WO2010027108A1 - Fluorescent sugar derivative compound and sensor using same - Google Patents

Fluorescent sugar derivative compound and sensor using same Download PDF

Info

Publication number
WO2010027108A1
WO2010027108A1 PCT/JP2009/065974 JP2009065974W WO2010027108A1 WO 2010027108 A1 WO2010027108 A1 WO 2010027108A1 JP 2009065974 W JP2009065974 W JP 2009065974W WO 2010027108 A1 WO2010027108 A1 WO 2010027108A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar
compound
detection
fluorescent
formula
Prior art date
Application number
PCT/JP2009/065974
Other languages
French (fr)
Japanese (ja)
Inventor
田中正人
三治敬信
白石健太郎
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2010527862A priority Critical patent/JPWO2010027108A1/en
Publication of WO2010027108A1 publication Critical patent/WO2010027108A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • C07H15/08Polyoxyalkylene derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • C07H15/10Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical containing unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/203Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Definitions

  • the present invention relates to a target detection method capable of detecting sugar binding proteins as targets and detecting them with high sensitivity, speed and convenience, and a target detection material suitably used for the target detection.
  • a conventional method is to introduce a structure containing a sugar chain into the target detection substance and measure the interaction between the target and the sugar chain Known from.
  • sugar chains themselves do not exhibit absorption or fluorescence in the normal UV-Vis region, and do not have properties such as conductivity that are easy to measure, so that detection of sugar chain-protein interactions involves surface plasmon resonance, Precise measurement using an electrochemical measurement method, a quartz crystal microbalance measurement method, an atomic force microscope, a field effect transistor, etc. is necessary, and there is a problem in that a special device is required for that purpose. Yes.
  • the present invention does not require pretreatment of a target, can detect a sugar-binding protein rapidly, with high sensitivity and high selectivity, and can be easily determined even with the naked eye, and target detection suitably used for the target detection It is an object to provide materials.
  • the present inventors introduced a sugar chain into the conjugated molecule and brought it into contact with a lectin, which is a sugar-binding protein.
  • a lectin which is a sugar-binding protein.
  • the present invention provides the following [1] to [33].
  • A represents a divalent organic group having 2 to 6 carbon atoms that may not exist or may contain an oxygen atom, and B emits fluorescence when irradiated with light.
  • N represents a positive integer of 12 or less.
  • S 2 , S 3 , S 4 , S 5 and S 6 may be the same as or different from each other.
  • the structure of the parent sugar that becomes S 1 (hereinafter referred to as the structure of the parent sugar of S 1 or simply the structure of the parent sugar) is one hydroxyl group.
  • the structure of the parent sugars to be S 2 , S 3 , S 4 , S 5 , and S 6 (hereinafter referred to as S 2 to S 6 parent sugars).
  • the structure, or simply the structure of the parent sugar). The fluorescent sugar derivative compound characterized by the above-mentioned.
  • the parent sugar structure of S 1 is glucose, mannose, galactose, fructose, allose, talose, psicose, gulose, idose, sorbose, ribose, lyxose, xylose, apiose, deoxyglucose, deoxymannose, deoxygalactose,
  • the fluorescent sugar derivative compound according to [1] which is deoxyallose, deoxytalose, or deoxyribose.
  • the fluorescent sugar derivative compound according to [1] wherein S 2 , S 3 , S 4 , S 5 or S 6 is not present.
  • the structure of the S 2 , S 3 , S 4 , S 5 , S 6 parent sugar is independently selected from glucose, mannose, galactose, fructose, allose, talose, psicose, gulose, idose, sorbose, ribose.
  • the fluorescent sugar derivative compound according to [1] which is lyxose, xylose, apiose, deoxyglucose, deoxymannose, deoxygalactose, deoxyalose, deoxytalose, or deoxyribose.
  • [5] The fluorescent sugar derivative compound according to [1], wherein A is absent.
  • the fluorescent sugar derivative compound according to [1], wherein the base fluorescent compound that becomes B by removing n hydrogen atoms is a fluorescent compound having a conjugated structure.
  • the parent fluorescent compound that becomes B by removing n hydrogen atoms is represented by the general formula (2). (Wherein R 1 represents a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be substituted with a substituent having 7 or less carbon atoms).
  • [9] The parent fluorescent compound that becomes B by removing n hydrogen atoms is represented by the general formula (3).
  • R 2 and R 3 represent a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be the same or different from each other.
  • the fluorescent sugar derivative compound according to [1] which may be substituted with the following substituent.
  • [10] General formula (1) (S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1) (Wherein, S 1 , S 2 , S 3 , S 4 , S 5 , S 6 , A, B, m, and n have the same meanings as described above) are used as detection materials.
  • a detection target detection method is used as detection materials.
  • a method for detecting a detection target comprising using a detection material whose intensity is greater than the intensity of fluorescence when not interacting with the detection target.
  • General formula (1) as a detection material (S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1) (Wherein S 1 , S 2 , S 3 , S 4 , S 5 , S 6 , A, B, m and n represent the same meaning as described above), and a compound represented by [13] is used.
  • Detection method [15] The detection method according to [13] or [14], wherein the detection target is a substance containing a sugar-binding protein.
  • [16] A method for detecting a substance containing a sugar-binding protein utilizing the interaction between a substance containing a sugar-binding protein and a fluorescent detection material, wherein the fluorescent detection material substituted with a sugar chain is converted into a fluorescent detection material
  • a method for detecting a substance containing a sugar-binding protein characterized by being used as: [17] General formula (1) as a detection material (S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1) (Wherein S 1 , S 2 , S 3 , S 4 , S 5 , S 6 , A, B, m and n represent the same meaning as described above), and a compound represented by [16] is used.
  • Detection method [18] The detection method according to any one of [10] to [17], which is performed in an aqueous solution. [19] The detection method according to [18], wherein the aqueous solution is an aqueous solution containing a buffer. [20] The detection method according to [19], wherein the buffer is a phosphate buffer, Tris buffer, or Tris hydrochloride buffer. [21] The detection method according to any one of [11] to [20], which is performed in an aqueous solution in the presence of an agent that activates a sugar-binding protein. [22] The detection method according to [21], wherein the aqueous solution is an aqueous solution containing a buffer.
  • the fluorescent sugar derivative compound represented by the general formula (1) of the present invention can be easily synthesized by applying a known reaction technique, and separation and purification can also be performed by chromatography or recrystallization. .
  • the fluorescent sugar derivative compound itself represented by the general formula (1) exhibits a significantly stronger fluorescence due to selective interaction with the sugar-binding protein and aggregate formation, the sugar-binding protein is It is useful as a material for detecting a contained substance quickly and with high sensitivity, and can also be easily detected on site, so that it is extremely useful as a practical technique.
  • indicates the change of the fluorescence intensity with respect to the initial intensity when ConA is added to the compound of the formula (17), and x indicates the case where ConA is added to the compound of the formula (21).
  • FIG. 3 shows the change over time in the fluorescence intensity change (excitation wavelength: 370 nm) when ConA is added to the compound of formula (17).
  • indicates a change in fluorescence intensity with respect to the initial intensity when PNA is added to compound 21, and x indicates a case where PNA is added to the compound of formula (17).
  • FIG. 11 shows the effect of ConA concentration on the increase in fluorescence intensity at 450 nm when ConA is added to the
  • FIG. 13 shows the detection of ConA by a handy UV lamp with the compound of formula (17). The left is a test solution in which only the compound of formula (17) is dissolved in the salt-containing buffer prepared in Example 6 [the concentration of the compound of formula (17) is 19 ⁇ M], and the right is the salt prepared in Example 6. ConA was added to a solution in which the compound of formula (17) was dissolved in the containing buffer and stirred for 10 minutes. The concentration of the compound of formula (17) was 19 ⁇ M and the concentration of ConA was 8 ⁇ M.
  • saturated hydrocarbon group having 6 or less carbon atoms examples include n-hexyl group, cyclohexyl group, n-pentyl group, isopentyl group, n-butyl group, sec-butyl group, isobutyl group, n-propyl group, isopropyl group, and ethyl.
  • saturated hydrocarbon group having 6 or less carbon atoms examples include linear, branched or cyclic aliphatic saturated hydrocarbon groups such as a group and a methyl group.
  • Examples of the unsaturated hydrocarbon group having 12 or less carbon atoms include vinyl group, isopropenyl group, 1-propenyl group, allyl group, 1-buten-1-yl group, 2-buten-1-yl group, and 3-butene- 1-yl group, 3-buten-2-yl group, 2,2-dimethylvinyl group, 1-penten-1-yl group, 2-penten-1-yl group, 3-penten-1-yl group, 3 -Penten-2-yl group, 4-penten-1-yl group, 4-penten-2-yl group, 4-penten-3-yl group, 4-penten-4-yl group, 1,2-dimethyl- 1-buten-1-yl group, 1-octen-1-yl group, 1-decene-1-yl group, 1-dodecene-1-yl group, 1-cyclohexen-1-yl group, 1-cyclohexene-3 -Yl group, 1-cycloocten-1-yl group, 1-methyl-1
  • Examples thereof include a chain, branched or cyclic aliphatic unsaturated hydrocarbon group, and an aromatic hydrocarbon group.
  • substituent having 7 or less carbon atoms include those having 7 or less carbon atoms in the saturated hydrocarbon group having 6 or less carbon atoms, n-heptyl group, and unsaturated hydrocarbon groups having 12 or less carbon atoms, benzyl group , Methoxy group, ethoxy group, butoxy group, phenoxy group, benzyloxy group, methylthio group, phenylthio group, methoxymethyl group, methoxyethyl group, dimethylamino group, carbomethoxy group, carboethoxy group, cyano group, acetyl group, benzoyl group , Trimethylsilyl group, fluorine atom, chlorine atom, bromine atom and the like.
  • Any monosaccharide can be used depending on the detection target, and preferable examples include glucose, mannose, galactose, fructose, allose, talose, psicose, gulose, idose, sorbose and other 6-carbon sugars and ribose. And pentoses such as lyxose, xylose and apiose.
  • the monosaccharide may further be a so-called deoxy sugar in which the hydroxyl group of the hexose or pentose is substituted with hydrogen. Examples of these deoxy sugars include deoxyglucose, deoxymannose, deoxygalactose, deoxyallose, Examples include deoxytalose and deoxyribose.
  • S 1 , S 2 , S 3 , S 4 , S 5 , and S 6 specified by the general formula (1) are limited to a linear structure connected by a glycosidic bond.
  • a structure in which the non-reducing terminal side is branched may be used.
  • a branched structure for example, However, it is not particularly limited.
  • S 1 shall be followed.
  • A is defined as a divalent organic group having 2 to 6 carbon atoms which may not exist or may contain an oxygen atom. .
  • the presence or absence of A is presumed to affect the interaction with the detection target and the difficulty of aggregate formation.
  • A dimethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, 1,2-propylene group and other alkylene groups, ethyleneoxy group, 1,3-propyleneoxy group , 1,2-propyleneoxy group, alkylenemethylene group containing an oxygen atom in the chain, such as a tetramethyleneoxy group, etc.
  • B represents a residue obtained by removing n hydrogen atoms from a fluorescent compound that emits fluorescence when irradiated with light.
  • the parent fluorescent compound excluding n hydrogen atoms may be any fluorescent compound that has been reported in the past in photochemical research. From the viewpoint of ease of detection, the visible fluorescent region can be used. Those exhibiting fluorescence are preferable, and various conjugated molecules including structures that have been researched and developed as electroluminescent materials can be used.
  • R 1 represents a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be substituted with a substituent having 7 or less carbon atoms).
  • Compound, general formula (3) (In the formula, R 2 and R 3 represent a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be the same or different from each other.
  • a compound represented by formula (4) which may be substituted with the following substituents:
  • a compound represented by the general formula (9) (In the formula, R 4 and R 5 represent a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be the same or different from each other.
  • General formula (1) of the present invention (S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1)
  • a sugar chain or a substance containing a sugar binding protein is changed because sugar chains arranged in the periphery change the fluorescence behavior by interacting with or forming an aggregate with the sugar binding protein. It can be used as a detection material for detection.
  • the sample is added to the compound solution of the general formula (1) and irradiated with light. It can be easily performed by observing that the intensity of the emitted fluorescence changes, and preferably the intensity increases.
  • the sugar-binding protein or substance containing a sugar-binding protein that is a detection target as long as it recognizes sugar and strongly interacts, binds or forms an aggregate. Any substance having a protein capable of recognizing a sugar may be used, for example, various biological substances, cells, microorganisms, viruses and the like.
  • a mixed solvent in which a water-soluble solvent such as methanol, ethanol, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, and acetone is mixed with water can be used, but water is preferably used.
  • Interaction and aggregation between the sugar-binding protein and the detection material of the present invention often depend on pH, and fluorescence used as a detection means is also easily affected by pH.
  • the pH of the solution at the time of detection may change depending on external factors such as atmospheric carbon dioxide, protein structures, and internal factors such as the microorganism's own metabolites. Considering these, in order to perform reliable detection, it is preferable to use a buffer solution to keep the pH of the solution constant.
  • the preferred pH generally depends on the combination of the specimen and the detection material, but can be used without any problem as long as it can maintain a pH of around 7 in relation to handling biologically relevant proteins.
  • Tris buffer Tris-HCl buffer, phosphate buffer, Hepes buffer, and the like can be suitably used.
  • the detection operation may be performed in the presence of an agent that activates the sugar-binding protein.
  • agents various inorganic salts are used, and preferred examples include sodium salts, potassium salts, calcium salts, magnesium salts, manganese salts and the like.
  • the light source used for light irradiation may be any light source that emits light having a wavelength near the absorption wavelength of the fluorescent sugar derivative compound.
  • a xenon lamp, a low-pressure mercury lamp may be used.
  • a medium pressure mercury lamp, a high pressure mercury lamp, etc. can be used, but if necessary, the emitted light from the xenon lamp may be spectrally used.
  • an ultraviolet lamp used for detection in the chromatographic operation is used. You can also In general, detection can be easily performed by visual observation with the naked eye, but quantitative data can also be obtained by using a fluorometer.
  • Example 1 The following reaction formula (12) According to formula (17) This compound was synthesized. Add a compound of formula (16) (0.03 g, 0.017 mmol), sodium methoxide (0.003 g, 0.054 mmol), and methanol (2 ml) to a 10 ml flask equipped with a magnetic stir bar, and stir at room temperature for 30 minutes. did.
  • Reference example 1 Formula (14) which is a raw material of the compound represented by Formula (16) used in Example 1 above
  • This compound was synthesized as follows. To a 50 ml flask equipped with a magnetic stir bar, a compound of formula (13) (0.31 g, 0.73 mmol), 30% aqueous hydrogen peroxide (0.09 g, 0.80 mmol) and THF (30 ml) were added, For 20 minutes. Thereafter, the solvent was distilled off and the residue was isolated by silica gel column chromatography (ethyl acetate) to obtain a compound of the formula (14) (0.22 g, 0.50 mmol, yield 69%).
  • reaction solution is poured into a saturated aqueous solution of sodium bicarbonate, the organic layer is washed with a saturated aqueous solution of sodium bicarbonate, water and saturated saline, the organic layer is dried over magnesium sulfate, the solvent is distilled off, and the silica gel column chromatography is performed.
  • Example 3 The following reaction formula (22) According to formula (25) This compound was synthesized as follows. To a 10 ml flask equipped with a magnetic stir bar was added the compound of formula (24) (0.025 g, 0.015 mmol), sodium methoxide (0.003 g, 0.05 mmol), methanol (2 ml), THF (2 ml), Stir at room temperature for 60 minutes. Thereafter, a cation exchange resin (DOWEX 50WX8-100) was added until the reaction solution became acidic, filtered, and the solvent was distilled off to obtain a compound of the formula (25) (0.013 g, 0.012 mmol, yield 87). %).
  • DOWEX 50WX8-100 DOWEX 50WX8-100
  • Example 4 The following reaction formula (26) According to formula (29) This compound was synthesized as follows. Add a compound of formula (28) (0.024 g, 0.011 mmol), sodium methoxide (0.002 g, 0.04 mmol), and methanol (2 ml) to a 10 ml flask equipped with a magnetic stir bar, and stir at room temperature for 80 minutes. did. Thereafter, a cation exchange resin (DOWEX 50WX8-100) was added until the reaction solution became acidic, filtered, and the solvent was distilled off to obtain a compound of the formula (29) (0.014 g, 0.009 mmol, yield 88). %).
  • a cation exchange resin DOWEX 50WX8-100
  • Reference Example 7 Formula (35) used as raw material in Example 5 above This compound was synthesized as follows. A 50 ml two-necked flask equipped with a magnetic stirring bar was prepared and purged with nitrogen. Thereto were distilled methylene chloride (15 ml), a compound of formula (34) (0.33 g, 0.28 mmol), a compound of formula (15) (1.43 g, 2.90 mmol), and molecular sieves 4A under a nitrogen atmosphere. In addition, boron trifluoride diethyl ether complex (0.85 ml, 6.7 mmol) was added dropwise, and the mixture was stirred at room temperature for 41 hours.
  • Example 6 The sugar-binding protein was detected using the compound of the formula (17) modified with mannose synthesized in Example 1 as a detection agent.
  • CaCl3 to a concentration of 1 mg / 1 ml in 10 mM Tris-HCl buffer (pH 7.6) 2
  • MnCl to a concentration of 1 mg / 1 ml 2
  • a stock solution is prepared in which a solution is added in advance (hereinafter, this solution is referred to as a salt-containing buffer), and this solution is added to the compound of formula (17) (1.05 mg) to a volume of 10 ml. did.
  • Concanavalin A (hereinafter abbreviated as “Con A”) is added and the salt is added.
  • a test solution was prepared by adding the contained buffer to a total volume of 5 ml. After preparing these test solutions for 10 minutes, fluorescence spectra were measured respectively.
  • the concentration of compound (17) in the test solution is 19 ⁇ M, and the concentration of ConA is 0 ⁇ M, 0.2 ⁇ M, 0.6 ⁇ M, 1.0 ⁇ M, 2.0 ⁇ M, 4.0 ⁇ M, 8.0 ⁇ M, 16.0 ⁇ M, respectively. It becomes.
  • Example 7 The same operation as in Example 6 was performed except that the compound of formula (21) modified with galactose instead of the compound of formula (17) was used as a detection agent and the concentration in the test solution was changed to 22 ⁇ M instead of 19 ⁇ M, Experiments for detecting sugar-binding proteins were performed.
  • Example 8 Using the compound of the formula (17) as a detection agent, the same operation as in Example 6 was performed to prepare a detection agent solution. However, the concentration of the compound of formula (17) in the test solution after addition of ConA was adjusted to 17.8 ⁇ M instead of 19 ⁇ M. This solution was attached to a fluorometer, ConA was added so that the ConA concentration after addition was 8 ⁇ M, and fluorescence was measured immediately.
  • Example 9 Sugar-binding protein was detected using the compound of formula (21) modified with galactose as a detection agent.
  • Compound (21) was added to 10 mM phosphate buffer (pH 7.4) to prepare a detection agent solution.
  • a peanut agglutinin (hereinafter abbreviated as PNA) was added thereto at room temperature to prepare a test solution. At that time, the concentration of the compound (21) in the test solution was adjusted to 20 ⁇ M.
  • test solutions having different PNA concentrations were prepared by changing the amount of PNA to be added. These were also prepared so that the concentration of the compound of formula (21) in the test solution was 20 ⁇ M.
  • concentration of the compound of formula (21) in the test solution was 20 ⁇ M.
  • the fluorescence spectrum was measured at room temperature similarly to Example 6.
  • FIG. As shown by the circled data in FIG. 4 and FIG. 5, it was found that when the fluorescent sugar derivative compound is the compound of formula (21), the fluorescence near 500 nm becomes stronger with increasing PNA concentration.
  • Example 10 Using the compound of formula (17) as a detection agent instead of the compound of formula (21), a test solution was prepared in the same manner as in Example 6, and fluorescence was measured. As shown by the data with crosses in FIG.
  • Example 11 ConA detection experiment was conducted in the same manner as in Example 6 using the compound of formula (25) as a detection agent. However, unlike the case of Example 6, the concentration of the detection agent in the test solution was adjusted to 7.2 ⁇ M, and the excitation wavelength was 320 nm. As shown in FIG. 6 and FIG. 7, it was found that even when the detection agent was the compound of the formula (25), the fluorescence near 460 nm was remarkably increased with the increase in ConA concentration.
  • Example 12 ConA detection experiment was conducted in the same manner as in Example 6 using the compound of formula (29) as a detection agent instead of the compound of formula (25). However, unlike the case of Example 11, the concentration of the detection agent in the test solution was adjusted to 7.1 ⁇ M. As shown in FIGS. 8 and 9, it was found that also in the case where the detection agent was a compound (29) containing 2 units of an ethyleneoxy group as a linker, the fluorescence around 470 nm was remarkably increased as the ConA concentration was increased.
  • Example 14 The following reaction formula (37) According to formula (40) This compound was synthesized as follows.
  • Example 11 Formula (39) used as a raw material in Example 14 above This compound was synthesized as follows. A 50 ml two-necked flask equipped with a magnetic stirrer was prepared and purged with nitrogen.
  • Example 15 The compound of formula (40) has low water solubility due to the small number of introduced sugars. Therefore, a stock solution was prepared by adding methanol (1 ml) to the compound of formula (40) (0.444 mg) and dissolving it, and adding the salt-containing buffer prepared in Example 6 to a total volume of 5 ml.
  • Example 16 A test solution prepared by dissolving only the compound of formula (17) in the salt-containing buffer prepared in Example 6 was prepared so that the concentration of the compound of formula (17) was 19 ⁇ M. Separately, the compound of formula (17) is dissolved in the salt-containing buffer prepared in Example 6, and ConA is further added so that the concentration of the compound of formula (17) is 19 ⁇ M and the concentration of ConA is 8 ⁇ M. A test solution stirred for 10 minutes was prepared. In a dark room, each sample was placed on a handy UV lamp (manufactured by ASONE Co., Ltd., 9.0 W, 15 A, FL: 8 W ⁇ 1) and irradiated with ultraviolet light of 365 nm. A photograph taken in this state is shown in FIG. The left cell of FIG.
  • Example 17 The following synthetic route According to formula (43) This compound was synthesized as follows.
  • Reference Example 12 Formula (42) used as a raw material in Example 17 above
  • This compound was synthesized as follows. A 50 mL two-necked flask equipped with a magnetic stirring bar was prepared and purged with nitrogen. Under a nitrogen atmosphere, dry methylene chloride (15 mL), the compound of formula (27) synthesized in Reference Example 5 (55 mg, 74 ⁇ mol), the compound of formula (41) (0.46 g, 0.59 mmol), and molecular were added. Sieves (4A) was added, boron trifluoride diethyl ether complex (0.47 mL, 3.7 mmol) was added dropwise at 0 ° C., and the mixture was stirred at room temperature for 4 days.
  • Example 18 Using the compound of formula (43), a detection experiment of RCA120 was performed as a lectin. In a buffer (10 mM phosphate buffer, pH 7.4), 6.7 ⁇ M of the compound of formula (43) is added to 0.0 ⁇ M, 0.5 ⁇ M, 1.0 ⁇ M, 2.0 ⁇ M, 3.0 ⁇ M and 5.0 ⁇ M. RCA120 was added, and the sample was prepared by stirring for 10 minutes. As shown in FIG. 14, in the fluorescence spectrum, the emission intensity in the vicinity of 400 nm of the compound of the formula (43) increased as the concentration of RCA120 increased. As shown in FIG. 15, when the concentration of RCA120 is 1.0 ⁇ M, 2.0 ⁇ M, and 3.0 ⁇ M, the emission intensity increases 1.5 times, 1.8, and 2.7 times, respectively. Was possible.
  • the present invention does not require pretreatment of a target, can detect a sugar-binding protein rapidly, with high sensitivity and high selectivity, and can be easily determined even with the naked eye, and target detection suitably used for the target detection Material can be provided. All publications and patent documents cited herein are hereby incorporated by reference in their entirety. While specific embodiments of the invention have been described herein for purposes of illustration, it will be apparent to those skilled in the art that various modifications may be made without departing from the spirit and scope of the invention. It will be easily understood.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Diabetes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Saccharide Compounds (AREA)

Abstract

Disclosed are a method for sensing saccharide-binding protein easily, quickly, and with high sensitivity, and a fluorescent compound necessary for this sensing. Specifically, disclosed is a method for sensing saccharide-binding protein that utilizes the fact that when a saccharide-binding protein acts on a molecule having a conjugate structure whereby a sugar chain is joined directly or via an appropriate linker, the fluorescent intensity is significantly greater than when there is no saccharide-binding protein.

Description

蛍光性糖誘導体化合物及びそれを用いるセンサーFluorescent sugar derivative compound and sensor using the same
 本発明は、糖結合タンパク質を標的とし、これらを高感度、迅速かつ簡便に検出出来る標的検出方法並びに該標的検出に好適に用いられる標的検出材料に関する。 The present invention relates to a target detection method capable of detecting sugar binding proteins as targets and detecting them with high sensitivity, speed and convenience, and a target detection material suitably used for the target detection.
 病原物質、生体物質等に含まれる糖結合タンパク質を標的とする検出方法として、標的検出用物質に糖鎖を含む構造を導入し、標的と糖鎖との間の相互作用を計測する手法が従来から知られている。しかし、糖鎖自体は通常のUV−Vis領域に吸収や蛍光を示さず、また、導電性等の計測容易な性質も持たないため、糖鎖−タンパク質相互作用の検出には、表面プラズモン共鳴、電気化学測定法、水晶振動子マイクロバランス測定法、原子間力顕微鏡、電界効果トランジスタ等を用いた精密な測定が必要であり、そのために特殊な装置を必要とする点に問題点を有している。
 このような特殊な装置の必要性に関わる問題点を回避する方法として、UV−Vis吸収を示す構造を糖鎖に導入し、一般的な分光光度法により検出しようとする方法が研究されている。例えば、Journal of the American Chemical Society、2001年、123巻、p.8226;Langmuir、2003年、19巻、p.7141;Biochmica et Biophysica Acta、2006年、636号、p.1760では金ナノ粒子表面を糖鎖で修飾した材料、Bioconjugate Chemistry、2007年、18巻、p.146ではCdS‐ZnS量子ドットを糖鎖で修飾した材料、Bioconjugate Chemistry、2000年、11巻、p.777;Science、1993年、261巻、p.585;Journal of the American Chemical Society、1993年、115巻、p.1146;Langmuir、1997年、13巻、p.5049;Langmuir、1997年、13巻、p.6524ではパイ共役系ポリマーの側鎖基に糖鎖を導入した材料を用いて、タンパク質の検出を色(可視領域)の変化として観測する方法が報告されている。しかし、これらの方法では、現実的には、吸光度や吸収波長の変化を観測することになるため、懸濁あるいは着色したサンプル溶液をそのまま測定することが困難であり、比較的高濃度の検出標的分子が必要であり、更に、検出に数十分から数時間の時間を要するのが通常であり、検出感度や迅速性に問題がある。
 UV−Vis吸収を利用した検出の上記のような問題点を回避する方法として、蛍光を示す構造を糖鎖に導入し、蛍光強度の変化によって検出しようとする研究も行われてきた。例えば、Journal of the American Chemical Society、2004年、126巻、p.13343;Chemical Communications、2005年、p.1273;Bioconjugate Chemistry、2006年、17巻、p.575;Biomacromolecules、2006年、7巻、p.2470;Journal of the American Chemical Society、2008年、130巻、p.6952では発光性の共役高分子の側鎖に糖鎖を導入した材料を用いて、Chemical Communications、2003年、p.1250では周辺に糖鎖を導入した金属錯体を用いて、タンパク質との相互作用を蛍光強度の低下で検出する方法が報告されている。しかし、蛍光強度の低下で検出しようとするこれらの方法は、いわばタンパク質との相互作用によって蛍光のスイッチが消される、いわばターンオフ型の検出方法であると言えるが、タンパク質との相互作用によってスイッチが完全に消されるわけではなく、蛍光強度の低下の程度は相互作用の無い場合の40~60%であり、この程度の蛍光強度の低下を測定するには、精密な蛍光光度計による厳密な測定を必要とし、感度面や簡便性に問題を抱えている。
 検出手段として蛍光を用いる別の方法として、タンパク質を蛍光性物質で修飾するいわゆる蛍光プローブを用い、糖鎖との相互作用による蛍光の強度変化を観測して検出しようとする方法も提案されている。しかし、この場合にも、蛍光強度の変化を測定するには、先と同様、精密な蛍光光度計による厳密な測定を必要とし、迅速性や簡便性に問題を抱えている(例えば、特開2000−338044号公報参照)。
As a detection method for targeting sugar-binding proteins contained in pathogenic substances, biological substances, etc., a conventional method is to introduce a structure containing a sugar chain into the target detection substance and measure the interaction between the target and the sugar chain Known from. However, sugar chains themselves do not exhibit absorption or fluorescence in the normal UV-Vis region, and do not have properties such as conductivity that are easy to measure, so that detection of sugar chain-protein interactions involves surface plasmon resonance, Precise measurement using an electrochemical measurement method, a quartz crystal microbalance measurement method, an atomic force microscope, a field effect transistor, etc. is necessary, and there is a problem in that a special device is required for that purpose. Yes.
As a method for avoiding the problems related to the necessity of such a special apparatus, a method for introducing a structure exhibiting UV-Vis absorption into a sugar chain and detecting it by a general spectrophotometric method has been studied. . For example, Journal of the American Chemical Society, 2001, Vol. 123, p. 8226; Langmuir, 2003, 19, p. 7141; Biochmica et Biophysica Acta, 2006, 636, p. 1760, a material in which the surface of a gold nanoparticle is modified with a sugar chain, Bioconjugate Chemistry, 2007, Vol. 18, p. 146, CdS-ZnS quantum dots modified with sugar chains, Bioconjugate Chemistry, 2000, 11, p. 777; Science, 1993, 261, p. 585; Journal of the American Chemical Society, 1993, 115, p. 1146; Langmuir, 1997, vol. 13, p. 5049; Langmuir, 1997, 13, p. In 6524, a method for observing protein detection as a change in color (visible region) using a material in which a sugar chain is introduced into a side chain group of a pi-conjugated polymer is reported. However, in these methods, since changes in absorbance and absorption wavelength are actually observed, it is difficult to measure a suspended or colored sample solution as it is, and a relatively high concentration detection target is difficult to measure. In general, molecules are required, and it takes usually several tens of minutes to several hours for detection, and there are problems in detection sensitivity and rapidity.
As a method for avoiding the above-described problems in detection using UV-Vis absorption, studies have been conducted to introduce a structure exhibiting fluorescence into a sugar chain and detect it by a change in fluorescence intensity. For example, Journal of the American Chemical Society, 2004, 126, p. 13343; Chemical Communications, 2005, p. 1273; Bioconjugate Chemistry, 2006, 17, p. 575; Biomacromolecules, 2006, 7, p. 2470; Journal of the American Chemical Society, 2008, 130, p. 6952, using a material in which a sugar chain is introduced into a side chain of a light-emitting conjugated polymer, Chemical Communications, 2003, p. In 1250, a method of detecting an interaction with a protein with a decrease in fluorescence intensity using a metal complex having a sugar chain introduced in the periphery is reported. However, these methods that try to detect by lowering the fluorescence intensity are so-called turn-off detection methods in which the fluorescence switch is turned off by the interaction with the protein, but the switch is activated by the interaction with the protein. It is not completely extinguished, and the degree of decrease in fluorescence intensity is 40 to 60% of the case where there is no interaction. To measure this degree of decrease in fluorescence intensity, precise measurement with a precise fluorometer is required. And has problems with sensitivity and simplicity.
As another method of using fluorescence as a detection means, a method has been proposed in which a so-called fluorescent probe that modifies a protein with a fluorescent substance is used to detect and detect changes in fluorescence intensity due to interaction with sugar chains. . However, in this case as well, in order to measure the change in fluorescence intensity, it is necessary to perform precise measurement with a precise fluorometer as before, and there is a problem in speediness and simplicity (for example, JP 2000-338444).
 本発明は、標的に前処理を必要とせず、迅速、高感度、高選択的に糖結合タンパク質を検出でき、裸眼でも容易に判定可能な標的検出方法並びに該標的検出に好適に用いられる標的検出材料を提供することを課題とする。
 本発明者らは、リン原子を含む共役分子の吸収・発光機能について研究中に、当該共役分子に糖鎖を導入し、糖結合タンパク質であるレクチンと接触させると、先に述べたような蛍光強度の低下ではなく、蛍光強度が著しく増大するという興味ある事実、すなわち、糖結合タンパク質との相互作用によって強い蛍光のスイッチが入る、いわばターンオン型の検出方法の端緒を見いだした。そこで、この意外な結果に基づいて更に鋭意研究の結果、糖鎖を導入した各種の共役分子が同様なターンオン型挙動を示すことも見いだし、これらの知見に基づいて本発明を完成させるに至った。
 本発明は、以下の[1]~[33]を提供する。
 [1] 一般式(1)
 (S−S−S−S−S−S−AB  (1)
[式中、Sは糖の構造の1個の水酸基から水素原子を除いた残基を表わし、S、S、S、S、Sは、独立に、存在しないか、又は、糖構造から1個の水酸基を除くと共にもう1個の水酸基から水素原子を除いた残基を表わし、S、S、S、S、S、Sは互いにグリコシド結合で繋がった糖鎖構造を形成しており、Aは、存在しないか、又は、酸素原子を含んでいてもよい炭素数2以上6以下の2価の有機基を表わし、Bは光照射により蛍光を発する蛍光性化合物からn個の水素原子を除いた残基を表し、該残基は炭素数7以下の置換基で置換されていてもよく、Aが存在する場合のmは6以下の正の整数を表し、nは12以下の正の整数を表す。S、S、S、S、Sは互いに同じであっても異なっていてもよい。1個の水酸基から水素原子を除くことでSとなる母体の糖の構造(以下、Sの母体の糖の構造、又は、単に、母体の糖の構造という。)は、1個の水酸基を除くと共にもう1個の水酸基から水素原子を除くことでそれぞれS、S、S、S、Sとなる母体の糖の構造(以下、S~Sの母体の糖の構造、又は、単に、母体の糖の構造という。)と互いに同じであっても異なっていてもよい。]で表わされることを特徴とする蛍光性糖誘導体化合物。
 [2] Sの母体の糖の構造が、グルコース、マンノース、ガラクトース、フルクトース、アロース、タロース、プシコース、グロース、イドース、ソルボース、リボース、リキソース、キシロース、アピオース、デオキシグルコース、デオキシマンノース、デオキシガラクトース、デオキシアロース、デオキシタロース、デオキシリボースである、[1]記載の蛍光性糖誘導体化合物。
 [3] S、S、S、S又はSが存在しない、[1]記載の蛍光性糖誘導体化合物。
 [4] S、S、S、S、Sの母体の糖の構造が、それぞれ独立に、グルコース、マンノース、ガラクトース、フルクトース、アロース、タロース、プシコース、グロース、イドース、ソルボース、リボース、リキソース、キシロース、アピオース、デオキシグルコース、デオキシマンノース、デオキシガラクトース、デオキシアロース、デオキシタロース、デオキシリボースのである、[1]記載の蛍光性糖誘導体化合物。
 [5] Aが存在しない、[1]記載の蛍光性糖誘導体化合物。
 [6] AがCHCHOである、[1]記載の蛍光性糖誘導体化合物。
 [7] n個の水素原子を除くことでBとなる母体の蛍光性化合物が、共役構造からなる蛍光性化合物である、[1]記載の蛍光性糖誘導体化合物。
 [8] n個の水素原子を除くことでBとなる母体の蛍光性化合物が、一般式(2)
Figure JPOXMLDOC01-appb-I000003
(式中、Rは炭素数6以下の飽和炭化水素基又は炭素数12以下の不飽和炭化水素基を示し、炭素数7以下の置換基で置換されていてもよい。)である、[1]記載の蛍光性糖誘導体化合物。
 [9] n個の水素原子を除くことでBとなる母体の蛍光性化合物が、一般式(3)
Figure JPOXMLDOC01-appb-I000004
(式中、R及びRは炭素数6以下の飽和炭化水素基又は炭素数12以下の不飽和炭化水素基を示し、互いに同じであっても異なっていてもよく、また、炭素数7以下の置換基で置換されていてもよい。)である、[1]記載の蛍光性糖誘導体化合物。
 [10] 一般式(1)
 (S−S−S−S−S−S−AB  (1)
(式中、S、S、S、S、S、S、A、B、m及びnは前記と同じ意味を表す。)で表わされる化合物を検出材料として用いることを特徴とする、検出標的の検出方法。
 [11] 検出標的が糖結合タンパク質を含む物質である、[10]記載の検出方法。
 [12] 検出手段として蛍光の変化を利用する、[10]又は[11]記載の検出方法。
 [13] 検出標的と相互作用可能な検出材料であって、検出標的と相互作用していない時には光照射によりそれ自身電子励起されても蛍光を実質的には発せず、若しくは、検出標的と相互作用していなくても光照射によりそれ自身電子励起されて蛍光を発し、検出標的と相互作用している時には光照射により電子励起されて蛍光を発し、検出標的と相互作用している時に発する蛍光の強度が検出標的と相互作用していない場合の蛍光の強度より大きくなる検出材料を用いることを特徴とする検出標的の検出方法。
 [14] 検出材料として一般式(1)
 (S−S−S−S−S−S−AB  (1)
(式中、S、S、S、S、S、S、A、B、m及びnは前記と同じ意味を表す。)で表わされる化合物を用いる、[13]記載の検出方法。
 [15] 検出標的が糖結合タンパク質を含む物質である、[13]又は[14]記載の検出方法。
 [16] 糖結合タンパク質を含む物質と蛍光性の検出材料の相互作用を利用した糖結合タンパク質を含む物質の検出方法であって、糖鎖で置換された蛍光性検出材料を蛍光性の検出材料として用いることを特徴とする糖結合タンパク質を含む物質の検出方法。
 [17] 検出材料として一般式(1)
 (S−S−S−S−S−S−AB  (1)
(式中、S、S、S、S、S、S、A、B、m及びnは前記と同じ意味を表す。)で表わされる化合物を用いる、[16]記載の検出方法。
 [18] 含水溶液中で実施する、[10]~[17]のいずれか1つに記載の検出方法。
 [19] 含水溶液が緩衝剤を含む含水溶液である、[18]記載の検出方法。
 [20] 緩衝剤がリン酸緩衝剤、トリス緩衝剤、トリス塩酸緩衝剤である、[19]記載の検出方法。
 [21] 含水溶液中で、糖結合タンパク質を活性化する薬剤の存在下に実施する、[11]~[20]のいずれか1つに記載の検出方法。
 [22] 含水溶液が緩衝剤を含む含水溶液である、[21]記載の検出方法。
 [23] 緩衝剤がリン酸緩衝剤、トリス緩衝剤、トリス塩酸緩衝剤である、[22]記載の検出方法。
 [24] 糖結合タンパク質と[1]~[9]のいずれか1つに記載の化合物とから構成される凝集体。
 [25] 糖結合タンパク質と[1]~[9]のいずれか1つに記載の化合物とを含水溶液中で反応させることにより調製された、[24]記載の凝集体。
 [26] 含水溶液が緩衝剤を含む含水溶液である、[25]記載の凝集体。
 [27] 緩衝剤がリン酸緩衝剤、トリス緩衝剤、トリス塩酸緩衝剤である、[26]記載の凝集体。
 [28] 含水溶液中で、糖結合タンパク質を活性化する薬剤の存在下に反応させることにより調製された、[25]~[27]のいずれか1つに記載の凝集体。
 [29] 請求項24に記載の凝集体からの蛍光を観測することからなる糖結合タンパク質の検出方法。
 [30] 凝集体からの蛍光が[1]~[9]のいずれか1つに記載の化合物自身からの蛍光より強度が増大することを利用した、[29]記載の検出方法。
 [31] 蛍光の観測を含水溶液中で実施する、[29]又は[30]記載の検出方法。
 [32] 含水溶液が緩衝剤を含む含水溶液である、[31]記載の検出方法。
 [33] 緩衝剤がリン酸緩衝剤、トリス緩衝剤、トリス塩酸緩衝剤である、[32]記載の検出方法。
発明の効果
 本発明の一般式(1)で示される蛍光性糖誘導体化合物は、既知の反応手法を準用して容易に合成することが出来、分離精製もクロマトグラフィーや再結晶により行うことが出来る。また、一般式(1)で示される蛍光性糖誘導体化合物自身が示す蛍光に比べ、糖結合タンパク質との選択的な相互作用や凝集体形成により飛躍的に強い蛍光を示すため、糖結合タンパク質を含む物質を迅速、高感度に検出するための材料として有用であり、かつ、オンサイトでの検出も簡便に行うことが出来るため、実用技術として極めて有用である。
The present invention does not require pretreatment of a target, can detect a sugar-binding protein rapidly, with high sensitivity and high selectivity, and can be easily determined even with the naked eye, and target detection suitably used for the target detection It is an object to provide materials.
During the study on the absorption / luminescence function of a conjugated molecule containing a phosphorus atom, the present inventors introduced a sugar chain into the conjugated molecule and brought it into contact with a lectin, which is a sugar-binding protein. We found an interesting fact that the fluorescence intensity increases significantly, not the decrease in intensity, that is, the start of a so-called turn-on detection method in which strong fluorescence is switched on by interaction with the sugar-binding protein. Therefore, as a result of further diligent research based on this unexpected result, it was found that various conjugated molecules into which sugar chains were introduced exhibited similar turn-on behavior, and the present invention was completed based on these findings. .
The present invention provides the following [1] to [33].
[1] General formula (1)
(S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1)
[Wherein S 1 represents a residue obtained by removing a hydrogen atom from one hydroxyl group of a sugar structure, and S 2 , S 3 , S 4 , S 5 , S 6 are independently absent, or Represents a residue in which one hydroxyl group is removed from the sugar structure and a hydrogen atom is removed from the other hydroxyl group, and S 1 , S 2 , S 3 , S 4 , S 5 , and S 6 are linked to each other by a glycosidic bond. A represents a divalent organic group having 2 to 6 carbon atoms that may not exist or may contain an oxygen atom, and B emits fluorescence when irradiated with light. Represents a residue obtained by removing n hydrogen atoms from a fluorescent compound, which residue may be substituted with a substituent having 7 or less carbon atoms, and when A is present, m is a positive integer of 6 or less N represents a positive integer of 12 or less. S 2 , S 3 , S 4 , S 5 and S 6 may be the same as or different from each other. By removing a hydrogen atom from one hydroxyl group, the structure of the parent sugar that becomes S 1 (hereinafter referred to as the structure of the parent sugar of S 1 or simply the structure of the parent sugar) is one hydroxyl group. And by removing a hydrogen atom from the other hydroxyl group, the structure of the parent sugars to be S 2 , S 3 , S 4 , S 5 , and S 6 (hereinafter referred to as S 2 to S 6 parent sugars). The structure, or simply the structure of the parent sugar). ] The fluorescent sugar derivative compound characterized by the above-mentioned.
[2] The parent sugar structure of S 1 is glucose, mannose, galactose, fructose, allose, talose, psicose, gulose, idose, sorbose, ribose, lyxose, xylose, apiose, deoxyglucose, deoxymannose, deoxygalactose, The fluorescent sugar derivative compound according to [1], which is deoxyallose, deoxytalose, or deoxyribose.
[3] The fluorescent sugar derivative compound according to [1], wherein S 2 , S 3 , S 4 , S 5 or S 6 is not present.
[4] The structure of the S 2 , S 3 , S 4 , S 5 , S 6 parent sugar is independently selected from glucose, mannose, galactose, fructose, allose, talose, psicose, gulose, idose, sorbose, ribose. The fluorescent sugar derivative compound according to [1], which is lyxose, xylose, apiose, deoxyglucose, deoxymannose, deoxygalactose, deoxyalose, deoxytalose, or deoxyribose.
[5] The fluorescent sugar derivative compound according to [1], wherein A is absent.
[6] The fluorescent sugar derivative compound according to [1], wherein A is CH 2 CH 2 O.
[7] The fluorescent sugar derivative compound according to [1], wherein the base fluorescent compound that becomes B by removing n hydrogen atoms is a fluorescent compound having a conjugated structure.
[8] The parent fluorescent compound that becomes B by removing n hydrogen atoms is represented by the general formula (2).
Figure JPOXMLDOC01-appb-I000003
(Wherein R 1 represents a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be substituted with a substituent having 7 or less carbon atoms). [1] The fluorescent sugar derivative compound according to [1].
[9] The parent fluorescent compound that becomes B by removing n hydrogen atoms is represented by the general formula (3).
Figure JPOXMLDOC01-appb-I000004
(In the formula, R 2 and R 3 represent a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be the same or different from each other. The fluorescent sugar derivative compound according to [1], which may be substituted with the following substituent.
[10] General formula (1)
(S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1)
(Wherein, S 1 , S 2 , S 3 , S 4 , S 5 , S 6 , A, B, m, and n have the same meanings as described above) are used as detection materials. A detection target detection method.
[11] The detection method according to [10], wherein the detection target is a substance containing a sugar binding protein.
[12] The detection method according to [10] or [11], wherein a change in fluorescence is used as the detection means.
[13] A detection material capable of interacting with a detection target, and when it does not interact with the detection target, it does not substantially emit fluorescence even when it is electronically excited by light irradiation, or interacts with the detection target. Even if it is not acting, it emits fluorescence when excited by light itself, and emits fluorescence when interacting with the detection target, and emits fluorescence when interacting with the detection target. A method for detecting a detection target, comprising using a detection material whose intensity is greater than the intensity of fluorescence when not interacting with the detection target.
[14] General formula (1) as a detection material
(S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1)
(Wherein S 1 , S 2 , S 3 , S 4 , S 5 , S 6 , A, B, m and n represent the same meaning as described above), and a compound represented by [13] is used. Detection method.
[15] The detection method according to [13] or [14], wherein the detection target is a substance containing a sugar-binding protein.
[16] A method for detecting a substance containing a sugar-binding protein utilizing the interaction between a substance containing a sugar-binding protein and a fluorescent detection material, wherein the fluorescent detection material substituted with a sugar chain is converted into a fluorescent detection material A method for detecting a substance containing a sugar-binding protein, characterized by being used as:
[17] General formula (1) as a detection material
(S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1)
(Wherein S 1 , S 2 , S 3 , S 4 , S 5 , S 6 , A, B, m and n represent the same meaning as described above), and a compound represented by [16] is used. Detection method.
[18] The detection method according to any one of [10] to [17], which is performed in an aqueous solution.
[19] The detection method according to [18], wherein the aqueous solution is an aqueous solution containing a buffer.
[20] The detection method according to [19], wherein the buffer is a phosphate buffer, Tris buffer, or Tris hydrochloride buffer.
[21] The detection method according to any one of [11] to [20], which is performed in an aqueous solution in the presence of an agent that activates a sugar-binding protein.
[22] The detection method according to [21], wherein the aqueous solution is an aqueous solution containing a buffer.
[23] The detection method according to [22], wherein the buffer is a phosphate buffer, Tris buffer, or Tris hydrochloride buffer.
[24] An aggregate composed of a sugar-binding protein and the compound according to any one of [1] to [9].
[25] The aggregate according to [24], which is prepared by reacting a sugar-binding protein and the compound according to any one of [1] to [9] in an aqueous solution.
[26] The aggregate according to [25], wherein the aqueous solution is an aqueous solution containing a buffer.
[27] The aggregate according to [26], wherein the buffer is a phosphate buffer, Tris buffer, or Tris hydrochloride buffer.
[28] The aggregate according to any one of [25] to [27], which is prepared by reacting in an aqueous solution in the presence of a drug that activates a sugar-binding protein.
[29] A method for detecting a sugar-binding protein comprising observing fluorescence from the aggregate according to claim 24.
[30] The detection method according to [29], which utilizes the fact that the fluorescence from the aggregate increases in intensity as compared to the fluorescence from the compound itself according to any one of [1] to [9].
[31] The detection method according to [29] or [30], wherein the fluorescence is observed in an aqueous solution.
[32] The detection method according to [31], wherein the aqueous solution is an aqueous solution containing a buffer.
[33] The detection method according to [32], wherein the buffer is a phosphate buffer, Tris buffer, or Tris hydrochloride buffer.
EFFECT OF THE INVENTION The fluorescent sugar derivative compound represented by the general formula (1) of the present invention can be easily synthesized by applying a known reaction technique, and separation and purification can also be performed by chromatography or recrystallization. . In addition, since the fluorescent sugar derivative compound itself represented by the general formula (1) exhibits a significantly stronger fluorescence due to selective interaction with the sugar-binding protein and aggregate formation, the sugar-binding protein is It is useful as a material for detecting a contained substance quickly and with high sensitivity, and can also be easily detected on site, so that it is extremely useful as a practical technique.
 図1は、式(17)の化合物にConAを加えた際の蛍光強度の変化を示す(励起波長=370nm)。
 図2は、式(17)又は(21)の化合物にConAを加えた際の500nmにおける蛍光の強度増大へのConA濃度の影響(励起波長=370nm、I=ConAを加える前の初期強度、I=ConAを加えた際の強度)を示す。○は式(17)の化合物にConAを加えた場合、×は式(21)の化合物にConAを加えた場合の蛍光強度の初期強度に対する変化を示す。
 図3は、式(17)の化合物にConAを加えた際の蛍光強度変化の経時変化(励起波長:370nm)を示す。式(17)の化合物の濃度17.8μM、ConA濃度8.0μMで行った実験を示す。
 図4は、式(21)の化合物にPNAを加えた際の蛍光強度の変化を示す(励起波長=370nm)。
 図5は、式(17)又は(21)の化合物にPNAを加えた際の500nmにおける蛍光の強度増大へのPNA濃度の影響(励起波長=370nm、I=PNAを加える前の初期強度、I=PNAを加えた際の強度)を示す。○は化合物21にPNAを加えた場合、×は式(17)の化合物にPNAを加えた場合の蛍光強度の初期強度に対する変化を示す。
 図6は、式(25)の化合物にConAを加えた際の蛍光強度の変化を示す(励起波長=320nm)。
 図7は、式(25)の化合物にConAを加えた際の460nmにおける蛍光の強度増大へのConA濃度の影響(励起波長=320nm、I=ConAを加える前の初期強度、I=ConAを加えた際の強度)を示す。
 図8は、式(29)の化合物にConAを加えた際の蛍光強度の変化を示す(励起波長=320nm)。
 図9は、式(29)の化合物にConAを加えた際の470nmにおける蛍光の強度増大へのConA濃度の影響(励起波長=320nm、I=ConAを加える前の初期強度、I=ConAを加えた際の強度)を示す。
 図10は、式(36)の化合物(濃度=7.3μM)にConAを加えた際の蛍光強度の変化(励起波長=300nm)を示す。
 図11は、式(36)の化合物にConAを加えた際の450nmにおける蛍光の強度増大へのConA濃度の影響(励起波長=300nm、I=ConAを加える前の初期強度、I=ConAを加えた際の強度)を示す。
 図12は、式(40)の化合物にConAを加えた際の蛍光強度の変化(励起波長=312nm)を示す。
 図13は、式(17)の化合物によるハンディUVランプによるConAの検出を示す。左は実施例6で調製した塩含有緩衝液に式(17)の化合物のみを溶解させた試験液[式(17)の化合物の濃度は19μM]であり、右は実施例6で調製した塩含有緩衝液に式(17)の化合物を溶解させた溶液にConAを加え10分間攪拌した試験液[式(17)の化合物の濃度は19μM、ConAの濃度は8μM]であり、ハンディUVランプを用いて365nmの紫外光を照射すると、右の試験液が極めて強い蛍光を発することが分かる。
 図14は、式(43)の化合物(濃度=6.7μM)にRCA120を加えた際の蛍光強度の変化を示す(励起波長=320nm)。
 図15は、式(43)の化合物にRCA120を加えた際の400nmにおける発光強度比(I/I=RCA120を添加後の発光強度/初期発光強度)を示す。
FIG. 1 shows changes in fluorescence intensity when ConA is added to the compound of formula (17) (excitation wavelength = 370 nm).
FIG. 2 shows the effect of ConA concentration on the increase in fluorescence intensity at 500 nm when ConA is added to the compound of formula (17) or (21) (excitation wavelength = 370 nm, I 0 = initial intensity before adding ConA, I = strength when ConA is added). ○ indicates the change of the fluorescence intensity with respect to the initial intensity when ConA is added to the compound of the formula (17), and x indicates the case where ConA is added to the compound of the formula (21).
FIG. 3 shows the change over time in the fluorescence intensity change (excitation wavelength: 370 nm) when ConA is added to the compound of formula (17). An experiment conducted at a concentration of the compound of formula (17) of 17.8 μM and a ConA concentration of 8.0 μM is shown.
FIG. 4 shows the change in fluorescence intensity when PNA is added to the compound of formula (21) (excitation wavelength = 370 nm).
FIG. 5 shows the effect of PNA concentration on the increase in fluorescence intensity at 500 nm when PNA is added to the compound of formula (17) or (21) (excitation wavelength = 370 nm, I 0 = initial intensity before adding PNA, I = intensity when PNA is added). ○ indicates a change in fluorescence intensity with respect to the initial intensity when PNA is added to compound 21, and x indicates a case where PNA is added to the compound of formula (17).
FIG. 6 shows changes in fluorescence intensity when ConA is added to the compound of formula (25) (excitation wavelength = 320 nm).
FIG. 7 shows the effect of ConA concentration on the increase in fluorescence intensity at 460 nm when ConA is added to the compound of formula (25) (excitation wavelength = 320 nm, I 0 = initial intensity before adding ConA, I = ConA Strength when added).
FIG. 8 shows changes in fluorescence intensity when ConA is added to the compound of formula (29) (excitation wavelength = 320 nm).
FIG. 9 shows the effect of ConA concentration on the increase in fluorescence intensity at 470 nm when ConA is added to the compound of formula (29) (excitation wavelength = 320 nm, I 0 = initial intensity before adding ConA, I = ConA Strength when added).
FIG. 10 shows changes in fluorescence intensity (excitation wavelength = 300 nm) when ConA is added to the compound of formula (36) (concentration = 7.3 μM).
FIG. 11 shows the effect of ConA concentration on the increase in fluorescence intensity at 450 nm when ConA is added to the compound of formula (36) (excitation wavelength = 300 nm, I 0 = initial intensity before adding ConA, I = ConA Strength when added).
FIG. 12 shows the change in fluorescence intensity (excitation wavelength = 312 nm) when ConA is added to the compound of formula (40).
FIG. 13 shows the detection of ConA by a handy UV lamp with the compound of formula (17). The left is a test solution in which only the compound of formula (17) is dissolved in the salt-containing buffer prepared in Example 6 [the concentration of the compound of formula (17) is 19 μM], and the right is the salt prepared in Example 6. ConA was added to a solution in which the compound of formula (17) was dissolved in the containing buffer and stirred for 10 minutes. The concentration of the compound of formula (17) was 19 μM and the concentration of ConA was 8 μM. When it is used and irradiated with 365 nm ultraviolet light, the right test solution emits extremely strong fluorescence.
FIG. 14 shows the change in fluorescence intensity when RCA120 is added to the compound of formula (43) (concentration = 6.7 μM) (excitation wavelength = 320 nm).
FIG. 15 shows the emission intensity ratio (I / I 0 = emission intensity after addition of RCA120 / initial emission intensity) at 400 nm when RCA120 is added to the compound of formula (43).
 本明細書において示される各基は、具体的には以下の通りである。
 炭素数6以下の飽和炭化水素基としては、n−ヘキシル基、シクロヘキシル基、n−ペンチル基、イソペンチル基、n−ブチル基、sec−ブチル基、イソブチル基、n−プロピル基、イソプロピル基、エチル基、メチル基等の直鎖、分枝又は環状の脂肪族飽和炭化水素基を例示することが出来る。
 炭素数12以下の不飽和炭化水素基としては、ビニル基、イソプロペニル基、1−プロペニル基、アリル基、1−ブテン−1−イル基、2−ブテン−1−イル基、3−ブテン−1−イル基、3−ブテン−2−イル基、2,2−ジメチルビニル基、1−ペンテン−1−イル基、2−ペンテン−1−イル基、3−ペンテン−1−イル基、3−ペンテン−2−イル基、4−ペンテン−1−イル基、4−ペンテン−2−イル基、4−ペンテン−3−イル基、4−ペンテン−4−イル基、1,2−ジメチル−1−ブテン−1−イル基、1−オクテン−1−イル基、1−デセン−1−イル基、1−ドデセン−1−イル基、1−シクロヘキセン−1−イル基、1−シクロヘキセン−3−イル基、1−シクロオクテン−1−イル基、1−メチル−1−シクロヘキセン−2−イル基、フェニル基、アルファナフチル基、ベータナフチル基、ベータアントリル基、オルトビフェニル基、メタビフェニル基、パラビフェニル基、ベンジル基、1−又は2−フェニルエチル基等の、直鎖、分枝又は環状の脂肪族不飽和炭化水素基、及び、芳香族炭化水素基を例示することが出来る。
 炭素数7以下の置換基としては、前記炭素数6以下の飽和炭化水素基、n−ヘプチル基、前記炭素数12以下の不飽和炭化水素基の内の炭素数が7以下のもの、ベンジル基、メトキシ基、エトキシ基、ブトキシ基、フェノキシ基、ベンジロキシ基、メチルチオ基、フェニルチオ基、メトキシメチル基、メトキシエチル基、ジメチルアミノ基、カルボメトキシ基、カルボエトキシ基、シアノ基、アセチル基、ベンゾイル基、トリメチルシリル基、フッ素原子、塩素原子、臭素原子等を例示することが出来る。
 本発明の一般式(1)
 (S−S−S−S−S−S−AB  (1)
で表される蛍光性糖誘導体化合物において、それを構成するS、S、S、S、S、Sは母体の糖の構造が単糖類の中から選ばれるものであり、S−S−S−S−S−Sはそれら単糖類が互いにグリコシド結合で繋がった糖鎖構造を形成している。このような単糖類は検出標的に応じていかなるものでも用いることが出来、好適なものとして、グルコース、マンノース、ガラクトース、フルクトース、アロース、タロース、プシコース、グロース、イドース、ソルボース等の6炭糖類、リボース、リキソース、キシロース、アピオース等の5炭糖が例示される。単糖類としては、更に、前記6炭糖や前記5炭糖の水酸基を水素に置換したいわゆるデオキシ糖であってもよく、これらデオキシ糖としては、デオキシグルコース、デオキシマンノース、デオキシガラクトース、デオキシアロース、デオキシタロース、デオキシリボース等を例示することが出来る。
 本発明の一態様では、前記一般式(1)によって特定されるS、S、S、S、S、及びSは、グリコシド結合で繋がった直鎖状の構造に限定されず、非還元末端側が分岐した構造であってもよい。分岐した構造としては、例えば、
Figure JPOXMLDOC01-appb-I000005
が挙げられるが、特に限定されない。なお、分岐した構造において、S、S、S、S、及びSのうち1つ以上の糖残基が非還元末端になる場合には、そのような糖残基の定義は、Sについての前記定義に従うものとする。
 前記一般式(1)で表される蛍光性糖誘導体化合物において、Aは、存在しないか、又は、酸素原子を含んでいてもよい炭素数2以上6以下の2価の有機基として定義される。Aの存在又は不存在は検出標的との相互作用や凝集体形成の難易に影響するものと推定される。Aが存在する場合のAとしては、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、1,2−プロピレン基等のアルキレン基、エチレンオキシ基、1,3−プロピレンオキシ基、1,2−プロピレンオキシ基、テトラメチレンオキシ基等の酸素原子を鎖中に含むアルキレンオキシ基等が包含されるが、検出標的との相互作用に適合できる柔軟な構造を持つアルキレンオキシ基が好ましく、溶解性や入手性の面も考慮するとエチレンオキシ基が特に好ましい。
 前記一般式(1)で表される蛍光性糖誘導体化合物において、Bは光照射により蛍光を発する蛍光性化合物からn個の水素原子を除いた残基を表す。n個の水素原子を除く前の母体の蛍光性化合物としては、光化学の研究において従来報告されてきた蛍光性化合物であればいかなるものでもよいが、検出の簡便さの面からは、可視光領域に蛍光を示すものが好ましく、電界発光材料として研究開発されてきた構造を含め、多様な共役分子を用いることが出来、好適なものとして、一般式(2)
Figure JPOXMLDOC01-appb-I000006
(式中、Rは炭素数6以下の飽和炭化水素基又は炭素数12以下の不飽和炭化水素基を示し、炭素数7以下の置換基で置換されていてもよい。)で表される化合物、一般式(3)
Figure JPOXMLDOC01-appb-I000007
(式中、R及びRは炭素数6以下の飽和炭化水素基又は炭素数12以下の不飽和炭化水素基を示し、互いに同じであっても異なっていてもよく、また、炭素数7以下の置換基で置換されていてもよい。)で表される化合物、式(4)
Figure JPOXMLDOC01-appb-I000008
で表される化合物、式(5)
Figure JPOXMLDOC01-appb-I000009
で表される化合物、式(6)
Figure JPOXMLDOC01-appb-I000010
で表される化合物、式(7)
Figure JPOXMLDOC01-appb-I000011
で表される化合物、式(8)
Figure JPOXMLDOC01-appb-I000012
で表される化合物、一般式(9)
Figure JPOXMLDOC01-appb-I000013
(式中、R及びRは炭素数6以下の飽和炭化水素基又は炭素数12以下の不飽和炭化水素基を示し、互いに同じであっても異なっていてもよく、また、炭素数7以下の置換基で置換されていてもよい。)で表される化合物、一般式(10)
Figure JPOXMLDOC01-appb-I000014
(式中、R及びRは炭素数6以下の飽和炭化水素基又は炭素数12以下の不飽和炭化水素基を示し、互いに同じであっても異なっていてもよく、また、炭素数7以下の置換基で置換されていてもよい。)で表される化合物、式(11)
Figure JPOXMLDOC01-appb-I000015
で表される化合物等を例示することが出来る。
 本発明の一般式(1)
 (S−S−S−S−S−S−AB  (1)
で表わされる蛍光性糖誘導体化合物は、周辺に配置した糖鎖が糖結合タンパク質と相互作用若しくは凝集体形成することにより蛍光の挙動を変化させることから、糖結合タンパク質若しくは糖結合タンパク質を含む物質を検出する検出材料として用いることが出来る。本発明に係る糖結合タンパク質若しくは糖結合タンパク質を含む物質の高感度検出は、検出標的が検体に含まれる場合には、一般式(1)の化合物溶液に検体を加えて光を照射することにより発せられる蛍光の強度が変化し、好ましくは、強度が増大することを観測することにより容易に行うことが出来る。検出標的となる糖結合タンパク質若しくは糖結合タンパク質を含む物質は、糖を認識し強く相互作用、結合若しくは凝集体形成するものであれば特に制限はなく、また、タンパク質それ自身でなくとも、組織内に糖を認識できるタンパク質を有するいかなる物質であってもよく、例えば、各種の生体関連物質、細胞、微生物、ウィルス等であってもよい。
 検出に用いる媒体としてはメタノール、エタノール、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、アセトン等の水溶性溶剤と水とを混合した混合溶媒を用いることが出来るが、好ましくは水を用いる。糖結合タンパク質と本発明の検出材料との相互作用や凝集はpHに依存することが多く、検出手段として用いる蛍光もpHの影響を受けやすい。一方、検出の際の溶液のpHは、大気中の炭酸ガスのような外的要因やタンパク質の構造、微生物自身の代謝産物などのような内的要因によっても変化する可能性がある。これらを考慮すると、信頼性ある検出を行うには、緩衝液を使用して溶液のpHを一定に保つことが好ましい。好ましいpHは一般的には検体と検出材料の組み合わせに依存するものであるが、生体関連のタンパク質を扱う関係ではpH7前後を保持できるものであれば問題なく用いることが出来、例えば、トリス緩衝液、トリス塩酸緩衝液、リン酸緩衝液やヘペス緩衝液等を好適に用いることが出来る。
 糖結合タンパク質若しくは糖結合タンパク質を含む物質と本発明の検出材料の相互作用や凝集を促進するために、糖結合タンパク質を活性化する薬剤の存在下に検出操作を実施することも、本発明の有利な態様である。このような薬剤として、各種の無機塩類が用いられ、好適なものとしては、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、マンガン塩等を例示することが出来る。
 光照射に用いる光源は蛍光性糖誘導体化合物の吸収波長近辺の波長の光を放射するものであればいかなるものを用いてもよく、蛍光性糖誘導体化合物の構造に応じて、キセノンランプ、低圧水銀灯、中圧水銀灯、高圧水銀灯等を用いることが出来るが、必要に応じて、キセノンランプからの放射光を分光して用いてもよく、簡便には、クロマトグラフィー作業において検出に用いる紫外線ランプを用いることも出来る。検出は、一般に裸眼による目視でも容易に行えるが、蛍光光度計を用いることにより定量的データを得ることも出来る。
Each group shown in this specification is specifically as follows.
Examples of the saturated hydrocarbon group having 6 or less carbon atoms include n-hexyl group, cyclohexyl group, n-pentyl group, isopentyl group, n-butyl group, sec-butyl group, isobutyl group, n-propyl group, isopropyl group, and ethyl. Examples thereof include linear, branched or cyclic aliphatic saturated hydrocarbon groups such as a group and a methyl group.
Examples of the unsaturated hydrocarbon group having 12 or less carbon atoms include vinyl group, isopropenyl group, 1-propenyl group, allyl group, 1-buten-1-yl group, 2-buten-1-yl group, and 3-butene- 1-yl group, 3-buten-2-yl group, 2,2-dimethylvinyl group, 1-penten-1-yl group, 2-penten-1-yl group, 3-penten-1-yl group, 3 -Penten-2-yl group, 4-penten-1-yl group, 4-penten-2-yl group, 4-penten-3-yl group, 4-penten-4-yl group, 1,2-dimethyl- 1-buten-1-yl group, 1-octen-1-yl group, 1-decene-1-yl group, 1-dodecene-1-yl group, 1-cyclohexen-1-yl group, 1-cyclohexene-3 -Yl group, 1-cycloocten-1-yl group, 1-methyl-1-cyclohe Sen-2-yl group, phenyl group, alpha naphthyl group, beta naphthyl group, beta anthryl group, orthobiphenyl group, metabiphenyl group, parabiphenyl group, benzyl group, 1- or 2-phenylethyl group, etc. Examples thereof include a chain, branched or cyclic aliphatic unsaturated hydrocarbon group, and an aromatic hydrocarbon group.
Examples of the substituent having 7 or less carbon atoms include those having 7 or less carbon atoms in the saturated hydrocarbon group having 6 or less carbon atoms, n-heptyl group, and unsaturated hydrocarbon groups having 12 or less carbon atoms, benzyl group , Methoxy group, ethoxy group, butoxy group, phenoxy group, benzyloxy group, methylthio group, phenylthio group, methoxymethyl group, methoxyethyl group, dimethylamino group, carbomethoxy group, carboethoxy group, cyano group, acetyl group, benzoyl group , Trimethylsilyl group, fluorine atom, chlorine atom, bromine atom and the like.
General formula (1) of the present invention
(S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1)
In the fluorescent sugar derivative compound represented by the formula: S 1 , S 2 , S 3 , S 4 , S 5 , and S 6 constituting the compound are those in which the structure of the parent sugar is selected from monosaccharides, S 1 -S 2 -S 3 -S 4 -S 5 -S 6 form a sugar chain structure in which these monosaccharides are linked to each other by glycosidic bonds. Any monosaccharide can be used depending on the detection target, and preferable examples include glucose, mannose, galactose, fructose, allose, talose, psicose, gulose, idose, sorbose and other 6-carbon sugars and ribose. And pentoses such as lyxose, xylose and apiose. The monosaccharide may further be a so-called deoxy sugar in which the hydroxyl group of the hexose or pentose is substituted with hydrogen. Examples of these deoxy sugars include deoxyglucose, deoxymannose, deoxygalactose, deoxyallose, Examples include deoxytalose and deoxyribose.
In one embodiment of the present invention, S 1 , S 2 , S 3 , S 4 , S 5 , and S 6 specified by the general formula (1) are limited to a linear structure connected by a glycosidic bond. Alternatively, a structure in which the non-reducing terminal side is branched may be used. As a branched structure, for example,
Figure JPOXMLDOC01-appb-I000005
However, it is not particularly limited. In the branched structure, when one or more sugar residues among S 2 , S 3 , S 4 , S 5 , and S 6 are non-reducing terminals, the definition of such sugar residues is , S 1 shall be followed.
In the fluorescent sugar derivative compound represented by the general formula (1), A is defined as a divalent organic group having 2 to 6 carbon atoms which may not exist or may contain an oxygen atom. . The presence or absence of A is presumed to affect the interaction with the detection target and the difficulty of aggregate formation. In the case where A is present, as A, dimethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, 1,2-propylene group and other alkylene groups, ethyleneoxy group, 1,3-propyleneoxy group , 1,2-propyleneoxy group, alkylenemethylene group containing an oxygen atom in the chain, such as a tetramethyleneoxy group, etc. are included, but an alkyleneoxy group having a flexible structure that can be adapted to the interaction with the detection target In view of solubility and availability, an ethyleneoxy group is particularly preferable.
In the fluorescent sugar derivative compound represented by the general formula (1), B represents a residue obtained by removing n hydrogen atoms from a fluorescent compound that emits fluorescence when irradiated with light. The parent fluorescent compound excluding n hydrogen atoms may be any fluorescent compound that has been reported in the past in photochemical research. From the viewpoint of ease of detection, the visible fluorescent region can be used. Those exhibiting fluorescence are preferable, and various conjugated molecules including structures that have been researched and developed as electroluminescent materials can be used.
Figure JPOXMLDOC01-appb-I000006
(Wherein R 1 represents a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be substituted with a substituent having 7 or less carbon atoms). Compound, general formula (3)
Figure JPOXMLDOC01-appb-I000007
(In the formula, R 2 and R 3 represent a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be the same or different from each other. A compound represented by formula (4), which may be substituted with the following substituents:
Figure JPOXMLDOC01-appb-I000008
A compound represented by formula (5):
Figure JPOXMLDOC01-appb-I000009
A compound represented by formula (6):
Figure JPOXMLDOC01-appb-I000010
A compound represented by formula (7):
Figure JPOXMLDOC01-appb-I000011
A compound represented by formula (8):
Figure JPOXMLDOC01-appb-I000012
A compound represented by the general formula (9)
Figure JPOXMLDOC01-appb-I000013
(In the formula, R 4 and R 5 represent a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be the same or different from each other. A compound represented by the following general formula (10):
Figure JPOXMLDOC01-appb-I000014
(In the formula, R 6 and R 7 represent a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be the same or different from each other. A compound represented by formula (11), which may be substituted with the following substituents:
Figure JPOXMLDOC01-appb-I000015
The compound etc. which are represented by these can be illustrated.
General formula (1) of the present invention
(S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1)
In the fluorescent sugar derivative compound represented by the formula, a sugar chain or a substance containing a sugar binding protein is changed because sugar chains arranged in the periphery change the fluorescence behavior by interacting with or forming an aggregate with the sugar binding protein. It can be used as a detection material for detection. In the highly sensitive detection of a sugar-binding protein or a substance containing a sugar-binding protein according to the present invention, when a detection target is contained in a sample, the sample is added to the compound solution of the general formula (1) and irradiated with light. It can be easily performed by observing that the intensity of the emitted fluorescence changes, and preferably the intensity increases. There is no particular limitation on the sugar-binding protein or substance containing a sugar-binding protein that is a detection target as long as it recognizes sugar and strongly interacts, binds or forms an aggregate. Any substance having a protein capable of recognizing a sugar may be used, for example, various biological substances, cells, microorganisms, viruses and the like.
As a medium used for detection, a mixed solvent in which a water-soluble solvent such as methanol, ethanol, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, and acetone is mixed with water can be used, but water is preferably used. Interaction and aggregation between the sugar-binding protein and the detection material of the present invention often depend on pH, and fluorescence used as a detection means is also easily affected by pH. On the other hand, the pH of the solution at the time of detection may change depending on external factors such as atmospheric carbon dioxide, protein structures, and internal factors such as the microorganism's own metabolites. Considering these, in order to perform reliable detection, it is preferable to use a buffer solution to keep the pH of the solution constant. The preferred pH generally depends on the combination of the specimen and the detection material, but can be used without any problem as long as it can maintain a pH of around 7 in relation to handling biologically relevant proteins. For example, Tris buffer Tris-HCl buffer, phosphate buffer, Hepes buffer, and the like can be suitably used.
In order to promote the interaction and aggregation between the sugar-binding protein or the substance containing the sugar-binding protein and the detection material of the present invention, the detection operation may be performed in the presence of an agent that activates the sugar-binding protein. This is an advantageous embodiment. As such agents, various inorganic salts are used, and preferred examples include sodium salts, potassium salts, calcium salts, magnesium salts, manganese salts and the like.
The light source used for light irradiation may be any light source that emits light having a wavelength near the absorption wavelength of the fluorescent sugar derivative compound. Depending on the structure of the fluorescent sugar derivative compound, a xenon lamp, a low-pressure mercury lamp may be used. A medium pressure mercury lamp, a high pressure mercury lamp, etc. can be used, but if necessary, the emitted light from the xenon lamp may be spectrally used. For convenience, an ultraviolet lamp used for detection in the chromatographic operation is used. You can also In general, detection can be easily performed by visual observation with the naked eye, but quantitative data can also be obtained by using a fluorometer.
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
実施例1
 以下の反応式(12)
Figure JPOXMLDOC01-appb-I000016
に従って式(17)
Figure JPOXMLDOC01-appb-I000017
の化合物を合成した。
 磁気攪拌子を備えた10mlフラスコに式(16)の化合物(0.03g、0.017mmol)、ナトリウムメトキシド(0.003g、0.054mmol)、メタノール(2ml)を加え、室温で30分攪拌した。その後陽イオン交換樹脂(DOWEX 50WX8−100)を反応溶液が酸性になるまで加え、ろ過し、溶媒留去し、式(17)の化合物を得た(0.013g、0.012mmol、収率72%)。
 本化合物は文献未収載の新規化合物であり、その性状、分光学データ、分析データは以下の通りであった。黄色固体;融点267.3−268.9℃;H NMR(300MHz,CDOD)δ1.75−1.84(m,4H),2.75−2.88(m,4H),3.51−3.58(m,4H),3.69−3.75(m,12H),3.82−3.86(m,4H),3.95(s,4H),5.40(s,4H),6.82(s,2H),6.92(s,4H),7.46−7.53(m,3H),7.68−7.75(m,2H);13C NMR(75MHz,CDOD)δ23.4,28.8,62.6,68.2,71.8,72.3,75.5,100.3,106.4,112.0,130.3(d,J(P,C)12.4Hz),130.5(d,J(P,C)98.5Hz),130.6(d,J(P,C)98.3Hz),131.9(d,J(P,C)11.0Hz),133.7(d,J(P,C)2.9Hz),135.6(d,J(P,C)11.0Hz),151.9(d,J(P,C)26.1Hz),158.9;31P{H}NMR(162MHz,CDOD)δ46.4;HRMS(FAB、グリセリンマトリックス)C506325PLi([M+Li]に相当)としての計算値;1101.3556,実測値;1101.3533.
参考例1
 上記実施例1において用いた式(16)で示される化合物の原料である式(14)
Figure JPOXMLDOC01-appb-I000018
の化合物を次のようにして合成した。
 磁気攪拌子を備えた50mlフラスコに、式(13)の化合物(0.31g,0.73mmol)、30%過酸化水素水(0.09g,0.80mmol)、THF(30ml)を加え、室温で20分攪拌した。その後溶媒留去し、シルカゲルカラムクロマトグラフィー(酢酸エチル)で単離して、式(14)の化合物を得た(0.22g,0.50mmol、収率69%)。
 黄色固体;融点215.1−219.3℃;H NMR(300MHz,アセトン−d)δ1.71(m,4H),2.61−2.89(m,4H),6.24(s,2H),6.49(s,4H),7.37−7.49(m,3H),7.73−7.79(m,2H),8.59(m,4H);13C NMR(75MHz,アセトン−d)δ22.6,28.0(d,J(P,C)14.7Hz),103.0,107.7(d,J(P,C)5.6Hz),129.3,(d,J(P,C)11.9Hz),130.2(d,J(P,C)93.6Hz),130.5(d,J(P,C)97.3Hz),131.2(d,J(P,C)10.3Hz),132.3(d,J(P,C)2.6Hz),135.0(d,J(P,C)11.3Hz),149.5(d,J(P,C)26.6Hz),159.0;31P{H}NMR(162MHz,アセトン−d)δ44.5;HRMS(FAB)C2624P([M+H]に相当)としての計算値;447.1361,実測値;447.1371.
参考例2
 上記実施例1において原料として用いた式(16)
Figure JPOXMLDOC01-appb-I000019
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた25ml三口フラスコを用意し窒素置換した。これに窒素雰囲気下、塩化メチレン(5ml)、式(14)の化合物(0.076g、0.017mmol)、化合物(15)の化合物(0.42g、0.85mmol)、モレキュラーシーブス4Aを加え、三フッ化ホウ素ジエチルエーテル錯体(0.20g、2.03mmol)を滴下し、室温で20時間攪拌した。その後反応溶液を飽和炭酸水素ナトリウム水溶液の中へ流し込み、有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、有機層を硫酸マグネシウムで乾燥させ、溶媒留去し、シルカゲルカラムクロマトグラフィー(塩化メチレン→ヘキサン/酢酸エチル=1/1→塩化メチレン/アセトン=10/1)で単離して、式(16)の化合物を得た(0.094g、0.053mmol、収率32%)。
 黄色固体;融点123.1−125.9℃;H NMR(300MHz,CDCl)δ1.75(m,4H),1.99−2.01(m,36H),2.16(s,12H),2.72−2.78(m,4H),3.95−3.98(m,8H),4.18−4.24(m,4H),5.27−5.46(m,16H),6.69(s,2H),6.76(s,2H),6.85(s,2H),7.36−7.45(m,3H),7.61−7.67(m,2H);13C NMR(75MHz,CDCl)δ20.6,20.8,22.1,27.4,60.3,61.8,65.5,68.7,69.0,95.5,104.4,111.2,128.6(d,J(P,C)93.7Hz),129.0(d,J(P,C)11.9Hz),130.3(d,J(P,C)97.3Hz),130.5(d,J(P,C)10.4Hz),132.1,135.1(d,J(P,C)11.5Hz),149.3(d,J(P,C)26.2Hz),156.3;31P{H}NMR(162MHz,CDCl)δ42.8;元素分析C829541Pとしての計算値:C,55.72;H,5.42.実測値:C,55.63;H,5.75.
実施例2
 以下の反応式(18)
Figure JPOXMLDOC01-appb-I000020
に従って式(21)
Figure JPOXMLDOC01-appb-I000021
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた10mlフラスコに式(20)の化合物(0.011g、0.006mmol)、ナトリウムメトキシド(0.001g、0.019mmol)、メタノール(2ml)を加え、室温で40分攪拌した。その後陽イオン交換樹脂(DOWEX 50WX8−100)を反応溶液が酸性になるまで加え、ろ過し、溶媒留去し、式(21)の化合物を得た(0.0006g、0.005mmol、収率88%)。
 本化合物は文献未収載の新規化合物であり、その性状、分光学データ、分析データは以下の通りであった。黄色固体;融点230.0−233.5℃;H NMR(300MHz,CDOD)δ1.75−1.83(m,4H),2.89−3.07(m,4H),3.53−3.56(m,4H),3.69−3.77(m,16H),3.87−3.88(m,4H),4.80−4.81(m,4H),6.79−6.82(m,4H),6.87(s,2H),7.43−7.54(m,3H),7.66−7.72(m,2H);13C NMR(75MHz,CDOD)δ23.5,28.9,62.5,70.3,72.1,74.8,77.1,{102.2,102.4},105.6,{111.5,111.9},130.3(d,J(P,C)11.7Hz),130.3(d,J(P,C)98.8Hz),131.3(d,J(P,C)98.8Hz),131.9(d,J(P,C)10.3Hz),133.6,135.3(d,J(P,C)11.6Hz),151.4,160.0;31P{H}NMR(162MHz,CDOD)δ47.2;HRMS(FAB,matrix;glycerol)C506425P([M+H]に相当)としての計算値;1095.3474,実測値;1095.3468.
参考例3
 上記実施例2において原料として用いた式(20)
Figure JPOXMLDOC01-appb-I000022
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた30ml二口フラスコを用意し窒素置換した。これに窒素雰囲気下、塩化メチレン(5ml)、式(14)の化合物(0.15g、0.34mmol)、式(19)の化合物(0.52g、1.34mmol)を加え、SnCl(0.71g、2.72mmol)を滴下し、室温で5日間攪拌した。その後反応溶液を飽和炭酸水素ナトリウム水溶液の中へ流し込み、塩化メチレンで抽出した。有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させ、セライト吸引ろ過し、溶媒留去し、シルカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/3→アセトン/塩化メチレン=1/5)で単離して、式(20)の化合物を得た(0.065g、0.037mmol、収率11%)。
 黄色固体;融点146.8−149.7℃;H NMR(300MHz,CDCl)δ1.84(m,4H),2.00−2.01(m,18H),2.06(m,18H),2.15−2.16(m,12H),2.77(m,4H),3.91−3.93(m,2H),4.01−4.16(m,10H),4.91−4.94(m,2H),5.02−5.13(m,6H),5.36−5.44(m,8H),6.51(s,2H),6.63(s,2H),6.75(s.2H),7.44−7.49(m,3H),7.68−7.75(m,2H);13C NMR(75MHz,CDCl)δ20.5,20.6,20.72,20.74,22.3,27.5(d,J(P,C)13.9Hz),60.8,66.6,68.4,70.7,70.8,98.5,105.2,110.9,129.15,129.2(d,J(P,C)93.0Hz),130.2(d,J(P,C)96.6Hz),130.7(d,J(P,C)10.4Hz),132.2,134.7(d,J(P,C)11.4Hz),149.5(d,J(P,C)23.5Hz),157.4,169.3,170.0,170.1,170.4;31P{H}NMR(162MHz,CDCl)δ42.8;元素分析C829742P・HOとしての計算値:C,55.16;H,5.48.実測値:C,54.92;H,5.43.
実施例3
 以下の反応式(22)
Figure JPOXMLDOC01-appb-I000023
に従って式(25)
Figure JPOXMLDOC01-appb-I000024
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた10mlフラスコに式(24)の化合物(0.025g、0.015mmol)、ナトリウムメトキシド(0.003g、0.05mmol)、メタノール(2ml)、THF(2ml)を加え、室温で60分攪拌した。その後陽イオン交換樹脂(DOWEX 50WX8−100)を反応溶液が酸性になるまで加え、ろ過し、溶媒留去し、式(25)の化合物を得た(0.013g、0.012mmol、収率87%)。
 本化合物は文献未収載の新規化合物であり、その性状、分光学データ、分析データは以下の通りであった。淡黄色固体;融点255.2−258.9℃;H NMR(300MHz,DO)δ3.52−3.58(m,8H),3.67−3.70(m,4H),3.77−3.83(m,4H),3.93−4.00(m,8H),5.34(s,4H),6.61−6.67(m,8H),6.71−6.75(m,8H).;13C NMR(75MHz,DO)δ61.3,67.1,71.1,71.6,74.2,99.2,117.0,133.5,139.0,139.7,155.3;HRMS(FAB,グリセリンマトリックス)C506124([M+H]に相当)としての計算値;1045.3553,実測値;1045.3533.
参考例4
 上記実施例3において原料として用いた式(24)
Figure JPOXMLDOC01-appb-I000025
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた50ml二口フラスコを用意し窒素置換した。これに窒素雰囲気下、蒸留した塩化メチレン(15ml)、式(23)の化合物(0.20g、0.50mmol)、式(15)の化合物(1.21g、2.46mmol)、モレキュラーシーブス4Aを加え、三フッ化ホウ素ジエチルエーテル錯体(0.76ml、6.0mmol)を滴下し、室温で16時間攪拌した。その後反応溶液を飽和炭酸水素ナトリウム水溶液の中へ流し込み、有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、有機層を硫酸ナトリウムで乾燥させ、溶媒留去し、シルカゲルカラムクロマトグラフィー(塩化メチレン/アセトン=20/1)及び分取HPLCで単離して、式(24)の化合物を得た(0.028g、0.016mmol、収率3%)。
 白色固体;融点114.1−118.4℃;H NMR(300MHz,CDCl)δ2.02(m,24H),2.04(s,12H),2.17(s,12H),4.04−4.12(m,8H),4.25−4.31(m,4H),5.31−5.54(m,16H),6.82(d,8H,J=8.7Hz),6.91(d,8H,J=8.7Hz);13C NMR(75MHz,CDCl)δ20.6,20.8,62.0,65.9,68.8,69.1,69.4,95.9,115.9,132.5,138.5,138.8,154.2,169.7,169.86,169.93,170.4;RMS(FAB,2−ニトロベンジルアルコールマトリックス)C829240([M])としての計算値;1716.5165,実測値;1716.5171.
実施例4
 以下の反応式(26)
Figure JPOXMLDOC01-appb-I000026
に従って式(29)
Figure JPOXMLDOC01-appb-I000027
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた10mlフラスコに式(28)の化合物(0.024g、0.011mmol)、ナトリウムメトキシド(0.002g、0.04mmol)、メタノール(2ml)を加え、室温で80分攪拌した。その後陽イオン交換樹脂(DOWEX 50WX8−100)を反応溶液が酸性になるまで加え、ろ過し、溶媒留去し、式(29)の化合物を得た(0.014g、0.009mmol、収率88%)。
 本化合物は文献未収載の新規化合物であり、その性状、分光学データ、分析データは以下の通りであった。淡黄色固体;融点86.6−89.3℃;H NMR(300MHz,CDOD)δ3.59−3.73(m,28H),3.81−3.87(m,20H),4.02−4.05(m,8H),4.81(s,4H),6.68(d,8H,J=8.4Hz),6.89(d,8H,J=8.4Hz);13C NMR(75MHz,CDOD)δ62.9,67.8,68.5,68.6,70.8,71.5,72.1,72.5,74.6,101.8,114.8,133.7,138.3,140.0,158.7;HRMS(FAB,グリセリンマトリックス)C669232([M])としての計算値;1396.5572,実測値;1396.5605.
参考例5
 上記実施例4において用いた式(28)の化合物の原料として用いた式(27)
Figure JPOXMLDOC01-appb-I000028
の化合物を以下のようにして合成した。
 磁気攪拌装置を備えた300ml三口フラスコを用意し窒素置換した。これに窒素雰囲気下、DMF(100ml)、式(23)の化合物(0.40g、1.00mmol)、2−クロロエトキシエタノール(1.25g、10.0mmol)、炭酸カリウム(4.16g、30.1mmol)、ヨウ化カリウム(0.21g、1.27mmol)を加え、100°Cで8時間攪拌した。その後、溶媒留去し、酢酸エチル(100ml)を加え、飽和塩化アンモニウム水溶液、飽和食塩水で洗浄し、有機層を硫酸ナトリウムで乾燥させ、溶媒留去し、シルカゲルカラムクロマトグラフィー(塩化メチレン/アセトン=1/3)で単離して、式(27)の化合物を得た(0.35g、0.47mmol,収率47%)。
 白色固体;融点138.6−140.0℃;H NMR(300MHz,CDCl)δ2.25−2.29(m,4H),3.63−3.66(m,8H),3.72−3.75(m,8H),3.81−3.84(m,8H),4.06−4.87(m,8H),6.65(d,8H,J=8.4Hz),6.91(d,8H,J=8.4Hz);13C NMR(75MHz,CDCl)δ61.8,67.2,69.7,72.6,113.7,132.5,137.1,138.5,156.9;元素分析C425212としての計算値:C,67.36;H,7.00.実測値:C,67.30;H,6.97.
参考例6
 上記実施例4において原料として用いた式(28)
Figure JPOXMLDOC01-appb-I000029
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた50ml二口フラスコを用意し窒素置換した。これに窒素雰囲気下、蒸留した塩化メチレン(15ml)、式(27)の化合物(0.23g、0.30mmol)、式(15)の化合物(0.73g、1.48mmol)、モレキュラーシーブス4Aを加え、三フッ化ホウ素ジエチルエーテル錯体(0.45ml、3.6mmol)を滴下し、室温で20時間攪拌した。その後反応溶液を飽和炭酸水素ナトリウム水溶液の中へ流し込み、有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、有機層を硫酸ナトリウムで乾燥させ、溶媒留去し、シルカゲルカラムクロマトグラフィー(塩化メチレン/アセトン=10/1)で単離して、式(28)の化合物を得た(0.31g、0.15mmol、収率50%)。
 淡黄色固体;融点57.3−62.0℃;H NMR(300MHz,CDCl)δ1.95−1.96(m,24H),2.05(s,12H),2.10(s,12H),3.68−3.78(m,24H),4.02−4.07(m,16H),4.21−4.25(m,4H),4.85(s,4H),5.24−5.31(m,12H),6.60(d,8H,J=7.2Hz),6.85(d,8H,J=7.2Hz);13C NMR(75MHz,CDCl)δ20.5,20.6,20.7,62.3,66.0,67.0,67.2,68.3,68.9,69.4,69.7,70.0,97.6,113.5,132.4,136.9,138.2,156.8,169.6,169.7,169.8,170.4;元素分析C9812448としての計算値:C,56.86;H,6.04.実測値:C,57.15;H,5.96.
実施例5
 以下の反応式(30)
Figure JPOXMLDOC01-appb-I000030
に従って式(36)
Figure JPOXMLDOC01-appb-I000031
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた10mlフラスコに式(35)の化合物(0.041g、0.011mmol)、ナトリウムメトキシド(0.004g、0.07mmol)、メタノール(3ml)を加え、室温で2時間攪拌した。その後陽イオン交換樹脂(DOWEX 50WX8−100)を反応溶液が酸性になるまで加え、ろ過し、溶媒留去し、式(36)の化合物を得た(0.024g、0.0092mmol、収率83%)。
 本化合物は文献未収載の新規化合物であり、その性状、分光学データ、分析データは以下の通りであった。淡黄色固体;融点83.7−87.6℃;H NMR(300MHz,CDOD)δ3.59−3.72(m,72H),3.81−3.93(m,40H),4.82(s,8H),6.28(s,8H),6.37(s,4H);13C NMR(75MHz,CDOD)δ62.9,67.8,68.6,68.7,70.6,71.5,72.1,72.5,74.6,101.8,102.1,111.0,142.3,146.5,160.8.
参考例7
 上記実施例5において原料として用いた式(35)
Figure JPOXMLDOC01-appb-I000032
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた50ml二口フラスコを用意し窒素置換した。これに窒素雰囲気下、蒸留した塩化メチレン(15ml)、式(34)の化合物(0.33g、0.28mmol)、式(15)の化合物(1.43g、2.90mmol)、モレキュラーシーブス4Aを加え、三フッ化ホウ素ジエチルエーテル錯体(0.85ml、6.7mmol)を滴下し、室温で41時間攪拌した。その後反応溶液を飽和炭酸水素ナトリウム水溶液の中へ流し込み、有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、有機層を硫酸ナトリウムで乾燥させ、溶媒留去し、シルカゲルカラムクロマトグラフィー(塩化メチレン/アセトン=5/1)で単離して、式(35)の化合物を得た(0.16g、0.042mmol、収率15%)。
 淡黄色固体;融点59.2−62.9℃;H NMR(300MHz,CDCl)δ1.96(s,24H),2.01(s,24H),2.06(s,24H),2.12(s,24H),3.64−3.73(m,40H),3.78−3.85(m,24H),4.05−4.08(m,16H),4.24−4.29(m,8H),4.85(s,8H),5.25−5.33(m,24H),6.17(s,8H),6.24(s,4H);13C NMR(75MHz,CDCl)δ20.61,20.64,20.7,20.8,62.3,66.0,67.2,67.2,68.3,69.0,69.4,69.6,70.0,97.7,100.6,109.8,140.6,144.8,159.0,169.7,169.8,169.9,170.6;元素分析C17022896としての計算値:C,53.63;H,6.04.実測値:C,53.84;H,5.92.
参考例8
 式(35)の化合物の原料として用いた式(34)
Figure JPOXMLDOC01-appb-I000033
の化合物を以下のようにして合成した。
 磁気攪拌装置を備えた200ml三口フラスコを用意し窒素置換した。これに窒素雰囲気下、DMF(100ml)、式(33)の化合物(0.38g、0.82mmol)、2−クロロエトキシエタノール(2.04g、16.4mmol)、炭酸カリウム(6.83g、49.4mmol)、ヨウ化カリウム(0.33g、2.02mmol)を加え、100℃で13時間攪拌した。その後、溶媒留去し、塩化メチレン(200ml)を加え、飽和塩化アンモニウム水溶液、飽和食塩水で洗浄し、有機層を硫酸ナトリウムで乾燥し、溶媒留去し、シルカゲルカラムクロマトグラフィー(クロロホルム/メタノール=5/1)で単離して、式(34)の化合物を得た(0.42g、0.36mmol、収率44%)。
 淡黄色油状;H NMR(300MHz,CDCl)δ3.17−3.20(m,8H),3.54−3.55(m,16H),3.62−3.71(m,16H),3.84−3.91(m,16H),6.21(s,8H),6.26(s,4H);13C NMR(75MHz,CDCl)δ61.5,67.2,69.2,72.6,100.9,110.0,140.7,144.8,159.0;HRMS(FAB,2−ニトロベンジルアルコールマトリックス)C588524([M+H]に相当)としての計算値;1165.5431,実測値;1165.5413.
参考例9
 式(34)の化合物の原料として用いた式(33)
Figure JPOXMLDOC01-appb-I000034
の化合物を以下のようにして合成した。
 磁気攪拌装置を備えた200ml三口フラスコを用意し窒素置換した。これに窒素雰囲気下、蒸留した塩化メチレン(50ml)、式(32)の化合物(1.25g、2.18mmol)を加え、−50℃で1M三臭化ホウ素ジクロロメタン溶液(34.9ml、34.9mmol)を滴下し、室温で18時間攪拌した。その後反応溶液を氷水(200ml)に流し込み、酢酸エチル(300ml)で抽出し、有機層を飽和塩化アンモニウム水溶液で洗浄し、硫酸マグネシウムで乾燥させ、溶媒留去し、シルカゲルカラムクロマトグラフィー(塩化メチレン/アセトン=1/1)で単離して、式(33)の化合物を得た(0.792g、1.72mmol、収率79%)。
 白色固体;融点<300℃;H NMR(300MHz,アセトン−d)δ6.07(s 8H),6.12(s,4H),8.04(s,8H);13C NMR(75MHz,アセトン−d)δ101.7,110.0,140.5,146.6,158.3.;HRMS(FAB、2−ニトロベンジルアルコールマトリックス)C2621(M+H]に相当)としての計算値;461.1236,実測値;461.1230.
参考例10
 式(33)の化合物の原料として用いた式(32)
Figure JPOXMLDOC01-appb-I000035
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた300ml三口フラスコを用意し窒素置換した。これに窒素雰囲気下、亜鉛粉末(4.47g、68.3mmol)、脱水THF(100ml)を加え、−10℃で塩化チタン(IV)(6.48g、34.2mmol)を滴下し、ゆっくり室温に戻した後、70℃で2時間攪拌した。その後0℃で、脱水THF(50ml)に溶解させた式(31)の化合物(3.57g、11.8mmol)を加え、70℃で5時間攪拌した。その後室温に戻し、10%KCO水溶液(100ml)を加え、塩化メチレン(200ml)で抽出し、有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し、溶媒留去し、シルカゲルカラムクロマトグラフィー(塩化メチレン/ヘキサン=2/1)で単離して、式(32)の化合物を得た(1.45g、2.53mmol、収率43%)。
 白色固体;融点210.0−210.8℃;H NMR(300MHz,CDCl)δ3.65(s,24H),6.21−6.25(m,12H);13C NMR(75MHz,CDCl)δ55.3,99.4,109.0,140.9,145.0,160.0;HRMS(FAB,2−ニトロベンジルアルコールマトリックス)C3436([M]);572.2410,実測値;572.2407;元素分析C3436としての計算値:C,71.31;H,6.34.実測値:C,71.20;H,6.04.
実施例6
 前記実施例1で合成したマンノースで修飾した式(17)の化合物を検出剤として用いて、糖結合タンパク質の検出を行った。10mMのトリス塩酸緩衝液(pH7.6)に1mg/1mlの濃度になるようにCaClを加え、さらに、1mg/1mlの濃度になるようにMnClを加えた溶液(以下、この溶液を塩含有緩衝液という。)を予め調製し、この溶液を式(17)の化合物(1.05mg)に体積が10mlになるように加えたストックソリューションを用意した。このストックソリューション1mlに、コンカナバリンA(以下ConAと略記する。)を、0mg、0.1mg、0.3mg、0.5mg、1.0mg、2.1mg、4.2mg、8.3mg加え、塩含有緩衝液を足して計5mlとした試験液を調製した。これらの試験液を調製後10分間攪拌した後、それぞれ蛍光スペクトルを測定した。なお、試験液中の化合物(17)の濃度は19μM、ConAの濃度はそれぞれ、0μM、0.2μM、0.6μM、1.0μM、2.0μM、4.0μM、8.0μM、16.0μMとなる。測定は日立製作所製蛍光光度計を用い、キセノンランプを用いて波長370nmの光で励起し、蛍光スペクトルを室温で測定した。図1、及び図2の○印のデータが示すように、蛍光性糖誘導体化合物が式(17)の化合物の場合には、500nm付近の蛍光がConAの濃度増加と共に著しく強くなることが分かった。
実施例7
 式(17)の化合物に代えてガラクトースで修飾した式(21)の化合物を検出剤として用い、その試験液中の濃度を19μMではなく22μMとした以外は実施例6と同様の操作を行い、糖結合タンパク質の検出実験を行った。図2の×印が示すように、ConAの濃度によらず500nm付近に蛍光を示さなかった。実施例6の結果と合わせ考えると、ConAは式(17)の化合物では検出されるが、式(21)の化合物では検出されず、蛍光性糖誘導体化合物の構造によって選択性が異なることが分かった。
実施例8
 式(17)の化合物を検出剤として用い、実施例6と同様の操作を行い、検出剤溶液を調製した。ただし、ConAも加えた後の試験液中の式(17)の化合物の濃度が19μMではなく17.8μMとなるように調整した。この溶液を蛍光光度計に装着し、添加後のConA濃度が8μMとなるようにConAを添加し、直ちに蛍光の測定を行った。図3のデータが示すように、添加後の500nmの蛍光の強度は急速に増大し、数秒以内に飽和の値に達した。操作に必要なタイムラグを考慮すると、強度の増大は実質的には瞬間的とも考えられ、ConAを極めて迅速に検出できることを示している。
実施例9
 ガラクトースで修飾した式(21)の化合物を検出剤として用い、糖結合タンパク質の検出を行った。10mMリン酸緩衝液(pH7.4)中に化合物(21)を加え検出剤溶液として調製した。ここに、室温で、ピーナツ凝集素(以下PNAと略記する)を加え試験液を調製した。その際、該試験液中の化合物(21)の濃度が20μMとなるように調製した。さらに、加えるPNAの量を変えてPNA濃度の異なる試験液も調製した。これらについても該試験液中の式(21)の化合物の濃度が20μMとなるように調製した。各試験液について、PNA溶液を添加後10分間攪拌した後、実施例6と同様に蛍光スペクトルを室温で測定した。図4、及び図5の○印のデータが示すように、蛍光性糖誘導体化合物が式(21)の化合物の場合には、500nm付近の蛍光がPNAの濃度増加と共に強くなることが分かった。
実施例10
 式(21)の化合物に代えて式(17)の化合物を検出剤として用い、実施例6と同様の操作で試験液を調製し蛍光を測定した。図5の×印のデータが示すように、PNAの濃度を増しても500nm付近の蛍光の強度は殆ど増大しなかった。実施例9の結果と合わせ考えると、PNAは化合物(21)では検出されるが、式(17)の化合物では実質的には検出されないことが分かった。
実施例11
 式(25)の化合物を検出剤として用い、実施例6と同様の方法でConAの検出実験を行った。但し、実施例6の場合とは異なり、試験液中の検出剤の濃度は7.2μMとなるように調整し、励起波長は320nmとした。図6及び図7が示すように、検出剤が式(25)の化合物の場合にも、460nm付近の蛍光がConAの濃度増加と共に著しく強くなることが分かった。
実施例12
 式(25)の化合物に代えて式(29)の化合物を検出剤として用い、実施例6と同様の方法でConAの検出実験を行った。但し、実施例11の場合とは異なり、試験液中の検出剤の濃度は7.1μMとなるように調整した。図8及び図9が示すように、検出剤が2ユニットのエチレンオキシ基をリンカーとして含む化合物(29)の場合にも、470nm付近の蛍光がConAの濃度増加と共に著しく強くなることが分かった。
実施例13
 式(29)の化合物に代えて式(36)の化合物を検出剤として用い、実施例12と同様の方法でConAの検出実験を行った。但し、実施例11の場合とは異なり、試験液中の検出剤の濃度は7.3μMとなるように調整し、励起波長は300nmとした。図10及び図11が示すように、2ユニットのエチレンオキシ基をリンカーとして介し8個の糖残基を含む式(36)の化合物の場合にも、450nm付近の蛍光がConAの濃度増加と共に著しく強くなることが分かった。実施例12の結果と合わせ考えると、ConAの濃度増加に対する蛍光強度の増大は式(29)の化合物の場合より急峻であり、より高感度であることが分かった。
実施例14
 以下の反応式(37)
Figure JPOXMLDOC01-appb-I000036
に従って式(40)
Figure JPOXMLDOC01-appb-I000037
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた10mlフラスコに式(39)の化合物(0.033g、0.027mmol)、ナトリウムメトキシド(0.002g、0.044mmol)、メタノール(2ml)を加え、室温で40分攪拌した。その後陽イオン交換樹脂(DOWEX 50WX8−100)を反応溶液が酸性になるまで加え、ろ過し、溶媒留去し、式(40)の化合物を得た(0.019g、0.022mmol、収率83%)。
 本化合物は文献未収載の新規化合物であり、その性状、分光学データ、分析データは以下の通りであった。白色固体;融点111.2−115.9℃;H NMR(300MHz,CDOD)δ3.60−3.81(m,24H),3.96−4.06(m,4H),4.77−4.83(m,2H),6.64−6.71(m,4H),6.86−7.08(m,14H);13C NMR(75MHz,CDOD)δ62.9,67.8,68.4,68.5,70.8,71.5,72.1,72.5,74.6,101.8,114.8,{127.3,127.4},{128.6,128.7},132.4,133.6,{137.8,137.9},141.2,{145.5,145.6},158.7;HRMS(FAB,グリセリンマトリックス)C465616Na([M+Na]に相当)としての計算値;887.3466,実測値;887.3470.
参考例11
 上記実施例14において原料として用いた式(39)
Figure JPOXMLDOC01-appb-I000038
の化合物を以下のようにして合成した。
 磁気攪拌装置を備えた50ml二口フラスコを用意し窒素置換した。これに窒素雰囲気下、DMF(10ml)、式(38)の化合物(0.19g、0.51mmol)、式(38)の化合物(0.56g、1.12mmol)、炭酸カリウム(0.18g、1.31mmol)、18−クラウン−6(0.007g、0.025mmol)を加え、80℃で17時間攪拌した。その後、塩化メチレン(100ml)を加え、水、飽和食塩水で洗浄し、有機層を硫酸ナトリウムで乾燥させ、溶媒留去し、シルカゲルカラムクロマトグラフィー(塩化メチレン/アセトン=20/1)及び分取HPLCで単離して、式(39)の化合物を得た(0.050g、0.042mmol、収率8%)。
 白色固体;融点64.2−68.7℃;H NMR(300MHz,CDCl)δ1.96−2.00(m,12H),2.06−2.09(m,6H),2.11−2.14(m,6H),3.68−3.74(m,6H),3.77−3.83(m,6H),4.00−4.10(m,8H),4.23−4.30(m,2H),4.87−4.90(m,2H),5.24−5.38(m,6H),6.61−6.67(m,4H),6.87−6.93(m,4H),6.97−7.10(m,10H);13C NMR(75MHz,CDCl)δ20.6,20.6,20.7,20.8,62.3,66.0,67.1,67.3,68.3,69.0,69.5,69.8,70.1,97.7,{113.5,113.6},126.1,{127.5,127.6},131.3,132.4,136.5,139.5,144.1,157.0,169.7,169.8,169.9,170.5;HRMS(FAB,2−ニトロベンジルアルコールマトリックス)C627224([M])としての計算値;1200.4414,実測値;1200.4443.
実施例15
 式(40)の化合物は導入した糖の数が少ないため、水溶性が低い。このため、式(40)の化合物(0.444mg)にメタノール(1ml)を加えて溶解し、実施例6で調製した塩含有緩衝液を加えて合計5mlとしたストックソリューションを用意した。該ストックソリューション1mlを取り、塩含有緩衝液を加えて合計5mlとした試験液[(式(40)の化合物の濃度=20.6μM]と、ストックソリューション1mlにConA(3.94mg)及び塩含有緩衝液を加えて合計5mlとし10分間攪拌した試験液[式(40)の化合物の濃度=20.6μM、ConAの濃度=7.9μM]を調整し、それぞれ蛍光スペクトルを測定した。図12が示すように、糖の導入量が低い式(40)の化合物であっても、ConAを加えた試験液は、式(40)の化合物のみを含む試験液と比較すると2.8倍ほどの蛍光強度の増加を示した。
実施例16
 実施例6で調製した塩含有緩衝液に式(17)の化合物のみを溶解した試験液を、式(17)の化合物の濃度が19μMになるように調製した。別に、実施例6で調製した塩含有緩衝液に式(17)の化合物を溶解し、更にConAを加えて、式(17)の化合物の濃度が19μM、ConAの濃度が8μMになるようにし、10分間攪拌した試験液を調製した。暗室にて、それぞれの試料をハンディUVランプ(アズワン株式会社製、9.0W、15A、FL:8W×1)に乗せ、365nmの紫外光を照射した。その状態で撮影した写真を図13に示した。図13の左のセルには式(17)の化合物のみを含む試験液が、右のセルには式(17)の化合物とConAの両者を含む試験液が入れてある。対照実験であるConAを含まない左のセルの試験液からの蛍光は弱く実質的には観察されないが、ConAを加えた右のセルの試験液は裸眼での目視で明確に確認できる強い蛍光を発しており、ConAを極めて簡便かつ高感度に検出出来ることが分かった。
実施例17
 以下の合成経路
Figure JPOXMLDOC01-appb-I000039
に従って式(43)
Figure JPOXMLDOC01-appb-I000040
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた10mLフラスコに式(42)の化合物(14mg、4.3μmol)、ナトリウムメトキシド(1.4mg、26μmol)、メタノール(2mL)、テトラヒドロフラン(1mL)を加え、室温で2時間攪拌した。その後陽イオン交換樹脂(DOWEX 50WX8−100)を反応溶液が酸性になるまで加え、ろ過し、溶媒留去し、式(43)の化合物を得た(7.1mg、3.5μmol、収率81%)。
 式(43)の化合物:淡黄色固体;融点170.1−173.5℃;H NMR(300MHz,DO)δ3.26−3.36(m,8H),3.49−3.86(m,76H),4.36−4.39(m,4H),6.43−6.51(m,8H),6.72−6.81(m,8H);13C NMR(75MHz,DO)δ61.5,62.0,67.9,69.6,70.0,70.8,72.0,72.9,73.6,73.9,75.4,75.8,76.4,79.5,103.3,104.0,114.9,133.4,138.0,139.6,157.6;MALDI−TOFMS(マトリックス:2−ニトロベンジルアルコールマトリックス)C9013252Na([M+Na]に相当)としての計算値;2067.76;実測値;2067.71.
参考例12
 上記実施例17において原料として用いた式(42)
Figure JPOXMLDOC01-appb-I000041
の化合物を以下のようにして合成した。
 磁気攪拌子を備えた50mL二口フラスコを用意し窒素置換した。窒素雰囲気下これに、乾燥塩化メチレン(15mL)、参考例5で合成された式(27)の化合物(55mg、74μmol)、式(41)の化合物(0.46g、0.59mmol)、及びモレキュラーシーブス(4A)を加え、0℃で三フッ化ホウ素ジエチルエーテル錯体(0.47mL、3.7mmol)を滴下し、室温で4日間攪拌した。その後反応溶液を飽和炭酸水素ナトリウム水溶液の中へ流し込み、有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、有機層を硫酸ナトリウムで乾燥させ、溶媒留去した。その後シルカゲルカラムクロマトグラフィー(塩化メチレン/アセトン=5/1)及び分取HPLCで単離して、式(42)の化合物を得た(14mg、4.3μmol、収率6%)。
 式(42)の化合物:淡黄色固体;融点96.5−99.7℃;H NMR(300MHz,CDCl)δ1.96(s,12H),2.00(s,12H),2.04(s,24H),2.11(s,12H),2.14(s,12H),3.58−4.16(m,56H),4.46−4.56(m,12H),4.87−4.97(m,8H),5.07−5.22(m,8H),5.34−5.36(m,4H),6.62(d,8H,J=8.2Hz),6.89(d,8H,J=8.2Hz);13C NMR(75MHz,CDCl)δ20.5,20.6,20.7,20.8,20.9,60.8,62.0,66.6,67.1,69.1,69.2,69.9,70.3,70.6,71.0,71.6,72.6,72.8,76.2,100.6,101.1,113.6,132.5,137.0,138.4,156.9,169.1,169.7,169.8,170.0,170.1,170.34,170.35;MALDI−TOFMS(マトリックス:2−ニトロペンジルアルコールマトリックス)C14618980([M+H]に相当)としての計算値;3222.07;実測値;3222.43.
実施例18
 式(43)の化合物を用い、レクチンとしてRCA120の検出実験を行った。
 緩衝液(10mMリン酸緩衝液、pH7.4)中、6.7μMの式(43)の化合物に、0.0μM,0.5μM,1.0μM、2.0μM、3.0μM及び5.0μMのRCA120を加え、10分間攪拌しサンプル調製を行った。図14が示すように蛍光スペクトルでは、RCA120の濃度増加に伴い式(43)の化合物の400nm付近の発光強度が増加した。図15に示すように、RCA120の濃度が1.0μM、2.0μM及び3.0μMで発光強度がそれぞれ1.5、1.8及び2.7倍に増加し、数μMレベルでRCA120の検出が可能であった。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
Example 1
The following reaction formula (12)
Figure JPOXMLDOC01-appb-I000016
According to formula (17)
Figure JPOXMLDOC01-appb-I000017
This compound was synthesized.
Add a compound of formula (16) (0.03 g, 0.017 mmol), sodium methoxide (0.003 g, 0.054 mmol), and methanol (2 ml) to a 10 ml flask equipped with a magnetic stir bar, and stir at room temperature for 30 minutes. did. Thereafter, a cation exchange resin (DOWEX 50WX8-100) was added until the reaction solution became acidic, filtered, and the solvent was distilled off to obtain a compound of the formula (17) (0.013 g, 0.012 mmol, yield 72). %).
This compound is a new compound not yet published in the literature, and its properties, spectroscopic data, and analytical data were as follows. Yellow solid; mp 267.3-268.9 ° C .;1H NMR (300 MHz, CD3OD) δ 1.75-1.84 (m, 4H), 2.75-2.88 (m, 4H), 3.51-3.58 (m, 4H), 3.69-3.75 (m) , 12H), 3.82-3.86 (m, 4H), 3.95 (s, 4H), 5.40 (s, 4H), 6.82 (s, 2H), 6.92 (s, 4H), 7.46-7.53 (m, 3H), 7.68-7.75 (m, 2H);13C NMR (75 MHz, CD3OD) δ 23.4, 28.8, 62.6, 68.2, 71.8, 72.3, 75.5, 100.3, 106.4, 112.0, 130.3 (d,3J (P, C) 12.4 Hz), 130.5 (d,1J (P, C) 98.5 Hz), 130.6 (d,1J (P, C) 98.3 Hz), 131.9 (d,2J (P, C) 11.0 Hz), 133.7 (d,4J (P, C) 2.9 Hz), 135.6 (d,2J (P, C) 11.0 Hz), 151.9 (d,2J (P, C) 26.1 Hz), 158.9;31P {1H} NMR (162 MHz, CD3OD) δ 46.4; HRMS (FAB, glycerin matrix) C50H63O25PLi ([M + Li]+Calculated value as 1101.3556, measured value; 1101.3533.
Reference example 1
Formula (14) which is a raw material of the compound represented by Formula (16) used in Example 1 above
Figure JPOXMLDOC01-appb-I000018
This compound was synthesized as follows.
To a 50 ml flask equipped with a magnetic stir bar, a compound of formula (13) (0.31 g, 0.73 mmol), 30% aqueous hydrogen peroxide (0.09 g, 0.80 mmol) and THF (30 ml) were added, For 20 minutes. Thereafter, the solvent was distilled off and the residue was isolated by silica gel column chromatography (ethyl acetate) to obtain a compound of the formula (14) (0.22 g, 0.50 mmol, yield 69%).
Yellow solid; mp 215.1-219.3 ° C .;11 H NMR (300 MHz, acetone-d6) 1.71 (m, 4H), 2.61-2.89 (m, 4H), 6.24 (s, 2H), 6.49 (s, 4H), 7.37-7.49 (m) , 3H), 7.73-7.79 (m, 2H), 8.59 (m, 4H);13C NMR (75 MHz, acetone-d6) Δ 22.6, 28.0 (d,3J (P, C) 14.7 Hz), 103.0, 107.7 (d,3J (P, C) 5.6 Hz), 129.3, (d,3J (P, C) 11.9 Hz), 130.2 (d,1J (P, C) 93.6 Hz), 130.5 (d,1J (P, C) 97.3 Hz), 131.2 (d,2J (P, C) 10.3 Hz), 132.3 (d,4J (P, C) 2.6 Hz), 135.0 (d,2J (P, C) 11.3 Hz), 149.5 (d,2J (P, C) 26.6 Hz), 159.0;31P {1H} NMR (162 MHz, acetone-d6) 44.5; HRMS (FAB) C26H24O5P ([M + H]+Calculated value as 447.1361, measured value: 447.1371.
Reference example 2
Formula (16) used as a raw material in Example 1 above
Figure JPOXMLDOC01-appb-I000019
This compound was synthesized as follows.
A 25 ml three-necked flask equipped with a magnetic stirring bar was prepared and purged with nitrogen. Under a nitrogen atmosphere, methylene chloride (5 ml), the compound of formula (14) (0.076 g, 0.017 mmol), the compound of compound (15) (0.42 g, 0.85 mmol), and molecular sieves 4A were added, Boron trifluoride diethyl ether complex (0.20 g, 2.03 mmol) was added dropwise and stirred at room temperature for 20 hours. Thereafter, the reaction solution is poured into a saturated aqueous solution of sodium bicarbonate, the organic layer is washed with a saturated aqueous solution of sodium bicarbonate, water and saturated saline, the organic layer is dried over magnesium sulfate, the solvent is distilled off, and the silica gel column chromatography is performed. (Methylene chloride → hexane / ethyl acetate = 1/1 → methylene chloride / acetone = 10/1) to obtain a compound of the formula (16) (0.094 g, 0.053 mmol, yield 32%) ).
Yellow solid; melting point 123.1-125.9 ° C .;1H NMR (300 MHz, CDCl3) Δ 1.75 (m, 4H), 1.99-2.01 (m, 36H), 2.16 (s, 12H), 2.72-2.78 (m, 4H), 3.95-3 .98 (m, 8H), 4.18-4.24 (m, 4H), 5.27-5.46 (m, 16H), 6.69 (s, 2H), 6.76 (s, 2H) ), 6.85 (s, 2H), 7.36-7.45 (m, 3H), 7.61-7.67 (m, 2H);13C NMR (75 MHz, CDCl3) Δ 20.6, 20.8, 22.1, 27.4, 60.3, 61.8, 65.5, 68.7, 69.0, 95.5, 104.4, 111.2, 128 .6 (d,1J (P, C) 93.7 Hz), 129.0 (d,3J (P, C) 11.9 Hz), 130.3 (d,1J (P, C) 97.3 Hz), 130.5 (d,2J (P, C) 10.4 Hz), 132.1, 135.1 (d,2J (P, C) 11.5 Hz), 149.3 (d,2J (P, C) 26.2 Hz), 156.3;31P {1H} NMR (162 MHz, CDCl3) Δ 42.8; Elemental analysis C82H95O41Calculated as P: C, 55.72; H, 5.42. Found: C, 55.63; H, 5.75.
Example 2
The following reaction formula (18)
Figure JPOXMLDOC01-appb-I000020
According to formula (21)
Figure JPOXMLDOC01-appb-I000021
This compound was synthesized as follows.
Add a compound of formula (20) (0.011 g, 0.006 mmol), sodium methoxide (0.001 g, 0.019 mmol), and methanol (2 ml) to a 10 ml flask equipped with a magnetic stir bar, and stir at room temperature for 40 minutes. did. Thereafter, a cation exchange resin (DOWEX 50WX8-100) was added until the reaction solution became acidic, filtered, and the solvent was distilled off to obtain a compound of formula (21) (0.0006 g, 0.005 mmol, yield 88). %).
This compound is a novel compound not yet published in the literature, and its properties, spectroscopic data, and analytical data were as follows. Yellow solid; mp 230.0-233.5 ° C;1H NMR (300 MHz, CD3OD) δ 1.75-1.83 (m, 4H), 2.89-3.07 (m, 4H), 3.53-3.56 (m, 4H), 3.69-3.77 (m) , 16H), 3.87-3.88 (m, 4H), 4.80-4.81 (m, 4H), 6.79-6.82 (m, 4H), 6.87 (s, 2H) ), 7.43-7.54 (m, 3H), 7.66-7.72 (m, 2H);13C NMR (75 MHz, CD3OD) δ 23.5, 28.9, 62.5, 70.3, 72.1, 74.8, 77.1, {102.2, 102.4}, 105.6, {111.5, 111 .9}, 130.3 (d,3J (P, C) 11.7 Hz), 130.3 (d,1J (P, C) 98.8 Hz), 131.3 (d,1J (P, C) 98.8 Hz), 131.9 (d,2J (P, C) 10.3 Hz), 133.6, 135.3 (d,2J (P, C) 11.6 Hz), 151.4, 160.0;31P {1H} NMR (162 MHz, CD3OD) δ 47.2; HRMS (FAB, matrix; glycerol) C50H64O25P ([M + H]+Calculated value as 109.53474, measured value; 10953468.
Reference example 3
Formula (20) used as a raw material in Example 2 above
Figure JPOXMLDOC01-appb-I000022
This compound was synthesized as follows.
A 30 ml two-necked flask equipped with a magnetic stirring bar was prepared and purged with nitrogen. Under a nitrogen atmosphere, methylene chloride (5 ml), the compound of formula (14) (0.15 g, 0.34 mmol), the compound of formula (19) (0.52 g, 1.34 mmol) were added, and SnCl 2 was added.4(0.71 g, 2.72 mmol) was added dropwise and stirred at room temperature for 5 days. Thereafter, the reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution and extracted with methylene chloride. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution, water and saturated brine, dried over sodium sulfate, suction filtered through celite, evaporated, and silica gel column chromatography (hexane / ethyl acetate = 1/3 → acetone). / Methylene chloride = 1/5) to give a compound of formula (20) (0.065 g, 0.037 mmol, 11% yield).
Yellow solid; melting point 146.8-149.7 ° C .;1H NMR (300 MHz, CDCl3) Δ 1.84 (m, 4H), 2.00-2.01 (m, 18H), 2.06 (m, 18H), 2.15-2.16 (m, 12H), 2.77 (m) , 4H), 3.91-3.93 (m, 2H), 4.01-4.16 (m, 10H), 4.91-4.94 (m, 2H), 5.02-5.13. (M, 6H), 5.36-5.44 (m, 8H), 6.51 (s, 2H), 6.63 (s, 2H), 6.75 (s. 2H), 7.44- 7.49 (m, 3H), 7.68-7.75 (m, 2H);13C NMR (75 MHz, CDCl3) Δ 20.5, 20.6, 20.72, 20.74, 22.3, 27.5 (d,3J (P, C) 13.9 Hz), 60.8, 66.6, 68.4, 70.7, 70.8, 98.5, 105.2, 110.9, 129.15, 129.2. (D,1J (P, C) 93.0 Hz), 130.2 (d,1J (P, C) 96.6 Hz), 130.7 (d,2J (P, C) 10.4 Hz), 132.2, 134.7 (d,2J (P, C) 11.4 Hz), 149.5 (d,2J (P, C) 23.5 Hz), 157.4, 169.3, 170.0, 170.1, 170.4;31P {1H} NMR (162 MHz, CDCl3) Δ 42.8; Elemental analysis C82H97O42PH2Calculated as O: C, 55.16; H, 5.48. Found: C, 54.92; H, 5.43.
Example 3
The following reaction formula (22)
Figure JPOXMLDOC01-appb-I000023
According to formula (25)
Figure JPOXMLDOC01-appb-I000024
This compound was synthesized as follows.
To a 10 ml flask equipped with a magnetic stir bar was added the compound of formula (24) (0.025 g, 0.015 mmol), sodium methoxide (0.003 g, 0.05 mmol), methanol (2 ml), THF (2 ml), Stir at room temperature for 60 minutes. Thereafter, a cation exchange resin (DOWEX 50WX8-100) was added until the reaction solution became acidic, filtered, and the solvent was distilled off to obtain a compound of the formula (25) (0.013 g, 0.012 mmol, yield 87). %).
This compound is a novel compound not yet published in the literature, and its properties, spectroscopic data, and analytical data were as follows. Pale yellow solid; mp 255.2-258.9 ° C .;1H NMR (300 MHz, D2O) δ 3.52-3.58 (m, 8H), 3.67-3.70 (m, 4H), 3.77-3.83 (m, 4H), 3.93-4.00 (m , 8H), 5.34 (s, 4H), 6.61-6.67 (m, 8H), 6.71-6.75 (m, 8H). ;13C NMR (75 MHz, D2O) δ 61.3, 67.1, 71.1, 71.6, 74.2, 99.2, 117.0, 133.5, 139.0, 139.7, 155.3; HRMS (FAB, Glycerin matrix) C50H61O24([M + H]+Equivalent value); 1045.3553, measured value; 1045.3533.
Reference example 4
Formula (24) used as raw material in Example 3 above
Figure JPOXMLDOC01-appb-I000025
This compound was synthesized as follows.
A 50 ml two-necked flask equipped with a magnetic stirring bar was prepared and purged with nitrogen. To this were distilled methylene chloride (15 ml), a compound of formula (23) (0.20 g, 0.50 mmol), a compound of formula (15) (1.21 g, 2.46 mmol), and molecular sieves 4A in a nitrogen atmosphere. In addition, boron trifluoride diethyl ether complex (0.76 ml, 6.0 mmol) was added dropwise, and the mixture was stirred at room temperature for 16 hours. Thereafter, the reaction solution is poured into a saturated aqueous solution of sodium bicarbonate, the organic layer is washed with a saturated aqueous solution of sodium bicarbonate, water and saturated saline, the organic layer is dried over sodium sulfate, the solvent is distilled off, and the silica gel column chromatography is performed. Isolation by chromatography (methylene chloride / acetone = 20/1) and preparative HPLC gave the compound of formula (24) (0.028 g, 0.016 mmol, 3% yield).
White solid; melting point 114.1-118.4 ° C .;1H NMR (300 MHz, CDCl3) 2.02 (m, 24H), 2.04 (s, 12H), 2.17 (s, 12H), 4.04-4.12 (m, 8H), 4.25-4.31 (m) 4H), 5.31-5.54 (m, 16H), 6.82 (d, 8H, J = 8.7 Hz), 6.91 (d, 8H, J = 8.7 Hz);13C NMR (75 MHz, CDCl3) Δ20.6, 20.8, 62.0, 65.9, 68.8, 69.1, 69.4, 95.9, 115.9, 132.5, 138.5, 138.8, 154 2, 169.7, 169.86, 169.93, 170.4; RMS (FAB, 2-nitrobenzyl alcohol matrix) C82H92O40([M]+); Calculated value as 1716.5165, actually measured value; 1716.5171.
Example 4
The following reaction formula (26)
Figure JPOXMLDOC01-appb-I000026
According to formula (29)
Figure JPOXMLDOC01-appb-I000027
This compound was synthesized as follows.
Add a compound of formula (28) (0.024 g, 0.011 mmol), sodium methoxide (0.002 g, 0.04 mmol), and methanol (2 ml) to a 10 ml flask equipped with a magnetic stir bar, and stir at room temperature for 80 minutes. did. Thereafter, a cation exchange resin (DOWEX 50WX8-100) was added until the reaction solution became acidic, filtered, and the solvent was distilled off to obtain a compound of the formula (29) (0.014 g, 0.009 mmol, yield 88). %).
This compound is a novel compound not yet published in the literature, and its properties, spectroscopic data, and analytical data were as follows. Pale yellow solid; mp 86.6-89.3 ° C .;1H NMR (300 MHz, CD3OD) [delta] 3.59-3.73 (m, 28H), 3.81-3.87 (m, 20H), 4.02-4.05 (m, 8H), 4.81 (s, 4H), 6.68 (d, 8H, J = 8.4 Hz), 6.89 (d, 8H, J = 8.4 Hz);13C NMR (75 MHz, CD3OD) δ 62.9, 67.8, 68.5, 68.6, 70.8, 71.5, 72.1, 72.5, 74.6, 101.8, 114.8, 133.7, 138.3, 140.0, 158.7; HRMS (FAB, glycerin matrix) C66H92O32([M]+) Calculated value as); 1396.5572, actually measured value: 1396.5605.
Reference Example 5
Formula (27) used as a raw material for the compound of Formula (28) used in Example 4 above
Figure JPOXMLDOC01-appb-I000028
This compound was synthesized as follows.
A 300 ml three-necked flask equipped with a magnetic stirrer was prepared and purged with nitrogen. Under nitrogen atmosphere, DMF (100 ml), compound of formula (23) (0.40 g, 1.00 mmol), 2-chloroethoxyethanol (1.25 g, 10.0 mmol), potassium carbonate (4.16 g, 30 0.1 mmol) and potassium iodide (0.21 g, 1.27 mmol) were added, and the mixture was stirred at 100 ° C. for 8 hours. Thereafter, the solvent was distilled off, ethyl acetate (100 ml) was added, and the mixture was washed with a saturated aqueous ammonium chloride solution and saturated brine. The organic layer was dried over sodium sulfate, the solvent was distilled off, and silica gel column chromatography (methylene chloride / Acetone = 1/3) to give a compound of formula (27) (0.35 g, 0.47 mmol, 47% yield).
White solid; melting point 138.6-140.0 ° C .;1H NMR (300 MHz, CDCl3) Δ 2.5-2.29 (m, 4H), 3.63-3.66 (m, 8H), 3.72-3.75 (m, 8H), 3.81-3.84 (m, 8H), 4.06-4.87 (m, 8H), 6.65 (d, 8H, J = 8.4 Hz), 6.91 (d, 8H, J = 8.4 Hz);13C NMR (75 MHz, CDCl3) 61.8, 67.2, 69.7, 72.6, 113.7, 132.5, 137.1, 138.5, 156.9; Elemental analysis C42H52O12Calculated as: C, 67.36; H, 7.00. Found: C, 67.30; H, 6.97.
Reference Example 6
Formula (28) used as a raw material in Example 4 above
Figure JPOXMLDOC01-appb-I000029
This compound was synthesized as follows.
A 50 ml two-necked flask equipped with a magnetic stirring bar was prepared and purged with nitrogen. To this were distilled methylene chloride (15 ml), a compound of formula (27) (0.23 g, 0.30 mmol), a compound of formula (15) (0.73 g, 1.48 mmol), and molecular sieves 4A in a nitrogen atmosphere. In addition, boron trifluoride diethyl ether complex (0.45 ml, 3.6 mmol) was added dropwise and stirred at room temperature for 20 hours. Thereafter, the reaction solution is poured into a saturated aqueous solution of sodium bicarbonate, the organic layer is washed with a saturated aqueous solution of sodium bicarbonate, water and saturated saline, the organic layer is dried over sodium sulfate, the solvent is distilled off, and the silica gel column chromatography is performed. Isolated by chromatography (methylene chloride / acetone = 10/1) to give the compound of formula (28) (0.31 g, 0.15 mmol, yield 50%).
Pale yellow solid; melting point 57.3-62.0 ° C .;1H NMR (300 MHz, CDCl3) 1.9.95-1.96 (m, 24H), 2.05 (s, 12H), 2.10 (s, 12H), 3.68-3.78 (m, 24H), 4.02-4 .07 (m, 16H), 4.21-4.25 (m, 4H), 4.85 (s, 4H), 5.24-5.31 (m, 12H), 6.60 (d, 8H) , J = 7.2 Hz), 6.85 (d, 8H, J = 7.2 Hz);13C NMR (75 MHz, CDCl3) Δ 20.5, 20.6, 20.7, 62.3, 66.0, 67.0, 67.2, 68.3, 68.9, 69.4, 69.7, 70.0, 97 6, 113.5, 132.4, 136.9, 138.2, 156.8, 169.6, 169.7, 169.8, 170.4; Elemental analysis C98H124O48Calculated as: C, 56.86; H, 6.04. Found: C, 57.15; H, 5.96.
Example 5
The following reaction formula (30)
Figure JPOXMLDOC01-appb-I000030
According to formula (36)
Figure JPOXMLDOC01-appb-I000031
This compound was synthesized as follows.
Add a compound of formula (35) (0.041 g, 0.011 mmol), sodium methoxide (0.004 g, 0.07 mmol), and methanol (3 ml) to a 10 ml flask equipped with a magnetic stir bar, and stir at room temperature for 2 hours. did. Thereafter, a cation exchange resin (DOWEX 50WX8-100) was added until the reaction solution became acidic, filtered, and the solvent was distilled off to obtain a compound of formula (36) (0.024 g, 0.0092 mmol, yield 83). %).
This compound is a novel compound not yet published in the literature, and its properties, spectroscopic data, and analytical data were as follows. Pale yellow solid; mp 83.7-87.6 ° C;1H NMR (300 MHz, CD3OD) δ 3.59-3.72 (m, 72H), 3.81-3.93 (m, 40H), 4.82 (s, 8H), 6.28 (s, 8H), 6.37 ( s, 4H);13C NMR (75 MHz, CD3OD) δ 62.9, 67.8, 68.6, 68.7, 70.6, 71.5, 72.1, 72.5, 74.6, 101.8, 102.1, 111.0, 142.3, 146.5, 160.8.
Reference Example 7
Formula (35) used as raw material in Example 5 above
Figure JPOXMLDOC01-appb-I000032
This compound was synthesized as follows.
A 50 ml two-necked flask equipped with a magnetic stirring bar was prepared and purged with nitrogen. Thereto were distilled methylene chloride (15 ml), a compound of formula (34) (0.33 g, 0.28 mmol), a compound of formula (15) (1.43 g, 2.90 mmol), and molecular sieves 4A under a nitrogen atmosphere. In addition, boron trifluoride diethyl ether complex (0.85 ml, 6.7 mmol) was added dropwise, and the mixture was stirred at room temperature for 41 hours. Thereafter, the reaction solution is poured into a saturated aqueous solution of sodium bicarbonate, the organic layer is washed with a saturated aqueous solution of sodium bicarbonate, water and saturated saline, the organic layer is dried over sodium sulfate, the solvent is distilled off, and the silica gel column chromatography is performed. Isolation by chromatography (methylene chloride / acetone = 5/1) gave the compound of formula (35) (0.16 g, 0.042 mmol, 15% yield).
Pale yellow solid; melting point 59.2-62.9 ° C .;1H NMR (300 MHz, CDCl3) Δ 1.96 (s, 24H), 2.01 (s, 24H), 2.06 (s, 24H), 2.12 (s, 24H), 3.64-3.73 (m, 40H), 3.78-3.85 (m, 24H), 4.05-4.08 (m, 16H), 4.24-4.29 (m, 8H), 4.85 (s, 8H), 5. 25-5.33 (m, 24H), 6.17 (s, 8H), 6.24 (s, 4H);13C NMR (75 MHz, CDCl3) Δ 20.61, 20.64, 20.7, 20.8, 62.3, 66.0, 67.2, 67.2, 68.3, 69.0, 69.4, 69.6, 70 0.0, 97.7, 100.6, 109.8, 140.6, 144.8, 159.0, 169.7, 169.8, 169.9, 170.6; Elemental analysis C170H228O96Calculated as: C, 53.63; H, 6.04. Found: C, 53.84; H, 5.92.
Reference Example 8
Formula (34) used as a raw material for the compound of Formula (35)
Figure JPOXMLDOC01-appb-I000033
This compound was synthesized as follows.
A 200 ml three-necked flask equipped with a magnetic stirrer was prepared and purged with nitrogen. Under nitrogen atmosphere, DMF (100 ml), compound of formula (33) (0.38 g, 0.82 mmol), 2-chloroethoxyethanol (2.04 g, 16.4 mmol), potassium carbonate (6.83 g, 49 0.4 mmol) and potassium iodide (0.33 g, 2.02 mmol) were added, and the mixture was stirred at 100 ° C. for 13 hours. Thereafter, the solvent was distilled off, methylene chloride (200 ml) was added, washed with a saturated aqueous ammonium chloride solution and saturated brine, the organic layer was dried over sodium sulfate, the solvent was distilled off, and silica gel column chromatography (chloroform / methanol). = 5/1) to give the compound of formula (34) (0.42 g, 0.36 mmol, 44% yield).
Pale yellow oil;1H NMR (300 MHz, CDCl3) 3.17-3.20 (m, 8H), 3.54-3.55 (m, 16H), 3.62-3.71 (m, 16H), 3.84-3.91 (m, 16H), 6.21 (s, 8H), 6.26 (s, 4H);13C NMR (75 MHz, CDCl3) 61.5, 67.2, 69.2, 72.6, 100.9, 110.0, 140.7, 144.8, 159.0; HRMS (FAB, 2-nitrobenzyl alcohol matrix) C58H85O24([M + H]+Calculated value as 1165.5431, measured value; 1165.5413.
Reference Example 9
Formula (33) used as a raw material for the compound of Formula (34)
Figure JPOXMLDOC01-appb-I000034
This compound was synthesized as follows.
A 200 ml three-necked flask equipped with a magnetic stirrer was prepared and purged with nitrogen. Dichloromethane (50 ml) and a compound of the formula (32) (1.25 g, 2.18 mmol) were added thereto under a nitrogen atmosphere, and 1M boron tribromide dichloromethane solution (34.9 ml, 34.34) was added at -50 ° C. 9 mmol) was added dropwise and stirred at room temperature for 18 hours. The reaction solution is then poured into ice water (200 ml) and extracted with ethyl acetate (300 ml). The organic layer is washed with a saturated aqueous ammonium chloride solution, dried over magnesium sulfate, the solvent is distilled off, and silica gel column chromatography (methylene chloride) is used. / Acetone = 1/1) to give a compound of the formula (33) (0.792 g, 1.72 mmol, yield 79%).
White solid; melting point <300 ° C;11 H NMR (300 MHz, acetone-d6) Δ 6.07 (s 8H), 6.12 (s, 4H), 8.04 (s, 8H);13C NMR (75 MHz, acetone-d6) Δ101.7, 110.0, 140.5, 146.6, 158.3. HRMS (FAB, 2-nitrobenzyl alcohol matrix) C26H21O8(M + H]+461.1236, measured value; 461.1230.
Reference Example 10
Formula (32) used as a raw material for the compound of Formula (33)
Figure JPOXMLDOC01-appb-I000035
This compound was synthesized as follows.
A 300 ml three-necked flask equipped with a magnetic stirring bar was prepared and purged with nitrogen. Under a nitrogen atmosphere, zinc powder (4.47 g, 68.3 mmol) and dehydrated THF (100 ml) were added, and titanium chloride (IV) (6.48 g, 34.2 mmol) was added dropwise at -10 ° C. Then, the mixture was stirred at 70 ° C. for 2 hours. Thereafter, the compound of the formula (31) (3.57 g, 11.8 mmol) dissolved in dehydrated THF (50 ml) was added at 0 ° C., and the mixture was stirred at 70 ° C. for 5 hours. Then return to room temperature, 10% K2CO3Aqueous solution (100 ml) was added and extracted with methylene chloride (200 ml). The organic layer was washed with saturated brine, dried over magnesium sulfate, evaporated, and silica gel column chromatography (methylene chloride / hexane = 2 / Isolation in 1) gave the compound of formula (32) (1.45 g, 2.53 mmol, 43% yield).
White solid; melting point 210.0-210.8 ° C .;1H NMR (300 MHz, CDCl3) Δ 3.65 (s, 24H), 6.21-6.25 (m, 12H);13C NMR (75 MHz, CDCl3) Δ 55.3, 99.4, 109.0, 140.9, 145.0, 160.0; HRMS (FAB, 2-nitrobenzyl alcohol matrix) C34H36O8([M]+); 572.2410, measured value; 572.2407; elemental analysis C34H36O8Calculated as: C, 71.31; H, 6.34. Found: C, 71.20; H, 6.04.
Example 6
The sugar-binding protein was detected using the compound of the formula (17) modified with mannose synthesized in Example 1 as a detection agent. CaCl3 to a concentration of 1 mg / 1 ml in 10 mM Tris-HCl buffer (pH 7.6)2In addition, MnCl to a concentration of 1 mg / 1 ml2A stock solution is prepared in which a solution is added in advance (hereinafter, this solution is referred to as a salt-containing buffer), and this solution is added to the compound of formula (17) (1.05 mg) to a volume of 10 ml. did. To 1 ml of this stock solution, 0 mg, 0.1 mg, 0.3 mg, 0.5 mg, 1.0 mg, 2.1 mg, 4.2 mg, 8.3 mg of Concanavalin A (hereinafter abbreviated as “Con A”) is added and the salt is added. A test solution was prepared by adding the contained buffer to a total volume of 5 ml. After preparing these test solutions for 10 minutes, fluorescence spectra were measured respectively. The concentration of compound (17) in the test solution is 19 μM, and the concentration of ConA is 0 μM, 0.2 μM, 0.6 μM, 1.0 μM, 2.0 μM, 4.0 μM, 8.0 μM, 16.0 μM, respectively. It becomes. The measurement was carried out using a fluorescence spectrophotometer manufactured by Hitachi, Ltd., excited with light having a wavelength of 370 nm using a xenon lamp, and the fluorescence spectrum was measured at room temperature. As shown by the circled data in FIG. 1 and FIG. 2, when the fluorescent sugar derivative compound is the compound of the formula (17), it was found that the fluorescence near 500 nm became remarkably strong with the increase in ConA concentration. .
Example 7
The same operation as in Example 6 was performed except that the compound of formula (21) modified with galactose instead of the compound of formula (17) was used as a detection agent and the concentration in the test solution was changed to 22 μM instead of 19 μM, Experiments for detecting sugar-binding proteins were performed. As indicated by the crosses in FIG. 2, no fluorescence was observed in the vicinity of 500 nm regardless of the ConA concentration. Considering together with the result of Example 6, ConA is detected in the compound of formula (17) but not in the compound of formula (21), and it is found that the selectivity varies depending on the structure of the fluorescent sugar derivative compound. It was.
Example 8
Using the compound of the formula (17) as a detection agent, the same operation as in Example 6 was performed to prepare a detection agent solution. However, the concentration of the compound of formula (17) in the test solution after addition of ConA was adjusted to 17.8 μM instead of 19 μM. This solution was attached to a fluorometer, ConA was added so that the ConA concentration after addition was 8 μM, and fluorescence was measured immediately. As the data in FIG. 3 show, the intensity of the 500 nm fluorescence after the addition increased rapidly and reached a saturation value within seconds. Considering the time lag required for operation, the increase in intensity is also considered instantaneous, indicating that ConA can be detected very quickly.
Example 9
Sugar-binding protein was detected using the compound of formula (21) modified with galactose as a detection agent. Compound (21) was added to 10 mM phosphate buffer (pH 7.4) to prepare a detection agent solution. A peanut agglutinin (hereinafter abbreviated as PNA) was added thereto at room temperature to prepare a test solution. At that time, the concentration of the compound (21) in the test solution was adjusted to 20 μM. Furthermore, test solutions having different PNA concentrations were prepared by changing the amount of PNA to be added. These were also prepared so that the concentration of the compound of formula (21) in the test solution was 20 μM. About each test liquid, after adding PNA solution, after stirring for 10 minutes, the fluorescence spectrum was measured at room temperature similarly to Example 6. FIG. As shown by the circled data in FIG. 4 and FIG. 5, it was found that when the fluorescent sugar derivative compound is the compound of formula (21), the fluorescence near 500 nm becomes stronger with increasing PNA concentration.
Example 10
Using the compound of formula (17) as a detection agent instead of the compound of formula (21), a test solution was prepared in the same manner as in Example 6, and fluorescence was measured. As shown by the data with crosses in FIG. 5, the intensity of fluorescence near 500 nm hardly increased even when the concentration of PNA was increased. When taken together with the results of Example 9, it was found that PNA was detected in the compound (21) but not substantially detected in the compound of the formula (17).
Example 11
ConA detection experiment was conducted in the same manner as in Example 6 using the compound of formula (25) as a detection agent. However, unlike the case of Example 6, the concentration of the detection agent in the test solution was adjusted to 7.2 μM, and the excitation wavelength was 320 nm. As shown in FIG. 6 and FIG. 7, it was found that even when the detection agent was the compound of the formula (25), the fluorescence near 460 nm was remarkably increased with the increase in ConA concentration.
Example 12
ConA detection experiment was conducted in the same manner as in Example 6 using the compound of formula (29) as a detection agent instead of the compound of formula (25). However, unlike the case of Example 11, the concentration of the detection agent in the test solution was adjusted to 7.1 μM. As shown in FIGS. 8 and 9, it was found that also in the case where the detection agent was a compound (29) containing 2 units of an ethyleneoxy group as a linker, the fluorescence around 470 nm was remarkably increased as the ConA concentration was increased.
Example 13
ConA detection experiment was conducted in the same manner as in Example 12 using the compound of formula (36) as a detection agent instead of the compound of formula (29). However, unlike the case of Example 11, the concentration of the detection agent in the test solution was adjusted to 7.3 μM, and the excitation wavelength was 300 nm. As shown in FIGS. 10 and 11, even in the case of the compound of the formula (36) containing 8 sugar residues through a 2 unit ethyleneoxy group as a linker, the fluorescence around 450 nm is markedly increased with the increase in ConA concentration. I found it stronger. When considered together with the results of Example 12, it was found that the increase in fluorescence intensity with respect to the increase in ConA concentration was steeper and more sensitive than in the case of the compound of formula (29).
Example 14
The following reaction formula (37)
Figure JPOXMLDOC01-appb-I000036
According to formula (40)
Figure JPOXMLDOC01-appb-I000037
This compound was synthesized as follows.
Add a compound of formula (39) (0.033 g, 0.027 mmol), sodium methoxide (0.002 g, 0.044 mmol) and methanol (2 ml) to a 10 ml flask equipped with a magnetic stir bar and stir at room temperature for 40 minutes. did. Thereafter, a cation exchange resin (DOWEX 50WX8-100) was added until the reaction solution became acidic, filtered, and the solvent was distilled off to obtain a compound of the formula (40) (0.019 g, 0.022 mmol, yield 83). %).
This compound is a novel compound not yet published in the literature, and its properties, spectroscopic data, and analytical data were as follows. White solid; mp 111.2-115.9 ° C .;1H NMR (300 MHz, CD3OD) δ 3.60-3.81 (m, 24H), 3.96-4.06 (m, 4H), 4.77-4.83 (m, 2H), 6.64-6.71 (m , 4H), 6.86-7.08 (m, 14H);13C NMR (75 MHz, CD3OD) δ 62.9, 67.8, 68.4, 68.5, 70.8, 71.5, 72.1, 72.5, 74.6, 101.8, 114.8, {127.3 , 127.4}, {128.6, 128.7}, 132.4, 133.6, {137.8, 137.9}, 141.2, {145.5, 145.6}, 158. 7; HRMS (FAB, glycerin matrix) C46H56O16Na ([M + Na]+Equivalent value); 887.3466, measured value; 887.3470.
Reference Example 11
Formula (39) used as a raw material in Example 14 above
Figure JPOXMLDOC01-appb-I000038
This compound was synthesized as follows.
A 50 ml two-necked flask equipped with a magnetic stirrer was prepared and purged with nitrogen. Under nitrogen atmosphere, DMF (10 ml), compound of formula (38) (0.19 g, 0.51 mmol), compound of formula (38) (0.56 g, 1.12 mmol), potassium carbonate (0.18 g, 1.31 mmol) and 18-crown-6 (0.007 g, 0.025 mmol) were added, and the mixture was stirred at 80 ° C. for 17 hours. Thereafter, methylene chloride (100 ml) was added, washed with water and saturated brine, the organic layer was dried over sodium sulfate, the solvent was distilled off, silica gel column chromatography (methylene chloride / acetone = 20/1) and fractionation. Isolated by preparative HPLC to give the compound of formula (39) (0.050 g, 0.042 mmol, 8% yield).
White solid; melting point 64.2-68.7 ° C .;1H NMR (300 MHz, CDCl3) 1.9.96-2.00 (m, 12H), 2.06-2.09 (m, 6H), 2.11-2.14 (m, 6H), 3.68-3.74 (m, 6H), 3.77-3.83 (m, 6H), 4.00-4.10 (m, 8H), 4.23-4.30 (m, 2H), 4.87-4.90 ( m, 2H), 5.24-5.38 (m, 6H), 6.61-6.67 (m, 4H), 6.87-6.93 (m, 4H), 6.97-7. 10 (m, 10H);13C NMR (75 MHz, CDCl3) Δ20.6, 20.6, 20.7, 20.8, 62.3, 66.0, 67.1, 67.3, 68.3, 69.0, 69.5, 69.8, 70 , 97.7, {113.5, 113.6}, 126.1, {127.5, 127.6}, 131.3, 132.4, 136.5, 139.5, 144.1 , 157.0, 169.7, 169.8, 169.9, 170.5; HRMS (FAB, 2-nitrobenzyl alcohol matrix) C62H72O24([M]+); Calculated value as 1200.4414, measured value; 1200.4443.
Example 15
The compound of formula (40) has low water solubility due to the small number of introduced sugars. Therefore, a stock solution was prepared by adding methanol (1 ml) to the compound of formula (40) (0.444 mg) and dissolving it, and adding the salt-containing buffer prepared in Example 6 to a total volume of 5 ml. Take 1 ml of the stock solution and add a salt-containing buffer to make a total of 5 ml [(concentration of compound of formula (40) = 20.6 μM]), 1 ml of stock solution containing ConA (3.94 mg) and salt The test solution [concentration of the compound of formula (40) = 20.6 μM, ConA concentration = 7.9 μM] prepared by adding a buffer solution to make a total of 5 ml and stirring for 10 minutes was measured for each fluorescence spectrum, as shown in FIG. As shown, even for a compound of formula (40) where the amount of sugar introduced is low, the test solution to which ConA is added is about 2.8 times more fluorescent than the test solution containing only the compound of formula (40). It showed an increase in strength.
Example 16
A test solution prepared by dissolving only the compound of formula (17) in the salt-containing buffer prepared in Example 6 was prepared so that the concentration of the compound of formula (17) was 19 μM. Separately, the compound of formula (17) is dissolved in the salt-containing buffer prepared in Example 6, and ConA is further added so that the concentration of the compound of formula (17) is 19 μM and the concentration of ConA is 8 μM. A test solution stirred for 10 minutes was prepared. In a dark room, each sample was placed on a handy UV lamp (manufactured by ASONE Co., Ltd., 9.0 W, 15 A, FL: 8 W × 1) and irradiated with ultraviolet light of 365 nm. A photograph taken in this state is shown in FIG. The left cell of FIG. 13 contains a test solution containing only the compound of formula (17), and the right cell contains a test solution containing both the compound of formula (17) and ConA. Although the fluorescence from the test solution in the left cell not containing ConA, which is a control experiment, is weak and not substantially observed, the test solution in the right cell to which ConA is added exhibits strong fluorescence that can be clearly confirmed with the naked eye. It was found that ConA can be detected very easily and with high sensitivity.
Example 17
The following synthetic route
Figure JPOXMLDOC01-appb-I000039
According to formula (43)
Figure JPOXMLDOC01-appb-I000040
This compound was synthesized as follows.
To a 10 mL flask equipped with a magnetic stir bar was added the compound of formula (42) (14 mg, 4.3 μmol), sodium methoxide (1.4 mg, 26 μmol), methanol (2 mL), tetrahydrofuran (1 mL), and 2 hours at room temperature. Stir. Thereafter, a cation exchange resin (DOWEX 50WX8-100) was added until the reaction solution became acidic, filtered, and the solvent was distilled off to obtain a compound of formula (43) (7.1 mg, 3.5 μmol, yield 81). %).
Compound of formula (43): pale yellow solid; melting point 170.1-173.5 ° C .;1H NMR (300 MHz, D2O) δ 3.26-3.36 (m, 8H), 3.49-3.86 (m, 76H), 4.36-4.39 (m, 4H), 6.43-6.51 (m) , 8H), 6.72-6.81 (m, 8H);13C NMR (75 MHz, D2O) δ 61.5, 62.0, 67.9, 69.6, 70.0, 70.8, 72.0, 72.9, 73.6, 73.9, 75.4, 75.8, 76.4, 79.5, 103.3, 104.0, 114.9, 133.4, 138.0, 139.6, 157.6; MALDI-TOFMS (matrix: 2-nitrobenzyl alcohol matrix) C90H132O52Na ([M + Na]+Calculated value as 207.77; measured value; 207.71.
Reference Example 12
Formula (42) used as a raw material in Example 17 above
Figure JPOXMLDOC01-appb-I000041
This compound was synthesized as follows.
A 50 mL two-necked flask equipped with a magnetic stirring bar was prepared and purged with nitrogen. Under a nitrogen atmosphere, dry methylene chloride (15 mL), the compound of formula (27) synthesized in Reference Example 5 (55 mg, 74 μmol), the compound of formula (41) (0.46 g, 0.59 mmol), and molecular were added. Sieves (4A) was added, boron trifluoride diethyl ether complex (0.47 mL, 3.7 mmol) was added dropwise at 0 ° C., and the mixture was stirred at room temperature for 4 days. Thereafter, the reaction solution was poured into a saturated aqueous solution of sodium bicarbonate, the organic layer was washed with a saturated aqueous solution of sodium bicarbonate, water and saturated brine, the organic layer was dried over sodium sulfate, and the solvent was distilled off. Then, it was isolated by silica gel column chromatography (methylene chloride / acetone = 5/1) and preparative HPLC to obtain a compound of formula (42) (14 mg, 4.3 μmol, yield 6%).
Compound of formula (42): pale yellow solid; melting point 96.5-99.7 ° C .;1H NMR (300 MHz, CDCl3) Δ 1.96 (s, 12H), 2.00 (s, 12H), 2.04 (s, 24H), 2.11 (s, 12H), 2.14 (s, 12H), 3.58- 4.16 (m, 56H), 4.46-4.56 (m, 12H), 4.87-4.97 (m, 8H), 5.07-5.22 (m, 8H), 5. 34-5.36 (m, 4H), 6.62 (d, 8H, J = 8.2 Hz), 6.89 (d, 8H, J = 8.2 Hz);13C NMR (75 MHz, CDCl3) Δ 20.5, 20.6, 20.7, 20.8, 20.9, 60.8, 62.0, 66.6, 67.1, 69.1, 69.2, 69.9, 70 3, 70.6, 71.0, 71.6, 72.6, 72.8, 76.2, 100.6, 101.1, 113.6, 132.5, 137.0, 138.4 , 156.9, 169.1, 169.7, 169.8, 170.0, 170.1, 170.34, 170.35; MALDI-TOFMS (matrix: 2-nitropentyl alcohol matrix) C146H189O80([M + H]+Calculated value as 3); 32.22.07; measured value; 3222.43.
Example 18
Using the compound of formula (43), a detection experiment of RCA120 was performed as a lectin.
In a buffer (10 mM phosphate buffer, pH 7.4), 6.7 μM of the compound of formula (43) is added to 0.0 μM, 0.5 μM, 1.0 μM, 2.0 μM, 3.0 μM and 5.0 μM. RCA120 was added, and the sample was prepared by stirring for 10 minutes. As shown in FIG. 14, in the fluorescence spectrum, the emission intensity in the vicinity of 400 nm of the compound of the formula (43) increased as the concentration of RCA120 increased. As shown in FIG. 15, when the concentration of RCA120 is 1.0 μM, 2.0 μM, and 3.0 μM, the emission intensity increases 1.5 times, 1.8, and 2.7 times, respectively. Was possible.
 本発明は、標的に前処理を必要とせず、迅速、高感度、高選択的に糖結合タンパク質を検出でき、裸眼でも容易に判定可能な標的検出方法並びに該標的検出に好適に用いられる標的検出材料を提供することができる。
 本明細書に引用するすべての刊行物及び特許文献は、参照により全体として本明細書中に援用される。なお、例示を目的として、本発明の特定の実施形態を本明細書において説明したが、本発明の精神及び範囲から逸脱することなく、種々の改変が行われる場合があることは、当業者に容易に理解されるであろう。
The present invention does not require pretreatment of a target, can detect a sugar-binding protein rapidly, with high sensitivity and high selectivity, and can be easily determined even with the naked eye, and target detection suitably used for the target detection Material can be provided.
All publications and patent documents cited herein are hereby incorporated by reference in their entirety. While specific embodiments of the invention have been described herein for purposes of illustration, it will be apparent to those skilled in the art that various modifications may be made without departing from the spirit and scope of the invention. It will be easily understood.

Claims (23)

  1. 一般式(1)
     (S−S−S−S−S−S−AB  (1)
    [式中、Sは糖の構造の1個の水酸基から水素原子を除いた残基を表わし、S、S、S、S、Sは、独立に、存在しないか、又は、糖構造から1個の水酸基を除くと共にもう1個の水酸基から水素原子を除いた残基を表わし、S、S、S、S、S、Sは互いにグリコシド結合で繋がった糖鎖構造を形成しており、Aは、存在しないか、又は、酸素原子を含んでいてもよい炭素数2以上6以下の2価の有機基を表わし、Bは光照射により蛍光を発する蛍光性化合物からn個の水素原子を除いた残基を表し、該残基は炭素数7以下の置換基で置換されていてもよく、Aが存在する場合のmは6以下の正の整数を表し、nは12以下の正の整数を表す。S、S、S、S、Sは互いに同じであっても異なっていてもよい。1個の水酸基から水素原子を除くことでSとなる母体の糖の構造(以下、Sの母体の糖の構造、又は、単に、母体の糖の構造という。)は、1個の水酸基を除くと共にもう1個の水酸基から水素原子を除くことでそれぞれS、S、S、S、Sとなる母体の糖の構造(以下、S~Sの母体の糖の構造、又は、単に、母体の糖の構造という。)と互いに同じであっても異なっていてもよい。]で表わされることを特徴とする蛍光性糖誘導体化合物。
    General formula (1)
    (S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1)
    [Wherein S 1 represents a residue obtained by removing a hydrogen atom from one hydroxyl group of a sugar structure, and S 2 , S 3 , S 4 , S 5 , S 6 are independently absent, or Represents a residue in which one hydroxyl group is removed from the sugar structure and a hydrogen atom is removed from the other hydroxyl group, and S 1 , S 2 , S 3 , S 4 , S 5 , and S 6 are linked to each other by a glycosidic bond. A represents a divalent organic group having 2 to 6 carbon atoms that may not exist or may contain an oxygen atom, and B emits fluorescence when irradiated with light. Represents a residue obtained by removing n hydrogen atoms from a fluorescent compound, which residue may be substituted with a substituent having 7 or less carbon atoms, and when A is present, m is a positive integer of 6 or less N represents a positive integer of 12 or less. S 2 , S 3 , S 4 , S 5 and S 6 may be the same as or different from each other. By removing a hydrogen atom from one hydroxyl group, the structure of the parent sugar that becomes S 1 (hereinafter referred to as the structure of the parent sugar of S 1 or simply the structure of the parent sugar) is one hydroxyl group. And by removing a hydrogen atom from the other hydroxyl group, the structure of the parent sugars to be S 2 , S 3 , S 4 , S 5 , and S 6 (hereinafter referred to as S 2 to S 6 parent sugars). The structure, or simply the structure of the parent sugar). ] The fluorescent sugar derivative compound characterized by the above-mentioned.
  2. の母体の糖の構造が、グルコース、マンノース、ガラクトース、フルクトース、アロース、タロース、プシコース、グロース、イドース、ソルボース、リボース、リキソース、キシロース、アピオース、デオキシグルコース、デオキシマンノース、デオキシガラクトース、デオキシアロース、デオキシタロース、デオキシリボースである、請求項1の蛍光性糖誘導体化合物。 Structure of the mother of sugar S 1 is selected from the group consisting of glucose, mannose, galactose, fructose, allose, talose, psicose, gulose, idose, sorbose, ribose, lyxose, xylose, apiose, deoxy-glucose, deoxy-mannose, deoxy-galactose, deoxy Arrow vinegar, The fluorescent sugar derivative compound according to claim 1, which is deoxytalose or deoxyribose.
  3. 、S、S、S又はSが存在しない、請求項1の蛍光性糖誘導体化合物。 The fluorescent sugar derivative compound according to claim 1, wherein S 2 , S 3 , S 4 , S 5 or S 6 is absent.
  4. 、S、S、S、Sの母体の糖の構造が、それぞれ独立に、グルコース、マンノース、ガラクトース、フルクトース、アロース、タロース、プシコース、グロース、イドース、ソルボース、リボース、リキソース、キシロース、アピオース、デオキシグルコース、デオキシマンノース、デオキシガラクトース、デオキシアロース、デオキシタロース、デオキシリボースである、請求項1の蛍光性糖誘導体化合物。 The structure of the S 2 , S 3 , S 4 , S 5 , S 6 parent sugar is independently selected from glucose, mannose, galactose, fructose, allose, talose, psicose, gulose, idose, sorbose, ribose, lyxose, The fluorescent sugar derivative compound according to claim 1, which is xylose, apiose, deoxyglucose, deoxymannose, deoxygalactose, deoxyallose, deoxytalose, deoxyribose.
  5. Aが存在しない、請求項1の蛍光性糖誘導体化合物。 The fluorescent sugar derivative compound according to claim 1, wherein A is absent.
  6. AがCHCHOである、請求項1の蛍光性糖誘導体化合物。 The fluorescent sugar derivative compound according to claim 1, wherein A is CH 2 CH 2 O.
  7. n個の水素原子を除くことでBとなる母体の蛍光性化合物が、共役構造からなる蛍光性化合物である、請求項1の蛍光性糖誘導体化合物。 The fluorescent sugar derivative compound according to claim 1, wherein the parent fluorescent compound that becomes B by removing n hydrogen atoms is a fluorescent compound having a conjugated structure.
  8. n個の水素原子を除くことでBとなる母体の蛍光性化合物が、一般式(2)
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rは炭素数6以下の飽和炭化水素基又は炭素数12以下の不飽和炭化水素基を示し、炭素数7以下の置換基で置換されていてもよい。)である、請求項1の蛍光性糖誘導体化合物。
    The parent fluorescent compound that becomes B by removing n hydrogen atoms is represented by the general formula (2).
    Figure JPOXMLDOC01-appb-I000001
    Wherein R 1 represents a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be substituted with a substituent having 7 or less carbon atoms. Item 6. A fluorescent sugar derivative compound according to Item 1.
  9. n個の水素原子を除くことでBとなる母体の蛍光性化合物が、一般式(3)
    Figure JPOXMLDOC01-appb-I000002
    (式中、R及びRは炭素数6以下の飽和炭化水素基又は炭素数12以下の不飽和炭化水素基を示し、互いに同じであっても異なっていてもよく、また、炭素数7以下の置換基で置換されていてもよい。)である、請求項1の蛍光性糖誘導体化合物。
    The parent fluorescent compound that becomes B by removing n hydrogen atoms is represented by the general formula (3).
    Figure JPOXMLDOC01-appb-I000002
    (In the formula, R 2 and R 3 represent a saturated hydrocarbon group having 6 or less carbon atoms or an unsaturated hydrocarbon group having 12 or less carbon atoms, and may be the same or different from each other. The fluorescent sugar derivative compound according to claim 1, which may be substituted with the following substituents:
  10. 一般式(1)
     (S−S−S−S−S−S−AB  (1)
    (式中、S、S、S、S、S、S、A、B、m及びnは前記と同じ意味を表す。)で表わされる化合物を検出材料として用いることを特徴とする、検出標的の検出方法。
    General formula (1)
    (S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1)
    (Wherein, S 1 , S 2 , S 3 , S 4 , S 5 , S 6 , A, B, m, and n have the same meanings as described above) are used as detection materials. A detection target detection method.
  11. 検出標的が糖結合タンパク質を含む物質である、請求項10の検出方法。 The detection method according to claim 10, wherein the detection target is a substance containing a sugar-binding protein.
  12. 検出手段として蛍光の変化を利用する、請求項10又は11の検出方法。 The detection method according to claim 10 or 11, wherein a change in fluorescence is used as the detection means.
  13. 検出標的と相互作用可能な検出材料であって、検出標的と相互作用していない時には光照射によりそれ自身電子励起されても蛍光を実質的には発せず、若しくは、検出標的と相互作用していなくても光照射によりそれ自身電子励起されて蛍光を発し、検出標的と相互作用している時には光照射により電子励起されて蛍光を発し、検出標的と相互作用している時に発する蛍光の強度が検出標的と相互作用していない場合の蛍光の強度より大きくなる検出材料を用いることを特徴とする検出標的の検出方法。 A detection material that can interact with the detection target, and when it does not interact with the detection target, it does not substantially emit fluorescence even when it is electronically excited by light irradiation, or interacts with the detection target. Even if it is not, it is excited by light itself to emit fluorescence and interacts with the detection target. When it interacts with the detection target, it is excited by light irradiation and emits fluorescence. A method for detecting a detection target, comprising using a detection material that is greater than the intensity of fluorescence when not interacting with the detection target.
  14. 検出材料として一般式(1)
     (S−S−S−S−S−S−AB  (1)
    (式中、S、S、S、S、S、S、A、B、m及びnは前記と同じ意味を表す。)で表わされる化合物を用いる請求項13の検出方法。
    General formula (1) as detection material
    (S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1)
    (Wherein S 1 , S 2 , S 3 , S 4 , S 5 , S 6 , A, B, m, and n have the same meanings as described above). .
  15. 検出標的が糖結合タンパク質を含む物質である、請求項13又は14の検出方法。 The detection method according to claim 13 or 14, wherein the detection target is a substance containing a sugar-binding protein.
  16. 糖結合タンパク質を含む物質と蛍光性の検出材料の相互作用を利用した糖結合タンパク質を含む物質の検出方法であって、糖鎖で置換された蛍光性検出材料を蛍光性の検出材料として用いることを特徴とする糖結合タンパク質を含む物質の検出方法。 A method for detecting a substance containing a sugar-binding protein utilizing the interaction between a substance containing a sugar-binding protein and a fluorescent detection material, wherein the fluorescent detection material substituted with a sugar chain is used as a fluorescent detection material A method for detecting a substance containing a sugar-binding protein characterized by the following.
  17. 検出材料として一般式(1)
     (S−S−S−S−S−S−AB  (1)
    (式中、S、S、S、S、S、S、A、B、m及びnは前記と同じ意味を表す。)で表わされる化合物を用いる、請求項16の検出方法。
    General formula (1) as detection material
    (S 1 -S 2 -S 3 -S 4 -S 5 -S 6 -A m) n B (1)
    (Wherein, S 1, S 2, S 3, S 4, S 5, S 6, A, B, m and n are. As defined above) using the compound represented by the detection of claim 16 Method.
  18. 含水溶液中で、糖結合タンパク質を活性化する薬剤の存在下に実施する、請求項11~17の検出方法。 The detection method according to claims 11 to 17, which is carried out in an aqueous solution in the presence of a drug that activates a sugar-binding protein.
  19. 糖結合タンパク質と請求項1~9のいずれか1項に記載の化合物とから構成される凝集体。 An aggregate composed of a sugar-binding protein and the compound according to any one of claims 1 to 9.
  20. 糖結合タンパク質と請求項1~9のいずれか1項に記載の化合物とを含水溶液中で反応させることにより調製される、請求項19の凝集体。 The aggregate according to claim 19, which is prepared by reacting a sugar-binding protein and the compound according to any one of claims 1 to 9 in an aqueous solution.
  21. 含水溶液中で、糖結合タンパク質を活性化する薬剤の存在下に反応させることにより調製された、請求項20に記載の凝集体。 21. The aggregate according to claim 20, which is prepared by reacting in an aqueous solution in the presence of an agent that activates a sugar-binding protein.
  22. 請求項19に記載の凝集体からの蛍光を観測することからなる糖結合タンパク質の検出方法。 A method for detecting a sugar-binding protein, comprising observing fluorescence from the aggregate according to claim 19.
  23. 凝集体からの蛍光が請求項1~9のいずれか1項に記載の化合物自身からの蛍光より強度が増大することを利用した、請求項22の検出方法。 The detection method according to claim 22, which utilizes the fact that the fluorescence from the aggregate is stronger than the fluorescence from the compound itself according to any one of claims 1 to 9.
PCT/JP2009/065974 2008-09-08 2009-09-07 Fluorescent sugar derivative compound and sensor using same WO2010027108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010527862A JPWO2010027108A1 (en) 2008-09-08 2009-09-07 Fluorescent sugar derivative compound and sensor using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008261130 2008-09-08
JP2008-261130 2008-09-08

Publications (1)

Publication Number Publication Date
WO2010027108A1 true WO2010027108A1 (en) 2010-03-11

Family

ID=41797266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065974 WO2010027108A1 (en) 2008-09-08 2009-09-07 Fluorescent sugar derivative compound and sensor using same

Country Status (2)

Country Link
JP (1) JPWO2010027108A1 (en)
WO (1) WO2010027108A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054601A1 (en) * 2012-10-03 2014-04-10 国立大学法人弘前大学 Method for imaging cell using fluorescence-labeled sugar derivative having coumarin derivative bound thereto, and imaging agent
CN105906675A (en) * 2016-05-13 2016-08-31 中国科学院理化技术研究所 Novel concanavalin A fluorescent probe and application thereof
WO2016208466A1 (en) * 2015-06-22 2016-12-29 ウシオ電機株式会社 Method for detecting substance of interest

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028475A2 (en) * 2002-09-27 2004-04-08 Biomira, Inc. Glycosylceramide analogues
JP2006111618A (en) * 2004-09-14 2006-04-27 National Institute Of Advanced Industrial & Technology O-bonded sugar amino acid
WO2006061101A2 (en) * 2004-12-10 2006-06-15 Universita' Degli Studi Di Modena E Reggio Emilia Drug delivery peptides for crossing blood-brain barrier
JP2007022987A (en) * 2005-07-20 2007-02-01 Tokai Univ O-linked type sugar amino acid derivative having core 3 type structure and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028475A2 (en) * 2002-09-27 2004-04-08 Biomira, Inc. Glycosylceramide analogues
JP2006111618A (en) * 2004-09-14 2006-04-27 National Institute Of Advanced Industrial & Technology O-bonded sugar amino acid
WO2006061101A2 (en) * 2004-12-10 2006-06-15 Universita' Degli Studi Di Modena E Reggio Emilia Drug delivery peptides for crossing blood-brain barrier
JP2007022987A (en) * 2005-07-20 2007-02-01 Tokai Univ O-linked type sugar amino acid derivative having core 3 type structure and method for producing the same

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
ALCARO, S. ET AL.: "Biocatalysed synthesis of beta-0-glucosides from 9-fluorenon-2- carbohydroxyesters. Part 3: IFN-inducing and anti-HSV-2 properties", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 13, no. 10, 2005, pages 3371 - 3378 *
ANDRE, S. ET AL.: "First demonstration of differential inhibition of lectin binding by synthetic tri- and tetravalent glycoclusters from cross-coupling of rigidified 2-propynyl lactoside", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 1, no. 22, 2003, pages 3909 - 3916 *
ARENA, A. ET AL.: "2/4-Substituted-9-fluorenones and their 0-glucosides as potential immunomodulators and anti-herpes simplex virus -2 agents. Part 5", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 43, no. 12, 14 February 2008 (2008-02-14), pages 2656 - 2664 *
BIONDI, B. ET AL.: "Novel nociceptin analogs: synthesis and biological activity", INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS, vol. 12, no. 2, 2006, pages 139 - 144 *
DAM, T.K. ET AL.: "Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin. Thermodynamic analysis of the "multivalency effect"", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, no. 19, 2000, pages 14223 - 14230 *
DAM, T.K. ET AL.: "Thermodynamic, Kinetic, and Electron Microscopy Studies of Concanavalin A and Dioclea grandiflora Lectin Cross-linked with Synthetic Divalent Carbohydrates", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, no. 10, 2005, pages 8640 - 8646 *
DISNEY, M.D. ET AL.: "Detection of Bacteria with Carbohydrate-Functionalized Fluorescent Polymers", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, no. 41, 2004, pages 13343 - 13346 *
ELMAGBARI, N.O. ET AL.: "Antinociceptive structure-activity studies with enkephalin- based opioid glycopeptides", JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, vol. 311, no. 1, 2004, pages 290 - 297 *
ENDO, T. ET AL.: "0-mannosylation in mammalian cells", METHODS IN MOLECULAR BIOLOGY(TOTOWA, NJ, UNITED STATES), vol. 347, 2006, pages 43 - 56 *
FILIRA, F. ET AL.: "Synthesis of 0-glycosylated tuftsins by utilizing threonine derivatives containing an unprotected monosaccharide moiety", INTERNATIONAL JOURNAL OF PEPTIDE & PROTEIN RESEARCH, vol. 36, no. 1, 1990, pages 86 - 96 *
GOBBO, M. ET AL.: "Antimicrobial Peptides: Synthesis and Antibacterial Activity of Linear and Cyclic Drosocin and Apidaecin 1b Analogues", JOURNAL OF MEDICINAL CHEMISTRY, vol. 45, no. 20, 2002, pages 4494 - 4504 *
INAZU, T. ET AL.: "Synthesis of mucin-type glycopeptide", PEPTIDES 2000, PROCEEDINGS OF THE EUROPEAN PEPTIDE SYMPOSIUM, 26TH, 10 September 2000 (2000-09-10) - 15 September 2000 (2000-09-15), pages 315 - 316 *
KARTHA, K.P.R. ET AL.: "Practical de-O-acylation reactions promoted by molecular sieves", CARBOHYDRATE RESEARCH, vol. 339, no. 3, 2004, pages 729 - 732 *
KELLY, T.L. ET AL.: "Carbohydrate-labeled fluorescent microparticles and their binding to lectins", BIOCONJUGATE CHEMISTRY, vol. 17, no. 3, 2006, pages 575 - 578 *
KIM, I.-B. ET AL.: "Mannose-substituted PPEs detect lectins: A model for Ricin sensing", CHEMICAL COMMUNICATIONS (CAMBRIDGE, UNITED KINGDOM), no. 10, 2005, pages 1273 - 1275 *
KOH, D. ET AL.: "Synthesis of stilbene glycosides and their anti-allergic effects", JOURNAL OF THE KOREAN SOCIETY OF AGRICULTURAL CHEMISTRY AND BIOTECHNOLOGY, vol. 44, no. 2, 2001, pages 133 - 135 *
LEIGH, W.J. ET AL.: "Merostabilization in radical ions, triplets, and biradicals. 6. The excited state behavior of para-substituted tetraphenylethylenes", CANADIAN JOURNAL OF CHEMISTRY, vol. 59, no. 21, 1981, pages 3061 - 75 *
LIU, B. ET AL.: "Comparative studies of galactoside-containing clusters", METHODS IN ENZYMOLOGY, vol. 362, 2003, pages 226 - 239 *
MIZUNO, M. ET AL.: "Synthesis of a mannosyl peptide as an acceptor substrate for a new N-acetylglucosaminyltransferase", PEPTIDE SCIENCE 2001, vol. 38TH, 2001, pages 85 - 88 *
MIZUNO, M. ET AL.: "Synthesis of a mannosyl peptide as an acceptor substrate for a new N-acetylglucosaminyltransferase", PEPTIDES 2002, PROCEEDINGS OF THE EUROPEAN PEPTIDE SYMPOSIUM 27TH, 31 August 2002 (2002-08-31), pages 228 - 229 *
NARUCHI, K. ET AL.: "Construction and Structural Characterization of Versatile Lactosaminoglycan- Related Compound Library for the Synthesis of Complex Glycopeptides and Glycosphingolipids", JOURNAL OF ORGANIC CHEMISTRY, vol. 71, no. 26, 2006, pages 9609 - 9621 *
OCHIAI, H. ET AL.: "Endo-beta-N- acetylglucosaminidase-catalyzed polymerization of beta-Glcp-(1-4)-GlcpNAc oxazoline: a revisit to enzymatic transglycosylation", CARBOHYDRATE RESEARCH, vol. 344, no. 5, 31 March 2009 (2009-03-31), pages 592 - 598 *
PHILLIPS, R.L. ET AL.: "Fluorescence self- quenching of a mannosylated poly (p-phenyleneethynylene) induced by concanavalin A", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, no. 22, 4 July 2008 (2008-07-04), pages 6952 - 6954 *
ROY, R. ET AL.: "Effects of linker rigidity and orientation of mannoside clusters for multivalent interactions with proteins", ACS SYMPOSIUM SERIES, vol. 896, 2005, pages 137 - 150 *
ROY, R. ET AL.: "Palladium-mediated oxidative homocoupling of prop-2-ynyl glycosides: application toward the synthesis of symmetrical conjugated sugar diynes", SYNTHESIS, no. 7, 2001, pages 1049 - 1052 *
ROY, R. ET AL.: "Synthesis of "sugar-rods" with phytohemagglutinin cross-linking properties by using the palladium-catalyzed Sonogashira reaction", CHEMISTRY--A EUROPEAN JOURNAL, vol. 6, no. 10, 2000, pages 1757 - 1762 *
SANJI, T. ET AL.: "Sugar-Phosphole Oxide Conjugates as "Turn-on" Luminescent Sensors for Lectins", ACS APPLIED MATERIALS & INTERFACES, vol. 1, no. 2, 2009, pages 270 - 273 *
SANJI, T. ET AL.: "Synthesis and Photophysical Properties of Phosphole-Cored Dendrimers", ORGANIC LETTERS, vol. 9, no. 18, 2007, pages 3611 - 3614 *
SCHUDDEBOOM, W. ET AL.: "Sudden polarization in the twisted, phantom state of tetraphenylethylene detected by time-resolved microwave conductivity", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 115, no. 8, 1993, pages 3286 - 90 *
SCOLARO, B. ET AL.: "Semisynthetic glycoproteins: preparation of glycosylated ribonuclease S' analogs", REACTIVE POLYMERS, vol. 22, no. 3, 1994, pages 195 - 201 *
SHAO, N. ET AL.: "Solution-Phase Synthesis with Solid-State Workup of an O-Glycopeptide with a Cluster of Cancer-Related T Antigens", ORGANIC LETTERS, vol. 7, no. 16, 2005, pages 3589 - 3592 *
TAKANO, Y. ET AL.: "Solid-phase synthesis of core 2 O-linked glycopeptide and its enzymatic sialylation", TETRAHEDRON, vol. 59, no. 42, 2003, pages 8415 - 8427 *
TAKEMURA, T. ET AL.: "Application of Fmoc-amino acid carrying an unmasked carbohydrate to the synthesis of the epidermal growth factor-like domain of bovine blood coagulation factor IX", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 2, no. 1, 2004, pages 133 - 136 *
TRAMICE, A. ET AL.: "Facile biocatalytic access to 9-fluorenylmethyl polyglycosides: evaluation of antiviral activity on immunocompetent cells", CHEMMEDCHEM, vol. 3, no. 9, 23 June 2008 (2008-06-23), pages 1419 - 1426 *
VINOGRADOV, S. ET AL.: "Synthesis and Binding Properties of Oligo-2'-deoxyribonucleotides Conjugated with Triple-Helix-Specific Intercalators: Benzo[e] and Benzo[g] Pyridoindoles", BIOCONJUGATE CHEMISTRY, vol. 14, no. 1, 2003, pages 120 - 135 *
XUE, C. ET AL.: "Synthesis of Highly Water- Soluble Fluorescent Conjugated Glycopoly (p-phenylene)s for Lectin and Escherichia coli", BIOMACROMOLECULES, vol. 7, no. 9, 2006, pages 2470 - 2474 *
ZHU, J. ET AL.: "Synthesis of biotinylated tumor- associated carbohydrate antigens for immunological studies", TETRAHEDRON LETTERS, vol. 50, no. 6, 2009, pages 712 - 714 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054601A1 (en) * 2012-10-03 2014-04-10 国立大学法人弘前大学 Method for imaging cell using fluorescence-labeled sugar derivative having coumarin derivative bound thereto, and imaging agent
JPWO2014054601A1 (en) * 2012-10-03 2016-08-25 国立大学法人弘前大学 Cell imaging method and imaging agent using fluorescently labeled sugar derivative bound with coumarin derivative
US10288604B2 (en) 2012-10-03 2019-05-14 Hirosaki University Method for imaging cell using fluorescence-labeled sugar derivative having coumarin derivative bound thereto, and imaging agent
WO2016208466A1 (en) * 2015-06-22 2016-12-29 ウシオ電機株式会社 Method for detecting substance of interest
CN105906675A (en) * 2016-05-13 2016-08-31 中国科学院理化技术研究所 Novel concanavalin A fluorescent probe and application thereof
CN105906675B (en) * 2016-05-13 2018-09-14 中国科学院理化技术研究所 A kind of novel ConA A fluorescence probes and its application

Also Published As

Publication number Publication date
JPWO2010027108A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
EP2223971B1 (en) Long wavelength thiol-reactive fluorophores
US7939330B2 (en) Fluorescent probe
CN112920210B (en) Red light activatable photodynamic therapy-chemotherapy combined prodrug and preparation and application thereof
WO2010027108A1 (en) Fluorescent sugar derivative compound and sensor using same
Han et al. Chain length-dependent photoinduced formation of azobenzene aggregates
CN110734450A (en) hydrogen sulfide fluorescent probes and preparation method and application thereof
Enes et al. Synthesis and solvent dependence of the photophysical properties of [60] fullerene–sugar conjugates
CN107973785B (en) Fluorescent probe for detecting silver ions and preparation method and application thereof
Zlatić et al. Synthesis, photophysical properties, anti-Kasha photochemical reactivity and biological activity of vinyl-and alkynyl-BODIPY derivatives
JP4522365B2 (en) Fluorescent probe
CN116375692A (en) Near infrared fluorescent molecular probe for detecting cysteine, preparation method and kit thereof
EP2758391B1 (en) Luminescent probes for biological marking and imagery, and preparation method thereof
Ozawa et al. Effect of cyclodextrins on saccharide sensing function of a fluorescent phenylboronic acid in water
CN114736153A (en) AIE type azozyme fluorescent small-molecule probe and preparation method thereof
CN113307788B (en) Near-infrared xanthene fluorescent probe and preparation method and application thereof
Ferrier et al. Unsaturated carbohydrates. Part 20. Direct conversion of phenyl 1-thiohexoside esters into phenyl 1-thiohex-1-enopyranosid-3-ulose esters
CN109942607B (en) Application of diboronic acid fluorescence sensor in ribose recognition
CN111718276B (en) Synthesis method of derivative
Anwar et al. A review ofsynthesis of fluorescein based advanced materials
WO2005087835A1 (en) Molecular-wire type fluorescent chiral sensor
JP4545370B2 (en) Chiral sensor
CN107011336B (en) PH fluorescent probe with pyridine as protonation site and application thereof
CN113583033B (en) benzothiadiazole-TB-fluoroboron complex and synthesis method and application thereof
RU2725876C1 (en) Derivatives of fluorine-containing chlorins exhibiting anti-tumour activity
He et al. A novel fast and sensitive fluorescent hydrogen sulfide probe with large stokes shift for imaging living cells and zebrafish

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811627

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010527862

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811627

Country of ref document: EP

Kind code of ref document: A1