WO2010032179A1 - Polymeric wavelength converting elements - Google Patents
Polymeric wavelength converting elements Download PDFInfo
- Publication number
- WO2010032179A1 WO2010032179A1 PCT/IB2009/053978 IB2009053978W WO2010032179A1 WO 2010032179 A1 WO2010032179 A1 WO 2010032179A1 IB 2009053978 W IB2009053978 W IB 2009053978W WO 2010032179 A1 WO2010032179 A1 WO 2010032179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength converting
- dispersion
- converting element
- light emitting
- particles
- Prior art date
Links
- 239000002245 particle Substances 0.000 claims abstract description 90
- -1 polysiloxane Polymers 0.000 claims abstract description 50
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 42
- 239000011159 matrix material Substances 0.000 claims abstract description 25
- 239000006185 dispersion Substances 0.000 claims description 39
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 32
- 238000004132 cross linking Methods 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000000919 ceramic Substances 0.000 claims description 13
- 239000003431 cross linking reagent Substances 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 5
- 229910010293 ceramic material Inorganic materials 0.000 claims description 4
- UOUILILVWRHZSH-UHFFFAOYSA-N dimethyl-tris[(dimethyl-$l^{3}-silanyl)oxy]silyloxysilicon Chemical group C[Si](C)O[Si](O[Si](C)C)(O[Si](C)C)O[Si](C)C UOUILILVWRHZSH-UHFFFAOYSA-N 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 37
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 229920000642 polymer Polymers 0.000 description 21
- 239000010410 layer Substances 0.000 description 16
- 239000003054 catalyst Substances 0.000 description 15
- 239000011541 reaction mixture Substances 0.000 description 13
- 239000004971 Cross linker Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 238000006731 degradation reaction Methods 0.000 description 8
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 229910019990 cerium-doped yttrium aluminum garnet Inorganic materials 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- HRGDZIGMBDGFTC-UHFFFAOYSA-N platinum(2+) Chemical compound [Pt+2] HRGDZIGMBDGFTC-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000009827 uniform distribution Methods 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 101000801643 Homo sapiens Retinal-specific phospholipid-transporting ATPase ABCA4 Proteins 0.000 description 2
- 102100033617 Retinal-specific phospholipid-transporting ATPase ABCA4 Human genes 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004624 confocal microscopy Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000006459 hydrosilylation reaction Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 229920003205 poly(diphenylsiloxane) Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- BEZBEMZKLAZARX-UHFFFAOYSA-N alumane;gadolinium Chemical compound [AlH3].[Gd] BEZBEMZKLAZARX-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- GTWPLTBXXGOHNT-UHFFFAOYSA-N tetrakis(dimethylsilyl) silicate Chemical compound C[SiH](C)O[Si](O[SiH](C)C)(O[SiH](C)C)O[SiH](C)C GTWPLTBXXGOHNT-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/77348—Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7774—Aluminates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/505—Wavelength conversion elements characterised by the shape, e.g. plate or foil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31663—As siloxane, silicone or silane
Definitions
- the present invention relates to wavelength converting elements, methods for the manufacture thereof and to light emitting devices utilizing such wavelength converting elements.
- LEDs Light emitting diodes
- classical lighting devices such as fluorescent tubes and light bulbs
- the development of high-power LEDs with high light output has expanded the areas of use of LEDs for conventional lighting purposes.
- an LED Due to its construction and mechanism of function, an LED emits light within a rather narrow wavelength band, and conventional LEDs, for instance, emit light in the UV, blue, green, red or IR-band.
- a light emitting diode typically a blue emitting diode
- a wavelength converting material that partially converts the emitted light into another color. For example, by providing a blue emitting LED with a yellow emitting wavelength converting material that converts a desired portion of the blue light into yellow, the mixture of unconverted, blue light and converted, yellow light results in a whitish light.
- High power LEDs dissipate a lot of thermal energy while emitting high intensity light
- a wavelength converting material arranged on or near such an LED needs to be thermally stable and also light stable in order to ensure long life-time and consistent color throughout the life-time of the device.
- the degree of the wavelength conversion is dependent on the concentration of active substances in the wavelength converting material, and also on the thickness of the material. Hence, the thickness and the concentration should be able to be controlled accurately.
- a ceramic wavelength converting element is described in US 2004/0145308
- the element being formed from a polycrystalline ceramic body of an yttrium aluminum garnet (YAG) which is doped with an activator, such as cerium.
- YAG yttrium aluminum garnet
- Luminescent particles can be dispersed in a polysiloxane which thereafter is crosslinked to form a solid body.
- crosslinked both are accepted, just use always the same form
- the luminescent particles are essentially homogenously distributed while avoiding agglomeration of luminescent particles or phase- separation. Especially, this can be obtained without use of surfactants or modification of the luminescent particle surface.
- the present invention relates to a wavelength converting element, comprising luminescent particles dispersed in a matrix comprising crosslinked polysiloxane.
- a wavelength converting element of the present invention may be formed into a self-supporting element, which can be manufactured and thereafter arranged for its use in separate steps.
- the wavelength converting element may be formed "in-situ" such as directly on the surface of a light emitting diode.
- the thickness can easily be adjusted to a desired value, during the processing step (i.e. controlling spin-coating parameters).
- polymers used have initial viscosity values which facilitate the good dispersion of the particles with no need of surfactants or particles surface modification, and can afford polymer converters with a homogeneous distribution of the individual luminescent particles throughout the polymer converter element.
- Crosslinked polysiloxanes are temperature stable, typically up to temperatures above 300 °C, meaning that they are stable under normal operating conditions of light emitting diodes. Crosslinked polysiloxanes are further stable towards exposure to light, meaning that they will not degrade/discolor as a consequence of high intensity light exposure.
- the polymeric wavelength converter can easily be shaped in different forms. This may lead to better outcoupling of the light from a LED-converter system.
- the wavelength converting elements of the present invention has an inherent elasticity, rendering them a good capability to withstand thermal stresses, for example due to differing coefficients of thermal expansion between the wavelength converting element and a light emitting diode.
- the elasticity of the present wavelength converting elements is also advantageous since the shape of the element can be manipulated, such as bended, if needed so that it conforms to a desired substrate on which it is to be arranged.
- the wavelength converting element may comprise at least a first sub-layer comprising a first luminescent material and a second sublayer comprising a second luminescent particles.
- said matrix comprises crosslinked poly(dimethyl siloxane).
- Crosslinked PDMS has shown excellent properties in terms of thermal and photo stability and also in terms of capability to hold high concentration of luminescent material uniformly distributed in the matrix while avoiding agglomeration of luminescent particles and phase-separation. Further PDMS is a relatively cheap material leading to the possibility of low cost mass-manufacture of wavelength converting elements.
- said luminescent particles are ceramic particles.
- Ceramic particles are known to be hard to distribute evenly in polymeric matrices.
- the proposed crosslinked polysiloxane matrix has however been demonstrated to have a capability of holding large amounts of ceramic particles homogeneously and separately distributed in the polymer matrix.
- the surface of said particles is of a ceramic material.
- the crosslinked polysiloxane matrix is capable of holding luminescent particles, especially ceramic luminescent particles, homogenously and separately distributed without additional surface active agents or particles surface modifications. This obviates the need for pre-processing surface modification of the luminescent particles.
- the present invention relates to a light emitting device, comprising a light emitting diode and a wavelength converting element of the present invention arranged to receive light emitted from said light emitting diode.
- the wavelength converting element is arranged on the light emitting surface of the light emitting diode, optionally by means of a bonding material.
- the wavelength converting element and the light emitting diode are arranged mutually spaced apart.
- the present invention relates to a method for the manufacture of a wavelength converting element, said method comprising providing a dispersion comprising at least luminescent particles dispersed in a crosslinkable polysiloxane; and crosslinking said dispersion to obtain a solid wavelength converting element.
- the method allows for the separate manufacture of wavelength converting elements which at a later stage can be arranged on light emitting diodes. Adding the luminescent particles to the polysiloxane polymer before crosslinking gives a well controlled concentration and dispersion of the luminescent particles in the wavelength converting element.
- the method also allows for cross-linking of the dispersion directly on a substrate, such as the light emitting surface of an LED, thereby obtaining a good optical bond between the LED and the wavelength converting element without the need for a bonding material.
- the polysiloxane comprises a di-vinyl functional poly(dimethyl siloxane).
- the dispersion may further comprise a crosslinking agent, such as for example, but not limited to tetrakis(dimethylsiloxy)silane.
- the dispersion is deposited a layer on a substrate before effecting said crosslinking dispersion.
- the dispersion is mould to a desired shape before crosslinking said dispersion.
- the method comprises: providing a first dispersion of luminescent particles in a cross-linkable polysiloxane and a second dispersion of luminescent particles in a cross-linkable polysiloxane; depositing a first layer of said first dispersion; crosslinking said first dispersion; depositing a second layer of said second dispersion on said first layer; and crosslinking said second dispersion.
- the present invention relates to a method for the manufacture of a light emitting device, comprising providing a light emitting diode; and arranging a wavelength converting element according to the present invention or manufactured according to a method of the present invention to receive at least part of the light emitted by said light emitting diode.
- Figure 1 illustrates a light emitting device of the present invention.
- Figure 2 illustrates a multilayer embodiment of a wavelength converting element of the present invention.
- Figure 3 illustrates a stack of separate wavelength converting elements
- Figure 4a and b depicts SEM images of wavelength converting elements of the present invention.
- Figure 5 a and b depicts SEM images of wavelength converting elements of the present invention.
- a light emitting device 100 of the present invention is illustrated schematically in figure 1, and comprises a light emitting diode (LED) 101 having an upwards directed main light emitting surface 102.
- a wavelength converting element 104 of the present invention is arranged on the light emitting surface 102, optionally by means of an optically transmissive bonding material 103.
- the wavelength converting element 104 may be arranged at a certain distance, remote, from the LED 101.
- a wavelength converting element of the present invention may be placed at a distance from one or more LEDs, such as e.g. forming an output window of a lamp. It will be realized that also such embodiments are encompassed by the scope of the claims.
- the LED 101 emits light through its light emitting surface 102, via the optional bonding material 103, into the wavelength converting element 104.
- a first portion of the LED-light, unconverted light is absorbed by the luminescent material in the wavelength converting material and is re-emitted as light, converted light, having a different wavelength distribution from that of the unconverted light.
- the converted light is red-shifted in respect to the unconverted light, even though there also exist luminescent materials that lead to a blue-shift.
- a second portion of the unconverted light passes unconverted through the wavelength converting element, and thus a mixture of converted and unconverted light exits the wavelength converting element. It is to be noted that for example if the concentration of luminescent material is very high, or if the thickness of the wavelength converting element is very high, the portion of unconverted light passing through the wavelength converting element can be 0 or at least close to 0.
- the light emitting diode 101 emit light in or near the blue light range, and the wavelength converting element is capable of converting such blueish light into yellow light. A mixture of blue and yellow light results in white light.
- the wavelength converting element 104 comprises luminescent particles 105 distributed, such as dispersed, in a matrix material 106 of a crosslinked polysiloxane. This results in a solid wavelength converting element with well-controlled concentration of luminescent particles. The concentration of luminescent particles in the matrix material is selected in order to achieve a desired degree of light conversion for a certain thickness of the wavelength converting element.
- concentration of luminescent material up to about 30 % (v/v) are possible to achieve while maintaining a uniform distribution of the luminescent particle in the matrix.
- concentration of luminescent material is in the range of 3 to 30% (v/v), such as in the range of from 5 to 20%.
- luminescent particles refers particles of any luminescent material with fluorescent and/or phosphorescent properties that are suitable for use in the present application.
- the luminescent particles may be a single material or may be a mixture of two or more of such particles.
- Non- limiting examples of luminescent particles include both inorganic and organic luminescent particles.
- Typical examples include ceramic luminescent particles, such as, but not limited to lanthanoid activated lutetium, yttrium and/or gadolinium aluminum garnets of the following general formula:
- M ⁇ being selected out of the group comprising Ca, Sr, Mg, Ba, Zn, Yb, Mn;
- M IV being selected out of the group comprising Si, Ge, C, Zr, Hf, and
- M i ⁇ being selected out of the group comprising Al, B, Sc, Ga, and Lu, such as CaAlSiN 3 :Eu.
- the luminescent particle in the wavelength converting element are chosen to match the emission wavelength of the light emitting diode, so that the luminescent particles are capable of converting a desired part of the unconverted light.
- the luminescent particles in a wavelength converting element of the present invention may be a plurality of particles having essentially the same chemical composition or may represent a mixture of two or more types of luminescent particles, having different chemical composition.
- a mixture of two or more types of luminescent particles may be used to tune both the excitation wavelength range and the emission wavelength band, so that the desired light output, in terms of perceived color, is obtained.
- the proposed polysiloxane matrix is capable of holding the luminescent particles separately dispersed and homogenously distributed without the need for any surface modification of the luminescent particles or surfactants.
- they may have a ceramic, i.e. unmodified, surface.
- the matrix 106 comprises a crosslinked polysiloxane, in which the photo luminescent material 105 is distributed.
- a polysiloxane is a polymerized siloxane with functional sidechains.
- Representative examples include poly(dimethyl siloxane) PDMS and poly(diphenylsiloxane) PDPS, although other polysiloxanes are also encompassed by the scope of the present invention.
- the polysiloxanes In order for the polysiloxanes to be crosslinkable, it is typically required a reactive functionality on the polysiloxane.
- the polysiloxanes may be vinyl terminated or hydroxyl terminated.
- Crosslinked polysiloxanes have been shown to have a capability to hold large amounts of ceramic particles, such as the above mentioned aluminum garnets, without agglomeration or deposition of the particles. Hence, this matrix material has been shown to be an excellent choice for use in wavelength converting elements.
- the crosslinked polysiloxane is a crosslinked poly(dimethyl siloxane) (crosslinked nPDMS, with 4 ⁇ n ⁇ 500, typically 4 ⁇ n ⁇ 270). It has been shown that PDMS is especially well suited as matrix material for use in the present invention as it exhibits high resistance towards temperature and light exposure.
- the nPDMS polymers also show initial viscosity levels which make them very attractive to disperse individually and homogenously the luminescent particles, without the use of surface active agents and no need of performing modifications on the surface of the particles to improve the compatibility.
- a method for the manufacture of a wavelength converting element of the present invention will now be described in general terms.
- a reaction mixture comprising polysiloxane, crosslinking agent, luminescent material and a catalyst solution is spread out on a substrate to a desired thickness, such as by conventional coating methods, for example doctor blade coating, spin coating, etc.
- Suitable substrates include, but are not limited to thermoplastic substrates such as polycarbonate, crosslinked PE or PMMA, as well as glass, sapphire and silicon.
- Crosslinking is effected in the spread out reaction mixture to form a solidified layer of crosslinked polysiloxane matrix in which the luminescent particles are separated and homogenously distributed.
- the polysiloxane and the luminescent particles are pre-mixed before the addition of the crosslinking agent and catalyst solution to the reaction mixture.
- the means for effecting crosslinking in the spread out reaction mixture will depend on the initiator/catalyst type and concentration, the type and concentration of the crosslinker and temperature (e.g. step-curing at different values), but the crosslinking is typically effected by application of heat for a prolonged period of time.
- the substrate may be removed to form a self-supporting wavelength converting element of the present invention, and the solidified layer may be easily divided into a plurality of wavelength converting elements of a desired size.
- the thickness of the wavelength converting element may be adjusted to a desired value, by controlling the processing parameters (i.e. spin-coating conditions, or addition of solvents).
- the polysiloxane in the reaction mixture may be represented by essentially linear poly(dimethyl siloxane) such as di- functional vinyl terminated poly(dimethyl siloxane), formula I.
- the polysiloxane has typically, but is not limited to, an average molecular weight from 500 to 40 000 g/mol, typically 500 to 20 000 g/mol, (n varying between about 4 and about 500, typically between about 4 and about 270), depending on the particles size, concentration of the luminescent particles, mixing method, etc)
- the crosslinking agent may be, but is not limited to, a tetra-functional crosslinker, such as, tetrakis(dimethylsiloxy)silane, formula II.
- Other multifunctional crosslinkers e.g. tri, penta or hexafunctional
- Tetrakis(dimethylsiloxy)silane is a crosslinker suitable for vinyl-terminated polysiloxanes.
- Crosslinking agents suitable for hydroxy-terminated polysiloxanes include multifunctional siloxanes, such as tetraethoxysilane (TEOS).
- the crosslinking agent is added to an effective amount within, but not limited to, crosslinker to PDMS ratios (H/V) from 1 to 3.7, to yield the desired crosslinking in the reaction mixture.
- H/V crosslinker to PDMS ratios
- the temperature value (between room temperature and 120 0 C ) and cycles (one to three steps) used to effect the crosslinking should be adjusted to the H/V ratio and catalyst amount used.
- Catalysts suitable for use in this systems includes, but are not limited to platinum catalysts, such as cis-dichlorobis(diethylsulphide)platinum(II).
- platinum catalysts such as cis-dichlorobis(diethylsulphide)platinum(II).
- Other Pt catalysts mentioned in the related literature i.e. Karstedt's or Speiers catalyst, can be used to perform the hydrosilylation reaction and be equally efficient on the crosslinking of the current polymeric system.
- the Pt(II) catalyst is typically added in a solvent, such as toluene, typically from 5 to 20 ppm of Pt (II), to effect the desired crosslinking of the reaction mixture.
- a solvent such as toluene, typically from 5 to 20 ppm of Pt (II), to effect the desired crosslinking of the reaction mixture.
- the wavelength converting element comprises a single layer of matrix material with an essentially uniform distribution of the luminescent particles.
- a wavelength converting element 200 which is illustrated in figure 2 of the present invention, which is comprised by at least two superpositioned sublayers 201 and 202 wherein there is a difference in the luminescent particle composition between the first and the second sublayer.
- the first sublayer 201 may comprise a first luminescent particle composition 211
- the second sublayer 202 may comprise a second luminescent particle composition 212.
- a first and a second luminescent particle composition may differ in terms of chemical composition, in terms of blending ratio between two or more luminescent particle species in a mixture, or in terms of concentration in the matrix.
- Such a wavelength converting element 200 may be manufactured by preparing two separate reaction mixtures as described above, each comprising polysiloxane, crosslinking agent, luminescent particles and catalyst, but where the luminescent material, its concentration and/or the composition (if the luminescent material comprises a mixture of two or more species of luminescent particles) varies between the two reaction mixtures.
- the first reaction mixture is spread out on a substrate, but before final crosslinking, optionally after an intermediate crosslinking of the spread out first reaction mixture, the second reaction mixture is spread out on top of the first reaction mixture, whereafter final crosslinking is effected in both layers.
- the two layers will bond strongly to each other by inter-layer crosslinking to form an excellent optical bond, and the interface as such between the two sublayers will not to an appreciable extent affect the optical properties of the wavelength converting element.
- wavelength converting elements such as scattering particles, absorbing dyes, etc.
- the wavelength converting elements of the present invention may be shaped into different shapes, such as domes, pyramids or the like, without deviating from the scope of the present invention. This may lead to better outcoupling of the light from a LED-converter system.
- These shapes may be formed directly during the processing, such as by moulding the dispersion and crosslinking the dispersion in the mold, or later by cutting in smaller elements or making several crosslinking steps to achieve the desired layers or shapes.
- Two dispersions of the YAG:Ce particles with mean particle size of 3.5 ⁇ m, in the PDMS vinyl-terminated pre-polymer was prepared with 10 and 20% v/v, respectively, of the luminescent particles.
- the dispersions were stirred by hand for approximately 5 minutes and mixed in a roller bank for 2 hours to obtain a homogenous dispersion.
- the crosslinker was added to each of the mixtures according to a Si-H to vinyl groups ratio H/V of about 3.7 (as high crosslinking as possible is targeted), and the dispersion was stirred for approximately 5 minutes.
- the Platinum (II) catalyst previously dissolved in toluene, was added to each of the mixtures (20 ppm of Pt 11 relatively to the PDMS pre-polymer in 1 mL of a toluene solution) which then was stirred by hand for another 5 minutes.
- each of the dispersions were finally spread on Poly(carbonate) substrates (PC) using a spin-coater equipment with different spinning conditions depending on the targeted thickness for the polymer converters. Finally the coatings were placed in an oven under vacuum at 60 0 C, for approximately 18 hours to finalize the crosslinking.
- Figure 4a represents a SEM image of the polymer converter comprising 10 % v/v of YAG: Ce luminescent particles
- Figure 4b represents a SEM image of the polymer converter comprising 20 % v/v of YAG:Ce luminescent particles.
- the dispersions were stirred by hand for approximately 5 minutes and mixed in a roller bank for 2 hours to obtain a homogenous dispersions.
- the crosslinker was added to the YAG: Ce containing mixture according to H/V ratio of 3.7, and the dispersion was stirred for approximately 5 minutes.
- the Platinum (II) catalyst previously dissolved in toluene, was added to the mixture (20 ppm of Pt 11 relatively to the PDMS pre-polymer in 1 mL of toluene).
- a second layer of PDMS was spread and pre-crosslinked on the top of the first layer containing the YAG: Ce particles for 30 minutes more, in a vacuum oven at 60 0 C.
- a third layer the mixture containing the CaAlSiN 3 :Eu particles was spread and crosslinked on top of the second PDMS layer.
- the final three-layer converter was left in a vacuum oven at 60 0 C for 24 hours, to finalize the crosslinking.
- the crosslinked multilayered PDMS-based polymer converter was easily removed by the hand from the PC substrate.
- Figure 5a represents a SEM image of an example of a multilayer polymer converter with the following arrangement: 10% v/v YAG:Ce - PDMS with no particles - 5% v/v CaAlSiN 3 :Eu; while Figure 5b represents a SEM image of an example of a multilayer polymer converter comprising the following arrangement: PDMS with no particles - 10% v/v YAG:Ce - 5% v/v CaAlSiN 3 :Eu.
- Stability tests were carried out (by accelerating the degradation using a combination of a heating plate and a light source - set up called as turbodegrador) over the single layer polymer converter with 10 and 20% v/v of YAG: Ce luminescent particles, presented in figure 4 a and b.
- the experiments were made at normal air and moisture atmosphere, in a temperature range from 180-300 0 C, under visible light irradiation (150W directed to an area of ⁇ 3 mm in the converter element) and for long operation periods.
- the performance of the crosslinked PDMS polymer converter proved to be very stable under the extreme conditions tested. For example, for the converters presented in figure 4 a and b, no visible degradation was observed up to 21 days, at 300 0 C, 150 W of visible light and under normal air and moisture conditions.
- FTIR spectroscopy characterization of the samples submitted to degradation has shown no chemical changes in the polymer matrix, which would be expected for degradation. However, some changes were identified in relation to the type of crosslinks present in the polymer network, which can be due to additional crosslinks promoted by the temperature.
- TGA thermogravimetric analysis of the crosslinked PDMS materials with and without particles up to 900 0 C, under air and Nitrogen flow, have also shown that the degradation process does not start until above 300 0 C. Furthermore, it should be noticed that the major final products of degradation of PDMS-based materials are CO 2 , H 2 O and mainly a SiO 2 residue, which is one of the most abundant oxide materials in nature. Hence, the possible degradation products produced at high temperatures (> 300 ° C) are environmentally safe.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
- Luminescent Compositions (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/062,981 US8723204B2 (en) | 2008-09-16 | 2009-09-11 | Polymeric wavelength converting elements |
EP20090787177 EP2328994B1 (en) | 2008-09-16 | 2009-09-11 | Polymeric wavelength converting elements |
CN200980136171.4A CN102159664B (en) | 2008-09-16 | 2009-09-11 | Polymeric wavelength converting elements |
JP2011526613A JP2012503307A (en) | 2008-09-16 | 2009-09-11 | Polymer wavelength conversion element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08164400 | 2008-09-16 | ||
EP08164400.7 | 2008-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010032179A1 true WO2010032179A1 (en) | 2010-03-25 |
Family
ID=41263874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2009/053978 WO2010032179A1 (en) | 2008-09-16 | 2009-09-11 | Polymeric wavelength converting elements |
Country Status (8)
Country | Link |
---|---|
US (1) | US8723204B2 (en) |
EP (1) | EP2328994B1 (en) |
JP (1) | JP2012503307A (en) |
KR (1) | KR20110057239A (en) |
CN (1) | CN102159664B (en) |
RU (1) | RU2011115069A (en) |
TW (1) | TW201022399A (en) |
WO (1) | WO2010032179A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2787543A1 (en) * | 2011-11-29 | 2014-10-08 | Sharp Kabushiki Kaisha | Manufacturing method for light-emitting device |
US9153753B2 (en) | 2011-02-09 | 2015-10-06 | Koninklijke Philips N.V. | Polymeric matrix with organic phosphor and manufactory thereof |
EP3470453A1 (en) * | 2017-10-16 | 2019-04-17 | C&B Lum. Design | Luminescent composition, luminescent object, in particular a sign, consisting of such a composition and method of manufacturing such an object |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5972571B2 (en) * | 2011-12-28 | 2016-08-17 | 日東電工株式会社 | Optical semiconductor device and lighting device |
EP2804925B1 (en) | 2012-01-19 | 2016-12-28 | Nanoco Technologies Ltd | Molded nanoparticle phosphor for light emitting applications |
WO2013182968A1 (en) * | 2012-06-08 | 2013-12-12 | Koninklijke Philips N.V. | Lighting device with polymer containing luminescent moieties |
CN104471730B (en) | 2012-07-20 | 2018-04-17 | 皇家飞利浦有限公司 | Luminescent device and the method for creating luminescent device |
EP2979310B1 (en) | 2013-03-29 | 2019-07-03 | Signify Holding B.V. | Light emitting device comprising wavelength converter |
JP2014232826A (en) * | 2013-05-30 | 2014-12-11 | 亞徳光機股▲ふん▼有限公司 | Light emitting device |
WO2015037968A1 (en) * | 2013-09-16 | 2015-03-19 | 주식회사 엘지화학 | Light-scattering sheet, electronic element comprising same, and method for producing same |
US9753277B2 (en) * | 2015-08-11 | 2017-09-05 | Delta Electronics, Inc. | Wavelength conversion device |
TWI599078B (en) * | 2016-08-05 | 2017-09-11 | 行家光電股份有限公司 | Moisture-resistant chip scale packaging light emitting device |
US10230027B2 (en) | 2016-08-05 | 2019-03-12 | Maven Optronics Co., Ltd. | Moisture-resistant chip scale packaging light-emitting device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070278935A1 (en) * | 2006-06-02 | 2007-12-06 | Sharp Kabushiki Kaisha | Wavelength conversion member and light-emitting device |
EP1947670A2 (en) * | 2007-01-19 | 2008-07-23 | Kismart Corporation | Wavelength converting structure and manufactur and use of the same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5763835A (en) * | 1995-11-01 | 1998-06-09 | Raychem Corporation | Gel-filled closure |
DE19946125C1 (en) * | 1999-09-20 | 2001-01-04 | Plasma Photonics Gmbh | Phosphor film, especially for low pressure discharge lamp useful e.g. for therapeutic and/or cosmetic treatment, consists of silicone elastomer with embedded phosphor particles |
US7554258B2 (en) * | 2002-10-22 | 2009-06-30 | Osram Opto Semiconductors Gmbh | Light source having an LED and a luminescence conversion body and method for producing the luminescence conversion body |
US7361938B2 (en) * | 2004-06-03 | 2008-04-22 | Philips Lumileds Lighting Company Llc | Luminescent ceramic for a light emitting device |
JP2007091986A (en) * | 2005-09-30 | 2007-04-12 | Tsuchiya Co Ltd | Coating liquid for forming phosphor sheet for light-emitting element and phosphor sheet produced from coating liquid |
JP2007096148A (en) * | 2005-09-30 | 2007-04-12 | Toyoda Gosei Co Ltd | Light emitting device |
JP4931628B2 (en) * | 2006-03-09 | 2012-05-16 | セイコーインスツル株式会社 | Illumination device and display device including the same |
DE102006031107A1 (en) * | 2006-07-05 | 2008-01-10 | Wacker Chemie Ag | Hardenable Organopolysiloxanmassen |
JP5446078B2 (en) * | 2006-08-22 | 2014-03-19 | 三菱化学株式会社 | SEMICONDUCTOR DEVICE MEMBER, SEMICONDUCTOR DEVICE MEMBER FORMING METHOD AND SEMICONDUCTOR DEVICE MEMBER MANUFACTURING METHOD, SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME, SEMICONDUCTOR DEVICE MEMBER FORMING SOLUTION, AND PHOSPHOR COMPOSITION |
DE102007032280A1 (en) * | 2007-06-08 | 2008-12-11 | Osram Opto Semiconductors Gmbh | Optoelectronic component |
-
2009
- 2009-09-11 CN CN200980136171.4A patent/CN102159664B/en active Active
- 2009-09-11 JP JP2011526613A patent/JP2012503307A/en active Pending
- 2009-09-11 KR KR1020117008650A patent/KR20110057239A/en not_active Application Discontinuation
- 2009-09-11 EP EP20090787177 patent/EP2328994B1/en active Active
- 2009-09-11 WO PCT/IB2009/053978 patent/WO2010032179A1/en active Application Filing
- 2009-09-11 US US13/062,981 patent/US8723204B2/en active Active
- 2009-09-11 RU RU2011115069/05A patent/RU2011115069A/en not_active Application Discontinuation
- 2009-09-14 TW TW98130963A patent/TW201022399A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070278935A1 (en) * | 2006-06-02 | 2007-12-06 | Sharp Kabushiki Kaisha | Wavelength conversion member and light-emitting device |
EP1947670A2 (en) * | 2007-01-19 | 2008-07-23 | Kismart Corporation | Wavelength converting structure and manufactur and use of the same |
Non-Patent Citations (2)
Title |
---|
A.R.DUGGAL ET.AL.: "Organic light-emitting devices for illumination quality white light", APPLIED PHYSICS LETTERS, vol. 80, no. 19, 2002, pages 3470 - 3472, XP002555290 * |
W. XU ET.AL.: "Oxygen sensors based on luminescence quenching: interactions of metal complexes with the polymer supports", ANAL. CHEM., vol. 66, 1994, pages 4133 - 4141, XP002555291 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9153753B2 (en) | 2011-02-09 | 2015-10-06 | Koninklijke Philips N.V. | Polymeric matrix with organic phosphor and manufactory thereof |
EP2673334B1 (en) * | 2011-02-09 | 2016-07-13 | Koninklijke Philips N.V. | Polymeric matrix with organic phosphor and manufactory thereof |
EP2787543A1 (en) * | 2011-11-29 | 2014-10-08 | Sharp Kabushiki Kaisha | Manufacturing method for light-emitting device |
EP2787543A4 (en) * | 2011-11-29 | 2014-12-17 | Sharp Kk | Manufacturing method for light-emitting device |
US9006006B2 (en) | 2011-11-29 | 2015-04-14 | Sharp Kabushiki Kaisha | Manufacturing method for light-emitting device comprising multi-step cured silicon resin |
EP2924744A1 (en) * | 2011-11-29 | 2015-09-30 | Sharp Kabushiki Kaisha | Manufacturing method for light-emitting device |
EP3470453A1 (en) * | 2017-10-16 | 2019-04-17 | C&B Lum. Design | Luminescent composition, luminescent object, in particular a sign, consisting of such a composition and method of manufacturing such an object |
FR3072387A1 (en) * | 2017-10-16 | 2019-04-19 | C&B Lum.Design | LUMINESCENT COMPOSITION, LUMINESCENT OBJECT FORMED OF SUCH A COMPOSITION AND METHOD FOR MANUFACTURING SUCH AN OBJECT. |
Also Published As
Publication number | Publication date |
---|---|
CN102159664B (en) | 2015-01-14 |
US8723204B2 (en) | 2014-05-13 |
EP2328994B1 (en) | 2012-12-26 |
EP2328994A1 (en) | 2011-06-08 |
JP2012503307A (en) | 2012-02-02 |
US20110156081A1 (en) | 2011-06-30 |
RU2011115069A (en) | 2012-10-27 |
KR20110057239A (en) | 2011-05-31 |
CN102159664A (en) | 2011-08-17 |
TW201022399A (en) | 2010-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2328994B1 (en) | Polymeric wavelength converting elements | |
Park et al. | Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut | |
CN103154146B (en) | Phosphor-containing sheet, LED light emitting device using same, and method for manufacturing led light emitting device | |
EP2712908A2 (en) | Phosphor adhesive sheet, optical semiconductor element-phosphor layer pressure-sensitive adhesive body, and optical semiconductor device | |
CN109643747B (en) | Wavelength converter with polysiloxane material, manufacturing method and solid state lighting device comprising wavelength converter | |
US8889457B2 (en) | Composition having dispersion of nano-particles therein and methods of fabricating same | |
US9935246B2 (en) | Silazane-containing materials for light emitting diodes | |
KR101932982B1 (en) | Fluorescent-material-containing resin sheet and light-emitting device | |
US9337368B2 (en) | Ceramic composition having dispersion of nano-particles therein and methods of fabricating same | |
WO2015020859A2 (en) | Luminescent coatings and devices | |
WO2015059258A1 (en) | Led encapsulant | |
KR102519097B1 (en) | Conversion element manufacturing method, conversion element and light emitting device | |
WO2019158444A1 (en) | Methods for producing a conversion element and an optoelectronic component | |
CN102869502B (en) | Releasable light-converting luminescent film | |
EP3645660B1 (en) | Wavelength converting component | |
EP3695443B1 (en) | Manufacturing process for an optoelectronic device | |
CN109791967B (en) | Phosphor device and method | |
TW201925421A (en) | Coated fluorescent substance, production method thereof, fluorescent substance sheet, and luminescence device | |
WO2023161097A1 (en) | Converter element, method for producing a converter element and radiation emitting device | |
JP2024130926A (en) | Phosphor dispersion and coating film-forming composition using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980136171.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09787177 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009787177 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13062981 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2011526613 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2446/CHENP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20117008650 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011115069 Country of ref document: RU |