WO2010026986A1 - Axial fan - Google Patents

Axial fan Download PDF

Info

Publication number
WO2010026986A1
WO2010026986A1 PCT/JP2009/065330 JP2009065330W WO2010026986A1 WO 2010026986 A1 WO2010026986 A1 WO 2010026986A1 JP 2009065330 W JP2009065330 W JP 2009065330W WO 2010026986 A1 WO2010026986 A1 WO 2010026986A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial fan
impeller
blade
central axis
radially outward
Prior art date
Application number
PCT/JP2009/065330
Other languages
French (fr)
Japanese (ja)
Inventor
裕亮 吉田
英伸 竹下
仁明 大熊
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2010026986A1 publication Critical patent/WO2010026986A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form

Definitions

  • the present invention relates to an axial fan.
  • a cooling fan is provided to cool electronic components inside the casing.
  • a relatively large electronic device such as a server requires a cooling fan having a high static pressure.
  • the angle of attack in the fan blade of an axial fan is generally smaller as it goes from the root to the tip. This is for collecting the air flow while suppressing the swirl component as much as possible in the air flow discharged from the axial fan.
  • the work of the impeller is maximized at the radially outer portion of the blade.
  • surging occurs and a region where the static pressure decreases is generated.
  • the angle of attack of the blade taper tip receding portion is larger than the angle of attack of the root portion of the fan blade, so that air can be sent effectively. Can do.
  • the blade is tapered at a radially outer portion, and its area is reduced. For this reason, it was not efficient as an axial fan.
  • An object of the present invention is to provide an axial fan that can improve static pressure-air flow characteristics. More specifically, the present invention provides an axial fan that can have a static pressure higher than that of a conventional axial fan in a surging region.
  • An exemplary axial fan according to the present invention includes a motor unit and an impeller having a plurality of blades extending radially outward about the central axis of the motor unit and arranged at substantially equal pitches in the circumferential direction. And a housing surrounding the outer periphery of the impeller, and an angle formed by a chord of each blade on a virtual cylindrical surface having a certain radius with the central axis as a center and a rotation surface of the impeller is a diameter. The width in the circumferential direction at the leading edge and the trailing edge at a certain radius of each wing increases substantially as it goes outward in the radial direction.
  • the static pressure can be increased even in the surging region as compared with the conventional axial fan.
  • FIG. 1 is a partial cross-sectional view of an exemplary axial fan of the present invention. It is a top view of an example of an impeller. It is a bottom view of an example of an impeller. It is a figure explaining the angle
  • 6 is a graph showing a trend of static pressure-air flow characteristics in an axial fan according to the present invention and a conventional axial fan. It is a conceptual diagram explaining the difference in the low load area
  • FIG. 1 is a cross-sectional view of an exemplary axial fan of the present invention.
  • the axial fan 1 includes an impeller 2, a motor unit 3 that rotates the impeller about the central axis J1, a housing 4 that surrounds the outer periphery of the impeller, a base unit 5 that supports the motor unit, a base unit 5 and a housing 4 And a plurality of support ribs 6 for connecting the two.
  • the housing 4, the base portion 5, and the support rib 6 are formed as one member by resin injection molding.
  • the impeller 2 has a plurality of blades 21 formed on an impeller cup 22 having a cup shape.
  • the motor unit 3 includes a stator 31 and a rotor magnet 32.
  • the stator 31 includes a core 311 and a coil 312.
  • a bearing housing 81 is fixed to the base portion 5.
  • a bearing 82 is fixed inside the bearing housing 81.
  • the shaft 7, the bearing housing 81 and the bearing 82 constitute a bearing portion 8.
  • the shaft 7 is fitted in the center of the impeller cup 22.
  • the bearing 82 is a ball bearing.
  • the bearing 82 is not limited to this, and various bearing structures such as a sliding bearing and a fluid dynamic pressure bearing can be employed.
  • the support rib 6 that connects the base portion that supports the motor portion and the housing is provided on the discharge side of the axial fan, and has a wing shape. Therefore, the support rib 6 functions as a stationary blade that suppresses the swirling component of the air flow.
  • the shape of the support rib 6 is not limited to a wing shape, and may be various shapes such as a rod shape and a plate shape.
  • FIG. 2 is a plan view of the impeller 2 and FIG. 3 is a bottom view of the impeller 2.
  • the impeller 2 has five wings.
  • the five blades 21 of the impeller 2 extend radially outward from the outer surface of the impeller cup 22 around the central axis J1 and are arranged at a substantially equal pitch in the circumferential direction.
  • the impeller 2 rotates counterclockwise in FIG. 2 and 3, reference numeral 211 is attached to the leading edge of each blade in the rotational direction, and reference numeral 212 is attached to the trailing edge.
  • FIG. 4 is a diagram for explaining the angle formed between the chord and the rotating surface of the impeller.
  • the chord is defined as follows. That is, in the impeller 2 shown in FIG. 2, a cylindrical surface (for example, A1) having a certain radius around the central axis J1 is assumed, and the impeller blades are cut by the cylindrical surface. A straight line connecting the leading edge and the trailing edge of the blade when the cylindrical surface which is the cut surface 21C of the blade is developed into a plane is called a chord L. An angle formed by the chord L and the impeller rotating surface P is defined as ⁇ . In the axial fan according to the present invention, first, this ⁇ increases as it goes radially outward. Hereinafter, this angle may be referred to as an angle of attack. This angle is also called a pitch angle. The impeller blades rotate in the direction of the arrow in FIG.
  • the angle formed between the chord of each blade and the rotating surface of the impeller increases toward the radially outward direction.
  • the angle formed between the chord of each blade and the central axis increases toward the radially outward direction. It may be understood that it becomes smaller.
  • FIG. 5 is a diagram in which the outline of the blade cutting surface 21C is overlapped by a virtual cylindrical surface centered on the central axis J1 at the positions indicated by reference signs A1 to A4 in FIG. It shows.
  • the up-down direction in FIG. 5 is a direction parallel to the central axis J1, and the left-right (horizontal) direction is parallel to the rotating surface of the impeller.
  • the right direction in FIG. 5 is the direction in which the blade rotates as viewed from the outside in the radial direction.
  • a straight line connecting the leading edge and the trailing edge in each cross section is indicated by an alternate long and short dash line, and the chords corresponding to the positions of the reference signs A1 to A4 are respectively given reference signs L1 to L4.
  • the angle formed between the chord of each wing and the rotating surface of the impeller gradually increases from the chord L1 toward the chord L4. That is, in each wing, the wing stands as it goes radially outward, that is, toward the tip of the wing.
  • the lengths of the chords L1 to L4 are also increased toward the outer side in the radial direction. Further, the width in the direction parallel to the central axis J1 between the leading edge and the trailing edge of the blade, that is, the height in the direction of the central axis J1, is also increased toward the outer side in the radial direction.
  • the blades are directed radially outward so that the circumferential width between the leading edge and the trailing edge of each blade increases in the radially outward direction.
  • the chord is getting bigger.
  • the circumferential width between the leading edge and the trailing edge of each blade may be understood as the circumferential width when the blade is projected onto a plane perpendicular to the central axis J1.
  • the ratio of work to electric power in the blade can be increased.
  • the chord of the wing is increased radially outward, the radially inner portion is made thicker than the radially outer portion of the wing in order to keep the attachment strength of the wing better. .
  • each of the blades in the conventional axial fan there are many examples in which the chords become larger outward in the radial direction.
  • the angle of attack of each wing is smaller outward in the radial direction, that is, toward the tip. This is to collect the air flow while suppressing the swirl component as much as possible in the air flow discharged from the axial fan.
  • the width (height) of the blade in the direction of the central axis J1 is not increased.
  • each chord has a chord that increases radially outward. For this reason, the area of the wing
  • each blade may be rounded for reasons of molding. Also in this case, it does not depart from the gist of the present invention. According to the present invention, also in this case, the circumferential width between the leading edge and the trailing edge of each blade is substantially increased toward the outer side in the radial direction.
  • the wind flow is directed radially outward, so the characteristic deterioration due to the backflow of air at the root of the blade in the surging region can be reduced, and the characteristics in the surging region are more than those of conventional axial fans. Can be improved.
  • FIG. 6 is a conceptual graph showing a trend of static pressure-air flow characteristics in the axial fan according to the present invention and the conventional axial fan.
  • FIG. 7 is a conceptual diagram illustrating the difference in static pressure-air flow characteristics in various load regions between the axial fan according to the present invention and the conventional axial fan.
  • FIG. 7A conceptually shows the speed of the air flow in the low load region by the length of the arrow. That is, in the conventional axial fan, there is no technical idea that the air flow velocity is positively varied depending on the radial position of the blade. On the other hand, in the axial fan according to the present invention, the angle of attack of each blade increases toward the outer side in the radial direction, so the air flow becomes faster toward the outer side in the radial direction.
  • FIG. 7B shows the state of airflow in the surging area.
  • the influence of centrifugal force increases, so the air flow moves outward. If it does so, a backflow will come to arise in the root part of the trailing edge side of a wing.
  • the characteristics of the surging region are particularly improved as compared with the conventional axial fan.
  • FIG. 7C shows the state of air flow in the high load region. In the high load region, a reverse flow also occurs at the tip portion on the leading edge side of the blade.
  • the number of wings was five.
  • the number is not limited to five, and may be other than five, for example, three, four, six, seven, and the like.
  • each blade of the impeller the radius of the tip portion of the width in the direction parallel to the central axis between the leading edge and the trailing edge of each blade is set as R and the radius of the root portion is r.
  • A is the width of the tip in the radial direction.
  • FIG. 9 is a diagram schematically showing how the parameters of the impeller blades are changed.
  • (1) is a reference wing
  • (2) is an example in which the mounting position (height) of the leading edge at the root of the wing is lowered
  • (3) is the same mounting position (height).
  • (4) is an example in which the radius r of the root part of the blade is reduced with reference to A
  • (5) is an example in which the radius r of the root part of the blade is also increased. In this way, the static pressure-air volume characteristics were examined by changing r / R, A / B, and B / R, respectively.
  • r / R was changed in each impeller blade, and the static pressure-air flow characteristics of the axial fan were examined. As a result, it was found that the static pressure-air flow characteristics were particularly excellent in the range of 0.45 ⁇ r / R ⁇ 0.8.
  • r / R is set to 0.45 or more, the blade length (Rr) becomes relatively long, the radially outer wind speed is increased, and the characteristics in the surging region can be effectively improved. Is preferred.
  • r / R is 0.8 or less, it is suitable for securing the angle of attack of the tip of the blade and the projected area of the blade. In consideration of such points, r / R may be appropriately adjusted according to the application.
  • the static pressure-air flow characteristics of the axial fan were examined by changing A / B in each impeller blade. As a result, it was found that the static pressure-air flow characteristics were particularly excellent in the range of 0.3 ⁇ A / B ⁇ 0.8. If A / B is 0.3 or more, the width of the root portion is sufficient, the work amount of the root portion is secured, the characteristics in the surging region are further improved, and the mechanical strength can be sufficiently secured. Is preferable. When A / B is 0.8 or less, the angle of attack at the tip of the blade and the projected area of the blade can be sufficiently secured, which is preferable. In consideration of such points, A / B may be appropriately adjusted according to the application.
  • the static pressure-air flow characteristics of the axial fan 1 were examined by changing the B / R in each impeller blade. As a result, it was found that the static pressure-air flow characteristics were particularly excellent in the range of 0.56 ⁇ B / R ⁇ 1.4.
  • B / R is set to 0.56 or more, it is preferable because a sufficient projected area of the blade can be secured and characteristics in the surging region can be further improved.
  • B / R is 1.4 or less, the relationship between the impeller diameter and the angle of attack of the tip of the blade becomes appropriate, which is preferable because the characteristics can be further improved. In consideration of such points, B / R may be appropriately adjusted according to the application.
  • FIG. 10A to FIG. 10C show another example of the impeller.
  • 10A is a plan view
  • FIG. 10B is a side view
  • FIG. 10C is a perspective view.
  • FIG. 11 shows an example in which an axial flow fan 100 is configured using the axial flow fan according to the present invention.
  • the serial axial fan 100 is a so-called counter-rotating axial fan, used as a cooling fan for air-cooling electronic equipment such as a server, and the first axial fan 11 disposed on the upper side in FIG.
  • the second axial fan 12 connected to the lower side of the first axial fan 11 along the central axis J1 of the first axial fan 11 is provided.
  • the first axial fan 11 includes a first impeller 112, a first motor unit 113 that rotates the first impeller 112 around the central axis J1, a first housing 114 that surrounds the outer periphery of the first impeller 112, A first base portion 115 that supports the motor portion 113 and a plurality of first support ribs 116 are provided.
  • the first impeller 112 has a plurality of blades extending radially outward from the outer surface of the impeller cup.
  • the plurality of first support ribs 116 connect the first base portion 115 and the first housing 114. In this example, four first support ribs 116 are provided.
  • the first housing 114, the first base portion 115, and the first support rib 116 are formed as one member by resin injection molding.
  • the structure of the second axial fan 12 is basically the structure of the motor section of the first axial fan 11 turned upside down to reduce the width of the first impeller in the rotational axis direction, and the rotational direction is reversed. It can be understood that the pitch angle of each blade is reversed.
  • the second axial fan 12 includes a second impeller 122, a second motor portion 123 that rotates the second impeller 122 around the central axis J1, a second housing 124 that surrounds the outer periphery of the second impeller 122, and a second A second base portion 125 that supports the motor portion 123 and a plurality of second support ribs 126 are provided.
  • the plurality of second support ribs 126 connect the second base portion 125 and the second housing 124. In this example, four second support ribs 126 are provided.
  • the second housing 124, the second base portion 125, and the second support rib 126 are formed as one member by resin injection molding.
  • the first motor unit 113 rotates in the direction of the right arrow in the drawing
  • the second motor unit 123 rotates in the direction of the left arrow in the drawing to send air downward.
  • the present invention can be used not only as a single axial fan but also as a series axial fan in combination with other axial fans.

Abstract

An axial fan comprising a motor section, an impeller having a plurality of blades which extend radially outward from the center axis of the motor section and which are disposed at generally equal pitches in the circumferential direction, and a housing surrounding the outer periphery of the impeller.  The angle between the chord of each blade on a virtual cylindrical surface having a certain radius with the center axis as the center and the plane of rotation of the impeller is gradually increased radially outward.  The circumferential width of each blade between the leading edge and the trailing edge at a certain radius of each blade is substantially increased radially outward.

Description

軸流ファンAxial fan
 本発明は、軸流ファンに関する。 The present invention relates to an axial fan.
 従来より、PC(パーソナルコンピュータ)やサーバ等の電子機器では、筐体内部の電子部品を冷却するために冷却ファンが設けられている。特に、サーバ等の比較的大型の電子機器では、静圧が高い冷却ファンが求められる。 Conventionally, in an electronic device such as a PC (personal computer) or a server, a cooling fan is provided to cool electronic components inside the casing. In particular, a relatively large electronic device such as a server requires a cooling fan having a high static pressure.
 軸流ファンのファンブレードにおける迎角は、根元部から先端部に向かうにつれて、小さくなっているのが、一般的である。これは、軸流ファンから排出される空気流において、旋回成分をできるだけ抑えて、空気流を集めるためである。 The angle of attack in the fan blade of an axial fan is generally smaller as it goes from the root to the tip. This is for collecting the air flow while suppressing the swirl component as much as possible in the air flow discharged from the axial fan.
 ところで、特開2004-251179号公報に開示される軸流ファンでは、高風量を得るために、ブレードを後退翼にするとともに、ファンブレードの根元部の迎角より、ブレード先細り先端後退部の迎角を大きくしている。
特開2004-251179号公報
By the way, in the axial fan disclosed in Japanese Patent Application Laid-Open No. 2004-251179, in order to obtain a high air volume, the blade is a swept blade, and the angle of attack of the blade taper tip receding portion is determined from the angle of attack of the root portion of the fan blade. The corner is enlarged.
JP 2004-251179 A
 一般に軸流ファンでは、インペラの仕事量は、翼の径方向外側の部位において最大となる。一般的な軸流ファンでは、負荷が増大するにつれて、サージングが発生して、静圧が低下する領域が発生していた。 In general, with an axial fan, the work of the impeller is maximized at the radially outer portion of the blade. In a general axial fan, as the load increases, surging occurs and a region where the static pressure decreases is generated.
 一方、特開2004-251179号公報に開示される軸流ファンでは、ファンブレードの根元部の迎角より、ブレード先細り先端後退部の迎角が大きくなっているので、効果的に空気を送ることができる。しかし、径方向外側の部位において、ブレードが先細りとなっており、その面積が小さくなっている。このために、軸流ファンとして、効率的ではなかった。 On the other hand, in the axial fan disclosed in Japanese Patent Application Laid-Open No. 2004-251179, the angle of attack of the blade taper tip receding portion is larger than the angle of attack of the root portion of the fan blade, so that air can be sent effectively. Can do. However, the blade is tapered at a radially outer portion, and its area is reduced. For this reason, it was not efficient as an axial fan.
 本発明の目的は、静圧-風量特性を向上できる軸流ファンを提供する。より具体的には、サージング領域において、従来の軸流ファンより静圧を大きくしうる軸流ファンを提供する。 An object of the present invention is to provide an axial fan that can improve static pressure-air flow characteristics. More specifically, the present invention provides an axial fan that can have a static pressure higher than that of a conventional axial fan in a surging region.
 本発明の例示的な軸流ファンは、モータ部と、前記モータ部の中心軸を中心として径方向外方に延伸するとともに、周方向に略等ピッチにて配置された複数の翼を有するインペラと、前記インペラの外周を囲むハウジングと、を備え、前記中心軸を中心とし、ある半径を持つ仮想円筒面上における前記各翼の翼弦と、前記インペラの回転面とのなす角が、径方向外方に向かうに従って大きくなるとともに、前記各翼のある半径における、前縁と後縁とにおける周方向の幅が、径方向外方に向かうに従って実質的に大きくなっている。 An exemplary axial fan according to the present invention includes a motor unit and an impeller having a plurality of blades extending radially outward about the central axis of the motor unit and arranged at substantially equal pitches in the circumferential direction. And a housing surrounding the outer periphery of the impeller, and an angle formed by a chord of each blade on a virtual cylindrical surface having a certain radius with the central axis as a center and a rotation surface of the impeller is a diameter. The width in the circumferential direction at the leading edge and the trailing edge at a certain radius of each wing increases substantially as it goes outward in the radial direction.
 本発明の例示的な軸流ファンによると、サージング領域においても、従来の軸流ファンより静圧を大きくしうる。 According to the exemplary axial fan of the present invention, the static pressure can be increased even in the surging region as compared with the conventional axial fan.
本発明の例示的な軸流ファンの部分断面図である。1 is a partial cross-sectional view of an exemplary axial fan of the present invention. インペラの一例の平面図である。It is a top view of an example of an impeller. インペラの一例の底面図である。It is a bottom view of an example of an impeller. 翼弦とインペラの回転面とのなす角を説明する図である。It is a figure explaining the angle | corner which a chord and the rotating surface of an impeller make. インペラの一例の断面を示す図である。It is a figure which shows the cross section of an example of an impeller. 本発明による軸流ファンと従来の軸流ファンとにおける、静圧-風量特性の傾向を示すグラフである。6 is a graph showing a trend of static pressure-air flow characteristics in an axial fan according to the present invention and a conventional axial fan. 本発明による軸流ファンと従来の軸流ファンとについて、静圧-風量特性の低負荷領域での違いを説明する概念図である。It is a conceptual diagram explaining the difference in the low load area | region of a static pressure-air volume characteristic about the axial fan by this invention, and the conventional axial fan. 同じく、静圧-風量特性のサージ領域での違いを説明する概念図である。Similarly, it is a conceptual diagram illustrating the difference in the surge region of the static pressure-air flow characteristics. 同じく、静圧-風量特性の高負荷領域での違いを説明する概念図である。Similarly, it is a conceptual diagram illustrating the difference in the high load region of the static pressure-air flow characteristics. インペラのパラメータを説明する図である。It is a figure explaining the parameter of an impeller. インペラのパラメータを変化させる様子を表す模式図である。It is a schematic diagram showing a mode that the parameter of an impeller is changed. 別例のインペラの平面図である。It is a top view of the impeller of another example. 別例のインペラの側面図である。It is a side view of the impeller of another example. 別例のインペラの斜視図である。It is a perspective view of the impeller of another example. 本発明による軸流ファンを用いて構成した直列式軸流ファンの部分断面図である。It is a fragmentary sectional view of the series type axial flow fan comprised using the axial flow fan by this invention.
 図1は、本発明の例示的な軸流ファンの断面図である。
 軸流ファン1は、インペラ2と、中心軸J1を中心としてインペラを回転させるモータ部3と、インペラの外周を囲むハウジング4と、モータ部を支持するベース部5と、ベース部5とハウジング4とを接続する複数の支持リブ6と、を備える。ハウジング4と、ベース部5と、支持リブ6とは、樹脂の射出成形により1つの部材として形成されている。
FIG. 1 is a cross-sectional view of an exemplary axial fan of the present invention.
The axial fan 1 includes an impeller 2, a motor unit 3 that rotates the impeller about the central axis J1, a housing 4 that surrounds the outer periphery of the impeller, a base unit 5 that supports the motor unit, a base unit 5 and a housing 4 And a plurality of support ribs 6 for connecting the two. The housing 4, the base portion 5, and the support rib 6 are formed as one member by resin injection molding.
 インペラ2は、カップ形状をしているインペラカップ22に、複数の翼21が形成されている。モータ部3は、ステータ31とロータマグネット32とからなっている。ステータ31は、コア311とコイル312とからなっている。ベース部5には、軸受ハウジング81が固定されている。軸受ハウジング81の内側に、軸受82が固定されている。シャフト7と軸受ハウジング81と軸受82とによって、軸受部8が構成されている。インペラカップ22の中心には、シャフト7が嵌められている。本発明の例示的な軸流ファンでは、軸受82はボールベアリングである。しかし、軸受82は、これに限定されず、滑り軸受や流体動圧軸受など、種々の軸受構造を採用することが可能である。 The impeller 2 has a plurality of blades 21 formed on an impeller cup 22 having a cup shape. The motor unit 3 includes a stator 31 and a rotor magnet 32. The stator 31 includes a core 311 and a coil 312. A bearing housing 81 is fixed to the base portion 5. A bearing 82 is fixed inside the bearing housing 81. The shaft 7, the bearing housing 81 and the bearing 82 constitute a bearing portion 8. The shaft 7 is fitted in the center of the impeller cup 22. In the exemplary axial fan of the present invention, the bearing 82 is a ball bearing. However, the bearing 82 is not limited to this, and various bearing structures such as a sliding bearing and a fluid dynamic pressure bearing can be employed.
 図1において、モータ部を支持するベース部とハウジングとを接続する支持リブ6は、軸流ファンの排出側に設けられており、翼状の形としている。そのため、支持リブ6は、空気流の旋回成分を抑制する静翼として機能する。支持リブ6の形としては、翼状に限られず、棒状や板状など種々の形状とすることが可能である。 In FIG. 1, the support rib 6 that connects the base portion that supports the motor portion and the housing is provided on the discharge side of the axial fan, and has a wing shape. Therefore, the support rib 6 functions as a stationary blade that suppresses the swirling component of the air flow. The shape of the support rib 6 is not limited to a wing shape, and may be various shapes such as a rod shape and a plate shape.
 図2はインペラ2の平面図であり、図3はインペラ2の底面図である。この例では、インペラ2は5枚の翼を有している。インペラ2の5枚の翼21は、中心軸J1を中心としてインペラカップ22の外側面から径方向外方に延伸するとともに、周方向に略等ピッチにて配置される。このインペラ2は、図2における反時計回りに回転する。図2および図3では、各翼の回転方向の前縁に符号211を付しており、後縁に符号212を付している。 FIG. 2 is a plan view of the impeller 2 and FIG. 3 is a bottom view of the impeller 2. In this example, the impeller 2 has five wings. The five blades 21 of the impeller 2 extend radially outward from the outer surface of the impeller cup 22 around the central axis J1 and are arranged at a substantially equal pitch in the circumferential direction. The impeller 2 rotates counterclockwise in FIG. 2 and 3, reference numeral 211 is attached to the leading edge of each blade in the rotational direction, and reference numeral 212 is attached to the trailing edge.
 図4は、翼弦とインペラの回転面とのなす角を説明する図である。ここで、翼弦とは、以下のように定義される。すなわち、図2に示したインペラ2において、中心軸J1を中心として、ある半径を持つ円筒面(例えば、A1)を仮想し、当該円筒面でインペラの翼を切断する。翼の切断面21Cである円筒面を平面に展開したとき、翼の前縁と後縁とを結ぶ直線を翼弦Lと呼ぶ。この翼弦Lと、インペラの回転面Pとのなす角をθとする。本発明による軸流ファンでは、まず、このθが径方向外方に向かうに従って大きくなっている。以下、この角を迎角と呼ぶことがある。また、この角はピッチ角とも呼ばれる。なお、インペラの翼は、図4中の矢印の方向に回転する。 FIG. 4 is a diagram for explaining the angle formed between the chord and the rotating surface of the impeller. Here, the chord is defined as follows. That is, in the impeller 2 shown in FIG. 2, a cylindrical surface (for example, A1) having a certain radius around the central axis J1 is assumed, and the impeller blades are cut by the cylindrical surface. A straight line connecting the leading edge and the trailing edge of the blade when the cylindrical surface which is the cut surface 21C of the blade is developed into a plane is called a chord L. An angle formed by the chord L and the impeller rotating surface P is defined as θ. In the axial fan according to the present invention, first, this θ increases as it goes radially outward. Hereinafter, this angle may be referred to as an angle of attack. This angle is also called a pitch angle. The impeller blades rotate in the direction of the arrow in FIG.
 各翼の翼弦と前記インペラの回転面とのなす角が径方向外方に向かうに従って大きくなることは、各翼の翼弦と前記中心軸とのなす角が前記径方向外方に向かうに従って小さくなることと、理解されてもよい。 The angle formed between the chord of each blade and the rotating surface of the impeller increases toward the radially outward direction. The angle formed between the chord of each blade and the central axis increases toward the radially outward direction. It may be understood that it becomes smaller.
 図5は、図2中に符号A1~A4にて示す位置における中心軸J1を中心とする仮想円筒面による翼の切断面21Cの輪郭を重ねて示す図であり、円筒面を平面に展開して示している。図5の上下方向は中心軸J1に平行な方向であり、左右(水平)方向はインペラの回転面と平行になっている。図5の右方向が、径方向外方から見た翼の回転する方向である。各断面における前縁と後縁とを結ぶ直線を一点鎖線にて示し、符号A1~A4の位置に対応する翼弦にそれぞれ、順に符号L1~L4を付している。 FIG. 5 is a diagram in which the outline of the blade cutting surface 21C is overlapped by a virtual cylindrical surface centered on the central axis J1 at the positions indicated by reference signs A1 to A4 in FIG. It shows. The up-down direction in FIG. 5 is a direction parallel to the central axis J1, and the left-right (horizontal) direction is parallel to the rotating surface of the impeller. The right direction in FIG. 5 is the direction in which the blade rotates as viewed from the outside in the radial direction. A straight line connecting the leading edge and the trailing edge in each cross section is indicated by an alternate long and short dash line, and the chords corresponding to the positions of the reference signs A1 to A4 are respectively given reference signs L1 to L4.
 図5に示すように、各翼の翼弦と前記インペラの回転面とのなす角は、翼弦L1から翼弦L4に向かって徐々に大きくなっている。つまり、各翼では、径方向外方に向かうに従って、すなわち翼の先端部に行くほど、翼が立っている。 As shown in FIG. 5, the angle formed between the chord of each wing and the rotating surface of the impeller gradually increases from the chord L1 toward the chord L4. That is, in each wing, the wing stands as it goes radially outward, that is, toward the tip of the wing.
 本発明による軸流ファンでは、翼弦L1~L4の長さも、径方向外方に向かうに従って大きくなっている。また、翼の前縁と後縁との間の中心軸J1に平行な方向の幅、すなわち中心軸J1方向の高さも、径方向外方に向かうに従って、大きくなっている。 In the axial fan according to the present invention, the lengths of the chords L1 to L4 are also increased toward the outer side in the radial direction. Further, the width in the direction parallel to the central axis J1 between the leading edge and the trailing edge of the blade, that is, the height in the direction of the central axis J1, is also increased toward the outer side in the radial direction.
 さらに、図2および図3に示すように、各翼の前縁と後縁との間の周方向の幅が径方向外方に向かうに従って大きくなるように、翼では径方向外方に向かって翼弦が大きくなっている。各翼の前縁と後縁との間の周方向の幅は、翼を中心軸J1に垂直な面に投影した場合の周方向の幅として理解されてもよい。
 これらにより、翼において電力に対する仕事量の割合を増大できる。なお、翼の翼弦を径方向外方に向かって大きくする際、翼の取り付け強度をより保つために、翼の径方向外側の部位よりも、径方向内側の部位の方を厚くしている。
Furthermore, as shown in FIGS. 2 and 3, the blades are directed radially outward so that the circumferential width between the leading edge and the trailing edge of each blade increases in the radially outward direction. The chord is getting bigger. The circumferential width between the leading edge and the trailing edge of each blade may be understood as the circumferential width when the blade is projected onto a plane perpendicular to the central axis J1.
As a result, the ratio of work to electric power in the blade can be increased. When the chord of the wing is increased radially outward, the radially inner portion is made thicker than the radially outer portion of the wing in order to keep the attachment strength of the wing better. .
 これまでの軸流ファンにおける各翼では、径方向外方に向かって翼弦が大きくなっている例が多い。しかし、各翼の迎角は、径方向外方に向かって、すなわち先端部ほど、小さくなっている。これは、軸流ファンから排出される空気流において、旋回成分をできるだけ抑えて、空気流を集めるためである。さらに、翼の中心軸J1方向の幅(高さ)が、大きくならないようにしたものである。 ”In each of the blades in the conventional axial fan, there are many examples in which the chords become larger outward in the radial direction. However, the angle of attack of each wing is smaller outward in the radial direction, that is, toward the tip. This is to collect the air flow while suppressing the swirl component as much as possible in the air flow discharged from the axial fan. Further, the width (height) of the blade in the direction of the central axis J1 is not increased.
 本発明の軸流ファンでは、各翼において、径方向外方に向かって翼弦が大きくなっている。このため、径方向外側の部位における翼の面積が大きくなっている。このことは、回転軸に垂直な面に、翼を投影したときの投影面積が大きいことと等価である。このため、軸流ファンとして効率的であり、排気能力が高い。 In the axial flow fan of the present invention, each chord has a chord that increases radially outward. For this reason, the area of the wing | blade in the site | part of a radial direction outer side is large. This is equivalent to a large projected area when the wing is projected onto a plane perpendicular to the rotation axis. For this reason, it is efficient as an axial fan and has a high exhaust capacity.
 なお、図2および図3に示すように、成形上の理由等により、各翼の先端部を丸くする場合がある。この場合も、本発明の要旨から外れることはない。本発明ではこの場合も、各翼の前縁と後縁との間における周方向の幅が、径方向外方に向かうに従って実質的に大きくなっているという。 In addition, as shown in FIGS. 2 and 3, the tip of each blade may be rounded for reasons of molding. Also in this case, it does not depart from the gist of the present invention. According to the present invention, also in this case, the circumferential width between the leading edge and the trailing edge of each blade is substantially increased toward the outer side in the radial direction.
 軸流ファン1では、各翼の迎角を径方向外方に向かって大きくしているので、翼から発生する空気流のうち、各翼の径方向外周部における軸方向の風速が増大する。サージングが発生する領域では、翼の根元部から空気の逆流が生じており、この軸方向の風速が増大することにより、径方向外周部の圧力が低くなる。それにより径方向に圧力勾配が生じ、風の流れが径方向外方へ移動する。よって、最大風量領域においても、風の流れが径方向外方へ向かっているので、サージング領域における翼の根元部の空気の逆流による特性低下を軽減でき、サージング領域で従来の軸流ファンより特性を向上できる。 In the axial flow fan 1, since the angle of attack of each blade is increased radially outward, the air velocity generated from the blade increases the wind speed in the axial direction at the radially outer periphery of each blade. In the region where surging occurs, a backflow of air is generated from the root portion of the blade, and the pressure in the radially outer peripheral portion is lowered by increasing the axial wind speed. Thereby, a pressure gradient is generated in the radial direction, and the flow of the wind moves outward in the radial direction. Therefore, even in the maximum air volume region, the wind flow is directed radially outward, so the characteristic deterioration due to the backflow of air at the root of the blade in the surging region can be reduced, and the characteristics in the surging region are more than those of conventional axial fans. Can be improved.
 図6は、本発明による軸流ファンと従来の軸流ファンとにおける、静圧-風量特性の傾向を示した概念的グラフである。図7は、本発明による軸流ファンと従来の軸流ファンとにおいて、静圧-風量特性の種々の負荷領域での違いを説明する概念図である。 FIG. 6 is a conceptual graph showing a trend of static pressure-air flow characteristics in the axial fan according to the present invention and the conventional axial fan. FIG. 7 is a conceptual diagram illustrating the difference in static pressure-air flow characteristics in various load regions between the axial fan according to the present invention and the conventional axial fan.
 図7Aは、低負荷領域における空気流の速さを、矢印の長さで概念的に示している。つまり、従来の軸流ファンでは、翼の半径位置によって空気流の流速を積極的に異ならせる技術的思想はなかった。一方、本発明による軸流ファンでは、各翼の迎角が径方向外方に向かって大きくなっているので、径方向外方ほど空気流が速くなっている。 FIG. 7A conceptually shows the speed of the air flow in the low load region by the length of the arrow. That is, in the conventional axial fan, there is no technical idea that the air flow velocity is positively varied depending on the radial position of the blade. On the other hand, in the axial fan according to the present invention, the angle of attack of each blade increases toward the outer side in the radial direction, so the air flow becomes faster toward the outer side in the radial direction.
 図7Bは、サージング領域における空気流の様子を示している。サージング領域になると、遠心力の影響が大きくなるため、空気流は外側へ移動する。そうすると、翼の後縁側の根元部に逆流が生じるようになる。本発明の軸流ファンでは、従来の軸流ファンに比べて、特にこのサージング領域の特性が向上している。 FIG. 7B shows the state of airflow in the surging area. In the surging region, the influence of centrifugal force increases, so the air flow moves outward. If it does so, a backflow will come to arise in the root part of the trailing edge side of a wing. In the axial fan of the present invention, the characteristics of the surging region are particularly improved as compared with the conventional axial fan.
 図7Cは、高負荷領域における空気流の様子を示している。高負荷領域になると、翼の前縁側の先端部にも、逆流が生じるようになる。 FIG. 7C shows the state of air flow in the high load region. In the high load region, a reverse flow also occurs at the tip portion on the leading edge side of the blade.
 なお、以上の説明では、翼の数は5枚であった。これに限られることなく、5枚以外としてよく、例えば、3枚,4枚,6枚,7枚などを例示できる。 In the above explanation, the number of wings was five. The number is not limited to five, and may be other than five, for example, three, four, six, seven, and the like.
 次に、図8を参照しながら、インペラの各翼のパラメータについて説明する。
 インペラの各翼において、径方向先端部の半径をRとし根元部の半径をrとし、各翼の前縁と後縁との間における中心軸に平行な方向の幅のうち、根元部の幅をAとし径方向先端部の幅をBとする。
Next, parameters of each blade of the impeller will be described with reference to FIG.
In each blade of the impeller, the radius of the tip portion of the width in the direction parallel to the central axis between the leading edge and the trailing edge of each blade is set as R and the radius of the root portion is r. And A is the width of the tip in the radial direction.
 図9は、インペラの翼のパラメータを変化させる様子を模式的に表した図である。図9において、(1)は基準となる翼であり、(2)は翼の根元部における前縁の取付け位置(高さ)を下げた例であり、(3)は同じく取付け位置(高さ)を上げた例である。また、(4)はAを基準として、翼の根元部の半径rを小さくした例であり、(5)は同じく翼の根元部の半径rを大きくした例である。
 このようにして、r/R、A/BおよびB/Rをそれぞれ変化させて、静圧-風量特性を調べた。
FIG. 9 is a diagram schematically showing how the parameters of the impeller blades are changed. In FIG. 9, (1) is a reference wing, (2) is an example in which the mounting position (height) of the leading edge at the root of the wing is lowered, and (3) is the same mounting position (height). ). Further, (4) is an example in which the radius r of the root part of the blade is reduced with reference to A, and (5) is an example in which the radius r of the root part of the blade is also increased.
In this way, the static pressure-air volume characteristics were examined by changing r / R, A / B, and B / R, respectively.
 まず、インペラの各翼においてr/Rを変化させて、軸流ファンの静圧-風量特性を調べた。その結果、0.45≦r/R≦0.8の範囲で、静圧-風量特性が特に優れていることがわかった。
 r/Rを0.45以上にすると、翼の長さ(R-r)が相対的に長くなり、径方向外方の風速を速くし、サージング領域での特性を効果的に上げられるので、好適である。r/Rを0.8以下とすると、翼の先端部の迎角と翼の投影面積を確保するのに、好適である。このような点を考慮して、r/Rは、用途に応じて適宜調整するとよい。
First, r / R was changed in each impeller blade, and the static pressure-air flow characteristics of the axial fan were examined. As a result, it was found that the static pressure-air flow characteristics were particularly excellent in the range of 0.45 ≦ r / R ≦ 0.8.
When r / R is set to 0.45 or more, the blade length (Rr) becomes relatively long, the radially outer wind speed is increased, and the characteristics in the surging region can be effectively improved. Is preferred. When r / R is 0.8 or less, it is suitable for securing the angle of attack of the tip of the blade and the projected area of the blade. In consideration of such points, r / R may be appropriately adjusted according to the application.
 次に、インペラの各翼においてA/Bを変化させて、軸流ファンの静圧-風量特性を調べた。その結果、0.3≦A/B≦0.8の範囲で、静圧-風量特性が特に優れていることがわかった。
 A/Bを0.3以上にすると、根元部の幅を十分にし、根元部の仕事量を確保して、サージング領域での特性をより向上させ、さらに機械的な強度も十分に確保できるので、好適である。A/Bを0.8以下にすると、翼の先端部の迎角と翼の投影面積とを、十分に確保できるので、好適である。このような点を考慮して、A/Bは、用途に応じて適宜調整するとよい。
Next, the static pressure-air flow characteristics of the axial fan were examined by changing A / B in each impeller blade. As a result, it was found that the static pressure-air flow characteristics were particularly excellent in the range of 0.3 ≦ A / B ≦ 0.8.
If A / B is 0.3 or more, the width of the root portion is sufficient, the work amount of the root portion is secured, the characteristics in the surging region are further improved, and the mechanical strength can be sufficiently secured. Is preferable. When A / B is 0.8 or less, the angle of attack at the tip of the blade and the projected area of the blade can be sufficiently secured, which is preferable. In consideration of such points, A / B may be appropriately adjusted according to the application.
 さらに、インペラの各翼においてB/Rを変化させて、軸流ファン1の静圧-風量特性を調べた。その結果、0.56≦B/R≦1.4の範囲で、静圧-風量特性が特に優れていることがわかった。
 B/Rを0.56以上にすると、翼の投影面積を十分に確保し、サージング領域での特性をより向上できるので、好適である。B/Rが1.4以下にすると、インペラの直径と翼の先端部の迎角の関係が適切になり、特性をより向上できるので、好適である。このような点を考慮して、B/Rは、用途に応じて適宜調整するとよい。
Further, the static pressure-air flow characteristics of the axial fan 1 were examined by changing the B / R in each impeller blade. As a result, it was found that the static pressure-air flow characteristics were particularly excellent in the range of 0.56 ≦ B / R ≦ 1.4.
When B / R is set to 0.56 or more, it is preferable because a sufficient projected area of the blade can be secured and characteristics in the surging region can be further improved. When B / R is 1.4 or less, the relationship between the impeller diameter and the angle of attack of the tip of the blade becomes appropriate, which is preferable because the characteristics can be further improved. In consideration of such points, B / R may be appropriately adjusted according to the application.
 図10Aから図10Cに、インペラの別例を示す。図10Aは平面図であり、図10Bは側面図であり、図10Cは斜視図である。 FIG. 10A to FIG. 10C show another example of the impeller. 10A is a plan view, FIG. 10B is a side view, and FIG. 10C is a perspective view.
 以上、本発明の例示的な実施形態について説明してきたが、本発明は上記実施形態に限定されるものではなく、様々な変更が可能である。 The exemplary embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made.
(応用例)
 図11は、本発明による軸流ファンを用いて、直列式軸流ファン100を構成した例を示す。直列式軸流ファン100はいわゆる二重反転式軸流ファンであり、サーバ等の電子機器を空冷するための冷却ファンとして用いられ、図11において上側に配置される第1軸流ファン11、および、第1軸流ファン11の中心軸J1に沿って第1軸流ファン11の下側に接続される第2軸流ファン12を備える。
(Application example)
FIG. 11 shows an example in which an axial flow fan 100 is configured using the axial flow fan according to the present invention. The serial axial fan 100 is a so-called counter-rotating axial fan, used as a cooling fan for air-cooling electronic equipment such as a server, and the first axial fan 11 disposed on the upper side in FIG. The second axial fan 12 connected to the lower side of the first axial fan 11 along the central axis J1 of the first axial fan 11 is provided.
 図11に示す直列式軸流ファン100では、上側から空気が取り込まれ、下側へと送出されるように中心軸J1方向の空気流が発生する。 In the serial axial fan 100 shown in FIG. 11, air flows in the direction of the central axis J1 so that air is taken in from the upper side and sent out to the lower side.
 第1軸流ファン11は、第1インペラ112と、中心軸J1を中心として第1インペラ112を回転させる第1モータ部113と、第1インペラ112の外周を囲む第1ハウジング114と、第1モータ部113を支持する第1ベース部115と、複数の第1支持リブ116とを備える。第1インペラ112は、インペラカップの外側面から径方向外方に延伸する複数の翼が形成されている。複数の第1支持リブ116は、第1ベース部115と第1ハウジング114とを接続している。この例で第1支持リブ116は、4本設けられている。第1ハウジング114と、第1ベース部115と、第1支持リブ116とは、樹脂の射出成形により1つの部材として形成される。 The first axial fan 11 includes a first impeller 112, a first motor unit 113 that rotates the first impeller 112 around the central axis J1, a first housing 114 that surrounds the outer periphery of the first impeller 112, A first base portion 115 that supports the motor portion 113 and a plurality of first support ribs 116 are provided. The first impeller 112 has a plurality of blades extending radially outward from the outer surface of the impeller cup. The plurality of first support ribs 116 connect the first base portion 115 and the first housing 114. In this example, four first support ribs 116 are provided. The first housing 114, the first base portion 115, and the first support rib 116 are formed as one member by resin injection molding.
 第2軸流ファン12の構造は、基本的に、第1軸流ファン11におけるモータ部の構造を上下に反転し、第1インペラの回転軸方向の幅を小さくし、さらに回転方向が逆になるように、各翼のピッチ角を逆にしたものと、理解されればよい。 The structure of the second axial fan 12 is basically the structure of the motor section of the first axial fan 11 turned upside down to reduce the width of the first impeller in the rotational axis direction, and the rotational direction is reversed. It can be understood that the pitch angle of each blade is reversed.
 第2軸流ファン12は、第2インペラ122と、中心軸J1を中心として第2インペラ122を回転させる第2モータ部123と、第2インペラ122の外周を囲む第2ハウジング124と、第2モータ部123を支持する第2ベース部125と、複数の第2支持リブ126と、を備える。複数の第2支持リブ126は、第2ベース部125と第2ハウジング124とを接続している。なお、この例で第2支持リブ126は、4本設けられている。第2ハウジング124と、第2ベース部125と、第2支持リブ126とは、樹脂の射出成形により1つの部材として形成される。 The second axial fan 12 includes a second impeller 122, a second motor portion 123 that rotates the second impeller 122 around the central axis J1, a second housing 124 that surrounds the outer periphery of the second impeller 122, and a second A second base portion 125 that supports the motor portion 123 and a plurality of second support ribs 126 are provided. The plurality of second support ribs 126 connect the second base portion 125 and the second housing 124. In this example, four second support ribs 126 are provided. The second housing 124, the second base portion 125, and the second support rib 126 are formed as one member by resin injection molding.
 直列式軸流ファン100では、第1モータ部113が図の右矢印の方向に、第2モータ部123が図の左矢印の方向に回転して、下方に空気を送り出している。 In the serial axial fan 100, the first motor unit 113 rotates in the direction of the right arrow in the drawing, and the second motor unit 123 rotates in the direction of the left arrow in the drawing to send air downward.
 本発明は、単体の軸流ファンとして利用できるのみならず、他の軸流ファンと組み合わせて、直列式軸流ファンとしても利用できる。 The present invention can be used not only as a single axial fan but also as a series axial fan in combination with other axial fans.
1:軸流ファン、2:インペラ、
21:翼、211:翼の前縁、212:翼の後縁、22:インペラカップ、
3:モータ部、31:ステータ、311:コア、
312:コイル、32:ロータマグネット、
4:ハウジング、5:ベース部、
6:支持リブ、7:シャフト、
8:軸受部、81:軸受ハウジング、82:軸受、
J1:中心軸、L1~L4:翼弦、
100:直列式軸流ファン、
11:第1軸流ファン、12:第2軸流ファン、
112:第1インペラ、122:第2インペラ、
113:第1モータ部、123:第2モータ部、
114:第1ハウジング、124:第2ハウジング、
115:第1ベース部、125:第2ベース部、
116:第1支持リブ、126:第2支持リブ、
1: Axial fan, 2: Impeller,
21: Wing, 211: Leading edge of the wing, 212: Trailing edge of the wing, 22: Impeller cup,
3: Motor part, 31: Stator, 311: Core,
312: Coil, 32: Rotor magnet,
4: Housing, 5: Base part,
6: support rib, 7: shaft,
8: bearing part, 81: bearing housing, 82: bearing,
J1: central axis, L1-L4: chord,
100: Inline axial fan,
11: 1st axial fan, 12: 2nd axial fan,
112: First impeller, 122: Second impeller,
113: 1st motor part, 123: 2nd motor part,
114: first housing, 124: second housing,
115: 1st base part, 125: 2nd base part,
116: first support rib, 126: second support rib,

Claims (7)

  1.  軸流ファンであって、
     モータ部と、
     前記モータ部の中心軸を中心として径方向外方に延伸するとともに、周方向に略等ピッチにて配置された複数の翼を有するインペラと、
     前記インペラの外周を囲むハウジングと、
    を備え、
     前記中心軸を中心とし、ある半径を持つ仮想円筒面上における前記各翼の翼弦と、前記インペラの回転面とのなす角が、径方向外方に向かうに従って大きくなるとともに、
     前記各翼のある半径での前縁と後縁との間における周方向の幅が、径方向外方に向かうに従って実質的に大きくなっている、軸流ファン。
    An axial fan,
    A motor section;
    An impeller having a plurality of wings extending radially outward about the central axis of the motor portion and arranged at a substantially equal pitch in the circumferential direction;
    A housing surrounding the outer periphery of the impeller;
    With
    The angle formed between the chord of each wing on the virtual cylindrical surface having a certain radius with the central axis as the center and the rotation surface of the impeller increases as it goes radially outward,
    An axial fan in which a circumferential width between a front edge and a rear edge at a certain radius of each blade is substantially increased toward the outer side in the radial direction.
  2.  請求項1に記載の軸流ファンにおいて、
     前記各翼のある半径での前縁と後縁との間における前記中心軸に平行な方向の幅が、径方向外方に向かうに従って大きくなっている、軸流ファン。
    The axial fan according to claim 1,
    An axial fan in which a width in a direction parallel to the central axis between a leading edge and a trailing edge at a radius of each blade is increased toward a radially outward direction.
  3.  請求項1に記載の軸流ファンにおいて、
     前記各翼における、径方向先端部の半径をRとし、根元部の半径をrとしたとき、
    r/Rが、
    0.45≦r/R≦0.8
    の範囲にある、軸流ファン。
    The axial fan according to claim 1,
    In each of the wings, when the radius of the radial tip is R and the radius of the root is r,
    r / R is
    0.45 ≦ r / R ≦ 0.8
    An axial fan in the range of
  4.  請求項1に記載の軸流ファンにおいて、
     前記各翼の前縁と後縁との間における前記中心軸に平行な方向の幅のうち、根元部の幅をAとし、径方向先端部の幅をBとしたとき、
    A/Bが、
    0.3≦A/B≦0.8
    の範囲にある、軸流ファン。
    The axial fan according to claim 1,
    Of the widths in the direction parallel to the central axis between the leading edge and the trailing edge of each wing, when the width of the root portion is A and the width of the radial tip is B,
    A / B is
    0.3 ≦ A / B ≦ 0.8
    An axial fan in the range of
  5.  請求項1に記載の軸流ファンにおいて、
     前記各翼における、径方向先端部の半径をRとし、
     前記各翼の前縁と後縁との間における前記中心軸に平行な方向の幅のうち、径方向先端部の幅をBとしたとき、
    B/Rが、
    0.56≦B/R≦1.4
    の範囲にある、軸流ファン。
    The axial fan according to claim 1,
    In each of the wings, let R be the radius of the radial tip.
    Of the widths in the direction parallel to the central axis between the leading edge and the trailing edge of each wing, when the width of the radial tip is B,
    B / R is
    0.56 ≦ B / R ≦ 1.4
    An axial fan in the range of
  6.  請求項1に記載の軸流ファンにおいて、
     さらに、前記軸流ファンの排出側に、静翼を備えている、軸流ファン。
    The axial fan according to claim 1,
    Furthermore, the axial fan provided with the stationary blade in the discharge | emission side of the said axial fan.
  7.  請求項6に記載の軸流ファンにおいて、
     前記静翼は、モータ部を支持するベース部とハウジングとを接続している、軸流ファン。
    The axial fan according to claim 6,
    The stationary blade is an axial fan in which a base portion supporting a motor portion and a housing are connected.
PCT/JP2009/065330 2008-09-02 2009-09-02 Axial fan WO2010026986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008224265 2008-09-02
JP2008-224265 2008-09-02

Publications (1)

Publication Number Publication Date
WO2010026986A1 true WO2010026986A1 (en) 2010-03-11

Family

ID=41797152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065330 WO2010026986A1 (en) 2008-09-02 2009-09-02 Axial fan

Country Status (1)

Country Link
WO (1) WO2010026986A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734185A (en) * 2011-04-08 2012-10-17 山洋电气株式会社 Counter-rotating axial flow fan

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322379A (en) * 2005-05-19 2006-11-30 Matsushita Electric Ind Co Ltd Axial flow impeller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322379A (en) * 2005-05-19 2006-11-30 Matsushita Electric Ind Co Ltd Axial flow impeller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734185A (en) * 2011-04-08 2012-10-17 山洋电气株式会社 Counter-rotating axial flow fan

Similar Documents

Publication Publication Date Title
JP5273475B2 (en) Inline axial fan
CN1318936C (en) Centrifugal fan
JP2008261280A (en) Axial fan
JP5525429B2 (en) Counter-rotating axial fan
JP6063619B2 (en) Centrifugal fan
JP5809859B2 (en) Centrifugal fan
US8794915B2 (en) Blower fan
JP5267343B2 (en) Impeller and centrifugal fan
JP6071394B2 (en) Centrifugal fan
JP5728210B2 (en) Axial fan
JP2008038637A (en) Serial axial fan
JP5705945B1 (en) Centrifugal fan
US20080213103A1 (en) Axial flow fan
JP4389998B2 (en) Centrifugal multi-blade fan
JP2007218101A (en) Axial fan and housing for axial fan
JP2011074817A (en) Axial fan
JP5375099B2 (en) Inline axial fan
CN113027813A (en) Fan wheel and cooling fan with same
JP2007303333A (en) Contra-rotating axial flow fan
JP4441978B2 (en) Blower
JP5705805B2 (en) Centrifugal fan
WO2010026986A1 (en) Axial fan
US20170350409A1 (en) Impeller and fan including the impeller
US20090175720A1 (en) Axial fan and frame thereof
JP6282720B2 (en) Centrifugal fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09811511

Country of ref document: EP

Kind code of ref document: A1