さ、該穴の深さ及び該研磨層の厚みが下記式(1)を満たすことを特徴とする研磨パッド、
  (1)Z>X>Y
(式中、Xは溝の深さを表わし、Yは穴の深さを表わし、Zは研磨層の厚みを表わす。)
[2]溝の深さと穴の深さが、下記式(2)を満たす上記〔1〕の研磨パッド、
  (2)X-Y≧0.1
(式中、Xは溝の深さを表わし、Yは穴の深さを表わし、長さの単位はmmである。)
[3]溝の深さが、下記式(3)~(5)を満たす上記〔1〕又は〔2〕の研磨パッド、
  (3)X≧0.5
  (4)0.50×Z≦X≦0.90×Z
  (5)Z-X≧0.2
(式中、Xは溝の深さを表わし、Zは研磨層の厚みを表わし、長さの単位はmmである。)
[4]穴の深さが、下記式(6)~(8)を満たす上記〔1〕~〔3〕のいずれかの研磨パッド、
  (6)Y≧0.2
  (7)0.30×Z≦Y≦0.85×Z
  (8)Z-Y≧0.4
(式中、Yは穴の深さを表わし、Zは研磨層の厚みを表わし、長さの単位はmmである。)

[5]溝の形状が格子状である上記[1]~[4]のいずれかの研磨パッド、
[6]研磨層の研磨側表面に開口する溝の総容積(a)と、研磨層の研磨側表面に開口し0.05mm以上の開口部面積を有する穴の総容積(b)との比率(a/b)が50/50~90/10の範囲内である上記[1]~[5]のいずれかの研磨パッド、
[7]研磨層の研磨側表面と反対側の面にクッション層が積層されている上記[1]~[6]のいずれかの研磨パッド、
[8]研磨層が無発泡構造である上記[1]~[7]のいずれかの研磨パッド、
[9]上記[1]~[8]のいずれかの研磨パッドを用いる半導体ウェハの研磨方法、
[10]上記[1]~[8]のいずれかの研磨パッドを用いる半導体デバイスの製造方法、に関する。
That is, the present invention
[1] A polishing pad having at least a polishing layer,
A groove opened on the polishing side surface of the polishing layer, and a hole opened on the polishing side surface of the polishing layer;
The opening area per one of the holes is 0.05 mm 2 or more,
A polishing pad, wherein the depth of the groove, the depth of the hole, and the thickness of the polishing layer satisfy the following formula (1):
(1) Z>X> Y
(In the formula, X represents the depth of the groove, Y represents the depth of the hole, and Z represents the thickness of the polishing layer.)
[2] The polishing pad according to [1], wherein the depth of the groove and the depth of the hole satisfy the following formula (2):
(2) XY ≧ 0.1
(In the formula, X represents the depth of the groove, Y represents the depth of the hole, and the unit of length is mm.)
[3] The polishing pad according to [1] or [2], wherein the depth of the groove satisfies the following formulas (3) to (5):
(3) X ≧ 0.5
(4) 0.50 × Z ≦ X ≦ 0.90 × Z
(5) ZX ≧ 0.2
(In the formula, X represents the depth of the groove, Z represents the thickness of the polishing layer, and the unit of length is mm.)
[4] The polishing pad according to any one of [1] to [3], wherein the hole depth satisfies the following formulas (6) to (8):
(6) Y ≧ 0.2
(7) 0.30 × Z ≦ Y ≦ 0.85 × Z
(8) ZY ≧ 0.4
(In the formula, Y represents the depth of the hole, Z represents the thickness of the polishing layer, and the unit of length is mm.)

[5] The polishing pad according to any one of [1] to [4] above, wherein the groove has a lattice shape.
[6] A total volume (a) of grooves opened on the polishing side surface of the polishing layer and a total volume (b) of holes opened on the polishing side surface of the polishing layer and having an opening area of 0.05 mm 2 or more. The polishing pad according to any one of the above [1] to [5], wherein the ratio (a / b) is in the range of 50/50 to 90/10;
[7] The polishing pad according to any one of the above [1] to [6], wherein a cushion layer is laminated on a surface opposite to the polishing side surface of the polishing layer,
[8] The polishing pad according to any one of [1] to [7], wherein the polishing layer has a non-foamed structure,
[9] A method for polishing a semiconductor wafer using the polishing pad of any one of [1] to [8] above,
[10] A method of manufacturing a semiconductor device using the polishing pad according to any one of [1] to [8].
 本発明によれば、高い研磨速度が得られ、研磨均一性および平坦化性能に優れ、スクラッチの発生も少ないなど優れた研磨性能を有し、しかも長時間研磨を続けても研磨性能の変化が小さい長寿命の研磨パッドが得られる。 According to the present invention, a high polishing rate can be obtained, excellent polishing uniformity and planarization performance, excellent polishing performance such as less scratching, and even if polishing is continued for a long time, the polishing performance changes. A small long-life polishing pad can be obtained.
(a)は研磨パッドの格子状溝を示す模式図であり、(b)は        溝の断面形状を示す模式図である。(A) is a schematic diagram which shows the lattice-like groove | channel of a polishing pad, (b) is a schematic diagram which shows the cross-sectional shape of a groove | channel.
 以下、本発明について詳細に説明する。
本発明の研磨パッドは少なくとも研磨層を有し、さらに該研磨層の研磨側表面に開口する溝と研磨層の研磨側表面に開口する穴を有する。
 従来の研磨パッドのように研磨層の研磨側表面に溝のみを有する場合、例えば、同心円状の溝などの研磨パッド外への排出経路がない閉じた溝形状では、研磨屑の排出性が低いためにウェハ表面にスクラッチが発生しやすい。また、スクラッチの発生を抑制するために低圧高速回転の条件で研磨を行うと、パッド/ウェハ間が流体潤滑となりやすく研磨速度や研磨均一性が低下する傾向がある。一方、研磨パッド外への排出経路が存在する格子状の溝などでは、研磨屑の排出性は良好なものの、研磨スラリーも過度に排出されやすいため、ウェハ表面に研磨スラリーを均一かつ十分に供給することが困難になって、研磨スラリーの供給量を増やす必要が生じ、その結果、ランニングコストが高くなりやすい。
 また、研磨パッドの研磨側表面に穴のみを有する場合、同心円状の溝などの場合と同様に、研磨屑の排出性が低いことに起因して、ウェハ表面にスクラッチが発生しやすくい。その上、研磨側表面において研磨スラリーの流動性が劣るため、ウェハ表面への研磨スラリーの供給性が低下して研磨速度や研磨均一性が低下する。
 本発明の研磨パッドは、研磨層の研磨側表面に開口する溝と穴の両方を有することにより、高い研磨速度、優れた研磨均一性、低スクラッチなどの研磨性能をバランス良く改善することができる。
Hereinafter, the present invention will be described in detail.
The polishing pad of the present invention has at least a polishing layer, and further has a groove opened on the polishing side surface of the polishing layer and a hole opened on the polishing side surface of the polishing layer.
When only a groove is provided on the polishing side surface of the polishing layer as in a conventional polishing pad, for example, a closed groove shape having no discharge path to the outside of the polishing pad, such as a concentric groove, has a low polishing dust discharging property. Therefore, scratches are likely to occur on the wafer surface. In addition, when polishing is performed under the conditions of low pressure and high speed rotation in order to suppress the occurrence of scratches, the pad / wafer is likely to be fluid lubricated, and the polishing rate and polishing uniformity tend to decrease. On the other hand, in a grid-like groove where there is a discharge path to the outside of the polishing pad, polishing slurry is easily discharged, but polishing slurry is also easily discharged, so the polishing slurry is evenly and sufficiently supplied to the wafer surface. It becomes difficult to increase the supply amount of the polishing slurry, and as a result, the running cost tends to increase.
Further, when only the hole is provided on the polishing side surface of the polishing pad, scratches are likely to be generated on the wafer surface due to the low dischargeability of polishing debris as in the case of concentric grooves. In addition, the flowability of the polishing slurry on the polishing side surface is inferior, so that the supply of the polishing slurry to the wafer surface is reduced and the polishing rate and polishing uniformity are reduced.
The polishing pad of the present invention can improve the polishing performance such as high polishing rate, excellent polishing uniformity, low scratch and the like in a well-balanced manner by having both grooves and holes opened on the polishing side surface of the polishing layer. .
 本発明の研磨パッドは、溝と穴の両方を有することに加え、Xを溝の深さ、Yを穴の深さ、Zを研磨層の厚みとすると、下記(1)を満足する必要がある。
             (1) Z>X>Y
(式中、Xは溝の深さを表わし、Yは穴の深さを表わし、Zは研磨層の厚みを表わす。)
 本発明者らが検討したところ、従来の貫通孔を有する研磨パッドでは、研磨中に研磨スラリーが研磨パッド裏面の粘着層に到達し、その粘着力が研磨中に変化することに起因して研磨性能が低下していたことが判明した。そこで、本発明の研磨パッドでは、研磨側表面と反対側の部分に貫通する部分を形成しないことで、貫通孔がもたらす研磨中の研磨性能の低下を抑制した。
 なお、本願明細書において、溝とは、連続した開口部の最も離れた2点の距離(A)が5mm以上であり、かつ〔開口部の面積/直径Aの円の面積〕が0.4以下である開口部のことであり、穴とは前記溝以外の開口部を意味する。また、本願明細書において、溝の深さとは研磨側表面(平面)から溝の最深部までの距離のことであり、穴の深さとは研磨側表面(平面)から穴の最深部までの距離を意味する。
In addition to having both grooves and holes, the polishing pad of the present invention must satisfy the following (1), where X is the depth of the groove, Y is the depth of the hole, and Z is the thickness of the polishing layer. is there.
(1) Z>X> Y
(In the formula, X represents the depth of the groove, Y represents the depth of the hole, and Z represents the thickness of the polishing layer.)
As a result of investigations by the present inventors, in a polishing pad having a conventional through hole, the polishing slurry reaches the adhesive layer on the back surface of the polishing pad during polishing, and the adhesive force changes during polishing. It was found that the performance was degraded. Therefore, in the polishing pad of the present invention, the deterioration of the polishing performance during polishing caused by the through hole is suppressed by not forming a portion penetrating the portion on the side opposite to the polishing side surface.
In the present specification, the groove means that the distance (A) between the two most distant points of the continuous openings is 5 mm or more, and [the area of the opening / the area of the circle with the diameter A] is 0.4. It is the following opening, and the hole means an opening other than the groove. Further, in the present specification, the depth of the groove is the distance from the polishing side surface (plane) to the deepest part of the groove, and the depth of the hole is the distance from the polishing side surface (plane) to the deepest part of the hole. Means.
 本発明の研磨パッドは、溝の深さが穴の深さよりも大きいことが必要である。
 穴の深さが溝より深い場合、穴に研磨屑が堆積する傾向があり、堆積した研磨屑が研磨中に研磨表面に出てきて、スクラッチ発生の原因となる場合がある。また、貫通孔(Z=Y>Xの場合)では、研磨中に研磨スラリーが研磨層の裏面の粘着層に到達してその粘着力を変化させ、研磨性能の経時変化が起こりやすくなる問題がある。
 さらに、研磨層が硬質の素材から形成され無発泡構造である場合には、発泡樹脂に比べて加工が難しいため、貫通孔を形成する際に貫通孔の周囲でバリの発生や変形などが起こりやすい。非貫通孔でも、穴の底での研磨層の厚みを薄くして深い穴を形成すると、穴を切削加工などにより形成する際に穴の部分で研磨層の裏側が膨らみやすく、研磨層に厚みむらが生じて研磨均一性および平坦化性能のいずれもが低下しやすい。切削加工により溝および穴を形成する場合には、一般に、溝よりも穴の部分で研磨層の裏側が変形しやすいため、穴の深さを溝の深さよりも小さくすることが必要である。
The polishing pad of the present invention requires that the depth of the groove is larger than the depth of the hole.
If the depth of the hole is deeper than the groove, polishing scraps tend to accumulate in the hole, and the accumulated polishing scraps may come out on the polishing surface during polishing and cause scratches. Further, in the case of the through hole (when Z = Y> X), there is a problem that the polishing slurry reaches the adhesive layer on the back surface of the polishing layer during polishing and changes its adhesive force, and the polishing performance is likely to change over time. is there.
Furthermore, when the polishing layer is made of a hard material and has a non-foamed structure, processing is difficult compared to foamed resin, so when forming the through hole, burrs are generated or deformed around the through hole. Cheap. Even with non-through holes, if the thickness of the polishing layer at the bottom of the hole is reduced to form a deep hole, the back side of the polishing layer tends to swell at the hole when the hole is formed by cutting, etc. Unevenness is likely to occur, and both polishing uniformity and planarization performance tend to decrease. When grooves and holes are formed by cutting, generally, the back side of the polishing layer is more easily deformed at the hole portion than the groove, so that the depth of the hole needs to be smaller than the depth of the groove.
 さらに、研磨パッドの寿命と優れた研磨性能を両立する観点から、溝の深さと穴の深さが、下記式(2)を満たす研磨パッドであることが好ましい。
(2)X-Y≧0.1
(式中、Xは溝の深さを表わし、Yは穴の深さを表わし、長さの単位はmmである。)
すなわち、上記溝の深さと上記穴の深さの差は0.1mm以上であることが好ましく、0.15mm以上であることがより好ましい。また、溝の深さと穴の深さとの差は、0.5mm以下であることが好ましく、0.4mm以下であることがより好ましく、0.3mm以下であることがさらに好ましい。
Furthermore, it is preferable that the depth of a groove | channel and the depth of a hole satisfy | fill following formula (2) from a viewpoint which balances the lifetime of a polishing pad, and the outstanding polishing performance.
(2) XY ≧ 0.1
(In the formula, X represents the depth of the groove, Y represents the depth of the hole, and the unit of length is mm.)
That is, the difference between the depth of the groove and the depth of the hole is preferably 0.1 mm or more, and more preferably 0.15 mm or more. The difference between the depth of the groove and the depth of the hole is preferably 0.5 mm or less, more preferably 0.4 mm or less, and further preferably 0.3 mm or less.
 本発明の研磨パッドは、さらに溝の深さと研磨層の厚みが下記式(3)~(5)を満たすことが好ましい。
(3)X≧0.5
(4)0.50×Z≦X≦0.90×Z
(5)Z-X≧0.2
(式中、Xは溝の深さを表わし、Zは研磨層の厚みを表わし、長さの単位はmmである。)
 上記式(3)を充足する場合、すなわち、溝の深さを0.5mm以上とすることにより、研磨パッドの摩耗による研磨性能の変化を抑制することができ、研磨パッドの寿命が長くなる傾向がある。上記溝の深さは0.55mm以上であることがより好ましく、0.6mm以上であることがさらに好ましい。
 また、上記式(4)の関係を充足する場合、すなわち、溝の深さを研磨層の厚みの50~90%とする場合、下層にクッション層を積層した場合において、研磨均一性と平坦化性能を両立させることができることから好ましい。溝の深さが研磨層の厚みの50%未満であると、研磨均一性が低下しやすい上、研磨パッドの寿命が短くなる傾向がある。逆に、溝の深さが研磨層の厚みの90%より大きいと、平坦化性能が低下する傾向がある。上記溝の深さは研磨層の厚みの55~85%であることがより好ましい。
 さらに、上記式(5)の関係を充足する場合、すなわち、研磨層の厚みと溝の深さの差が0.2mm以上である場合に、溝の底での研磨層の厚みをある程度確保することができ、下層にクッション層を積層した場合においても、研磨層が過度に変形するのを抑制して、平坦化性能を確保しやすい。上記研磨層の厚みと溝の深さの差は0.25mm以上であることがより好ましい。
In the polishing pad of the present invention, the depth of the groove and the thickness of the polishing layer preferably satisfy the following formulas (3) to (5).
(3) X ≧ 0.5
(4) 0.50 × Z ≦ X ≦ 0.90 × Z
(5) ZX ≧ 0.2
(In the formula, X represents the depth of the groove, Z represents the thickness of the polishing layer, and the unit of length is mm.)
When the above formula (3) is satisfied, that is, by setting the groove depth to 0.5 mm or more, a change in polishing performance due to abrasion of the polishing pad can be suppressed, and the life of the polishing pad tends to be long. There is. The depth of the groove is more preferably 0.55 mm or more, and further preferably 0.6 mm or more.
Further, when the relationship of the above formula (4) is satisfied, that is, when the depth of the groove is 50 to 90% of the thickness of the polishing layer, or when the cushion layer is laminated on the lower layer, the polishing uniformity and flattening are achieved. It is preferable because performance can be made compatible. When the depth of the groove is less than 50% of the thickness of the polishing layer, the polishing uniformity tends to be lowered and the life of the polishing pad tends to be shortened. On the contrary, when the depth of the groove is larger than 90% of the thickness of the polishing layer, the planarization performance tends to be lowered. More preferably, the depth of the groove is 55 to 85% of the thickness of the polishing layer.
Furthermore, when the relationship of the above formula (5) is satisfied, that is, when the difference between the thickness of the polishing layer and the depth of the groove is 0.2 mm or more, the thickness of the polishing layer at the bottom of the groove is secured to some extent. Even when a cushion layer is laminated on the lower layer, it is easy to ensure flattening performance by suppressing excessive deformation of the polishing layer. The difference between the thickness of the polishing layer and the depth of the groove is more preferably 0.25 mm or more.
 また、本発明の研磨パッドは、穴の深さが、下記式(6)~(8)を満たすことが好ましい。
(6)Y≧0.2
(7)0.30×Z≦Y≦0.85×Z
(8)Z-Y≧0.4
(式中、Yは穴の深さを表わし、Zは研磨層の厚みを表わし、長さの単位はmmである。)
 上記式(6)を充足すること、すなわち、穴の深さを0.2mm以上とすることにより、研磨パッドの摩耗による研磨性能の変化を抑制することができ、研磨パッドの寿命が長くなる傾向がある。上記穴の深さは0.3mm以上であることがより好ましく、0.4mm以上であることがさらに好ましい。 
 また、研磨パッドの寿命と研磨均一性、平坦化性能を両立する観点から、上記式(7)の関係式を充足すること、すなわち、穴の深さが研磨層の厚みの30~85%であることが好ましい。穴の深さが研磨層の厚みの30%未満であると、研磨パッドの寿命が短くなる傾向がある。逆に、穴の深さが研磨層の厚みの85%より大きいと、穴からの研磨屑の排出性が低くなり、研磨パッドの摩耗とともに穴に堆積した研磨屑が再び出てきてウェハ表面におけるスクラッチの発生が多くなる傾向がある。上記穴の深さは研磨層の厚みの35~80%であることがより好ましい。
 さらに、穴を切削加工などにより形成する際に穴の底の部分で研磨層の裏側が膨らみ研磨層に厚みむらが生じて研磨均一性および平坦化性能が低下するのを抑制することができるという観点から、上記式(8)の関係式を充足すること、すなわち、研磨層の厚みと穴の深さの差が0.4mm以上とすることが好ましく、上記研磨層の厚みと穴の深さの差が0.45mm以上であることがより好ましい。
In the polishing pad of the present invention, the hole depth preferably satisfies the following formulas (6) to (8).
(6) Y ≧ 0.2
(7) 0.30 × Z ≦ Y ≦ 0.85 × Z
(8) ZY ≧ 0.4
(In the formula, Y represents the depth of the hole, Z represents the thickness of the polishing layer, and the unit of length is mm.)
By satisfying the above formula (6), that is, by setting the hole depth to 0.2 mm or more, a change in polishing performance due to abrasion of the polishing pad can be suppressed, and the life of the polishing pad tends to be long. There is. The depth of the hole is more preferably 0.3 mm or more, and further preferably 0.4 mm or more.
Further, from the viewpoint of achieving both the life of the polishing pad, the polishing uniformity, and the planarization performance, the relational expression (7) is satisfied, that is, the hole depth is 30 to 85% of the thickness of the polishing layer. Preferably there is. When the depth of the hole is less than 30% of the thickness of the polishing layer, the life of the polishing pad tends to be shortened. On the contrary, if the depth of the hole is larger than 85% of the thickness of the polishing layer, the discharging property of the polishing debris from the hole becomes low, and the polishing debris accumulated in the hole comes out again with the abrasion of the polishing pad, There is a tendency for the occurrence of scratches to increase. The depth of the hole is more preferably 35 to 80% of the thickness of the polishing layer.
Furthermore, when the hole is formed by cutting or the like, it can be suppressed that the back side of the polishing layer swells at the bottom of the hole and unevenness in thickness occurs in the polishing layer, resulting in a decrease in polishing uniformity and planarization performance. From the viewpoint, it is preferable that the relational expression (8) is satisfied, that is, the difference between the thickness of the polishing layer and the depth of the hole is 0.4 mm or more. The thickness of the polishing layer and the depth of the hole More preferably, the difference is 0.45 mm or more.
 研磨層の研磨側表面に開口する溝の形状(パターン)としては、格子状、同心円状、らせん状、六角形状、三角形状またはこれらの組み合わせなど、公知のものを採用することができるが、研磨屑を研磨パッド外に容易に排出することができ、ウェハ表面におけるスクラッチの発生を抑制する能力が高いという観点から、格子状の溝が好ましい。
 また溝の断面形状は、研磨パッドが摩耗しても溝幅が変わらず研磨性能が変化しにくいことから、長方形であることが好ましい。
As the shape (pattern) of the groove opened on the polishing side surface of the polishing layer, a known shape such as a lattice shape, a concentric circle shape, a spiral shape, a hexagonal shape, a triangular shape, or a combination thereof can be adopted. From the standpoint that scraps can be easily discharged out of the polishing pad and the ability to suppress the generation of scratches on the wafer surface is high, lattice-like grooves are preferable.
Further, the cross-sectional shape of the groove is preferably rectangular because the groove width does not change even when the polishing pad is worn and the polishing performance hardly changes.
 上記溝の幅は0.1~5mmの範囲内であることが、研磨屑の排出性と研磨スラリーの保持性のバランスに優れることから好ましい。溝の幅が0.1mmより小さいと、研磨屑の排出性が低くなりウェハ表面にスクラッチが発生しやすくなる傾向がある。一方、溝の幅が5mmより大きいと、研磨スラリーが過度に研磨パッド外に排出されやすくなりウェハ表面に研磨スラリーを均一かつ十分に供給することが困難となる傾向がある。その結果、研磨スラリーの供給量を増やす必要が生じ、ランニングコストが高くなる傾向がある。上記溝の幅は0.15~4mmの範囲内であることがより好ましく、0.2~3mmの範囲内であることがさらに好ましい。
 また、上記溝のピッチは1~20mmの範囲内であることが、ウェハ表面に研磨スラリーを均一かつ十分に供給することができ、研磨速度や研磨均一性に一層優れた研磨パッドとなることから好ましい。上記溝のピッチは2~18mmの範囲内であることがより好ましく、3~16mmの範囲内であることがさらに好ましい。
The width of the groove is preferably in the range of 0.1 to 5 mm, since it is excellent in the balance between polishing dust discharge and polishing slurry retention. When the width of the groove is smaller than 0.1 mm, the polishing dust discharge property is lowered and scratches tend to be generated on the wafer surface. On the other hand, if the width of the groove is larger than 5 mm, the polishing slurry tends to be excessively discharged outside the polishing pad, and it tends to be difficult to supply the polishing slurry uniformly and sufficiently to the wafer surface. As a result, it is necessary to increase the supply amount of the polishing slurry, and the running cost tends to increase. The width of the groove is more preferably in the range of 0.15 to 4 mm, and still more preferably in the range of 0.2 to 3 mm.
Further, since the groove pitch is in the range of 1 to 20 mm, the polishing slurry can be supplied uniformly and sufficiently to the wafer surface, and the polishing pad can be further improved in polishing rate and polishing uniformity. preferable. The pitch of the grooves is more preferably in the range of 2 to 18 mm, and further preferably in the range of 3 to 16 mm.
 研磨パッドの研磨側表面に開口する穴の形状は特に限定されず、研磨層の研磨側表面における開口部の形状として、円、三角形、四角形、六角形などのいずれでもよい。また、研磨層の研磨側表面に対して垂直に切断した際に現れる上記穴の断面形状は、長方形、台形、三角形などのいずれでもよい。これらの中でも、穴の加工が容易であり、また、研磨パッドが摩耗しても開口部における穴の面積が変わらず研磨性能が変化しにくいことから、円柱状の穴などのように研磨層の研磨側表面における開口部の形状が円で、研磨層の研磨側表面に対して垂直に切断した際に現れる断面形状が長方形である穴が好ましい。
 研磨パッドの研磨側表面に形成された上記穴の分布は特に限定されないが、上記穴が当該研磨側表面に一様に分布していることが好ましく、例えば、溝が格子状である場合には、格子毎にそれぞれ1個または複数個の穴が形成されたものが挙げられる。
The shape of the hole opened on the polishing side surface of the polishing pad is not particularly limited, and the shape of the opening on the polishing side surface of the polishing layer may be any of a circle, a triangle, a quadrangle, a hexagon, and the like. Further, the cross-sectional shape of the hole that appears when cut perpendicular to the polishing side surface of the polishing layer may be any of a rectangle, a trapezoid, a triangle, and the like. Among these, the hole processing is easy, and even if the polishing pad is worn, the hole area in the opening does not change and the polishing performance hardly changes. A hole having a circular opening shape on the polishing side surface and a rectangular cross-sectional shape that appears when the polishing layer is cut perpendicularly to the polishing side surface is preferable.
The distribution of the holes formed on the polishing side surface of the polishing pad is not particularly limited, but it is preferable that the holes are uniformly distributed on the polishing side surface, for example, when the grooves are in a lattice shape. And one having one or more holes formed in each lattice.
 上記穴の、研磨層の研磨側表面における開口部の面積は、ウェハ表面に研磨スラリーを均一かつ十分に供給することができ、また穴の加工が容易であるという観点から、穴1個あたりについて、0.05mm以上であり、0.1~20mmの範囲内であることが好ましく、0.3~15mmの範囲内であることがより好ましく、0.5~12mmの範囲内であることがさらに好ましい。
 なお、研磨層の研磨側表面に開口する個々の穴は、全てが互いに同じ開口部の形状、断面形状および開口部の面積を有していてもよいが、これらのうちの一部または全部が互いに異なっていてもよい。
The area of the opening of the hole on the polishing side surface of the polishing layer is such that the polishing slurry can be supplied uniformly and sufficiently to the wafer surface, and from the viewpoint of easy hole processing, 0.05 mm 2 or more, preferably within a range of 0.1 to 20 mm 2 , more preferably within a range of 0.3 to 15 mm 2 , and within a range of 0.5 to 12 mm 2. More preferably it is.
The individual holes opened on the polishing side surface of the polishing layer may all have the same opening shape, cross-sectional shape and opening area, but some or all of them may have the same shape. They may be different from each other.
 研磨層の研磨側表面に開口する溝の総容積(a)と研磨層の研磨側表面に開口する上記穴の総容積(b)との比率(a/b)は、50/50~90/10の範囲内であることが、研磨スラリーの保持性やウェハ表面への均一な供給性と研磨屑の排出性のバランスに特に優れることから好ましい。比率(a/b)が50/50よりも小さいと研磨スラリーのウェハ表面への均一な供給性や研磨屑の排出性が低下し、研磨速度や研磨均一性が低下し、ウェハ表面にスクラッチが発生しやすくなる傾向がある。一方、比率(a/b)が90/10よりも大きいと研磨スラリーの保持性が低下して研磨速度や研磨均一性が低下しやすくなる傾向がある。比率(a/b)は55/45~88/12の範囲内であることがより好ましく、60/40~86/14の範囲内であることがさらに好ましい。 The ratio (a / b) between the total volume (a) of the grooves opening on the polishing side surface of the polishing layer and the total volume (b) of the holes opening on the polishing side surface of the polishing layer is 50/50 to 90 / It is preferable that it is within the range of 10 because it is particularly excellent in the balance between the holding property of the polishing slurry, the uniform supply property to the wafer surface, and the discharge property of polishing waste. When the ratio (a / b) is smaller than 50/50, the uniform supply of polishing slurry to the wafer surface and the discharge of polishing debris are reduced, the polishing rate and polishing uniformity are reduced, and scratches are formed on the wafer surface. It tends to occur easily. On the other hand, if the ratio (a / b) is greater than 90/10, the retention of the polishing slurry tends to decrease, and the polishing rate and polishing uniformity tend to decrease. The ratio (a / b) is more preferably in the range of 55/45 to 88/12, and still more preferably in the range of 60/40 to 86/14.
 研磨層の厚みは、研磨性能と作業性の観点から、研磨層の厚さは0.7~1.6mmの範囲内であることが好ましく、0.75~1.5mmの範囲内であることがより好ましく、0.8~1.4mmの範囲内であることがさらに好ましい。研磨層の厚さが0.7mmより小さいと、研磨装置の定盤の硬さの影響や、下層にクッション層を積層した場合などにおいてそのクッション層の硬さの影響を受けることで、研磨層の摩耗に伴い研磨性能が安定しない傾向がある。一方、研磨層の厚さが1.6mmより大きいと、研磨パッドの曲げ剛性が大きくなり、下層にクッション層を積層しても研磨層が変形しにくくなることから、研磨均一性が低下する場合がある。 From the viewpoint of polishing performance and workability, the thickness of the polishing layer is preferably in the range of 0.7 to 1.6 mm, and preferably in the range of 0.75 to 1.5 mm. Is more preferable, and a range of 0.8 to 1.4 mm is even more preferable. If the thickness of the polishing layer is less than 0.7 mm, the polishing layer may be affected by the hardness of the surface plate of the polishing apparatus or the hardness of the cushion layer when the cushion layer is laminated on the lower layer. There is a tendency that the polishing performance is not stable with wear. On the other hand, if the thickness of the polishing layer is larger than 1.6 mm, the bending rigidity of the polishing pad will increase, and even if a cushion layer is laminated on the lower layer, the polishing layer will not be easily deformed, resulting in a decrease in polishing uniformity. There is.
 本発明の研磨パッドは、研磨層の硬度が高くなりより優れた平坦化性能を示す上、溝や穴の側面に露出した気孔が存在しないことにより研磨スラリー中の砥粒が気孔中で凝集・凝着してウェハ表面にスクラッチを発生させる恐れがないという観点から、研磨層が無発泡構造であることが好ましい。 The polishing pad of the present invention has a higher hardness of the polishing layer and exhibits more excellent planarization performance, and the abrasive grains in the polishing slurry are aggregated in the pores due to the absence of pores exposed on the side surfaces of the grooves and holes. The polishing layer preferably has a non-foamed structure from the standpoint that there is no risk of adhesion and generation of scratches on the wafer surface.
 また、研磨層のD硬度は、平坦化性能の向上とウェハ表面でのスクラッチ発生の抑制の観点から、50~80の範囲内であることが好ましく、53~77の範囲内であることがより好ましく、56~74の範囲内であることがさらに好ましい。なお研磨層を構成する素材のD硬度を測定することにより、それを研磨層のD硬度とみなすことができる。 The D hardness of the polishing layer is preferably in the range of 50 to 80, more preferably in the range of 53 to 77, from the viewpoint of improving the planarization performance and suppressing the occurrence of scratches on the wafer surface. Preferably, it is in the range of 56 to 74. By measuring the D hardness of the material constituting the polishing layer, it can be regarded as the D hardness of the polishing layer.
 本発明の研磨パッドの研磨層を構成する素材は特に限定されるものではなく、公知の合成または天然の高分子を、1種単独または2種以上を併用してもよい。研磨層の素材として使用される高分子としては、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン、エチレン-酢酸ビニル共重合体、ブチラール樹脂、ポリスチレン、ポリ塩化ビニル、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリエステル、ポリアミドなどが挙げられる。これらの中でも、平坦化性能に優れ、またウェハ表面にスクラッチが発生しにくいなど研磨性能に特に優れた研磨パッドとなることから、ポリウレタンが好ましく、高分子ジオール、有機ジイソシアネートおよび鎖伸長剤を反応させることにより得られる熱可塑性ポリウレタンがより好ましい。 The material constituting the polishing layer of the polishing pad of the present invention is not particularly limited, and a known synthetic or natural polymer may be used alone or in combination of two or more. Examples of the polymer used as the material for the polishing layer include polyethylene, polypropylene, polybutadiene, ethylene-vinyl acetate copolymer, butyral resin, polystyrene, polyvinyl chloride, acrylic resin, epoxy resin, polyurethane, polyester, polyamide, etc. Is mentioned. Among these, polyurethane is preferable because it is excellent in flattening performance and is particularly excellent in polishing performance such that scratches hardly occur on the wafer surface, and polymer diol, organic diisocyanate and chain extender are reacted. The thermoplastic polyurethane obtained by this is more preferable.
 上記の高分子ジオールとしては、例えば、ポリエチレングリコール、ポリテトラメチレングリコール等のポリエーテルジオール;ポリ(ノナメチレン アジペート)ジオール、ポリ(2-メチル-1,8-オクタメチレン アジペート)ジオール、ポリ(2-メチル-1,8-オクタメチレン-co-ノナメチレン アジペート)ジオール、ポリ(メチルペンタメチレン アジペート)ジオール等のポリエステルジオール;ポリ(ヘキサメチレン カーボネート)ジオール、ポリ(ヘキサメチレン-co-2,2-ジメチル-1,3-プロピレン カーボネート)ジオール等のポリカーボネートジオールなどが挙げられる。これらの高分子ジオールは1種を単独で使用してもよいし、2種以上を併用してもよい。 Examples of the polymer diol include polyether diols such as polyethylene glycol and polytetramethylene glycol; poly (nonamethylene adipate) diol, poly (2-methyl-1,8-octamethylene adipate) diol, and poly (2- Polyester diols such as methyl-1,8-octamethylene-co-nonamethylene adipate) diol, poly (methylpentamethylene adipate) diol; poly (hexamethylene carbonate) diol, poly (hexamethylene-co-2,2-dimethyl-) And polycarbonate diols such as 1,3-propylene carbonate) diol. These polymer diols may be used alone or in combination of two or more.
 また、上記の有機ジイソシアネートとしては、通常のポリウレタンの製造に従来から使用されている有機ジイソシアネートのいずれを使用してもよく、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネートなどの脂肪族または脂環式ジイソシアネート;4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,5-ナフチレンジイソシアネートなどの芳香族ジイソシアネートを挙げることができる。これらの有機ジイソシアネートは1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、4,4’-ジフェニルメタンジイソシアネートが得られる研磨パッドの耐摩耗性などの点から好ましい。 As the organic diisocyanate, any of organic diisocyanates conventionally used in the production of ordinary polyurethanes may be used. For example, hexamethylene diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, etc. Aliphatic or cycloaliphatic diisocyanates; aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,5-naphthylene diisocyanate . These organic diisocyanates may be used alone or in combination of two or more. Among these, 4,4'-diphenylmethane diisocyanate is preferable from the viewpoint of the abrasion resistance of the polishing pad from which it can be obtained.
 そして、上記の鎖伸長剤としては、通常のポリウレタンの製造に従来から使用されている鎖伸長剤のいずれを使用してもよい。鎖伸長剤としては、イソシアネート基と反応し得る活性水素原子を分子中に2個以上有する分子量350以下の低分子化合物を使用することが好ましく、例えば、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-シクロヘキサンジオール、シクロヘキサンジメタノール(1,4-シクロヘキサンジメタノール等)、ビス(β-ヒドロキシエチル)テレフタレート、1,9-ノナンジオール、スピログリコール等のジオール類;エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、ヒドラジン、キシリレンジアミン、イソホロンジアミン、ピペラジン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジド、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル等のジアミン類などが挙げられる。これらの鎖伸長剤は1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、1,4-ブタンジオールおよび/または1,4-シクロヘキサンジメタノールが好ましい。 And as said chain extender, you may use any of the chain extenders conventionally used for manufacture of the usual polyurethane. As the chain extender, it is preferable to use a low molecular weight compound having a molecular weight of 350 or less having two or more active hydrogen atoms capable of reacting with an isocyanate group, for example, ethylene glycol, diethylene glycol, 1,2-propanediol. 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6 -Hexanediol, 3-methyl-1,5-pentanediol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4-cyclohexanediol, cyclohexanedimethanol (1,4-cyclohexanedimethanol, etc.), bis (Β-hydroxyethyl) terephthalate, 1,9-nonanediol, Diols such as pyroglycol; ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, octamethylenediamine, nonamethylenediamine, hydrazine, xylylenediamine, isophoronediamine, piperazine, o-phenylenediamine, m-phenylenediamine, Examples thereof include diamines such as p-phenylenediamine, adipic acid dihydrazide, isophthalic acid dihydrazide, 4,4′-diaminodiphenylmethane, and 4,4′-diaminodiphenyl ether. These chain extenders may be used individually by 1 type, and may use 2 or more types together. Among these, 1,4-butanediol and / or 1,4-cyclohexanedimethanol are preferable.
 上記の熱可塑性ポリウレタンは、上記の高分子ジオール、有機ジイソシアネートおよび鎖伸長剤を原料として使用し、プレポリマー法やワンショット法などの公知の方法により製造することができるが、実質的に溶媒の不存在下に上記の高分子ジオール、有機ジイソシアネートおよび鎖伸長剤を所定の比率で溶融混練することにより製造することが好ましく、多軸スクリュー型押出機を使用して連続溶融重合する方法により製造することがより好ましい。各成分の使用比率は、耐摩耗性等、熱可塑性ポリウレタンからなる研磨層に付与すべき物性などを考慮して適宜決定されるが、高分子ジオールおよび鎖伸長剤に含まれる活性水素原子1モルに対して、有機ジイソシアネートに含まれるイソシアネート基が0.95~1.3モルとなる割合で各成分を使用することが好ましい。上記割合が0.95モル未満であると、得られる熱可塑性ポリウレタンからなる研磨層の機械的強度および耐摩耗性が低下する傾向があり、1.3モルを超えると熱可塑性ポリウレタンの生産性や保存安定性が低下する傾向がある。得られる研磨層の機械的強度や耐摩耗性および熱可塑性ポリウレタンの生産性や保存安定性の観点から、高分子ジオールおよび鎖伸長剤に含まれる活性水素原子1モルに対して、有機ジイソシアネートに含まれるイソシアネート基が0.96~1.1モルとなる割合で各成分を使用することがより好ましく、0.97~1.05モルとなる割合で各成分を使用することがさらに好ましい。 The thermoplastic polyurethane can be produced by a known method such as a prepolymer method or a one-shot method using the above polymer diol, organic diisocyanate and chain extender as raw materials. It is preferably produced by melt-kneading the above-mentioned polymer diol, organic diisocyanate and chain extender at a predetermined ratio in the absence, and is produced by a continuous melt polymerization method using a multi-screw extruder. It is more preferable. The use ratio of each component is appropriately determined in consideration of the physical properties to be imparted to the polishing layer made of thermoplastic polyurethane, such as abrasion resistance, but 1 mol of active hydrogen atoms contained in the polymer diol and the chain extender. On the other hand, it is preferable to use each component in such a ratio that the isocyanate group contained in the organic diisocyanate is 0.95 to 1.3 mol. When the ratio is less than 0.95 mol, the mechanical strength and abrasion resistance of the resulting polishing layer made of thermoplastic polyurethane tend to decrease, and when it exceeds 1.3 mol, the productivity of thermoplastic polyurethane and Storage stability tends to decrease. From the viewpoint of mechanical strength and abrasion resistance of the resulting polishing layer and productivity and storage stability of thermoplastic polyurethane, it is contained in organic diisocyanate with respect to 1 mol of active hydrogen atoms contained in polymer diol and chain extender. It is more preferable to use each component at a ratio of 0.96 to 1.1 mol of the isocyanate group, and it is even more preferable to use each component at a ratio of 0.97 to 1.05 mol.
 研磨層は上記した高分子のみから形成されていてもよいが、得られる研磨パッドが本発明の効果を奏する限り、上記した高分子以外の他の成分を含有していてもよい。このような他の成分としては、例えば、架橋剤、充填剤、架橋促進剤、架橋助剤、軟化剤、粘着付与剤、老化防止剤、発泡剤、加工助剤、密着性付与剤、結晶核剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、難燃剤、難燃助剤(酸化アンチモンなど)、ブルーミング防止剤、離型剤、増粘剤、酸化防止剤、導電剤などが挙げられる。研磨層における上記他の成分の含有量は50質量%以下であることが好ましく、20質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。 The polishing layer may be formed from only the above-described polymer, but may contain other components other than the above-described polymer as long as the resulting polishing pad exhibits the effects of the present invention. Examples of such other components include a crosslinking agent, a filler, a crosslinking accelerator, a crosslinking aid, a softening agent, a tackifier, an anti-aging agent, a foaming agent, a processing aid, an adhesion promoter, and a crystal nucleus. Agent, heat stabilizer, weather stabilizer, antistatic agent, colorant, lubricant, flame retardant, flame retardant aid (antimony oxide, etc.), blooming inhibitor, mold release agent, thickener, antioxidant, conductive agent Etc. The content of the other components in the polishing layer is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less.
 研磨層の製造方法は、特に制限されるものではなく、上記した1種類もしくは2種類以上の高分子もしくは高分子組成物または必要に応じてこれらにさらに上記した他の成分を配合した高分子組成物からなるシートを製造し、当該シートから研磨層を製造することができる。当該シートは上記高分子または高分子組成物を押出機により押出して製造することができ、具体的には、例えば、T-ダイを装着した押出機を使用して、上記高分子または高分子組成物を溶融押出する方法を採用することができる。押出機としては、単軸押出機、二軸押出機等を使用することができる。また上記シートは、上記した高分子または高分子組成物からなるブロックを予め製造しておき、これをスライスして製造することもできる。
 得られたシートは、必要に応じて、裁断、打ち抜き、切削等により所望の寸法、形状に加工したり、研削等により所望の厚さに加工して研磨層とすることができる。
The method for producing the polishing layer is not particularly limited, and one or two or more kinds of polymers or polymer compositions described above, or a polymer composition in which the above-described other components are further blended as necessary. The sheet | seat which consists of a thing can be manufactured and a polishing layer can be manufactured from the said sheet | seat. The sheet can be produced by extruding the polymer or polymer composition with an extruder. Specifically, for example, using an extruder equipped with a T-die, the polymer or polymer composition can be produced. A method of melt-extruding a product can be employed. As an extruder, a single screw extruder, a twin screw extruder, etc. can be used. The sheet can also be produced by previously producing a block made of the polymer or polymer composition described above and slicing it.
If necessary, the obtained sheet can be processed into a desired size and shape by cutting, punching, cutting, or the like, or processed to a desired thickness by grinding or the like to form a polishing layer.
 研磨層の研磨側表面に開口する溝の形成方法は、特に限定されるものではない。具体的には、上記のシートを切削加工することにより溝を形成する方法;上記のシートに、加熱された金型や金属線を接触させたり、レーザー光等の光線を照射したりして、その部分を溶解または分解・揮散させることにより溝を形成する方法;溝を形成するための凸部を有する金型を使用し、これに上記高分子もしくは高分子組成物の溶融物を流し込んだのち固化させるか、または、未硬化の高分子原料を流し込んだのち硬化させるなどして、予め溝が形成されたシートを製造する方法などが挙げられる。 The formation method of the groove opened on the polishing side surface of the polishing layer is not particularly limited. Specifically, a method of forming a groove by cutting the above sheet; contacting the above sheet with a heated mold or metal wire, or irradiating a beam such as a laser beam, A method of forming a groove by dissolving, decomposing or volatilizing the part; using a mold having a convex part for forming the groove, and then pouring a melt of the polymer or polymer composition into the mold Examples of the method include a method of producing a sheet in which grooves are formed in advance by solidifying or pouring and curing an uncured polymer raw material.
 また、研磨層の研磨側表面に開口する穴の形成方法についても、特に限定されるものではない。具体的には、ドリル等の機械的手段を用いて上記シートを切削加工することにより形成する方法;上記シートに、加熱された金型や金属線を接触させたり、レーザー光等の光線を照射したりして、その部分を溶解または分解・揮散させることにより穴を形成する方法などが挙げられる。これらの中でも、加工精度がよく、研磨層を構成する素材の熱による劣化も起こりにくいことから切削加工により形成することが好ましい。 Further, the method for forming the hole opened on the polishing side surface of the polishing layer is not particularly limited. Specifically, a method of forming the sheet by cutting using a mechanical means such as a drill; the sheet is brought into contact with a heated mold or metal wire, or irradiated with a light beam such as a laser beam. For example, a method of forming a hole by dissolving, decomposing, or volatilizing the part can be used. Among these, since the processing accuracy is good and the material constituting the polishing layer is not easily deteriorated by heat, it is preferably formed by cutting.
 本発明の研磨パッドは、上記した溝および穴を研磨側表面に有する研磨層のみからなる単層構造であってもよいが、ウェハ面内での研磨均一性を向上させるために、研磨層の研磨側表面と反対側の面にクッション層を積層させることが好ましい。クッション層の積層は、公知の粘着剤あるいは接着剤を用いて行うことができる。クッション層のA硬度は30~90であることが好ましい。クッション層の素材は特に限定されないが、例えば、無発泡構造または発泡構造のエラストマーや、不織布に樹脂を含浸させたものを用いることができる。 The polishing pad of the present invention may have a single layer structure consisting only of a polishing layer having the above-described grooves and holes on the polishing side surface, but in order to improve polishing uniformity within the wafer surface, It is preferable to laminate a cushion layer on the surface opposite to the polishing side surface. Lamination of the cushion layer can be performed using a known pressure-sensitive adhesive or adhesive. The cushion layer preferably has an A hardness of 30 to 90. The material of the cushion layer is not particularly limited. For example, an elastomer having a non-foamed structure or a foamed structure, or a nonwoven fabric impregnated with a resin can be used.
 本発明の研磨パッドは、公知の研磨スラリーと共に、化学機械的研磨に使用することができる。研磨スラリーは、例えば、水やオイル等の液状媒体;シリカ、アルミナ、酸化セリウム、酸化ジルコニウム、炭化ケイ素等の研磨剤;塩基、酸、酸化剤、界面活性剤、キレート剤などの成分を含有している。また、化学機械的研磨を行うに際し、必要に応じ、研磨スラリーとともに、潤滑油、冷却剤等を併用してもよい。 The polishing pad of the present invention can be used for chemical mechanical polishing together with a known polishing slurry. The polishing slurry contains, for example, a liquid medium such as water or oil; an abrasive such as silica, alumina, cerium oxide, zirconium oxide, or silicon carbide; a base, an acid, an oxidizing agent, a surfactant, a chelating agent, or the like. ing. Moreover, when performing chemical mechanical polishing, you may use lubricating oil, a coolant, etc. together with polishing slurry as needed.
 化学機械的研磨は、公知の化学機械的研磨用装置を使用し、研磨スラリーを介して被研磨面と研磨パッドを、加圧下、一定速度で、一定時間接触させることによって実施することができる。研磨前や研磨中には、ダイヤモンドドレッサー等のドレッサーを使用して研磨パッドをコンディショニングすることが好ましい。研磨の対象となる物品には特に制限はなく、例えば、水晶、シリコン、ガラス、光学基板、電子回路基板、多層配線基板、ハードディスク、半導体ウェハ等が挙げられるが、本発明の研磨パッドは半導体ウェハを研磨する用途に好ましく使用することができる。特に研磨時に研磨パッドとの相対速度が速くなりやすく、また大面積のため研磨性能の制御が困難となりやすい6インチ以上、さらには8インチ以上の直径を有する半導体ウェハを研磨する際にも、本発明の研磨パッドは優れた研磨性能を有するとともに長寿命であることから、当該研磨パッドはこのような半導体ウェハを研磨する用途により好ましく使用することができる。 Chemical mechanical polishing can be performed by using a known chemical mechanical polishing apparatus and bringing the surface to be polished and the polishing pad into contact with each other at a constant speed under a pressure for a certain period of time through a polishing slurry. It is preferable to condition the polishing pad using a dresser such as a diamond dresser before or during polishing. The article to be polished is not particularly limited and includes, for example, quartz, silicon, glass, optical substrate, electronic circuit board, multilayer wiring board, hard disk, semiconductor wafer, etc. The polishing pad of the present invention is a semiconductor wafer. Can be preferably used for polishing. In particular, when polishing a semiconductor wafer having a diameter of 6 inches or more, more preferably 8 inches or more, the relative speed with respect to the polishing pad is likely to be high at the time of polishing and the polishing performance is difficult to control due to the large area. Since the polishing pad of the invention has an excellent polishing performance and has a long life, the polishing pad can be preferably used for the purpose of polishing such a semiconductor wafer.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、各評価は次の方法で実施した。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. In addition, each evaluation was implemented with the following method.
[材料のD硬度]
 JIS K 7311に準じて、測定温度25℃の条件で測定した。
[D hardness of material]
According to JIS K7311, it measured on the conditions of measurement temperature 25 degreeC.
[研磨性能]
 研磨パッドをアプライドマテリアルズ社製研磨装置「MIRRA」に設置し、三菱マテリアル株式会社製ダイヤモンドドレッサー(ダイヤ番手#200)を用い、蒸留水を200mL/分の速度で流しながらドレッサー回転数100rpm、プラテン回転数50rpmにて30分間研磨パッド表面を研削した(以下「コンディショニング」と称する)。
[Polishing performance]
The polishing pad was installed in a polishing apparatus “MIRRA” manufactured by Applied Materials, and a diamond dresser (diamond count # 200) manufactured by Mitsubishi Materials Corporation was used. While flowing distilled water at a rate of 200 mL / min, the dresser rotation speed was 100 rpm, the platen The surface of the polishing pad was ground for 30 minutes at a rotation speed of 50 rpm (hereinafter referred to as “conditioning”).
 次に、ドレッサー回転数100rpm、プラテン回転数80rpm、ヘッド回転数79rpm、研磨圧力24kPaの条件において、昭和電工株式会社製研磨スラリー「GPL-C1010」をイオン交換水で10倍に希釈した液を200mL/分の速度で供給しつつ、膜厚が1000nmでパターンのないPETEOS(プラズマ促進テトラエチルオキシシラン)膜を表面に有する直径8インチのシリコンウェハを60秒間、コンディショニングをしながら研磨した。その後、ウェハを交換して再度研磨およびコンディショニングを繰り返し、計9枚のウェハを研磨した。その後、凸部幅100μm、凹部幅100μm、ピッチ200μm、凸部の酸化膜厚600nm、凸部と凹部の初期段差500nmのパターンのあるHDP(高密度プラズマ)酸化膜を表面に有する直径8インチのシリコンウェハを1枚、前記研磨条件と同条件で60秒間研磨した。 Next, 200 mL of a solution obtained by diluting the polishing slurry “GPL-C1010” made by Showa Denko Co., Ltd. 10 times with ion-exchanged water under the conditions of dresser rotation speed 100 rpm, platen rotation speed 80 rpm, head rotation speed 79 rpm and polishing pressure 24 kPa A silicon wafer with a diameter of 8 inches having a PETEOS (plasma promoted tetraethyloxysilane) film having a thickness of 1000 nm and no pattern on the surface was polished for 60 seconds while being conditioned while supplying at a rate of / min. Thereafter, the wafers were exchanged, and polishing and conditioning were repeated again to polish a total of nine wafers. After that, a convex width of 100 μm, a concave width of 100 μm, a pitch of 200 μm, an oxide film thickness of the convex portion of 600 nm, and an HDP (high density plasma) oxide film having a pattern with an initial step of 500 nm between the convex portion and the concave portion having a diameter of 8 inches. One silicon wafer was polished for 60 seconds under the same conditions as described above.
 次いで、パッド摩耗後の研磨性能を調べるために、コンディショニングのみを25時間(ウェハ1500枚研磨分のコンディショニング時間に相当)を行った後、再びパターンのないPETEOS膜を表面に有する直径8インチのシリコンウェハを前記研磨条件と同条件で9枚研磨した後、パターンのあるHDP酸化膜を表面に有する直径8インチのシリコンウェハを1枚、前記研磨条件と同条件で研磨した。 Next, in order to examine the polishing performance after the pad wear, after performing only conditioning for 25 hours (corresponding to the conditioning time for polishing 1500 wafers), silicon having a diameter of 8 inches having an unpatterned PETEOS film on the surface again. After nine wafers were polished under the same conditions as the above polishing conditions, one silicon wafer with a diameter of 8 inches having a patterned HDP oxide film on the surface was polished under the same conditions.
 計20枚研磨したウェハのうち、8枚目と18枚目に研磨したPETEOS膜を表面に有するウェハについて、研磨前および研磨後のPETEOS膜の膜厚をウェハ面内で各49点測定し、各点での研磨速度を求めた。49点の研磨速度の平均値を研磨速度(R)とし、研磨均一性は下式(7)により求めた不均一性により評価した。不均一性の値が小さいほど、ウェハ面内でPETEOS膜が均一に研磨されており研磨均一性が優れている。
  不均一性(%)=(σ/R)×100     (7)
(ただし、σ:49点の研磨速度の標準偏差、R:49点の研磨速度の平均値を表す。)
Of the wafers polished in total, the wafers having the PETEOS film polished on the 8th and 18th sheets on the surface, the film thickness of the PETEOS film before and after polishing was measured at 49 points on the wafer surface, The polishing rate at each point was determined. The average value of the 49 polishing rates was defined as the polishing rate (R), and the polishing uniformity was evaluated by the non-uniformity obtained by the following equation (7). The smaller the non-uniformity value, the more uniformly the PETEOS film is polished within the wafer surface, and the better the polishing uniformity.
Nonuniformity (%) = (σ / R) × 100 (7)
(However, σ: Standard deviation of polishing rate at 49 points, R: Average value of polishing rate at 49 points.)
 また、9枚目と19枚目に研磨したPETEOS膜を表面に有するウェハについて、アプライドマテリアルズ社製欠陥検査装置「ComPLUS」を用いて0.2μm以上の大きさの欠陥の数を測定した。
 さらに、10枚目と20枚目に研磨したパターンのあるHDP酸化膜を有するウェハについて、ウェハ中心部における凸部および凹部の酸化膜膜厚の変化量からそれぞれの研磨速度を求めた。凸部の研磨速度が大きく、凹部の研磨速度が小さいほど、ウェハ表面の平坦化が短時間で、また、より少ない研磨量で達成されるため好ましい。
Further, the number of defects having a size of 0.2 μm or more was measured using a defect inspection apparatus “ComPLUS” manufactured by Applied Materials Co., Ltd., on the wafers having PETEOS films polished on the ninth and nineteenth surfaces.
Further, with respect to the wafers having the HDP oxide films with the patterns polished on the 10th and 20th sheets, the respective polishing rates were obtained from the amount of change in the oxide film thickness at the convex part and the concave part at the center of the wafer. The higher the polishing rate of the convex portion and the lower the polishing rate of the concave portion, the more preferable because the planarization of the wafer surface can be achieved in a short time and with a smaller polishing amount.
 [製造例1]
熱可塑性ポリウレタンの製造
 数平均分子量2000のポリテトラメチレングリコール[略号:PTMG]、数平均分子量2000のポリ(2-メチル-1,8-オクタメチレン-co-ノナメチレン アジペート)ジオール[略号:PNOA;ノナメチレン単位と2-メチル-1,8-オクタメチレン単位とのモル比=7対3]、1,4-シクロヘキサンジメタノール[略号:CHDM]、1,4-ブタンジオール[略号:BD]、および4,4’-ジフェニルメタンジイソシアネート[略号:MDI]を、PTMG:PNOA:CHDM:BD:MDIの質量比が24.5:10.5:5.0:12.5:47.5となるような割合で用いて、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、連続溶融重合を行って熱可塑性ポリウレタンを製造した。生成した熱可塑性ポリウレタンの溶融物をストランド状に水中に連続的に押出した後、ペレタイザーで細断してペレットを得た。このペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタンを製造した。
[Production Example 1]
Production of thermoplastic polyurethane Polytetramethylene glycol with a number average molecular weight of 2000 [abbreviation: PTMG], Poly (2-methyl-1,8-octamethylene-co-nonamethylene adipate) diol with a number average molecular weight of 2000 [abbreviation: PNOA; Unit to 2-methyl-1,8-octamethylene unit = 7 to 3], 1,4-cyclohexanedimethanol [abbreviation: CHDM], 1,4-butanediol [abbreviation: BD], and 4 , 4′-diphenylmethane diisocyanate [abbreviation: MDI] in such a ratio that the mass ratio of PTMG: PNOA: CHDM: BD: MDI is 24.5: 10.5: 5.0: 12.5: 47.5 Used continuously in a twin-screw extruder that rotates coaxially with a metering pump, and performs continuous melt polymerization to thermoplasticity. To produce a polyurethane. The resulting thermoplastic polyurethane melt was continuously extruded into water as strands, and then chopped with a pelletizer to obtain pellets. The pellets were dehumidified and dried at 70 ° C. for 20 hours to produce a thermoplastic polyurethane.
 [実施例1]
 製造例1で得られた熱可塑性ポリウレタンを単軸押出成形機に仕込み、T-ダイより押出して厚さ2mmのシートを成形した後、得られたシートの表面を研削して厚さ0.9mmの均一なシートとした。このシートのD硬度は63であった。次いで、このシートを直径51cmの円形状に切り抜き、その一方の表面に溝幅1.0mm、溝深さ0.65mm、溝ピッチ(縦および横のピッチ)7.0mmの格子状の溝(断面形状は長方形)を形成し、さらに格子状の溝の各格子の中央に直径2.5mm、深さ0.45mmの穴をドリルを用いた切削加工により形成した。次に、溝および穴を形成した表面とは反対側の面に、厚さ1.0mmの発泡ポリウレタンシート(A硬度48)を粘着テープにより貼り合わせて積層構造の研磨パッドを作製した。得られた研磨パッドの研磨層の構成を以下の表1に示す。
 上記した方法により研磨性能を評価した結果、以下の表2に示すように、研磨速度、研磨均一性および平坦化性能に優れ、欠陥数も少なく、また、長時間使用時の研磨性能の変化も小さかった。
[Example 1]
The thermoplastic polyurethane obtained in Production Example 1 was loaded into a single screw extruder, extruded from a T-die to form a 2 mm thick sheet, and then the surface of the obtained sheet was ground to a thickness of 0.9 mm A uniform sheet. The D hardness of this sheet was 63. Next, this sheet was cut out into a circular shape having a diameter of 51 cm, and a lattice-like groove (cross section) having a groove width of 1.0 mm, a groove depth of 0.65 mm, and a groove pitch (vertical and horizontal pitch) of 7.0 mm on one surface thereof. In addition, a hole having a diameter of 2.5 mm and a depth of 0.45 mm was formed by cutting using a drill in the center of each lattice of the lattice-shaped grooves. Next, a foamed polyurethane sheet (A hardness 48) having a thickness of 1.0 mm was bonded to the surface opposite to the surface on which the grooves and holes were formed with an adhesive tape to prepare a polishing pad having a laminated structure. The structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
As a result of evaluating the polishing performance by the above-mentioned method, as shown in Table 2 below, the polishing rate, the polishing uniformity and the flattening performance are excellent, the number of defects is small, and the change in the polishing performance when used for a long time is also observed. It was small.
 [実施例2]
 実施例1と同様にして厚さ1.3mm、直径51cmの円形状のシートを得た後、その一方の表面に溝幅0.5mm、溝深さ0.9mm、溝ピッチ(縦および横のピッチ)4.0mmの格子状の溝(断面形状は長方形)を形成し、さらに格子状の溝の各格子の中央に直径1.5mm、深さ0.75mmの穴をドリルを用いた切削加工により形成した。次に、溝および穴を形成した表面とは反対側の面に、厚さ1.0mmの発泡ポリウレタンシート(A硬度48)を粘着テープにより貼り合わせて積層構造の研磨パッドを作製した。得られた研磨パッドの研磨層の構成を以下の表1に示す。
 上記した方法により研磨性能を評価した結果、以下の表2に示すように、研磨速度、研磨均一性および平坦化性能に優れ、欠陥数も少なく、また、長時間使用時の研磨性能の変化も小さかった。
[Example 2]
After obtaining a circular sheet having a thickness of 1.3 mm and a diameter of 51 cm in the same manner as in Example 1, a groove width of 0.5 mm, a groove depth of 0.9 mm, and a groove pitch (longitudinal and lateral) were formed on one surface thereof. Pitch) A 4.0 mm grid-like groove (cross-sectional shape is rectangular) is formed, and a hole with a diameter of 1.5 mm and a depth of 0.75 mm is cut using a drill in the center of each grid of the grid-like groove. Formed by. Next, a foamed polyurethane sheet (A hardness 48) having a thickness of 1.0 mm was bonded to the surface opposite to the surface on which the grooves and holes were formed with an adhesive tape to prepare a polishing pad having a laminated structure. The structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
As a result of evaluating the polishing performance by the above-mentioned method, as shown in Table 2 below, the polishing rate, the polishing uniformity and the flattening performance are excellent, the number of defects is small, and the change in the polishing performance when used for a long time is also observed. It was small.
 [実施例3]
 実施例1と同様にして厚さ1.1mm、直径51cmの円形状のシートを得た後、その一方の表面に溝幅1.0mm、溝深さ0.8mm、溝ピッチ(縦および横のピッチ)12.0mmの格子状の溝(断面形状は長方形)を形成し、さらに格子状の溝の各格子毎に、格子の中央と四隅の角を結んだ線分の中間点4ヶ所および格子の中央の計5ヶ所に直径2.0mm、深さ0.6mmの穴をドリルを用いた切削加工により形成した。次に、溝および穴を形成した表面とは反対側の面に、厚さ1.0mmの発泡ポリウレタンシート(A硬度48)を粘着テープにより貼り合わせて積層構造の研磨パッドを作製した。得られた研磨パッドの研磨層の構成を以下の表1に示す。
 上記した方法により研磨性能を評価した結果、以下の表2に示すように、研磨速度、研磨均一性および平坦化性能に優れ、欠陥数も少なく、また、長時間使用時の研磨性能の変化も小さかった。
[Example 3]
After obtaining a circular sheet having a thickness of 1.1 mm and a diameter of 51 cm in the same manner as in Example 1, a groove width of 1.0 mm, a groove depth of 0.8 mm, and a groove pitch (longitudinal and lateral) were formed on one surface thereof. (Pitch) 12.0 mm grid-like grooves (cross-sectional shape is rectangular), and for each grid of the grid-like grooves, four intermediate points of the line segment connecting the center of the grid and the corners of the four corners and the grid A hole having a diameter of 2.0 mm and a depth of 0.6 mm was formed by cutting using a drill at a total of five locations. Next, a foamed polyurethane sheet (A hardness 48) having a thickness of 1.0 mm was bonded to the surface opposite to the surface on which the grooves and holes were formed with an adhesive tape to prepare a polishing pad having a laminated structure. The structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
As a result of evaluating the polishing performance by the above-mentioned method, as shown in Table 2 below, the polishing rate, the polishing uniformity and the flattening performance are excellent, the number of defects is small, and the change in the polishing performance when used for a long time is also observed. It was small.
 [比較例1]
 実施例1において、穴の深さを0.65mmとすること以外は、実施例1と同様にして積層構造の研磨パッドを作製した。得られた研磨パッドの研磨層の構成を以下の表1に示す。
 上記した方法により研磨性能を評価した結果、以下の表2に示すように、研磨速度、研磨均一性および平坦化性能が劣る結果であった。
[Comparative Example 1]
In Example 1, a polishing pad having a laminated structure was produced in the same manner as in Example 1 except that the hole depth was 0.65 mm. The structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
As a result of evaluating the polishing performance by the above-described method, as shown in Table 2 below, the polishing rate, the polishing uniformity, and the planarization performance were inferior.
 [比較例2]
 実施例1において、溝の深さを0.45mmとすること以外は、実施例1と同様にして積層構造の研磨パッドを作製した。得られた研磨パッドの研磨層の構成を以下の表1に示す。
 上記した方法により研磨性能を評価した結果、以下の表2に示すように、初期の研磨速度、研磨均一性および平坦化性能に優れ、欠陥数も少なかったものの、長時間使用時には研磨速度および研磨均一性が低下し、欠陥数も多くなり、研磨性能の安定性が不十分であった。
[Comparative Example 2]
In Example 1, a polishing pad having a laminated structure was produced in the same manner as in Example 1 except that the depth of the groove was 0.45 mm. The structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
As a result of evaluating the polishing performance by the above-described method, as shown in Table 2 below, the initial polishing rate, the polishing uniformity and the flattening performance were excellent, and the number of defects was small, but the polishing rate and the polishing were used when used for a long time. The uniformity decreased, the number of defects increased, and the polishing performance was insufficiently stable.
 [比較例3]
 実施例2において、穴を貫通孔(深さが1.3mm)とすること以外は、実施例2と同様にして積層構造の研磨パッドを作製した。得られた研磨パッドの研磨層の構成を以下の表1に示す。
 上記した方法により研磨性能を評価した結果、以下の表2に示すように、初期の研磨速度、研磨均一性および平坦化性能に優れ、欠陥数も少なかったものの、長時間使用時には研磨速度および研磨均一性が低下し、研磨性能の安定性が不十分であった。
[Comparative Example 3]
In Example 2, a polishing pad having a laminated structure was produced in the same manner as in Example 2 except that the hole was a through hole (depth was 1.3 mm). The structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
As a result of evaluating the polishing performance by the above-described method, as shown in Table 2 below, the initial polishing rate, the polishing uniformity and the flattening performance were excellent, and the number of defects was small, but the polishing rate and the polishing were used when used for a long time. The uniformity decreased and the stability of the polishing performance was insufficient.
 [比較例4]
 実施例2において、穴を形成しないこと以外は、実施例2と同様にして積層構造の研磨パッドを作製した。得られた研磨パッドの研磨層の構成を以下の表1に示す。
 上記した方法により研磨性能を評価した結果、以下の表2に示すように、研磨速度および研磨均一性が劣り、欠陥数もやや多くなった。
[Comparative Example 4]
In Example 2, a polishing pad having a laminated structure was produced in the same manner as in Example 2 except that no hole was formed. The structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
As a result of evaluating the polishing performance by the above method, as shown in Table 2 below, the polishing rate and the polishing uniformity were inferior, and the number of defects was slightly increased.
 [比較例5]
 実施例3において、溝の幅を0.5mm、溝の深さを0.3mm、穴の深さを0.3mmとすること以外は、実施例3と同様にして積層構造の研磨パッドを作製した。得られた研磨パッドの研磨層の構成を以下の表1に示す。
 上記した方法により研磨性能を評価した結果、以下の表2に示すように、研磨速度および研磨均一性が劣り、欠陥数も多くなった。また長時間使用時の研磨速度および研磨均一性の変化も大きく、研磨性能の安定性が不十分であった。
[Comparative Example 5]
In Example 3, a polishing pad having a laminated structure was prepared in the same manner as in Example 3 except that the groove width was 0.5 mm, the groove depth was 0.3 mm, and the hole depth was 0.3 mm. did. The structure of the polishing layer of the obtained polishing pad is shown in Table 1 below.
As a result of evaluating the polishing performance by the above-described method, as shown in Table 2 below, the polishing rate and the polishing uniformity were inferior, and the number of defects was increased. Moreover, the change of the polishing rate and polishing uniformity at the time of long-term use was large, and the stability of the polishing performance was insufficient.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、高い研磨速度が得られ、研磨均一性および平坦化性能に優れ、スクラッチの発生も少ないなど優れた研磨性能を有し、しかも長時間研磨を続けても研磨性能の変化が小さい長寿命の研磨パッドが提供されることから、当該研磨パッドは、半導体ウェハ上に形成された酸化膜等の絶縁膜や金属膜等を化学機械的研磨する際などにおいて特に有用である。 According to the present invention, a high polishing rate can be obtained, excellent polishing uniformity and planarization performance, excellent polishing performance such as less scratching, and even if polishing is continued for a long time, the polishing performance changes. Since a small and long-life polishing pad is provided, the polishing pad is particularly useful when chemically insulating an insulating film such as an oxide film or a metal film formed on a semiconductor wafer.

Claims (10)

  1.  少なくとも研磨層を有する研磨パッドであって、
    該研磨層の研磨側表面に開口する溝と、該研磨層の研磨側表面に開口する穴を有し、
    該穴の1個あたりの開口部面積が0.05mm以上であり、
    該溝の深さ、該穴の深さ及び該研磨層の厚みが下記式(1)を満たすことを特徴とする研磨パッド。
    (1)Z>X>Y
    (式中、Xは溝の深さを表わし、Yは穴の深さを表わし、Zは研磨層の厚みを表わす。)
    A polishing pad having at least a polishing layer,
    A groove opened on the polishing side surface of the polishing layer, and a hole opened on the polishing side surface of the polishing layer;
    The opening area per one of the holes is 0.05 mm 2 or more,
    A polishing pad, wherein the depth of the groove, the depth of the hole, and the thickness of the polishing layer satisfy the following formula (1).
    (1) Z>X> Y
    (In the formula, X represents the depth of the groove, Y represents the depth of the hole, and Z represents the thickness of the polishing layer.)
  2.  溝の深さと穴の深さが、下記式(2)を満たす請求項1に記載の研磨パッド。
    (2)X-Y≧0.1
    (式中、Xは溝の深さを表わし、Yは穴の深さを表わし、長さの単位はmmである。)
    The polishing pad according to claim 1, wherein the depth of the groove and the depth of the hole satisfy the following formula (2).
    (2) XY ≧ 0.1
    (In the formula, X represents the depth of the groove, Y represents the depth of the hole, and the unit of length is mm.)
  3.  溝の深さが、下記式(3)~(5)を満たす請求項1又は2に記載の研磨パッド。
    (3)X≧0.5
    (4)0.50×Z≦X≦0.90×Z
    (5)Z-X≧0.2
    (式中、Xは溝の深さを表わし、Zは研磨層の厚みを表わし、長さの単位はmmである。)
    The polishing pad according to claim 1 or 2, wherein the depth of the groove satisfies the following formulas (3) to (5).
    (3) X ≧ 0.5
    (4) 0.50 × Z ≦ X ≦ 0.90 × Z
    (5) ZX ≧ 0.2
    (In the formula, X represents the depth of the groove, Z represents the thickness of the polishing layer, and the unit of length is mm.)
  4.  穴の深さが、下記式(6)~(8)を満たす請求項1~3のいずれかに記載の研磨パッド。
    (6)Y≧0.2
    (7)0.30×Z≦Y≦0.85×Z
    (8)Z-Y≧0.4
    (式中、Yは穴の深さを表わし、Zは研磨層の厚みを表わし、長さの単位はmmである。)
    The polishing pad according to any one of claims 1 to 3, wherein the depth of the hole satisfies the following formulas (6) to (8).
    (6) Y ≧ 0.2
    (7) 0.30 × Z ≦ Y ≦ 0.85 × Z
    (8) ZY ≧ 0.4
    (In the formula, Y represents the depth of the hole, Z represents the thickness of the polishing layer, and the unit of length is mm.)
  5.  溝の形状が格子状である請求項1~4のいずれかに記載の研磨パッド。 The polishing pad according to any one of claims 1 to 4, wherein the groove has a lattice shape.
  6.  研磨層の研磨側表面に開口する溝の総容積(a)と、研磨層の研磨側表面に開口し0.05mm以上の開口部面積を有する穴の総容積(b)との比率(a/b)が50/50~90/10の範囲内である請求項1~5のいずれかに記載の研磨パッド。 Ratio (a) of the total volume (a) of the grooves opened on the polishing side surface of the polishing layer and the total volume (b) of holes opened on the polishing side surface of the polishing layer and having an opening area of 0.05 mm 2 or more (a) 6. The polishing pad according to claim 1, wherein / b) is in the range of 50/50 to 90/10.
  7.  研磨層の研磨側表面と反対側の面にクッション層が積層されている請求項1~6のいずれかに記載の研磨パッド。 The polishing pad according to any one of claims 1 to 6, wherein a cushion layer is laminated on a surface opposite to the polishing side surface of the polishing layer.
  8.  研磨層が無発泡構造である請求項1~7のいずれかに記載の研磨パッド。 The polishing pad according to any one of claims 1 to 7, wherein the polishing layer has a non-foamed structure.
  9.  請求項1~8のいずれかに記載の研磨パッドを用いる半導体ウェハの研磨方法。 A semiconductor wafer polishing method using the polishing pad according to any one of claims 1 to 8.
  10.  請求項1~8のいずれかに記載の研磨パッドを用いる半導体デバイスの製造方法。 A method of manufacturing a semiconductor device using the polishing pad according to any one of claims 1 to 8.
PCT/JP2009/066046 2008-09-17 2009-09-14 Polishing pad WO2010032715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008238476 2008-09-17
JP2008-238476 2008-09-17

Publications (1)

Publication Number Publication Date
WO2010032715A1 true WO2010032715A1 (en) 2010-03-25

Family

ID=42039539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066046 WO2010032715A1 (en) 2008-09-17 2009-09-14 Polishing pad

Country Status (2)

Country Link
TW (1) TW201021972A (en)
WO (1) WO2010032715A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071461B2 (en) 2014-04-03 2018-09-11 3M Innovative Properties Company Polishing pads and systems and methods of making and using the same
TWI829909B (en) * 2019-04-03 2024-01-21 日商可樂麗股份有限公司 polishing pad

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620465B2 (en) * 2012-12-28 2014-11-05 東洋ゴム工業株式会社 Circular polishing pad
WO2016047535A1 (en) * 2014-09-26 2016-03-31 バンドー化学株式会社 Polishing pad and method for producing polishing pad

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138212A (en) * 1999-11-15 2001-05-22 Toshiro Doi Precise polishing apparatus
JP2003289056A (en) * 2002-03-28 2003-10-10 Toray Ind Inc Manufacturing method of polishing pad, polishing equipment and semiconductor device
JP2004167605A (en) * 2002-11-15 2004-06-17 Rodel Nitta Co Polishing pad and polishing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138212A (en) * 1999-11-15 2001-05-22 Toshiro Doi Precise polishing apparatus
JP2003289056A (en) * 2002-03-28 2003-10-10 Toray Ind Inc Manufacturing method of polishing pad, polishing equipment and semiconductor device
JP2004167605A (en) * 2002-11-15 2004-06-17 Rodel Nitta Co Polishing pad and polishing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071461B2 (en) 2014-04-03 2018-09-11 3M Innovative Properties Company Polishing pads and systems and methods of making and using the same
US10252396B2 (en) 2014-04-03 2019-04-09 3M Innovative Properties Company Polishing pads and systems and methods of making and using the same
TWI829909B (en) * 2019-04-03 2024-01-21 日商可樂麗股份有限公司 polishing pad

Also Published As

Publication number Publication date
TW201021972A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP5143528B2 (en) Polishing pad
JP5706178B2 (en) Polishing pad
EP3213868B1 (en) Nonporous molded article for polishing layer, polishing pad, and polishing method
WO2018021428A1 (en) Polishing pad and polishing method using same
KR101084808B1 (en) Metal film polishing pad and method for polishing metal film using the same
KR102398128B1 (en) Polishing-layer molded body, and polishing pad
JP2010045306A (en) Polishing pad
JP5318756B2 (en) Polishing pad manufacturing method
JP5997973B2 (en) Metal film polishing pad and polishing method using the same
JP2008235508A (en) Polishing pad, polishing method using the same, and method of manufacturing semiconductor device
WO2010032715A1 (en) Polishing pad
JP6184856B2 (en) Polishing pad manufacturing method and polishing method using the polishing pad
JP4994894B2 (en) Resin foam and polishing pad comprising the same
WO2023048266A1 (en) Polishing pad
JP7097171B2 (en) Polishing pad
WO2020255744A1 (en) Polishing pad, method for manufacturing polishing pad, and polishing method
EP4382250A1 (en) Polishing pad
WO2023149434A1 (en) Polishing layer, polishing pad, method for manufacturing polishing pad, and polishing method
JP7431807B2 (en) polishing pad
WO2023048265A1 (en) Polishing pad
TWI838883B (en) Grinding pad

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09814560

Country of ref document: EP

Kind code of ref document: A1