WO2010030924A2 - Apparatus and methods for simulation of combustion effects in a fireplace - Google Patents

Apparatus and methods for simulation of combustion effects in a fireplace Download PDF

Info

Publication number
WO2010030924A2
WO2010030924A2 PCT/US2009/056714 US2009056714W WO2010030924A2 WO 2010030924 A2 WO2010030924 A2 WO 2010030924A2 US 2009056714 W US2009056714 W US 2009056714W WO 2010030924 A2 WO2010030924 A2 WO 2010030924A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
flame
flame simulation
leds
Prior art date
Application number
PCT/US2009/056714
Other languages
French (fr)
Other versions
WO2010030924A3 (en
Inventor
Gus Haramaras
Ron Calvert
Original Assignee
Ghp Group, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ghp Group, Inc. filed Critical Ghp Group, Inc.
Publication of WO2010030924A2 publication Critical patent/WO2010030924A2/en
Publication of WO2010030924A3 publication Critical patent/WO2010030924A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/002Stoves
    • F24C7/004Stoves simulating flames

Definitions

  • the present invention relates generally to electric fireplace technology.
  • the present invention relates to an apparatus and methods that provide improved simulation of combustion effects in a fireplace through illumination.
  • Electric or electronic fireplaces are a clean and easy source of heat. Electric fireplaces may be installed in locations often for less expense and where gas fireplaces are not desired or will not fit. However, electric fireplaces do not have the same combustion effects that are produced by fuel burning fireplaces. To overcome this shortcoming, electric fireplace designs have been developed with devices that operate to simulate the flame or fire associated with fuel burning fireplaces. Some electric fireplaces provide a reasonably realistic simulation of a wood-burning fireplace. Electric fireplaces may include simulated burning logs and simulated embers that add to the impression of a wood fire. Various mechanisms have been provided to add moving and/or flickering flames. The success of the simulation depends on the skill of the manufacturer to provide various mechanisms to manipulate combinations of lights, screens, and filters and to provide a random and lifelike flame, burning logs, and ember effect.
  • the flame effect has been generated using very similar techniques for decades.
  • the flame effect in certain embodiments is produced using pieces of lightweight fabric such as silk, which is cut into flame-like shapes.
  • a blower creates airflow, which in turn moves the fabric to imitate the flame.
  • Another embodiment utilizes a light randomizer, such as aluminum foil pieces, that is rotated in front of a standard light bulb. The light is reflected over the randomized piece, projected through a mask of flame shape cutouts and onto a screen.
  • Drawbacks include unrealistic flame appearance and repetition of the flame simulation over a short period of time.
  • An additional disadvantage is that the effect relies on the use of a motor to rotate the light randomizer. The life of the effect, therefore, turns on the life of the motor. Also, the life of a standard light bulb is short and therefore must be frequently replaced.
  • the present invention has a principal objective of providing a realistic simulation of that which occurs as a result of the combustion of combustible materials in a fuel-burning fireplace or like device.
  • the combustible material that is simulated in the present invention may be, for example, logs.
  • the result of the combustion that is simulated in the present invention may include the flames, the burning logs, and the embers.
  • the assemblies of the present invention may, and in most embodiments will include some type of housing on or in which the present invention is located and operates.
  • the housing of the present invention may take any suitable form as needed or desired and may be in the form of an enclosure or framework, sized and shaped according to a number of considerations. Examples of these considerations include budget, space, aesthetic, mechanical, safety, and other design and operating considerations.
  • the housing is an enclosure or structure in which or to which mechanisms and components, such as ember bed simulation assembly, logs, and flame simulation unit, are enclosed or attached.
  • the housing is also that which is attached at an installation location.
  • the housing or box may be manufactured from a wide variety of materials, including plastic resin suitable for the application, sheet metal, or any other material known to those skilled in the art.
  • a fire display box is positioned in the housing.
  • the term "fire display box” will broadly signify the area similar to that which is found in a fuel-burning fireplace in which combustion takes place and from which the fire that is produced thereby may be viewed. Traditionally, this area is known as a “firebox,” “box,” or “fireplace.”
  • One embodiment of the housing includes a top panel, a bottom panel, a back panel and opposing side panels.
  • the two opposing side panels are further optional depending on the application.
  • the housing of this embodiment is sized and shaped to accommodate a fire display box positioned therein.
  • the fire display box is designed to present to a viewer the impression of a working, more traditional non-electronic fireplace.
  • the fire display box is open to the front for viewing purposes and may optionally be provided with a fixed or movable front panel, which may be at least in part transparent, translucent or opaque.
  • the front of the fireplace unit is that side of the unit through which the interior of the unit is at least partially viewable. Certain elements of the present invention are located within the fire display box.
  • the combustion simulation of the present invention may include elements that simulate the flames produced from the combustion of combustible materials.
  • a unit with flame simulation capabilities includes a projection screen visible to the viewer, in the viewing area, or front of the fire display box.
  • At least one light source, or light illumination source, as well as a flame cutout panel or flame cutout mask may be contained within the fire display box to simulate the flame effect.
  • the flame cutout panel is located between the projection screen and the light illumination source.
  • the flame cutout panel may include a number of individual cutouts, the shape of each of which is roughly the shape of individual stylized flames, varying in size, shape, and/or form.
  • Another embodiment of flame simulation assembly includes a plurality of light sources and a mask with a plurality of cutouts.
  • Each light source may be positionable relative to the mask cutouts to vary the combustion effect.
  • each cutout on the mask may be situated approximately in front of an individual light source to produce a more intense combustion effect.
  • a light source offset from the mask cutout produces a less intense combustion effect.
  • the number of individual light sources and the number of flame cutouts on the flame cutout panel may depend on the size of the fire to be replicated. For example, multiple light sources are required if multiple individual flame cutouts are on the flame cutout panel. The position of the light illumination source(s) is not obvious to the viewer since it is positioned behind the flame cutout panel.
  • An additional embodiment includes a screen or privacy glass panel, made of material that has a property of changing the opacity according to the electric current applied to it.
  • the privacy glass panel has a high degree of transparency when electrical current is applied.
  • a controller applies electrical current to the privacy glass when the fireplace is turned off. This allows the user to see through this glass and have the visual perception of the logs and ember bed when the fireplace is off.
  • the privacy glass is cloudy or hazy when no electrical current is applied.
  • a controller prevents the flow of electrical current to the privacy glass when the fireplace is turned on.
  • the privacy glass can be positioned anywhere inside the fireplace-such as inside the ember-bed or imitation logs-because it is nearly invisible to the user when the fireplace unit is off.
  • the privacy glass may be made from clear or tinted glass or a glass-like polymeric-based material, such as polycarbonates, through the use of which image of flickering flames is produced that is well defined and realistic.
  • the material used for the privacy glass can be free forming so that the glass can be manipulated into any shape desired. For example, forming the privacy glass to a three-dimensional shape can create the look of a flame that would appear to be coming from different planes within the ember-bed and/or logs, greatly improving the realism of the fire effect in the electric fireplaces.
  • An embodiment of the flame simulation assembly may include simulated logs with portions that appear to be undergoing or that had recently undergone combustion.
  • the logs for example, can be made from ceramic, Styrofoam or any other material that can be made to resemble a wood surface.
  • the simulated logs may include combustion portions that are sized, shaped, and colored, and/or that facilitate illumination to simulate a log or logs in the process of combustion.
  • the simulated logs may include an opening or openings with centered "cut-outs" defined by log edges that-due to size, shape and color-have the appearance of burning just as the burning edge of a real log in a real wood fireplace that is in the process of being combusted.
  • Light may be transmitted from one or more light source(s) to and through the cutouts in the log.
  • the combustion simulation may comprise or include a simulation of an ember bed.
  • the ember bed simulation of the present invention is constructed from a suitable material such that the size, shape, texture, and/or color of an ember bed of a conventional wood-burning fireplace is simulated.
  • the ember bed simulation is positioned preferably on the bottom panel of the fire display box.
  • a light source may be positioned within or adjacent to the fire display box to provide illumination.
  • the light source may be positioned such that at least a portion of the light passes through an element or elements that refract the light.
  • the element or elements that refract light for purposes of this application include one or more of translucent portions and transparent portions positioned within the simulated ember bed and juxtaposed relative to the simulated fire elements and burn patterns to give a look closely resembling real embers burning in a wood fireplace.
  • One embodiment of the ember bed simulation includes multiple light sources positioned generally adjacent to and underneath the translucent portions and transparent portions of the ember bed.
  • the position of any one of the light sources preferably facilitates the approximation of the overall size and shape of a real ember bed but is not apparent to one observing the simulation.
  • LEDs for some or all illumination purposes.
  • a light emitting diode is any semiconductor device that emits visible light when an electric current is passed through it.
  • LEDs can be of varying type such as air gap LEDs, GaAs LEDs and polymer LEDs. LEDs are high intensity, energy efficient illumination sources. LEDs, either individually or custom packaged, are commercially available. LEDs produce light in many colors, including, but not limited to, amber, yellow, orange, green, blue and white-further, an individual LED may be designed to change colors, varying from amber to yellow to orange, in response to an electrical signal. LEDs give off virtually no heat and have a relatively unlimited lifetime, essentially eliminating the need for replacement.
  • the LEDs may comprise a plurality, or cluster, of LEDs.
  • the LEDs may comprise one individual LED. Again, varying the location and/or number of LEDs may vary the intensity of the light source.
  • the LEDs can include a textured surface to provide "diffused light". "Sandblasting" provides such a textured surface.
  • Illumination in other embodiments of the present invention may be provided by one or more long-life halogen light bulbs, incandescent light bulbs, flame based sources, carbon arc radiation sources, fluorescent sources, luminescent bulbs or induction light bulbs.
  • Some embodiments of the present invention contemplate a combination of LEDs and non-LED sources of light as will be detailed below.
  • Fiber optic cables, or any other material that facilitates the transmission of light, such as acrylic or nylon, may be used to assist in transmitting the visible light form source to a point of illumination and ultimately, a viewer.
  • the light sources may be controlled by a controller, sequencing device, or sequencer, that is able to produce light effects, for example, timing, flashing, repetition, color changes, brightness changes and the like.
  • the sequencing device of the preferred embodiment includes a printed circuit board with a microprocessor that is electrically connected to the light sources.
  • the microprocessor is programmable to provide electrical signals to one, a group of, or all of the LEDs.
  • the programmed control can be manipulated so as to closely approximate the pulsing intensities of light seen in actual flames, the edges of burning logs, and ember beds.
  • the program of the sequencer can be changed to vary the flame, log burning edge, and ember bed effect.
  • the pulsing intensities of the light from the LEDs is changed in a random fashion, i.e., without a discernable pattern.
  • FIG. 1 is a front view of an electric fireplace according to one embodiment of the present invention in use
  • FIG. 2 is a partial front view of an electric fireplace that simulates flames according to one embodiment of the present invention
  • FIG. 3 is a front view of one embodiment of a flame deflector for use in an electric fireplace for simulating flames
  • FIG. 4A is a front view of a flame generator assembly that is behind the flame deflector of FIG. 3;
  • FIG. 4B is a top view of a LED array for illuminating an ember bed and/or an log set.
  • FIG. 5 is a side perspective view of a microprocessor control board, the LED array of FIG. 4B, and a cutaway side view of an electric fireplace according to an embodiment of the present invention.
  • the present invention is used as an electric fireplace 10.
  • the assembly of one type of electric fireplace 10 that is the subject of the present invention is illustrated in FIG. 1.
  • This embodiment of fireplace 10 includes a housing 11 having a top panel 12, a bottom panel 14, two opposing side panels 13 and 15, a front side 16, and a back panel 17 that collectively generally define an interior 18.
  • Other embodiments of an electric fireplace 10 may include various shaped panels, brackets, rods, bulkheads, rails, posts, openings and so on (not specifically shown). It will be understood that the specific arrangement of panel parts may be varied from the embodiment and these embodiments are contemplated by the invention.
  • the housing 11 of the embodiment shown in FIG. 1 is of any suitable form or material sufficient to provide for installation, support, insulation, and/or aesthetic considerations of the fireplace 10.
  • one suitable material from which the housing 11 may be manufactured is sheet metal.
  • the sheet metal is cut, bent and joined (not specifically shown) to form the structure of the housing 11.
  • the back panel 17 and two opposing side panels 13 and 15 are cut from a single piece of sheet metal and bent into shape.
  • the combined back panel 17 and side panels 13 and 15 of the housing are commonly referred to as the fireplace wrapper.
  • the top panel 12 and bottom panel 14 each may be attached to the upper and lower edges of the back panel 17 and side panels 13 and 15 (i.e., the fireplace wrapper) to complete the basic structure of the housing 11.
  • the edges of the individual side panels 13, 15 are typically bent to provide a small overlap at the juncture of adjoining panels.
  • the metal panels are then joined together by suitable fasteners such as sheet metal screws or by other methods such as by welding.
  • the present invention may be effectively used where desired in conjunction with heat-producing and non-heat-producing electric fireplaces as well as other similar types of mechanisms, enclosures or products.
  • the present illustrated embodiment is directed to an electric fireplace having features that actually function to enable the use of heat-producing mechanisms, such as an electric blower, or simulate the capability of a fireplace with such a heat-producing mechanism.
  • the simulated flame assembly of the present invention may be used in a product which does not include all or any of these mechanisms or features, some of which are discussed below.
  • FIG. 1 The upper portion 16A of the front side 16 of the electric fireplace 10 illustrated in FIG. 1 is shown with an upper louver panel 19 having a series of spaced horizontal slats or louvers 19A. Slats 19A are spaced apart to allow room air to pass in through upper louver panel 19 and subsequently be expelled back into the room. Slats 19A of upper louver panel 19 are angled upwardly from front to back in such a manner as to prevent someone who is standing in front of the electric fireplace from seeing through upper louver panel 19.
  • Upper louver panel 19 having a series of spaced horizontal slats or louvers 19A.
  • Slats 19A are spaced apart to allow room air to pass in through upper louver panel 19 and subsequently be expelled back into the room.
  • Slats 19A of upper louver panel 19 are angled upwardly from front to back in such a manner as to prevent someone who is standing in front of the electric fireplace from seeing through upper louver panel 19.
  • Upper louver panel 19 having a series
  • 19 may be made removable to permit access to the interior of housing 11 in the event that maintenance or repair is necessary.
  • the lower portion 16B of front side 16 of electric fireplace 10 illustrated in FIG. 1 comprises a lower louver panel 20 similar in design and configuration as that of upper louver panel 19.
  • lower louver panel 20 is comprised of a series of horizontal slats or louvers 2OA that are spaced and angled in a similar fashion as slats 19A of upper louver panel 19.
  • Lower louver panel 20 may be sized and shaped to conceal any switches (not shown) and other devices that control the operation of electric fireplace 10.
  • the bottom edge 2OB of lower louver panel 20 is connected to bottom panel 14 of housing 11 with one or more hinges or similar devices (not shown) that permit lower louver panel
  • the hinges may contain springs that bias lower louver panel 20 in a vertical or closed position.
  • the upper and lower louver panels, 19 and 20 may be also designed and configured to simulate a concealed heat exchanger plenum arrangement of the type often incorporated in combustible fuel-burning fireplaces (not shown).
  • natural gas fireplaces often have a series of interconnected plenums surrounding the fire display box that form a convection air passage around the fire display box. Room air is typically drawn into and expelled out from the plenum arrangement by passing through louver panels above and below the fire display box.
  • Louver panels 19, 20 of the preferred embodiment are designed and configured to suggest the presence of a heat exchange plenum arrangement, thereby increasing the realism of the electric fireplace.
  • Front side 16 of electric fireplace 10 may include a viewing portion 24 through which portions of interior 18 may be viewed.
  • Viewing portion 24 may be in the form of a panel 24A (as shown) or, in the alternate, be an opening, or a translucent or an opaque door, which, for purposes of viewing the interior 18, may be opened.
  • the fireplace viewing portion 24 may be either clear, tinted, or a privacy glass panel that has a property of changing the opacity according to the electric current applied to it. Tinting of viewing portion 24 may increase the realism of the fireplace by inhibiting the viewer's ability to discern the components used to create the illusion of a real wood-burning fire.
  • viewing portion 24 is clear glass.
  • Viewing portion 24 in the embodiment illustrated in FIG. 1 is positioned between upper and lower louver panels, 19 and 20, and permits viewing of the simulated fire display box 26.
  • privacy glass can be positioned anywhere inside the fireplace, for example inside the ember-bed or imitation logs.
  • Viewing portion 24 may be supported by a frame 28 and includes hardware (not shown) of the same type as or a version of which is ordered to simulate a glass door assembly of the type typically used to enclose the fire display box of a combustible fuel-burning fireplace.
  • Fire display box 26 is provided within housing 11 or formed variously from components of housing 11. As will be discussed in greater detail below, fire display box 26 supports various components of electric fireplace 10.
  • a fire display box surface 30 is typically used to line the fire display box of combustible fuel- burning fireplaces and may be painted to appear like firebrick.
  • ceramic fiber refractory panels or the like (not shown) - that have been shaped and colored to look like firebrick - can be attached to the interior surface of housing 11 to form a realistic appearing fire display box 26.
  • the manufacturing process for vacuum forming and coloring ceramic fiber refractory panels is well known in the art. Other materials can also be used to manufacture the artificial refractory panels.
  • an artificial log and ember set 32 is positionable.
  • Log and ember set 32 in the embodiment illustrated in FIG. 1 comprises one or more artificial logs 34 and an artificial ember bed 36.
  • Artificial logs 34 are shaped and colored to simulate the appearance of actual logs of any type.
  • Ember bed 36 is shaped and colored to simulate the appearance of burnt portions from a log and/or burning coals or embers.
  • Artificial logs 34, as well as ember bed 36 may be molded from ceramic fiber by a vacuum forming process that is well known in the art. In the alternate, the artificial logs 34, as well as ember bed 36, may be formed from a combination of poly- resin and a polycarbonate material.
  • the top portion of the log and ember bed in other words, the portion which is made to look like realistic logs and embers is formed of a poly-resin and the portion which is designed to transmit light therethrough is formed of polycarbonate.
  • the poly- resin portion has been found to provide enhanced definition and detail, and therefore, provides a more realistic appearance for the logs and ember bed.
  • the polycarbonate material provides a consistent finish and color and therefore a reliable transparency for enhanced transmission of light, at least in part because the technique of manufacturing with this material has been found to provide an even thickness of material.
  • the poly-resin and polycarbonate parts are joined together after manufacturing with well-known techniques including use of adhesives, and in another embodiment, are joined together during manufacturing, for example, by co-molding.
  • artificial logs 34 and ember bed 36 may also be used to manufacture artificial logs 34 and ember bed 36.
  • these components may be molded from concrete, which may provide greater detail than can be achieved by using ceramic fiber. However, concrete is much heavier and is prone to breakage if accidentally dropped.
  • the artificial logs 34 and embers 36 can also be made from other materials such as plastic.
  • FIG. 2 shows another view of the fireplace interior 18.
  • the fireplace interior 18 is defined, at least in part, by the fire display box 26 and includes an ember bed 36 underneath, in front of or joined to a set of artificial logs 34.
  • the rear of the firebox 26 is a display screen 27 for displaying simulated flames.
  • the ember bed 36 is made of a plastic material, which has the property of being at least translucent in some portions so as to permit light to pass through or illuminate the ember bed from within and appear to glow, for example.
  • the log set 34 preferably has the same property as the ember bed of permitting illumination from within so as to provide a glowing or the like. Any suitable material may be used for the ember bed 36 and log set 34, which permits some transmission of light therethrough to provide the appearance of a glow, heating or flame effect, for example.
  • the log set 34 may preferably be formed of poly-resin in a top or upper portion 34A and polycarbonate material in a bottom or lower portion 34 B.
  • a front panel 14A may be provided with a set of controls 40 and/or sensors 42 for operation of the various features of the fireplace 10.
  • the controls 40 may include, for example, a speed control for varying the speed of the simulated flames, the speed of the varying glow effect in various parts of the fireplace 10, volume of sound effects, overhead lights (not shown), and fragrance.
  • the sensors 42 may sense the light intensity in the environment (i.e., the room in which the fireplace is present), and the sound level in the environment.
  • the front panel may include one or more receiving device (not shown) for receiving control signals from a remote control 44.
  • the invention contemplates any suitable control signal, for example, infrared (IR) and radio frequency (RF).
  • Output from the sensors 42 may be used by a microprocessor based controller (see FIG. 5) to control, at least in part, the overall intensity of sounds generated by the fireplace (e.g., simulated or recordings of crackling and burning of fuel) or the overall light intensity generated by the fireplace 10 (e.g., glow and flame effects and other lighting).
  • a microprocessor based controller see FIG. 5 to control, at least in part, the overall intensity of sounds generated by the fireplace (e.g., simulated or recordings of crackling and burning of fuel) or the overall light intensity generated by the fireplace 10 (e.g., glow and flame effects and other lighting).
  • FIG. 3 shows an embodiment of a flame deflector or flame mask 46.
  • the flame deflector 46 is disposed in the rear of the firebox (see FIG. 1 ).
  • the flame deflector 46 includes a panel of material, which is preferably opaque, with a plurality of sections or cutouts 48, which may be translucent or transparent.
  • the cutouts 48 are preferably flame shaped to fashion simulated flames when light from a light source (not shown) is directed therethrough.
  • FIG. 4A shows a rear view of flame mask 46 with an attached flame simulator 50.
  • the flame simulator 50 depicted includes a rotating foil wrapped shaft which somewhat randomly reflects light.
  • Light is generated by flame light source 51.
  • the light source is a plurality of LEDs, controlled to vary in light intensity and preferably also color in a random fashion.
  • the LEDs 51 are preferably of a yellow or orange color to simulate the color of real flames.
  • Flame light source 51 is disposed to direct light onto the flame simulator 50 and through the flame mask 46 onto the rear of a tinted or non-tinted projection screen 27 (see FIG. 2). It will be understood that the flame mask 46 and screen 27 may be combined into a unitary structure.
  • FIG. 4B shows a LED array 47 according to an embodiment of the invention.
  • the LED array 47 is positioned generally under the ember bed 36 (see FIG. 2) to provide a realistic flame effect.
  • the LED array includes a plurality of clusters 70 of LEDs, wherein each cluster 70 consists of two or more LEDs. The LEDs within each cluster 70 are varied in intensity preferably in a random fashion.
  • At least some of the clusters 70 include at least one red LED, and one or both of orange and yellow colored LEDs. It has been found that LED clusters having at least one red LED with yellow LEDs creates an especially realistic flame simulation effect, one which cannot be replicated with yellow or orange LEDs alone or LEDs that change from red to orange or yellow.
  • the LED array 47 is provided in electrical communication with the controller (see FIG. 5) which controls one or more of intensity and color to simulate flame effects.
  • FIG. 5 shows a microprocessor-based controller 54, which includes one or more microprocessor board, which may be positioned, for example, near the front or rear of the fireplace 10, and which functions to provides electrical signals to various light sources in the fireplace 10 by means of typical electrical connections, for example a simple wire, or using more sophisticated "bus" technologies.
  • the light source shown in FIG. 5 includes a LED array 47.
  • the light source may be the LED array 47 of FIG. 4B.
  • the LED array 47 is arranged, in this embodiment, to direct light from underneath the fire display box 26 through a number of firebox ember bed cutouts 62. In the alternate, the LED array 47 can be positioned upon the box 26 and directly under an ember bed/log display.
  • a second light randomizer 50' redirects and randomizes light from the LED clusters 70 of the array 47, toward the underneath of the ember bed and is rotated by motor 64.
  • the light source shown in the FIG. 5 embodiment is preferably a plurality of LEDs arranged in clusters 70.
  • the electrical signals produced by controller 54 control various aspects of the LED array 47, such as which of the individual LEDs are ' on ' or ' off ' , the duration each individual LED is ' on ' or ' off ' , and the quantity of LEDs that are made available to be ' on ' or Off .
  • the LEDs may also be varied by intensity and/or color, for example.

Abstract

The present invention produces a combustion simulation of flames, burning logs and embers in a fuel-burning fireplace or like device. One or more light source(s), such as LEDs, grouped in clusters, wherein each cluster comprises at least one red LED and one yellow LED, are used to transmit light to and through one or more of an artificial log set and an ember bed. A microprocessor-based controller is used to vary one or more of light intensity and color of the LEDs to simulate a naturally varying glow effect of the ember bed and the log set.

Description

Apparatus and Methods for Simulation of Combustion Effects in a Fireplace
BACKGROUND OF THE INVENTION
(1 ) Field of the Invention
[0001] The present invention relates generally to electric fireplace technology. In particular, the present invention relates to an apparatus and methods that provide improved simulation of combustion effects in a fireplace through illumination.
(2) Description of the Art
[0002] Fireplaces are desirable features in the home. Traditional wood or other solid fuel burning fireplaces have, however, gradually become replaced by devices that burn non-solid materials, such as gas, or that produce heat electrically. The combustion of gas does provide real flames and heat. However, depending on the geographical region in which the fireplace is used, gas may be an expensive source of energy. Gas combustion also requires a working flue to vent the combustion products.
[0003] Electric or electronic fireplaces are a clean and easy source of heat. Electric fireplaces may be installed in locations often for less expense and where gas fireplaces are not desired or will not fit. However, electric fireplaces do not have the same combustion effects that are produced by fuel burning fireplaces. To overcome this shortcoming, electric fireplace designs have been developed with devices that operate to simulate the flame or fire associated with fuel burning fireplaces. Some electric fireplaces provide a reasonably realistic simulation of a wood-burning fireplace. Electric fireplaces may include simulated burning logs and simulated embers that add to the impression of a wood fire. Various mechanisms have been provided to add moving and/or flickering flames. The success of the simulation depends on the skill of the manufacturer to provide various mechanisms to manipulate combinations of lights, screens, and filters and to provide a random and lifelike flame, burning logs, and ember effect.
[0004] A number of these simulated fire devices that provide a visual imitation of natural flames, burning logs and ember bed characteristics of a fire, by way of a simulated effect, have previously been proposed with varying degrees of success. In general, these efforts have produced devices that are complex, multi- component arrangements that are time-consuming and expensive to manufacture. Also, the flame, burning logs and ember bed effect simulated by the devices has been generally limited in scope. With time, consumers find the simulation unconvincing representations of actual combustion effects.
[0005] Specifically, with respect to electric fireplaces, the flame effect has been generated using very similar techniques for decades. For example, the flame effect in certain embodiments is produced using pieces of lightweight fabric such as silk, which is cut into flame-like shapes. A blower creates airflow, which in turn moves the fabric to imitate the flame. Another embodiment utilizes a light randomizer, such as aluminum foil pieces, that is rotated in front of a standard light bulb. The light is reflected over the randomized piece, projected through a mask of flame shape cutouts and onto a screen. Drawbacks include unrealistic flame appearance and repetition of the flame simulation over a short period of time. An additional disadvantage is that the effect relies on the use of a motor to rotate the light randomizer. The life of the effect, therefore, turns on the life of the motor. Also, the life of a standard light bulb is short and therefore must be frequently replaced.
[0006] Electric fireplaces of various designs have been suggested that provide a simulated ember bed effect. For example, U.S. Pat. No. 6,162,047 transmits light from a light bulb through a sheet of plastic (or similar) material, which has been formed into a grating of transparent, translucent and opaque sections. The transmitted light illuminates the underside of the partially transparent plastic sheet to simulate an ember bed effect. In order to create a flicker-like effect to the ember bed simulation, motor driven rotating pieces of reflective foil generate first or second reflections of the light source. This approach is complicated since it is highly dependent upon accurate placement of many reflecting surfaces. Additionally, overall image quality varies as a viewer moves around the room. An additional drawback of this method is that the embers glow unrealistically since real glowing embers tend to pulse in color and intensity-from low to high intensity and back-depending on the air flow around them.
[0007] There is a demand, therefore, for a simple and cost-effective assembly that accurately and realistically simulates the flame or fire that is produced from the combustion of logs or other combustible fuel source and that can be used in electric or gas burning fireplaces. The present invention satisfies that demand.
SUMMARY OF THE INVENTION
[0008] The present invention has a principal objective of providing a realistic simulation of that which occurs as a result of the combustion of combustible materials in a fuel-burning fireplace or like device. The combustible material that is simulated in the present invention may be, for example, logs. The result of the combustion that is simulated in the present invention may include the flames, the burning logs, and the embers.
[0009] The assemblies of the present invention may, and in most embodiments will include some type of housing on or in which the present invention is located and operates. The housing of the present invention may take any suitable form as needed or desired and may be in the form of an enclosure or framework, sized and shaped according to a number of considerations. Examples of these considerations include budget, space, aesthetic, mechanical, safety, and other design and operating considerations. Generally, the housing is an enclosure or structure in which or to which mechanisms and components, such as ember bed simulation assembly, logs, and flame simulation unit, are enclosed or attached. The housing is also that which is attached at an installation location. The housing or box may be manufactured from a wide variety of materials, including plastic resin suitable for the application, sheet metal, or any other material known to those skilled in the art.
[0010] A fire display box is positioned in the housing. For purposes of this application, the term "fire display box" will broadly signify the area similar to that which is found in a fuel-burning fireplace in which combustion takes place and from which the fire that is produced thereby may be viewed. Traditionally, this area is known as a "firebox," "box," or "fireplace."
[0011 ] One embodiment of the housing includes a top panel, a bottom panel, a back panel and opposing side panels. The two opposing side panels are further optional depending on the application. The housing of this embodiment is sized and shaped to accommodate a fire display box positioned therein. The fire display box is designed to present to a viewer the impression of a working, more traditional non-electronic fireplace. The fire display box is open to the front for viewing purposes and may optionally be provided with a fixed or movable front panel, which may be at least in part transparent, translucent or opaque. For purposes of this application, the front of the fireplace unit is that side of the unit through which the interior of the unit is at least partially viewable. Certain elements of the present invention are located within the fire display box.
[0012] The combustion simulation of the present invention may include elements that simulate the flames produced from the combustion of combustible materials. One embodiment of a unit with flame simulation capabilities includes a projection screen visible to the viewer, in the viewing area, or front of the fire display box. At least one light source, or light illumination source, as well as a flame cutout panel or flame cutout mask may be contained within the fire display box to simulate the flame effect. In certain embodiments, the flame cutout panel is located between the projection screen and the light illumination source. The flame cutout panel may include a number of individual cutouts, the shape of each of which is roughly the shape of individual stylized flames, varying in size, shape, and/or form.
[0013] Another embodiment of flame simulation assembly includes a plurality of light sources and a mask with a plurality of cutouts. Each light source may be positionable relative to the mask cutouts to vary the combustion effect. To illustrate, each cutout on the mask may be situated approximately in front of an individual light source to produce a more intense combustion effect. A light source offset from the mask cutout produces a less intense combustion effect. Overall, the number of individual light sources and the number of flame cutouts on the flame cutout panel may depend on the size of the fire to be replicated. For example, multiple light sources are required if multiple individual flame cutouts are on the flame cutout panel. The position of the light illumination source(s) is not obvious to the viewer since it is positioned behind the flame cutout panel.
[0014] An additional embodiment includes a screen or privacy glass panel, made of material that has a property of changing the opacity according to the electric current applied to it. The privacy glass panel has a high degree of transparency when electrical current is applied. A controller applies electrical current to the privacy glass when the fireplace is turned off. This allows the user to see through this glass and have the visual perception of the logs and ember bed when the fireplace is off. The privacy glass is cloudy or hazy when no electrical current is applied. A controller prevents the flow of electrical current to the privacy glass when the fireplace is turned on. The privacy glass can be positioned anywhere inside the fireplace-such as inside the ember-bed or imitation logs-because it is nearly invisible to the user when the fireplace unit is off.
[0015] More specifically, the privacy glass may be made from clear or tinted glass or a glass-like polymeric-based material, such as polycarbonates, through the use of which image of flickering flames is produced that is well defined and realistic. The material used for the privacy glass can be free forming so that the glass can be manipulated into any shape desired. For example, forming the privacy glass to a three-dimensional shape can create the look of a flame that would appear to be coming from different planes within the ember-bed and/or logs, greatly improving the realism of the fire effect in the electric fireplaces.
[0016] An embodiment of the flame simulation assembly may include simulated logs with portions that appear to be undergoing or that had recently undergone combustion. The logs, for example, can be made from ceramic, Styrofoam or any other material that can be made to resemble a wood surface. The simulated logs may include combustion portions that are sized, shaped, and colored, and/or that facilitate illumination to simulate a log or logs in the process of combustion. For example, in this embodiment, the simulated logs may include an opening or openings with centered "cut-outs" defined by log edges that-due to size, shape and color-have the appearance of burning just as the burning edge of a real log in a real wood fireplace that is in the process of being combusted. Light may be transmitted from one or more light source(s) to and through the cutouts in the log.
[0017] The combustion simulation may comprise or include a simulation of an ember bed. The ember bed simulation of the present invention is constructed from a suitable material such that the size, shape, texture, and/or color of an ember bed of a conventional wood-burning fireplace is simulated. The ember bed simulation is positioned preferably on the bottom panel of the fire display box. To assist in the simulation of the ember bed, a light source may be positioned within or adjacent to the fire display box to provide illumination. To further assist in the simulation of an ember bed, the light source may be positioned such that at least a portion of the light passes through an element or elements that refract the light. The element or elements that refract light for purposes of this application include one or more of translucent portions and transparent portions positioned within the simulated ember bed and juxtaposed relative to the simulated fire elements and burn patterns to give a look closely resembling real embers burning in a wood fireplace.
[0018] One embodiment of the ember bed simulation includes multiple light sources positioned generally adjacent to and underneath the translucent portions and transparent portions of the ember bed. The position of any one of the light sources preferably facilitates the approximation of the overall size and shape of a real ember bed but is not apparent to one observing the simulation.
[0019] Another preferred embodiment of the present invention uses light emitting diodes, termed LEDs for some or all illumination purposes. A light emitting diode is any semiconductor device that emits visible light when an electric current is passed through it. LEDs can be of varying type such as air gap LEDs, GaAs LEDs and polymer LEDs. LEDs are high intensity, energy efficient illumination sources. LEDs, either individually or custom packaged, are commercially available. LEDs produce light in many colors, including, but not limited to, amber, yellow, orange, green, blue and white-further, an individual LED may be designed to change colors, varying from amber to yellow to orange, in response to an electrical signal. LEDs give off virtually no heat and have a relatively unlimited lifetime, essentially eliminating the need for replacement. The LEDs may comprise a plurality, or cluster, of LEDs. Alternatively, the LEDs may comprise one individual LED. Again, varying the location and/or number of LEDs may vary the intensity of the light source. Further, the LEDs can include a textured surface to provide "diffused light". "Sandblasting" provides such a textured surface.
[0020] Illumination in other embodiments of the present invention may be provided by one or more long-life halogen light bulbs, incandescent light bulbs, flame based sources, carbon arc radiation sources, fluorescent sources, luminescent bulbs or induction light bulbs. Some embodiments of the present invention contemplate a combination of LEDs and non-LED sources of light as will be detailed below. Fiber optic cables, or any other material that facilitates the transmission of light, such as acrylic or nylon, may be used to assist in transmitting the visible light form source to a point of illumination and ultimately, a viewer.
[0021] The light sources may be controlled by a controller, sequencing device, or sequencer, that is able to produce light effects, for example, timing, flashing, repetition, color changes, brightness changes and the like. The sequencing device of the preferred embodiment includes a printed circuit board with a microprocessor that is electrically connected to the light sources. The microprocessor is programmable to provide electrical signals to one, a group of, or all of the LEDs. The programmed control can be manipulated so as to closely approximate the pulsing intensities of light seen in actual flames, the edges of burning logs, and ember beds. The program of the sequencer can be changed to vary the flame, log burning edge, and ember bed effect. In one embodiment, the pulsing intensities of the light from the LEDs is changed in a random fashion, i.e., without a discernable pattern. [0022] These and other advantages, as well as the invention itself, will become apparent in the details of construction and operation as more fully described and claimed below. Moreover, it should be appreciated that several aspects of the invention can be used in other applications where realistic (flame and ember bed) simulations would be desirable.
DESCRIPTION OF THE FIGURES
[0023] FIG. 1 is a front view of an electric fireplace according to one embodiment of the present invention in use;
[0024] FIG. 2 is a partial front view of an electric fireplace that simulates flames according to one embodiment of the present invention;
[0025] FIG. 3 is a front view of one embodiment of a flame deflector for use in an electric fireplace for simulating flames;
[0026] FIG. 4A is a front view of a flame generator assembly that is behind the flame deflector of FIG. 3;
[0027] FIG. 4B is a top view of a LED array for illuminating an ember bed and/or an log set; and
[0028] FIG. 5 is a side perspective view of a microprocessor control board, the LED array of FIG. 4B, and a cutaway side view of an electric fireplace according to an embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0029] The present invention will now be described in detail with reference to certain embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well-known process steps and/or structures have not been described in detail to prevent unnecessarily obscuring the present invention.
[0030] The present invention is used as an electric fireplace 10. The assembly of one type of electric fireplace 10 that is the subject of the present invention is illustrated in FIG. 1. This embodiment of fireplace 10 includes a housing 11 having a top panel 12, a bottom panel 14, two opposing side panels 13 and 15, a front side 16, and a back panel 17 that collectively generally define an interior 18. Other embodiments of an electric fireplace 10 may include various shaped panels, brackets, rods, bulkheads, rails, posts, openings and so on (not specifically shown). It will be understood that the specific arrangement of panel parts may be varied from the embodiment and these embodiments are contemplated by the invention.
[0031 ] The housing 11 of the embodiment shown in FIG. 1 is of any suitable form or material sufficient to provide for installation, support, insulation, and/or aesthetic considerations of the fireplace 10. For example, one suitable material from which the housing 11 may be manufactured is sheet metal. The sheet metal is cut, bent and joined (not specifically shown) to form the structure of the housing 11. In the embodiment shown in FIG. 1 , the back panel 17 and two opposing side panels 13 and 15 are cut from a single piece of sheet metal and bent into shape. The combined back panel 17 and side panels 13 and 15 of the housing are commonly referred to as the fireplace wrapper. The top panel 12 and bottom panel 14 each may be attached to the upper and lower edges of the back panel 17 and side panels 13 and 15 (i.e., the fireplace wrapper) to complete the basic structure of the housing 11. The edges of the individual side panels 13, 15 are typically bent to provide a small overlap at the juncture of adjoining panels. The metal panels are then joined together by suitable fasteners such as sheet metal screws or by other methods such as by welding.
[0032] It will be understood that the present invention may be effectively used where desired in conjunction with heat-producing and non-heat-producing electric fireplaces as well as other similar types of mechanisms, enclosures or products. The present illustrated embodiment is directed to an electric fireplace having features that actually function to enable the use of heat-producing mechanisms, such as an electric blower, or simulate the capability of a fireplace with such a heat-producing mechanism. Of course, the simulated flame assembly of the present invention may be used in a product which does not include all or any of these mechanisms or features, some of which are discussed below.
[0033] The upper portion 16A of the front side 16 of the electric fireplace 10 illustrated in FIG. 1 is shown with an upper louver panel 19 having a series of spaced horizontal slats or louvers 19A. Slats 19A are spaced apart to allow room air to pass in through upper louver panel 19 and subsequently be expelled back into the room. Slats 19A of upper louver panel 19 are angled upwardly from front to back in such a manner as to prevent someone who is standing in front of the electric fireplace from seeing through upper louver panel 19. Upper louver panel
19 may be made removable to permit access to the interior of housing 11 in the event that maintenance or repair is necessary.
[0034] The lower portion 16B of front side 16 of electric fireplace 10 illustrated in FIG. 1 comprises a lower louver panel 20 similar in design and configuration as that of upper louver panel 19. In other words, lower louver panel 20 is comprised of a series of horizontal slats or louvers 2OA that are spaced and angled in a similar fashion as slats 19A of upper louver panel 19. Lower louver panel 20 may be sized and shaped to conceal any switches (not shown) and other devices that control the operation of electric fireplace 10. In one embodiment, the bottom edge 2OB of lower louver panel 20 is connected to bottom panel 14 of housing 11 with one or more hinges or similar devices (not shown) that permit lower louver panel
20 to be folded outwardly and downwardly to gain access to any electric fireplace circuitry, for example, or other internal components (not shown). The hinges may contain springs that bias lower louver panel 20 in a vertical or closed position.
[0035] The upper and lower louver panels, 19 and 20, may be also designed and configured to simulate a concealed heat exchanger plenum arrangement of the type often incorporated in combustible fuel-burning fireplaces (not shown). For example, natural gas fireplaces often have a series of interconnected plenums surrounding the fire display box that form a convection air passage around the fire display box. Room air is typically drawn into and expelled out from the plenum arrangement by passing through louver panels above and below the fire display box. Louver panels 19, 20 of the preferred embodiment are designed and configured to suggest the presence of a heat exchange plenum arrangement, thereby increasing the realism of the electric fireplace.
[0036] Front side 16 of electric fireplace 10 may include a viewing portion 24 through which portions of interior 18 may be viewed. Viewing portion 24 may be in the form of a panel 24A (as shown) or, in the alternate, be an opening, or a translucent or an opaque door, which, for purposes of viewing the interior 18, may be opened. Depending on the desired aesthetic appearance, the fireplace viewing portion 24 may be either clear, tinted, or a privacy glass panel that has a property of changing the opacity according to the electric current applied to it. Tinting of viewing portion 24 may increase the realism of the fireplace by inhibiting the viewer's ability to discern the components used to create the illusion of a real wood-burning fire. In the embodiment shown, viewing portion 24 is clear glass. Any transparent material can be utilized for viewing portion 24. For example, clear or tinted acrylic could be used in lieu of glass or a glass-like polymeric-based material, such as polycarbonates. Viewing portion 24 in the embodiment illustrated in FIG. 1 is positioned between upper and lower louver panels, 19 and 20, and permits viewing of the simulated fire display box 26. However, privacy glass can be positioned anywhere inside the fireplace, for example inside the ember-bed or imitation logs. Viewing portion 24 may be supported by a frame 28 and includes hardware (not shown) of the same type as or a version of which is ordered to simulate a glass door assembly of the type typically used to enclose the fire display box of a combustible fuel-burning fireplace. Viewing portion 24 with or without frame 28 is moveable or is removable to permit cleaning, maintenance or repair of components within a fire display box 26. [0037] Fire display box 26 is provided within housing 11 or formed variously from components of housing 11. As will be discussed in greater detail below, fire display box 26 supports various components of electric fireplace 10. A fire display box surface 30 is typically used to line the fire display box of combustible fuel- burning fireplaces and may be painted to appear like firebrick. Alternatively, ceramic fiber refractory panels or the like (not shown) - that have been shaped and colored to look like firebrick - can be attached to the interior surface of housing 11 to form a realistic appearing fire display box 26. The manufacturing process for vacuum forming and coloring ceramic fiber refractory panels is well known in the art. Other materials can also be used to manufacture the artificial refractory panels.
[0038] Within the lower portion 18A of fire display box 26, an artificial log and ember set 32 is positionable. Log and ember set 32 in the embodiment illustrated in FIG. 1 comprises one or more artificial logs 34 and an artificial ember bed 36. Artificial logs 34 are shaped and colored to simulate the appearance of actual logs of any type. Ember bed 36 is shaped and colored to simulate the appearance of burnt portions from a log and/or burning coals or embers. Artificial logs 34, as well as ember bed 36, may be molded from ceramic fiber by a vacuum forming process that is well known in the art. In the alternate, the artificial logs 34, as well as ember bed 36, may be formed from a combination of poly- resin and a polycarbonate material. In a preferred embodiment, the top portion of the log and ember bed, in other words, the portion which is made to look like realistic logs and embers is formed of a poly-resin and the portion which is designed to transmit light therethrough is formed of polycarbonate. The poly- resin portion has been found to provide enhanced definition and detail, and therefore, provides a more realistic appearance for the logs and ember bed. On the other hand, it has been found that the polycarbonate material provides a consistent finish and color and therefore a reliable transparency for enhanced transmission of light, at least in part because the technique of manufacturing with this material has been found to provide an even thickness of material. In one embodiment, the poly-resin and polycarbonate parts are joined together after manufacturing with well-known techniques including use of adhesives, and in another embodiment, are joined together during manufacturing, for example, by co-molding.
[0039] Other materials may also be used to manufacture artificial logs 34 and ember bed 36. For example, these components may be molded from concrete, which may provide greater detail than can be achieved by using ceramic fiber. However, concrete is much heavier and is prone to breakage if accidentally dropped. The artificial logs 34 and embers 36 can also be made from other materials such as plastic.
[0040] FIG. 2 shows another view of the fireplace interior 18. The fireplace interior 18 is defined, at least in part, by the fire display box 26 and includes an ember bed 36 underneath, in front of or joined to a set of artificial logs 34. The rear of the firebox 26 is a display screen 27 for displaying simulated flames.
[0041] In one embodiment, the ember bed 36 is made of a plastic material, which has the property of being at least translucent in some portions so as to permit light to pass through or illuminate the ember bed from within and appear to glow, for example. The log set 34 preferably has the same property as the ember bed of permitting illumination from within so as to provide a glowing or the like. Any suitable material may be used for the ember bed 36 and log set 34, which permits some transmission of light therethrough to provide the appearance of a glow, heating or flame effect, for example. Referring to the above description of a combined polycarbonate/poly-resin structure, the log set 34 may preferably be formed of poly-resin in a top or upper portion 34A and polycarbonate material in a bottom or lower portion 34 B.
[0042] A front panel 14A may be provided with a set of controls 40 and/or sensors 42 for operation of the various features of the fireplace 10. The controls 40 may include, for example, a speed control for varying the speed of the simulated flames, the speed of the varying glow effect in various parts of the fireplace 10, volume of sound effects, overhead lights (not shown), and fragrance. The sensors 42 may sense the light intensity in the environment (i.e., the room in which the fireplace is present), and the sound level in the environment. The front panel may include one or more receiving device (not shown) for receiving control signals from a remote control 44. The invention contemplates any suitable control signal, for example, infrared (IR) and radio frequency (RF).
[0043] Output from the sensors 42 may be used by a microprocessor based controller (see FIG. 5) to control, at least in part, the overall intensity of sounds generated by the fireplace (e.g., simulated or recordings of crackling and burning of fuel) or the overall light intensity generated by the fireplace 10 (e.g., glow and flame effects and other lighting).
[0044] FIG. 3 shows an embodiment of a flame deflector or flame mask 46. The flame deflector 46 is disposed in the rear of the firebox (see FIG. 1 ). The flame deflector 46 includes a panel of material, which is preferably opaque, with a plurality of sections or cutouts 48, which may be translucent or transparent. The cutouts 48 are preferably flame shaped to fashion simulated flames when light from a light source (not shown) is directed therethrough.
[0045] FIG. 4A shows a rear view of flame mask 46 with an attached flame simulator 50. The flame simulator 50 depicted includes a rotating foil wrapped shaft which somewhat randomly reflects light. Light is generated by flame light source 51. Preferably, the light source is a plurality of LEDs, controlled to vary in light intensity and preferably also color in a random fashion. Also, the LEDs 51 are preferably of a yellow or orange color to simulate the color of real flames. Flame light source 51 is disposed to direct light onto the flame simulator 50 and through the flame mask 46 onto the rear of a tinted or non-tinted projection screen 27 (see FIG. 2). It will be understood that the flame mask 46 and screen 27 may be combined into a unitary structure. Other suitable flame simulators are contemplated including internally illuminated rotating tubes with cutout portions (not shown) and so on. The flame simulator 50 may be rotated by an electrical motor 52. Another embodiment of the flame simulator may include one or more sets of LEDs (see FIG. 4B) which simulate flames by varying in light intensity and color. [0046] FIG. 4B shows a LED array 47 according to an embodiment of the invention. The LED array 47 is positioned generally under the ember bed 36 (see FIG. 2) to provide a realistic flame effect. The LED array includes a plurality of clusters 70 of LEDs, wherein each cluster 70 consists of two or more LEDs. The LEDs within each cluster 70 are varied in intensity preferably in a random fashion. At least some of the clusters 70 include at least one red LED, and one or both of orange and yellow colored LEDs. It has been found that LED clusters having at least one red LED with yellow LEDs creates an especially realistic flame simulation effect, one which cannot be replicated with yellow or orange LEDs alone or LEDs that change from red to orange or yellow. The LED array 47 is provided in electrical communication with the controller (see FIG. 5) which controls one or more of intensity and color to simulate flame effects.
[0047] FIG. 5 shows a microprocessor-based controller 54, which includes one or more microprocessor board, which may be positioned, for example, near the front or rear of the fireplace 10, and which functions to provides electrical signals to various light sources in the fireplace 10 by means of typical electrical connections, for example a simple wire, or using more sophisticated "bus" technologies. The light source shown in FIG. 5 includes a LED array 47. The light source may be the LED array 47 of FIG. 4B. The LED array 47 is arranged, in this embodiment, to direct light from underneath the fire display box 26 through a number of firebox ember bed cutouts 62. In the alternate, the LED array 47 can be positioned upon the box 26 and directly under an ember bed/log display. The light shining through the cutouts 62 can be seen through the ember bed 36 (see FIG. 1 ). A second light randomizer 50' redirects and randomizes light from the LED clusters 70 of the array 47, toward the underneath of the ember bed and is rotated by motor 64.
[0048] The light source shown in the FIG. 5 embodiment is preferably a plurality of LEDs arranged in clusters 70. The electrical signals produced by controller 54 control various aspects of the LED array 47, such as which of the individual LEDs are 'on' or 'off', the duration each individual LED is 'on' or 'off', and the quantity of LEDs that are made available to be 'on' or Off . The LEDs may also be varied by intensity and/or color, for example.
[0049] Described is an electric fireplace assembly with a combustion simulation arrangement which provides a realistic flame-like and/or ember bed-like effect. While the above-described assembly is intended to be used, in one embodiment with an electric fireplace, it is to be realized that flame and ember bed arrangements according to the invention could be incorporated in other types of heaters or perhaps other decorative arrangements.
[0050] Whilst endeavoring in the foregoing specification to draw attention to those features of the invention believed to be of particular importance it should be understood that protection is claimed in respect of any patentable feature or combination of features hereinbefore referred to and/or shown in the drawings whether or not particular emphasis has been placed thereon. While the apparatus and method herein disclosed forms a preferred embodiment of this invention, this invention is not limited to that specific apparatus and method, and changes can be made therein without departing from the scope of this invention, which is defined in the appended claims.
[0051] Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
[0052] To those skilled in the art to which this invention pertains, the above- described preferred embodiment may be subject to change or modification. Such change or modification can be carried out without departing from the scope of the invention, which is intended to be limited only by the scope of the appended claims.

Claims

CLAIMS:
1. A flame simulation assembly, comprising: a housing including a firebox; an ember bed positioned within said firebox; a light source comprising one or more clusters of LEDs, wherein each of said one or more clusters comprises at least one red LED and one yellow LED, wherein said light source emits light to illuminate at least a portion of said ember bed; a controller for controlling said light source, wherein said controller functions to vary one or more of light intensity and light color of the light generated by said light source.
2. The flame simulation assembly of claim 1 , wherein said controller functions to control said light source to simulate natural variations in the light intensity of said light source in a random pattern.
3. The flame simulation assembly of claim 1 further comprising a simulated log set.
4. The flame simulation assembly of claim 3 further comprising a second set of LEDs associated with said log set and in communication with said controller.
5. A flame simulation assembly comprising: a housing; a firebox positioned within said housing; an artificial log set positioned within said firebox; a light source comprising one or more clusters of LEDs, wherein each of said one or more clusters comprises at least one red LED and one yellow LED, wherein said light source emits light to illuminate at least a portion of said log set; a controller for controlling said light source, wherein said controller functions to vary one or more of light intensity and light color of the light generated by said light source.
6. A flame simulation assembly comprising: a housing; a firebox positioned within said housing; an ember bed positioned within said firebox; an artificial log set positioned over said ember bed; a first light source comprising one or more clusters of LEDs, wherein each of said one or more clusters comprises at least one red LED and one yellow LED, wherein said first light source emits light to illuminate at least a portion of said ember bed; a second light source comprising LEDs, wherein said second light source emits light to illuminate at least a portion of said log set; a controller for controlling said first light source and said second light source, wherein said controller functions to vary one or more of light intensity and light color of the light generated by one or both of said first light source and said second light source.
7. The flame simulation assembly of claim 6, further comprising: a third light source, a random flame simulation generator that generates simulated flames in combination with said third light source; a flame cutout panel that screens light from said random flame simulation generator; and a display screen positioned in a rear portion of said firebox, said display screen displaying the screened light from said flame cutout panel.
8. The flame simulation assembly of claim 6, further including a remote control for generating control signals, a receiver for receiving said control signals, wherein said control signals are for instructing said controller to change operation of said flame simulation assembly.
9. The flame simulation assembly of claim 6, further including a sound sensor in communication with said controller, said sound sensor for sensing sound levels.
10. The flame simulation assembly of claim 6, further including a light sensor in communication with said controller, said light sensor for sensing light levels.
11. A flame simulation assembly comprising: a housing; a firebox positioned within said housing; an ember bed positioned within said firebox; an artificial log set positioned adjacent said ember bed; a first light source comprising one or more clusters of LEDs, wherein each of said one or more clusters comprises at least one red LED and one yellow LED, wherein said first light source emits light to illuminate at least a portion of said ember bed; a second light source comprising LEDs, wherein said second light source emits light to illuminate at least a portion of said log set; a flame cutout panel that screens light from a random flame simulation generator positioned to direct light from said second light source towards said flame cutout panel and a display screen positioned in a rear portion of said firebox, wherein said display screen displays the screened light from said flame cutout panel; and a controller for controlling said first light source and said second light source, wherein said controller functions to vary one or more of light intensity and light color of the light generated by said first light source, and said second light source.
12. A flame simulation assembly according to claims 1 , 5, 6 or 11 , wherein said ember bed is formed of polycarbonate material joined to a poly-resin material, and wherein said light sources are disposed so as to direct light through the poly-resin material.
13. The flame simulation assembly according to claim 12 wherein said polycarbonate material is joined to said poly-resin material with an adhesive.
14. The flame simulation assembly according to claim 12 wherein said polycarbonate material is joined to said poly-resin material by co- molding.
PCT/US2009/056714 2008-09-12 2009-09-11 Apparatus and methods for simulation of combustion effects in a fireplace WO2010030924A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9666808P 2008-09-12 2008-09-12
US61/096,668 2008-09-12

Publications (2)

Publication Number Publication Date
WO2010030924A2 true WO2010030924A2 (en) 2010-03-18
WO2010030924A3 WO2010030924A3 (en) 2011-04-21

Family

ID=42005776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/056714 WO2010030924A2 (en) 2008-09-12 2009-09-11 Apparatus and methods for simulation of combustion effects in a fireplace

Country Status (1)

Country Link
WO (1) WO2010030924A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD665897S1 (en) 2011-06-20 2012-08-21 Actervis Gmbh Electric fireplace
CN108518720A (en) * 2018-05-08 2018-09-11 东莞崧崴电子科技有限公司 A kind of emulation dynamic wall for electric fireplace
US10508785B2 (en) 2017-06-30 2019-12-17 Hni Technologies Inc. Light system for fireplace including chaos circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099565A1 (en) * 2004-11-05 2006-05-11 Elite Group, Inc. Artificial fireplace
US20070125367A1 (en) * 2005-07-19 2007-06-07 Alvin Lim Apparatus and method for simulation of combustion effects in a fireplace
GB2444072A (en) * 2006-11-24 2008-05-28 Basic Holdings A battery operated electric simulated fire effect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099565A1 (en) * 2004-11-05 2006-05-11 Elite Group, Inc. Artificial fireplace
US20070125367A1 (en) * 2005-07-19 2007-06-07 Alvin Lim Apparatus and method for simulation of combustion effects in a fireplace
GB2444072A (en) * 2006-11-24 2008-05-28 Basic Holdings A battery operated electric simulated fire effect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD665897S1 (en) 2011-06-20 2012-08-21 Actervis Gmbh Electric fireplace
US10508785B2 (en) 2017-06-30 2019-12-17 Hni Technologies Inc. Light system for fireplace including chaos circuit
CN108518720A (en) * 2018-05-08 2018-09-11 东莞崧崴电子科技有限公司 A kind of emulation dynamic wall for electric fireplace

Also Published As

Publication number Publication date
WO2010030924A3 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
CA2552708C (en) Apparatus and method for simulation of combustion effects in a fireplace
US20050097792A1 (en) Apparatus and method for simulation of combustion effects in a fireplace
CA2295459C (en) Electric fireplace
EP0897514B1 (en) Flame simulating assembly.
US7921585B2 (en) Fireplace simulator with glowing ember effect
US6269567B1 (en) Diffusing screen with matte region
US20030156828A1 (en) Fireplace with simulated flame
US10883722B2 (en) Electric fireplace lighting system
US6050011A (en) Assembly for producing an illusory effect
US20030126775A1 (en) Simulated log burning fireplace apparatus
US20040181983A1 (en) Flame simulating assembly
GB2391614A (en) Flame simulating apparatus with a laminated lens and ember simulation
WO2010030924A2 (en) Apparatus and methods for simulation of combustion effects in a fireplace
GB2547013A (en) Flame simulating apparatus
CA2310362C (en) Flame simulating assembly and components therefor
GB2220060A (en) Simulated fire effect
GB2371854A (en) Simulated solid fuel bed for an electric fireplace.
AU754531B2 (en) Flame simulating assembly and components therefore
AU755135B2 (en) An assembly for producing an illusionary effect
CA2247665A1 (en) Fireplace with simulated flame effect
AU4436002A (en) Flame simulating assembly and components therefor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813704

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 09813704

Country of ref document: EP

Kind code of ref document: A2