WO2010026754A1 - Spiral winding device for strip material - Google Patents

Spiral winding device for strip material Download PDF

Info

Publication number
WO2010026754A1
WO2010026754A1 PCT/JP2009/004332 JP2009004332W WO2010026754A1 WO 2010026754 A1 WO2010026754 A1 WO 2010026754A1 JP 2009004332 W JP2009004332 W JP 2009004332W WO 2010026754 A1 WO2010026754 A1 WO 2010026754A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip material
mandrel
drum
curl
spiral
Prior art date
Application number
PCT/JP2009/004332
Other languages
French (fr)
Japanese (ja)
Inventor
浜地容佑
長瀬友吾
鳥海修一
小野寺彰
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008226821A external-priority patent/JP4442706B2/en
Priority claimed from JP2008227211A external-priority patent/JP4442707B2/en
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2010026754A1 publication Critical patent/WO2010026754A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/581Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material
    • B29C53/582Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material comprising reinforcements, e.g. wires, threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/62Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis
    • B29C53/66Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis with axially movable winding feed member, e.g. lathe type winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • F16L11/083Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/08Transition metals
    • B29K2305/12Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/003Layered products comprising a metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/005Hoses, i.e. flexible
    • B29L2023/006Flexible liners

Definitions

  • the present invention relates to a strip material spiral winding device, which is suitable for manufacturing a rubber hose reinforced with a plurality of steel cords arranged in a spiral shape, for example. It can be used.
  • a rubber hose reinforced with a plurality of reinforcing cords (for example, steel cords) arranged in a spiral shape on the tube wall of the hose is used for distributing high-pressure hydraulic oil in a hydraulic system, for example.
  • Reinforcing cords arranged spirally on the tube wall of this type of rubber hose are flexible and have high tensile rigidity, thereby at least partially enhancing the flexibility of the rubber hose. While maintaining, the rubber hose functions as a reinforcing member that prevents the rubber hose from being excessively deformed by being expanded or stretched by high pressure inside.
  • a manufacturing apparatus for manufacturing this type of rubber hose is a manufacturing apparatus disclosed in Japanese Patent Laid-Open No. 10-44214.
  • a rubber hose manufactured by the manufacturing apparatus of the same publication is formed on an inner tube layer that defines a lumen of the rubber hose, a reinforcing layer formed on the outer periphery of the inner tube layer, and an outer periphery of the reinforcing layer.
  • the rubber hose has a laminated structure composed of an outer tube layer that defines an outer peripheral surface of the rubber hose, and the reinforcing layer includes a plurality of reinforcing cords arranged in a spiral shape.
  • This manufacturing apparatus includes a first extruder for extruding an inner tube, and a cord winding machine for winding a reinforcing cord in a spiral shape on the outer peripheral surface of the extruded inner tube (the same publication). Is called a "spiral machine") and a composite structure that is integrally combined with a second extruder that extrudes and forms an outer tube on the outer peripheral surface of the inner tube wound with a reinforcing cord. It is a device. Japanese Patent Laid-Open No. 10-44214
  • An object of the present invention is to provide a strip material spiral winding device that can be suitably used for manufacturing, for example, a rubber hose reinforced with a plurality of steel cords arranged in a spiral shape.
  • a spiral winding device for a strip material includes a base frame, a mandrel rotatably supported by the base frame and capable of winding the strip material around the base frame, and driving the mandrel.
  • a controller for controlling the mandrel drive mechanism and the feed movement mechanism, the controller being capable of feeding and moving the strip material supply mechanism along the mandrel in synchronization with the rotation of the mandrel.
  • the strip material supply mechanism includes a drum that has an axis and is rotatable around the axis, and the strip material is wound around the periphery of the drum, and the drum is wound around the mandrel and pulled.
  • a guide mechanism for guiding the strip material fed out from the drum and supplied toward the mandrel, a brake mechanism capable of applying a controllable braking torque to the rotation of the drum, and the strip material fed out from the drum A detection mechanism for detecting a radial distance from the shaft center of the drum at a delivery position of the drum, and a braking torque that the brake mechanism acts on the rotation of the drum based on a detection result of the detection mechanism
  • a braking torque control mechanism for controlling the tensile force acting on the strip material fed from the drum by controlling There.
  • the guide mechanism of the strip material supply mechanism has a curl direction curl when the strip material is wound around the mandrel on the strip material fed from the drum and supplied toward the mandrel. It may be provided with a curl giving mechanism for giving.
  • the curl imparting mechanism may include a cylindrical pin that is fed from the drum and supplied to the mandrel so that the strip material is wound around the circumferential surface and pressed against the circumferential surface. .
  • the winding radius in the free state of the strip material to which the curl has been imparted by the curl imparting mechanism may be equal to the radius of the mandrel.
  • a rubber hose reinforced by a plurality of steel cords arranged in a spiral shape can be manufactured by a relatively inexpensive manufacturing apparatus.
  • FIG. 1 shows a cross-section of a specific example of a rubber hose reinforced with a plurality of spirally arranged steel cords that can be manufactured using the spiral winding device of the strip material of the present invention. It is a schematic diagram and (B) is a partially broken view of this rubber hose.
  • (A), (B), and (C) are cross-sectional views showing three types of composite strip materials, and these composite strip materials use the strip material spiral winding device of the present invention.
  • the rubber hose shown in FIG. 1 can be used for manufacturing. It is the figure which showed the spiral winding apparatus of the strip material which concerns on suitable embodiment of this invention, and is the schematic diagram which showed arrangement
  • FIG. 3 It is the schematic diagram which showed arrangement
  • (A), (B), (C), and (D) are explanatory drawings showing the winding process of the composite strip material that can be performed using the spiral winding device of the strip material shown in FIG. It is.
  • the term “rubber” as used in connection with the present invention is not limited to natural rubber alone, and includes any elastomeric material referred to as synthetic rubber or other names, For example, in a uniform material composed of a single elastomer component, a uniform material obtained by mixing a plurality of types of elastomer components, a composite material composed of a plurality of elements composed of different elastomer components, and a base material composed of elastomer components. There are composite materials in which non-elastomeric components are dispersed or embedded, and various other forms of elastomer materials in various combinations thereof are also included. Also, the term “rubber hose” as used in connection with the present invention means a hose that uses rubber as the main material and, optionally, a non-rubber material.
  • the rubber hose 10 of a specific example has a concentric laminated structure.
  • the rubber hose 10 includes a flexible tube 11 (hereinafter referred to as “inner tube”) that forms the innermost layer of the laminated structure, and the inner tube 11 defines a lumen of the rubber hose 10. It is made.
  • inner tube 11 As a material for the inner tube 11, for example, oil resistant rubber or the like is used.
  • the inner tube 11 itself may be a laminated tube.
  • the rubber hose 10 further includes a laminated reinforcing layer 14 formed on the outer periphery of the inner tube 11, and this laminated reinforcing layer 14 is provided with a plurality of reinforcing steel cords (steel cord) in a base material made of rubber. ) 12 is embedded.
  • the reinforcing steel cords 12 are arranged so as to form four groups of steel cords 16, 18, 20 and 22.
  • Each of the steel cord groups 16, 18, 20, and 22 includes a plurality of steel cords 12 arranged so as to extend spirally in parallel to each other on a single cylindrical surface, and the steel cord groups 16, 18, 20, and 22 are arranged concentrically. Further, as shown in FIG.
  • the steel cords 12 of the first steel cord group 16 and the third steel cord group 20 are wound in the first spiral direction, while the second steel cord group 18 is wound.
  • the steel cords 12 of the fourth steel cord group 22 are wound in a second spiral direction opposite to the first spiral direction.
  • the steel cord 12 is flexible and has a large tensile rigidity, so that the rubber hose 10 is expanded in diameter by a high pressure inside thereof while maintaining the flexibility of the rubber hose 10 at least partially. It functions as a reinforcing member that prevents it from being stretched and causing excessive deformation. How to form the laminated reinforcing layer 14 described above will be described in detail later.
  • the rubber hose 10 further includes a flexible tube 24 (hereinafter referred to as “outer tube”) formed around the laminated reinforcing layer 14.
  • the outer tube 24 forms the outermost layer of the laminated structure of the rubber hose 10, and as the material of the outer tube 24, for example, wear-resistant rubber or the like is used.
  • the outer tube 24 itself may be a laminated tube.
  • the rubber hose 10 having the above configuration is suitable for use as a so-called high pressure hydraulic hose for circulating high pressure hydraulic oil in a hydraulic system.
  • the rubber hose 10 described above can be preferably manufactured by using a strip material spiral winding device according to an embodiment of the present invention described below, and the manufacturing process thereof is shown in FIG. (A) to FIG. 2 (C) include a step of forming the laminated reinforcing layer 14 using the composite strip material shown in its concrete example, and this composite strip material will be described first.
  • the composite strip material 26 of the three specific examples shown in cross-sectional views in FIGS. 2 (A) to 2 (C) is composed of two sides (opposite side surfaces) 30, 32 and both sides. And edges 34, 36.
  • Each of the composite strip members 26 is arranged in parallel with each other and the unvulcanized rubber strip 38 and the unvulcanized rubber strip 38 are arranged in parallel to each other in the longitudinal direction of the unvulcanized rubber strip 38 (hence, the composite strip).
  • a plurality of reinforcing steel cords 12 extending in the longitudinal direction of the material 26, the plurality of steel cords 12 being coplanar extending parallel to the side surfaces 30, 32 of the composite strip material 26. are arranged in a line.
  • the steel cord 12 has flexibility and large tensile rigidity, and functions as a reinforcing material for the rubber hose 10 as described above.
  • each steel cord 12 is entirely embedded in the unvulcanized rubber strip 36.
  • each steel cord 12 is partly embedded in the unvulcanized rubber strip 36, and the remaining part of the peripheral surface is formed.
  • the unvulcanized rubber strip 36 is exposed to the outside from one side surface 32.
  • each steel cord 12 is more exposed than the composite strip material of FIG. 2B, that is, the peripheral surface of each steel cord 12 is exposed.
  • a half-circumferential portion is embedded in the unvulcanized rubber strip 36, and the remaining half-circular portion of the peripheral surface is exposed to the outside from one side surface 32 of the unvulcanized rubber strip 36.
  • the surface (circumferential surface) of the steel cord 12 is preferably plated with brass, and the reason will be described later.
  • FIG. 3 is a schematic view showing the arrangement of main components of the spiral winding device 28 for strip material according to a preferred embodiment of the present invention in a plan view.
  • the strip material spiral winding device 28 shown in the figure includes a base frame (schematically shown by reference numeral BF in the figure) and a strip material around the base frame BF that is rotatably supported.
  • a mandrel 42 on which SM (for example, the composite strip material 26) can be wound, and a mandrel driving mechanism for driving and rotating the mandrel 42 are provided.
  • the mandrel driving mechanism grips one end of the mandrel 42. It comprises a power rotary head 44 provided with a chuck 46.
  • the strip material spiral winding device 28 is further provided with a tailstock 48 that engages with the other end of the mandrel 42.
  • the rotation drive head 44 and the core presser base 48 are attached to the base frame BF, and the mandrel 42 can rotate about its longitudinal axis through the power rotary head 44 and the core presser base 48. Supported by BF.
  • the mandrel 42 can be removed from the base frame BF by operating the chuck 46 and the core presser 48.
  • the strip material spiral winding device 28 further includes a strip material supply mechanism 50 (strip material supplier) which is a mechanism for supplying the strip material SM to be wound around the mandrel 42 toward the mandrel 42, and A feeding movement mechanism 52 (feeding ⁇ ⁇ mechanism) for feeding and moving the strip material feeding mechanism 50 along the mandrel 42 is provided.
  • the feed moving mechanism 52 includes a pair of guide rails 54 fixed to the base frame BF.
  • the guide rails 54 include a mandrel 42 supported by a rotary drive head 44 and a core pusher 48 and the guide rails 54. It is arrange
  • the feed moving mechanism 52 further includes a carriage 56, and this carriage 56 includes a traveling mechanism and can travel on the guide rail 54.
  • a strip material supply mechanism 50 is mounted on the carriage 56.
  • the spiral winding device 28 of the strip material further includes a controller 58 that can control the power rotary head 44 that is a mandrel driving mechanism and the feed movement mechanism 52 individually and in association with each other. ing.
  • the controller 58 can move the strip material supply mechanism 50 along the mandrel 42 in synchronization with the rotation of the mandrel 42 by controlling both in association with each other.
  • the strip material supply mechanism 50 includes a drum 60 and a guide mechanism 62 (see FIG. 4).
  • the drum 60 has an axis AX and is supported by a carriage 56 so as to be rotatable around the axis AX.
  • the strip material SM is wound around the drum 60 and stored. Therefore, the drum 60 is a strip material storage mechanism that stores the strip material SM supplied toward the mandrel 42.
  • the guide mechanism 62 is also supported by the carriage 56, and the guide mechanism 62 guides the strip material SM fed out from the drum 60 and supplied toward the mandrel 42 by being wound around the mandrel 42 and being pulled.
  • the drum 60 and the guide mechanism 62 are connected to the carriage 54 through a swing mechanism (not shown), and thereby tilt relative to the carriage 54 to change the direction in which the strip material SM is fed out. It is made to be able to.
  • the guide mechanism 62 includes a guide roller 64, and the strip material SM fed out from the drum 60 and supplied toward the mandrel 42 passes through the guide roller 64 and is guided by the guide roller 64.
  • the guide mechanism 62 further includes a curl tacking mechanism 66.
  • the curl tacking mechanism 66 is fed to the strip material SM that is fed from the drum 60 and supplied to the mandrel 42, and the strip material SM is supplied to the mandrel 42. It is a mechanism for imparting curl in the curl direction when wound around the periphery of the.
  • the curl imparting mechanism 66 includes a cylindrical pin 67 that is fed from the drum 60 and supplied toward the mandrel 42 and is wound around the circumferential surface and pressed against the circumferential surface.
  • the strip material SM When the strip material SM is fed out from the drum 60, it passes through the cylindrical pin 67, further passes through the guide roller 64, and is supplied toward the mandrel 42.
  • the radius of the cylindrical pin 6 is appropriately determined so that the winding radius in the free state of the strip material SM to which the winding rod is applied in this way is equal to the radius of the mandrel 42. Giving the winding material to the strip material SM in this manner is advantageous in stably winding the strip material SM around the mandrel 42.
  • the strip material supply mechanism 58 includes a brake mechanism 68 capable of applying a controllable braking torque with respect to the rotation of the drum 60, and a feeding position of the strip material SM fed out from the drum 60.
  • a detection mechanism 70 that detects a radial distance RD (see FIG. 4) from the axis AX of the drum 60, and a braking torque that the brake mechanism 68 acts on the rotation of the drum 60 based on the detection result of the detection mechanism 70.
  • a braking torque control mechanism 74 for controlling the tensile force acting on the strip material SM fed out from the drum 60.
  • the braking torque control mechanism 74 a commercially available programmable logic controller (also called “sequencer”) is used.
  • the detection mechanism 70 an ultrasonic range sensor that detects the distance to the object by detecting an echo of an ultrasonic pulse emitted toward the object is used, and the sensor 60 is wound around the drum 60. The distance to the surface of the strip material SM is detected, and the distance RD from the axis AX of the drum 60 to the surface is calculated in the sequencer 74 based on the detection result.
  • the brake mechanism 68 an air brake mechanism is used.
  • the braking torque control mechanism 74 further includes a control valve 76 for controlling the air brake mechanism and an actuator 78 for operating the control valve 76 in accordance with an output signal output from the sequencer 74.
  • the sequencer 74 sets the air brake so as to be proportional to the radial distance RD from the axis AX of the drum 60 of the feeding position of the strip material SM fed out from the drum 60, which is calculated from the detection result of the detection mechanism 70.
  • the braking torque generated by the mechanism By controlling the braking torque generated by the mechanism, the tensile force acting on the strip material SM fed out from the drum 60 is maintained at a good magnitude.
  • the strip material SM can be stably wound around the mandrel 42, and the winding material can be favorably imparted to the strip material SM.
  • the configuration for controlling the tensile force acting on the strip material SM fed from the drum 60 is not limited to that specifically described above, and various other configurations can be employed.
  • a rubber hose manufacturing method which is performed using the spiral winding device 28 of the strip material, includes the step of manufacturing the composite strip material 26, and the composite strip material 26 is previously As described with reference to FIGS. 2A to 2C, the unvulcanized rubber strip 38 and the unvulcanized rubber having both side surfaces 30 and 32 and both side edges 34 and 36, and the unvulcanized rubber.
  • the strip is provided with a plurality of reinforcing steel cords 12 arranged in parallel to each other and extending in the longitudinal direction of the unvulcanized rubber strip.
  • the composite strip material 26 for example, an unvulcanized rubber is formed into a strip shape, and at the same time, a plurality of steel cords are completely or partially embedded as inserts in the unvulcanized rubber strip. What should I do?
  • the manufactured composite strip material 26 is wound around the drum 60 of the strip material supply mechanism 56 and stored in the drum 60.
  • the rubber hose manufacturing method further includes a step of manufacturing a flexible inner tube 11 for forming the innermost layer of the rubber hose 10.
  • the inner tube 11 may be formed using a known rubber tube manufacturing method. In that case, the inner tube 11 is cut according to the length of the rubber hose to be manufactured, and the mandrel 42 is cut. Fit on the outer periphery. Alternatively, an unvulcanized rubber strip may be spirally wound around the outer periphery of the mandrel 42, and the wound unvulcanized rubber strip may be subsequently vulcanized to form the inner tube 11. .
  • an appropriate release agent or the like is applied to the inner surface of the inner tube 11 and / or the outer surface of the mandrel so that the inner tube 11 can be removed from the mandrel after the rubber hose is completed. It is good to leave.
  • the rubber hose manufacturing method further includes a step of forming a laminated reinforcing layer 14 having a plurality of steel cords 12 arranged in a spiral shape around the inner tube 11.
  • the composite strip material 26 is wound around the inner tube 11, and a wound structure having a laminated structure in which a plurality of unit layers 90 to 96 (see FIG. 1B) are laminated.
  • Form the body At that time, one unit layer is formed on (around) the inner tube 11, and another unit layer is formed successively on (on the periphery) of the formed unit layer.
  • the unvulcanized rubber strip 38 of the wound composite strip material 26 is vulcanized.
  • the front end portion of the composite strip material 26 fed from the drum 60 is fixed to one end (left end in FIG. 3) of the inner tube 11 on the mandrel 42, and then the strip
  • the material spiral winding device 28 is operated to rotate the mandrel 42, and the carriage 54 is fed along the guide rail 52 (in the illustrated example, from the left end to the right end in FIG. 3), whereby the composite strip.
  • the material 26 is wound around the outer circumference of the inner tube 11 in a spiral shape.
  • one side surface (for example, the side surface 30) of the composite strip material 26 is brought into contact with the outer peripheral surface of the inner tube 11, and the side edge of the composite strip material 26 forming one turn of the spiral and the turn adjacent thereto are arranged.
  • the composite strip material 26 is spirally wound around the outer peripheral surface of the inner tube 11 with the side edges of the composite strip material 26 to be formed, and the outer peripheral surface of the inner tube 11 is covered with the composite strip material 26. .
  • the first (innermost) unit layer 90 (see FIG. 1B) is formed on (around) the inner tube 11.
  • the single composite strip material 26 is made to have the spiral pitch P equal to the width dimension W of the composite strip material 26,
  • the single composite which forms the side edge of the single composite strip material 26 which forms one turn of the spiral and the turn adjacent to the spiral is wound on the outer peripheral surface of the inner tube 11 in a spiral shape.
  • the side edges of the strip material 26 may be brought into close contact with each other.
  • FIGS. 5 (B) to 5 (D) when forming each unit layer, a plurality of composite strip members 26 are arranged in parallel spiral on the outer peripheral surface of the inner tube 11.
  • the side edge of one composite strip member of the plurality of composite strip members may be brought into close contact with the side edge of the composite strip member adjacent thereto.
  • the spiral pitch P may be set to N times the width W of the composite strip material 26, where N is the number of composite strip materials wound on the outer peripheral surface of the inner tube 11. is there.
  • the second unit layer 92 is subsequently formed on (around) the formed first unit layer 90.
  • the tip of the composite strip material 26 fed from the drum 60 is fixed to one end (right end in FIG. 3) of the first unit layer 90, and then the spiral winding device 28 of the strip material is operated.
  • the carriage 54 is fed and moved along the guide rail 52 (in the illustrated example, from the right end to the left end in FIG. 3), whereby the composite strip material 26 is moved to the first unit layer 90. Wound spirally around the periphery.
  • one side surface (for example, the side surface 30) of the composite strip material 26 is brought into contact with the outer peripheral surface of the first unit layer 90, and the side edge of the composite strip material 26 forming one spiral is adjacent to the side edge.
  • the composite strip material 26 is spirally wound on the outer peripheral surface of the first unit layer 90 with the side edges of the composite strip material 26 forming the turn closely, and the outer peripheral surface of the first unit layer 90 is wound around the composite strip material. 26.
  • the second unit layer 92 is formed on (around) the first unit layer 90.
  • the rotation direction of the mandrel 42 is the same when the first unit layer 90 is formed and when the second unit layer 92 is formed. This rotation direction is indicated by an arrow 80 in FIG.
  • the relative winding direction of the strip material 26 with respect to the mandrel 42 is opposite to the rotation direction 80 of the mandrel 42 as indicated by an arrow 82. As is clear from FIG.
  • the spiral direction of the composite strip material 26 forming the first unit layer 90 and the spiral direction of the composite strip material 26 forming the second unit layer 92 are mutually The opposite direction is the same, and the relative winding direction 82 of the strip material 26 with respect to the mandrel 42 is the same between the two, whereas the winding direction of the composite strip material 26 ( In other words, the strip material supply mechanism 50 is moved in the opposite direction).
  • the composite strip material 26 is wound from the left end to the right end in FIG. 3 in the same manner as when the first unit layer 90 is formed around the second unit layer 92 thus formed.
  • a third unit layer 94 is formed on (around) the unit layer 92. Further, the third unit layer 94 is wound around the third unit layer 94 thus formed by winding the composite strip material 26 from the right end to the left end in FIG. 3 in the same manner as when the second unit layer 92 is formed.
  • a fourth unit layer 96 is formed on (around) 94.
  • the unit layers 90 to 96 formed by this unit layer forming method include a unit layer obtained by winding the composite strip material 26 in the first spiral direction, and the composite strip material 26 in the first spiral direction. It is formed by alternately laminating unit layers wound in two spiral directions.
  • the base outer peripheral surface on which the unit layer 90 is formed is the outer peripheral surface of the inner tube 11
  • the second unit layer 92, the third unit layer 94, In the four unit layer 96, the base outer peripheral surface on which the unit layer is formed is the outer peripheral surface of the unit layer formed prior to the unit layer.
  • this does not affect the procedure for forming the unit layer.
  • One side surface of the composite strip material 26 is brought into contact with each other, and the side edge of the composite strip material 26 forming one turn of the spiral is closely contacted with the side edge of the composite strip material 26 forming the adjacent turn.
  • the composite strip material 26 By winding the composite strip material 26 spirally around the foundation outer circumferential surface, the foundation outer circumferential surface is covered with the composite strip material 26.
  • the composite strip material 26 wound around the mandrel 42 may have its same side facing the mandrel 42.
  • the composite strip material 26 of any unit layer 90 to 96 has the side surface 30 on which the steel cord 12 is not exposed directed toward the mandrel 42.
  • the steel cord 12 appears to be exposed on the outer peripheral surface of each unit layer 90, 92, 94, 96.
  • the spiral angle of the composite strip material 26 wound in a spiral shape is the diameter of the unit layer to be formed, the spiral Further, the pitch P of the spiral is influenced by the width dimension W of the composite strip material 26. Therefore, the width dimension W of the composite strip material 26 is appropriately determined in advance according to the target spiral angle of the steel cord 12 of the rubber hose to be manufactured. Further, when the first to fourth unit layers 90 to 96 are formed using the same composite strip material 26, the diameters of the unit layers are different, so that the spiral angles of the steel cords in the unit layers are also different from each other.
  • the spiral angle in the first unit layer 90 is the largest, and the spiral angle in the fourth unit layer 96 is the smallest. Therefore, if the spiral angle of the steel cord 12 is desired to be the same in all unit layers, the unit layers may be formed using composite strip materials having different width dimensions, that is, The width dimension of each composite strip is appropriately determined by making the width dimension of the composite strip material forming one unit layer 90 the smallest and the width dimension of the composite strip material forming the fourth unit layer 96 being the largest. Just do it.
  • a powder for example, sulfur powder
  • a sulfur-containing substance is attached to the surface of the composite strip material 26.
  • the peripheral surface of the steel cord 12 is exposed to the outside from one side of the unvulcanized rubber strip 38. It is advantageous when using a composite strip material 26 in which the peripheral surface of the steel cord 12 is brass-plated, because when vulcanization is performed later by attaching such a powder. Further, the surface of the steel cord 12 plated with brass exposed from the composite strip material 26 of one unit layer and the unvulcanized rubber of the composite strip material 26 of the adjacent unit layer This is because bonding strength between the surface of the lip 38 is increased.
  • the composite strip material 26 is applied while applying an appropriate tension to the composite strip material 26.
  • the composite strip material can be wound on the outer peripheral surface of the inner tube 11 or the outer peripheral surface of the unit layer that has already been formed. 26 can be wound on the outer peripheral surface of the inner tube 11 or on the outer peripheral surface of the unit layer that has already been formed, the composite strip material 26 can be wound on the outer peripheral surface in a stable state.
  • the unvulcanized laminated reinforcing layer 14 is formed.
  • an outer tube 24 that covers the surface of the laminated reinforcing layer 14 is formed on the outer periphery of the unvulcanized laminated reinforcing layer 14.
  • This process can be carried out by using a strip material spiral forming apparatus 28, for example, a strip material made of unvulcanized rubber which becomes a wear-resistant rubber after vulcanization, which is a material of the outer tube 24.
  • the unvulcanized rubber strip material is wound around the drum 60 of the strip material supply mechanism 50 and stored in this drum 60, and the unvulcanized rubber strip material is spirally wound around the surface of the unvulcanized laminated reinforcing layer 14. do it.
  • the unvulcanized rubber strip material may be wound so that there is an overlap (over wrapping) between one side edge in one turn and the other side edge in the next turn. .
  • the mandrel 42 is removed from the spiral forming device 28 of the strip material, and is carried into the vulcanization processing device. Apply sulfur treatment. Subsequently, a rubber hose 10 as a final product is obtained by pulling out the vulcanized rubber hose 10 from the mandrel 42.

Abstract

A spiral winding device (28) for a strip material, suitable for manufacturing a rubber hose (10).  The device (28) is provided with a rotatable mandrel (42), and also with a strip material supply mechanism (50) for supplying to the mandrel a strip material (SM) to be wound around the mandrel.  The strip material supply mechanism is provided with a drum (60) around which the strip material is wound and stored, a brake mechanism (68) capable of applying controllable braking torque to rotation of the drum, a detection mechanism (70) for detecting the radial distance (RD) of a position at which the strip material is paid out of the drum, the radial distance (RD) being measured from the axis (AX) of the drum, and a braking torque control mechanism (74) for controlling braking torque applied by the brake mechanism to rotation of the drum based on the result of the detection by the detection mechanism (70), thereby controlling a pulling force acting on the strip material paid out of the drum.

Description

ストリップ材のスパイラル巻回装置Strip material spiral winding device
 本発明はストリップ材のスパイラル巻回装置に関し、このストリップ材のスパイラル巻回装置は、例えば、スパイラル状に配設された複数本のスチールコードで補強されたラバーホースを製造するためなどに好適に用い得るものである。 The present invention relates to a strip material spiral winding device, which is suitable for manufacturing a rubber hose reinforced with a plurality of steel cords arranged in a spiral shape, for example. It can be used.
 ホースの管壁にスパイラル状に配設された複数本の補強用コード(例えばスチールコードなど)で補強されたラバーホースは、例えば油圧システムにおいて高圧作動油を流通させるためなどに用いられている。この種のラバーホースの管壁にスパイラル状に配設されている補強用コードは、屈曲性を有すると共に大きな引張剛性を有するものであり、それらによって、ラバーホースの可撓性を少なくとも部分的に維持しつつ、ラバーホースがその内部の高圧によって拡径され或いは引き延ばされて過度の変形を生じるのを防止する補強部材として機能している。 A rubber hose reinforced with a plurality of reinforcing cords (for example, steel cords) arranged in a spiral shape on the tube wall of the hose is used for distributing high-pressure hydraulic oil in a hydraulic system, for example. Reinforcing cords arranged spirally on the tube wall of this type of rubber hose are flexible and have high tensile rigidity, thereby at least partially enhancing the flexibility of the rubber hose. While maintaining, the rubber hose functions as a reinforcing member that prevents the rubber hose from being excessively deformed by being expanded or stretched by high pressure inside.
 この種のラバーホースを製造する製造装置の1つに、特開平10-44214号公報に開示されている製造装置がある。同公報の製造装置によって製造されるラバーホースは、該ラバーホースの内腔を画成するインナーチューブ層と、該インナーチューブ層の外周に形成された補強層と、該補強層の外周に形成され該ラバーホースの外周面を画成するアウターチューブ層とで構成された積層構造を有しており、その補強層はスパイラル状に配設された複数本の補強用コードから成る。この製造装置は、インナーチューブを押出形成するための第1の押出機と、押出形成されたインナーチューブの外周面上に補強用コードをスパイラル状に巻回するためのコード巻回機(同公報では「スパイラルマシン」と称している)と、補強用コードが巻回されたインナーチューブの外周面上にアウターチューブを押出形成する第2の押出機とを一体的に組合わせて構成した複合構造の装置である。
特開平10-44214号公報
One manufacturing apparatus for manufacturing this type of rubber hose is a manufacturing apparatus disclosed in Japanese Patent Laid-Open No. 10-44214. A rubber hose manufactured by the manufacturing apparatus of the same publication is formed on an inner tube layer that defines a lumen of the rubber hose, a reinforcing layer formed on the outer periphery of the inner tube layer, and an outer periphery of the reinforcing layer. The rubber hose has a laminated structure composed of an outer tube layer that defines an outer peripheral surface of the rubber hose, and the reinforcing layer includes a plurality of reinforcing cords arranged in a spiral shape. This manufacturing apparatus includes a first extruder for extruding an inner tube, and a cord winding machine for winding a reinforcing cord in a spiral shape on the outer peripheral surface of the extruded inner tube (the same publication). Is called a "spiral machine") and a composite structure that is integrally combined with a second extruder that extrudes and forms an outer tube on the outer peripheral surface of the inner tube wound with a reinforcing cord. It is a device.
Japanese Patent Laid-Open No. 10-44214
 しかしながら、この特開平10-44214号公報に記載のラバーホースの製造装置には、構造が複雑で高価であるという短所が付随していた。そのため、より安価な製造装置を用いてスパイラル状に配設された複数本のスチールコードで補強されたラバーホースを製造することのできる、ストリップ材のスパイラル巻回装置が求められていた。 However, the rubber hose manufacturing apparatus described in Japanese Patent Laid-Open No. 10-44214 is accompanied by the disadvantage that the structure is complicated and expensive. Therefore, there has been a demand for a strip material spiral winding device that can manufacture a rubber hose reinforced with a plurality of steel cords arranged in a spiral shape using a cheaper manufacturing device.
 本発明の目的は、例えばスパイラル状に配設された複数本のスチールコードで補強されたラバーホースなどを製造するために好適に用い得る、ストリップ材のスパイラル巻回装置を提供することにある。 An object of the present invention is to provide a strip material spiral winding device that can be suitably used for manufacturing, for example, a rubber hose reinforced with a plurality of steel cords arranged in a spiral shape.
 本発明が提供するストリップ材のスパイラル巻回装置は、基礎フレームと、前記基礎フレームに回転可能に支持された、その周囲にストリップ材を巻回することのできるマンドレルと、前記マンドレルを駆動して回転させるマンドレル駆動機構と、前記マンドレルの周囲に巻回しようとするストリップ材を前記マンドレルへ向けて供給するストリップ材供給機構と、前記ストリップ材供給機構を前記マンドレルに沿って送り移動する送り移動機構と、前記マンドレル駆動機構と前記送り移動機構とを制御するコントローラであって、前記マンドレルの回転に同期させて前記ストリップ材供給機構を前記マンドレルに沿って送り移動させることのできるコントローラとを備えたものである。前記ストリップ材供給機構は、軸心を有し該軸心の回りに回転可能でストリップ材がその周囲に巻回されて格納されるドラムと、前記マンドレルに巻取られて引っ張られることにより前記ドラムから繰り出されて前記マンドレルへ向けて供給されるストリップ材を案内する案内機構と、前記ドラムの回転に対して制御可能な制動トルクを作用させることのできるブレーキ機構と、前記ドラムから繰り出されるストリップ材の繰り出し位置の、前記ドラムの前記軸心からの半径距離を検出する検出機構(detector)と、前記検出機構の検出結果に基づいて、前記ブレーキ機構が前記ドラムの回転に対して作用させる制動トルクを制御することで、前記ドラムから繰り出されるストリップ材に作用する引張力を制御する制動トルク制御機構とを備えている。 A spiral winding device for a strip material provided by the present invention includes a base frame, a mandrel rotatably supported by the base frame and capable of winding the strip material around the base frame, and driving the mandrel. A mandrel drive mechanism for rotating, a strip material supply mechanism for supplying a strip material to be wound around the mandrel toward the mandrel, and a feed movement mechanism for feeding and moving the strip material supply mechanism along the mandrel And a controller for controlling the mandrel drive mechanism and the feed movement mechanism, the controller being capable of feeding and moving the strip material supply mechanism along the mandrel in synchronization with the rotation of the mandrel. Is. The strip material supply mechanism includes a drum that has an axis and is rotatable around the axis, and the strip material is wound around the periphery of the drum, and the drum is wound around the mandrel and pulled. A guide mechanism for guiding the strip material fed out from the drum and supplied toward the mandrel, a brake mechanism capable of applying a controllable braking torque to the rotation of the drum, and the strip material fed out from the drum A detection mechanism for detecting a radial distance from the shaft center of the drum at a delivery position of the drum, and a braking torque that the brake mechanism acts on the rotation of the drum based on a detection result of the detection mechanism A braking torque control mechanism for controlling the tensile force acting on the strip material fed from the drum by controlling There.
 前記ストリップ材供給機構の前記案内機構は、前記ドラムから繰り出されて前記マンドレルへ向けて供給されるストリップ材に、該ストリップ材が前記マンドレルの周囲に巻付けられたときのカール方向の巻き癖を付与するための巻き癖付与機構を備えているものとするのもよい。 The guide mechanism of the strip material supply mechanism has a curl direction curl when the strip material is wound around the mandrel on the strip material fed from the drum and supplied toward the mandrel. It may be provided with a curl giving mechanism for giving.
 前記巻き癖付与機構は、前記ドラムから繰り出されて前記マンドレルへ向けて供給されるストリップ材がその周面に架け回されてその周面に押し付けられる円筒ピンを含んで成るものとするのもよい。 The curl imparting mechanism may include a cylindrical pin that is fed from the drum and supplied to the mandrel so that the strip material is wound around the circumferential surface and pressed against the circumferential surface. .
 前記巻き癖付与機構により巻き癖が付与されたストリップ材の自由状態での巻き半径が前記マンドレルの半径と等しいようにするのもよい。 The winding radius in the free state of the strip material to which the curl has been imparted by the curl imparting mechanism may be equal to the radius of the mandrel.
 本発明によれば、例えばスパイラル状に配設された複数本のスチールコードで補強されたラバーホースなどを比較的安価な製造装置により製造することができる。 According to the present invention, for example, a rubber hose reinforced by a plurality of steel cords arranged in a spiral shape can be manufactured by a relatively inexpensive manufacturing apparatus.
 以下に添付図面を参照して、本発明の好適な実施の形態について詳細に説明して行く。添付図面については下記の通りである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The attached drawings are as follows.
(A)は本発明のストリップ材のスパイラル巻回装置を用いて製造することのできる、スパイラル状に配設された複数本のスチールコードで補強されたラバーホースの具体例の横断面を示した模式図であり、(B)はこのラバーホースの一部破断図である。(A) shows a cross-section of a specific example of a rubber hose reinforced with a plurality of spirally arranged steel cords that can be manufactured using the spiral winding device of the strip material of the present invention. It is a schematic diagram and (B) is a partially broken view of this rubber hose. (A)、(B)、及び(C)は、3種類の具体例の複合ストリップ材を示した横断面図であり、それら複合ストリップ材は、本発明のストリップ材のスパイラル巻回装置を用いて図1のラバーホースを製造するために使用することのできるものである。(A), (B), and (C) are cross-sectional views showing three types of composite strip materials, and these composite strip materials use the strip material spiral winding device of the present invention. The rubber hose shown in FIG. 1 can be used for manufacturing. 本発明の好適な実施の形態に係るストリップ材のスパイラル巻回装置を示した図であり、当該装置の構成要素の配置を平面図で示した模式図である。It is the figure which showed the spiral winding apparatus of the strip material which concerns on suitable embodiment of this invention, and is the schematic diagram which showed arrangement | positioning of the component of the said apparatus with the top view. 図3に示したストリップ材のスパイラル巻回装置におけるストリップ材供給機構の構成要素の配置を側面図で示した模式図である。It is the schematic diagram which showed arrangement | positioning of the component of the strip material supply mechanism in the spiral winding apparatus of the strip material shown in FIG. 3 with the side view. (A)、(B)、(C)、及び(D)は、図3に示したストリップ材のスパイラル巻回装置を用いて実行することのできる複合ストリップ材の巻回工程を示した説明図である。(A), (B), (C), and (D) are explanatory drawings showing the winding process of the composite strip material that can be performed using the spiral winding device of the strip material shown in FIG. It is.
 以下の説明において、本発明に関連して使用する「ラバー」という用語は、天然ゴムのみに限られず、合成ラバーまたはその他の名称で呼ばれる任意のエラストマー材料をも含むものであり、それらエラストマー材料としては、例えば、単一のエラストマー成分から成る均一材料、複数種類のエラストマー成分を混合した均一材料、互いに異なったエラストマー成分から成る複数の要素を複合させた複合材料、エラストマー成分から成る母材中に非エラストマー成分を分散ないしは埋設した複合材料などがあり、また更に、それらを様々に組合せたその他の種々の形態のエラストマー材料も含まれる。また、本発明に関して使用する「ラバーホース」という用語は、主材料としてラバーを使用し、場合によっては非ラバーの材料を併用したホースを意味するものである。 In the following description, the term “rubber” as used in connection with the present invention is not limited to natural rubber alone, and includes any elastomeric material referred to as synthetic rubber or other names, For example, in a uniform material composed of a single elastomer component, a uniform material obtained by mixing a plurality of types of elastomer components, a composite material composed of a plurality of elements composed of different elastomer components, and a base material composed of elastomer components. There are composite materials in which non-elastomeric components are dispersed or embedded, and various other forms of elastomer materials in various combinations thereof are also included. Also, the term “rubber hose” as used in connection with the present invention means a hose that uses rubber as the main material and, optionally, a non-rubber material.
 以下の説明においては、本発明に係るストリップ材のスパイラル巻回装置をよりよく理解できるように、先ず、その装置を用いて製造することのできる、スパイラル状に配設された複数本のスチールコードで補強されたラバーホースの具体例について説明する。 In the following description, in order to better understand the spiral winding apparatus for strip material according to the present invention, first, a plurality of steel cords arranged in a spiral shape that can be manufactured using the apparatus. A specific example of the rubber hose reinforced with the above will be described.
 図1(A)に模式的に示したように具体例のラバーホース10は同心的な積層構造を有するものである。ラバーホース10は、その積層構造の最内層を形成している可撓性のチューブ11(以下、「インナーチューブ」と称する)を備えており、このインナーチューブ11によってラバーホース10の内腔が画成されている。インナーチューブ11の材料としては、例えば耐油性ラバーなどが用いられる。尚、このインナーチューブ11それ自体を積層構造のチューブとしてもよい。 As shown schematically in FIG. 1A, the rubber hose 10 of a specific example has a concentric laminated structure. The rubber hose 10 includes a flexible tube 11 (hereinafter referred to as “inner tube”) that forms the innermost layer of the laminated structure, and the inner tube 11 defines a lumen of the rubber hose 10. It is made. As a material for the inner tube 11, for example, oil resistant rubber or the like is used. The inner tube 11 itself may be a laminated tube.
 ラバーホース10は更に、インナーチューブ11の外周に形成された積層形補強層14を備えており、この積層形補強層14は、ラバーから成る母材の中に多数の補強用スチールコード(steel cord)12が埋設された構造を有する。それら補強用スチールコード12は4群のスチールコード群16、18、20、22を形成するように配列されている。スチールコード群16、18、20、22の各々は、単一の円筒面上に互いに並列にスパイラル状に延在するように配列された複数本のスチールコード12から成り、そして、それらスチールコード群16、18、20、22が同心円状に配置されている。また、図1(B)に示したように、第1スチールコード群16及び第3スチールコード群20のスチールコード12は第1スパイラル方向に巻回されており、一方、第2スチールコード群18及び第4スチールコード群22のスチールコード12は第1スパイラル方向とは反対方向の第2スパイラル方向に巻回されている。スチールコード12は屈曲性を有すると共に大きな引張剛性を有しており、それらによって、ラバーホース10の可撓性を少なくとも部分的に維持しつつ、ラバーホース10がその内部の高圧によって拡径され或いは引き延ばされて過度の変形を生じるのを防止する補強部材として機能するものである。以上に説明した積層形補強層14をどのようにして形成するかについては後に詳述する。 The rubber hose 10 further includes a laminated reinforcing layer 14 formed on the outer periphery of the inner tube 11, and this laminated reinforcing layer 14 is provided with a plurality of reinforcing steel cords (steel cord) in a base material made of rubber. ) 12 is embedded. The reinforcing steel cords 12 are arranged so as to form four groups of steel cords 16, 18, 20 and 22. Each of the steel cord groups 16, 18, 20, and 22 includes a plurality of steel cords 12 arranged so as to extend spirally in parallel to each other on a single cylindrical surface, and the steel cord groups 16, 18, 20, and 22 are arranged concentrically. Further, as shown in FIG. 1 (B), the steel cords 12 of the first steel cord group 16 and the third steel cord group 20 are wound in the first spiral direction, while the second steel cord group 18 is wound. The steel cords 12 of the fourth steel cord group 22 are wound in a second spiral direction opposite to the first spiral direction. The steel cord 12 is flexible and has a large tensile rigidity, so that the rubber hose 10 is expanded in diameter by a high pressure inside thereof while maintaining the flexibility of the rubber hose 10 at least partially. It functions as a reinforcing member that prevents it from being stretched and causing excessive deformation. How to form the laminated reinforcing layer 14 described above will be described in detail later.
 このラバーホース10は更に、積層形補強層14の周囲に形成された可撓性のチューブ24(以下、「アウターチューブ」と称する)を備えている。アウターチューブ24はラバーホース10の積層構造の最外層を形成しており、アウターチューブ24の材料としては例えば耐摩耗性ラバーなどが用いられる。尚、このアウターチューブ24それ自体を積層構造のチューブとしてもよい。以上の構成を有するラバーホース10は、油圧システムにおいて高圧作動油を流通させるための、いわゆる高圧油圧ホースとして用いるのに適したものである。 The rubber hose 10 further includes a flexible tube 24 (hereinafter referred to as “outer tube”) formed around the laminated reinforcing layer 14. The outer tube 24 forms the outermost layer of the laminated structure of the rubber hose 10, and as the material of the outer tube 24, for example, wear-resistant rubber or the like is used. The outer tube 24 itself may be a laminated tube. The rubber hose 10 having the above configuration is suitable for use as a so-called high pressure hydraulic hose for circulating high pressure hydraulic oil in a hydraulic system.
 以上に説明したラバーホース10は、以下に説明する本発明の実施の形態に係るストリップ材のスパイラル巻回装置を用いることによって好適に製造することができ、また、その製造のプロセスは、図2(A)~図2(C)にその具体例を示した複合ストリップ材を使用して積層形補強層14を形成する工程を含むものであり、この複合ストリップ材について先ず説明する。 The rubber hose 10 described above can be preferably manufactured by using a strip material spiral winding device according to an embodiment of the present invention described below, and the manufacturing process thereof is shown in FIG. (A) to FIG. 2 (C) include a step of forming the laminated reinforcing layer 14 using the composite strip material shown in its concrete example, and this composite strip material will be described first.
 図2(A)~図2(C)に夫々に横断面図を示した3種類の具体例の複合ストリップ材(composite strip material)26は、両側面(opposite side surfaces)30、32と、両側縁(opposite side edges)34、36とを有する。各々の複合ストリップ材26は、未加硫ラバーストリップ38と、この未加硫ラバーストリップ38に装備された、互いに並列に配列され、この未加硫ラバーストリップ38の長手方向に(従って、複合ストリップ材26の長手方向に)延在する複数本の補強用スチールコード12とを備えて成り、それら複数本のスチールコード12は、複合ストリップ材26の側面30、32に平行に延展する同一平面上に一列に並べて配列されている。スチールコード12は屈曲性を有すると共に大きな引張剛性を有しており、既述のごとくラバーホース10の補強材として機能するものである。 The composite strip material 26 of the three specific examples shown in cross-sectional views in FIGS. 2 (A) to 2 (C) is composed of two sides (opposite side surfaces) 30, 32 and both sides. And edges 34, 36. Each of the composite strip members 26 is arranged in parallel with each other and the unvulcanized rubber strip 38 and the unvulcanized rubber strip 38 are arranged in parallel to each other in the longitudinal direction of the unvulcanized rubber strip 38 (hence, the composite strip). A plurality of reinforcing steel cords 12 extending in the longitudinal direction of the material 26, the plurality of steel cords 12 being coplanar extending parallel to the side surfaces 30, 32 of the composite strip material 26. Are arranged in a line. The steel cord 12 has flexibility and large tensile rigidity, and functions as a reinforcing material for the rubber hose 10 as described above.
 図2(A)の複合ストリップ材26では、各スチールコード12はその全体が未加硫ラバーストリップ36の内部に完全に埋設されている。図2(B)及び図2(C)の複合ストリップ材26では、各スチールコード12はその周面の一部が未加硫ラバーストリップ36の内部に埋設され、その周面の残りの部分が未加硫ラバーストリップ36の一方の側面32から外部に露出している。また特に、図2(C)の複合ストリップ材26では、図2(B)の複合ストリップ材と比べて各スチールコード12がより大きく露出しており、即ち、その各スチールコード12の周面の半周部分が未加硫ラバーストリップ36の内部に埋設され、その周面の残りの半周部分が未加硫ラバーストリップ36の一方の側面32から外部に露出している。スチールコード12の表面(周面)には真鍮メッキを施しておくことが好ましく、その理由については後述する。 In the composite strip material 26 shown in FIG. 2A, each steel cord 12 is entirely embedded in the unvulcanized rubber strip 36. In the composite strip material 26 shown in FIGS. 2 (B) and 2 (C), each steel cord 12 is partly embedded in the unvulcanized rubber strip 36, and the remaining part of the peripheral surface is formed. The unvulcanized rubber strip 36 is exposed to the outside from one side surface 32. In particular, in the composite strip material 26 of FIG. 2C, each steel cord 12 is more exposed than the composite strip material of FIG. 2B, that is, the peripheral surface of each steel cord 12 is exposed. A half-circumferential portion is embedded in the unvulcanized rubber strip 36, and the remaining half-circular portion of the peripheral surface is exposed to the outside from one side surface 32 of the unvulcanized rubber strip 36. The surface (circumferential surface) of the steel cord 12 is preferably plated with brass, and the reason will be described later.
 図3は本発明の好適な実施の形態に係るストリップ材のスパイラル巻回装置28の主要な構成要素の配置を平面図で示した模式図である。図示したストリップ材のスパイラル巻回装置28は、基礎フレーム(図には参照符号BFを付して模式的に示した)と、この基礎フレームBFに回転可能に支持された、その周囲にストリップ材SM(例えば複合ストリップ材26など)を巻回することのできるマンドレル42と、このマンドレル42を駆動して回転させるマンドレル駆動機構とを備えており、マンドレル駆動機構は、マンドレル42の一端を把持するチャック46を備えた動力回転ヘッド44から成る。ストリップ材のスパイラル巻回装置28は更に、マンドレル42の他端に係合する芯押台48を備えている。回転駆動ヘッド44と芯押台48とは基礎フレームBFに取付けられており、これら動力回転ヘッド44と芯押台48とを介して、マンドレル42がその長手軸心を中心として回転可能に基礎フレームBFに支持される。マンドレル42は、チャック46及び芯押台48を操作することによって、基礎フレームBFから取外すことができる。 FIG. 3 is a schematic view showing the arrangement of main components of the spiral winding device 28 for strip material according to a preferred embodiment of the present invention in a plan view. The strip material spiral winding device 28 shown in the figure includes a base frame (schematically shown by reference numeral BF in the figure) and a strip material around the base frame BF that is rotatably supported. A mandrel 42 on which SM (for example, the composite strip material 26) can be wound, and a mandrel driving mechanism for driving and rotating the mandrel 42 are provided. The mandrel driving mechanism grips one end of the mandrel 42. It comprises a power rotary head 44 provided with a chuck 46. The strip material spiral winding device 28 is further provided with a tailstock 48 that engages with the other end of the mandrel 42. The rotation drive head 44 and the core presser base 48 are attached to the base frame BF, and the mandrel 42 can rotate about its longitudinal axis through the power rotary head 44 and the core presser base 48. Supported by BF. The mandrel 42 can be removed from the base frame BF by operating the chuck 46 and the core presser 48.
 ストリップ材のスパイラル巻回装置28は更に、マンドレル42の周囲に巻回しようとするストリップ材SMをマンドレル42へ向けて供給するための機構であるストリップ材供給機構50(strip material supplier)と、このストリップ材供給機構50をマンドレル42に沿って送り移動するための送り移動機構52(feeding mechanism)とを備えている。送り移動機構52は、基礎フレームBFに固定された一対のガイドレール54を含んでおり、それらガイドレール54は、回転駆動ヘッド44と芯押台48とで支持されたマンドレル42がそれらガイドレール54に平行に延在するように配置されている。送り移動機構52は更にキャリッジ56を含んでおり、このキャリッジ56は走行機構を備えていてガイドレール54上を走行可能である。このキャリッジ56にストリップ材供給機構50が搭載されている。 The strip material spiral winding device 28 further includes a strip material supply mechanism 50 (strip material supplier) which is a mechanism for supplying the strip material SM to be wound around the mandrel 42 toward the mandrel 42, and A feeding movement mechanism 52 (feeding た め mechanism) for feeding and moving the strip material feeding mechanism 50 along the mandrel 42 is provided. The feed moving mechanism 52 includes a pair of guide rails 54 fixed to the base frame BF. The guide rails 54 include a mandrel 42 supported by a rotary drive head 44 and a core pusher 48 and the guide rails 54. It is arrange | positioned so that it may extend in parallel with. The feed moving mechanism 52 further includes a carriage 56, and this carriage 56 includes a traveling mechanism and can travel on the guide rail 54. A strip material supply mechanism 50 is mounted on the carriage 56.
 ストリップ材のスパイラル巻回装置28は更に、マンドレル駆動機構である動力回転ヘッド44と、送り移動機構52とを、個別に制御すること、並びに、互いに関連付けて制御することが可能なコントローラ58を備えている。コントローラ58は、両者を互いに関連付けて制御することによって、マンドレル42の回転に同期させてストリップ材供給機構50をマンドレル42に沿って送り移動させることができる。 The spiral winding device 28 of the strip material further includes a controller 58 that can control the power rotary head 44 that is a mandrel driving mechanism and the feed movement mechanism 52 individually and in association with each other. ing. The controller 58 can move the strip material supply mechanism 50 along the mandrel 42 in synchronization with the rotation of the mandrel 42 by controlling both in association with each other.
 図3及び図4に示したように、ストリップ材供給機構50はドラム60と案内機構62(図4参照)とを備えている。ドラム60は軸心AXを有しこの軸心AXの回りに回転可能にキャリッジ56に支持されており、このドラム60の周囲にストリップ材SMが巻回されて格納される。従ってドラム60は、マンドレル42へ向けて供給されるストリップ材SMを格納するストリップ材格納機構である。案内機構62も同じくキャリッジ56に支持されており、この案内機構62は、マンドレル42に巻取られて引っ張られることでドラム60から繰り出されてマンドレル42へ向けて供給されるストリップ材SMを案内するための機構である。ドラム60及び案内機構62は、揺動機構(不図示)を介してキャリッジ54に連結されており、それによって、キャリッジ54に対して相対的に傾動してストリップ材SMを繰り出す方向を変化させることができるようにしてある。 3 and 4, the strip material supply mechanism 50 includes a drum 60 and a guide mechanism 62 (see FIG. 4). The drum 60 has an axis AX and is supported by a carriage 56 so as to be rotatable around the axis AX. The strip material SM is wound around the drum 60 and stored. Therefore, the drum 60 is a strip material storage mechanism that stores the strip material SM supplied toward the mandrel 42. The guide mechanism 62 is also supported by the carriage 56, and the guide mechanism 62 guides the strip material SM fed out from the drum 60 and supplied toward the mandrel 42 by being wound around the mandrel 42 and being pulled. Mechanism. The drum 60 and the guide mechanism 62 are connected to the carriage 54 through a swing mechanism (not shown), and thereby tilt relative to the carriage 54 to change the direction in which the strip material SM is fed out. It is made to be able to.
 案内機構62はガイドローラ64を備えており、ドラム60から繰り出されてマンドレル42へ向けて供給されるストリップ材SMはこのガイドローラ64を通過し、且つ、このガイドローラ64によって案内される。案内機構62は更に、巻き癖付与機構66を備えており、この巻き癖付与機構66は、ドラム60から繰り出されてマンドレル42へ向けて供給されるストリップ材SMに、このストリップ材SMがマンドレル42の周囲に巻付けられたときのカール方向の巻き癖を付与するための機構である。巻き癖付与機構66は、ドラム60から繰り出されてマンドレル42へ向けて供給されるストリップ材SMがその周面に架け回されてその周面に押し付けられる円筒ピン67を含んでいる。ストリップ材SMは、ドラム60から繰り出されたならば円筒ピン67を通過し、更にガイドローラ64を通過してマンドレル42へ向けて供給される。円筒ピン6の半径は、このようにして巻き癖が付与されたストリップ材SMの自由状態での巻き半径が、マンドレル42の半径と等しくなるように適切に定めてある。このようにストリップ材SMに巻き癖を付与することは、ストリップ材SMをマンドレル42の周囲に安定させて巻回する上で有利である。 The guide mechanism 62 includes a guide roller 64, and the strip material SM fed out from the drum 60 and supplied toward the mandrel 42 passes through the guide roller 64 and is guided by the guide roller 64. The guide mechanism 62 further includes a curl tacking mechanism 66. The curl tacking mechanism 66 is fed to the strip material SM that is fed from the drum 60 and supplied to the mandrel 42, and the strip material SM is supplied to the mandrel 42. It is a mechanism for imparting curl in the curl direction when wound around the periphery of the. The curl imparting mechanism 66 includes a cylindrical pin 67 that is fed from the drum 60 and supplied toward the mandrel 42 and is wound around the circumferential surface and pressed against the circumferential surface. When the strip material SM is fed out from the drum 60, it passes through the cylindrical pin 67, further passes through the guide roller 64, and is supplied toward the mandrel 42. The radius of the cylindrical pin 6 is appropriately determined so that the winding radius in the free state of the strip material SM to which the winding rod is applied in this way is equal to the radius of the mandrel 42. Giving the winding material to the strip material SM in this manner is advantageous in stably winding the strip material SM around the mandrel 42.
 ストリップ材SMをマンドレル42の周囲に良好に巻回するためにも、またストリップ材SMに巻き癖を良好に付与するためにも、ドラム60から繰り出されてマンドレル42へ向けて供給されるストリップ材SMには、適切な大きさの引張力が作用させておくことが望まれる。これを達成するために、ストリップ材供給機構58は、ドラム60の回転に対して制御可能な制動トルクを作用させることのできるブレーキ機構68と、ドラム60から繰り出されるストリップ材SMの繰り出し位置の、ドラム60の軸心AXからの半径距離RD(図4参照)を検出する検出機構70と、この検出機構70の検出結果に基づいて、ブレーキ機構68がドラム60の回転に対して作用させる制動トルクを制御することで、ドラム60から繰り出されるストリップ材SMに作用する引張力を制御する制動トルク制御機構74とを備えている。 The strip material fed out from the drum 60 and supplied toward the mandrel 42 in order to satisfactorily wind the strip material SM around the mandrel 42 and to give the strip material SM a good curl. It is desirable that an appropriate tensile force is applied to the SM. In order to achieve this, the strip material supply mechanism 58 includes a brake mechanism 68 capable of applying a controllable braking torque with respect to the rotation of the drum 60, and a feeding position of the strip material SM fed out from the drum 60. A detection mechanism 70 that detects a radial distance RD (see FIG. 4) from the axis AX of the drum 60, and a braking torque that the brake mechanism 68 acts on the rotation of the drum 60 based on the detection result of the detection mechanism 70. And a braking torque control mechanism 74 for controlling the tensile force acting on the strip material SM fed out from the drum 60.
 制動トルク制御機構74としては、市販されているプログラマブル・ロジック・コントローラ(「シーケンサ」とも呼ばれている)を使用している。検出機構70としては、対象物へ向けて射出した超音波パルスのエコーを検知することで対象物までの距離を検出する超音波レンジ・センサを使用しており、このセンサからドラム60に巻回されたストリップ材SMの表面までの距離を検出し、その検出結果に基づいて、シーケンサ74においてドラム60の軸心AXから当該表面までの距離RDが算出される。また、ブレーキ機構68としては、エアブレーキ機構を使用している。制動トルク制御機構74は更に、そのエアブレーキ機構を制御するためのコントロール・バルブ76と、シーケンサ74から出力される出力信号に応じてコントロール・バルブ76を操作するアクチュエータ78とを含んでいる。 As the braking torque control mechanism 74, a commercially available programmable logic controller (also called “sequencer”) is used. As the detection mechanism 70, an ultrasonic range sensor that detects the distance to the object by detecting an echo of an ultrasonic pulse emitted toward the object is used, and the sensor 60 is wound around the drum 60. The distance to the surface of the strip material SM is detected, and the distance RD from the axis AX of the drum 60 to the surface is calculated in the sequencer 74 based on the detection result. As the brake mechanism 68, an air brake mechanism is used. The braking torque control mechanism 74 further includes a control valve 76 for controlling the air brake mechanism and an actuator 78 for operating the control valve 76 in accordance with an output signal output from the sequencer 74.
 シーケンサ74は、検出機構70の検出結果から算出して得られた、ドラム60から繰り出されるストリップ材SMの繰り出し位置の、ドラム60の軸心AXからの半径距離RDに比例するように、エアブレーキ機構が発生する制動トルクを制御することで、ドラム60から繰り出されるストリップ材SMに作用する引張力を良好な大きさに維持する。これによってストリップ材SMをマンドレル42の周囲に安定させて巻回することができ、また、ストリップ材SMに巻き癖を良好に付与することができる。尚、ドラム60から繰り出されるストリップ材SMに作用する引張力を制御するための構成は、以上に具体的に説明したものだけに限られず、その他の様々な構成が採用可能である。 The sequencer 74 sets the air brake so as to be proportional to the radial distance RD from the axis AX of the drum 60 of the feeding position of the strip material SM fed out from the drum 60, which is calculated from the detection result of the detection mechanism 70. By controlling the braking torque generated by the mechanism, the tensile force acting on the strip material SM fed out from the drum 60 is maintained at a good magnitude. As a result, the strip material SM can be stably wound around the mandrel 42, and the winding material can be favorably imparted to the strip material SM. Note that the configuration for controlling the tensile force acting on the strip material SM fed from the drum 60 is not limited to that specifically described above, and various other configurations can be employed.
 以上に述べた構成を有するストリップ材のスパイラル巻回装置28の作用をより容易に理解できるように、以下に、ラバーホース製造方法の具体例について説明し、その説明の中でこの装置28の様々な動作について詳述する。 In order to make it easier to understand the operation of the strip material spiral winding device 28 having the above-described configuration, a specific example of a rubber hose manufacturing method will be described below. The detailed operation will be described in detail.
 ストリップ材のスパイラル巻回装置28を使用して実施される、1つの具体例に係るラバーホース製造方法は、複合ストリップ材26を製作するステップを含んでおり、その複合ストリップ材26は、先に図2(A)~図2(C)を参照して説明したように、両側面30、32と、両側縁34、36とを有し、未加硫ラバーストリップ38と、この未加硫ラバーストリップに装備され、互いに並列に配列され、この未加硫ラバーストリップの長手方向に延在する複数本の補強用スチールコード12とを備えて成るものである。複合ストリップ材26を製作するには、例えば、未加硫ラバーをストリップの形状に成形すると同時に、その未加硫ラバーストリップの中に複数本のスチールコードをインサートとして完全にまたは部分的に埋込むようにすればよい。製作した複合ストリップ材26は、ストリップ材供給機構56のドラム60に巻回して、このドラム60に格納しておく。 A rubber hose manufacturing method according to one embodiment, which is performed using the spiral winding device 28 of the strip material, includes the step of manufacturing the composite strip material 26, and the composite strip material 26 is previously As described with reference to FIGS. 2A to 2C, the unvulcanized rubber strip 38 and the unvulcanized rubber having both side surfaces 30 and 32 and both side edges 34 and 36, and the unvulcanized rubber. The strip is provided with a plurality of reinforcing steel cords 12 arranged in parallel to each other and extending in the longitudinal direction of the unvulcanized rubber strip. In order to manufacture the composite strip material 26, for example, an unvulcanized rubber is formed into a strip shape, and at the same time, a plurality of steel cords are completely or partially embedded as inserts in the unvulcanized rubber strip. What should I do? The manufactured composite strip material 26 is wound around the drum 60 of the strip material supply mechanism 56 and stored in the drum 60.
 このラバーホース製造方法は更に、ラバーホース10の最内層を形成するための可撓性のインナーチューブ11を製作するステップを含んでいる。インナーチューブ11は、公知のラバーチューブ製造方法を用いて形成するようにしてもよく、その場合、その形成したインナーチューブ11を製造しようとするラバーホースの長さに合わせて切断し、マンドレル42の外周に嵌合する。別法として、マンドレル42の外周に未加硫ラバーストリップをスパイラル状に巻回し、その巻回した未加硫ラバーストリップに後刻、加硫処理を施してインナーチューブ11を形成するようにしてもよい。いずれの場合にも、ラバーホースの完成後にインナーチューブ11をマンドレルから抜去できるように、もし必要であれば、インナーチューブ11の内面及び/またはマンドレルの外面に適当な離型剤などを塗布しておくとよい。 The rubber hose manufacturing method further includes a step of manufacturing a flexible inner tube 11 for forming the innermost layer of the rubber hose 10. The inner tube 11 may be formed using a known rubber tube manufacturing method. In that case, the inner tube 11 is cut according to the length of the rubber hose to be manufactured, and the mandrel 42 is cut. Fit on the outer periphery. Alternatively, an unvulcanized rubber strip may be spirally wound around the outer periphery of the mandrel 42, and the wound unvulcanized rubber strip may be subsequently vulcanized to form the inner tube 11. . In any case, if necessary, an appropriate release agent or the like is applied to the inner surface of the inner tube 11 and / or the outer surface of the mandrel so that the inner tube 11 can be removed from the mandrel after the rubber hose is completed. It is good to leave.
 このラバーホース製造方法は更に、スパイラル状に配設された複数本のスチールコード12を備えた積層形補強層14をインナーチューブ11の周囲に形成するステップを含んでいる。このステップにおいては、複合ストリップ材26をインナーチューブ11の周囲に巻回して、複数の単位層(unit layer)90~96(図1(B)参照)が積層して成る積層構造を有する巻回体を形成する。またその際に、インナーチューブ11の上(周囲)に1つの単位層を形成し、そして、形成した単位層の上(周囲)に更に別の単位層を順次形成するようにする。その後、巻回した複合ストリップ材26の未加硫ラバーストリップ38に加硫処理を施す。 The rubber hose manufacturing method further includes a step of forming a laminated reinforcing layer 14 having a plurality of steel cords 12 arranged in a spiral shape around the inner tube 11. In this step, the composite strip material 26 is wound around the inner tube 11, and a wound structure having a laminated structure in which a plurality of unit layers 90 to 96 (see FIG. 1B) are laminated. Form the body. At that time, one unit layer is formed on (around) the inner tube 11, and another unit layer is formed successively on (on the periphery) of the formed unit layer. Thereafter, the unvulcanized rubber strip 38 of the wound composite strip material 26 is vulcanized.
 より詳しくは、図3に示したように、マンドレル42上のインナーチューブ11の一端(図3において左端)に、ドラム60から繰り出した複合ストリップ材26の先端部を止着し、続いて、ストリップ材のスパイラル巻回装置28を作動させて、マンドレル42を回転させつつ、キャリッジ54をガイドレール52に沿って(図示例では図3において左端から右端へ向けて)送り移動し、それによって複合ストリップ材26をインナーチューブ11の外周にスパイラル状に巻回して行く。このとき、複合ストリップ材26の一方の側面(例えば側面30)をインナーチューブ11の外周面に当接させると共に、スパイラルの1つのターンを形成する複合ストリップ材26の側縁とそれに隣接するターンを形成する複合ストリップ材26の側縁とを密接させて複合ストリップ材26をインナーチューブ11の外周面上にスパイラル状に巻回して、インナーチューブ11の外周面を複合ストリップ材26で覆うようにする。これによってインナーチューブ11の上(周囲)に、最初の(最内層の)単位層90(図1(B)参照)が形成される。 More specifically, as shown in FIG. 3, the front end portion of the composite strip material 26 fed from the drum 60 is fixed to one end (left end in FIG. 3) of the inner tube 11 on the mandrel 42, and then the strip The material spiral winding device 28 is operated to rotate the mandrel 42, and the carriage 54 is fed along the guide rail 52 (in the illustrated example, from the left end to the right end in FIG. 3), whereby the composite strip. The material 26 is wound around the outer circumference of the inner tube 11 in a spiral shape. At this time, one side surface (for example, the side surface 30) of the composite strip material 26 is brought into contact with the outer peripheral surface of the inner tube 11, and the side edge of the composite strip material 26 forming one turn of the spiral and the turn adjacent thereto are arranged. The composite strip material 26 is spirally wound around the outer peripheral surface of the inner tube 11 with the side edges of the composite strip material 26 to be formed, and the outer peripheral surface of the inner tube 11 is covered with the composite strip material 26. . As a result, the first (innermost) unit layer 90 (see FIG. 1B) is formed on (around) the inner tube 11.
 こうして単位層90を形成する際には、図5(A)に示したように、単一の複合ストリップ材26を、スパイラルのピッチPをその複合ストリップ材26の幅寸法Wと等しくして、インナーチューブ11の外周面上にスパイラル状に巻回するようにして、スパイラルの1つのターンを形成するその単一の複合ストリップ材26の側縁とそれに隣接するターンを形成するその単一の複合ストリップ材26の側縁とを密接させるようにしてもよい。別法として、図5(B)~図5(D)に示したように、各々の単位層を形成する際に、複数本の複合ストリップ材26を並列スパイラル状にインナーチューブ11の外周面上に巻回し、それら複数本の複合ストリップ材のうちの1本の複合ストリップ材の側縁とそれに隣接する複合ストリップ材の側縁とを密接させるようにしてもよい。後者の場合には、スパイラルのピッチPをそれら複合ストリップ材26の幅寸法WのN倍にすればよく、ここでNは、インナーチューブ11の外周面上に巻回する複合ストリップ材の本数である。 When forming the unit layer 90 in this way, as shown in FIG. 5A, the single composite strip material 26 is made to have the spiral pitch P equal to the width dimension W of the composite strip material 26, The single composite which forms the side edge of the single composite strip material 26 which forms one turn of the spiral and the turn adjacent to the spiral is wound on the outer peripheral surface of the inner tube 11 in a spiral shape. The side edges of the strip material 26 may be brought into close contact with each other. Alternatively, as shown in FIGS. 5 (B) to 5 (D), when forming each unit layer, a plurality of composite strip members 26 are arranged in parallel spiral on the outer peripheral surface of the inner tube 11. The side edge of one composite strip member of the plurality of composite strip members may be brought into close contact with the side edge of the composite strip member adjacent thereto. In the latter case, the spiral pitch P may be set to N times the width W of the composite strip material 26, where N is the number of composite strip materials wound on the outer peripheral surface of the inner tube 11. is there.
 第1単位層90を形成したならば、続いて、その形成した第1単位層90の上(周囲)に第2単位層92を形成する。その際には、第1単位層90の一端(図3において右端)に、ドラム60から繰り出した複合ストリップ材26の先端部を止着し、続いて、ストリップ材のスパイラル巻回装置28を作動させて、マンドレル42を回転させつつ、キャリッジ54をガイドレール52に沿って(図示例では図3において右端から左端へ向けて)送り移動し、それによって複合ストリップ材26を第1単位層90の外周にスパイラル状に巻回して行く。このとき、複合ストリップ材26の一方の側面(例えば側面30)を第1単位層90の外周面に当接させると共に、スパイラルの1つのターンを形成する複合ストリップ材26の側縁とそれに隣接するターンを形成する複合ストリップ材26の側縁とを密接させて複合ストリップ材26を第1単位層90の外周面上にスパイラル状に巻回して、第1単位層90の外周面を複合ストリップ材26で覆うようにする。これによって第1単位層90の上(周囲)に、第2単位層92が形成される。 Once the first unit layer 90 is formed, the second unit layer 92 is subsequently formed on (around) the formed first unit layer 90. At that time, the tip of the composite strip material 26 fed from the drum 60 is fixed to one end (right end in FIG. 3) of the first unit layer 90, and then the spiral winding device 28 of the strip material is operated. Then, while rotating the mandrel 42, the carriage 54 is fed and moved along the guide rail 52 (in the illustrated example, from the right end to the left end in FIG. 3), whereby the composite strip material 26 is moved to the first unit layer 90. Wound spirally around the periphery. At this time, one side surface (for example, the side surface 30) of the composite strip material 26 is brought into contact with the outer peripheral surface of the first unit layer 90, and the side edge of the composite strip material 26 forming one spiral is adjacent to the side edge. The composite strip material 26 is spirally wound on the outer peripheral surface of the first unit layer 90 with the side edges of the composite strip material 26 forming the turn closely, and the outer peripheral surface of the first unit layer 90 is wound around the composite strip material. 26. As a result, the second unit layer 92 is formed on (around) the first unit layer 90.
 第1単位層90を形成するときと第2単位層92を形成するときとで、マンドレル42の回転方向を同一方向にしており、この回転方向を図4に矢印80で示した。また、マンドレル42に対するストリップ材26の相対的巻付方向は、矢印82で示したようにマンドレル42の回転方向80とは反対方向である。第1単位層90を形成している複合ストリップ材26のスパイラル方向と、第2単位層92を形成している複合ストリップ材26のスパイラル方向とは、図1(B)から明らかなように互いに反対方向であり、このようになるのは、両者の間では、マンドレル42に対するストリップ材26の相対的巻付方向82が互いに同一であるのに対して、複合ストリップ材26の巻回進行方向(即ち、ストリップ材供給機構50の送り移動方向)が互いに反対方向だからである。 The rotation direction of the mandrel 42 is the same when the first unit layer 90 is formed and when the second unit layer 92 is formed. This rotation direction is indicated by an arrow 80 in FIG. The relative winding direction of the strip material 26 with respect to the mandrel 42 is opposite to the rotation direction 80 of the mandrel 42 as indicated by an arrow 82. As is clear from FIG. 1B, the spiral direction of the composite strip material 26 forming the first unit layer 90 and the spiral direction of the composite strip material 26 forming the second unit layer 92 are mutually The opposite direction is the same, and the relative winding direction 82 of the strip material 26 with respect to the mandrel 42 is the same between the two, whereas the winding direction of the composite strip material 26 ( In other words, the strip material supply mechanism 50 is moved in the opposite direction).
 次に、こうして形成して第2単位層92の周囲に、第1単位層90を形成したときと同様に図3における左端から右端へ向けて複合ストリップ材26を巻回することにより、第2単位層92上(周囲)に第3単位層94を形成する。更に、こうして形成した第3単位層94の周囲に、第2単位層92を形成したときと同様に図3における右端から左端へ向けて複合ストリップ材26を巻回することにより、第3単位層94上(周囲)に第4単位層96を形成する。この単位層形成方法により形成した単位層90~96は、図1(B)に示したように、複合ストリップ材26を第1スパイラル方向に巻回して成る単位層と、複合ストリップ材26を第2スパイラル方向に巻回して成る単位層とが交互に積層して形成されたものとなる。 Next, the composite strip material 26 is wound from the left end to the right end in FIG. 3 in the same manner as when the first unit layer 90 is formed around the second unit layer 92 thus formed. A third unit layer 94 is formed on (around) the unit layer 92. Further, the third unit layer 94 is wound around the third unit layer 94 thus formed by winding the composite strip material 26 from the right end to the left end in FIG. 3 in the same manner as when the second unit layer 92 is formed. A fourth unit layer 96 is formed on (around) 94. As shown in FIG. 1B, the unit layers 90 to 96 formed by this unit layer forming method include a unit layer obtained by winding the composite strip material 26 in the first spiral direction, and the composite strip material 26 in the first spiral direction. It is formed by alternately laminating unit layers wound in two spiral directions.
 第1単位層90では、この単位層90をその上に形成するところの基礎外周面がインナーチューブ11の外周面であるのに対して、第2単位層92、第3単位層94、及び第4単位層96では、当該単位層をその上に形成するところの基礎外周面は当該単位層に先立って形成された単位層の外周面である。ただしこのことは、単位層を形成する手順に影響を及ぼすものではない。インナーチューブ11の周囲に積層形補強層14を形成するための以上のプロセスを要約するならば、各々の単位層を形成する際に、当該単位層をその上に形成するところの基礎外周面に複合ストリップ材26の一方の側面を当接させ、且つ、スパイラルの1つのターンを形成する複合ストリップ材26の側縁とそれに隣接するターンを形成する複合ストリップ材26の側縁とを密接させて複合ストリップ材26を該基礎外周面上にスパイラル状に巻回することで、その基礎外周面を複合ストリップ材26で覆うようにしている。 In the first unit layer 90, the base outer peripheral surface on which the unit layer 90 is formed is the outer peripheral surface of the inner tube 11, whereas the second unit layer 92, the third unit layer 94, In the four unit layer 96, the base outer peripheral surface on which the unit layer is formed is the outer peripheral surface of the unit layer formed prior to the unit layer. However, this does not affect the procedure for forming the unit layer. If the above process for forming the laminated reinforcing layer 14 around the inner tube 11 is summarized, when each unit layer is formed, the base outer peripheral surface on which the unit layer is formed is formed. One side surface of the composite strip material 26 is brought into contact with each other, and the side edge of the composite strip material 26 forming one turn of the spiral is closely contacted with the side edge of the composite strip material 26 forming the adjacent turn. By winding the composite strip material 26 spirally around the foundation outer circumferential surface, the foundation outer circumferential surface is covered with the composite strip material 26.
 尚、複合ストリップ材26として図2(B)や図2(C)に示したような、スチールコード12が未加硫ラバーストリップ38の一方の側面28から露出したものを使用する場合には、どの単位層90~96に関しても、マンドレル42の周囲に(従って、インナーチューブ11の周囲に)巻回する複合ストリップ材26は、その同一側面がマンドレル42の方を向いているようにすることが好ましく、なぜならば、そうすることによって上下に隣り合う単位層のスチールコード12どうしの干渉を容易に回避できるからである。例えば図1(B)に示したラバーホース10では、どの単位層90~96の複合ストリップ材26も、スチールコード12が露出していない方の側面30をマンドレル42の方へ向けてあり、そのため図1(B)ではスチールコード12が各単位層90、92、94、96の外周面に露出して見えている。 When using the composite strip material 26 in which the steel cord 12 is exposed from one side face 28 of the unvulcanized rubber strip 38 as shown in FIG. 2 (B) or FIG. 2 (C), For any unit layer 90-96, the composite strip material 26 wound around the mandrel 42 (and thus around the inner tube 11) may have its same side facing the mandrel 42. Preferably, this is because by doing so, interference between the steel cords 12 of the unit layers adjacent in the vertical direction can be easily avoided. For example, in the rubber hose 10 shown in FIG. 1 (B), the composite strip material 26 of any unit layer 90 to 96 has the side surface 30 on which the steel cord 12 is not exposed directed toward the mandrel 42. In FIG. 1B, the steel cord 12 appears to be exposed on the outer peripheral surface of each unit layer 90, 92, 94, 96.
 以上に説明した複合ストリップ材の巻回方法によれば、スパイラル状に巻回する複合ストリップ材26のスパイラル角は(従って、スチールコード12のスパイラル角は)、形成する単位層の径と、スパイラルのピッチPとによって決まり、更に、スパイラルのピッチPは複合ストリップ材26の幅寸法Wに影響される。それゆえ、複合ストリップ材26の幅寸法Wは、製造しようとするラバーホースのスチールコード12の目標スパイラル角に応じて予め適切に定めておく。また、第1~第4単位層90~96を同一の複合ストリップ材26を用いて形成する場合には、それら単位層の径が異なるために、それら単位層におけるスチールコードのスパイラル角も互いに異なったものとなり、第1単位層90におけるスパイラル角が最も大きく、第4単位層96におけるスパイラル角が最も小さくなる。それゆえ、全ての単位層においてスチールコード12のスパイラル角を同一にしたいのであれば、それら単位層を、夫々に幅寸法の異なる複合ストリップ材を用いて形成するようにすればよく、即ち、第1単位層90を形成する複合ストリップ材の幅寸法を最も小さくし、第4単位層96を形成する複合ストリップ材の幅寸法を最も広くして、夫々の複合ストリップの幅寸法Wを適切に定めればよい。 According to the method of winding the composite strip material described above, the spiral angle of the composite strip material 26 wound in a spiral shape (therefore, the spiral angle of the steel cord 12) is the diameter of the unit layer to be formed, the spiral Further, the pitch P of the spiral is influenced by the width dimension W of the composite strip material 26. Therefore, the width dimension W of the composite strip material 26 is appropriately determined in advance according to the target spiral angle of the steel cord 12 of the rubber hose to be manufactured. Further, when the first to fourth unit layers 90 to 96 are formed using the same composite strip material 26, the diameters of the unit layers are different, so that the spiral angles of the steel cords in the unit layers are also different from each other. Thus, the spiral angle in the first unit layer 90 is the largest, and the spiral angle in the fourth unit layer 96 is the smallest. Therefore, if the spiral angle of the steel cord 12 is desired to be the same in all unit layers, the unit layers may be formed using composite strip materials having different width dimensions, that is, The width dimension of each composite strip is appropriately determined by making the width dimension of the composite strip material forming one unit layer 90 the smallest and the width dimension of the composite strip material forming the fourth unit layer 96 being the largest. Just do it.
 更に、複合ストリップ材26をインナーチューブ11の周囲または既に形成された単位層の周囲に巻回する際に、その複合ストリップ材26の表面にイオウ含有物質の粉体(例えばイオウ粉)を付着させるようにするとよく、これは特に、図2(B)及び図2(C)に示したように未加硫ラバーストリップ38の一側からスチールコード12の周面が外部に露出していて、そのスチールコード12の周面に真鍮メッキが施されている複合ストリップ材26を使用する場合に有利であり、なぜならば、その種の粉体を付着させることにより、後刻、加硫処理を施したときに、1つの単位層の複合ストリップ材26から露出している真鍮メッキが施されたスチールコード12の表面と、隣接する単位層の複合ストリップ材26の未加硫ラバーストリップ38の表面との付着強度が高まるからである。 Further, when the composite strip material 26 is wound around the inner tube 11 or around the already formed unit layer, a powder (for example, sulfur powder) of a sulfur-containing substance is attached to the surface of the composite strip material 26. In particular, as shown in FIGS. 2 (B) and 2 (C), the peripheral surface of the steel cord 12 is exposed to the outside from one side of the unvulcanized rubber strip 38. It is advantageous when using a composite strip material 26 in which the peripheral surface of the steel cord 12 is brass-plated, because when vulcanization is performed later by attaching such a powder. Further, the surface of the steel cord 12 plated with brass exposed from the composite strip material 26 of one unit layer and the unvulcanized rubber of the composite strip material 26 of the adjacent unit layer This is because bonding strength between the surface of the lip 38 is increased.
 本発明に係るストリップ材のスパイラル巻回装置28を使用して以上に説明した複合ストリップ材の巻回方法を実施するときには、複合ストリップ材26に適切な張力を付与しつつ、複合ストリップ材26をインナーチューブ11の外周面上または既に形成された単位層の外周面上に巻回することができ、また必要に応じて、複合ストリップ材26に適切な巻き癖を付与した上で、複合ストリップ材26をインナーチューブ11の外周面上または既に形成された単位層の外周面上に巻回することができるため、複合ストリップ材26を安定した状態でその外周面上に巻回することができる。 When carrying out the above-described method of winding a composite strip material using the spiral winding device 28 of the strip material according to the present invention, the composite strip material 26 is applied while applying an appropriate tension to the composite strip material 26. The composite strip material can be wound on the outer peripheral surface of the inner tube 11 or the outer peripheral surface of the unit layer that has already been formed. 26 can be wound on the outer peripheral surface of the inner tube 11 or on the outer peripheral surface of the unit layer that has already been formed, the composite strip material 26 can be wound on the outer peripheral surface in a stable state.
 以上のようにして単位層を形成する工程を反復して、複数の単位層90~96を重層して形成することにより、未加硫状態の積層形補強層14が形成される。続いて、その未加硫状態の積層形補強層14の外周に、その積層形補強層14の表面を覆うアウターチューブ24を形成する。この工程は、ストリップ材のスパイラル形成装置28を用いて実施することができ、それには例えば、アウターチューブ24の材料である、加硫後に耐摩耗性ラバーとなる未加硫ラバーから成るストリップ材を、ストリップ材供給機構50のドラム60に巻回してこのドラム60に格納し、そしてその未加硫ラバーストリップ材を、未加硫状態の積層形補強層14の表面にスパイラル状に巻回するなどすればよい。この場合、その未加硫ラバーストリップ材の1つのターンにおける一方の側縁と、その次のターンにおける他方の側縁との間に重なり部(over wrapping)が存在するようにして巻回するとよい。 By repeating the step of forming the unit layer as described above to form a plurality of unit layers 90 to 96, the unvulcanized laminated reinforcing layer 14 is formed. Subsequently, an outer tube 24 that covers the surface of the laminated reinforcing layer 14 is formed on the outer periphery of the unvulcanized laminated reinforcing layer 14. This process can be carried out by using a strip material spiral forming apparatus 28, for example, a strip material made of unvulcanized rubber which becomes a wear-resistant rubber after vulcanization, which is a material of the outer tube 24. Then, it is wound around the drum 60 of the strip material supply mechanism 50 and stored in this drum 60, and the unvulcanized rubber strip material is spirally wound around the surface of the unvulcanized laminated reinforcing layer 14. do it. In this case, the unvulcanized rubber strip material may be wound so that there is an overlap (over wrapping) between one side edge in one turn and the other side edge in the next turn. .
 続いて、ストリップ材のスパイラル形成装置28からマンドレル42を取外して加硫処理装置に搬入し、その加硫処理装置内において、マンドレル42上に形成されている未加硫状態のラバーホース10に加硫処理を施す。続いて、マンドレル42から加硫処理を施されたラバーホース10を引抜くことによって、最終製品としてのラバーホースが得られる。 Subsequently, the mandrel 42 is removed from the spiral forming device 28 of the strip material, and is carried into the vulcanization processing device. Apply sulfur treatment. Subsequently, a rubber hose 10 as a final product is obtained by pulling out the vulcanized rubber hose 10 from the mandrel 42.
 10 ラバーホース
 11 インナーチューブ
 12 補強用スチールコード
 14 積層形補強層
 16、18、20、22 スチールコード群
 24 アウターチューブ
 26 複合ストリップ材
 28 ストリップ材のスパイラル巻回装置
 30、32 複合ストリップ材の側面
 34、36 複合ストリップ材の側縁
 38 未加硫ラバーストリップ
 42 マンドレル
 44 動力回転ヘッド
 46 チャック
 48 芯押台
 50 ストリップ材供給機構
 52 送り移動機構
 54 ガイドレール
 56 キャリッジ
 58 コントローラ
 60 ドラム
 62 案内機構
 64 ガイドローラ
 66 巻き癖付与機構
 67 円筒ピン
 68 ブレーキ機構
 70 検出機構
 74 制動トルク制御機構
 74 プログラマブル・ロジック・コントローラ
 76 コントロール・バルブ
 78 アクチュエータ
 90、92、94、96 単位層 
DESCRIPTION OF SYMBOLS 10 Rubber hose 11 Inner tube 12 Steel cord for reinforcement 14 Laminated reinforcement layer 16, 18, 20, 22 Steel cord group 24 Outer tube 26 Composite strip material 28 Strip material spiral winding device 30, 32 Side surface of composite strip material 34 , 36 Side edges of composite strip material 38 Unvulcanized rubber strip 42 Mandrel 44 Power rotary head 46 Chuck 48 Core support 50 Strip material supply mechanism 52 Feed movement mechanism 54 Guide rail 56 Carriage 58 Controller 60 Drum 62 Guide mechanism 64 Guide roller 66 Winding rod imparting mechanism 67 Cylindrical pin 68 Brake mechanism 70 Detection mechanism 74 Braking torque control mechanism 74 Programmable logic controller 76 Control valve 78 Actuator 9 , 92, 94 and 96 units layer

Claims (4)

  1.  基礎フレームと、
     前記基礎フレームに回転可能に支持された、その周囲にストリップ材を巻回することのできるマンドレルと、
     前記マンドレルを駆動して回転させるマンドレル駆動機構と、
     前記マンドレルの周囲に巻回しようとするストリップ材を前記マンドレルへ向けて供給するストリップ材供給機構と、
     前記ストリップ材供給機構を前記マンドレルに沿って送り移動する送り移動機構と、
     前記マンドレル駆動機構と前記送り移動機構とを制御するコントローラであって、前記マンドレルの回転に同期させて前記ストリップ材供給機構を前記マンドレルに沿って送り移動させることのできるコントローラとを備え、
     前記ストリップ材供給機構は、
     軸心を有し該軸心の回りに回転可能でストリップ材がその周囲に巻回されて格納されるドラムと、
     前記マンドレルに巻取られて引っ張られることにより前記ドラムから繰り出されて前記マンドレルへ向けて供給されるストリップ材を案内する案内機構と、
     前記ドラムの回転に対して制御可能な制動トルクを作用させることのできるブレーキ機構と、
     前記ドラムから繰り出されるストリップ材の繰り出し位置の、前記ドラムの前記軸心からの半径距離を検出する検出機構(detector)と、
     前記検出機構の検出結果に基づいて、前記ブレーキ機構が前記ドラムの回転に対して作用させる制動トルクを制御することで、前記ドラムから繰り出されるストリップ材に作用する引張力を制御する制動トルク制御機構と、
     を備えている、
     ことを特徴とするストリップ材のスパイラル巻回装置。
    A basic frame,
    A mandrel rotatably supported by the base frame and capable of winding a strip material around the mandrel;
    A mandrel drive mechanism for driving and rotating the mandrel;
    A strip material supply mechanism for supplying a strip material to be wound around the mandrel toward the mandrel;
    A feed movement mechanism that feeds and moves the strip material supply mechanism along the mandrel;
    A controller for controlling the mandrel driving mechanism and the feed movement mechanism, and a controller capable of feeding and moving the strip material supply mechanism along the mandrel in synchronization with the rotation of the mandrel,
    The strip material supply mechanism includes:
    A drum having an axial center and rotatable around the axial center, in which a strip material is wound around and stored;
    A guide mechanism that guides the strip material fed from the drum and supplied toward the mandrel by being wound and pulled by the mandrel;
    A brake mechanism capable of applying a controllable braking torque to the rotation of the drum;
    A detection mechanism (detector) for detecting a radial distance from the axis of the drum of the feeding position of the strip material fed from the drum;
    A braking torque control mechanism that controls the tensile force that acts on the strip material fed from the drum by controlling the braking torque that the brake mechanism acts on the rotation of the drum based on the detection result of the detection mechanism. When,
    With
    A spiral winding device for strip material.
  2.  前記ストリップ材供給機構の前記案内機構は、前記ドラムから繰り出されて前記マンドレルへ向けて供給されるストリップ材に、該ストリップ材が前記マンドレルの周囲に巻付けられたときのカール方向の巻き癖を付与するための巻き癖付与機構を備えている、
     ことを特徴とする請求項1記載のストリップ材のスパイラル巻回装置。
    The guide mechanism of the strip material supply mechanism has a curl direction curl when the strip material is wound around the mandrel on the strip material fed from the drum and supplied toward the mandrel. It is equipped with a curl tacking mechanism for imparting,
    The spiral winding device for a strip material according to claim 1.
  3.  前記巻き癖付与機構は、前記ドラムから繰り出されて前記マンドレルへ向けて供給されるストリップ材がその周面に架け回されてその周面に押し付けられる円筒ピンを含んで成る、
     ことを特徴とする請求項2記載のストリップ材のスパイラル巻回装置。
    The curl imparting mechanism includes a cylindrical pin that is fed from the drum and supplied to the mandrel, and the strip material is wound around the circumferential surface and pressed against the circumferential surface.
    The strip material spiral winding device according to claim 2, wherein:
  4.  前記巻き癖付与機構により巻き癖が付与されたストリップ材の自由状態での巻き半径が前記マンドレルの半径と等しい、
     ことを特徴とする請求項3記載のストリップ材のスパイラル巻回装置。
    The winding radius in the free state of the strip material to which the curl is imparted by the curl imparting mechanism is equal to the radius of the mandrel,
    4. A strip material spiral winding apparatus according to claim 3, wherein:
PCT/JP2009/004332 2008-09-04 2009-09-02 Spiral winding device for strip material WO2010026754A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-226821 2008-09-04
JP2008226821A JP4442706B2 (en) 2008-09-04 2008-09-04 Manufacturing method of hydraulic hose
JP2008-227211 2008-09-04
JP2008227211A JP4442707B2 (en) 2008-09-04 2008-09-04 Method for manufacturing hydraulic hose, hydraulic hose, and strip-shaped member for forming spiral reinforcing layer

Publications (1)

Publication Number Publication Date
WO2010026754A1 true WO2010026754A1 (en) 2010-03-11

Family

ID=41796933

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/004327 WO2010026749A1 (en) 2008-09-04 2009-09-02 Method of manufacturing rubber hose reinforced by steel cords, rubber hose reinforced by steel cords, and composite strip material
PCT/JP2009/004332 WO2010026754A1 (en) 2008-09-04 2009-09-02 Spiral winding device for strip material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004327 WO2010026749A1 (en) 2008-09-04 2009-09-02 Method of manufacturing rubber hose reinforced by steel cords, rubber hose reinforced by steel cords, and composite strip material

Country Status (2)

Country Link
CN (1) CN102143833A (en)
WO (2) WO2010026749A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556276B2 (en) * 2010-03-17 2014-07-23 横浜ゴム株式会社 Hydraulic hose and manufacturing method thereof
DE102010003916A1 (en) 2010-04-13 2011-10-13 Evonik Degussa Gmbh Flexible tube and method for its production
CN105065802B (en) * 2015-08-20 2017-10-31 山东悦龙橡塑科技有限公司 It is a kind of for powder carry hose assembly of offshore drilling platform filling station make-up system and preparation method thereof
NL2015434B1 (en) * 2015-09-14 2017-03-29 Pipelife Nederland Bv High pressure pipe and method for producing such pipe.
CN106313591B (en) * 2016-08-25 2019-03-15 焦作恒荣科技有限公司 A kind of manufacturing method of the gum sleeve of novel built-in steel wire
GB2560298A (en) * 2016-11-19 2018-09-12 Polimer Kaucuk Sanayi Ve Pazarlama A S Method for producing a high-pressure hose and high pressure hose
CN106989219B (en) * 2017-04-23 2023-09-19 张东晓 Expansion rubber pipe and production process thereof
CN110370674A (en) * 2019-06-28 2019-10-25 哈尔滨理工大学 A kind of Wrapping formed preparation method and tubbiness product of rubber tubbiness product
CN112268145B (en) * 2020-10-28 2022-06-10 河北泽邦塑胶科技有限公司 Shock insulation rubber hose and preparation method thereof
CN113211836A (en) * 2021-05-12 2021-08-06 江西耐普矿机股份有限公司 Manufacturing method of high-wear-resistance rubber wire hose and die forming device
EP4261012A1 (en) * 2022-04-12 2023-10-18 Fibron Pipe GesmbH Thermoplastic composite pipe and method of making a flexible thermoplastic composite pipe
CN117128371A (en) * 2022-09-23 2023-11-28 漯河利通液压科技股份有限公司 Hose, hose assembly and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124177A (en) * 1975-04-22 1976-10-29 Togawa Rubber Mfg Method of making rubber hose and apparatus for the method
JPS5236172A (en) * 1975-09-15 1977-03-19 Midwestern Mfg Co Machine for covering pipes with tape * having improved means of controlling tension of tape
JPS6242833A (en) * 1985-08-20 1987-02-24 Kuraray Plast Kk Manufacture of wire-imbedded flexible pipe and wire feeding device therefor
JP2001145953A (en) * 1999-09-08 2001-05-29 Heidelberger Druckmas Ag Method and device for manufacturing wound sleeve from strip material continuously and endlessly
JP2008229984A (en) * 2007-03-19 2008-10-02 Toyo Tire & Rubber Co Ltd Method of manufacturing rubber hose, method of forming reinforcing cord layer and apparatus for molding cord layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3224197B2 (en) * 1996-08-06 2001-10-29 株式会社三葉製作所 Spiral hose production equipment
JP2002338749A (en) * 2001-05-15 2002-11-27 Sumitomo Rubber Ind Ltd Composite of steel cord with rubber composition and tire using the same
JP2007162818A (en) * 2005-12-13 2007-06-28 Toyo Tire & Rubber Co Ltd Rubber hose
JP2007170647A (en) * 2005-12-26 2007-07-05 Toyo Tire & Rubber Co Ltd Rubber hose

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124177A (en) * 1975-04-22 1976-10-29 Togawa Rubber Mfg Method of making rubber hose and apparatus for the method
JPS5236172A (en) * 1975-09-15 1977-03-19 Midwestern Mfg Co Machine for covering pipes with tape * having improved means of controlling tension of tape
JPS6242833A (en) * 1985-08-20 1987-02-24 Kuraray Plast Kk Manufacture of wire-imbedded flexible pipe and wire feeding device therefor
JP2001145953A (en) * 1999-09-08 2001-05-29 Heidelberger Druckmas Ag Method and device for manufacturing wound sleeve from strip material continuously and endlessly
JP2008229984A (en) * 2007-03-19 2008-10-02 Toyo Tire & Rubber Co Ltd Method of manufacturing rubber hose, method of forming reinforcing cord layer and apparatus for molding cord layer

Also Published As

Publication number Publication date
WO2010026749A1 (en) 2010-03-11
CN102143833A (en) 2011-08-03

Similar Documents

Publication Publication Date Title
WO2010026754A1 (en) Spiral winding device for strip material
WO2010026751A1 (en) Method of manufacturing rubber hose reinforced by steel cords, and rubber hose reinforced by steel cords
JP4646297B2 (en) Manufacturing apparatus and manufacturing method of rubber sheet reinforced with cord by double cylinder
US8241453B2 (en) Method and apparatus for manufacturing fibre-reinforced hoses
EP1724224B1 (en) Spiraling apparatus
JP4902549B2 (en) Method and apparatus for manufacturing and arranging tire circumferential reinforcement and tire obtained by this method
EP3225386B1 (en) System for adjusting a path of a wire
JP5058267B2 (en) Method and apparatus for manufacturing pneumatic tires
JP5542121B2 (en) Method and apparatus for building tires
CN113386329A (en) Fiber winding machine and winding method
US3979250A (en) Apparatus for making continuous lengths of resin tubes
WO2005065926A1 (en) Device and method for manufacturing rubber sheet reinforced with cord
US3943224A (en) Method and apparatus for making continuous lengths of resin tubes
JP4611790B2 (en) Twisted wire machine and method for coating twisted wire
JP2005271558A (en) Cylindrical rubber molding and its manufacturing method
CN109228438B (en) Glue-coated steel wire winding device
MX2010011039A (en) Method and device for manufacturing green tire.
JP2008162021A (en) Cylindrical object made of short fiber-containing rubber and its manufacturing method
JP4902400B2 (en) Rubber hose manufacturing method, reinforcing cord layer forming method, and reinforcing cord layer forming apparatus
US4082597A (en) Method and apparatus for making continuous lengths of resin tubes
US4473420A (en) Method and apparatus for applying hoop windings to a cylindrical member
WO2010004869A1 (en) Device and method for producing tire reinforcement member
JP4442706B2 (en) Manufacturing method of hydraulic hose
JP3957599B2 (en) Rubber coated cord extrusion apparatus and extrusion method
JP2009137190A (en) Apparatus and method for manufacturing hose for high pressure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811284

Country of ref document: EP

Kind code of ref document: A1