WO2010029275A1 - Electronic device for sampling an analog signal by varying the propagation time - Google Patents

Electronic device for sampling an analog signal by varying the propagation time Download PDF

Info

Publication number
WO2010029275A1
WO2010029275A1 PCT/FR2009/051737 FR2009051737W WO2010029275A1 WO 2010029275 A1 WO2010029275 A1 WO 2010029275A1 FR 2009051737 W FR2009051737 W FR 2009051737W WO 2010029275 A1 WO2010029275 A1 WO 2010029275A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pulse
waveguide
sampling
propagated
Prior art date
Application number
PCT/FR2009/051737
Other languages
French (fr)
Inventor
Florent Chayet
Maurice Chayet
Original Assignee
Florent Chayet
Maurice Chayet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Florent Chayet, Maurice Chayet filed Critical Florent Chayet
Publication of WO2010029275A1 publication Critical patent/WO2010029275A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements

Definitions

  • the present invention relates to an electronic device for sampling an analog signal by variation of the propagation time.
  • the field of the invention is, in general, that of sampling.
  • sampling consists in transforming a continuous analog signal into a discrete digital signal, capturing values at a regular time interval.
  • time is to be taken in the broad sense and applies to any signal. This is a necessary step to record, analyze and process a signal by computer, because it can only process numbers. Sampling must be distinguished from quantification, but both are necessary steps for digitizing a signal.
  • sampling rate also known as sampling rate, or sampling rate, expressed in Hertz (Hz).
  • An electronic sampling device comprises the steps of:
  • short-term means a period during which the signal varies very little, - store the voltage taken for a period long enough to allow processing and extraction of information.
  • a subsampling consisting in processing repetitive signals of very high frequency, for example of the microwave type, by sampling samples at regular time intervals, but at a frequency lower than that of the signal.
  • several cycles of the processed signal separate two sample captures.
  • a small time difference is set up between two samples so that the second sample is taken a little later than the cycle of the processed signal.
  • After taking several samples we obtain a series of samples representative of a single cycle of the signal.
  • This type of sampling is commonly used in electronic instrumentation for, for example, the manufacture of an oscilloscope for viewing a waveform of a signal by modifying the time scale according to a factor controllable by a user.
  • cathode ray tubes can not display signals with frequencies greater than a few hundred megahertz.
  • the sampling devices invariably use at least one switch which is operated for very short periods to capture electrical charges and, subsequently, to store them in a memory, for example of the capacitor type.
  • the switch is in the form of at least one diode actuated by an electric pulse of very short duration, i.e. of a few picosecond fractions.
  • Such devices have a major technical problem: the moment when a sample is captured coincides with the moment when the diodes are subjected to a strong electrical conduction favoring the appearance of noise in the measurement because they carry a current of shot.
  • the device according to the invention proposes to remedy the problems which have just been stated by eliminating the use of diodes.
  • the device according to the invention is suitable for use with the two types of sampling described above.
  • the device according to the invention has the advantage of being constrained neither by the noise nor by speed limitations inherent to the diodes. Its operating principle is based on the exploitation of the wave propagation time on a nonlinear waveguide (NLTL).
  • a pulse is emitted on a first waveguide which is traversed by an analog signal.
  • the same pulse is emitted on a second waveguide which is not traversed by any analog signal.
  • the propagation difference of the pulse, observed at the exit of two waveguides, is approximately proportional to a derivative of the pulse and to the voltage observed by the pulse on the first guide during all its propagation.
  • the invention therefore relates to an electronic device for sampling an analog repetitive signal or not, said device comprising
  • a wave splitter connected in series with the inputs and configured so as to supply a first non-linear waveguide with a sum of the signals received and a signal with a second waveguide opposite to the sum of the signals received, the two waveguides are connected to a signal coupler configured to measure a propagation difference of the pulse,
  • the coupler is connected in series with a pair of integrators configured so as to output a voltage step proportional to a desired sample.
  • the sampling device according to the invention may have one or more additional characteristics among the following:
  • the second waveguide is linear
  • the second waveguide is non-linear
  • Another essential object of the invention is a method for sampling an analog repetitive signal or not, in which
  • a sampling pulse is emitted; the signal to be sampled is transmitted; characterized in that
  • the pulse and the signal are propagated in at least two waveguides connected in parallel,
  • sampling method according to the invention may have one or more additional characteristics among the following:
  • the addition of the signal and the pulse is propagated in a first non-linear waveguide.
  • the pulse alone is propagated in a second non-linear waveguide.
  • the addition of the pulse and the opposite 180 ° phase of the signal are propagated in a second linear waveguide.
  • the addition of the signal and the pulse is propagated in a first non-linear waveguide; the subtraction of the signal is propagated to the pulse in a second non-linear waveguide,
  • the signal is propagated twice in a third non-linear waveguide.
  • FIG. 1 is a schematic representation, in oblique perspective, of two distinct waveguides;
  • FIG. 2 is a diagrammatic representation of a first exemplary embodiment of the device according to the invention;
  • FIG. 3 a schematic representation of a second exemplary embodiment of the device according to the invention
  • Figure 1 shows a first waveguide 1 and a second waveguide 2.
  • the waveguide 1 comprises a metal track 3, a mass 4 metal and a nonlinear dielectric element 5 in the form of a microstrip.
  • the waveguide 1 is therefore defined as non-linear because it has propagation characteristics, such as speed and impedance, depending on the intensity of the electric field passing therethrough.
  • the waveguide 1 is known to those skilled in the art to propagate a signal in quasi-TEM (Transverse Electro Magnetic) modes, i.e. without electromagnetic field in the direction of propagation, and produce inherent frequency losses.
  • the dielectric element is supposed to present:
  • ⁇ o E - V ( E ) - E ⁇ w (E) is the inverse of the permeability matrix.
  • Niobate Lithium crystal (LiNbO3) is a good example of the type of substrate considered.
  • the waveguide 2 comprises a track 6 of metal, a mass 7 of metal and a linear dielectric element 8 in the form of a microstrip.
  • the waveguide 2 is therefore defined as being linear because it has constant propagation characteristics, such as speed and impedance, independent of the intensity of the electric field passing therethrough.
  • FIG. 2 schematically shows a first embodiment of the device according to the invention.
  • This device comprises two inputs 10 and 1 1.
  • a generator 9 of very short pulses emits, through the first input 10, a sampling pulse v1.
  • the second input 1 1 emits a sinusoidal analog signal v2 to be sampled.
  • sampling pulse v1 and the signal v2 to be sampled pass through a wave splitter 14.
  • the pulse v1 and the signal v2 first pass through a signal coupler from which the sum of the pulse and the signal v2 leave.
  • the wave splitter 14 is able to supply either a sum v1 + v2 of the pulse v1 and of the signal v2, or an opposite v1 -v2 in phase of 180 degrees of the sum v1 + v2.
  • a first branch 15 propagates the sum v1 + v2 of the pulse v1 and the signal v2 to a waveguide 1 such as that described with the figurel.
  • sampling pulse v1 and the signal v2 to be sampled evolve at the same speed within the non-linear waveguide 1.
  • the pulse v1 observes the same voltage of the signal v2 to be sampled. But the presence of the voltage of the signal v2 causes a variation in the propagation speed of the pulse v1, due to the non-linearity of the waveguide 1. This variation is visible at the output of waveguide 1. Indeed, it is known that the propagation speed of the pulse v1 in the presence of an analog signal v2 is different from that observed in its absence.
  • a signal w exits waveguide 1 to enter a second signal coupler 17.
  • a second branch 16 propagates the opposite v1 -v2 in 180 ° phase of the sum v1 + v2 of the pulse v1 and the signal v2 to a waveguide 2 As described in FIG. 1, a signal w 'emerges from the waveguide 1 to enter the signal coupler 17.
  • the signal coupler 17 provides, at its output 18, the subtraction w-w 'of the signal w' to the signal w.
  • the subtraction w-w ' enters a first integrator circuit 19 providing, at its output 20, a first voltage plateau J (w-w') dt proportional to the desired sample.
  • the first voltage stage J (w-w ') dt enters a second integrator 21 providing, at its output 22, a second stage J (J (w-w') dt) proportional to the desired sample.
  • the propagation difference of the pulse observed at the output of the two waveguides 1 and 2 is approximately proportional to a derivative of the pulse v1 and to the voltage observed by the pulse v1 on the first waveguide 1 during its propagation.
  • FIG. 3 shows schematically a second embodiment of the device according to the invention.
  • the different elements appearing in several figures will have kept, unless otherwise specified, the same reference.
  • This device comprises two inputs 10 and 1 1.
  • a generator 9 of very short pulses emits, through the first input 10, a sampling pulse v1.
  • the second input 11 emits a sinusoidal analog signal v2 to be sampled which passes through a first wave splitter 14.
  • the double 2v2 of the signal v2 propagates in a nonlinear waveguide 1 c such as that described with FIGS. 1 and 2.
  • the signal v2 propagates to reach, parallel to the pulse v1 by the input 10, a second 12-wave splitter.
  • the addition v1 + v2 of the signal v2 and the pulse v1 propagates in a second waveguide 1 has the same waveguide 1 c non-linear wave.
  • the subtraction v1 -v2 of the signal v2 to the pulse v1 is propagated in a third nonlinear waveguide 1b identical to the waveguides 1a and 1c.
  • a signal w1 comes out of waveguide 1a, a signal w2 comes out of waveguide 1b, and a signal 2v'2 leaves waveguide 1c; where v 'is the derivative of v.
  • the signal w1 and the signal w2 enter a first coupler 17 and exit through a single branch 28 in the form of a signal w3 corresponding to the subtraction w1 -w2 of the signal w2 to the signal w1.
  • the signal w3 is equal to: k-A-dv1 / dt + 2v'2; where k is a constant and A is a perturbation of the pulse v1.
  • the signal w4 propagates along the branch 29 until reaching the first integrator 19 and output 20 as a signal w5 equal to k'-A'-v'1.
  • the signal w5 propagates along the branch 20 until it reaches the second integrator 21 and leaves it 22 in the form of a signal w6 equal to J (kA-dv'1 / dt) and proportional to the desired sample .

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

The sampling devices of the prior art have a major problem: the moment when a sample is captured coincides with the moment when diodes are subjected to a strong electrical conduction that promotes the appearance of noise insofar as the diodes carry shot current. The invention intends to solve the stated problems by doing away with the use of diodes. Consequently, the device according to the invention is capable of being used for sampling in real-time and for subsampling. The invention has the advantage of being constrained neither by the noise nor by the speed limitations inherent in the diodes. The operating principle thereof rests on using the wave propagation time on a nonlinear waveguide.

Description

Dispositif électronique d'échantillonnage d'un signal analogique par variation du temps de propagation Electronic device for sampling an analog signal by variation of the propagation time
La présente invention se rapporte à un Dispositif électronique d'échantillonnage d'un signal analogique par variation du temps de propagation.The present invention relates to an electronic device for sampling an analog signal by variation of the propagation time.
Le domaine de l'invention est, d'une façon générale, celui de l'échantillonnage.The field of the invention is, in general, that of sampling.
Pour rappel, l'échantillonnage consiste à transformer un signal analogique continu en signal numérique discret, en capturant des valeurs à intervalle de temps régulier. Ici la notion de temps est à prendre au sens large et s'applique à tout signal. C'est une étape nécessaire pour pouvoir enregistrer, analyser et traiter un signal par ordinateur, car celui-ci ne peut traiter que des nombres. Il faut distinguer l'échantillonnage de la quantification, mais ce sont toutes deux des étapes nécessaires à la numérisation d'un signal.As a reminder, sampling consists in transforming a continuous analog signal into a discrete digital signal, capturing values at a regular time interval. Here the notion of time is to be taken in the broad sense and applies to any signal. This is a necessary step to record, analyze and process a signal by computer, because it can only process numbers. Sampling must be distinguished from quantification, but both are necessary steps for digitizing a signal.
La fréquence à laquelle les valeurs sont capturées est la fréquence d'échantillonnage, appelée aussi cadence d'échantillonnage, ou taux d'échantillonnage, exprimée en Hertz (Hz). Un dispositif électronique d'échantillonnage comporte les étapes consistant à :The frequency at which values are captured is the sampling rate, also known as sampling rate, or sampling rate, expressed in Hertz (Hz). An electronic sampling device comprises the steps of:
- prélever une valeur moyenne en tension électrique d'un signal pour une courte durée ; on entend par courte durée une durée durant laquelle le signal varie très peu, - stocker la tension prélevée pendant une durée suffisamment longue pour permettre un traitement et une extraction de l'information.- take a mean voltage value of a signal for a short time; short-term means a period during which the signal varies very little, - store the voltage taken for a period long enough to allow processing and extraction of information.
Par ailleurs, on distingue deux types d'échantillonnage, chacun mettant en œuvre un appareil électronique différent :In addition, there are two types of sampling, each implementing a different electronic device:
- un échantillonnage en temps réel. C'est le plus utilisé. Il est généralement destiné à numériser un signal analogique et consiste notamment à prélever des échantillons à intervalle de temps régulier selon une fréquence au moins deux fois supérieure à la plus haute fréquence du signal analogique ;- real-time sampling. It is the most used. It is generally intended to digitize an analog signal and consists in particular of taking samples at a regular time interval at a frequency at least twice as high as the highest frequency of the analog signal;
- un sous-échantillonnage consistant à traiter des signaux répétitifs de très haute fréquence, par exemple de type micro-ondes, en prélevant des échantillons à intervalles de temps réguliers, mais selon une fréquence inférieure à celle du signal. Typiquement, plusieurs cycles du signal traité séparent deux captures d'échantillon. De plus, on établit un petit décalage dans le temps entre deux échantillons de façon à ce que le deuxième échantillon soit prélevé un peu plus en retard sur le cycle du signal traité. Après avoir prélevé plusieurs échantillons, on obtient une série d'échantillons représentative d'un seul cycle du signal. Ce type d'échantillonnage est couramment utilisé en instrumentation électronique pour, par exemple, la fabrication d'un oscilloscope permettant un visionnage d'une forme d'onde d'un signal en modifiant l'échelle de temps selon un facteur contrôlable par un utilisateur, les tubes cathodiques ne pouvant pas afficher de signaux présentant des fréquences supérieures à quelques centaines de mégahertz.a subsampling consisting in processing repetitive signals of very high frequency, for example of the microwave type, by sampling samples at regular time intervals, but at a frequency lower than that of the signal. Typically, several cycles of the processed signal separate two sample captures. In addition, a small time difference is set up between two samples so that the second sample is taken a little later than the cycle of the processed signal. After taking several samples, we obtain a series of samples representative of a single cycle of the signal. This type of sampling is commonly used in electronic instrumentation for, for example, the manufacture of an oscilloscope for viewing a waveform of a signal by modifying the time scale according to a factor controllable by a user. , cathode ray tubes can not display signals with frequencies greater than a few hundred megahertz.
Dans l'état de la technique, les dispositifs d'échantillonnage utilisent invariablement au moins un interrupteur qui est actionné sur de très courtes périodes pour capturer des charges électriques et, par la suite, pour les stocker dans une mémoire par exemple de type condensateur. Usuellement, l'interrupteur se présente sous la forme d'au moins une diode actionnée par une impulsion électrique de très courte durée, i.e. de quelques fractions de picoseconde. De tels dispositifs présentent un problème technique majeur : le moment où un échantillon est capturé coïncide au moment où les diodes sont soumises à une forte conduction électrique favorisant l'apparition de bruit dans la mesure car elles sont porteuses de courant de grenaille.In the state of the art, the sampling devices invariably use at least one switch which is operated for very short periods to capture electrical charges and, subsequently, to store them in a memory, for example of the capacitor type. Usually, the switch is in the form of at least one diode actuated by an electric pulse of very short duration, i.e. of a few picosecond fractions. Such devices have a major technical problem: the moment when a sample is captured coincides with the moment when the diodes are subjected to a strong electrical conduction favoring the appearance of noise in the measurement because they carry a current of shot.
Le dispositif selon l'invention propose de remédier aux problèmes qui viennent d'être énoncés en supprimant l'utilisation de diodes. De ce fait, le dispositif selon l'invention est apte à être utilisé pour les deux types d'échantillonnage décrits précédemment. En particulier, pour l'échantillonnage de signaux de très haute fréquence, le dispositif selon l'invention présente l'avantage de n'être contraint ni par le bruit, ni par des limitations de vitesse inhérentes aux diodes. Son principe de fonctionnement repose sur l'exploitation du temps de propagation des ondes sur un guide d'ondes non linéaire (NLTL en anglais).The device according to the invention proposes to remedy the problems which have just been stated by eliminating the use of diodes. As a result, the device according to the invention is suitable for use with the two types of sampling described above. In particular, for the sampling of very high frequency signals, the device according to the invention has the advantage of being constrained neither by the noise nor by speed limitations inherent to the diodes. Its operating principle is based on the exploitation of the wave propagation time on a nonlinear waveguide (NLTL).
On considère deux guides d'ondes similaires. On émet une impulsion sur un premier guide d'ondes qui est parcouru par un signal analogique. On émet la même impulsion sur un deuxième guide d'ondes qui n'est parcouru par aucun signal analogique. La différence de propagation de l'impulsion, observée à la sortie de deux guides d'ondes, est approximativement proportionnelle à une dérivée de l'impulsion et à la tension observée par l'impulsion sur le premier guide durant toute sa propagation.We consider two similar waveguides. A pulse is emitted on a first waveguide which is traversed by an analog signal. The same pulse is emitted on a second waveguide which is not traversed by any analog signal. The propagation difference of the pulse, observed at the exit of two waveguides, is approximately proportional to a derivative of the pulse and to the voltage observed by the pulse on the first guide during all its propagation.
L'invention a donc pour objet un dispositif électronique d'échantillonnage d'un signal analogique répétitif ou non, ledit dispositif comportantThe invention therefore relates to an electronic device for sampling an analog repetitive signal or not, said device comprising
- une première entrée de laquelle est émis le signal analogique,a first input from which the analog signal is emitted,
- une deuxième entrée par laquelle un générateur d'impulsions brèves émet une impulsion d'échantillonnage, caractérisé en ce quea second input through which a short pulse generator emits a sampling pulse, characterized in that
- un répartiteur d'ondes relié en série aux entrées et configuré de sorte à fournir à un premier guide d'ondes non-linéaire une somme des signaux reçus et à un deuxième guide d'ondes un signal opposé à la somme des signaux reçus, - les deux guides d'ondes sont reliés à un coupleur de signaux configuré de sorte à mesurer une différence de propagation de l'impulsion,a wave splitter connected in series with the inputs and configured so as to supply a first non-linear waveguide with a sum of the signals received and a signal with a second waveguide opposite to the sum of the signals received, the two waveguides are connected to a signal coupler configured to measure a propagation difference of the pulse,
- le coupleur est connecté en série à un couple d'intégrateurs configurés de sorte à fournir en sortie un palier de tension proportionnel à un échantillon souhaité. Outre les caractéristiques principales qui viennent d'être mentionnées dans le paragraphe précédent, le dispositif d'échantillonnage selon l'invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes :the coupler is connected in series with a pair of integrators configured so as to output a voltage step proportional to a desired sample. In addition to the main features that have just been mentioned in the preceding paragraph, the sampling device according to the invention may have one or more additional characteristics among the following:
- il comporte un deuxième guide d'ondes mis en parallèle avec le premier guide d'ondes,it comprises a second waveguide connected in parallel with the first waveguide,
- le deuxième guide d'ondes est linéaire,the second waveguide is linear,
- le deuxième guide d'ondes est non-linéaire,the second waveguide is non-linear,
- il comporte un troisième guide d'ondes non-linéaire mis en parallèle avec le premier et le deuxième guide d'ondes, - il comporte un deuxième répartiteur d'ondes,it comprises a third non-linear waveguide connected in parallel with the first and second waveguides; it comprises a second wave divider,
- il comporte un deuxième coupleur.it comprises a second coupler.
Un autre objet essentiel de l'invention est un procédé d'échantillonnage d'un signal analogique répétitif ou non, dans lequelAnother essential object of the invention is a method for sampling an analog repetitive signal or not, in which
- on émet une impulsion d'échantillonnage, - on émet le signal à échantillonner, caractérisé en ce quea sampling pulse is emitted; the signal to be sampled is transmitted; characterized in that
- on propage l'impulsion et le signal dans au moins deux guides d'ondes mis en parallèle,the pulse and the signal are propagated in at least two waveguides connected in parallel,
- on mesure, à la sortie des guides d'ondes, une différence de propagation de l'impulsion,at the output of the waveguides, a difference in propagation of the pulse is measured,
- on intègre deux fois cette différence et on obtient un palier de tension proportionnel à un échantillon souhaité.this difference is incorporated twice and a voltage step proportional to a desired sample is obtained.
Outre les caractéristiques principales qui viennent d'être mentionnées dans le paragraphe précédent, le procédé d'échantillonnage selon l'invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes :In addition to the main characteristics that have just been mentioned in the preceding paragraph, the sampling method according to the invention may have one or more additional characteristics among the following:
- on propage l'addition du signal et de l'impulsion dans un premier guide d'ondes non-linéaire.the addition of the signal and the pulse is propagated in a first non-linear waveguide.
- on propage l'impulsion seule dans un deuxième guide d'ondes non- linéaire.the pulse alone is propagated in a second non-linear waveguide.
- on propage l'addition de l'impulsion et de l'opposé en phase de 180° du signal dans un deuxième guide d'ondes linéaire.the addition of the pulse and the opposite 180 ° phase of the signal are propagated in a second linear waveguide.
- on propage l'addition du signal et de l'impulsion dans un premier guide d'ondes non-linéaire, - on propage la soustraction du signal à l'impulsion dans un deuxième guide d'ondes non-linéaire,the addition of the signal and the pulse is propagated in a first non-linear waveguide; the subtraction of the signal is propagated to the pulse in a second non-linear waveguide,
- on propage le double du signal dans un troisième guide d'ondes non- linéaire.the signal is propagated twice in a third non-linear waveguide.
L'invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Celles-ci ne sont présentées qu'à titre indicatif et nullement limitatif de l'invention. Les figures montrent :The invention and its various applications will be better understood by reading the following description and examining the figures that accompany it. These are presented only as an indication and in no way limitative of the invention. The figures show:
- figure 1 : une représentation schématique, en perspective oblique, de deux guides d'ondes distincts, - figure 2 : une représentation schématique d'un premier exemple de réalisation du dispositif selon l'invention,FIG. 1 is a schematic representation, in oblique perspective, of two distinct waveguides; FIG. 2 is a diagrammatic representation of a first exemplary embodiment of the device according to the invention;
- figure 3 : une représentation schématique d'un deuxième exemple de réalisation du dispositif selon l'invention,FIG. 3: a schematic representation of a second exemplary embodiment of the device according to the invention,
La figure 1 montre un premier guide 1 d'ondes et un deuxième guide 2 d'ondes. Le guide 1 d'ondes comporte une piste 3 en métal, une masse 4 en métal et un élément diélectrique non-linéaire 5 se présentant sous la forme d'une microbande. Le guide 1 d'ondes est donc défini comme étant non- linéaire car il présente des caractéristiques de propagation, telles que la vitesse et l'impédance, dépendantes de l'intensité du champ électrique le traversant.Figure 1 shows a first waveguide 1 and a second waveguide 2. The waveguide 1 comprises a metal track 3, a mass 4 metal and a nonlinear dielectric element 5 in the form of a microstrip. The waveguide 1 is therefore defined as non-linear because it has propagation characteristics, such as speed and impedance, depending on the intensity of the electric field passing therethrough.
Le guide 1 d'ondes est connu de l'homme du métier pour propager un signal selon des modes quasi-TEM (Transverse Electro Magnetic), i.e. sans champ électromagnétique dans la direction de propagation, et produire des pertes en fréquences inhérentes. L'élément diélectrique est supposé présenter :The waveguide 1 is known to those skilled in the art to propagate a signal in quasi-TEM (Transverse Electro Magnetic) modes, i.e. without electromagnetic field in the direction of propagation, and produce inherent frequency losses. The dielectric element is supposed to present:
- une transparence magnétique : " ~ "° , eta magnetic transparency: " ~ " °, and
- une polarisation donnée par εoE - V (E )-E ^ où w(E) est l'inverse de la matrice de perméabilité. Le cristal de Niobate Lithium (LiNbO3) est un bon exemple du type de substrat considéré. La polarisation électrique de l'élément diélectrique 5 est donnée par : ε0Ez = (—+ r.Ez ).Dz où «0 est un indice de réfraction, r est le n0 coefficient de Pockels de l'élément diélectrique non-linéaire 5.a polarization given by ε o E - V ( E ) - E ^ where w (E) is the inverse of the permeability matrix. Niobate Lithium crystal (LiNbO3) is a good example of the type of substrate considered. The electric polarization of the dielectric element 5 is given by: ε 0 E z = (- + rE z ) .D z where " 0 is a refractive index, r is the n 0 Pockels coefficient of the non-dielectric element -linear 5.
Le guide 2 d'ondes comporte une piste 6 en métal, une masse 7 en métal et un élément diélectrique linéaire 8 se présentant sous la forme d'une microbande. Le guide 2 d'ondes est donc défini comme étant linéaire car il présente des caractéristiques constante de propagation, telles que la vitesse et l'impédance, indépendantes de l'intensité du champ électrique le traversant. La figure 2 montre, de façon schématique, un premier exemple de réalisation du dispositif selon l'invention.The waveguide 2 comprises a track 6 of metal, a mass 7 of metal and a linear dielectric element 8 in the form of a microstrip. The waveguide 2 is therefore defined as being linear because it has constant propagation characteristics, such as speed and impedance, independent of the intensity of the electric field passing therethrough. FIG. 2 schematically shows a first embodiment of the device according to the invention.
Ce dispositif comporte deux entrées 10 et 1 1. Un générateur 9 d'impulsions très brèves émet, par la première entrée 10, une impulsion v1 d'échantillonnage. On émet, par la deuxième entrée 1 1 , un signal analogique sinusoïdal v2 à échantillonner.This device comprises two inputs 10 and 1 1. A generator 9 of very short pulses emits, through the first input 10, a sampling pulse v1. The second input 1 1 emits a sinusoidal analog signal v2 to be sampled.
L'impulsion v1 d'échantillonnage et le signal v2 à échantillonner traversent un répartiteur 14 d'ondes.The sampling pulse v1 and the signal v2 to be sampled pass through a wave splitter 14.
Dans une variante, l'impulsion v1 et le signal v2 traversent d'abord un coupleur de signaux duquel sortent la somme de l'impulsion et du signal v2. Le répartiteur 14 d'ondes est apte à fournir soit une somme v1 +v2 de l'impulsion v1 et du signal v2, soit une opposée v1 -v2 en phase de 180 degrés de la somme v1 +v2.In a variant, the pulse v1 and the signal v2 first pass through a signal coupler from which the sum of the pulse and the signal v2 leave. The wave splitter 14 is able to supply either a sum v1 + v2 of the pulse v1 and of the signal v2, or an opposite v1 -v2 in phase of 180 degrees of the sum v1 + v2.
A la sortie du répartiteur 14 d'ondes, une première branche 15 propage la somme v1 +v2 de l'impulsion v1 et du signal v2 jusqu'à un guide 1 d'ondes tel que celui décrit avec la figurel .At the output of the wave splitter 14, a first branch 15 propagates the sum v1 + v2 of the pulse v1 and the signal v2 to a waveguide 1 such as that described with the figurel.
L'impulsion v1 d'échantillonnage et le signal v2 à échantillonner évoluent selon une même vitesse au sein du guide 1 d'ondes non-linéaire.The sampling pulse v1 and the signal v2 to be sampled evolve at the same speed within the non-linear waveguide 1.
De ce fait, en tout point du guide 1 d'ondes, l'impulsion v1 observe la même tension du signal v2 à échantillonner. Mais la présence de la tension du signal v2 provoque une variation de la vitesse de propagation de l'impulsion v1 , en raison de la non-linéarité du guide 1 d'ondes. Cette variation est visible en sortie du guide 1 d'ondes. En effet, il est connu que la vitesse de propagation de l'impulsion v1 en présence d'un signal analogique v2 est différente de celle observée en son absence.Therefore, at any point of the waveguide 1, the pulse v1 observes the same voltage of the signal v2 to be sampled. But the presence of the voltage of the signal v2 causes a variation in the propagation speed of the pulse v1, due to the non-linearity of the waveguide 1. This variation is visible at the output of waveguide 1. Indeed, it is known that the propagation speed of the pulse v1 in the presence of an analog signal v2 is different from that observed in its absence.
Un signal w sort du guide 1 d'ondes pour entrer dans un deuxième coupleur 17 de signaux.A signal w exits waveguide 1 to enter a second signal coupler 17.
A la sortie du répartiteur 14 d'ondes, une deuxième branche 16 propage l'opposée v1 -v2 en phase de 180° de la somme v1 +v2 de l'impulsion v1 et du signal v2 jusqu'à un guide 2 d'ondes linéaire tel que celui décrit avec la figure 1. Un signal w' sort du guide 1 d'ondes pour entrer dans le coupleur 17 de signaux.At the output of the wave distributor 14, a second branch 16 propagates the opposite v1 -v2 in 180 ° phase of the sum v1 + v2 of the pulse v1 and the signal v2 to a waveguide 2 As described in FIG. 1, a signal w 'emerges from the waveguide 1 to enter the signal coupler 17.
Le coupleur 17 de signaux fournit, à sa sortie 18, la soustraction w-w' du signal w' au signal w. La soustraction w-w' pénètre dans un premier circuit intégrateur 19 fournissant, à sa sortie 20, un premier palier de tension J(w- w')dt proportionnel à l'échantillon souhaité. Le premier palier de tension J(w- w')dt entre dans un deuxième intégrateur 21 fournissant, à sa sortie 22, un deuxième palier J(J(w- w')dt) proportionnel à l'échantillon souhaité.The signal coupler 17 provides, at its output 18, the subtraction w-w 'of the signal w' to the signal w. The subtraction w-w 'enters a first integrator circuit 19 providing, at its output 20, a first voltage plateau J (w-w') dt proportional to the desired sample. The first voltage stage J (w-w ') dt enters a second integrator 21 providing, at its output 22, a second stage J (J (w-w') dt) proportional to the desired sample.
La différence de propagation de l'impulsion, observée à la sortie des deux guides 1 et 2 d'ondes, est approximativement proportionnelle à une dérivée de l'impulsion v1 et à la tension observée par l'impulsion v1 sur le premier guide 1 d'ondes durant toute sa propagation.The propagation difference of the pulse observed at the output of the two waveguides 1 and 2 is approximately proportional to a derivative of the pulse v1 and to the voltage observed by the pulse v1 on the first waveguide 1 during its propagation.
La figure 3 montre, de façon schématique, un deuxième exemple de réalisation du dispositif selon l'invention. Les différents éléments apparaissant sur plusieurs figures auront gardé, sauf précision contraire, la même référence.Figure 3 shows schematically a second embodiment of the device according to the invention. The different elements appearing in several figures will have kept, unless otherwise specified, the same reference.
Ce dispositif comporte deux entrées 10 et 1 1. Un générateur 9 d'impulsions très brèves émet, par la première entrée 10, une impulsion v1 d'échantillonnage. On émet, par la deuxième entrée 1 1 , un signal analogique sinusoïdal v2 à échantillonner qui traverse un premier répartiteur 14 d'ondes. A une première sortie 27 du répartiteur 14 d'ondes, le double 2v2 du signal v2 se propage dans un guide 1 c d'ondes non-linéaire tel que celui décrit avec les figures 1 et 2.This device comprises two inputs 10 and 1 1. A generator 9 of very short pulses emits, through the first input 10, a sampling pulse v1. The second input 11 emits a sinusoidal analog signal v2 to be sampled which passes through a first wave splitter 14. At a first output 27 of the wave splitter 14, the double 2v2 of the signal v2 propagates in a nonlinear waveguide 1 c such as that described with FIGS. 1 and 2.
A une deuxième sortie 24 du répartiteur 14 d'ondes, le signal v2 se propage jusqu'à atteindre, parallèlement à l'impulsion v1 par l'entrée 10, un deuxième répartiteur 12 d'ondes.At a second output 24 of the wave splitter 14, the signal v2 propagates to reach, parallel to the pulse v1 by the input 10, a second 12-wave splitter.
A une première sortie 25 du répartiteur 12, l'addition v1 +v2 du signal v2 et de l'impulsion v1 se propage dans un deuxième guide 1 a d'ondes identique au guide 1 c d'ondes non-linéaire. A une deuxième sortie 26 du répartiteur 12, la soustraction v1 -v2 du signal v2 à l'impulsion v1 se propage dans un troisième guide 1 b d'ondes non-linéaire identique aux guides d'ondes 1 a et 1 c.At a first output 25 of the splitter 12, the addition v1 + v2 of the signal v2 and the pulse v1 propagates in a second waveguide 1 has the same waveguide 1 c non-linear wave. At a second output 26 of the splitter 12, the subtraction v1 -v2 of the signal v2 to the pulse v1 is propagated in a third nonlinear waveguide 1b identical to the waveguides 1a and 1c.
Un signal w1 sort du guide 1 a d'ondes, un signal w2 sort du guide 1 b d'ondes, et un signal 2v'2 sort du guide 1 c d'ondes ; où v' est la dérivée de v. Le signal w1 et le signal w2 pénètrent dans un premier coupleur 17 et en sortent par une unique branche 28 sous la forme d'un signal w3 correspondant à la soustraction w1 -w2 du signal w2 au signal w1. Le signal w3 est égal à : k-A-dv1/dt+2v'2 ; où k est une constante et A est une perturbation de l'impulsion v1. Le signal 2v'2 et la soustraction w1 -w2 du signal w2 au signal w1 pénètrent dans un deuxième coupleur 23 d'ondes et en sortent par une unique branche 29 sous la forme d'un signal w4 correspondant à la soustraction w3-2v'2 du signal 2v'2 au signal w1 -w2. Le signal w4 est égal à : w1 -w2-2v'2 = k-A-δv1/δt. Le signal w4 se propage le long de la branche 29 jusqu'à atteindre le premier intégrateur 19 et en sortir 20 sous la forme d'un signal w5 égal à k'-A'-v'1.A signal w1 comes out of waveguide 1a, a signal w2 comes out of waveguide 1b, and a signal 2v'2 leaves waveguide 1c; where v 'is the derivative of v. The signal w1 and the signal w2 enter a first coupler 17 and exit through a single branch 28 in the form of a signal w3 corresponding to the subtraction w1 -w2 of the signal w2 to the signal w1. The signal w3 is equal to: k-A-dv1 / dt + 2v'2; where k is a constant and A is a perturbation of the pulse v1. The signal 2v'2 and the subtraction w1 -w2 of the signal w2 at the signal w1 enter a second wave coupler 23 and exit through a single branch 29 in the form of a signal w4 corresponding to the subtraction w3-2v ' 2 of the signal 2v'2 to the signal w1 -w2. The signal w4 is equal to: w1 -w2-2v'2 = k-A-δv1 / δt. The signal w4 propagates along the branch 29 until reaching the first integrator 19 and output 20 as a signal w5 equal to k'-A'-v'1.
Le signal w5 se propage le long de la branche 20 jusqu'à atteindre le deuxième intégrateur 21 et en sortir 22 sous la forme d'un signal w6 égal à J(k-A-dv'1/dt) et proportionnel à l'échantillon souhaité. The signal w5 propagates along the branch 20 until it reaches the second integrator 21 and leaves it 22 in the form of a signal w6 equal to J (kA-dv'1 / dt) and proportional to the desired sample .

Claims

REVENDICATIONS
1 - Dispositif électronique d'échantillonnage d'un signal analogique (v2) répétitif ou non, ledit dispositif comportant - une première entrée (1 1 ) de laquelle est émis le signal analogique,1 - electronic device for sampling an analog signal (v2) repetitive or not, said device comprising - a first input (1 1) from which the analog signal is emitted,
- une deuxième entrée (10) par laquelle un générateur (9) d'impulsions brèves émet une impulsion (v1 ) d'échantillonnage, caractérisé en ce quea second input (10) through which a generator (9) of short pulses emits a sampling pulse (v1), characterized in that
- un répartiteur (14) d'ondes relié en série aux entrées et configuré de sorte à fournir à un premier guide (1 ; 1 a) d'ondes non-linéaire une somme des signaux reçus et à un deuxième guide d'ondes un signal opposé à la somme des signaux reçus,a wave splitter (14) connected in series with the inputs and configured to supply a first nonlinear waveguide (1; 1 a) with a summation of the received signals and a second waveguide a signal opposite to the sum of the signals received,
- les deux guides d'ondes sont reliés à un premier coupleur (17) de signaux configuré de sorte à mesurer une différence de propagation de l'impulsion,the two waveguides are connected to a first signal coupler (17) configured to measure a propagation difference of the pulse,
- le coupleur est connecté en série à un couple d'intégrateurs (19 ; 21 ) configurés de sorte à fournir en sortie un palier de tension proportionnel à un échantillon souhaité.the coupler is connected in series with a pair of integrators (19; 21) configured so as to output a voltage step proportional to a desired sample.
2 - Dispositif électronique d'échantillonnage selon la revendication 1 , caractérisé en ce que :2 - electronic sampling device according to claim 1, characterized in that:
- le deuxième guide (2) d'ondes est linéaire.the second waveguide (2) is linear.
3 - Dispositif électronique d'échantillonnage selon la revendication 1 , caractérisé en ce que :3 - electronic sampling device according to claim 1, characterized in that:
- le deuxième guide (1 b) d'ondes est non-linéaire. 4 - Dispositif électronique d'échantillonnage selon l'une des revendications 1 , ou 3 caractérisé en ce que :the second waveguide (1b) is nonlinear. 4 - electronic sampling device according to one of claims 1 or 3 characterized in that:
- il comporte un troisième guide (1 c) d'ondes non-linéaire mis en parallèle avec le premier et le deuxième guide d'ondes.it comprises a third guide (1c) of nonlinear waves placed in parallel with the first and the second waveguides.
5 - Dispositif électronique d'échantillonnage selon l'une des revendications 1 à 5 caractérisé en ce que :5 - electronic sampling device according to one of claims 1 to 5 characterized in that:
- il comporte un deuxième répartiteur (12) d'ondes.it comprises a second wave distributor (12).
6 - Dispositif électronique d'échantillonnage selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte6 - electronic sampling device according to one of claims 1 to 5, characterized in that it comprises
- un deuxième coupleur (23). 7 - Procédé d'échantillonnage d'un signal analogique (v2) répétitif ou non, dans lequela second coupler (23). 7 - Method for sampling a repetitive analog signal (v2) or no, in which
- on émet (9) une impulsion (v1 ) d'échantillonnage,a sample pulse (v1) is emitted (9),
- on émet (1 1 ) le signal à échantillonner, caractérisé en ce que - on propage l'impulsion et le signal dans au moins deux guides (1 ; 2) d'ondes mis en parallèle,the signal to be sampled is transmitted (1 1), characterized in that the pulse and the signal are propagated in at least two waveguides (1; 2) connected in parallel,
- on mesure, à la sortie des guides d'ondes, une différence de propagation de l'impulsion,at the output of the waveguides, a difference in propagation of the pulse is measured,
- on intègre deux fois cette différence et on obtient un palier de tension proportionnel à un échantillon souhaité.this difference is incorporated twice and a voltage step proportional to a desired sample is obtained.
8 - Procédé d'échantillonnage selon la revendication 7, caractérisé en ce que8 - sampling method according to claim 7, characterized in that
- on propage l'addition (v1 +v2) du signal et de l'impulsion dans un premier guide (1 ) d'ondes non-linéaire. 9 - Procédé d'échantillonnage selon l'une des revendications 7 ou 8, caractérisé en ce quethe addition (v1 + v2) of the signal and of the pulse is propagated in a first nonlinear waveguide (1). 9 - sampling method according to one of claims 7 or 8, characterized in that
- on propage l'impulsion seule dans un deuxième guide d'ondes non- linéaire.the pulse alone is propagated in a second non-linear waveguide.
10 - Procédé d'échantillonnage selon l'une des revendications 7 ou 8, caractérisé en ce que10 - sampling method according to one of claims 7 or 8, characterized in that
- on propage l'addition (v1 -v2) de l'impulsion et de l'opposé en phase de 180°du signal dans un deuxième guide (2) d'ondes linéaire.the addition (v1 -v2) of the pulse and of the opposite in 180 ° phase of the signal are propagated in a second linear waveguide (2).
1 1 - Procédé d'échantillonnage selon la revendication 7, caractérisé en ce que - on propage l'addition (v1 +v2) du signal et de l'impulsion dans un premier guide d'ondes non-linéaire (1 a),1 1 - Sampling method according to claim 7, characterized in that - the addition (v1 + v2) of the signal and the pulse is propagated in a first non-linear waveguide (1 a),
- on propage la soustraction (v1 -v2) du signal à l'impulsion dans un deuxième guide d'ondes non-linéaire (1 b),the subtraction (v1 -v2) of the signal is propagated to the pulse in a second non-linear waveguide (1 b),
- on propage le double (2v2) du signal dans un troisième guide d'ondes non-linéaire (1 c). the double (2v2) of the signal is propagated in a third non-linear waveguide (1c).
PCT/FR2009/051737 2008-09-15 2009-09-15 Electronic device for sampling an analog signal by varying the propagation time WO2010029275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856202A FR2936120A1 (en) 2008-09-15 2008-09-15 ELECTRONIC DEVICE FOR SAMPLING AN ANALOG SIGNAL BY VARIATION OF THE TIME OF PROPAGATION.
FR0856202 2008-09-15

Publications (1)

Publication Number Publication Date
WO2010029275A1 true WO2010029275A1 (en) 2010-03-18

Family

ID=40275980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051737 WO2010029275A1 (en) 2008-09-15 2009-09-15 Electronic device for sampling an analog signal by varying the propagation time

Country Status (2)

Country Link
FR (1) FR2936120A1 (en)
WO (1) WO2010029275A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260375A1 (en) * 1985-06-07 1988-03-23 Sequence Incorporated Precision pulse generator for high-speed FISO sampling system
WO1994006121A1 (en) * 1992-09-08 1994-03-17 The Regents Of The University Of California High speed transient sampler
US20050259720A1 (en) * 1997-12-12 2005-11-24 Freescale Semiconductor, Inc. Ultra wide bandwidth spread-spectrum communications system
WO2006015367A1 (en) * 2004-07-30 2006-02-09 Picosecond Pulse Labs Waveguide samplers and frequency converters
US20080218257A1 (en) * 2007-03-05 2008-09-11 Jaesik Lee Distributed track-and-hold amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260375A1 (en) * 1985-06-07 1988-03-23 Sequence Incorporated Precision pulse generator for high-speed FISO sampling system
WO1994006121A1 (en) * 1992-09-08 1994-03-17 The Regents Of The University Of California High speed transient sampler
US20050259720A1 (en) * 1997-12-12 2005-11-24 Freescale Semiconductor, Inc. Ultra wide bandwidth spread-spectrum communications system
WO2006015367A1 (en) * 2004-07-30 2006-02-09 Picosecond Pulse Labs Waveguide samplers and frequency converters
US20080218257A1 (en) * 2007-03-05 2008-09-11 Jaesik Lee Distributed track-and-hold amplifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHAEL S BORELLA ET AL: "Optical Components for WDM Lightwave Networks", PROCEEDINGS OF THE IEEE, IEEE. NEW YORK, US, vol. 85, no. 8, 1 August 1997 (1997-08-01), XP011043873, ISSN: 0018-9219 *

Also Published As

Publication number Publication date
FR2936120A1 (en) 2010-03-19

Similar Documents

Publication Publication Date Title
EP0057802B1 (en) Phase and amplitude measurement for a dielectric property logging system
EP0327420B1 (en) Device and method for measuring a short light pulse or a short electrical pulse
CA1299661C (en) Apparatus for measuring the intermodulation products in a receiver system
FR2925170A1 (en) DEVICE FOR REALIZING THE PROCESSING AND SCANNING OF AN ENERGY SPECTRUM OF ELECTROMAGNETIC RADIATION
EP0002415B1 (en) Method and device for counting transmission errors in a digital radio relay link
Wang et al. Oscilloscopic capture of greater-than-100 GHz, ultra-low power optical waveforms enabled by integrated electrooptic devices
WO2010029275A1 (en) Electronic device for sampling an analog signal by varying the propagation time
EP0492392B1 (en) Apparatus for non-destructive testing with Eddy-currents
EP1084416B1 (en) Electric sampler
EP0707208B1 (en) Method and apparatus for simultaneously determining the crack opening extent and its temperature on the surface of a solid electrically conducting body
EP0286671A1 (en) Time domain reflectometer
FR2581196A1 (en) Method and device for measuring resistivity, particularly for dielectric liquids of very high resistivity
BE740222A (en)
EP0866326B1 (en) Installation for the detection and localisation of liquid leaks
EP1390769B1 (en) High-frequency electrical signal sampling device
CH390575A (en) Method for measuring pressure in explosion phenomena and device for implementing this method
WO1997018438A1 (en) Method and device for measuring axial deviation in a tautwire alignment system
WO1993024843A1 (en) Probe and method of measuring ground resistivity
FR2764070A1 (en) Electrical sampler of very short, non-repeating impulses e.g. from X=ray or gamma detectors
Tucker Square‐Wave Generator for the Study of Exploding Wires
WO2023104735A1 (en) Device and method for testing memory
FR2514903A1 (en) Impedance measuring circuit for semiconductor components - has summing circuit forming dipole equivalent to voltage generator in combination with pulse generator and oscillator
EP0562989B1 (en) Procedure and apparatus for measuring phase noise of sinusoidal signal generators
FR2551548A1 (en) Anodic separation voltameter for measurement of ion concentrations.
Bogoni et al. Asynchronous optical sampler for monitoring of 40 Gbit/s signals in C-band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09748395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09748395

Country of ref document: EP

Kind code of ref document: A1