WO2010028123A1 - Aqueous coating composition - Google Patents
Aqueous coating composition Download PDFInfo
- Publication number
- WO2010028123A1 WO2010028123A1 PCT/US2009/055855 US2009055855W WO2010028123A1 WO 2010028123 A1 WO2010028123 A1 WO 2010028123A1 US 2009055855 W US2009055855 W US 2009055855W WO 2010028123 A1 WO2010028123 A1 WO 2010028123A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- monomers
- composition
- meth
- aqueous
- water
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/02—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of acids, salts or anhydrides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
- C08F265/06—Polymerisation of acrylate or methacrylate esters on to polymers thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/003—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
- C08F220/281—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
Definitions
- the present invention refers to an aqueous coating composition comprising aqueous binder latices providing texture effects of the coated surface.
- WO 2006/118974 discloses aqueous binder latices which are particularly suitable as binders in water-borne base coats useful in the production of base coat/clear coat two-layer coatings.
- the aqueous binder latices are produced by multistage emulsion polymerization; olefinically polyunsaturated monomers are copolymerized in all the stages of the emulsion polymerization and olefinically monounsaturated monomers with acid groups are copolymerized in the first stage of the emulsion polymerization. Specific texture effects of the coated surface can not be received with such aqueous binder latices.
- Such particles can be, for example, cellulose fibres, thermally expandable polymers.
- EP-A 0452399 discloses the production of aqueous copolymer thickeners for the use in aqueous latex paints to provide structured surfaces.
- the addition of thickeners can lead to low popping limits, particularly under forced drying conditions. Furthermore, specific required structures of the surfaces can not be obtained by addition of thickeners.
- the present invention refers to an aqueous coating composition
- an aqueous coating composition comprising at least one aqueous binder latex, the latex prepared by emulsion polymerization in the aqueous phase, comprising the steps: 1) preparing an acid functional (meth) acrylic resin from at least two olefinically monounsaturated, polymerizable monomers by polymerization in organic solvent, and neutralizing the acid groups of the formed polymer and inverting into water or by emulsion polymerization and neutralizing the acid groups of the formed polymer, and
- the aqueous coating composition of the present invention are based on the aqueous binder latex which is usable as binder providing when combined with hardeners (crosslinking agents) and/or special solvents a number of fine and coarse grain structures of gloss, semi-gloss and/or matt coated surfaces combined with high quantity of the coating properties.
- aqueous binder latices water-dispersed emulsion polymers, i.e. water-dispersed polymer particles prepared by emulsion polymerizing free-radically polymerizable olefinically unsaturated monomers, said emulsion polymers being usable as film-forming binders in aqueous coating compositions.
- At least one aqueous binder latex is produced by radical polymerization of olefinically unsaturated monomers of step 1 ), either in solution or in emulsion, and an emulsion polymerization of olefinically unsaturated monomers of step 2) in the presence of the product obtained in process step 1 ).
- the radical polymerization of the olefinically unsaturated monomers of step 1) can be carried out in solution or in emulsion, both known to those skilled in the art, with the addition of one or more initiators which are thermally dissociable into free radicals, and using one or more emulsifiers in case of emulsion polymerization.
- the polymerization temperature in the aqueous phase is, for example, 50 to 95 0 C.
- the initiator(s) (free-radical initiators) for step 1 ) are used in a conventional total quantity of, for example, 0.02 to 6 wt.%, preferably 0.5 to 4 wt. %, relative to the sum of the weights of the monomers of step 1 ) of the process of the invention, and may be added, for example, contemporaneously to the apportionment of the monomers.
- the polymerizsation reaction in solution may be initiated with conventional initiators which are thermally dissociable into free radicals.
- free-radical initiators are dialkyl peroxides, such as di-tert.-butyl peroxide, dicumyl peroxide; diacyl peroxides, such as, dibenzoyl peroxide, dilauroyl peroxide; hydroperoxides, such as, cumene hydroperoxide, tert.-butyl hydroperoxide; peresters, such as, tert,- butyl perbenzoate, tert.-butyl per-2-ethylhexanoate; peroxy dicarbonates; perketals; ketone peroxides, such as cyclohexane peroxide, methyl isobutyl ketone peroxide and azo compounds, such as, azobisisobutyronitrile; C-C- cleaving initiators, such as, for example, benzopinacole derivatives.
- dialkyl peroxides such as di-tert.-butyl peroxide, dicum
- Examples of usable free-radical initiators for emulsion polymerization of step 1) are hydrogen peroxide, peroxodisulfates such as sodium, potassium and ammonium peroxodisulfate, ammonium salts of 4,4'-azobis(4- cyanopentanoic acid), 2,2'-azobis(2-methyl-N-1 ,1- bis(hydroxymethyl)ethyl)propionamide, 2,2'-azobis(2-methyl-N-2- hydroxyethyl)propionamide as well as conventional redox initiator systems known to the person skilled in the art, such as hydrogen peroxide/ascorbic acid optionally in combination with catalytic metal salts such as iron, copper or chromium salts.
- peroxodisulfates such as sodium, potassium and ammonium peroxodisulfate
- the emulsifier(s) is/are used in a conventional total quantity of, for example, 0.1 to 3 wt.%, relative to the sum of the weights of the monomers of step 1) of the process.
- emulsifiers usable in the context of emulsion polymerization, such as, for example, cetyltrimethylammonium chloride, benzyldodecyldimethylammonium bromide, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, polyethylene glycol monolauryl ether.
- the emulsion polymerization of step 2) is a free-radical polymerization performed in an aqueous emulsion, i.e. using one or more emulsifiers and with the addition of one or more initiators which are thermally dissociable into free radicals.
- the polymerization temperature in the aqueous phase is, for example, 50 to 95°C.
- the emulsifier(s) is/are used in a conventional total quantity of, for example, 0.1 to 3 wt.%, relative to the sum of the weights of the monomers of step 2) of the process of the invention. Examples are the same as mentioned above for the emulsion polymerization of step 1 ).
- the free-radical initiators for step 2) are used in a conventional total quantity of, for example, 0.02 to 6 wt.%, preferably 0.5 to 4 wt.%, relative to the sum of the weights of the monomers of step 1 ) and 2) of the process, and may be added, for example, contemporaneously to the apportionment of the monomers. Examples are the same as mentioned above for the emulsion polymerization of step 1 ).
- the (meth)acrylic resin of step 1 ) of the invention are preferably made by first charging a reactor with an organic solvent or a solvent blend and the olefinically monounsaturated, polymerizable monomers.
- a feed stream comprising a mixture of a quantity of unsaturated monomer and an initiator is charged to the reactor over a period of time.
- the reactor contents can be rinsed with additional organic solvent.
- Suitable organic solvents are water-dilutable or water-mixable organic solvents as known in the art, for example, water-dilutable like monovalent or bivalent alcohols or glycols, for example n-butanol, ethylene glycol, water- dilutable monoethers or esters derived from alcohols, for example methoxypropanol, methoxyproylacetate or water-dilutable glycol ethers like butylglycol. It is also possible to use solvents not dilutable with water and to distill off the solvent from the dispersion.
- the acid groups of the resin obtained in process step 1) are neutralized using conventional basic neutralizing agents, such as potassium or sodium hydroxide, ammonia and in particular amines and/or aminoalcohols such as, for example, triethylamine, dimethylisopropylamine, dimethylethanolamine, dimethylisopropanolamine and 2-amino-2-methyl-1-propanol. Dimethylisopropylamine, AMP or ammonia is preferred.
- basic neutralizing agents such as potassium or sodium hydroxide, ammonia and in particular amines and/or aminoalcohols
- dimethylisopropylamine, AMP or ammonia is preferred.
- the basic neutralizing agents are added in accordance with a degree of neutralization of, for example, 10 to 120 %, preferably 50 to 100 %.
- a degree of neutralization of 100 % here corresponds to a stoichiometric neutralization of each acid group in the polymer.
- the degree of neutralization is selected according to polarity of the resin and/or storage stability as known by person skilled in the art.
- the monomers of step 1 ) of the process can be added, as is usual in emulsion polymerizations, into an aqueous initial charge, which has generally already been adjusted to the polymerization temperature.
- the monomers of step 2) of the process can be added in the same way to start the emulsion polymerization of step 2) as mentioned above for step 1 ).
- Process step 2) consequently is started by the beginning of the particular apportionment.
- the monomers are apportioned one after the other according to successive process steps 1) and 2), wherein apportionment of the momomers of step 2) is begun at the earliest after completion of process step 1 ), i.e. at the earliest once at least 90 wt.% of the monomers of step 1 ) have been polymerized to completion, the neutralization and, in case of polymers of step 1 made in solution, the inversion into water, has been performed.
- apportionment of the momomers of step 2) is begun at the earliest after completion of process step 1 ), that means, 100 wt.% of the monomers of step 1) have been polymerized to completion, the neutralization and, in case of polymerisation in solution, inversion has been performed.
- the extent to which the polymerization has been taken to completion may readily be determined by determining the solids content.
- the monomers of step 1) are initially apportioned in its entirety, after which the neutralizing agent is added once the monomers have been at least 90%, preferably completely, polymerized, the polymer is inverted into water and thereafter, the monomers of step 2) are apportioned.
- the ratio by weight of monomers of step 1 ) to the monomers of step 2) is in the range of 10 : 90 to 90 : 10.
- the monomers of step 1 ) of the process according to the invention comprise at least two olefinically monounsaturated, free-radically polymerizable monomers.
- Examples are olefinically monounsaturated, free-radically polymerizable monomers such as ⁇ meth)acrylic acid, esters of (meth)acrylic acid, for example, hydroxyalkyl(meth)acrylates like hydroxyethyl(meth)acrylates, polyproplyglycol (meth)acrylates, esters of (metha)crylic acid like (iso)butyl (meth)acrylate, isobornyl(meth)acrylate, ethylhexyl(meth)acrylate, aromatic monomers like styren, in mixture with olefinically monounsaturated, free-radically polymerizable monomers with at least one acid group.
- ⁇ meth)acrylic acid esters of (meth)acrylic acid
- esters of (meth)acrylic acid for example, hydroxyalkyl(meth)acrylates like hydroxyethyl(meth)acrylates, polyproplyglycol (meth)acrylates,
- (meth)acrylic is used in the present description and the claims. This means acrylic and/or methacrylic.
- olefinically monounsaturated, free-radically polymerizable monomers with at least one acid group are such as, for example, (meth)acrylic, itaconic, crotonic, isocrotonic, aconitic, maleic and fumaric acid, semi-esters of maleic and fumaric acid and carboxyalkyl esters of (meth)acrylic acid, for example, beta-carboxyethyl acrylate and adducts of hydroxyalkyl (meth)acrylates with carboxylic anhydrides, such as, for example, phthalic acid mono-2-(meth)acryloyloxyethyl ester.
- the acid value of the acid functional (meth) acrylic resin of step 1 ) can be in the range of 10 to 150, preferred 50 to 130 mg of KOH/g, based on the non-volatile part.
- olefinically monounsaturated, free-radically polymerizable monomers with at least one hydroxyl group can also be used in mixture with the above-mentioned monomers for step 1 ).
- olefinically monounsaturated, free-radically polymerizable monomers with at least one hydroxyl group such as, allyl alcohol, but in particular hydroxyalkyl (meth)acrylates such as, for example, hydroxyethyl (meth)acrylate, and the hydroxypropyl (meth)acrylates, hydroxybutyl
- (meth)acrylates isomeric with regard to the position of the hydroxyl group.
- Further examples are glycerol mono ⁇ meth)acrylate, adducts of (meth)acrylic acid onto monoepoxides, such as, for example, versatic acid glycidyl ester and adducts of glycidyl (meth)acrylate onto monocarboxylic acids such as, for example, acetic acid or propionic acid.
- the hydroxyl value of the acid functional (meth) acrylic resin of step 1 can be in the range of 5 to 250, preferred 50 to 200 mg of KOH/g, based on the non-volatile part.
- olefinically polyunsaturated, free-radically polymerizable monomers can also be used in small amounts in mixture with the above- mentioned monomers for step 1 ).
- olefinically polyunsaturated, free-radically polymerizable monomers are divinylbenzene, hexanediol di(meth)acrylate, ethylene and propylene glycol di(meth)acrylate, 1 ,3- and 1 ,4-butanediol di(meth)acrylate, vinyl (meth)acrylate, allyl (meth)acrylate, diallyl phthalate, glycerol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, di- and tripropylene glycol di(meth)acrylate, hexamethylene bis(meth)acrylamide.
- Further examples are compounds which may be produced by a condensation or preferably by an addition reaction of complementary compounds, which in each case, in addition to one or more olefinic double bonds, contain one or more further functional groups per molecule.
- the further functional groups of the individual complementary compounds comprise pairs of mutually complementary reactive groups, in particular groups which are capable of reacting with one another for the pu ⁇ oses of a possible condensation or addition reaction, as known to those skilled in the art.
- olefinic unsaturated monomers that, apart from having at least one olefinic double bond, do not contain any other reactive functional groups.
- suitable unsaturated monomers with no other functional groups are esters of unsaturated carboxylic acids with aliphatic monohydric branched or linear as well as cyclic alcohols with 1 to 20 C atoms.
- unsaturated carboxylic acids are acrylic acid, methacrylic acid, crotonic acid and isocrotonic acid. Esters of (meth)acrylic acid are preferred.
- Examples of (meth)acrylic acid esters with aliphatic alcohols are methylacrylate, ethylacrylate, isopropylacrylate, tert.-butylacrylate, n-butyt ⁇ crylate, isobutylacrylate, 2-ethylhexylacrylate, laurylacrylate, stearylacrylate and appropriate methylacrylates.
- Examples of (meth)acrylic acid esters with cyclic alcohols are cyclohexylacrylate, trimethylcyclohexylacrylate, 4-tert. butylcyclohexylacrylate, isobornylacrylate and appropriate methacrylates.
- Examples of (meth)acrylic acid esters with aromatic alcohols are benzyl(meth)acrylates.
- olefinically monounsaturated, free-radically polymerizable monomers having at least one aromatic hydrocarbon moiety in the molecule can also be used in mixture with the above-mentioned monomers for step 1 ).
- aromatic monomers examples include benzyl (meth)acrylate, 2-benzylethyl (meth)acrylate and monovinyl aromatic monomers, such as vinyl toluene, styrene and derivates of styrene like alphamethyl styrene, t-butyl-styrene. Styrene and/or derivates of styrene are preferred.
- the monomers of step 2) of the process according to the invention comprise at least one monounsaturated, free-radically polymerizable monomer.
- the aromatic monomer may constitute 0 to 60 wt.-%, preferred 20 to 40 wt.-%, of the sum of the weights of the monomers of step 1 ) and step 2) of the process of the invention.
- the polyunsaturated monomer may constitute 0 to 3 wt%, preferably 0 to 1 wt-% of the sum of weights of the monomer of step 1 ) and step 2) of the process of the invention.
- monomers of step 2) are olefinically monounsaturated, free-radically polymerizable monomers having at least one epoxy-functional group in the molecule.
- the epoxy-functional monomer may constitute 0 to 5 wt.-% of the sum of the weights of the monomers of step 1 ) and step 2) of the process.
- Examples of usable olefinically monounsaturated, free-radically polymerizable monomers with at least one epoxide group comprise glycidyl (meth)acrylate, ally) glycidylether, methallyl glycidylether, 3,4-epoxy-i-vinylcyclohexane, epoxycyclohexyl (meth)acrylate, vinyl glycidylether. Glycidyl (meth)acrylate is preferred.
- Preferred examples of the at least one monounsaturated, free-radically polymerizable monomer of step 2) are hydroxyethyl methacrylate, hydroxypropyl methacrylate, isobutyl (meth)acrylate, styrene, ethylhexyl(meth)acrylate isobornylmethacrylate, butylmethacrylate and glycidylmethacrylate.
- the monomers of step 1) and step 2) of the process can be selected in such a manner that the calculated glass transition temperature (Tg) of a copolymer composed of a combination of the olefinically monounsaturated monomers of step 1) and step 2) is in the range of 0 to 10O 0 C, preferred 20 to 60 0 C.
- Tg glass transition temperature
- calculated glass transition temperature refers to the glass transition temperature (Tg) calculated according to the well-known Fox equation (see, for example, T. Brock, M. Groteklaes and P. Mischke, European Coatings Handbook, 2000, Curt R. Vincentz Verlag, Hannover, pages 43-44; Tg values for homopolymers see, for example, Polymer Handbook, 3rd Edition, 1989, J.Wiley & Sons, New York, page VI-209 and the following).
- the process permits the production of aqueous binder latices with solids contents of, for example, 30 to 65 wt.%.
- aqueous binder latices Using the aqueous binder latices according to the invention, it is possible to formulate aqueous coating compositions which are distinguished by particular rheological properties, that means, excellent sagging properties, i.e. by a low tendency to sag.
- the aqueous coating compositions provide, when combinded with hardeners (crosslinking agent) and/or special solvents, a number of different texture effects of the coated surface, for example, fine and coarse grain structures of gloss, semi-gloss and/or matt coated surfaces.
- water-borne top coats for the production of single-layer coatings and waterborne top coats or clear coats suitable for the production of base coat/clear coat two-layer or multi-layer coatings may be formulated with the aqueous binder latices according to the invention.
- the aqueous coating compositions according to the invention, particularly water-borne top coats can be produced by mixing pigments with the aqueous binder latices according to the invention and, optionally, with further binders differing from the binders introduced by the aqueous binder latex according to the invention, with hardeners (crosslinking agents), fillers (extenders), conventional coating additives and/or organic solvents.
- water-borne top coats have solids contents of, for example, 25 to 75 wt.%, preferably of 40 to 65 wt.%.
- the ratio by weight of pigment content to the resin solids content is, for example, from 0.01 :1 to 2:1. relative to the weight of solids. If, in addition to the at least one binder introduced by an aqueous binder latex according to the invention, further binders differing therefrom are also present, the proportion thereof in the binder solids content is, for example, 0 to 80 wt.%.
- binders differing from the binders introduced by an aqueous binder latex according to the invention are conventional film-forming, water-dilutable binders familiar to the person skilled in the art, such as water- dilutable polyester resins, water-dilutable (meth)acrylic copolymer resins or water-dilutable polyester/(meth)acrylic copolymer hybrids and water-dilutable polyurethane resins or polyurethane/(meth)acrylic copolymer hybrids. These may be reactive or non-functional resins.
- the aqueous coating compositions comprising the aqueous binder latices according to the invention may be self drying (physically drying), self crosslinking or externally crosslinking.
- the aqueous coating compositions may comprise crosslinking agents, such as, for example, free or blocked polyisocyanates or amino resins, for example, melamine resins, preferably free polyisocyanates. Selection of the optionally used crosslinking agents depends on the type of crosslinkable groups in the binders and is familiar to the person skilled in the art.
- the crosslinking agents may be used individually or in combination.
- the mixing ratio of crosslinking agent solids to binder solids amounts, for example, to 10:90 to 40:60, preferably 20:80 to 30:70.
- the binder latices according to the invention show an increase in viscosity combined with a distinctive shear thinning behaviour when they were mixed with organic solvents. Due to this rheology effect, the aqueous coating compositions comprising the aqueous binder latices according to the invention lead to specific texture effects of the coated surface when combined with specific solvents and/or specific hardeners.
- the texture effects can range from fine grain structures to coarse grain structures, including, for example, scarred, porous, velvety, silky and/or pearl structures, of gloss, semi-gloss or matt coated surfaces. Therefore, the aqueous coating compositions based on the aqueous binder latices according to this invention can be free of thickeners. Thickeners are coating additives known at a person skilled in the art.
- Suitable solvents to obtain the specific texture effects are typical solvents used for the formulation of coatings.
- Preferred solvents are, for example, ethylethoxypropionate, methoxypropylacetate, butylacetate, butylglycolacetate, butyrolactone.
- the specific texture effects are achieved by the aqueous coating compositions comprising the aqueous binder latices according to the invention in combination with hardeners (crosslinking agents) and/or special solvents, in general, as mentioned above, and can be ranged in different texture effects creating, for example, by different application methods of the aqueous coating compositions, for example, spraying, nozzeling, and/or by applying to different dry film thicknesses in ranges as mentioned below.
- the structure can be further modified by the adjustment of the viscosity of the coating composition and the used fillers in the coating composition.
- the conventional coating pigments known at a person skilled in the art can be used, for example, special effect pigments and/or pigments selected from among white, colored and black pigments, using techniques to incorporate the pigments into the aqueous coating compositions as known at a person skilled in the art, for example, in form of an aqueous or non-aqueous paste, in combination with water and/or organic solvents.
- special effect pigments are conventional pigments which impart to a coating a color and/or lightness flop dependent on the angle of observation, such as metal pigments, for example, made from aluminum, copper or other metals, interference pigments such as, for example, metal oxide coated metal pigments, for example, iron oxide coated aluminum, coated mica such as, for example, titanium dioxide coated mica, pigments which produce a graphite effect, iron oxide in flake form, liquid crystal pigments, coated aluminum oxide pigments, coated silicon dioxide pigments.
- metal pigments for example, made from aluminum, copper or other metals
- interference pigments such as, for example, metal oxide coated metal pigments, for example, iron oxide coated aluminum, coated mica such as, for example, titanium dioxide coated mica, pigments which produce a graphite effect, iron oxide in flake form, liquid crystal pigments, coated aluminum oxide pigments, coated silicon dioxide pigments.
- white, colored and black pigments are the conventional inorganic or organic pigments known to the person skilled in the art, such as, for example, titanium dioxide, iron oxide pigments, carbon black, azo pigments, phthalocyanine pigments, quinacridone pigments, pyrrolopyrrole pigments, perylene pigments.
- the aqueous coating compositions comprising the aqueous binder latices according to the invention may also comprise fillers as known at a person skilled in the art, for example, in proportions of 0 to 30 wt.% relative to the resin solids content. Fillers do not constitute part of the pigment content. Examples are barium sulfate, kaolin, talcum, silicon dioxide, layered silicates.
- the aqueous coating compositions may comprise conventional coating additives in conventional quantities, for example, of 0.1 to 5 wt.%, relative to the solids content thereof.
- conventional coating additives for example, of 0.1 to 5 wt.%, relative to the solids content thereof.
- neutralizing agents for example, of 0.1 to 5 wt.%, relative to the solids content thereof.
- antifoaming agents for example, wetting agents, adhesion promoters, catalysts, levelling agents, anticratering agents, thickeners and light stabilizers.
- the aqueous coating compositions comprising the aqueous binder latices according to the invention does not comprise thickeners.
- the aqueous coating compositions may comprise solvents, for example, in a proportion of preferably less than 20 wt.%, particularly preferably of less than 10 wt.%.
- the solvents can be the same as mentioned above, or solvents differing from them.
- the solvents are conventional coating solvents known at a person skilled in the art, which may originate, for example, from the production of the binders or are added separately.
- solvents are mono- or polyhydric alcohols, for example, propanol, butanol, hexanol; glycol ethers or esters, for example, diethylene glycol dialkyl ether, dipropylene glycol dialkyl ether, in each case with C1-6 alkyl, ethoxypropanol, ethylene glycol monobutyl ether; glycols, for example, ethylene glycol, propylene glycol and the oligomers thereof; N- alkylpyrrolidones, such as, for example, N-methylpyrrolidone; ketones such as methyl ethyl ketone, acetone, cyclohexanone and aromatic or aliphatic hydrocarbons.
- mono- or polyhydric alcohols for example, propanol, butanol, hexanol
- glycol ethers or esters for example, diethylene glycol dialkyl ether, dipropylene glycol dialkyl ether, in each case with C
- the aqueous coating compositions may be used as a one-coating system, for example as a single top coat, but also as coating layer in a multi- layer film build, for example, as water-borne top coats for the production of the color- and/or special effect-imparting coating layer within a base coat/clear coat multi-layer coating.
- the water-borne top coats may be applied by conventional methods as known at a person skilled in the art, for example, by spraying to a dry film thickness of, for example, 10 to 120 ⁇ m, preferably 30 to 60 ⁇ m, and dried or crosslinked at temperatures of, for example, 20 to 170 0 C (temperature of the coated substrate).
- the drying and crosslinking can be proceed under the use of thermal energy, as known by a person skilled in the art.
- the coating layers may, for example, be exposed to convective, gas and/or radiant heating, e.g., infra red (IR) and/or near infra red (NIR) irradiation. Drying and crosslinking can also be proceed under ambient temperatures, for example 20 to 25°C (temperature of the coated substrate).
- One-coating or multilayer coatings produced in this manner may be applied onto various types of substrate.
- the substrates are generally all type of substrates, for example, of metal, steel, non-ferrous metal, plastics, wood, paper, glass, ceramics.
- aqueous coating compositions may be applied directly on the substrate surface or on a layer of a primer which can be a liquid or a powder based primer, for example, a conductive primer in case of coating of non- conductive substrates like wood or MDF, or a primer surfacer layer (filler layer).
- a primer which can be a liquid or a powder based primer, for example, a conductive primer in case of coating of non- conductive substrates like wood or MDF, or a primer surfacer layer (filler layer).
- Example 1b Preparation of a Dispersion
- thermometer and a condenser 830 grams of the copolymer resin of Example 1a are heated to 50° C. Then 63 grams of dimethylisopropylamine are added. The polymer blend was diluted with 487 grams of deionized water. Results: solids content: 44,0% acid value: 73,3 mg KOH/g
- thermometer and a condenser 868 grams of the acrylic copolymer resin dispersion of Example 1b and 66 grams of deionized water are heated to 80° C.
- a stirred monomer emulsion was prepared separately from 70 grams of hydroxypropyl methacrylate (HPMA), 205 grams of styrene, 166 grams of isobutyl methacrylate (IBMA) and 47 grams of butyl acrylate, 16 grams of Disponil FES 32 (anionic surfactant available from Cognis) and 400 grams of deionized water.
- HPMA hydroxypropyl methacrylate
- IBMA isobutyl methacrylate
- IBMA isobutyl methacrylate
- Disponil FES 32 anionic surfactant available from Cognis
- the polymer blend was diluted with 865 grams of water preheated at about 70° C. Results: solids content: 45.1% acid value: 33,6 mg KOH/g pH: 8.2
- Test Results Part A In a water-cooled vessel with stirrer 600.0 grams of the aqueous binder latice of Example 1c and 50.8 grams of Disperbyk®190 (Byk Chemie) are stirred homogeneously. While stirring 125.0 grams of Ti-Pure® R706 (white pigment, DuPont) and 153.2 grams of ASP200 (aluminium silicate hydrated, BASF) are gently added. Stirring is done for 30min at 6000 rpm.
- Part B 42 grams of 1 ,2 propanedioldiacetate (PGDA) and 58 grams Desmodur®3600 (HDI isocyanate, Bayer) are homogeneously mixed to result in an activator composition.
- PGDA 1,2 propanedioldiacetate
- Desmodur®3600 HDI isocyanate, Bayer
- Test Results Part A In a water-cooled vessel with stirrer 600.0 grams of the acrylic copolymer dispersion of Example 2 and 50.8 grams of Disperbyk®190 (Byk Chemie) are stirred homogeneously. While stirring 125.0 grams of Ti-Pure® R706 (white pigment, DuPont) and 153.2 grams of ASP200 (aluminium silicate hydrated, BASF) are added. Stirring is done for 30min at 6000 rpm. Part B: 66 grams Desmodur®3600 (HDI isocyanate, Bayer) and 34 grams PGDA (Dow Chemical) are homogeneously mixed to result in an activator composition.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Paints Or Removers (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2734391A CA2734391A1 (en) | 2008-09-04 | 2009-09-03 | Aqueous coating composition |
EP09792220.7A EP2331643B1 (en) | 2008-09-04 | 2009-09-03 | Aqueous coating composition |
CN2009801347651A CN102144008A (en) | 2008-09-04 | 2009-09-03 | Aqueous coating composition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19000008P | 2008-09-04 | 2008-09-04 | |
US19099408P | 2008-09-04 | 2008-09-04 | |
US61/190,000 | 2008-09-04 | ||
US61/190,994 | 2008-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010028123A1 true WO2010028123A1 (en) | 2010-03-11 |
Family
ID=41258948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/055855 WO2010028123A1 (en) | 2008-09-04 | 2009-09-03 | Aqueous coating composition |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2331643B1 (en) |
CN (1) | CN102144008A (en) |
CA (1) | CA2734391A1 (en) |
RU (1) | RU2011112776A (en) |
WO (1) | WO2010028123A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103289006A (en) * | 2013-05-24 | 2013-09-11 | 无锡市华明化工有限公司 | Waterborne acrylic resin and preparation method thereof |
CN111393932A (en) * | 2020-04-28 | 2020-07-10 | 上海君子兰新材料股份有限公司 | Dyed veneer coating and preparation method and construction method thereof |
US20220064475A1 (en) * | 2020-08-31 | 2022-03-03 | Axalta Coating Systems Ip Co., Llc | Top Coat Composition |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2646037T3 (en) | 2012-12-28 | 2017-12-11 | Avery Dennison Corporation | Finishing compositions, coated substrates and related methods |
JP7499010B2 (en) * | 2019-05-30 | 2024-06-13 | ヘンケルジャパン株式会社 | Coating agent |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0031964A2 (en) * | 1980-01-02 | 1981-07-15 | The Dow Chemical Company | Sequential emulsion polymerization process for structured particle latex products |
EP0452399A1 (en) | 1989-01-09 | 1991-10-23 | Union Carbide Chem Plastic | Propoxylated alkali-soluble thickeners. |
EP1008635A1 (en) * | 1998-12-08 | 2000-06-14 | Rohm And Haas Company | Dirt pickup resistant coating binder and coatings |
WO2006118974A1 (en) | 2005-04-29 | 2006-11-09 | E. I. Du Pont De Nemours And Company | Process for the production of aqueous binder latices |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE258212T1 (en) * | 1998-06-23 | 2004-02-15 | Akzo Nobel Nv | AQUEOUS COATING COMPOSITION CONTAINING AN ADDITION POLYMER AND A RHEOLOGY MODIFIER |
-
2009
- 2009-09-03 EP EP09792220.7A patent/EP2331643B1/en not_active Revoked
- 2009-09-03 CN CN2009801347651A patent/CN102144008A/en active Pending
- 2009-09-03 WO PCT/US2009/055855 patent/WO2010028123A1/en active Application Filing
- 2009-09-03 CA CA2734391A patent/CA2734391A1/en not_active Abandoned
- 2009-09-03 RU RU2011112776/05A patent/RU2011112776A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0031964A2 (en) * | 1980-01-02 | 1981-07-15 | The Dow Chemical Company | Sequential emulsion polymerization process for structured particle latex products |
EP0452399A1 (en) | 1989-01-09 | 1991-10-23 | Union Carbide Chem Plastic | Propoxylated alkali-soluble thickeners. |
EP1008635A1 (en) * | 1998-12-08 | 2000-06-14 | Rohm And Haas Company | Dirt pickup resistant coating binder and coatings |
WO2006118974A1 (en) | 2005-04-29 | 2006-11-09 | E. I. Du Pont De Nemours And Company | Process for the production of aqueous binder latices |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103289006A (en) * | 2013-05-24 | 2013-09-11 | 无锡市华明化工有限公司 | Waterborne acrylic resin and preparation method thereof |
CN111393932A (en) * | 2020-04-28 | 2020-07-10 | 上海君子兰新材料股份有限公司 | Dyed veneer coating and preparation method and construction method thereof |
US20220064475A1 (en) * | 2020-08-31 | 2022-03-03 | Axalta Coating Systems Ip Co., Llc | Top Coat Composition |
Also Published As
Publication number | Publication date |
---|---|
EP2331643B1 (en) | 2014-03-05 |
CN102144008A (en) | 2011-08-03 |
EP2331643A1 (en) | 2011-06-15 |
CA2734391A1 (en) | 2010-03-11 |
RU2011112776A (en) | 2012-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10336853B2 (en) | Polymer, process and composition | |
EP1874835B1 (en) | Process for the production of base coat/clear coat two layer coatings | |
US7888439B2 (en) | Process for the production of aqueous binder latices | |
EP2342242B1 (en) | Process for preparing aqueous copolymer dispersions | |
US20100113675A1 (en) | Process for the production of aqueous binder latices | |
EP2331643B1 (en) | Aqueous coating composition | |
WO2007037860A1 (en) | Clearcoat paint composition | |
US20100120986A1 (en) | Process for the production of aqueous binder latices | |
US20100056706A1 (en) | Aqueous coating composition | |
US7550206B2 (en) | Phosphonic acid-modified microgel dispersion | |
US20100056724A1 (en) | Process for preparation of aqueous binder latices | |
US20060211813A1 (en) | Phosphonic acid-modified microgel dispersion | |
JP2009275170A (en) | Method for producing vinyl polymer, coating containing the vinyl polymer, and method for forming coated film using the coating | |
US8771797B2 (en) | Aqueous coating composition | |
CN103242491A (en) | Graft copolymer with grafted copolymerization arms, and preparation and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980134765.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09792220 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2009792220 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009792220 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2734391 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1556/DELNP/2011 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011112776 Country of ref document: RU |