WO2010027248A1 - Solar-energy powered machine for cooling ammonia by absorption - Google Patents

Solar-energy powered machine for cooling ammonia by absorption Download PDF

Info

Publication number
WO2010027248A1
WO2010027248A1 PCT/MX2009/000097 MX2009000097W WO2010027248A1 WO 2010027248 A1 WO2010027248 A1 WO 2010027248A1 MX 2009000097 W MX2009000097 W MX 2009000097W WO 2010027248 A1 WO2010027248 A1 WO 2010027248A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
solution
aqueous solution
boiler
thermosiphon
Prior art date
Application number
PCT/MX2009/000097
Other languages
Spanish (es)
French (fr)
Inventor
Alejandro Javier Garcia Cuellar
Carlos Iván RIVERA SOLORIO
Gloria Margarita Lopez Navarro
José Luis LOPEZ SALINAS
Original Assignee
Instituto Tecnologico Y De Estudios Superiores De Monterrey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Tecnologico Y De Estudios Superiores De Monterrey filed Critical Instituto Tecnologico Y De Estudios Superiores De Monterrey
Publication of WO2010027248A1 publication Critical patent/WO2010027248A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/005Machines, plants or systems, using particular sources of energy using solar energy in compression type systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the main object of the present invention relates to a cooling machine.
  • the cooling machine carries out the decrease in temperature of a certain enclosed space by absorbing ammonia driven by solar energy.
  • One of the main operating characteristics of the systems by vapor compression and absorption is that it is necessary to control the refrigerant pressure; and maintain at least two pressures (a high pressure and a low pressure, depending on the design conditions).
  • the device responsible for maintaining the pressure difference is the expansion valve.
  • the difference between both systems lies in the method used to raise the pressure between the evaporator and the condenser and the way in which the refrigerant circulates in the cycle.
  • these objectives are achieved by mechanical means, using a compressor, which compresses the refrigerant vapor from the evaporator, raises its pressure and directs it towards the condenser.
  • the circulation of the refrigerant is produced by the great affinity it has for another substance called absorbent.
  • absorbent another substance that the refrigerant from the evaporator is sucked into a container containing the absorber called absorber.
  • the pressure increase is achieved by the heat supply;
  • the vessel where this operation is performed is called a generator or distillation column, in which not only the refrigerant pressure is raised, but the refrigerant is also separated from the absorbent.
  • ammonia-water absorption refrigeration machines use a natural gas or electricity burner as the primary source of energy for heating the ammonia-water solution in the generator; few inventions have been successful in making the use of solar energy feasible for cooling processes such as air conditioning, this is due to the fact that the density of the energy available from the sun by radiation is very low.
  • the Monterrey Institute of Technology and Higher Education, Campus Monterrey currently has a pilot air conditioning plant to condition an enclosure known as Casa Solar, the prototype that unites the use of a water and solar energy cooling plant under US Patent 5,666,818 which describes an invention related to an ammonia-water absorption cooling machine, which operates using a low temperature energy source from vacuum tube solar panels.
  • Said invention combines a solar collector with the cooling machine by circulating water through the solar collectors towards the exchanger or water jacket, which covers the generator; This liquid passes through a series of fins built outside the outer shell of the generator and with certain geometry specifications, in order to transfer heat necessary for the distillation of the ammonia-water solution inside the generator.
  • US 4,573,330 mentions a design characterized in a pipe, which is divided or thermally separated, that is, the upper part of the pipe acts as a rectifier, while the lower part acts as a generator.
  • the integration of the rectifier and the generator in a pipe improves the design of these components generating lower manufacturing costs, in addition to obtaining hot ammonia gas completely free of water vapor at the outlet of the rectifier; however, a gas is used as the main source of heat and not a clean source such as solar energy.
  • a gas is used as the main source of heat and not a clean source such as solar energy.
  • US Patent 5,490,393 proposes a very advantageous invention for improving the efficiency of machines by ammonia-water absorption, proposes an arrangement in the system where the heat of absorption is transferred at a temperature above the boiling point of the cooling solution strong maximizing the temperature between the absorber and the generator and transferring heat more efficiently between these two components, the arrangement also recovers additional absorption heat from a high temperature at the end of the absorber and transfers it to the lowest temperature of the generator generating steam with additional heat and reducing the required added heat from an external source.
  • the invention is a more economical GAX (Generator absorb heat-exchanger) arrangement without the help of a second working fluid to transfer heat from the absorber to the generator.
  • the results of this invention are very favorable in terms of the efficiency of the cooling machine since it increases the optimum coefficient of performance (COP) by approximately 30%; however the lowest section of the generator is heated by an extended gas flame vertically throughout the section, thereby defining the use of renewable energy.
  • GAX Generator absorb heat-exchanger
  • FIG. 1 Schematic representation of the vertical thermosiphon boiler connected to a distillation column and at least one solar collector.
  • Figure 2. Schematic representation of the vertical thermosiphon boiler.
  • Figure 3. Schematic representation with hidden lines of the vertical thermosiphon boiler.
  • FIG. 4 Top view of the shell of the vertical thermosiphon boiler.
  • Figure 5. Schematic representation of the Ammonia-water absorption cooling machine Powered by solar energy.
  • the present invention aims to overcome the drawbacks present in the prior art, regarding the cooling of spaces for multiple uses, for which it proposes a: "Cooling Machine by Absorption of Ammonia Powered by Energy
  • ammonia absorption cooling machine that is the reason for this application has:
  • -A fluid heating system using solar energy, preferably at least one solar collector (1), to raise the temperature of a liquid that is preferably water and that is at pressures greater than atmospheric allowing it to operate at temperatures greater than 100 0 C, which enters: -A vertical thermosiphon boiler (2), whose main objective is to increase the global heat transfer coefficient and reduce the temperature difference between the heating fluid (preferably water) and an ammonia solution - Water.
  • -A vertical thermosiphon boiler (2) whose main objective is to increase the global heat transfer coefficient and reduce the temperature difference between the heating fluid (preferably water) and an ammonia solution - Water.
  • It is represented in Figure 1, and consists of a cylindrical shell, positioned on its vertical axis and has closing each of its ends, to a lower head and an upper head, both of the same diameter as the shell, but shorter .
  • the two heads serve as flanges for fixing and were selected based on the TEMA (Tubular Exchanger Manufacturers Association) standards because they help to obtain a smaller total area.
  • the vertical thermosiphon boiler (2) has a diameter of the inlet and outlet nozzle on the side of the shell of at least 40,894 mm; it also has an inlet nozzle diameter for the main inlet pipe preferably 52.553 mm and a maximum length for the main pipe preferably 0.8 m, also has an outlet nozzle diameter preferably of 77.927 mm and a maximum main pipe length of at least 0.5 m; inside it houses a plurality of straight tubes (3) parallel to ⁇ its vertical axis, in the order of 41 to 51, preferably 41 straight tubes (see figure 3), showing the vertical thermosiphon boiler (2) with hidden lines, such as a 1-1 exchanger, that is, one step through tubes and a shell passage, which means that a liquid flows in the space between the straight tubes (3) and the shell, and another liquid flowing through the straight tubes (3) countercurrently.
  • hidden lines such as a 1-1 exchanger
  • an upper nozzle (4) through which the hot water from the solar collector (1) that circulates outside the straight tubes (3) enters, transferring their heat to them, subsequently it is driven by a lower nozzle (S) to the solar collector (1) by means of a pump (200) to reheat its heating;
  • the straight tubes (3) have the same length as the shell, and are aligned;
  • the lower head has an inlet (6), through which an aqueous solution poor in ammonia enters (in which 70% is water and 30% ammonia);
  • -The upper head has an outlet (7) of the ammonia-poor solution (70% water and 30% ammonia); entering a distillation column (8), through:
  • the distillation column (8) comprises: -at least 2 to 5 plates (9), the number of preferred plates being in the order of 10, these plates are preferably arranged in an opposite manner and alternated so as to divert the flow of the solution and it moves in a zigzag direction. through the distillation column (8).
  • the function of the distillation column is to achieve the separation of ammonia and water until a steam of 100% pure ammonia is reached;
  • the absorber (14) (see figure 5), which allows the water ammonia solution to be re-concentrated and where the mixture of the pure ammonia is carried out at low pressure and the diluted low pressure stream extracted from the distillation column.
  • the operation of the absorber (14) consists of:
  • the rectifier (12) consists of a coil where heat is exchanged, the ammonia vapor with a content of less than 1% water is cooled to remove the moisture content and is subsequently conducted to:
  • -A condenser (17) which as its name suggests, changes the physical state of the ammonia vapor, and conducts it through an expansion valve (23) to: -A heat exchanger (18), which lowers the temperature of the condensed ammonia from the valve (23), and conducts ammonia vapor to the absorber (14), the cold liquid ammonia is expanded through a valve (24) and sent to the evaporator (20) where the water used is cooled in an air handler (19).
  • -The evaporator (20), through which the ammonia liquid from the valve (24) circulates, has the function of sending to the handler (19) the cold water necessary to condition an enclosure, as well as a feedback to the heat exchanger (18), which in turn is directed to the absorber (15);
  • the ammonia-water absorption cooling machine has solar radiation as its source of energy, due to which, to operate, it comprises at least one solar collector (1), capable of raising the temperature of the water circulating inside its tubes from 140 ° C to 200 ° C and with a flow of 1 liter of water per second; with which the machine operates the set of elements arranged for the cooling system of 1 0 to 3 tons of refrigeration to have the ability to cool a space for multiple uses.
  • FIG 1 a schematic representation of the vertical thermosiphon boiler (2), strategically connected to a distillation column (8) and a solar collector (1) is shown;
  • the vertical thermosiphon boiler (2) is placed adjacent to the distillation column (8), the top head outlet (7) coinciding with the first distillation column inlet (8) in order to minimize hydrostatic load, It works as a heat transfer unit, and its function is to generate water ammonia vapor by countercurrent.
  • the material of the shell of the vertical thermosiphon boiler (2), where the flow being used is preferably water, is cast steel, said vertical thermosiphon boiler (2) is of the type TEMA (Tubular Exchanger Manufacturers Association) type E of a single step due to its low cost of operation, low tendency to get dirty and also does not have mechanical components in motion that require preventive maintenance; preferably its interior is made of stainless steel to prevent corrosion with the water that will circulate through it.
  • TEMA Total Exchanger Manufacturers Association
  • thermosiphon vertical boiler shell The preferred shell specifications are shown in the following table 1: Table 1. Specifications of the thermosiphon vertical boiler shell.
  • the upper head is removable type A, and the lower head is type L of stationary tubes.
  • the straight tubes (3) that are located inside the shell are made of carbon steel with a thermal conductivity of at least 63.74 WAn 2 K to avoid excessive corrosion caused by the aqueous solution poor in ammonia that comes from the column of distillation (8), which preferably has 41 to 51 tubes of 0.55 to 0.6 meters in length with an external nominal diameter of at least 19.05 mm (3/4 in.) and 2.11 (14 BWG) thick in an arrangement of pipes that are seen on the upper floor form parallel rows with a preferred inclination of 45 °, as can be seen in figure 4. More particularly, a poor aqueous solution enters the lower head of the vertical thermosiphon boiler (2). ammonia that comes from the column of distillation (8), and once there heat will be transferred using preferably water that ranges from 140 ° C to 200 ° C from the solar collector (1);
  • the entrance of steam ammonia water to the distillation column (8) helps to reduce the reflux ratio, and with it the size of the vertical thermosiphon boiler (2), as well as its thermal load.
  • the distillation column (8) carries out the separation of the aqueous ammonia solution under a boiling mechanism, preferably by nucleation, eliminates the water content in the evaporator line (20), preventing the temperature from rising, keeping the cooling effect of the machine.
  • FIG. 5 is a schematic representation of the invention proposed here, which serves as a reference to describe the cooling cycle.
  • This cycle begins when in a solar collector (1) by solar radiation water is preferably heated, until water is obtained at a temperature between 140 ° C to 200 ° C. Subsequently, the water circulates through a pipe and enters through the upper nozzle (4) of the shell of the vertical thermosiphon boiler (2), the water runs vertically inside the shell by bathing the straight tubes (3) of the boiler vertical thermosiphon (2) and transferring heat to the solution that passes through these straight tubes (3). During this process the water cools and finally comes out through the lower nozzle (5) of the shell towards the pump (200), which returns it to the solar collector (1) to receive more energy and raise its temperature for recirculation.
  • the vertical thermosiphon boiler (2) Simultaneously, by entering the lower head (6) of the vertical thermosiphon boiler (2), enter the poor aqueous solution of ammonia that comes from the bottoms of the distillation column (8), and once in the lower head, The aqueous solution poor in ammonia rises through the straight tubes (3), and circulates through a pressure difference until it exits the upper head and goes back to the distillation column (8).
  • the separation of the most volatile component is carried out, in this particular case the ammonia, and separates it as steam, which enters the rectifier (12) which is the last step of purification of the ammonia; simultaneously, the poor ammonia solution located in the bottoms of the distillation column (8) is directed to the first inlet of the absorber (14).
  • the rectifier (12) consists of a coil through which the strong solution in ammonia passes and a liquid containment chamber condensed here. The strong ammonia solution returns to the absorber (14) to reheat through indirect contact.
  • the refrigerant in its physical state of pure vapor which in particular in this example is pure ammonia vapor with high pressure is directed to the condenser (17), where condenses giving latent heat to the environment, and changes its physical state to liquid ammonia with high pressure, passes through the expansion valve (23) where its pressure is decreased, then passes through a heat exchanger (18) with in order to reduce its temperature from 45 to 25 0 C, again use ranges, not precise values, going to the second expansion valve (24) where the pressure decreases from 1795 kPa to 394.4 kPa and temperature from 25 0 C to -2 0 C of the refrigerant.
  • This refrigerant goes to the evaporator (20), at this point the liquid refrigerant absorbs latent heat from the water flowing over the outer surface of the evaporator coil (20).
  • the refrigerant liquid ammonia
  • the refrigerant vapor leaving the evaporator (20) is directed towards the heat exchanger (18) in order to cool it, this low pressure cold steam of at least 394.4 kPa is taken to the absorber (14) where dissolves and reacts to form a mixture of ammonia-water.
  • the evaporating refrigerant vapor (20) is dissolved in the absorbent solution, the volume of the refrigerant decreases and heat of absorption is released. It is necessary to reconcentrate the solution in the absorber (14) in order to maintain a low pressure and temperature in the evaporator (20), so that a temperature as low as possible is maintained in the absorber (14), in order to Maximize the amount of ammonia dissolved in water, so the solution that exists in the absorber (14) is sent by a pump (100) to the rectifier (12) and exchanges heat with the refrigerant vapor, then returns to a lower temperature towards the absorber (14) to finally feed the distillation column (2).
  • the hot solution which is poor in ammonia, passes through a valve (22) where it is throttled and is directed towards the absorber (14) to saturate with ammonia and repeat the thermodynamic cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

The invention is an air-conditioning and/or cooling system that has a small, vertically-mounted thermosiphon boiler. This apparatus conveys the solution of the ammonia/water mixture originating from the bases of the distillation column via the tubes of the thermosiphon and transfers heat by means of convection and conduction with the hot liquid that passes via the internal shell of the thermosiphon; said hot liquid originates from a low-temperature heat source that provides hot water at 140 °C. The purpose of the small boiler is to separate the solution into two phases, directing the ammonia-rich vapour stream back to the generator with a view to enhancing separation of the solution and improving the efficiency of the cooling machine.

Description

Máquina De Enfriamiento Por Absorción De Amoniaco Impulsado Por Energía Solar Solar Powered Ammonia Absorption Cooling Machine
DESCRIPCIÓN.DESCRIPTION.
OBJETO DE LA INVENCIÓN El principal objeto de la presente invención se refiere a una máquina de enfriamiento. Particularmente la máquina de enfriamiento lleva a cabo la disminución de temperatura de un determinado espacio cerrado mediante la absorción de amoniaco impulsado por energía solar.OBJECT OF THE INVENTION The main object of the present invention relates to a cooling machine. Particularly the cooling machine carries out the decrease in temperature of a certain enclosed space by absorbing ammonia driven by solar energy.
ANTECEDENTESBACKGROUND
El fundamento de los sistemas de refrigeración es disminuir la temperatura de un espacio respecto al ambiente exterior. Actualmente, los sistemas más comunes que existen son los sistemas por compresión de vapor o absorción. Ambos sistemas tienen en común el poder producir enfriamiento por evaporación de líquidos volátiles (refrigerantes) y posteriormente la condensación del mismo fluido para volver a aplicarlo continuamente dentro de un ciclo termodinámico.The foundation of refrigeration systems is to decrease the temperature of a space with respect to the outside environment. Currently, the most common systems that exist are steam compression or absorption systems. Both systems have in common the ability to produce evaporative cooling of volatile liquids (refrigerants) and subsequently the condensation of the same fluid to be reapplied continuously within a thermodynamic cycle.
Una de las principales características de operación de los sistemas por compresión de vapor y absorción es que es necesario controlar la presión del refrigerante; y mantener por lo menos dos presiones (una presión alta y una presión baja, dependiendo de las condiciones de diseño). El dispositivo encargado de mantener la diferencia de presiones es la válvula de expansión. Por otro lado, la diferencia entre ambos sistemas radica en el método empleado para elevar la presión entre el evaporador y el condensador y la forma de hacer circular el refrigerante en el ciclo. En el sistema de refrigeración por compresión, estos objetivos se logran por medios mecánicos, usando un compresor, el cual comprime el vapor refrigerante proveniente del evaporador, eleva su presión y lo dirige hacia el condensador.One of the main operating characteristics of the systems by vapor compression and absorption is that it is necessary to control the refrigerant pressure; and maintain at least two pressures (a high pressure and a low pressure, depending on the design conditions). The device responsible for maintaining the pressure difference is the expansion valve. On the other hand, the difference between both systems lies in the method used to raise the pressure between the evaporator and the condenser and the way in which the refrigerant circulates in the cycle. In the cooling system by compression, these objectives are achieved by mechanical means, using a compressor, which compresses the refrigerant vapor from the evaporator, raises its pressure and directs it towards the condenser.
En el sistema de absorción, la circulación del refrigerante se produce por la gran afinidad que éste tiene hacia otra sustancia llamada absorbente. Así se tiene que el refrigerante procedente del evaporador es aspirado hacia un recipiente que contiene el absorbente llamado absorbedor. El aumento de presión se alcanza mediante el suministro de calor; el recipiente donde se realiza esta operación se llama generador o columna de destilación, en el cual no solo se eleva la presión del refrigerante, sino también se separa el refrigerante del absorbente.In the absorption system, the circulation of the refrigerant is produced by the great affinity it has for another substance called absorbent. Thus it is necessary that the refrigerant from the evaporator is sucked into a container containing the absorber called absorber. The pressure increase is achieved by the heat supply; The vessel where this operation is performed is called a generator or distillation column, in which not only the refrigerant pressure is raised, but the refrigerant is also separated from the absorbent.
Actualmente las máquinas de refrigeración por absorción amoniaco-agua utilizan un quemador de gas natural o electricidad como la fuente primaria de energía para el calentamiento de la solución de amoniaco-agua en el generador; pocas invenciones han sido exitosas al hacer factible la utilización de la energía solar para procesos de enfriamiento como el aire acondicionado, esto es debido a que la densidad de la energía disponible del sol por radiación es muy baja.Currently, ammonia-water absorption refrigeration machines use a natural gas or electricity burner as the primary source of energy for heating the ammonia-water solution in the generator; few inventions have been successful in making the use of solar energy feasible for cooling processes such as air conditioning, this is due to the fact that the density of the energy available from the sun by radiation is very low.
El Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey, en la actualidad cuenta con una planta piloto de aire acondicionado para acondicionar un recinto conocido como Casa Solar, el prototipo que une el uso de una planta de enfriamiento de agua y la energía solar bajo la patente U.S. 5,666,818 la cual describe una invención relacionada a una maquina de enfriamiento por absorción amoniaco- agua, la cual opera usando una fuente de energía de baja temperatura proveniente de paneles solares de tubos al vacío. Dicha invención combina un colector solar con la maquina de enfriamiento haciendo circular agua a través de los colectores solares hacia el intercambiador o chaqueta de agua, la cual cubre al generador; este líquido pasa a través de una serie de aletas construidas fuera de la coraza externa del generador y con ciertas especificaciones de geometría, para poder transferir calor necesario para la destilación de la solución de amoniaco-agua dentro del generador. La unión del uso de la energía solar a la máquina de enfriamiento de dicha invención ayuda a obtener una buena respuesta de capacidad de enfriamiento, además de que se pueden manejar relativamente bajas temperaturas como fuente primaria de energía, sin embargo esto conlleva a aumentar el área de transferencia de calor ya que el coeficiente de transferencia de calor para este sistema es relativamente bajo reflejando poca rentabilidad en la construcción del diseño prototipo del generador con su respectiva chaqueta de agua.The Monterrey Institute of Technology and Higher Education, Campus Monterrey, currently has a pilot air conditioning plant to condition an enclosure known as Casa Solar, the prototype that unites the use of a water and solar energy cooling plant under US Patent 5,666,818 which describes an invention related to an ammonia-water absorption cooling machine, which operates using a low temperature energy source from vacuum tube solar panels. Said invention combines a solar collector with the cooling machine by circulating water through the solar collectors towards the exchanger or water jacket, which covers the generator; This liquid passes through a series of fins built outside the outer shell of the generator and with certain geometry specifications, in order to transfer heat necessary for the distillation of the ammonia-water solution inside the generator. The joining of the use of solar energy to the cooling machine of said invention helps to obtain a good cooling capacity response, in addition to relatively low temperatures can be managed as a primary source of energy, however this leads to increasing the area of heat transfer since the heat transfer coefficient for this system is relatively low reflecting little profitability in the construction of the prototype generator design with its respective water jacket.
La patente US 4,573,330 menciona un diseño caracterizado en una tubería, la cual se divide o es separada térmicamente, es decir, la parte superior de la tubería actúa como un rectificador, mientras que la parte inferior actúa como un generador. La integración del rectificador y el generador en una tubería mejora el diseño de estos componentes generando menores costos de fabricación, además de obtener gas caliente de amoniaco totalmente libre de vapor de agua a la salida del rectificador; sin embargo se usa un gas como la fuente principal de calor y no una fuente limpia como la energía solar. En la patente US. 4,744,224 se describe un ciclo intermitente, donde la invención se basa en un colector parabólico compuesto, el cual trabaja como generador por el día y como absorbedor por la noche; el colector mantiene una cantidad de calor solar para la solución absorbente de día y una efectividad de enfriamiento para la noche cuando es absorbida. Sin embargo, esta limitada para la capacidad de enfriamiento de la máquina. Otra invención descrita en la patente US 4,993,234 trata de un colector solar de absorción para un sistema de enfriamiento teniendo dos conexiones principales una de ellas esta conectado al circuido del evaporador y el otro ducto hacia el condensador, ésta invención es de utilidad ya que el sistema opera en base a la utilización de la temperatura diaria para energizar periódicamente el sistema de enfriamiento por absorción causando la evaporación del refrigerante en el espacio térmicamente aislado, manteniéndose una temperatura adecuada durante las horas de la noche cuando el absorbedor no esta expuesto a la energía solar. Sin embargo la capacidad de enfriamiento esta limitada para este esquema debido a las variaciones de la radiación durante el día.US 4,573,330 mentions a design characterized in a pipe, which is divided or thermally separated, that is, the upper part of the pipe acts as a rectifier, while the lower part acts as a generator. The integration of the rectifier and the generator in a pipe improves the design of these components generating lower manufacturing costs, in addition to obtaining hot ammonia gas completely free of water vapor at the outlet of the rectifier; however, a gas is used as the main source of heat and not a clean source such as solar energy. In the US patent. 4,744,224 an intermittent cycle is described, where the invention is based on a composite parabolic collector, which works as a generator by day and as an absorber at night; The collector maintains a quantity of solar heat for the day absorbent solution and a cooling effectiveness for the night when it is absorbed. However, it is limited for the cooling capacity of the machine. Another invention described in US Patent 4,993,234 deals with a solar collector of absorption for a cooling system having two main connections one of them is connected to the evaporator circuit and the other duct to the condenser, this invention is useful since the system It operates based on the use of the daily temperature to periodically energize the absorption cooling system causing evaporation of the refrigerant in the thermally insulated space, maintaining an adequate temperature during the night hours when the absorber is not exposed to solar energy . However, the cooling capacity is limited for this scheme due to variations in the radiation during the day.
La patente US 5,490,393 propone una invención muy ventajosa para el mejoramiento de la eficiencia de las máquinas por absorción amoniaco-agua, plantea un arreglo en el sistema donde el calor de absorción es transferido a una temperatura por encima del punto de ebullición de la solución refrigerante fuerte maximizando la temperatura entre el absorbedor y el generador y transfiriendo mas eficientemente el calor entre estos dos componentes, el arreglo también recupera calor de absorción adicional de una temperatura alta al final del absorbedor y lo transfiere a la temperatura mas baja del generador generando vapor con un calor adicional y reduciendo el calor agregado requerido de una fuente externa. La invención es un arreglo GAX (Generador absorber heat-exchanger) mas económico y sin la ayuda de un segundo fluido de trabajo para transferir calor del absorbedor al generador. Los resultados de esta invención son muy favorables en cuanto a la eficiencia de la máquina de enfriamiento ya que incrementa el coeficiente óptimo de desempeño (COP) en un 30% aproximadamente; sin embargo la sección mas baja del generador es calentada por una flama de gas extendida verticalmente a lo largo de la sección, delimitando con ello el uso de la energía renovable.US Patent 5,490,393 proposes a very advantageous invention for improving the efficiency of machines by ammonia-water absorption, proposes an arrangement in the system where the heat of absorption is transferred at a temperature above the boiling point of the cooling solution strong maximizing the temperature between the absorber and the generator and transferring heat more efficiently between these two components, the arrangement also recovers additional absorption heat from a high temperature at the end of the absorber and transfers it to the lowest temperature of the generator generating steam with additional heat and reducing the required added heat from an external source. The invention is a more economical GAX (Generator absorb heat-exchanger) arrangement without the help of a second working fluid to transfer heat from the absorber to the generator. The results of this invention are very favorable in terms of the efficiency of the cooling machine since it increases the optimum coefficient of performance (COP) by approximately 30%; however the lowest section of the generator is heated by an extended gas flame vertically throughout the section, thereby defining the use of renewable energy.
BREVE DESCRIPCIÓN DE LAS FIGURAS En estas figuras se muestra la implementación de la presente invención, además se describen varias implementaciones opcionales.BRIEF DESCRIPTION OF THE FIGURES In these figures the implementation of the present invention is shown, in addition several optional implementations are described.
Figura 1. Representación esquemática de la caldereta de termosifón vertical conectada a una columna de destilación y al menos un colector solar. Figura 2. Representación esquemática de la caldereta vertical de termosifón. Figura 3. Representación esquemática con líneas ocultas de la caldereta vertical de termosifón.Figure 1. Schematic representation of the vertical thermosiphon boiler connected to a distillation column and at least one solar collector. Figure 2. Schematic representation of the vertical thermosiphon boiler. Figure 3. Schematic representation with hidden lines of the vertical thermosiphon boiler.
Figura 4. Vista superior de la coraza de la caldereta vertical de termosifón. Figura 5. Representación esquemática de la Máquina de enfriamiento por absorción amoniaco-agua Impulsado por energía solar.Figure 4. Top view of the shell of the vertical thermosiphon boiler. Figure 5. Schematic representation of the Ammonia-water absorption cooling machine Powered by solar energy.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
La presente invención pretende superar los inconvenientes presentes en el estado del arte previo, referentes al enfriamiento de espacios para usos múltiples, por lo cual propone una: "Maquina de Enfriamiento Por Absorción De Amoniaco Impulsado Por EnergíaThe present invention aims to overcome the drawbacks present in the prior art, regarding the cooling of spaces for multiple uses, for which it proposes a: "Cooling Machine by Absorption of Ammonia Powered by Energy
Solar" Que presenta las ventajas de:Solar "Which has the advantages of:
- Operar mediante una energía renovable, como la radiación solar.- Operate through renewable energy, such as solar radiation.
- Ocupar menos espacio para operar con: - mayor eficiencia, que las conocidas en su tipo.- Take up less space to operate with: - greater efficiency, than those known in its kind.
De manera general la máquina de enfriamiento por absorción de amoniaco motivo de esta solicitud tiene dispuestos:In general, the ammonia absorption cooling machine that is the reason for this application has:
-Un sistema de calentamiento de fluido mediante energía solar, preferentemente al menos un colector solar (1), para elevar la temperatura de un líquido que preferentemente es agua y que se encuentra a presiones mayores a la atmosférica permitiéndole operar a temperaturas mayores a los 1000C, que entra a: -Una caldereta vertical de termosifón (2), que tiene como principal objetivo incrementar el coeficiente de transferencia de calor global y reducir la diferencia de temperaturas entre el fluido de calentamiento (preferentemente agua) y una solución amoniaco - agua. Está representada en la figura 1, y consiste en una coraza, cilindrica, posicionada sobre su eje vertical y tiene cerrando cada uno de sus extremos, a un cabezal inferior y un cabezal superior, ambos del mismo diámetro que la coraza, pero de menor longitud. Los dos cabezales sirven como bridas para fijar y fueron seleccionados en base a los estándares TEMA (Tubular Exchanger Manufacturers Association) debido a que ayudan a obtener una menor área total.-A fluid heating system using solar energy, preferably at least one solar collector (1), to raise the temperature of a liquid that is preferably water and that is at pressures greater than atmospheric allowing it to operate at temperatures greater than 100 0 C, which enters: -A vertical thermosiphon boiler (2), whose main objective is to increase the global heat transfer coefficient and reduce the temperature difference between the heating fluid (preferably water) and an ammonia solution - Water. It is represented in Figure 1, and consists of a cylindrical shell, positioned on its vertical axis and has closing each of its ends, to a lower head and an upper head, both of the same diameter as the shell, but shorter . The two heads serve as flanges for fixing and were selected based on the TEMA (Tubular Exchanger Manufacturers Association) standards because they help to obtain a smaller total area.
-La caldereta vertical de termosifón (2) tiene un diámetro de la boquilla de entrada y salida por el lado de la coraza de por lo menos 40.894 mm; además tiene un diámetro de la boquilla de entrada para los tubos de la tubería principal de entrada preferentemente de 52.553 mm y una longitud máxima para la tubería principal preferentemente de 0.8 m, también tiene un diámetro de la boquilla de salida preferentemente de 77.927 mm y una longitud máxima de tubería principal de al menos de 0.5 m; en su interior alberga una pluralidad de tubos rectos (3) paralelos a η su eje vertical, en el orden de 41 a 51, preferentemente 41 tubos rectos (ver figura 3), que muestra la caldereta vertical de termosifón (2) con líneas ocultas, como un intercambiador 1-1, es decir, de un paso por tubos y un paso por coraza, lo cual quiere decir que fluye un liquido en el espacio existente entre los tubos rectos (3) y la coraza, y otro liquido fluyendo a través de los tubos rectos (3) a contracorriente.-The vertical thermosiphon boiler (2) has a diameter of the inlet and outlet nozzle on the side of the shell of at least 40,894 mm; it also has an inlet nozzle diameter for the main inlet pipe preferably 52.553 mm and a maximum length for the main pipe preferably 0.8 m, also has an outlet nozzle diameter preferably of 77.927 mm and a maximum main pipe length of at least 0.5 m; inside it houses a plurality of straight tubes (3) parallel to η its vertical axis, in the order of 41 to 51, preferably 41 straight tubes (see figure 3), showing the vertical thermosiphon boiler (2) with hidden lines, such as a 1-1 exchanger, that is, one step through tubes and a shell passage, which means that a liquid flows in the space between the straight tubes (3) and the shell, and another liquid flowing through the straight tubes (3) countercurrently.
En la parte superior de la coraza, se presenta una boquilla superior (4) por la cual ingresa el agua caliente proveniente del colector solar (1) que circula por el exterior de los tubos rectos (3), transfiriendo a estos su calor, posteriormente es conducida por una boquilla inferior (S) al colector solar (1) mediante una bomba (200) para realizar de nueva cuenta su calentamiento;In the upper part of the shell, there is an upper nozzle (4) through which the hot water from the solar collector (1) that circulates outside the straight tubes (3) enters, transferring their heat to them, subsequently it is driven by a lower nozzle (S) to the solar collector (1) by means of a pump (200) to reheat its heating;
-los tubos rectos (3) tienen la misma longitud que la coraza, y se encuentran alineados; el cabezal inferior presenta una entrada (6), por la cual ingresa una disolución acuosa pobre en amoniaco (en la cual 70% es agua y 30% amoniaco); -El cabezal superior presenta una salida (7) de la disolución pobre en amoniaco (70% agua y 30% amoniaco); que ingresa a una columna de destilación (8), a través de:-the straight tubes (3) have the same length as the shell, and are aligned; the lower head has an inlet (6), through which an aqueous solution poor in ammonia enters (in which 70% is water and 30% ammonia); -The upper head has an outlet (7) of the ammonia-poor solution (70% water and 30% ammonia); entering a distillation column (8), through:
-una primera entrada, (colocada en la parte inferior de la columna) que coincide con la salida (7) del cabezal superior de la caldereta vertical de termosifón (2); - En la columna de destilación (8) se logra modificar la disolución amoniaco - agua proveniente de la caldereta de termosifón vertical (2) y una disolución 60% amoniaco y 40% agua, que también se alimenta a dicha columna, operando bajo el mecanismo de ebullición por nucleación; por otro lado, la columna de destilación (8) en su interior comprende: -al menos 2 a 5 placas (9), siendo el número de placas preferidas en el orden de 10, estas placas preferentemente están dispuestas fijas de manera opuesta y alternadas de manera que desvíen el flujo de la disolución y esta se mueva en zigzag a través de la columna de destilación (8). La función de la columna de destilación es lograr la separación del amoniaco y el agua hasta alcanzar un vapor de amoniaco 100% puro;-a first inlet (placed at the bottom of the column) that coincides with the outlet (7) of the upper head of the vertical thermosiphon boiler (2); - In the distillation column (8) it is possible to modify the ammonia-water solution from the vertical thermosiphon boiler (2) and a solution of 60% ammonia and 40% water, which is also fed to said column, operating under the mechanism boiling by nucleation; on the other hand, the distillation column (8) inside comprises: -at least 2 to 5 plates (9), the number of preferred plates being in the order of 10, these plates are preferably arranged in an opposite manner and alternated so as to divert the flow of the solution and it moves in a zigzag direction. through the distillation column (8). The function of the distillation column is to achieve the separation of ammonia and water until a steam of 100% pure ammonia is reached;
-En la columna de destilación (8) se encuentra una primer salida (10), que conduce una disolución acuosa pobre en amoniaco a la entrada (6) del cabezal inferior de la caldereta vertical de termosifón (2);-In the distillation column (8) there is a first outlet (10), which leads an aqueous solution poor in ammonia to the inlet (6) of the lower head of the vertical thermosiphon boiler (2);
-una segunda salida (11), con válvula reguladora de flujo (no mostrada), por la cual sale vapor rico en amoniaco que ingresa a un rectificador (12), y-a second outlet (11), with flow regulating valve (not shown), through which steam rich in ammonia exits entering a rectifier (12), and
-una segunda entrada (13) por la cual ingresa una disolución acuosa de amoniaco-a second inlet (13) through which an aqueous solution of ammonia enters
(de la cual 60% es agua y 40% amoniaco) que proviene de:(of which 60% is water and 40% ammonia) that comes from:
-una primera salida de:-a first departure from:
-un absorbedor (14) (ver figura 5), que permite reconcentrar la solución amoniaco agua y donde se realiza la mezcla del amoniaco puro a baja presión y la corriente diluida de baja presión extraída de la columna de destilación. La operación del absorbedor (14) consiste de:-a absorber (14) (see figure 5), which allows the water ammonia solution to be re-concentrated and where the mixture of the pure ammonia is carried out at low pressure and the diluted low pressure stream extracted from the distillation column. The operation of the absorber (14) consists of:
- una primer entrada por la cual ingresa la disolución pobre en amoniaco que proviene de la salida inferior (21) de la columna de destilación (8) y después de haber pasado por la válvula (22) de la columna de destilación (8);- a first inlet through which the poor ammonia solution that comes from the lower outlet (21) of the distillation column (8) enters and after having passed through the valve (22) of the distillation column (8);
- una segunda entrada (25) por la cual ingresa el amoniaco puro a baja presión, proveniente de un intercambiador de calor (18);- a second inlet (25) through which pure ammonia enters at low pressure, coming from a heat exchanger (18);
-una salida (15) que conduce la disolución acuosa de amoniaco a una bomba (100) que la impulsa a un rectificador (12). -El rectificador (12), evita cualquier concentración de agua y la regresa al absorbedor (14), después del cual pasa a la columna de destilación (8), para llevar a cabo esto presenta:- an outlet (15) that drives the aqueous ammonia solution to a pump (100) that drives it to a rectifier (12). -The rectifier (12), avoids any concentration of water and returns it to the absorber (14), after which it passes to the distillation column (8), to carry out this presents:
-una salida (16) de la disolución pobre en amoniaco que ingresa al absorbedor (14); -El rectificador (12) consiste en un serpentín por donde se intercambia calor, el vapor de amoniaco con un contenido menor al 1% de agua es enfriado para retirar el contenido de humedad y posteriormente es conducido a:- an outlet (16) of the poor ammonia solution that enters the absorber (14); -The rectifier (12) consists of a coil where heat is exchanged, the ammonia vapor with a content of less than 1% water is cooled to remove the moisture content and is subsequently conducted to:
-Un condensador (17), que como su nombre lo sugiere, cambia el estado físico del vapor de amoniaco, y lo conduce mediante una válvula de expansión (23) a: -Un intercambiador de calor (18), que disminuye la temperatura del amoniaco condensado proveniente de la válvula (23), y conduce vapor de amoniaco al absorbedor (14), el amoniaco liquido frió es expandido a través de una válvula (24) y enviado al evaporador (20) dónde se enfria el agua que se utiliza en una manejadora de aire (19). -El evaporador (20), por el cual circula el líquido de amoniaco proveniente de la válvula (24) tiene como función el enviar a la manejadora (19) el agua fría necesaria para acondicionar un recinto, así como una retroalimentación al intercambiador de calor (18), que a su vez se dirige al absorbedor (15);-A condenser (17), which as its name suggests, changes the physical state of the ammonia vapor, and conducts it through an expansion valve (23) to: -A heat exchanger (18), which lowers the temperature of the condensed ammonia from the valve (23), and conducts ammonia vapor to the absorber (14), the cold liquid ammonia is expanded through a valve (24) and sent to the evaporator (20) where the water used is cooled in an air handler (19). -The evaporator (20), through which the ammonia liquid from the valve (24) circulates, has the function of sending to the handler (19) the cold water necessary to condition an enclosure, as well as a feedback to the heat exchanger (18), which in turn is directed to the absorber (15);
La máquina de enfriamiento por absorción amoniaco-agua tiene como fuente de energía la radiación solar, debido a lo cual, para operar comprende al menos un colector solar (1), capaz de elevar la temperatura del agua que circula por el interior de sus tubos de 140° C hasta 200° C y con un flujo de 1 litro de agua por segundo; con el cual la máquina opera el conjunto de elementos dispuestos para el sistema de enfriamiento de 1 0 a 3 toneladas de refrigeración para tener la capacidad de enfriar un espacio para usos múltiples.The ammonia-water absorption cooling machine has solar radiation as its source of energy, due to which, to operate, it comprises at least one solar collector (1), capable of raising the temperature of the water circulating inside its tubes from 140 ° C to 200 ° C and with a flow of 1 liter of water per second; with which the machine operates the set of elements arranged for the cooling system of 1 0 to 3 tons of refrigeration to have the ability to cool a space for multiple uses.
Los distintos elementos que componen la máquina en cuestión, se describen particularmente con ayuda de las figuras, que a modo de ejemplo muestran un modo de realización de la invención, sin tener carácter limitativo.The various elements that make up the machine in question are particularly described with the help of the figures, which by way of example show an embodiment of the invention, without being limiting.
En la figura 1, se muestra una representación esquemática de la caldereta de termosifón vertical (2), conectada estratégicamente a una columna de destilación (8) y a un colector solar (1); La caldereta de termosifón vertical (2) se coloca adyacente a la columna de destilación (8), coincidiendo la salida del cabezal superior (7) con la primera entrada de la columna de destilación (8) con el fin de minimizar la carga hidrostática, trabaja como una unidad de transferencia de calor, y su función es generar vapor amoniaco agua por contracorriente. El material de la coraza de la caldereta de termosifón vertical (2), donde el flujo que se está utilizando es de preferencia agua, es acero vaciado, dicha caldereta de termosifón vertical (2) es de tipo TEMA (Tubular Exchanger Manufacturers Association) tipo E de un solo paso debido a su bajo costo de operación, baja tendencia a ensuciarse y, además no posee componentes mecánicos en movimiento que requieran de un mantenimiento preventivo; preferentemente su interior es de acero inoxidable para evitar la corrosión con el agua que por ella circulará.In figure 1, a schematic representation of the vertical thermosiphon boiler (2), strategically connected to a distillation column (8) and a solar collector (1) is shown; The vertical thermosiphon boiler (2) is placed adjacent to the distillation column (8), the top head outlet (7) coinciding with the first distillation column inlet (8) in order to minimize hydrostatic load, It works as a heat transfer unit, and its function is to generate water ammonia vapor by countercurrent. The material of the shell of the vertical thermosiphon boiler (2), where the flow being used is preferably water, is cast steel, said vertical thermosiphon boiler (2) is of the type TEMA (Tubular Exchanger Manufacturers Association) type E of a single step due to its low cost of operation, low tendency to get dirty and also does not have mechanical components in motion that require preventive maintenance; preferably its interior is made of stainless steel to prevent corrosion with the water that will circulate through it.
Las especificaciones preferenciales de la coraza se encuentran mostradas en la siguiente tabla 1: Tabla 1. Especificaciones de la coraza de la caldereta vertical de termosifón.The preferred shell specifications are shown in the following table 1: Table 1. Specifications of the thermosiphon vertical boiler shell.
Figure imgf000013_0001
Figure imgf000013_0001
El cabezal superior es tipo A removible, y el cabezal inferior es tipo L de tubos estacionarios.The upper head is removable type A, and the lower head is type L of stationary tubes.
Los tubos rectos (3) que se localizan dentro de la coraza, son de acero al carbón con una conductividad térmica de por lo menos 63.74 WAn2K para evitar una excesiva corrosión producida por la disolución acuosa pobre en amoniaco que proviene de la columna de destilación (8), la cual posee preferentemente de 41 a 51 tubos de 0.55 a 0.6 mts de longitud con un diámetro nominal exterior de al menos 19.05 mm (3/4 pulg.) y 2.11 (14 BWG) de espesor en un arreglo de tubos que vistos en planta superior forman filas paralelas con una inclinación preferente de 45°, tal como se aprecia en la figura 4. De forma más particular, en el cabezal inferior de la caldereta vertical de termosifón (2) entra una disolución acuosa pobre en amoniaco que proviene de la columna de destilación (8), y una vez ahí se le transferirá calor utilizando preferentemente agua que oscila entre 140° C a 200° C proveniente del colector solar (1);The straight tubes (3) that are located inside the shell, are made of carbon steel with a thermal conductivity of at least 63.74 WAn 2 K to avoid excessive corrosion caused by the aqueous solution poor in ammonia that comes from the column of distillation (8), which preferably has 41 to 51 tubes of 0.55 to 0.6 meters in length with an external nominal diameter of at least 19.05 mm (3/4 in.) and 2.11 (14 BWG) thick in an arrangement of pipes that are seen on the upper floor form parallel rows with a preferred inclination of 45 °, as can be seen in figure 4. More particularly, a poor aqueous solution enters the lower head of the vertical thermosiphon boiler (2). ammonia that comes from the column of distillation (8), and once there heat will be transferred using preferably water that ranges from 140 ° C to 200 ° C from the solar collector (1);
-el flujo de vapor de amoniaco agua se dirige a través de la salida del cabezal superior (7) a la columna de destilación (8), y -el segundo flujo de disolución acuosa pobre en amoniaco que se dirige de retorno por los tubos rectos (3) a la entrada del cabezal inferior (6); esto es con la finalidad de que en la columna de destilación (8) ingrese una mayor concentración de amoniaco.-the steam flow of water ammonia is directed through the outlet of the upper head (7) to the distillation column (8), and -the second flow of aqueous ammonia-poor solution that is directed back through the straight tubes (3) at the entrance of the lower head (6); This is in order that a higher concentration of ammonia enters the distillation column (8).
La entrada de vapor amoniaco agua a la columna de destilación (8) ayuda a disminuir la razón de reflujo, y con ello el tamaño de la caldereta de termosifón vertical (2), así como su carga térmica.The entrance of steam ammonia water to the distillation column (8) helps to reduce the reflux ratio, and with it the size of the vertical thermosiphon boiler (2), as well as its thermal load.
La columna de destilación (8) lleva a cabo la separación de la disolución acuosa de amoniaco bajo un mecanismo de ebullición, preferentemente por nucleación, elimina el contenido de agua en la línea del evaporador (20), evitando que la temperatura se eleve, manteniendo el efecto refrigerante de la máquina.The distillation column (8) carries out the separation of the aqueous ammonia solution under a boiling mechanism, preferably by nucleation, eliminates the water content in the evaporator line (20), preventing the temperature from rising, keeping the cooling effect of the machine.
Lo anterior ayuda finalmente a mejorar la eficiencia de los ciclos comunes por absorción amoniaco-agua de un COP (el cual es el coeficiente de desempeño por sus siglas en inglés) en un 7% respecto a las tecnologías actuales.The above helps to improve the efficiency of the common ammonia-water absorption cycles of a COP (which is the coefficient of performance by its acronym in English) by 7% compared to current technologies.
A continuación se describe el ciclo de enfriamiento amoniaco agua llevado a cabo en la Máquina De Enfriamiento Por Absorción De Amoniaco Impulsada Por Energía Solar.The water ammonia cooling cycle carried out in the Solar Powered Ammonia Absorption Cooling Machine is described below.
La figura 5, es una representación esquemática del invento aquí propuesto, que nos sirve de referencia para describir el ciclo de enfriamiento.Figure 5 is a schematic representation of the invention proposed here, which serves as a reference to describe the cooling cycle.
Este ciclo inicia cuando en un colector solar (1) por radiación solar se calienta preferentemente agua, hasta obtener agua a una temperatura entre los 140° C a 200° C. Posteriormente, el agua circula por una tubería e ingresa por la boquilla superior (4) de la coraza de la caldereta de termosifón vertical (2), el agua recorre verticalmente el interior de la coraza bañando los tubos rectos (3) de la caldereta de termosifón vertical (2) y transfiriendo calor a la solución que pasa por estos tubos rectos (3). Durante este proceso el agua se enfría y finalmente sale por la boquilla inferior (5) de la coraza hacia la bomba (200), que la retorna hacia el colector solar (1) para recibir más energía y elevar su temperatura para su recirculación.This cycle begins when in a solar collector (1) by solar radiation water is preferably heated, until water is obtained at a temperature between 140 ° C to 200 ° C. Subsequently, the water circulates through a pipe and enters through the upper nozzle (4) of the shell of the vertical thermosiphon boiler (2), the water runs vertically inside the shell by bathing the straight tubes (3) of the boiler vertical thermosiphon (2) and transferring heat to the solution that passes through these straight tubes (3). During this process the water cools and finally comes out through the lower nozzle (5) of the shell towards the pump (200), which returns it to the solar collector (1) to receive more energy and raise its temperature for recirculation.
Simultáneamente, por la entrada del cabezal inferior (6) de la caldereta de termosifón vertical (2), ingresa la disolución acuosa pobre de amoniaco que proviene de los fondos de la columna de destilación (8), y una vez en el cabezal inferior, la disolución acuosa pobre en amoniaco asciende por los tubos rectos (3), y circula por una diferencia de presión hasta salir por el cabezal superior y dirigirse de nuevo hacia la columna de destilación (8). En la columna de destilación (8) se lleva cabo la separación del componente más volátil, en este caso particular el amoniaco, y lo separa como vapor, que entra al rectificador (12) el cual es el último paso de purificación del amoniaco; simultáneamente la disolución pobre en amoniaco localizada en los fondos de la columna de destilación (8) es direccionada a la primer entrada del absorbedor (14). Por otro lado, el rectificador (12) consiste en un serpentín por dónde pasa la solución fuerte en amoniaco y una cámara de contención de líquido aquí condensado. La solución fuerte en amoniaco regresa al absorbedor (14) para recalentarse mediante contacto indirecto.Simultaneously, by entering the lower head (6) of the vertical thermosiphon boiler (2), enter the poor aqueous solution of ammonia that comes from the bottoms of the distillation column (8), and once in the lower head, The aqueous solution poor in ammonia rises through the straight tubes (3), and circulates through a pressure difference until it exits the upper head and goes back to the distillation column (8). In the distillation column (8) the separation of the most volatile component is carried out, in this particular case the ammonia, and separates it as steam, which enters the rectifier (12) which is the last step of purification of the ammonia; simultaneously, the poor ammonia solution located in the bottoms of the distillation column (8) is directed to the first inlet of the absorber (14). On the other hand, the rectifier (12) consists of a coil through which the strong solution in ammonia passes and a liquid containment chamber condensed here. The strong ammonia solution returns to the absorber (14) to reheat through indirect contact.
El refrigerante en su estado físico de vapor puro, que particularmente en este ejemplo es vapor puro de amoniaco con alta presión se dirige al condensador (17), donde se condensa cediendo calor latente al medio ambiente, y cambia su estado físico a amoniaco liquido con alta presión, pasa a través de la válvula de expansión (23) donde se disminuye su presión, luego pasa a través de un intercambiador de calor (18) con el fin de disminuir su temperatura de 45 a 25 0C, de nuevo utilizar rangos, no valores precisos, dirigiéndose a la segunda válvula de expansión (24) en dónde disminuye la presión de 1795 kPa a 394.4 kPa y temperatura de 250C a -2 0C del refrigerante. Este refrigerante va hacia el evaporador (20), en este punto el refrigerante líquido absorbe calor latente del agua que fluye sobre la superficie externa del serpentín del evaporador (20). Conforme el agua es enfriada, el refrigerante (amoniaco líquido) se vuelve a convertir en gas debido al calor absorbido por el agua, ésta sale a una menor temperatura y se dirige hacia una manejadora de aire (19) y posteriormente es recirculada a través de una bomba (300) hacia el evaporador (20). Luego, el vapor refrigerante que sale del evaporador (20) es dirigido hacia el intercambiador de calor (18) con la finalidad de enfriarlo, este vapor frío de baja presión, de al menos 394.4 kPa es llevado hacia el absorbedor (14) donde se disuelve y reacciona para formar una mezcla de amoniaco-agua. A medida que el vapor refrigerante del evaporador (20) es disuelto en la solución absorbente, disminuye el volumen del refrigerante y se libera calor de la absorción. Es necesario reconcentrar la solución en el absorbedor (14) con el fin de mantener una presión y temperatura baja en el evaporador (20), así que se mantiene una temperatura tan baja como sea posible en el absorbedor (14), con el fin de maximizar la cantidad de amoniaco disuelto en agua, así que la solución que existe en el absorbedor (14) es enviada mediante una bomba (100) hacia el rectificador (12) e intercambia calor con el vapor refrigerante, posteriormente regresa a una menor temperatura hacia el absorbedor (14) para finalmente alimentar a la columna de destilación (2). Por otro lado, la solución caliente la cual es pobre en amoniaco, pasa a través de una válvula (22) donde se estrangula y se dirige hacia el absorbedor (14) para saturarse de amoniaco y repetir el ciclo termodinámico. The refrigerant in its physical state of pure vapor, which in particular in this example is pure ammonia vapor with high pressure is directed to the condenser (17), where condenses giving latent heat to the environment, and changes its physical state to liquid ammonia with high pressure, passes through the expansion valve (23) where its pressure is decreased, then passes through a heat exchanger (18) with in order to reduce its temperature from 45 to 25 0 C, again use ranges, not precise values, going to the second expansion valve (24) where the pressure decreases from 1795 kPa to 394.4 kPa and temperature from 25 0 C to -2 0 C of the refrigerant. This refrigerant goes to the evaporator (20), at this point the liquid refrigerant absorbs latent heat from the water flowing over the outer surface of the evaporator coil (20). As the water is cooled, the refrigerant (liquid ammonia) is converted back to gas due to the heat absorbed by the water, it comes out at a lower temperature and goes to an air handler (19) and is then recirculated through a pump (300) towards the evaporator (20). Then, the refrigerant vapor leaving the evaporator (20) is directed towards the heat exchanger (18) in order to cool it, this low pressure cold steam of at least 394.4 kPa is taken to the absorber (14) where dissolves and reacts to form a mixture of ammonia-water. As the evaporating refrigerant vapor (20) is dissolved in the absorbent solution, the volume of the refrigerant decreases and heat of absorption is released. It is necessary to reconcentrate the solution in the absorber (14) in order to maintain a low pressure and temperature in the evaporator (20), so that a temperature as low as possible is maintained in the absorber (14), in order to Maximize the amount of ammonia dissolved in water, so the solution that exists in the absorber (14) is sent by a pump (100) to the rectifier (12) and exchanges heat with the refrigerant vapor, then returns to a lower temperature towards the absorber (14) to finally feed the distillation column (2). On the other hand, the hot solution, which is poor in ammonia, passes through a valve (22) where it is throttled and is directed towards the absorber (14) to saturate with ammonia and repeat the thermodynamic cycle.

Claims

REIVINDICACIONESHabiendo descrito suficiente mi invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas: CLAIMS Having described my invention sufficiently, I consider as a novelty and therefore claim as my exclusive property, what is contained in the following clauses:
1. Una máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo caracterizada porque comprende:1. An absorption water cooling machine that uses an aqueous solution of ammonia as a working thermodynamic fluid characterized in that it comprises:
- al menos un colector solar (1) que tiene como función elevar la temperatura de un fluido; una caldereta de termosifón (2) que tiene en su interior una pluralidad de tubos rectos (3) al interior de una coraza y por los que en funcionamiento circulará una disolución acuosa pobre en amoniaco, dentro de la coraza y alrededor de los tubos circulará el fluido caliente proveniente del colector solar; - Una columna de destilación (8) que recibe la disolución proveniente de la caldereta de termosifón (2), dicha columna en su interior tiene una pluralidad de placas (9), por las cuales circulará la disolución acuosa de amoniaco; un rectificador (12) que permite el paso de vapor de amoniaco proveniente de la columna de destilación; - Un absorbedor (14) para recibir disolución de la columna de destilación (8) y la caldereta de termosifón;- at least one solar collector (1) whose function is to raise the temperature of a fluid; a thermosiphon stew (2) that has a plurality of straight tubes (3) inside it inside a shell and through which an aqueous solution poor in ammonia will circulate, inside the shell and around the tubes will circulate the hot fluid from the solar collector; - A distillation column (8) that receives the solution from the thermosiphon boiler (2), said column inside has a plurality of plates (9), through which the aqueous ammonia solution will circulate; a rectifier (12) that allows the passage of ammonia vapor from the distillation column; - An absorber (14) to receive dissolution of the distillation column (8) and the thermosiphon boiler;
- Un condensador (17) para recibir el amoniaco del rectificador; - Un intercambiador de calor (18) para recibir el amoniaco proveniente del condensador (17) a través de una primer válvula de expansión (23), y a su vez recibir amoniaco y enviarlo al absorbedor (14);- A capacitor (17) to receive the rectifier ammonia; - A heat exchanger (18) to receive the ammonia from the condenser (17) through a first expansion valve (23), and in turn receive ammonia and send it to the absorber (14);
- Una segunda válvula de expansión (24) dispuesta después del intercambiador de calor (18);- A second expansion valve (24) arranged after the heat exchanger (18);
- Un evaporador (20) para recibir el amoniaco del intercambiador de calor (18) a través de la segunda válvula de expansión (24) y regresar el amoniaco al intercambiador de calor (18);- An evaporator (20) to receive the ammonia from the heat exchanger (18) through the second expansion valve (24) and return the ammonia to the heat exchanger (18);
- Una manejadora de aire (19) que recibe agua fría desde el evaporador (20) y se recircula a través de una bomba (300).- An air handler (19) that receives cold water from the evaporator (20) and is recirculated through a pump (300).
2. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque la caldereta de termosifón (2) va conectada a un lado de la columna de destilación (8) para aprovechar el fluido calentado por energía solar en el colector (1).2. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the thermosiphon boiler (2) is connected to one side of the distillation column (8) to take advantage of the solar-heated fluid in the manifold (1).
3. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque la columna de destilación (8) carga la solución pobre amoniaco (30%) - agua (70%) proveniente de la caldereta de termosifón (2). 3. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the distillation column (8) loads the poor ammonia solution (30%) - water (70 %) from the thermosiphon boiler (2).
4. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque en la columna de destilación (8) se lleva a cabo la separación de la mezcla amoniaco - agua bajo el mecanismo de ebullición por nucleación.4. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the separation of the ammonia-water mixture is carried out in the distillation column (8) under the mechanism of boiling by nucleation.
5. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque el rectificador (12) ayuda a evitar cualquier concentración de agua y regresarla de nuevo a la columna de destilación (8) por medio de una línea de condensado (16).5. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the rectifier (12) helps to avoid any concentration of water and return it back to the column of distillation (8) by means of a condensate line (16).
6. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque el material para el lado de la coraza donde el flujo que se está utilizando es de preferencia agua es acero vaciado.6. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the material for the shell side where the flow being used is preferably water is cast steel
7. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque el material de los tubos (3) es acero al carbón con una conductividad térmica de por lo menos 63.74 WAn2K.7. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the material of the tubes (3) is carbon steel with a thermal conductivity of at least 63.74 WAn 2 K.
8. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque la caldereta de termosifón (2) se coloca vertical próximo al nivel de líquidos de los fondos de la columna de destilación (8), permitiendo que el líquido caliente proveniente de los colectores solares (1) recorra verticalmente la coraza interna de la caldereta de termosifón (2) y la solución pobre en amoniaco de la solución amoniaco (30%) - agua (70%) proveniente de los fondos de la columna de destilación (8) recorra verticalmente los tubos (3) internos de la caldereta de termosifón (2).8. The absorption water cooling machine that uses an aqueous solution of ammonia as a working thermodynamic fluid according to the claim 1 characterized in that the thermosiphon boiler (2) is placed vertically close to the liquid level of the bottoms of the distillation column (8), allowing the hot liquid from the solar collectors (1) to vertically travel the inner shell of the thermosiphon boiler (2) and the ammonia-poor solution of the ammonia solution (30%) - water (70%) from the bottoms of the distillation column (8) vertically traverses the inner tubes (3) of the boiler thermosiphon (2).
9. Una máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque el mecanismo de caldereta de termosifón (2) está compuesto con cuatro boquillas, una boquilla en cada coraza, una para la entrada de los tubos y una para su salida.9. An absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the thermosiphon boiler mechanism (2) is composed of four nozzles, one nozzle in each shell , one for the entrance of the tubes and one for its exit.
10. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 9 caracterizada porque la localización de la boquilla de entrada de agua por el lado de la coraza se colocará en la parte superior de la coraza de la caldereta de termosifón (2) y la de salida en la parte inferior de la coraza de la caldereta de termosifón (2); la localización de la boquilla de entrada de disolución por el lado de los tubos (3) se encuentra en la parte inferior de la caldereta y la boquilla de salida de la disolución se coloca en la parte superior de la caldereta de termosifón (2). 10. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 9 characterized in that the location of the water inlet nozzle on the side of the shell will be placed in the part upper of the thermosiphon boiler shell (2) and the outlet on the lower part of the thermosiphon boiler shell (2); The location of the solution inlet nozzle on the side of the tubes (3) is located in the lower part of the boiler and the solution outlet nozzle is placed in the upper part of the thermosiphon boiler (2).
11. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque el proceso del intercambiador de calor (18) bajo el mecanismo de caldereta de termosifón (2) se definió por el lado de los tubos a contracorriente y la geometría de la caldereta se caracterizará bajo los estándares del TEMA con una coraza tipo E de un solo paso; el cabezal frontal tipo A removible y el cabezal posterior tipo L de tubos estacionarios para cabezales frontales de tipo A.11. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the heat exchanger process (18) under the thermosiphon boiler mechanism (2) is defined on the side of the counter-current tubes and the geometry of the boiler will be characterized under the TEMA standards with a single-pass type E shell; the removable type A front head and the type L rear head of stationary tubes for type A front heads.
12. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque la caldereta de termosifón (2) posee preferentemente de 41 a 51 tubos de 0.55 a 0.6 mts de longitud con un diámetro nominal exterior de al menos 19.05 mm (3/4 pulg.) y 2.11 (14 BWG) de espesor.12. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the thermosiphon boiler (2) preferably has 41 to 51 tubes of 0.55 to 0.6 meters of length with a nominal outside diameter of at least 19.05 mm (3/4 in.) and 2.11 (14 BWG) thick.
13. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque la caldereta de termosifón (2) tiene una distribución de los tubos en un arreglo visto en planta superior el cual forma renglones a 45° y un espaciado de al menos 23.812 mm de 1 paso; con un diámetro exterior de la coraza de por lo menos 205.004 mm.13. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the thermosiphon boiler (2) has a distribution of the tubes in an arrangement seen on the upper floor which forms lines at 45 ° and a spacing of at least 23,812 mm of 1 step; with an outer shell diameter of at least 205.004 mm.
14. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque la caldereta de termosifón (2) tiene un diámetro de la boquilla de entrada para los tubos de la tubería principal de entrada preferentemente de 52.553 mm y con una longitud máxima para la tubería principal preferentemente de 0.8 m.14. The absorption water cooling machine that uses an aqueous solution of ammonia as a working thermodynamic fluid according to the claim 1 characterized in that the thermosiphon boiler (2) has a diameter of the inlet nozzle for the pipes of the main inlet pipe preferably 52,553 mm and with a maximum length for the main pipe preferably of 0.8 m.
15. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque la caldereta de termosifón (2) tiene un diámetro de la boquilla de salida preferentemente de 77.927 mm y una longitud máxima de tubería principal de al menos de 0.5 m.15. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the thermosiphon boiler (2) has an outlet nozzle diameter preferably of 77,927 mm and a maximum length of main pipe of at least 0.5 m.
16. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque la caldereta de termosifón (2) tiene un diámetro de la boquilla de entrada y salida por el lado de la coraza de por lo menos 40.894 mm.16. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the thermosiphon boiler (2) has a diameter of the inlet and outlet nozzle on the side of the shell of at least 40,894 mm.
17. La máquina de enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo de acuerdo a la reivindicación 1 caracterizada porque el material de la caldereta de termosifón17. The absorption water cooling machine using an aqueous solution of ammonia as a working thermodynamic fluid according to claim 1 characterized in that the material of the thermosiphon boiler
(2) sea preferentemente por el lado de la coraza acero vaciado y el material para los tubos sea preferentemente acero al carbón. (2) it is preferably on the side of the shell emptied steel and the material for the tubes is preferably carbon steel.
18. Un proceso para enfriamiento de agua por absorción que usa una solución acuosa de amoniaco como fluido termodinámico de trabajo para el empleo de la máquina de acuerdo a la reivindicación 1 caracterizada porque el procedimiento del ciclo de trabajo comprende los siguientes pasos: - se calienta preferentemente agua en un colector solar (1) por radiación solar, hasta obtener agua a una temperatura entre los 140° C a 200° C, posteriormente;18. A process for cooling water by absorption using an aqueous solution of ammonia as a thermodynamic working fluid for the use of the machine according to claim 1 characterized in that the work cycle process comprises the following steps: - it is heated preferably water in a solar collector (1) by solar radiation, until water is obtained at a temperature between 140 ° C to 200 ° C, subsequently;
- el agua circula por una tubería e ingresa por la boquilla superior (4) de la coraza de la caldereta de termosifón vertical (2), recorriendo verticalmente el interior de la coraza bañando los tubos rectos (3) de la caldereta de termosifón vertical (2) y transfiriendo calor a la solución que pasa por estos tubos rectos (3). Durante este proceso el agua se enfría y finalmente sale por la boquilla inferior (5) de la coraza hacia la bomba (200), que la retorna hacia el colector solar (1) para recibir más energía y elevar su temperatura para su recirculación; - ingresa simultáneamente, por la entrada del cabezal inferior (6) de la caldereta de termosifón vertical (2), la disolución acuosa pobre de amoniaco que proviene de la disolución amoniaco de los fondos de la columna de destilación (8), y una vez en el cabezal inferior, la disolución acuosa pobre en amoniaco asciende por los tubos rectos (3), y circula por una diferencia de presión hasta salir por el cabezal superior y dirigirse de nuevo hacia la columna de destilación (8);- the water circulates through a pipe and enters through the upper nozzle (4) of the shell of the vertical thermosiphon boiler (2), running vertically inside the shell by bathing the straight tubes (3) of the vertical thermosiphon boiler (3) 2) and transferring heat to the solution that passes through these straight tubes (3). During this process the water cools and finally comes out through the lower nozzle (5) of the shell to the pump (200), which returns it to the solar collector (1) to receive more energy and raise its temperature for recirculation; - simultaneously enter, through the entry of the lower head (6) of the vertical thermosiphon boiler (2), the poor aqueous solution of ammonia that comes from the ammonia solution of the bottoms of the distillation column (8), and once in the lower head, the aqueous solution poor in ammonia rises through the straight tubes (3), and circulates through a pressure difference until it exits the upper head and goes back to the distillation column (8);
- se separa el componente más volátil, en este caso particular el amoniaco en la columna de destilación (8), como vapor, que entra al rectificador (12) el cual es el último paso de purificación del amoniaco; simultáneamente la disolución pobre en amoniaco localizada en los fondos de la columna de destilación (8) es direccionada a la primer entrada del absorbedor (14);- the most volatile component is separated, in this particular case the ammonia in the distillation column (8), as steam, which enters the rectifier (12) which is the last step of purification of the ammonia; simultaneously dissolution poor in ammonia located in the bottoms of the distillation column (8) is directed to the first inlet of the absorber (14);
- pasa la solución fuerte en amoniaco por el rectificador (12), el cual consiste en un serpentín y una cámara de contención de liquido aquí condensado, dicha solución fuerte en amoniaco regresa al absorbedor (14) para recalentarse mediante contacto indirecto;- the strong solution in ammonia passes through the rectifier (12), which consists of a coil and a liquid containment chamber condensed here, said strong solution in ammonia returns to the absorber (14) to reheat by indirect contact;
- se dirige el refrigerante en su estado físico de vapor puro con alta presión al condensador (17), donde se condensa cediendo calor latente al medio ambiente, y cambia su estado físico a amoniaco liquido con alta presión; - se circula dicho vapor a través de la válvula de expansión (23) donde se disminuye su presión; posteriormente se hace circular el vapor a través de un intercambiador de calor (18) con el fin de disminuir su temperatura, de 45°C a 25°C dirigiéndose a la segunda válvula de expansión (24) la cual disminuye la presión de 1795kPa hasta 394.4kPa y la temperatura de 250C a -20C del refrigerante; este refrigerante va hacia el evaporador (20), en este punto el refrigerante líquido absorbe calor latente del agua que fluye sobre la superficie externa del serpentín del evaporador (20). Conforme el agua es enfriada, el refrigerante (amoniaco líquido) se vuelve a convertir en gas debido al calor absorbido por el agua, ésta sale a una menor temperatura; y se dirige hacia una manejadora de aire (19) y posteriormente es recirculada a través de una bomba (300) hacia el evaporador (20); el vapor refrigerante que sale del evaporador (20) es dirigido hacia el intercambiador de calor (18) con la finalidad de enfriarlo, este vapor frío de baja presión, de al menos 394.4kPa es llevado hacia el absorbedor (14) donde se disuelve y reacciona para formar una mezcla de amoniaco-agua. A medida que el vapor refrigerante del evαporαdor (20) es disuelto en la solución absorbente, disminuye el volumen del refrigerante y se libera calor de la absorción; - se reconcentra la solución en el absorbedor (14) con el fin de mantener una presión y temperatura baja en el evaporador (20), así que se mantiene una temperatura tan baja como sea posible en el absorbedor (14), con el fin de maximizar la cantidad de amoniaco disuelto en agua; - la solución que existe en el absorbedor (14) es enviada mediante una bomba (100) hacia el rectificador (12) e intercambia calor con el vapor refrigerante, posteriormente dicha solución regresa a una menor temperatura hacia el absorbedor (14) para finalmente alimentar a la columna de destilación (2); la solución caliente la cual es pobre en amoniaco, pasa a través de una válvula (22) donde se estrangula y se dirige hacia el absorbedor (14) para saturarse de amoniaco y repetir el ciclo termodinámico. - the refrigerant is directed in its physical state of pure vapor with high pressure to the condenser (17), where it condenses giving latent heat to the environment, and changes its physical state to liquid ammonia with high pressure; - said steam is circulated through the expansion valve (23) where its pressure is lowered; subsequently the steam is circulated through a heat exchanger (18) in order to lower its temperature, from 45 ° C to 25 ° C going to the second expansion valve (24) which decreases the pressure of 1795kPa until 394.4kPa and the temperature of 25 0 C to -2 0 C of the refrigerant; This refrigerant goes to the evaporator (20), at this point the liquid refrigerant absorbs latent heat from the water flowing over the outer surface of the evaporator coil (20). As the water is cooled, the refrigerant (liquid ammonia) is converted back to gas due to the heat absorbed by the water, it comes out at a lower temperature; and it is directed towards an air handler (19) and subsequently recirculated through a pump (300) to the evaporator (20); the refrigerant vapor leaving the evaporator (20) is directed towards the heat exchanger (18) in order to cool it, this cold steam of low pressure, at least 394.4kPa is taken to the absorber (14) where it dissolves and reacts to form a mixture of ammonia-water. As the refrigerant vapor of the evαporαdor (20) is dissolved in the absorbent solution, the volume of the refrigerant decreases and heat of absorption is released; - the solution is reconcentrated in the absorber (14) in order to maintain a low pressure and temperature in the evaporator (20), so that a temperature as low as possible is maintained in the absorber (14), in order to maximize the amount of ammonia dissolved in water; - the solution that exists in the absorber (14) is sent by a pump (100) to the rectifier (12) and exchanges heat with the refrigerant vapor, then said solution returns to a lower temperature towards the absorber (14) to finally feed to the distillation column (2); The hot solution, which is poor in ammonia, passes through a valve (22) where it is throttled and directed towards the absorber (14) to saturate with ammonia and repeat the thermodynamic cycle.
PCT/MX2009/000097 2008-09-08 2009-09-04 Solar-energy powered machine for cooling ammonia by absorption WO2010027248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2008011472A MX2008011472A (en) 2008-09-08 2008-09-08 Solar-energy powered machine for cooling ammonia by absorption.
MXMX/A/2008/011472 2008-09-08

Publications (1)

Publication Number Publication Date
WO2010027248A1 true WO2010027248A1 (en) 2010-03-11

Family

ID=41797295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2009/000097 WO2010027248A1 (en) 2008-09-08 2009-09-04 Solar-energy powered machine for cooling ammonia by absorption

Country Status (2)

Country Link
MX (1) MX2008011472A (en)
WO (1) WO2010027248A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155815A (en) * 2011-03-30 2011-08-17 浙江大学 Steam jet refrigeration system based on double-fluid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1263393A (en) * 1960-04-29 1961-06-09 Installations Thermiques Et Au Method and device for using solar energy for the production of domestic or industrial refrigeration
US4409959A (en) * 1981-04-30 1983-10-18 Chevron Research Company Solar energy water preheat system
US5666818A (en) * 1995-12-26 1997-09-16 Instituto Tecnologico And De Estudios Superiores Solar driven ammonia-absorption cooling machine
US6357255B1 (en) * 1998-09-24 2002-03-19 Osaka Gas Co., Ltd. Regenerator for use in ammonia absorption refrigerator
US6539738B2 (en) * 2000-06-08 2003-04-01 University Of Puerto Rico Compact solar-powered air conditioning systems
US6715290B1 (en) * 2002-12-31 2004-04-06 Donald C. Erickson Fluid mixture separation by low temperature glide heat
DE10248557A1 (en) * 2002-10-18 2004-05-06 Buderus Heiztechnik Gmbh A heating and cooling absorption system for buildings has a boiler, solar collector and heat exchangers to provide the required conditions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1263393A (en) * 1960-04-29 1961-06-09 Installations Thermiques Et Au Method and device for using solar energy for the production of domestic or industrial refrigeration
US4409959A (en) * 1981-04-30 1983-10-18 Chevron Research Company Solar energy water preheat system
US5666818A (en) * 1995-12-26 1997-09-16 Instituto Tecnologico And De Estudios Superiores Solar driven ammonia-absorption cooling machine
US6357255B1 (en) * 1998-09-24 2002-03-19 Osaka Gas Co., Ltd. Regenerator for use in ammonia absorption refrigerator
US6539738B2 (en) * 2000-06-08 2003-04-01 University Of Puerto Rico Compact solar-powered air conditioning systems
DE10248557A1 (en) * 2002-10-18 2004-05-06 Buderus Heiztechnik Gmbh A heating and cooling absorption system for buildings has a boiler, solar collector and heat exchangers to provide the required conditions
US6715290B1 (en) * 2002-12-31 2004-04-06 Donald C. Erickson Fluid mixture separation by low temperature glide heat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155815A (en) * 2011-03-30 2011-08-17 浙江大学 Steam jet refrigeration system based on double-fluid

Also Published As

Publication number Publication date
MX2008011472A (en) 2010-03-08

Similar Documents

Publication Publication Date Title
ES2759926T3 (en) Liquid Desiccant Air Conditioning System
ES2782356T3 (en) Air / water or water / water type absorption water chiller using ammonia and lithium nitrate
PT97981A (en) MECHANICAL REFRIGERATION AND COOLING APPARATUS AND COMBINED ABSORPTION COOLING
ES2381693T3 (en) Absorber and absorber-evaporator assembly for absorption machines and lithium bromide-water absorption machines incorporating said absorber and absorber-evaporator assembly
JP2010164248A (en) Absorption heat pump
ES2539377T5 (en) Method and arrangement for transferring heat from a combustion gas to a fluid
US11618693B2 (en) Multimode system for cooling and desalination
ES2843541T3 (en) Low temperature distillation plant
WO2020021140A1 (en) Facility for generating mechanical energy by means of a combined power cycle
ES2325912T3 (en) COLD OR HOT WATER GENERATOR ABSORPTION MACHINE.
US11618692B2 (en) Cooling and desalination system
CN106440475A (en) Two-section cascade-type single-effect lithium bromide absorption refrigeration heat pump unit
WO2010027248A1 (en) Solar-energy powered machine for cooling ammonia by absorption
KR102165443B1 (en) Absoption chiller
CN100383477C (en) Second lithium bromide absorption type heat pump for direct preparation of steam
CN201904025U (en) Diffusion absorption type refrigeration air-conditioning teaching experimental device
WO2010146202A1 (en) Method for the natural‑draught cooling of a solar concentration plant
KR101972542B1 (en) Absorption refrigeration system
CN207540193U (en) Absorber and absorption heat pump
USRE34600E (en) Energy recovery system for absorption heat pumps
JP4572860B2 (en) Absorption refrigeration system
JP4301145B2 (en) Water heater
JP2580275B2 (en) Air conditioning system using absorption refrigerator
CN106642795A (en) Overlapped solution parallel single-effect lithium bromide absorption refrigeration heat pump unit
JPS5812953A (en) Cool air, hot air and hot water supply equipment utilizing solar heat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811745

Country of ref document: EP

Kind code of ref document: A1