WO2010026724A1 - Microphone check device and check method - Google Patents

Microphone check device and check method Download PDF

Info

Publication number
WO2010026724A1
WO2010026724A1 PCT/JP2009/004221 JP2009004221W WO2010026724A1 WO 2010026724 A1 WO2010026724 A1 WO 2010026724A1 JP 2009004221 W JP2009004221 W JP 2009004221W WO 2010026724 A1 WO2010026724 A1 WO 2010026724A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
sound wave
cavity
test sound
speaker
Prior art date
Application number
PCT/JP2009/004221
Other languages
French (fr)
Japanese (ja)
Inventor
小林樹治
福田理夫
Original Assignee
ダイトロンテクノロジー株式会社
株式会社システム計測
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイトロンテクノロジー株式会社, 株式会社システム計測 filed Critical ダイトロンテクノロジー株式会社
Priority to JP2010527674A priority Critical patent/JPWO2010026724A1/en
Publication of WO2010026724A1 publication Critical patent/WO2010026724A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the present invention relates to a microphone inspection apparatus and an inspection method for outputting an electrical signal based on the movement of a movable part.
  • a microphone inspection in which a test sound wave from a speaker is input to a microphone and an electric signal output from the microphone is detected is performed in an anechoic space in order to avoid the influence of reflection and reverberation of the test sound wave.
  • the larger the space for inspection the greater the speaker output required to input a test sound wave with a predetermined sound pressure to the microphone to be inspected.
  • the test sound wave is likely to be distorted, and there is a possibility that it cannot be accurately inspected.
  • Such a problem due to distortion of the test sound wave is likely to occur when the input test sound wave is a low sound (for example, several tens of Hz or less).
  • Patent Document 1 discloses a measurement method in which an impulse response measurement is performed by arranging a speaker and a microphone in an anechoic chamber and collecting sound for measurement generated from the speaker with a microphone.
  • the anechoic chamber is an ordinary room in an ordinary building, and therefore, noise other than measurement sound may easily enter from the outside into the anechoic chamber and may not be accurately measured. is there.
  • the anechoic chamber is downsized, the measurement result is more susceptible to noise that has entered from the outside, and the inspection space cannot be downsized.
  • this measurement method smoothes the signal detected by the microphone to obtain a signal corresponding to the anechoic chamber, measurement is difficult in a small anechoic chamber where the influence of reflection and reverberation is large. From this point of view, the inspection space cannot be reduced in size. Therefore, the measurement method disclosed in Patent Document 1 below cannot solve the above-described problem. JP 2000-69597 A
  • the present invention has been made in view of the above problems, and is intended to reduce the size of a microphone inspection apparatus that inputs a test sound wave output from a speaker to a microphone and detects an electrical signal output from the microphone. Objective.
  • the microphone inspection apparatus includes a speaker that inputs a test sound wave to a microphone that outputs an electric signal based on the movement of the movable part, and an electric signal output by the movement of the movable part in response to the test sound wave.
  • a microphone inspection apparatus including a detection unit for detection includes a sealed anechoic space and a cavity in which the speaker and the microphone are arranged.
  • the cavity in which the speaker and the microphone are arranged is configured in an anechoic space, the cavity can be provided small, and the microphone inspection apparatus can be miniaturized. Therefore, the test sound wave output from the speaker is not easily absorbed by the wall surface constituting the cavity or leaks outside the cavity, and the test sound wave with a predetermined sound pressure can be efficiently input to the microphone. Moreover, even when a low-frequency test sound wave is input to the microphone, the speaker output is unlikely to be excessive and an accurate inspection can be performed. In addition, since the cavity is hermetically sealed, it is difficult for sound signals other than the test sound wave to enter the cavity from the outside, and the inspection can be performed accurately.
  • a test sound wave output from a speaker is input to a microphone that outputs an electrical signal based on the movement of the movable part, and output by the movement of the movable part in response to the test sound wave.
  • the speaker and the microphone to be inspected are arranged in a cavity which is a sealed anechoic space.
  • the microphone inspection apparatus can be miniaturized.
  • 1 is a front view schematically showing an inspection apparatus according to a first embodiment of the present invention.
  • 1 is a plan view schematically showing an inspection apparatus according to a first embodiment of the present invention. It is sectional drawing which shows roughly the apparatus main body of the test
  • FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. It is a principal part enlarged view of FIG. It is a block diagram which shows the control structure of the test
  • FIG. 12 is a sectional view taken along line BB in FIG.
  • FIG. 1 It is a top view which shows the principal part of the cover body of the test
  • the microphone inspection apparatus 1 inputs a sound signal having one or more predetermined frequencies set to a predetermined sound pressure as a test sound wave to a microphone to be inspected, and detects an electric signal output from the microphone. To do.
  • a sound signal having one or more predetermined frequencies set to a predetermined sound pressure as a test sound wave to a microphone to be inspected, and detects an electric signal output from the microphone.
  • sound signals having three types of frequencies of 70 Hz, 1000 Hz, and 5000 Hz set to a sound pressure of 1 Pa are input as test sound waves.
  • a MEMS microphone is described as an inspection target.
  • the present invention can also be applied to inspection of various microphones other than a MEMS microphone such as a condenser microphone.
  • a MEMS microphone (hereinafter referred to as a microphone) 100 to be inspected in the present embodiment includes a substrate 102, a MEMS chip 104, and a seal case 106 as illustrated in FIG.
  • substrate 102 is a printed circuit board for mounting the MEMS chip 104, Comprising:
  • the vertical x horizontal dimension of the mounting surface is provided in the magnitude
  • the MEMS chip 104 converts a sound signal captured by the movement of the movable portion 108 into an electric signal, and is electrically connected by an amplifier circuit 110 that amplifies the electric signal output from the MEMS chip 104 and a wire 112. .
  • the MEMS chip 104 and the amplifier circuit 110 are covered with a seal case 106 having a height of about 1 mm, for example, and a sound hole 114 is provided at a position facing the movable portion 108 in the seal case 106.
  • a plurality of electrodes 116 are provided on the lower surface of the substrate 102, that is, the surface facing the surface on which the MEMS chip 104 is mounted. A power supply voltage and a ground voltage (ground) are input from these electrodes, and a microphone is provided. The electric signal from 100 is output.
  • the inspection apparatus 1 includes a transport mechanism 8 and an apparatus body 10 housed in the first housing 2, a detection unit 13 and a control unit 15 housed in the second housing 3. Is provided.
  • the first housing 2 and the second housing are separate housings.
  • the transport mechanism 8 and the apparatus main body 10 housed in the first housing 2 are electrically connected to the detection unit 13 and the control unit 15 housed in the second housing 3 by the signal line 4.
  • the first housing 2 accommodates a tray 6 that accommodates a number of microphones 100 to be inspected, and a reference microphone tray 7 that accommodates a reference microphone (hereinafter referred to as a reference microphone) 120 described later. ing.
  • the conveyance mechanism 8 conveys the microphone 100 and the reference microphone 120 to be inspected accommodated in the tray 6 and the reference microphone tray 7 to the apparatus main body 10, and the measured microphone 100 and reference microphone 120 from the apparatus main body 10. Return to tray 6 and reference microphone tray 7.
  • a transport mechanism 8 is not particularly limited, and a known transport mechanism can be employed.
  • the apparatus main body 10 includes a hollow body 12 having a cylindrical hollow portion 11, a lid body 16 disposed so as to face one opening of the hollow body 12, and the hollow body 12.
  • Speaker 14 The detection unit 13 detects an electric signal input from the microphone 100 housed in the apparatus body 10 via the signal line 4.
  • the control unit 15 inputs a control signal to the transport mechanism 8 and the apparatus main body 10 via the signal line 4 and controls them. Further, the control unit 15 executes a calculation process described later based on the electrical signal detected by the detection unit 13 and causes the display device 5 to display the calculation result.
  • the hollow body 12 is a member made of a metal material such as cast iron, stainless steel, or aluminum, and a sound-insulating packing 22 is provided on the periphery of one opening 12a, and a speaker 14 is provided on the other opening 12b.
  • the speaker 14 is arranged such that the diaphragm 18 faces the other opening 12 b of the hollow body 12 and the central axis of the diaphragm 18 coincides with the central axis of the hollow part 11.
  • the speaker 14 is covered with a speaker box 20.
  • the speaker box 20 is connected and fixed to the hollow body 12 to close the other opening 12 b of the hollow body 12, and the speaker 14 is provided at the end of the hollow body 12.
  • the diameter of the hollow part 11 is 50 mm
  • the length up to 12b can be set to 80 mm.
  • the hollow body 12 is fixed to a slider 28 slidably attached to a rail 26 disposed on the table 24.
  • the rail 26 is provided along the axial center direction of the hollow portion 11.
  • the moving mechanism 29 for example, an electric or pneumatic linear actuator can be used.
  • the drive motor of the linear actuator is preferably a pulse motor.
  • the lid body 16 is made of a metal material such as cast iron, stainless steel, or aluminum, and is a plate-like member erected from the table 24 at a position facing the opening 12a of the hollow body 12.
  • the lid body 16 comes into contact with the sound insulation packing 22 and compresses the sound insulation packing 22 to close the opening 12 a of the hollow body 12.
  • a sealed cavity 30 is formed by the hollow body 12, the speaker box 20, and the lid body 16. That is, the moving mechanism 29 moves the hollow body 12 relative to the lid body 16, closes the opening 12 a of the hollow body 12 with the lid body 16, and forms a sealed cavity 30 inside the hollow body 12.
  • the material constituting the hollow body 12 and the lid body 16 may be ceramic concrete, a resin material such as synthetic resin, or MDF (medium density). It may be a molded body made of wood fiber such as fiberboard).
  • a sound insulating material can be disposed on the outer periphery of the hollow body 12, which makes it difficult for sound signals other than the test sound wave to enter the cavity from the outside.
  • the cavity 30 forms an anechoic space that allows reflection of sound waves output from the speaker 14 on the inner wall of the hollow body 12 and the lid body 16.
  • a holder 32 for holding the microphone 100 to be inspected is fixed to the facing surface 17 of the lid body 16, and the holder 32 is placed in the cavity 30 with the lid body 16 closing the opening 12 a of the hollow body 12. Is located (see FIG. 4).
  • the holder 32 is provided with a microphone housing portion 34 that is depressed downward and on which the microphone 100 to be inspected is placed, and a slit 36 that extends from the hollow body side end portion to the microphone housing portion 34. It has been.
  • the slit 36 guides the sound wave output from the speaker 14 to the sound hole 114 of the microphone 100 placed in the microphone housing portion 34. Thereby, the peripheral wall which divides the microphone accommodating part 34 becomes difficult to become an obstacle, and the sound wave from the speaker 14 can be efficiently input to the microphone 100.
  • the microphone housing portion 34 is provided with a plurality of probes 35 that come into contact with the electrodes 116 provided on the lower surface of the microphone 100, and supplies a power supply voltage and a ground voltage (ground) to the microphone 100 and outputs from the microphone 100.
  • the electrical signal is derived to the detection unit 13.
  • the microphone housing portion 34 is disposed at a predetermined position of the holder 32 so that the sound hole 114 of the microphone 100 is disposed avoiding a node portion of a standing wave generated in the cavity 30 by the test sound wave output from the speaker 14. It is preferable.
  • the cavity 30 forms an anechoic space that allows reflection of sound waves output from the speaker 14. Therefore, if the test sound wave output from the speaker 14 is an ideal plane wave, the test sound wave (input wave W1) from the speaker 14 and the reflected wave W2 reflected by the lid body 16 are combined to generate a stationary wave W3. May occur. In such a case, the reflection at the lid 16 is fixed-end reflection, and the phase of the reflected wave W2 is shifted from the phase of the input wave W1 by 1 ⁇ 2 cycle at the position of the lid 16, so the distance L from the lid 16 is the test. A node portion of the standing wave W3 is generated at a position that is an integral multiple of the half wavelength ⁇ / 2 of the sound wave (see FIG. 7).
  • the sound hole 114 of the microphone 100 is preferably disposed avoiding the node.
  • the wavelength of the sound signal having a frequency of f (Hz) is c / f (where c is the speed of sound). Therefore, when the speed of sound c is 340 m / sec, the frequencies as in the present embodiment are 70 Hz, 1000 Hz, The wavelength ⁇ of each sound signal of 5000 Hz is about 4857 mm, about 340 mm, and about 68 mm.
  • the test sound wave input from the speaker 14 into the hollow portion 11 is ideal. Since it is not a typical plane wave, it is difficult to generate a complete standing wave in the cavity 30. However, at a position where the distance from the cover 16 is an integral multiple of the half wavelength ⁇ / 2 of the test sound wave, a part of the input wave may cancel the reflected wave and the test sound wave may not be input to the microphone 100 properly. Therefore, it is preferable to arrange the sound hole 114 of the microphone 100 avoiding such a position.
  • the holder 32 is provided with a comparison microphone (referred to as a comparison microphone) 38 made of the same type of MEMS microphone as the microphone 100 to be inspected, and the comparison microphone 38 from the end on the hollow body side corresponding to the sound hole 39 of the comparison microphone 38.
  • a slit 40 extending to the upper position is provided.
  • a probe (not shown) provided on the holder 32 supplies a power supply voltage and a ground voltage (ground) to an electrode (not shown) of the comparison microphone 38 and is output from the comparison microphone 38.
  • the electric signal is derived to the detection unit 13.
  • the microphone is positioned so that the position of the sound hole 114 of the microphone 100 to be inspected placed in the microphone housing portion 34 is symmetrical to the position of the sound hole 39 of the comparative microphone 38 with respect to the central axis of the hollow portion 11. It is preferable to provide the accommodating part 34.
  • the comparison microphone 38 may be a different type of microphone from the microphone 100 to be inspected, such as a condenser microphone.
  • the lid 16 is provided with a pressing mechanism 42 in the vicinity of the holder 32.
  • the holding mechanism 42 penetrates the lid body 16 and stands upright from the facing surface 17 toward the hollow body 12.
  • the holding mechanism 42 is fixed to the hollow body side end of the rotation shaft 44 and is radially outside the rotation shaft 44.
  • a rotating body 46 extending in the direction
  • a pressing body 48 fixed to the rotating body 46 so that the microphone housing part 34 exists on the rotating track and a driving unit 50 that rotates the rotating shaft 44.
  • the drive unit 50 rotates the rotation shaft 44 in a predetermined direction
  • the pressing body 48 fixed to the rotation body 46 presses the microphone 100 placed on the microphone housing unit 34 from above and is fixed to the holder 32.
  • the electrode 116 is reliably brought into contact with the probe 35.
  • an electrically driven or pneumatic rotary actuator etc. can be used, for example.
  • the holder 32 and the pressing mechanism 42 are connected to a position adjusting unit 37 such as a micrometer, and are provided so as to be movable along the axial direction of the hollow portion 11 with respect to the lid body 16.
  • a position adjusting unit 37 such as a micrometer
  • the distance from the lid 16 to the microphone housing portion 34 is adjusted, and the pressing mechanism 42 moves in the axial direction of the hollow portion 11 in synchronization with the movement of the holder 32.
  • a test sound wave having any wavelength can be placed on the microphone housing portion 34 from the facing surface 17 of the lid body 16.
  • the microphone 100 can be disposed in the cavity 30 while avoiding the distance of the microphone 100 to the sound hole 114 being an integral multiple of the half wavelength ⁇ / 2 of the test sound wave.
  • the electrical signal output from the microphone 100 placed in the microphone housing unit 34 is input to the detection unit 13 via the signal line 4, and the frequency characteristic measured by the microphone 100 is detected from the electrical signal. Further, the detection unit 13 receives an electric signal output from the comparison microphone 38 via the signal line 4 and detects a frequency characteristic measured by the comparison microphone 38 from the electric signal. Then, the detection unit 13 inputs frequency characteristic data relating to the detected frequency characteristics of the microphone 100 and the comparison microphone 38 to the control unit 15.
  • the detection unit 13 is a microphone placed in the microphone housing unit 34.
  • the frequency includes three types of peaks P1, P2, and P3 corresponding to sound signals having three types of frequencies of 70 Hz, 1000 Hz, and 5000 Hz. Detect characteristics. Further, the detection unit 13 detects the frequencies f1, f2, and f3 and the sound pressures M1, M2, and M3 of the peaks P1, P2, and P3, and sends the detected frequencies and sound pressures to the control unit 15 as frequency characteristic data. Output.
  • the control unit 15 inputs various control signals to the apparatus main body 10 via the signal line 4 and controls the apparatus main body 10. Specifically, as shown in FIG. 8, the control unit 15 drives and controls the transport mechanism 8, the moving mechanism 29, the drive unit 50, and the signal generation unit 54 according to various programs stored in the external storage unit 52.
  • the power supply voltage is supplied to the microphone 100 and the comparison microphone 38 placed in the microphone housing portion 34.
  • the signal generator 54 receives a command from the controller 15 and inputs a speaker drive signal to the speaker 14 to output a test sound wave.
  • control unit 15 selects the speaker 14 output from the signal generation unit 54 based on the frequency characteristic data regarding the microphone 100 placed in the microphone housing unit 34 among the frequency characteristic data input from the detection unit 13. While adjusting the speaker drive signal for driving, it also functions as a calibration unit that calibrates the frequency characteristic data related to the microphone 100 based on the frequency characteristic data related to the comparison microphone 38.
  • control unit 15 outputs the frequency characteristic data regarding the calibrated microphone 100, the frequency characteristic data regarding the microphone 100 before being calibrated, and the frequency characteristic data regarding the comparison microphone 38 to the external storage unit 52 and the display device 5. These data are stored and displayed.
  • the transport mechanism 8 transports the reference microphone 120 accommodated in the reference microphone tray 7 to the apparatus main body 10. And it mounts in the microphone accommodating part 34 (step S1).
  • the pressing body 48 stands by at a position above the holder 32 as shown in FIGS.
  • the reference microphone 120 includes a MEMS microphone of the same type as the microphone 100 to be inspected, and is a microphone having a known frequency characteristic.
  • the reference microphone 120 may be a different type of microphone from the microphone 100 to be inspected, such as a condenser microphone.
  • control unit 15 controls the drive unit 50 to rotate the rotation shaft 44 in a predetermined direction, and the pressing body 48 that stands by at the upper position of the holder 32 as shown in FIGS.
  • the reference microphone 120 placed on 34 is pressed from above (see FIGS. 13 and 14), and the electrode of the reference microphone 120 is reliably brought into contact with the probe 35 (step S2).
  • control unit 15 operates the moving mechanism 29 to bring the sound insulation packing 22 provided in the hollow body 12 into contact with the lid body 16, thereby closing the opening 12a of the hollow body 12 as shown in FIG. S3).
  • the signal generation unit 54 inputs the speaker drive signal to the speaker 14, and the test sound wave Is output from the speaker 14 (step S4).
  • the detection unit 13 receives the test sound wave and detects an electrical signal output from the reference microphone 120 and the comparison microphone 38.
  • the detection unit 13 calculates the frequency characteristics of the reference microphone 120 and the comparison microphone 38 from the detected electrical signal.
  • the control unit 15 has a predetermined frequency characteristic regarding the reference microphone 120 from the detection unit 13, that is, in the case of the present embodiment, the frequency is 70 Hz, 1000 Hz, 5000 Hz, and each sound pressure is 1 Pa.
  • the speaker drive signal output from the signal generator 54 is adjusted.
  • the control unit 15 stores the adjusted speaker drive signal in the storage unit 52 and the frequency characteristic of the comparison microphone 38 at that time. That is, the three kinds of peak frequencies fri1, fri2, fri3 and sound pressures Mri1, Mri2, Mri3 detected corresponding to the test sound wave are stored in the storage unit 52 as initial frequency characteristic values (step S5).
  • control unit 15 controls the moving mechanism 29 to separate the hollow body 12 from the lid body 16, and controls the driving unit 50 to rotate the rotation shaft 44 in a predetermined direction.
  • the pressing of the reference microphone 120 is released, and the pressing body 48 is moved to the standby position above the holder 32 as shown in FIGS. 11 and 12 (step S6).
  • the transport mechanism 8 takes out the reference microphone 120 from the microphone housing portion 34 and returns it to the reference microphone tray 7, and places the microphone 100 to be inspected from the tray 6 in the microphone housing portion 34 (step S7). That is, the microphone 100 to be inspected is disposed at the same position as the position where the reference microphone 120 is disposed.
  • control unit 15 controls the drive unit 50 to rotate the rotation shaft 44 in a predetermined direction and press the microphone 100 to be inspected from above by the pressing body 48 (step S8).
  • control unit 15 controls the moving mechanism 29 to close the opening 12a of the hollow body 12 with the lid body 16 (step S9).
  • control unit 15 inputs the power supply voltage to the inspection target microphone 100 and the comparison microphone 38, operates the inspection target microphone 100 and the comparison microphone 38, and then transmits the speaker drive signal adjusted in step S5 to the signal generation unit. 54 to input to the speaker 14. Thereby, the control unit 15 inputs a sound wave equal to the test sound wave adjusted in step S5 to the microphone 100 and the comparison microphone 38 to be inspected (step S10).
  • the detection unit 13 receives an input of the test sound wave and detects an electrical signal output from the microphone 100 to be inspected and the comparison microphone 38.
  • the detection unit 13 uses the electrical signals output from the inspection target microphone 100 to detect the three types of peak frequencies foj1, foj2, foj3 and the sound pressures Moj1, Moj2, Moj3 detected in response to the test sound wave. It is calculated as a frequency characteristic value of 100.
  • the detection unit 13 uses the electrical signals output from the comparison microphone 38 to obtain the three types of peak frequencies fr1, fr2, fr3 and the sound pressures Mr1, Mr2, Mr3 detected corresponding to the test sound wave. It is calculated as a frequency characteristic value (step S11).
  • the control unit 15 then performs the inspection obtained in step S11 based on the initial frequency characteristic value of the comparison microphone 38 stored in the storage unit 52 and the frequency characteristic value of the comparison microphone 38 obtained in step S11.
  • the frequency characteristic value of the target microphone 100 is calibrated.
  • the calibrated frequency characteristic values that is, the three types of peak frequencies fca1, fca2, and fca3 and the sound pressures Mca1, Mca2, and Mca3 can be calculated by, for example, the following formulas 1 to 6 (step S12).
  • fca1 foj1 + (fri1-fr1) Equation 1
  • fca2 foj2 + (fri2-fr2) Equation 2
  • fca3 foj3 + (fri3-fr3) Equation 3
  • Mca1 Moj1 ⁇ (Mri1 / Mr1) Equation 4
  • Mca2 Moj2 ⁇ (Mri2 / Mr2)
  • Mca3 Moj3 ⁇ (Mri3 / Mr3) Equation 6
  • the control unit 15 controls the moving mechanism 29 to separate the hollow body 12 from the lid body 16, and controls the driving unit 50 to rotate the rotation shaft 44 in a predetermined direction, thereby causing the pressing body 48.
  • the pressing of the microphone 100 is released, and the pressing body 48 is moved to the standby position above the side of the holder 32 as shown in FIGS. 11 and 12 (step S13).
  • the transport mechanism 8 takes out the microphone 100 to be inspected from the microphone accommodating portion 34, and the control portion 15 determines whether or not the microphone 100 to be inspected next exists in the tray 6 (step S14). . If there is a microphone 100 to be inspected next, the process proceeds to step S15. If there is no microphone 100 to be inspected next, the inspection is terminated.
  • step S15 the transport mechanism 8 places the microphone 100 to be inspected next on the microphone housing 34, and then returns to step S8. And by repeating step S8 to step S15, the frequency characteristic value is acquired about the microphone 100 of the test object accommodated in the tray 6 sequentially, and the microphone is inspected.
  • the inspection apparatus 1 can be reduced in size, the test sound wave output from the speaker 14 can be efficiently input to the microphone 100, and the low-frequency test sound wave can be input to the microphone 100.
  • the speaker output is unlikely to be excessive and can be inspected accurately.
  • the cavity 30 is hermetically sealed, it is difficult for sound signals other than the test sound wave to enter the cavity from the outside, and the inspection can be performed accurately.
  • the acoustic characteristics in the cavity 30 are likely to change due to the secular change of the sound absorbing material, but in this embodiment, the metal material is exposed inside the cavity 30, The acoustic characteristics in the cavity 30 are unlikely to change, and the inspection can be performed stably over a long period of time.
  • the microphone 100 is disposed in the cavity 30 while avoiding the distance from the facing surface 17 of the lid 16 to the sound hole 114 being an integral multiple of the half wavelength ⁇ / 2 of the test sound wave. Therefore, part or all of the test sound wave output from the speaker 14 is not canceled by the reflected waves reflected by the facing surface 17 of the lid 16, and the test sound wave can be efficiently input to the microphone 100. it can.
  • the apparatus main body 10 can be configured with a simple configuration.
  • the holder 32 that holds the microphone 100 is fixed to the lid body 16 that is fixed to the table 24, and the hollow body 12 is moved by the moving mechanism 29 so that the opening 12 a of the hollow body 12 is opened.
  • the lid 16 is closed. Therefore, when the microphone 100 is placed in the microphone housing portion 34, the microphone 100 does not move until the inspection is completed, and contact failure between the electrode 116 of the microphone 100 and the probe 35 is less likely to occur. High test results can be obtained.
  • control unit 15 adjusts the speaker drive signal output from the signal generation unit 54 so that the frequency characteristic value obtained from the reference microphone 120 disposed in the microphone housing unit 34 has a predetermined sound pressure and a predetermined frequency. Therefore, the output from the speaker 14 can be adjusted so that a test sound wave having a predetermined sound pressure and a predetermined frequency is generated at the position where the microphone 100 to be inspected is arranged, and the inspection can be performed accurately. Moreover, the output from the speaker can be adjusted so that a test sound wave having a predetermined sound pressure and a predetermined frequency is generated at the same position as the position where the reference microphone 120 is disposed in the microphone housing portion 34 and the microphone 100 to be inspected is disposed. The microphone can be accurately inspected.
  • each microphone 100 can be inspected by being arranged at the same position in the cavity 30. Therefore, even if the sound pressure of the test sound wave differs depending on the position in the cavity 30, it is possible to input a test sound wave substantially equal to each of the microphones 100 to be inspected. However, highly reliable test results can be obtained.
  • the cavity 30 not only the microphone 100 to be inspected but also a comparative microphone 38 is arranged. For this reason, when a plurality of microphones 100 are sequentially inspected, even if disturbance such as atmospheric pressure change or temperature change occurs, the frequency characteristic value obtained from the microphone 100 to be inspected based on the frequency characteristic value obtained from the comparison microphone 38 is obtained. Calibration can be performed, and even when a plurality of microphones are sequentially inspected, a highly reliable inspection result can be obtained.
  • the apparatus main body 10 that inspects the microphone 100 is housed in a separate housing from the second housing 3 in which the detection unit 13 and the control unit 15 are housed. Therefore, noise and vibration generated from the detection unit 13 and the control unit 15 are not easily transmitted to the apparatus main body 10, and a highly reliable test result is obtained.
  • the microphone 32 is provided in one place on the holder 32, and one inspection target microphone 100 is arranged in the cavity 30 by one measurement.
  • a microphone housing part 34 may be provided, and a plurality of microphones 100 to be inspected may be placed in the cavity 30 and inspected in one measurement. In such a case, inspection efficiency can be improved.
  • step S1 to step S6 in FIG. 10 that is, the adjustment of the speaker drive signal performed by placing the reference microphone 120 in the microphone housing portion 34, is performed every time a predetermined number of microphones are inspected or predetermined. This can be done every time.
  • the present invention is not limited to the case in which the sealed cavity 30 is formed by closing the opening that the lid 16 opens at one end of the hollow body 12.
  • the lid 16 is formed on the peripheral surface of the hollow body 12.
  • An opening for inserting and removing the microphone 100 to be inspected is provided, and the opening is closed by a lid to form a sealed cavity 30, or a cavity 30 sealed inside the box instead of the hollow body 12. Can also be formed.
  • the moving mechanism 29 moves the hollow body 12 so that the lid body 16 fixed to the table 24 closes the opening of the hollow body 12, but the present invention is not limited thereto.
  • the hollow body 12 is fixed to the table 24, the lid body 16 is fixed to the slider 28 slidably attached to the rail 26, and the lid body 16 is fixed to the table 24 by moving on the rail 26.
  • You may comprise so that the opening part 12a of the hollow body 12 made may be obstruct
  • the S / N ratio of the microphone 100 to be inspected is detected by detecting an electrical signal output from the microphone 100 to be inspected in a state where no sound is output from the speaker 14. It may be calculated.
  • the lid 16 closes the opening 12a of the hollow body 12 and a sealed cavity 30 is formed, in other words, after the opening 12a of the hollow body 12 is closed in step S9, the control unit 15 inputs a power supply voltage to the microphone 100 and the comparative microphone 38 to be inspected, and operates the microphone 100 and the comparative microphone 38 to be inspected. While the test sound wave is not output from the speaker 14, the detection unit 13 detects an electrical signal output from the microphone 100 to be inspected, and the control unit 15 stores the detection result in the storage unit 52.
  • control unit 15 calculates the S / N ratio.
  • the detection unit 13 detects an electrical signal output from the microphone 100 to be inspected in a state where the test sound wave is not output from the speaker 14. Sometimes it is preferable to stop the supply of air to the actuator. By stopping the supply of air to the actuator in this way, sound and vibration caused by air leaking from the actuator are not input to the microphone 100, and the S / N ratio can be accurately calculated. .
  • FIG. 16 is a cross-sectional view schematically showing the apparatus main body 10 of the microphone inspection apparatus 1 according to the present embodiment.
  • the illumination device 60 is disposed in the cavity 30.
  • the illuminating device 60 includes a light source 61 such as a white LED, and is housed in a recess 62 provided on the inner wall of the hollow body 12. As shown in FIG. 16, the illuminating device 60 is disposed in the hollow body 12 so that the optical axis LA of the light source 61 faces the microphone housing portion 34 in a state where the lid 16 closes the opening 12 a of the hollow body 12. ing.
  • a light source 61 such as a white LED
  • the lighting device 60 is controlled to blink by the control unit 15. Specifically, when the test sound wave is input from the speaker 14 to the microphone 100 to be inspected and the detection unit 13 detects the electrical signal output from the microphone 100 to be inspected in Step S10 and Step S11 of FIG.
  • the control unit 15 causes the lighting device 60 to blink, and irradiates the microphone 100 with blinking light.
  • the frequency of the flashing light applied to the microphone 100 is set to a frequency (for example, 100 Hz) other than the frequency of the sound signal included in the test sound wave output from the speaker 14 (70 Hz, 1000 Hz, 5000 Hz in this embodiment).
  • Some MEMS microphones generate noise when irradiated with light.
  • the detection unit 13 detects an electrical signal output from the inspection target microphone 100
  • the illumination apparatus 60 irradiates the inspection target microphone 100 with blinking light, thereby inspecting. It is possible to determine whether the target microphone 100 generates noise upon receiving light irradiation.
  • the frequency characteristics detected by the detection unit 13 include: In addition to the peaks P1, P2 and P3 corresponding to the frequency of the sound signal included in the test sound wave, a peak Pn corresponding to the frequency of the flashing light irradiated to the microphone 100 is detected as shown in FIG.
  • the detection unit 13 detects the peak Pn corresponding to the frequency of the flashing light from the detected frequency characteristics. It may be detected that the microphone 100 to be inspected receives noise and generates noise. In addition, the detection unit 13 calculates a relative value (for example, Mn / M1) with respect to the sound pressure value of any one of the peaks P1, P2, and P3 for the sound pressure value Mn at the frequency fn of the flashing light irradiated on the microphone 100. When the calculated relative value is larger than a predetermined threshold value, the peak Pn corresponding to the frequency of the blinking light is detected from the detected frequency characteristic, and the microphone 100 to be inspected emits light and generates noise. You may detect that.
  • a relative value for example, Mn / M1
  • whether or not the microphone 100 to be inspected is irradiated with light and generates noise can be determined simultaneously with the measurement of the frequency characteristics.
  • the peak Pn corresponding to the frequency of the flashing light in the detected frequency characteristic is Since it does not overlap with the peaks P1, P2, and P3 corresponding to the frequency of the sound signal included in the sound wave, it becomes easy to determine whether or not the microphone 100 to be inspected generates noise due to light irradiation.
  • the second embodiment is the same as the first embodiment, and a detailed description thereof will be omitted.
  • FIG. 18 is a cross-sectional view schematically showing the apparatus main body 10 of the microphone inspection apparatus 1 according to the present embodiment.
  • a plurality of (for example, four) cavities 30 are formed in one chamber 70.
  • the chamber 70 is a box-shaped member made of a metal material such as cast iron, stainless steel, or aluminum and having an opening at one end, and the opening of the chamber 70 is closed by the lid 80.
  • the hollow portion 72 of the chamber 70 is divided into a plurality of columnar spaces by a partition portion 74 made of the same material as the chamber 70, for example, and each divided space forms a cavity 30 that opens at one end of the chamber 70. .
  • each cavity 30 a speaker 14 is disposed.
  • the diaphragm 18 of the speaker 14 is directed to the open end 30 a of the cavity 30.
  • a sound insulation packing 22 is disposed on the periphery of the opening end 30 a of the cavity 30.
  • the lid 80 is a plate-like member made of a metal material such as cast iron, stainless steel, or aluminum, and disposed opposite to the opening end 30 a of the cavity 30.
  • a holder 32 is fixed to the lid 80 so as to face the open end 30 a of each cavity 30.
  • the chamber 70 moves so as to approach and separate from the lid 80 when the moving mechanism 29 operates, as in the first embodiment.
  • the lid 80 contacts the sound insulation packing 22 and compresses the sound insulation packing 22 to close the open ends 30 a of the cavities 30.
  • the lid 80 closes the open end 30 a of each cavity 30, thereby forming a plurality of sealed cavities 30 inside one chamber 70, and placing the holder 32 in each cavity 30.
  • a plurality of microphones 100 can be inspected by one measurement, and the inspection time when inspecting a large number of microphones 100 can be shortened.
  • the test sound wave output from the speaker 14 is adjusted for each cavity 30. be able to. Therefore, even if the acoustic characteristics inside the cavity 30 are different for each of the plurality of cavities 30, the plurality of microphones 100 can be measured simultaneously under a certain condition.
  • the moving mechanism 29 is configured to move the chamber 70 including the plurality of cavities 30, the moving mechanism 29 can be shared by the plurality of cavities 30, and the manufacturing cost of the inspection apparatus 1 is increased. Can be suppressed.
  • the second embodiment is the same as the first embodiment, and a detailed description thereof will be omitted.
  • the microphone 100 receives the clock signal SCL and the channel signal SCH from the detection unit 13 via the signal line 4, and generates electricity generated by the test sound wave at a predetermined timing according to the set channel. Output a signal.
  • the clock signal SCL having a frequency of, for example, 1 to 3 MHz is input to the microphone 100 via the clock signal line 4a, and the channel signal SCH for setting the channel of the microphone 100 is input via the channel line 4b. Is done.
  • the detection unit 13 When the detection unit 13 outputs a low level signal as the channel signal SCH, the low level signal is input to the microphone 100, and the microphone 100 is set to the L channel.
  • the microphone 100 set to the L channel outputs the electric signal S1 at a time when a predetermined delay time tdv has elapsed from the rising time of the clock signal SCL.
  • the detection unit 13 when the detection unit 13 outputs a high level signal as the channel signal SCH, the high level signal is input to the microphone 100, and the microphone 100 is set to the R channel.
  • the microphone 100 set to the R channel outputs the electric signal S2 at a time when a predetermined delay time tdv has elapsed from the falling time of the clock signal SCL.
  • the electrical signal S1 output from the microphone 100 is input to the detection unit 13 via the data line 4c.
  • the comparison microphone 38 provided in the holder 32 is a microphone of the same type as the microphone 100 to be inspected.
  • a clock signal and a channel signal are input from the detection unit 13 via the signal line 4 and a predetermined value corresponding to the set channel is set.
  • the electric signal S2 generated by the test sound wave is output at the timing of It is confirmed that the comparison microphone 38 can normally switch between the L channel and the R channel according to the input channel signal SCH, and outputs an electric signal at the correct timing according to the set channel. Use the microphone that was installed.
  • the comparison microphone 38 is connected to the channel line 4b via the negation circuit 19, and is set to a channel different from that of the microphone 100 to be inspected.
  • the output terminal of the comparison microphone 38 is connected to the data line 4c, and the electrical signal S2 output from the comparison microphone 38 and the electrical signal S1 output from the microphone 100 are multiplexed and input to the detection unit 13.
  • step S ⁇ b> 31 the transport mechanism 8 places the microphone 100 to be inspected from the tray 6 in the microphone housing 34.
  • step S ⁇ b> 32 the control unit 15 presses the microphone 100 to be inspected from above with the pressing body 48, controls the moving mechanism 29, and closes the opening 12 a of the hollow body 12 with the lid body 16.
  • step S33 the control unit 15 inputs the power supply voltage to the inspection target microphone 100 and the comparison microphone 38, and operates the inspection target microphone 100 and the comparison microphone 38.
  • step S34 the detection unit 13 inputs a clock signal and a channel signal to the microphone 100 and the comparison microphone 38 via the signal line 4.
  • the detection unit 13 outputs a low-level signal as a channel signal, sets the inspection target microphone 100 to the L channel, and sets the comparison microphone 38 to the R channel.
  • step S35 the control unit 15 inputs a speaker drive signal from the signal generation unit 54 to the speaker 14, and inputs a test sound wave to the microphone 100 and the comparison microphone 38 to be inspected.
  • the electric signal S1 at the time when the predetermined delay time tdv has elapsed from the rising time of the clock signal is output from the microphone 100, and the predetermined delay time tdv has elapsed from the falling time of the clock signal from the comparison microphone 38.
  • the electric signal S2 at the time is output.
  • multiplexed data DM obtained by multiplexing the electrical signal S1 and the electrical signal S2 is input to the detection unit 13 via the data line 4c.
  • step S36 the detection unit 13 divides the input multiplexed data DM into the electric signal S1 of the microphone 100 set to the L channel and the electric signal S2 of the comparison microphone 38 of the R channel. Then, the detection unit 13 detects the frequency characteristic of the microphone 100 set to the L channel from the electric signal S1, and detects the frequency characteristic of the comparison microphone 38 set to the R channel from the electric signal S2.
  • step S37 the detection unit 13 switches the channel signal SCH and switches the channel set for the microphone 100 with the channel set for the comparison microphone 38.
  • the detection unit 13 switches and outputs a channel signal from a low level signal to a high level signal, sets the inspection target microphone 100 to the R channel, and sets the comparison microphone 38 to the L channel.
  • step S38 as in step S35 described above, the control unit 15 inputs a test sound wave to the microphone 100 and the comparison microphone 38 to be inspected.
  • the microphone 100 outputs the electrical signal S1 generated by the test sound wave from the time when the predetermined delay time tdv has elapsed from the falling time of the clock signal
  • the comparison microphone 38 outputs the predetermined signal from the rising time of the clock signal.
  • the electric signal S2 generated by the test sound wave is output from the time when the delay time tdv has elapsed.
  • multiplexed data DM obtained by time-division multiplexing the electrical signal S1 and the electrical signal S2 is input to the detection unit 13 via the data line 4c.
  • step S39 as in step S36 described above, the detection unit 13 sets the input multiplexed data DM to the electrical signal S1 of the microphone 100 set to the L channel and the electrical signal S2 of the comparison microphone 38 of the R channel. Divide into Then, the detection unit 13 detects the frequency characteristic of the microphone 100 set to the R channel from the electric signal S1, and detects the frequency characteristic of the comparison microphone 38 set to the L channel from the electric signal S2.
  • step S40 the control unit 15 determines whether the microphone 100 to be inspected has the L channel according to the input channel signal SCH depending on whether or not the detection unit 13 has detected the frequency characteristics of the microphone 100. It is determined whether or not the R channel can be switched normally.
  • the detection unit 13 can divide the input multiplexed data DM into the electric signal S1 of the microphone 100 and the electric signal S2 of the comparison microphone 38, and calculate a frequency characteristic value corresponding to the input test sound wave. Is done.
  • the microphone to be inspected 100 is a microphone that cannot normally switch between the L channel and the R channel according to the input channel signal SCH, the electric signal S1 output from the microphone 100 and the comparison microphone 38 The output electrical signal S2 is not output at different timings and is not correctly time-division multiplexed. Therefore, the detection unit 13 cannot divide the input multiplexed data DM into the electric signal S1 of the microphone 100 and the electric signal S2 of the comparison microphone 38, and a frequency characteristic value corresponding to the input test sound wave is not obtained. I can't get it.
  • the control unit 15 determines that the examined microphone 100 is a microphone that can normally switch between the L channel and the R channel according to the input channel signal SCH.
  • the control unit 15 applies the channel signal SCH to which the tested microphone 100 is input. Accordingly, it is determined that the microphone is a defective product that cannot normally switch between the L channel and the R channel.
  • step S ⁇ b> 41 the transport mechanism 8 takes out the microphone 100 to be inspected from the microphone housing portion 34, and the control unit 15 determines whether or not the microphone 100 to be inspected next exists on the tray 6. (Step S42). If there is a microphone 100 to be inspected next, the process proceeds to step S43.
  • step S43 the transport mechanism 8 places the microphone 100 to be inspected next on the microphone housing 34, and then returns to step S31. And by repeating step S32 to step S43, the frequency characteristic value is sequentially acquired about the microphone 100 to be inspected accommodated in the tray 6, and the microphone is inspected.
  • the L channel and the R channel 2 between the microphone 100 and the comparative microphone 38 are inspected.
  • the microphone 100 to be inspected is a microphone that can normally switch between the L channel and the R channel according to the input channel signal SCH.
  • the comparison microphone 38 can be used not only for calibrating the frequency characteristic value but also for inspection of switching between the L channel and the R channel. Therefore, an L channel and R channel switching inspection function can be added to the inspection apparatus 1 while suppressing an increase in manufacturing cost accompanying an increase in the number of parts.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

A microphone check device (1) includes: a speaker (14) which inputs a test sound wave to a microphone (100) which outputs an electric signal in accordance with a movable portion (108); and a detection unit (13) which detects the electric signal outputted by the motion of the movable portion (108) in response to the test sound wave.  The microphone check device (1) further includes a cavity (30) as a sealed acoustic space where the speaker (14) and a microphone (100) are arranged; and a control unit (15) which adjusts the test sound wave outputted from the speaker (14) so that the electric signal outputted from the microphone (100) has a predetermined value.  This can reduce the size of the microphone check device.

Description

マイクロフォンの検査装置及び検査方法Microphone inspection apparatus and inspection method
 本発明は、可動部の動きに基づいて電気信号を出力するマイクロフォンの検査装置及び検査方法に関する。 The present invention relates to a microphone inspection apparatus and an inspection method for outputting an electrical signal based on the movement of a movable part.
 従来、マイクロフォンにスピーカからのテスト音波を入力し、該マイクロフォンから出力される電気信号を検出するマイクロフォンの検査は、テスト音波の反射や残響の影響を回避するため無響空間内で行われている。 Conventionally, a microphone inspection in which a test sound wave from a speaker is input to a microphone and an electric signal output from the microphone is detected is performed in an anechoic space in order to avoid the influence of reflection and reverberation of the test sound wave. .
 しかし、無響空間を設けるには、空間内部に吸音材を設けあらゆる音域の音を効率的に吸音する必要があり、例えば、数m3程度の大きさの空間が必要である。そのため、マイクロフォンの検査装置自体が大掛かりな装置となる問題がある。特に、マイクロマシニング技術を用いたMEMS(Micro Electro Mechanical System)マイクロフォンを検査する場合、検査対象のマイクロフォンの大きさが数十mm3程度であるにもかかわらず、検査対象に比べて極めて大きな空間が必要となり、スペース効率が悪いという問題がある。 However, in order to provide an anechoic space, it is necessary to provide a sound-absorbing material inside the space and efficiently absorb sound in all sound ranges. For example, a space of about several m 3 is required. Therefore, there is a problem that the microphone inspection device itself becomes a large-scale device. In particular, when inspecting a micro electro mechanical system (MEMS) microphone using micromachining technology, an extremely large space is required compared to the inspection object even though the size of the inspection object microphone is several tens of mm 3. There is a problem that it is necessary and space efficiency is poor.
 また、検査するための空間が大きいほど、所定音圧のテスト音波を検査対象のマイクロフォンに入力するために必要なスピーカ出力が大きくなる。スピーカ出力が大きくなるとテスト音波に歪みが生じやすくなり、正確に検査できないおそれがある。このようなテスト音波の歪みによる問題は、入力するテスト音波が低音(例えば、数十Hz以下)であると起こりやすくなる。 Also, the larger the space for inspection, the greater the speaker output required to input a test sound wave with a predetermined sound pressure to the microphone to be inspected. When the speaker output is increased, the test sound wave is likely to be distorted, and there is a possibility that it cannot be accurately inspected. Such a problem due to distortion of the test sound wave is likely to occur when the input test sound wave is a low sound (for example, several tens of Hz or less).
 なお、下記特許文献1には、有響室内にスピーカとマイクロフォンを配置し、スピーカから発生された測定用音響をマイクロフォンで収音することでインパルス応答測定を行う測定方法が開示されている。 Note that the following Patent Document 1 discloses a measurement method in which an impulse response measurement is performed by arranging a speaker and a microphone in an anechoic chamber and collecting sound for measurement generated from the speaker with a microphone.
 しかしながら、上記の測定方法において、有響室とは普通の建物内の普通の部屋であるため、外部から有響室内に測定用音響以外の雑音が侵入しやすく正確に測定することができないおそれがある。特に、有響室を小型化すると測定結果が、より一層外部から侵入した雑音の影響を受けやすくなり、検査空間を小型化し得るものでない。また、かかる測定方法は、マイクロフォンにより検出された信号に平滑化処理を施し無響室に相当する信号を求めるため、反射や残響の影響が大きくなる狭小な有響室では測定が困難となり、このような観点からも検査空間を小型化し得るものでない。そのため、下記特許文献1の測定方法は、上記した問題を解決し得るものでない。
特開2000-69597号公報
However, in the above measurement method, the anechoic chamber is an ordinary room in an ordinary building, and therefore, noise other than measurement sound may easily enter from the outside into the anechoic chamber and may not be accurately measured. is there. In particular, if the anechoic chamber is downsized, the measurement result is more susceptible to noise that has entered from the outside, and the inspection space cannot be downsized. In addition, since this measurement method smoothes the signal detected by the microphone to obtain a signal corresponding to the anechoic chamber, measurement is difficult in a small anechoic chamber where the influence of reflection and reverberation is large. From this point of view, the inspection space cannot be reduced in size. Therefore, the measurement method disclosed in Patent Document 1 below cannot solve the above-described problem.
JP 2000-69597 A
 本発明は、上記の問題に鑑みてなされたものであり、スピーカから出力されるテスト音波をマイクロフォンに入力し、該マイクロフォンから出力される電気信号を検出するマイクロフォンの検査装置を小型化することを目的とする。 The present invention has been made in view of the above problems, and is intended to reduce the size of a microphone inspection apparatus that inputs a test sound wave output from a speaker to a microphone and detects an electrical signal output from the microphone. Objective.
 本発明にかかるマイクロフォンの検査装置は、可動部の動きに基づいて電気信号を出力するマイクロフォンにテスト音波を入力するスピーカと、前記テスト音波に応答した前記可動部の動きにより出力される電気信号を検出する検出部とを備えたマイクロフォンの検査装置において、密閉した有響空間であって、前記スピーカ及び前記マイクロフォンが配置されるキャビティを備えることを特徴とする。 The microphone inspection apparatus according to the present invention includes a speaker that inputs a test sound wave to a microphone that outputs an electric signal based on the movement of the movable part, and an electric signal output by the movement of the movable part in response to the test sound wave. A microphone inspection apparatus including a detection unit for detection includes a sealed anechoic space and a cavity in which the speaker and the microphone are arranged.
 本発明では、スピーカ及びマイクロフォンが配置されるキャビティを有響空間で構成するため、キャビティを小さく設けることができ、マイクロフォンの検査装置を小型化することができる。そのため、スピーカから出力されるテスト音波がキャビティを構成する壁面に吸収されたりキャビティ外部へ漏れ出たりしにくく、マイクロフォンに所定音圧のテスト音波を効率よく入力することができる。また、低音域のテスト音波をマイクロフォンに入力する場合であってもスピーカ出力が過大となりにくく正確に検査することができる。しかも、キャビティは密閉されているため、外部からキャビティ内にテスト音波以外の音信号が侵入しにくくなり、正確に検査することができる。 In the present invention, since the cavity in which the speaker and the microphone are arranged is configured in an anechoic space, the cavity can be provided small, and the microphone inspection apparatus can be miniaturized. Therefore, the test sound wave output from the speaker is not easily absorbed by the wall surface constituting the cavity or leaks outside the cavity, and the test sound wave with a predetermined sound pressure can be efficiently input to the microphone. Moreover, even when a low-frequency test sound wave is input to the microphone, the speaker output is unlikely to be excessive and an accurate inspection can be performed. In addition, since the cavity is hermetically sealed, it is difficult for sound signals other than the test sound wave to enter the cavity from the outside, and the inspection can be performed accurately.
 また、本発明にかかるマイクロフォンの検査方法は、可動部の動きに基づいて電気信号を出力するマイクロフォンにスピーカから出力されるテスト音波を入力し、前記テスト音波に応答した前記可動部の動きにより出力される電気信号に基づいて前記マイクロフォンの検査を行う検査方法において、密閉した有響空間であるキャビティ内に前記スピーカ及び検査対象の前記マイクロフォンを配置することを特徴とする。 In the microphone inspection method according to the present invention, a test sound wave output from a speaker is input to a microphone that outputs an electrical signal based on the movement of the movable part, and output by the movement of the movable part in response to the test sound wave. In the inspection method for inspecting the microphone on the basis of the electric signal, the speaker and the microphone to be inspected are arranged in a cavity which is a sealed anechoic space.
 本発明によれば、マイクロフォンの検査装置を小型化することができる。 According to the present invention, the microphone inspection apparatus can be miniaturized.
本発明の第1の実施形態にかかる検査装置を概略的に示す正面図である。1 is a front view schematically showing an inspection apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態にかかる検査装置を概略的に示す平面図である。1 is a plan view schematically showing an inspection apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態にかかる検査装置の装置本体を概略的に示す断面図であって、中空体の開口部を開放した状態を示す。It is sectional drawing which shows roughly the apparatus main body of the test | inspection apparatus concerning the 1st Embodiment of this invention, Comprising: The state which open | released the opening part of the hollow body is shown. 本発明の第1の実施形態にかかる検査装置の装置本体を概略的に示す断面図であって、中空体の開口部を蓋体が閉塞した状態を示す。It is sectional drawing which shows roughly the apparatus main body of the test | inspection apparatus concerning the 1st Embodiment of this invention, Comprising: The state which the cover body obstruct | occluded the opening part of the hollow body is shown. 本発明の第1の実施形態にかかる検査装置の蓋体の要部を示す平面図である。It is a top view which shows the principal part of the cover body of the test | inspection apparatus concerning the 1st Embodiment of this invention. 図5のA-A断面図である。FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. 図4の要部拡大図である。It is a principal part enlarged view of FIG. 本発明の第1の実施形態にかかる検査装置の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the test | inspection apparatus concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる検査装置で検出された周波数特性を例示する図である。It is a figure which illustrates the frequency characteristic detected with the test | inspection apparatus concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる検査装置の動作を説明するフロー図である。It is a flowchart explaining operation | movement of the test | inspection apparatus concerning the 1st Embodiment of this invention. 本発明の第1の実施形態にかかる検査装置の蓋体の要部を示す平面図であって、マイク収容部にマイクロフォンを載置した状態を示す。It is a top view which shows the principal part of the cover body of the test | inspection apparatus concerning the 1st Embodiment of this invention, Comprising: The state which mounted the microphone in the microphone accommodating part is shown. 図11のB-B断面図である。FIG. 12 is a sectional view taken along line BB in FIG. 本発明の第1の実施形態にかかる検査装置の蓋体の要部を示す平面図であって、マイク収容部に載置されたマイクロフォンを押圧体が押圧した状態を示す。It is a top view which shows the principal part of the cover body of the test | inspection apparatus concerning the 1st Embodiment of this invention, Comprising: The state which the press body pressed the microphone mounted in the microphone accommodating part is shown. 図13のC-C断面図である。It is CC sectional drawing of FIG. 本発明の第1の実施形態にかかる検査装置において検査対象とするMEMSマイクロフォンの断面図である。It is sectional drawing of the MEMS microphone made into a test object in the test | inspection apparatus concerning the 1st Embodiment of this invention. 本発明の第2の実施形態にかかる検査装置の装置本体を概略的に示す断面図である。It is sectional drawing which shows roughly the apparatus main body of the test | inspection apparatus concerning the 2nd Embodiment of this invention. 本発明の第2の実施形態にかかる検査装置で検出された周波数特性を例示する図であって、点滅光の周波数に対応したピークが存在する周波数特性を示す。It is a figure which illustrates the frequency characteristic detected with the inspection apparatus concerning the 2nd Embodiment of this invention, Comprising: The frequency characteristic in which the peak corresponding to the frequency of blinking light exists is shown. 本発明の第3の実施形態にかかる検査装置の装置本体を概略的に示す断面図である。It is sectional drawing which shows roughly the apparatus main body of the test | inspection apparatus concerning the 3rd Embodiment of this invention. 本発明の第4の実施形態にかかる検査装置のブロック図である。It is a block diagram of the inspection apparatus concerning the 4th Embodiment of this invention. 本発明の第4の実施形態にかかる検査装置の動作を説明するフロー図である。It is a flowchart explaining operation | movement of the test | inspection apparatus concerning the 4th Embodiment of this invention.
10…検査装置
12…中空体
13…検出部
14…スピーカ
15…制御部
16…蓋体
18…振動板
20…スピーカボックス
30…キャビティ
32…ホルダ
34…マイク収容部
DESCRIPTION OF SYMBOLS 10 ... Inspection apparatus 12 ... Hollow body 13 ... Detection part 14 ... Speaker 15 ... Control part 16 ... Cover 18 ... Diaphragm 20 ... Speaker box 30 ... Cavity 32 ... Holder 34 ... Microphone accommodating part
[第1の実施形態]
 以下、本発明の第1の実施形態について図面を参照して説明する。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
 本実施形態にかかるマイクロフォンの検査装置1は、所定音圧に設定された1又は複数の所定周波数の音信号をテスト音波として検査対象のマイクロフォンに入力し、該マイクロフォンから出力される電気信号を検出するものである。本実施形態では、一例として、1Paの音圧に設定した70Hz、1000Hz、5000Hzの3種類の周波数の音信号をテスト音波として入力する場合について説明する。 The microphone inspection apparatus 1 according to the present embodiment inputs a sound signal having one or more predetermined frequencies set to a predetermined sound pressure as a test sound wave to a microphone to be inspected, and detects an electric signal output from the microphone. To do. In the present embodiment, as an example, a case will be described in which sound signals having three types of frequencies of 70 Hz, 1000 Hz, and 5000 Hz set to a sound pressure of 1 Pa are input as test sound waves.
 なお、本実施形態では、検査対象としてMEMSマイクロフォンについて説明するが、本発明は、コンデンサーマイクロフォンなどMEMSマイクロフォン以外の各種マイクロフォンの検査にも適用することができる。 In this embodiment, a MEMS microphone is described as an inspection target. However, the present invention can also be applied to inspection of various microphones other than a MEMS microphone such as a condenser microphone.
 本実施形態において検査対象とするMEMSマイクロフォン(以下、マイクという)100は、図15に例示するように、基板102と、MEMSチップ104と、シールケース106と、を有している。基板102は、MEMSチップ104を実装するためのプリント基板であって、実装面の縦×横の寸法が、例えば、4mm×5mm程度の大きさに設けられている。MEMSチップ104は可動部108の動きにより捉えた音信号を電気信号に変換するものであり、MEMSチップ104より出力される電気信号を増幅する増幅回路110とワイヤ112により電気的に接続されている。MEMSチップ104と増幅回路110とは高さが例えば1mm程度のシールケース106により覆われており、シールケース106における可動部108と対向する位置に音孔114が設けられている。 A MEMS microphone (hereinafter referred to as a microphone) 100 to be inspected in the present embodiment includes a substrate 102, a MEMS chip 104, and a seal case 106 as illustrated in FIG. The board | substrate 102 is a printed circuit board for mounting the MEMS chip 104, Comprising: The vertical x horizontal dimension of the mounting surface is provided in the magnitude | size of about 4 mm x 5 mm, for example. The MEMS chip 104 converts a sound signal captured by the movement of the movable portion 108 into an electric signal, and is electrically connected by an amplifier circuit 110 that amplifies the electric signal output from the MEMS chip 104 and a wire 112. . The MEMS chip 104 and the amplifier circuit 110 are covered with a seal case 106 having a height of about 1 mm, for example, and a sound hole 114 is provided at a position facing the movable portion 108 in the seal case 106.
 また、基板102の下面、すなわちMEMSチップ104を実装した面との対向面には、複数の電極116が設けられており、これらの電極より電源電圧や接地電圧(アース)を入力するとともに、マイク100からの電気信号を出力する。 A plurality of electrodes 116 are provided on the lower surface of the substrate 102, that is, the surface facing the surface on which the MEMS chip 104 is mounted. A power supply voltage and a ground voltage (ground) are input from these electrodes, and a microphone is provided. The electric signal from 100 is output.
 検査装置1は、図1~図4に示すように、第1筐体2に収納された搬送機構8及び装置本体10と、第2筐体3に収納された検出部13及び制御部15とを備える。第1筐体2と第2筐体とは別個の筐体である。第1筐体2に収納された搬送機構8及び装置本体10は、第2筐体3に収納された検出部13及び制御部15と信号線4によって電気的に連結されている。 As shown in FIGS. 1 to 4, the inspection apparatus 1 includes a transport mechanism 8 and an apparatus body 10 housed in the first housing 2, a detection unit 13 and a control unit 15 housed in the second housing 3. Is provided. The first housing 2 and the second housing are separate housings. The transport mechanism 8 and the apparatus main body 10 housed in the first housing 2 are electrically connected to the detection unit 13 and the control unit 15 housed in the second housing 3 by the signal line 4.
 また、第1筐体2には、第1検査対象のマイク100を多数個収容したトレイ6と、後述する基準マイクロフォン(以下、基準マイクという)120を収容した基準マイク用トレイ7とが収納されている。 Further, the first housing 2 accommodates a tray 6 that accommodates a number of microphones 100 to be inspected, and a reference microphone tray 7 that accommodates a reference microphone (hereinafter referred to as a reference microphone) 120 described later. ing.
 搬送機構8は、トレイ6及び基準マイク用トレイ7に収容された検査対象のマイク100及び基準マイク120を装置本体10へ搬送するとともに、測定し終えたマイク100及び基準マイク120を装置本体10よりトレイ6及び基準マイク用トレイ7に戻す。このような搬送機構8は、特に限定されず、公知の搬送機構を採用することができる。 The conveyance mechanism 8 conveys the microphone 100 and the reference microphone 120 to be inspected accommodated in the tray 6 and the reference microphone tray 7 to the apparatus main body 10, and the measured microphone 100 and reference microphone 120 from the apparatus main body 10. Return to tray 6 and reference microphone tray 7. Such a transport mechanism 8 is not particularly limited, and a known transport mechanism can be employed.
 装置本体10は、図3に示すように、円柱状の中空部11を有する中空体12と、中空体12の一方の開口部と対向して配置された蓋体16と、中空体12に設けたスピーカ14とを備える。検出部13は、装置本体10に収納されたマイク100から信号線4を介して入力される電気信号を検出する。制御部15は、信号線4を介して制御信号を搬送機構8及び装置本体10に入力してこれらを制御する。また、制御部15は、検出部13で検出した電気信号に基づいて後述する演算処理を実行し、演算結果を表示装置5に表示させる。 As shown in FIG. 3, the apparatus main body 10 includes a hollow body 12 having a cylindrical hollow portion 11, a lid body 16 disposed so as to face one opening of the hollow body 12, and the hollow body 12. Speaker 14. The detection unit 13 detects an electric signal input from the microphone 100 housed in the apparatus body 10 via the signal line 4. The control unit 15 inputs a control signal to the transport mechanism 8 and the apparatus main body 10 via the signal line 4 and controls them. Further, the control unit 15 executes a calculation process described later based on the electrical signal detected by the detection unit 13 and causes the display device 5 to display the calculation result.
 中空体12は、鋳鉄やステンレスやアルミニウム等の金属材からなる部材であって、一方の開口部12aの周縁に遮音パッキン22が配設され、他方の開口部12bにスピーカ14が設けられている。詳細には、スピーカ14は、振動板18が中空体12の他方の開口部12bと対向し、かつ、振動板18の中心軸が中空部11の中心軸と一致するように配置されている。スピーカ14はスピーカボックス20で覆われている。このスピーカボックス20が中空体12と連結固定されることで中空体12の他方の開口部12bを閉塞しつつ、中空体12の端部にスピーカ14を設けている。 The hollow body 12 is a member made of a metal material such as cast iron, stainless steel, or aluminum, and a sound-insulating packing 22 is provided on the periphery of one opening 12a, and a speaker 14 is provided on the other opening 12b. . Specifically, the speaker 14 is arranged such that the diaphragm 18 faces the other opening 12 b of the hollow body 12 and the central axis of the diaphragm 18 coincides with the central axis of the hollow part 11. The speaker 14 is covered with a speaker box 20. The speaker box 20 is connected and fixed to the hollow body 12 to close the other opening 12 b of the hollow body 12, and the speaker 14 is provided at the end of the hollow body 12.
 ここで、本実施形態において、中空部11の寸法の一例を挙げると、中空部11の直径を50mm、中空部11の長さ、すなわち、中空体12の一方の開口部12aから他方の開口部12bまでの長さを80mmに設定することができる。 Here, in this embodiment, when an example of the dimension of the hollow part 11 is given, the diameter of the hollow part 11 is 50 mm, the length of the hollow part 11, that is, from one opening part 12a of the hollow body 12 to the other opening part. The length up to 12b can be set to 80 mm.
 中空体12は、テーブル24上に配置されたレール26に摺動可能に取り付けられたスライダ28と固定されている。レール26は中空部11の軸心方向に沿って設けられている。移動機構29よってスライダ28がレール26上を摺動することで、スライダ28に固定された中空体12は蓋体16に近接離反するように移動する。移動機構29としては、例えば、電動式又は空圧式のリニアアクチュエータを用いることができる。移動機構29に電動式のリニアアクチュエータを用いる場合、リニアアクチュエータの駆動モータをパルスモータとすることが好ましい。 The hollow body 12 is fixed to a slider 28 slidably attached to a rail 26 disposed on the table 24. The rail 26 is provided along the axial center direction of the hollow portion 11. When the slider 28 slides on the rail 26 by the moving mechanism 29, the hollow body 12 fixed to the slider 28 moves so as to approach and separate from the lid body 16. As the moving mechanism 29, for example, an electric or pneumatic linear actuator can be used. When an electric linear actuator is used for the moving mechanism 29, the drive motor of the linear actuator is preferably a pulse motor.
 蓋体16は、鋳鉄やステンレスやアルミニウムなどの金属材からなり、中空体12の開口部12aと対向した位置にテーブル24から立設された板状の部材である。中空体12が蓋体16に接近すると、図4に示すように、蓋体16は遮音パッキン22と当接し遮音パッキン22を圧縮して中空体12の開口部12aを閉塞する。このように蓋体16が中空体12の開口部12aを閉塞すると、中空体12とスピーカボックス20と蓋体16とにより密閉したキャビティ30が形成される。つまり、移動機構29が、中空体12を蓋体16に対して移動させ、中空体12の開口部12aを蓋体16で閉塞し、中空体12の内部に密閉したキャビティ30を形成する。 The lid body 16 is made of a metal material such as cast iron, stainless steel, or aluminum, and is a plate-like member erected from the table 24 at a position facing the opening 12a of the hollow body 12. When the hollow body 12 approaches the lid body 16, as shown in FIG. 4, the lid body 16 comes into contact with the sound insulation packing 22 and compresses the sound insulation packing 22 to close the opening 12 a of the hollow body 12. When the lid body 16 closes the opening 12 a of the hollow body 12 in this way, a sealed cavity 30 is formed by the hollow body 12, the speaker box 20, and the lid body 16. That is, the moving mechanism 29 moves the hollow body 12 relative to the lid body 16, closes the opening 12 a of the hollow body 12 with the lid body 16, and forms a sealed cavity 30 inside the hollow body 12.
 なお、中空体12及び蓋体16を構成する材料は、本実施形態のような鋳鉄やステンレスやアルミニウムなどの金属材以外にも、セラミックスコンクリートや、合成樹脂などの樹脂材や、MDF (medium density fiberboard) などの木質繊維を原料とする成型体などであってもよい。また、中空体12の外周に遮音材を配設することができ、これにより、外部からキャビティ内にテスト音波以外の音信号がさらに侵入しにくくなる。 In addition to the metal material such as cast iron, stainless steel, and aluminum as in the present embodiment, the material constituting the hollow body 12 and the lid body 16 may be ceramic concrete, a resin material such as synthetic resin, or MDF (medium density). It may be a molded body made of wood fiber such as fiberboard). In addition, a sound insulating material can be disposed on the outer periphery of the hollow body 12, which makes it difficult for sound signals other than the test sound wave to enter the cavity from the outside.
 中空体12の内壁及び蓋体16における中空体12との対向面17にはウレタンやグラスウールなどの吸音材が配設されておらず、中空体12及び蓋体16を構成する金属材がキャビティ30に露出している。そのため、キャビティ30は中空体12の内壁及び蓋体16においてスピーカ14から出力された音波の反射を許容する有響空間をなしている。 No sound absorbing material such as urethane or glass wool is disposed on the inner wall of the hollow body 12 and the surface 16 of the lid body 16 facing the hollow body 12, and the metal material constituting the hollow body 12 and the lid body 16 is the cavity 30. Is exposed. Therefore, the cavity 30 forms an anechoic space that allows reflection of sound waves output from the speaker 14 on the inner wall of the hollow body 12 and the lid body 16.
 蓋体16の対向面17には、検査対象のマイク100を保持するためのホルダ32が固定されており、蓋体16が中空体12の開口部12aを閉塞した状態でキャビティ30内にホルダ32が位置する(図4参照)。 A holder 32 for holding the microphone 100 to be inspected is fixed to the facing surface 17 of the lid body 16, and the holder 32 is placed in the cavity 30 with the lid body 16 closing the opening 12 a of the hollow body 12. Is located (see FIG. 4).
 このホルダ32には、図5及び図6に示すように、下方に陥没し検査対象のマイク100を載置するマイク収容部34と、中空体側端部からマイク収容部34まで延びるスリット36が設けられている。スリット36は、スピーカ14から出力された音波をマイク収容部34に載置されたマイク100の音孔114へ案内する。これにより、マイク収容部34を区画する周壁が障害となりにくくなり、効率よくスピーカ14からの音波をマイク100に入力することができる。 As shown in FIGS. 5 and 6, the holder 32 is provided with a microphone housing portion 34 that is depressed downward and on which the microphone 100 to be inspected is placed, and a slit 36 that extends from the hollow body side end portion to the microphone housing portion 34. It has been. The slit 36 guides the sound wave output from the speaker 14 to the sound hole 114 of the microphone 100 placed in the microphone housing portion 34. Thereby, the peripheral wall which divides the microphone accommodating part 34 becomes difficult to become an obstacle, and the sound wave from the speaker 14 can be efficiently input to the microphone 100.
 マイク収容部34には、マイク100の下面に設けられた電極116と接触する複数のプローブ35が設けられ、マイク100に対して電源電圧や接地電圧(アース)を供給するとともに、マイク100から出力される電気信号を検出部13へ導出する。 The microphone housing portion 34 is provided with a plurality of probes 35 that come into contact with the electrodes 116 provided on the lower surface of the microphone 100, and supplies a power supply voltage and a ground voltage (ground) to the microphone 100 and outputs from the microphone 100. The electrical signal is derived to the detection unit 13.
 マイク収容部34は、スピーカ14から出力されるテスト音波によりキャビティ30内に発生する定常波の節部を避けてマイク100の音孔114が配置されるように、ホルダ32の所定位置に配設されることが好ましい。 The microphone housing portion 34 is disposed at a predetermined position of the holder 32 so that the sound hole 114 of the microphone 100 is disposed avoiding a node portion of a standing wave generated in the cavity 30 by the test sound wave output from the speaker 14. It is preferable.
 詳細には、キャビティ30はスピーカ14から出力された音波の反射を許容する有響空間をなしている。そのため、スピーカ14から出力されるテスト音波が理想的な平面波とすると、スピーカ14からのテスト音波(入力波W1)と、蓋体16で反射した反射波W2とが合成されることにより定常波W3が発生する場合がある。このような場合、蓋体16における反射は固定端反射となり、蓋体16の位置で反射波W2の位相が入力波W1の位相より1/2周期ずれるため、蓋体16からの距離Lがテスト音波の半波長λ/2の整数倍となる位置に定常波W3の節部が発生する(図7参照)。節部では入力波W1が反射波W2と打ち消し合ってテスト音波をマイク100に適切に入力できないため、節部を避けてマイク100の音孔114を配置することが好ましい。なお、周波数がf(Hz)の音信号の波長は、c/f(ただし、cは音速)となるので、音速cが340m/secの場合、本実施形態のような周波数が70Hz、1000Hz、5000Hzの各音信号の波長λは、約4857mm、約340mm、約68mmとなる。 Specifically, the cavity 30 forms an anechoic space that allows reflection of sound waves output from the speaker 14. Therefore, if the test sound wave output from the speaker 14 is an ideal plane wave, the test sound wave (input wave W1) from the speaker 14 and the reflected wave W2 reflected by the lid body 16 are combined to generate a stationary wave W3. May occur. In such a case, the reflection at the lid 16 is fixed-end reflection, and the phase of the reflected wave W2 is shifted from the phase of the input wave W1 by ½ cycle at the position of the lid 16, so the distance L from the lid 16 is the test. A node portion of the standing wave W3 is generated at a position that is an integral multiple of the half wavelength λ / 2 of the sound wave (see FIG. 7). Since the input wave W1 cancels the reflected wave W2 at the node and the test sound wave cannot be properly input to the microphone 100, the sound hole 114 of the microphone 100 is preferably disposed avoiding the node. The wavelength of the sound signal having a frequency of f (Hz) is c / f (where c is the speed of sound). Therefore, when the speed of sound c is 340 m / sec, the frequencies as in the present embodiment are 70 Hz, 1000 Hz, The wavelength λ of each sound signal of 5000 Hz is about 4857 mm, about 340 mm, and about 68 mm.
 本実施形態のようにキャビティ30を構成する中空部11の長さが、中空部11の直径に対して十分に大きいといえない場合、スピーカ14から中空部11内に入力されたテスト音波が理想的な平面波ではないため、キャビティ30内に完全な定常波が発生しにくい。しかしながら、蓋体16からの距離がテスト音波の半波長λ/2の整数倍となる位置では、入力波の一部が反射波と打ち消し合って、テスト音波が適切にマイク100に入力されないおそれがあるため、このような位置を避けてマイク100の音孔114を配置することが好ましい。 When it cannot be said that the length of the hollow portion 11 constituting the cavity 30 is sufficiently large with respect to the diameter of the hollow portion 11 as in the present embodiment, the test sound wave input from the speaker 14 into the hollow portion 11 is ideal. Since it is not a typical plane wave, it is difficult to generate a complete standing wave in the cavity 30. However, at a position where the distance from the cover 16 is an integral multiple of the half wavelength λ / 2 of the test sound wave, a part of the input wave may cancel the reflected wave and the test sound wave may not be input to the microphone 100 properly. Therefore, it is preferable to arrange the sound hole 114 of the microphone 100 avoiding such a position.
 また、ホルダ32には、検査対象のマイク100と同種のMEMSマイクロフォンからなる比較マイクロフォン(比較マイクという)38が設けられ、比較マイク38の音孔39に対応して中空体側端部から比較マイク38の上方位置まで延びるスリット40が設けられている。検査対象のマイク100と同様、ホルダ32に設けられた不図示のプローブが、比較マイク38の電極(不図示)に電源電圧や接地電圧(アース)を供給するとともに、比較マイク38から出力される電気信号を検出部13へ導出する。 Further, the holder 32 is provided with a comparison microphone (referred to as a comparison microphone) 38 made of the same type of MEMS microphone as the microphone 100 to be inspected, and the comparison microphone 38 from the end on the hollow body side corresponding to the sound hole 39 of the comparison microphone 38. A slit 40 extending to the upper position is provided. Similar to the microphone 100 to be inspected, a probe (not shown) provided on the holder 32 supplies a power supply voltage and a ground voltage (ground) to an electrode (not shown) of the comparison microphone 38 and is output from the comparison microphone 38. The electric signal is derived to the detection unit 13.
 なお、マイク収容部34に載置された検査対象のマイク100の音孔114の位置が、中空部11の中心軸に対して比較マイク38の音孔39の位置と対称となるように、マイク収容部34を設けることが好ましい。このようにマイク収容部34を設けることで、検査対象のマイク100及び比較マイク38に入力されるスピーカ14からの音波をほぼ等しく設定することができる。また、比較マイク38は、コンデンサーマイクロフォンなど検査対象のマイク100と異なる種類のマイクであってもよい。 Note that the microphone is positioned so that the position of the sound hole 114 of the microphone 100 to be inspected placed in the microphone housing portion 34 is symmetrical to the position of the sound hole 39 of the comparative microphone 38 with respect to the central axis of the hollow portion 11. It is preferable to provide the accommodating part 34. By providing the microphone housing portion 34 in this manner, sound waves from the speaker 14 input to the microphone 100 to be inspected and the comparison microphone 38 can be set to be approximately equal. The comparison microphone 38 may be a different type of microphone from the microphone 100 to be inspected, such as a condenser microphone.
 蓋体16には、押さえ機構42がホルダ32に近接して設けられている。押さえ機構42は、蓋体16を貫通し対向面17から中空体12に向けて立設する回動軸44と、回動軸44の中空体側端部に固定され回動軸44の径方向外方へ延びる回動体46と、回動軌道上にマイク収容部34が存在するように回動体46に固定された押圧体48と、回動軸44を回動させる駆動部50と、を備える。駆動部50が回動軸44を所定方向に回動させることで、回動体46に固定された押圧体48がマイク収容部34に載置されたマイク100を上方より押さえ付けてホルダ32に固定するとともに、電極116をプローブ35と確実に接触させる。上記の駆動部50としては、例えば、電動式又は空圧式のロータリーアクチュエータなどを用いることができる。 The lid 16 is provided with a pressing mechanism 42 in the vicinity of the holder 32. The holding mechanism 42 penetrates the lid body 16 and stands upright from the facing surface 17 toward the hollow body 12. The holding mechanism 42 is fixed to the hollow body side end of the rotation shaft 44 and is radially outside the rotation shaft 44. A rotating body 46 extending in the direction, a pressing body 48 fixed to the rotating body 46 so that the microphone housing part 34 exists on the rotating track, and a driving unit 50 that rotates the rotating shaft 44. When the drive unit 50 rotates the rotation shaft 44 in a predetermined direction, the pressing body 48 fixed to the rotation body 46 presses the microphone 100 placed on the microphone housing unit 34 from above and is fixed to the holder 32. At the same time, the electrode 116 is reliably brought into contact with the probe 35. As said drive part 50, an electrically driven or pneumatic rotary actuator etc. can be used, for example.
 ホルダ32及び押さえ機構42は、マイクロメーターなどの位置調整部37と接続され、蓋体16に対して中空部11の軸心方向に沿って移動可能に設けられている。これにより、蓋体16からマイク収容部34までの距離が調整されるとともに、押さえ機構42がホルダ32の移動に同期して中空部11の軸心方向に移動するようになっている。このように、蓋体16からマイク収容部34までの距離を調整可能とすることで、どのような波長のテスト音波であっても、蓋体16の対向面17からマイク収容部34に載置されたマイク100の音孔114までの距離がテスト音波の半波長λ/2の整数倍となるのを避けて、キャビティ30内にマイク100を配置することができる。 The holder 32 and the pressing mechanism 42 are connected to a position adjusting unit 37 such as a micrometer, and are provided so as to be movable along the axial direction of the hollow portion 11 with respect to the lid body 16. As a result, the distance from the lid 16 to the microphone housing portion 34 is adjusted, and the pressing mechanism 42 moves in the axial direction of the hollow portion 11 in synchronization with the movement of the holder 32. In this way, by making it possible to adjust the distance from the lid body 16 to the microphone housing portion 34, a test sound wave having any wavelength can be placed on the microphone housing portion 34 from the facing surface 17 of the lid body 16. The microphone 100 can be disposed in the cavity 30 while avoiding the distance of the microphone 100 to the sound hole 114 being an integral multiple of the half wavelength λ / 2 of the test sound wave.
 検出部13には、マイク収容部34に載置されたマイク100より出力された電気信号が信号線4を介して入力され、この電気信号からマイク100で測定された周波数特性を検出する。また、検出部13は、比較マイク38より出力された電気信号が信号線4を介して入力され、この電気信号から比較マイク38で測定された周波数特性を検出する。そして、検出部13は、検出したマイク100及び比較マイク38の周波数特性に関する周波数特性データを制御部15に入力する。 The electrical signal output from the microphone 100 placed in the microphone housing unit 34 is input to the detection unit 13 via the signal line 4, and the frequency characteristic measured by the microphone 100 is detected from the electrical signal. Further, the detection unit 13 receives an electric signal output from the comparison microphone 38 via the signal line 4 and detects a frequency characteristic measured by the comparison microphone 38 from the electric signal. Then, the detection unit 13 inputs frequency characteristic data relating to the detected frequency characteristics of the microphone 100 and the comparison microphone 38 to the control unit 15.
 本実施形態のテスト音波は上記のように1Paの音圧に設定した70Hz、1000Hz、5000Hzの3種類の周波数の音信号であるので、検出部13は、マイク収容部34に載置されたマイク100及び比較マイク38から電気信号が入力されると、図9に例示するように70Hz、1000Hz、5000Hzの3種類の周波数の音信号に対応した3種類のピークP1,P2,P3を含んだ周波数特性を検出する。さらに、検出部13は、各ピークP1,P2,P3の周波数f1,f2,f3と音圧M1,M2,M3を検出し、検出された周波数と音圧とを周波数特性データとして制御部15へ出力する。 Since the test sound wave of this embodiment is a sound signal of three types of frequencies of 70 Hz, 1000 Hz, and 5000 Hz set to a sound pressure of 1 Pa as described above, the detection unit 13 is a microphone placed in the microphone housing unit 34. When an electric signal is input from 100 and the comparison microphone 38, as shown in FIG. 9, the frequency includes three types of peaks P1, P2, and P3 corresponding to sound signals having three types of frequencies of 70 Hz, 1000 Hz, and 5000 Hz. Detect characteristics. Further, the detection unit 13 detects the frequencies f1, f2, and f3 and the sound pressures M1, M2, and M3 of the peaks P1, P2, and P3, and sends the detected frequencies and sound pressures to the control unit 15 as frequency characteristic data. Output.
 制御部15は、信号線4を介して各種制御信号を装置本体10に入力して装置本体10を制御する。具体的には、図8に示すように、制御部15は、外部の記憶部52に記憶された各種プログラムに従って搬送機構8、移動機構29、駆動部50、及び信号発生部54を駆動制御し、マイク収容部34に載置されたマイク100及び比較マイク38に電源電圧を供給する。信号発生部54は、制御部15より指令を受けて、スピーカ14にスピーカ駆動信号を入力しテスト音波を出力させる。 The control unit 15 inputs various control signals to the apparatus main body 10 via the signal line 4 and controls the apparatus main body 10. Specifically, as shown in FIG. 8, the control unit 15 drives and controls the transport mechanism 8, the moving mechanism 29, the drive unit 50, and the signal generation unit 54 according to various programs stored in the external storage unit 52. The power supply voltage is supplied to the microphone 100 and the comparison microphone 38 placed in the microphone housing portion 34. The signal generator 54 receives a command from the controller 15 and inputs a speaker drive signal to the speaker 14 to output a test sound wave.
 また、制御部15は、検出部13から入力された周波数特性データのうち、マイク収容部34に載置されたマイク100に関する周波数特性データに基づいて、信号発生部54から出力されるスピーカ14を駆動するためのスピーカ駆動信号を調整するとともに、比較マイク38に関する周波数特性データに基づいて、マイク100に関する周波数特性データを校正する校正部としても機能する。 Further, the control unit 15 selects the speaker 14 output from the signal generation unit 54 based on the frequency characteristic data regarding the microphone 100 placed in the microphone housing unit 34 among the frequency characteristic data input from the detection unit 13. While adjusting the speaker drive signal for driving, it also functions as a calibration unit that calibrates the frequency characteristic data related to the microphone 100 based on the frequency characteristic data related to the comparison microphone 38.
 そして、制御部15は、校正されたマイク100に関する周波数特性データや、校正される前のマイク100に関する周波数特性データや、比較マイク38に関する周波数特性データを外部の記憶部52及び表示装置5に出力し、これらのデータを記憶及び表示させる。 Then, the control unit 15 outputs the frequency characteristic data regarding the calibrated microphone 100, the frequency characteristic data regarding the microphone 100 before being calibrated, and the frequency characteristic data regarding the comparison microphone 38 to the external storage unit 52 and the display device 5. These data are stored and displayed.
 次に、このような検査装置1を用いて検査対象となるマイク100を検査する方法について図面を参照して説明する。 Next, a method for inspecting the microphone 100 to be inspected using such an inspection apparatus 1 will be described with reference to the drawings.
 図10に示すように、まず、中空体12が蓋体16より離反した状態(図3参照)において、搬送機構8が、基準マイク用トレイ7に収容された基準マイク120を装置本体10へ搬送し、マイク収容部34に載置する(ステップS1)。この時、押圧体48は、図11及び図12に示すようにホルダ32の上方位置に待機している。基準マイク120は、検査対象のマイク100と同種のMEMSマイクロフォンからなり、周波数特性が既知のマイクロフォンである。なお、基準マイク120は、コンデンサーマイクロフォンなど検査対象のマイク100と異なる種類のマイクであってもよい。 As shown in FIG. 10, first, in a state where the hollow body 12 is separated from the lid body 16 (see FIG. 3), the transport mechanism 8 transports the reference microphone 120 accommodated in the reference microphone tray 7 to the apparatus main body 10. And it mounts in the microphone accommodating part 34 (step S1). At this time, the pressing body 48 stands by at a position above the holder 32 as shown in FIGS. The reference microphone 120 includes a MEMS microphone of the same type as the microphone 100 to be inspected, and is a microphone having a known frequency characteristic. The reference microphone 120 may be a different type of microphone from the microphone 100 to be inspected, such as a condenser microphone.
 次いで、制御部15が駆動部50を制御して回動軸44を所定方向に回動させ、図11及び図12に示すようにホルダ32の上方位置に待機する押圧体48が、マイク収容部34に載置された基準マイク120を上方から押さえ付け(図13及び図14参照)、基準マイク120の電極をプローブ35と確実に接触させる(ステップS2)。 Next, the control unit 15 controls the drive unit 50 to rotate the rotation shaft 44 in a predetermined direction, and the pressing body 48 that stands by at the upper position of the holder 32 as shown in FIGS. The reference microphone 120 placed on 34 is pressed from above (see FIGS. 13 and 14), and the electrode of the reference microphone 120 is reliably brought into contact with the probe 35 (step S2).
 次いで、制御部15が移動機構29を動作させ中空体12に設けた遮音パッキン22を蓋体16に当接させることで、図4に示すように中空体12の開口部12aを閉塞する(ステップS3)。 Next, the control unit 15 operates the moving mechanism 29 to bring the sound insulation packing 22 provided in the hollow body 12 into contact with the lid body 16, thereby closing the opening 12a of the hollow body 12 as shown in FIG. S3).
 次いで、制御部15が基準マイク120及び比較マイク38に電源電圧を入力し、基準マイク120及び比較マイク38を動作させた後、信号発生部54よりスピーカ駆動信号をスピーカ14に入力させ、テスト音波をスピーカ14より出力させる(ステップS4)。 Next, after the control unit 15 inputs the power supply voltage to the reference microphone 120 and the comparison microphone 38 and operates the reference microphone 120 and the comparison microphone 38, the signal generation unit 54 inputs the speaker drive signal to the speaker 14, and the test sound wave Is output from the speaker 14 (step S4).
 次いで、検出部13は、テスト音波の入力を受けて基準マイク120及び比較マイク38より出力される電気信号を検出する。検出部13は、検出した電気信号より基準マイク120及び比較マイク38の周波数特性をそれぞれ算出する。制御部15は、検出部13からの基準マイク120に関する周波数特性が所定値、すなわち、本実施形態の場合、周波数が70Hz、1000Hz、5000Hzであって、それぞれの音圧が1Paとなるように、信号発生部54から出力されるスピーカ駆動信号を調整する。そして、基準マイク120の周波数特性データが所定値となり、スピーカ駆動信号の調整が完了すると、制御部15は調整されたスピーカ駆動信号を記憶部52に記憶させるとともに、その時の比較マイク38の周波数特性、すなわち、テスト音波に対応して検出された3種類のピークの周波数fri1,fri2,fri3と音圧Mri1,Mri2,Mri3を初期周波数特性値として記憶部52に記憶する(ステップS5)。 Next, the detection unit 13 receives the test sound wave and detects an electrical signal output from the reference microphone 120 and the comparison microphone 38. The detection unit 13 calculates the frequency characteristics of the reference microphone 120 and the comparison microphone 38 from the detected electrical signal. The control unit 15 has a predetermined frequency characteristic regarding the reference microphone 120 from the detection unit 13, that is, in the case of the present embodiment, the frequency is 70 Hz, 1000 Hz, 5000 Hz, and each sound pressure is 1 Pa. The speaker drive signal output from the signal generator 54 is adjusted. When the frequency characteristic data of the reference microphone 120 reaches a predetermined value and the adjustment of the speaker drive signal is completed, the control unit 15 stores the adjusted speaker drive signal in the storage unit 52 and the frequency characteristic of the comparison microphone 38 at that time. That is, the three kinds of peak frequencies fri1, fri2, fri3 and sound pressures Mri1, Mri2, Mri3 detected corresponding to the test sound wave are stored in the storage unit 52 as initial frequency characteristic values (step S5).
 次いで、制御部15が、移動機構29を制御して中空体12を蓋体16から離反させ、駆動部50を制御して回動軸44を所定方向に回動させることで、押圧体48による基準マイク120の押圧を解除し、図11及び図12に示すようにホルダ32の上方の待機位置に押圧体48を移動させる(ステップS6)。 Next, the control unit 15 controls the moving mechanism 29 to separate the hollow body 12 from the lid body 16, and controls the driving unit 50 to rotate the rotation shaft 44 in a predetermined direction. The pressing of the reference microphone 120 is released, and the pressing body 48 is moved to the standby position above the holder 32 as shown in FIGS. 11 and 12 (step S6).
 次いで、搬送機構8が、マイク収容部34から基準マイク120を取り出して基準マイク用トレイ7に戻し、トレイ6より検査対象のマイク100をマイク収容部34に載置する(ステップS7)。つまり、検査対象のマイク100は、基準マイク120を配置した位置と同じ位置に配置される。 Next, the transport mechanism 8 takes out the reference microphone 120 from the microphone housing portion 34 and returns it to the reference microphone tray 7, and places the microphone 100 to be inspected from the tray 6 in the microphone housing portion 34 (step S7). That is, the microphone 100 to be inspected is disposed at the same position as the position where the reference microphone 120 is disposed.
 次いで、ステップS2と同様、制御部15が駆動部50を制御して回動軸44を所定方向に回動させ押圧体48によって検査対象のマイク100を上方から押さえ付ける(ステップS8)。 Next, as in step S2, the control unit 15 controls the drive unit 50 to rotate the rotation shaft 44 in a predetermined direction and press the microphone 100 to be inspected from above by the pressing body 48 (step S8).
 次いで、ステップS3と同様、制御部15が移動機構29を制御して中空体12の開口部12aを蓋体16で閉塞する(ステップS9)。 Next, as in step S3, the control unit 15 controls the moving mechanism 29 to close the opening 12a of the hollow body 12 with the lid body 16 (step S9).
 次いで、制御部15は、検査対象のマイク100及び比較マイク38に電源電圧を入力し、検査対象のマイク100及び比較マイク38を動作させた後、ステップS5で調整したスピーカ駆動信号を信号発生部54よりスピーカ14に入力する。これにより、制御部15は、ステップS5において調整したテスト音波と等しい音波を検査対象のマイク100及び比較マイク38に入力する(ステップS10)。 Next, the control unit 15 inputs the power supply voltage to the inspection target microphone 100 and the comparison microphone 38, operates the inspection target microphone 100 and the comparison microphone 38, and then transmits the speaker drive signal adjusted in step S5 to the signal generation unit. 54 to input to the speaker 14. Thereby, the control unit 15 inputs a sound wave equal to the test sound wave adjusted in step S5 to the microphone 100 and the comparison microphone 38 to be inspected (step S10).
 次いで、検出部13は、テスト音波の入力を受けて検査対象のマイク100及び比較マイク38より出力される電気信号を検出する。検出部13は、検査対象のマイク100が出力した電気信号より、テスト音波に対応して検出された3種類のピークの周波数foj1,foj2,foj3と音圧Moj1,Moj2,Moj3を検査対象のマイク100の周波数特性値として算出する。更に、検出部13は、比較マイク38が出力した電気信号より、テスト音波に対応して検出された3種類のピークの周波数fr1,fr2,fr3と音圧Mr1,Mr2,Mr3を比較マイク38の周波数特性値として算出する(ステップS11)。 Next, the detection unit 13 receives an input of the test sound wave and detects an electrical signal output from the microphone 100 to be inspected and the comparison microphone 38. The detection unit 13 uses the electrical signals output from the inspection target microphone 100 to detect the three types of peak frequencies foj1, foj2, foj3 and the sound pressures Moj1, Moj2, Moj3 detected in response to the test sound wave. It is calculated as a frequency characteristic value of 100. Further, the detection unit 13 uses the electrical signals output from the comparison microphone 38 to obtain the three types of peak frequencies fr1, fr2, fr3 and the sound pressures Mr1, Mr2, Mr3 detected corresponding to the test sound wave. It is calculated as a frequency characteristic value (step S11).
 そして、制御部15は、記憶部52に記憶された比較マイク38の初期周波数特性値と、ステップS11において得られた比較マイク38の周波数特性値と、に基づいて、ステップS11において得られた検査対象のマイク100の周波数特性値を校正する。校正された周波数特性値、すなわち、3種類のピークの周波数fca1,fca2,fca3と音圧Mca1,Mca2,Mca3は、例えば、下記式1~6によって算出することができる(ステップS12)。 The control unit 15 then performs the inspection obtained in step S11 based on the initial frequency characteristic value of the comparison microphone 38 stored in the storage unit 52 and the frequency characteristic value of the comparison microphone 38 obtained in step S11. The frequency characteristic value of the target microphone 100 is calibrated. The calibrated frequency characteristic values, that is, the three types of peak frequencies fca1, fca2, and fca3 and the sound pressures Mca1, Mca2, and Mca3 can be calculated by, for example, the following formulas 1 to 6 (step S12).
fca1=foj1+(fri1-fr1)  式1
fca2=foj2+(fri2-fr2)  式2
fca3=foj3+(fri3-fr3)  式3
Mca1=Moj1×(Mri1/Mr1) 式4
Mca2=Moj2×(Mri2/Mr2) 式5
Mca3=Moj3×(Mri3/Mr3) 式6
 次いで、制御部15は、移動機構29を制御して中空体12を蓋体16から離反させ、駆動部50を制御して回動軸44を所定方向に回動させることで、押圧体48によるマイク100の押圧を解除し、図11及び図12に示すようにホルダ32の側方上方の待機位置に押圧体48を移動させる(ステップS13)。
fca1 = foj1 + (fri1-fr1) Equation 1
fca2 = foj2 + (fri2-fr2) Equation 2
fca3 = foj3 + (fri3-fr3) Equation 3
Mca1 = Moj1 × (Mri1 / Mr1) Equation 4
Mca2 = Moj2 × (Mri2 / Mr2) Formula 5
Mca3 = Moj3 × (Mri3 / Mr3) Equation 6
Next, the control unit 15 controls the moving mechanism 29 to separate the hollow body 12 from the lid body 16, and controls the driving unit 50 to rotate the rotation shaft 44 in a predetermined direction, thereby causing the pressing body 48. The pressing of the microphone 100 is released, and the pressing body 48 is moved to the standby position above the side of the holder 32 as shown in FIGS. 11 and 12 (step S13).
 次いで、搬送機構8が、マイク収容部34から検査が終了した検査対象のマイク100を取り出し、制御部15は、次に検査するマイク100がトレイ6に存在するか否か判断する(ステップS14)。次に検査するマイク100が存在すればステップS15に進み、次に検査するマイク100が存在しなければ、検査を終了する。 Next, the transport mechanism 8 takes out the microphone 100 to be inspected from the microphone accommodating portion 34, and the control portion 15 determines whether or not the microphone 100 to be inspected next exists in the tray 6 (step S14). . If there is a microphone 100 to be inspected next, the process proceeds to step S15. If there is no microphone 100 to be inspected next, the inspection is terminated.
 ステップS15では、搬送機構8が、次の検査対象のマイク100をマイク収容部34に載置し、その後、ステップS8に戻る。そして、ステップS8からステップS15を繰り返すことで、順次、トレイ6に収容された検査対象のマイク100について周波数特性値を取得してマイクロフォンの検査を行う。 In step S15, the transport mechanism 8 places the microphone 100 to be inspected next on the microphone housing 34, and then returns to step S8. And by repeating step S8 to step S15, the frequency characteristic value is acquired about the microphone 100 of the test object accommodated in the tray 6 sequentially, and the microphone is inspected.
 以上のように、本実施形態では、スピーカ14及びマイク100が配置されるキャビティ30を有響空間で構成するため、キャビティ30を区画する壁面に吸音材を配設する必要がなく、キャビティ30の容積を小さく設けることが可能となる。そのため、検査装置1を小型化することができるとともに、スピーカ14から出力されるテスト音波を効率よくマイク100に入力することができ、低音域のテスト音波をマイク100に入力する場合であってもスピーカ出力が過大となりにくく正確に検査することができる。 As described above, in the present embodiment, since the cavity 30 in which the speaker 14 and the microphone 100 are disposed is configured by an anechoic space, it is not necessary to provide a sound absorbing material on the wall surface that defines the cavity 30. It becomes possible to provide a small volume. Therefore, the inspection apparatus 1 can be reduced in size, the test sound wave output from the speaker 14 can be efficiently input to the microphone 100, and the low-frequency test sound wave can be input to the microphone 100. The speaker output is unlikely to be excessive and can be inspected accurately.
 また、キャビティ30が密閉されているため、外部からキャビティ内にテスト音波以外の音信号が侵入しにくくなり、正確に検査することができる。 Also, since the cavity 30 is hermetically sealed, it is difficult for sound signals other than the test sound wave to enter the cavity from the outside, and the inspection can be performed accurately.
 しかも、キャビティ30内部に吸音材を配設すると、吸音材の経年変化などによってキャビティ30内の音響特性が変化しやすくなるが、本実施形態では金属材がキャビティ30内部に露出しているため、キャビティ30内の音響特性が変化しにくく、長期間にわたって安定して検査を行うことができる。 Moreover, when the sound absorbing material is disposed inside the cavity 30, the acoustic characteristics in the cavity 30 are likely to change due to the secular change of the sound absorbing material, but in this embodiment, the metal material is exposed inside the cavity 30, The acoustic characteristics in the cavity 30 are unlikely to change, and the inspection can be performed stably over a long period of time.
 また、本実施形態では、マイク100は、蓋体16の対向面17から音孔114までの距離が、テスト音波の半波長λ/2の整数倍となるのを避けてキャビティ30内に配置されているため、スピーカ14より出力されたテスト音波の一部又は全部が、蓋体16の対向面17で反射した反射波によって打ち消し合うことが無く、マイク100に効率よくテスト音波を入力することができる。 In the present embodiment, the microphone 100 is disposed in the cavity 30 while avoiding the distance from the facing surface 17 of the lid 16 to the sound hole 114 being an integral multiple of the half wavelength λ / 2 of the test sound wave. Therefore, part or all of the test sound wave output from the speaker 14 is not canceled by the reflected waves reflected by the facing surface 17 of the lid 16, and the test sound wave can be efficiently input to the microphone 100. it can.
 また、本実施形態では、蓋体16の対向面17にマイク100を保持するホルダ32が固定されているので、蓋体16が中空体12の開口部12aを閉塞するとキャビティ30内にマイク100を配置することができ、簡便な構成によって装置本体10を構成することができる。 In this embodiment, since the holder 32 that holds the microphone 100 is fixed to the facing surface 17 of the lid body 16, the microphone 100 is placed in the cavity 30 when the lid body 16 closes the opening 12 a of the hollow body 12. The apparatus main body 10 can be configured with a simple configuration.
 また、本実施形態では、マイク100を保持するホルダ32が、テーブル24に固定された蓋体16に固定されており、中空体12が移動機構29によって移動して中空体12の開口部12aを蓋体16で閉塞する。そのため、マイク100がマイク収容部34に載置されると検査が終了するまでマイク100が移動することが無く、マイク100の電極116とプローブ35との接触不良などが起こりにくくなり、信頼性の高い検査結果が得られる。 In the present embodiment, the holder 32 that holds the microphone 100 is fixed to the lid body 16 that is fixed to the table 24, and the hollow body 12 is moved by the moving mechanism 29 so that the opening 12 a of the hollow body 12 is opened. The lid 16 is closed. Therefore, when the microphone 100 is placed in the microphone housing portion 34, the microphone 100 does not move until the inspection is completed, and contact failure between the electrode 116 of the microphone 100 and the probe 35 is less likely to occur. High test results can be obtained.
 また、マイク収容部34に配置した基準マイク120から得られる周波数特性値が所定音圧及び所定周波数になるように、制御部15が信号発生部54から出力するスピーカ駆動信号を調整する。そのため、検査対象のマイク100を配置する位置において所定音圧及び所定周波数のテスト音波が生じるようにスピーカ14からの出力を調整することができ、正確に検査を行うことができる。しかも、基準マイク120をマイク収容部34に配置し検査対象のマイク100を配置する位置と同じ位置において、所定音圧及び所定周波数のテスト音波が生じるようにスピーカからの出力を調整することができ、マイクの検査を正確に行うことができる。 In addition, the control unit 15 adjusts the speaker drive signal output from the signal generation unit 54 so that the frequency characteristic value obtained from the reference microphone 120 disposed in the microphone housing unit 34 has a predetermined sound pressure and a predetermined frequency. Therefore, the output from the speaker 14 can be adjusted so that a test sound wave having a predetermined sound pressure and a predetermined frequency is generated at the position where the microphone 100 to be inspected is arranged, and the inspection can be performed accurately. Moreover, the output from the speaker can be adjusted so that a test sound wave having a predetermined sound pressure and a predetermined frequency is generated at the same position as the position where the reference microphone 120 is disposed in the microphone housing portion 34 and the microphone 100 to be inspected is disposed. The microphone can be accurately inspected.
 さらに、ホルダ32にマイク収容部34を1箇所設け、1回の測定でキャビティ30内に1個の検査対象のマイク100を配置し検査するため、複数個のマイク100を検査する場合であっても、各マイク100をキャビティ30内の同じ位置に配置して検査することができる。そのため、テスト音波の音圧などがキャビティ30内の位置によって異なっていたとしても、各検査対象のマイク100にほぼ等しいテスト音波を入力することができ、複数個のマイク100を検査する場合であっても信頼性の高い検査結果が得られる。 Furthermore, in order to inspect a plurality of microphones 100 in order to arrange and inspect one microphone 100 to be inspected in the cavity 30 in one measurement by providing the microphone 32 with one place in the holder 32. In addition, each microphone 100 can be inspected by being arranged at the same position in the cavity 30. Therefore, even if the sound pressure of the test sound wave differs depending on the position in the cavity 30, it is possible to input a test sound wave substantially equal to each of the microphones 100 to be inspected. However, highly reliable test results can be obtained.
 また、キャビティ30内には、検査対象のマイク100だけでなく比較マイク38が配設されている。そのため、複数個のマイク100を順次検査する場合に気圧変化や温度変化などの外乱が生じても、比較マイク38から得られる周波数特性値に基づいて検査対象のマイク100から得られる周波数特性値を校正することができ、複数個のマイクロフォンを順次検査する場合であっても信頼性の高い検査結果が得られる。 In the cavity 30, not only the microphone 100 to be inspected but also a comparative microphone 38 is arranged. For this reason, when a plurality of microphones 100 are sequentially inspected, even if disturbance such as atmospheric pressure change or temperature change occurs, the frequency characteristic value obtained from the microphone 100 to be inspected based on the frequency characteristic value obtained from the comparison microphone 38 is obtained. Calibration can be performed, and even when a plurality of microphones are sequentially inspected, a highly reliable inspection result can be obtained.
 また、本実施形態では、検出部13や制御部15が収納された第2筐体3と別個の筐体にマイク100の検査を行う装置本体10が収納されている。そのため、検出部13や制御部15から発生する騒音や振動が装置本体10に伝わりにくくなり、信頼性の高い検査結果が得られる。 In the present embodiment, the apparatus main body 10 that inspects the microphone 100 is housed in a separate housing from the second housing 3 in which the detection unit 13 and the control unit 15 are housed. Therefore, noise and vibration generated from the detection unit 13 and the control unit 15 are not easily transmitted to the apparatus main body 10, and a highly reliable test result is obtained.
 なお、本実施形態では、ホルダ32にマイク収容部34を1箇所設け、1回の測定でキャビティ30内に1個の検査対象のマイク100を配置し検査するが、例えばホルダ32に複数個のマイク収容部34を設け、1回の測定でキャビティ30内に複数個の検査対象のマイク100を配置し検査してもよい。このような場合、検査効率を向上させることができる。 In the present embodiment, the microphone 32 is provided in one place on the holder 32, and one inspection target microphone 100 is arranged in the cavity 30 by one measurement. A microphone housing part 34 may be provided, and a plurality of microphones 100 to be inspected may be placed in the cavity 30 and inspected in one measurement. In such a case, inspection efficiency can be improved.
 また、図10におけるステップS1~ステップS6までの工程、すなわち、基準マイク120をマイク収容部34に載置して行うスピーカ駆動信号の調整は、所定個数のマイクを検査する毎に、あるいは、所定時間経過毎に、行うことができる。 Further, the process from step S1 to step S6 in FIG. 10, that is, the adjustment of the speaker drive signal performed by placing the reference microphone 120 in the microphone housing portion 34, is performed every time a predetermined number of microphones are inspected or predetermined. This can be done every time.
 また、本発明は、蓋体16が中空体12の一端に開口する開口部を閉塞することで密閉したキャビティ30を形成する場合に限定されるものでなく、例えば、中空体12の周面に検査対象のマイク100を出し入れする開口部を設け、該開口部を蓋体が閉塞することで、密閉したキャビティ30を形成するものや、中空体12に換えて箱体の内部に密閉したキャビティ30を形成することもできる。 In addition, the present invention is not limited to the case in which the sealed cavity 30 is formed by closing the opening that the lid 16 opens at one end of the hollow body 12. For example, the lid 16 is formed on the peripheral surface of the hollow body 12. An opening for inserting and removing the microphone 100 to be inspected is provided, and the opening is closed by a lid to form a sealed cavity 30, or a cavity 30 sealed inside the box instead of the hollow body 12. Can also be formed.
 さらにまた、本実施形態では、移動機構29が中空体12を移動させることでテーブル24に固定された蓋体16が中空体12の開口部を閉塞するように構成したが、本発明はこれに限定されず、中空体12がテーブル24に固定され、蓋体16がレール26に摺動可能に取り付けられたスライダ28に固定され、蓋体16がレール26上を移動することでテーブル24に固定された中空体12の開口部12aを閉塞するように構成してもよい。 Furthermore, in the present embodiment, the moving mechanism 29 moves the hollow body 12 so that the lid body 16 fixed to the table 24 closes the opening of the hollow body 12, but the present invention is not limited thereto. Without being limited, the hollow body 12 is fixed to the table 24, the lid body 16 is fixed to the slider 28 slidably attached to the rail 26, and the lid body 16 is fixed to the table 24 by moving on the rail 26. You may comprise so that the opening part 12a of the hollow body 12 made may be obstruct | occluded.
 また、本実施形態の検査装置1では、スピーカ14から音が出力されていない状態で検査対象のマイク100より出力される電気信号を検出することで、検査対象のマイク100のS/N比を算出してもよい。 Moreover, in the inspection apparatus 1 of this embodiment, the S / N ratio of the microphone 100 to be inspected is detected by detecting an electrical signal output from the microphone 100 to be inspected in a state where no sound is output from the speaker 14. It may be calculated.
 すなわち、蓋体16が中空体12の開口部12aを閉塞し、密閉したキャビティ30が形成されている状態、言い換えれば、ステップS9において中空体12の開口部12aが閉塞された後であって、ステップS13において中空体12を蓋体16から離反させる前に、制御部15が、検査対象のマイク100及び比較マイク38に電源電圧を入力し、検査対象のマイク100及び比較マイク38を動作させる。スピーカ14よりテスト音波を出力していない状態で、検出部13が検査対象のマイク100より出力される電気信号を検出し、検出結果を制御部15は記憶部52に記憶させる。そして、スピーカ14から音が出力されていない状態で検査対象のマイク100より出力される電気信号と、スピーカ14からテスト音波が出力されている状態で検査対象のマイク100より出力される電気信号とに基づいて、制御部15はS/N比を算出する。 That is, the lid 16 closes the opening 12a of the hollow body 12 and a sealed cavity 30 is formed, in other words, after the opening 12a of the hollow body 12 is closed in step S9, Before the hollow body 12 is separated from the lid body 16 in step S13, the control unit 15 inputs a power supply voltage to the microphone 100 and the comparative microphone 38 to be inspected, and operates the microphone 100 and the comparative microphone 38 to be inspected. While the test sound wave is not output from the speaker 14, the detection unit 13 detects an electrical signal output from the microphone 100 to be inspected, and the control unit 15 stores the detection result in the storage unit 52. An electric signal output from the microphone 100 to be inspected when no sound is output from the speaker 14, and an electric signal output from the microphone 100 to be inspected in a state where the test sound wave is output from the speaker 14 Based on the above, the control unit 15 calculates the S / N ratio.
 上記のようにスピーカ14よりテスト音波を出力していない状態で、検出部13が検査対象のマイク100より出力される電気信号を検出する時に、搬送機構8を停止させることが好ましい。このように搬送機構8を停止させることで、搬送機構8の動作音がマイク100に入力されることが無く、正確にS/N比を算出することができる。 It is preferable to stop the transport mechanism 8 when the detection unit 13 detects an electrical signal output from the microphone 100 to be inspected in a state where the test sound wave is not output from the speaker 14 as described above. By stopping the transport mechanism 8 in this manner, the operation sound of the transport mechanism 8 is not input to the microphone 100, and the S / N ratio can be accurately calculated.
 また、押さえ機構42の駆動部50が空圧式のロータリーアクチュエータである場合、スピーカ14よりテスト音波を出力していない状態で、検出部13が検査対象のマイク100より出力される電気信号を検出する時に、アクチュエータへのエアの供給を中止することが好ましい。このようにアクチュエータへのエアの供給を中止することで、アクチュエータからエアが漏れ出ることにより生じる音や振動がマイク100に入力されることが無く、正確にS/N比を算出することができる。 When the drive unit 50 of the pressing mechanism 42 is a pneumatic rotary actuator, the detection unit 13 detects an electrical signal output from the microphone 100 to be inspected in a state where the test sound wave is not output from the speaker 14. Sometimes it is preferable to stop the supply of air to the actuator. By stopping the supply of air to the actuator in this way, sound and vibration caused by air leaking from the actuator are not input to the microphone 100, and the S / N ratio can be accurately calculated. .
[第2の実施形態]
 以下、本発明の第2の実施形態について図面を参照して説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
 図16は本実施形態にかかるマイクロフォンの検査装置1の装置本体10を概略的に示す断面図である。この例では、キャビティ30内に照明装置60が配設されている。 FIG. 16 is a cross-sectional view schematically showing the apparatus main body 10 of the microphone inspection apparatus 1 according to the present embodiment. In this example, the illumination device 60 is disposed in the cavity 30.
 照明装置60は、白色LEDなどの光源61を備え、中空体12の内壁に設けられた凹部62に収納されている。図16に示すように、蓋体16が中空体12の開口部12aを閉塞した状態で光源61の光軸LAがマイク収容部34に向くように、照明装置60は中空体12に配設されている。 The illuminating device 60 includes a light source 61 such as a white LED, and is housed in a recess 62 provided on the inner wall of the hollow body 12. As shown in FIG. 16, the illuminating device 60 is disposed in the hollow body 12 so that the optical axis LA of the light source 61 faces the microphone housing portion 34 in a state where the lid 16 closes the opening 12 a of the hollow body 12. ing.
 照明装置60は、制御部15によって点滅制御される。詳細には、図10のステップS10及びステップS11において、スピーカ14から検査対象のマイク100にテスト音波を入力し、検出部13が検査対象のマイク100から出力される電気信号を検出している時に、制御部15は照明装置60を点滅させマイク100に点滅光を照射する。マイク100に照射する点滅光の周波数は、スピーカ14が出力するテスト音波に含まれる音信号の周波数(本実施形態では70Hz、1000Hz、5000Hz)以外の周波数(例えば、100Hz)に設定する。 The lighting device 60 is controlled to blink by the control unit 15. Specifically, when the test sound wave is input from the speaker 14 to the microphone 100 to be inspected and the detection unit 13 detects the electrical signal output from the microphone 100 to be inspected in Step S10 and Step S11 of FIG. The control unit 15 causes the lighting device 60 to blink, and irradiates the microphone 100 with blinking light. The frequency of the flashing light applied to the microphone 100 is set to a frequency (for example, 100 Hz) other than the frequency of the sound signal included in the test sound wave output from the speaker 14 (70 Hz, 1000 Hz, 5000 Hz in this embodiment).
 MEMSマイクロフォンの中には光が照射されるとノイズを発生するものがある。本実施形態の検査装置1では、検出部13が検査対象のマイク100から出力される電気信号を検出している時に、照明装置60より検査対象のマイク100に点滅光を照射することで、検査対象のマイク100が光の照射を受けてノイズを発生するか否か判別することができる。 Some MEMS microphones generate noise when irradiated with light. In the inspection apparatus 1 of the present embodiment, when the detection unit 13 detects an electrical signal output from the inspection target microphone 100, the illumination apparatus 60 irradiates the inspection target microphone 100 with blinking light, thereby inspecting. It is possible to determine whether the target microphone 100 generates noise upon receiving light irradiation.
 また、マイク100に照射する光を点滅光とすることで、検査対象のマイク100が光の照射を受けてノイズを発生するものであれば、検出部13において検出される周波数特性の中に、テスト音波に含まれる音信号の周波数に対応したピークP1,P2,P3に加えて、図17に示すように、マイク100に照射した点滅光の周波数に対応したピークPnが検出される。 In addition, if the microphone 100 to be inspected emits light and generates noise when the light irradiated to the microphone 100 is blinking light, the frequency characteristics detected by the detection unit 13 include: In addition to the peaks P1, P2 and P3 corresponding to the frequency of the sound signal included in the test sound wave, a peak Pn corresponding to the frequency of the flashing light irradiated to the microphone 100 is detected as shown in FIG.
 なお、検出部13は、マイク100に照射した点滅光の周波数fnにおける音圧値Mnが所定のしきい値より大きいと、検出した周波数特性より点滅光の周波数に対応したピークPnを検出し、検査対象のマイク100が光の照射を受けてノイズを発生することを検出してもよい。また、検出部13は、マイク100に照射した点滅光の周波数fnにおける音圧値Mnについて、ピークP1,P2,P3のいずれかのピークの音圧値に対する相対値(例えば、Mn/M1)を算出し、この相対値が所定のしきい値より大きいと、検出した周波数特性より点滅光の周波数に対応したピークPnを検出し、検査対象のマイク100が光の照射を受けてノイズを発生することを検出してもよい。 When the sound pressure value Mn at the frequency fn of the flashing light irradiated to the microphone 100 is larger than a predetermined threshold, the detection unit 13 detects the peak Pn corresponding to the frequency of the flashing light from the detected frequency characteristics. It may be detected that the microphone 100 to be inspected receives noise and generates noise. In addition, the detection unit 13 calculates a relative value (for example, Mn / M1) with respect to the sound pressure value of any one of the peaks P1, P2, and P3 for the sound pressure value Mn at the frequency fn of the flashing light irradiated on the microphone 100. When the calculated relative value is larger than a predetermined threshold value, the peak Pn corresponding to the frequency of the blinking light is detected from the detected frequency characteristic, and the microphone 100 to be inspected emits light and generates noise. You may detect that.
 本実施形態の検査装置1では、検査対象のマイク100が光の照射を受けてノイズを発生するか否かについて周波数特性の測定と同時に判別することができる。 In the inspection apparatus 1 according to the present embodiment, whether or not the microphone 100 to be inspected is irradiated with light and generates noise can be determined simultaneously with the measurement of the frequency characteristics.
 特に、マイク100に照射した点滅光の周波数が、テスト音波に含まれる音信号の周波数以外の周波数に設定されていると、検出される周波数特性において点滅光の周波数に対応したピークPnが、テスト音波に含まれる音信号の周波数に対応したピークP1,P2,P3に重なることがないため、検査対象のマイク100が光の照射を受けてノイズを発生するか否か判別しやすくなる。 In particular, when the frequency of the flashing light applied to the microphone 100 is set to a frequency other than the frequency of the sound signal included in the test sound wave, the peak Pn corresponding to the frequency of the flashing light in the detected frequency characteristic is Since it does not overlap with the peaks P1, P2, and P3 corresponding to the frequency of the sound signal included in the sound wave, it becomes easy to determine whether or not the microphone 100 to be inspected generates noise due to light irradiation.
 なお、上記した構成及び作用効果以外は第1の実施形態と同様であり、詳細な説明は省略する。 Note that, except for the configuration and operational effects described above, the second embodiment is the same as the first embodiment, and a detailed description thereof will be omitted.
[第3の実施形態]
 以下、本発明の第3の実施形態について図面を参照して説明する。
[Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.
 図18は本実施形態にかかるマイクロフォンの検査装置1の装置本体10を概略的に示す断面図である。この例では、1つのチャンバ70の中に複数(例えば、4つ)のキャビティ30が形成されている。 FIG. 18 is a cross-sectional view schematically showing the apparatus main body 10 of the microphone inspection apparatus 1 according to the present embodiment. In this example, a plurality of (for example, four) cavities 30 are formed in one chamber 70.
 詳細には、チャンバ70は鋳鉄やステンレスやアルミニウム等の金属材からなり一端に開口部を有する箱状の部材であり、蓋体80によってチャンバ70の開口部が閉塞される。チャンバ70の中空部72は、例えば、チャンバ70と同一素材からなる仕切部74によって複数の円柱状の空間に分割され、分割された各空間がチャンバ70の一端に開口するキャビティ30をなしている。 Specifically, the chamber 70 is a box-shaped member made of a metal material such as cast iron, stainless steel, or aluminum and having an opening at one end, and the opening of the chamber 70 is closed by the lid 80. The hollow portion 72 of the chamber 70 is divided into a plurality of columnar spaces by a partition portion 74 made of the same material as the chamber 70, for example, and each divided space forms a cavity 30 that opens at one end of the chamber 70. .
 各キャビティ30内には、スピーカ14がそれぞれ配設されている。スピーカ14の振動板18はキャビティ30の開口端30aに向けられている。キャビティ30の開口端30aの周縁には遮音パッキン22が配設されている。 In each cavity 30, a speaker 14 is disposed. The diaphragm 18 of the speaker 14 is directed to the open end 30 a of the cavity 30. A sound insulation packing 22 is disposed on the periphery of the opening end 30 a of the cavity 30.
 蓋体80は、鋳鉄やステンレスやアルミニウムなどの金属材からなり、キャビティ30の開口端30aに対向配置されている板状の部材である。蓋体80には各キャビティ30の開口端30aに対向してホルダ32が固定されている。 The lid 80 is a plate-like member made of a metal material such as cast iron, stainless steel, or aluminum, and disposed opposite to the opening end 30 a of the cavity 30. A holder 32 is fixed to the lid 80 so as to face the open end 30 a of each cavity 30.
 チャンバ70は、上記した第1の実施形態と同様、移動機構29が動作することで蓋体80に近接離反するように移動する。チャンバ70が蓋体80に接近すると、蓋体80は遮音パッキン22と当接し遮音パッキン22を圧縮して各キャビティ30の開口端30aを閉塞する。このように蓋体80が各キャビティ30の開口端30aを閉塞することで、1つのチャンバ70の内部に密閉したキャビティ30を複数形成し、各キャビティ30内にホルダ32を配置させる。 The chamber 70 moves so as to approach and separate from the lid 80 when the moving mechanism 29 operates, as in the first embodiment. When the chamber 70 approaches the lid 80, the lid 80 contacts the sound insulation packing 22 and compresses the sound insulation packing 22 to close the open ends 30 a of the cavities 30. Thus, the lid 80 closes the open end 30 a of each cavity 30, thereby forming a plurality of sealed cavities 30 inside one chamber 70, and placing the holder 32 in each cavity 30.
 このような検査装置1では、一度の測定で複数個のマイク100を検査することができ、多数個のマイク100を検査する場合の検査時間を短縮することができる。しかも、本実施形態では、1つのキャビティ30の内部に1個の検査対象のマイク100とスピーカ14とを収容して検査を行うため、キャビティ30毎にスピーカ14から出力されるテスト音波を調整することができる。そのため、複数あるキャビティ30毎にキャビティ30内部の音響特性が異なっていても、複数個のマイク100を一定の条件下で同時に測定することができる。 In such an inspection apparatus 1, a plurality of microphones 100 can be inspected by one measurement, and the inspection time when inspecting a large number of microphones 100 can be shortened. In addition, in this embodiment, since one inspection target microphone 100 and speaker 14 are accommodated in one cavity 30 for inspection, the test sound wave output from the speaker 14 is adjusted for each cavity 30. be able to. Therefore, even if the acoustic characteristics inside the cavity 30 are different for each of the plurality of cavities 30, the plurality of microphones 100 can be measured simultaneously under a certain condition.
 また、移動機構29が、複数のキャビティ30を備えたチャンバ70を移動させるように構成することで、複数のキャビティ30で移動機構29を共通化することができ、検査装置1の製造コストの増加を抑えることができる。 In addition, since the moving mechanism 29 is configured to move the chamber 70 including the plurality of cavities 30, the moving mechanism 29 can be shared by the plurality of cavities 30, and the manufacturing cost of the inspection apparatus 1 is increased. Can be suppressed.
 なお、上記した構成及び作用効果以外は第1の実施形態と同様であり、詳細な説明は省略する。 Note that, except for the configuration and operational effects described above, the second embodiment is the same as the first embodiment, and a detailed description thereof will be omitted.
[第4の実施形態]
 以下、本発明の第4の実施形態について図面を参照して説明する。
[Fourth Embodiment]
Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings.
 この例では、上記した第1の実施形態のマイクロフォンの検査装置1を用いて、2チャンネルの信号を時分割多重化して伝送するマイク100の検査方法について説明する。 In this example, a method for inspecting a microphone 100 that transmits time-division multiplexed two-channel signals using the above-described microphone inspection device 1 according to the first embodiment will be described.
 このマイク100は、図19に示すように、検出部13より信号線4を介してクロック信号SCL及びチャンネル信号SCHが入力され、設定されたチャンネルに応じた所定のタイミングでテスト音波によって生じた電気信号を出力する。 As shown in FIG. 19, the microphone 100 receives the clock signal SCL and the channel signal SCH from the detection unit 13 via the signal line 4, and generates electricity generated by the test sound wave at a predetermined timing according to the set channel. Output a signal.
 詳細には、マイク100には、クロック信号ライン4aを介して周波数が例えば1~3MHzのクロック信号SCLが入力され、チャンネルライン4bを介してマイク100のチャンネルを設定するためのチャンネル信号SCHが入力される。 Specifically, the clock signal SCL having a frequency of, for example, 1 to 3 MHz is input to the microphone 100 via the clock signal line 4a, and the channel signal SCH for setting the channel of the microphone 100 is input via the channel line 4b. Is done.
 検出部13がチャンネル信号SCHとしてローレベルの信号を出力すると、マイク100にローレベルの信号が入力され、マイク100はLチャンネルに設定される。Lチャンネルに設定されたマイク100は、クロック信号SCLの立ち上がり時刻から所定の遅延時間tdv経過した時刻における電気信号S1を出力する。 When the detection unit 13 outputs a low level signal as the channel signal SCH, the low level signal is input to the microphone 100, and the microphone 100 is set to the L channel. The microphone 100 set to the L channel outputs the electric signal S1 at a time when a predetermined delay time tdv has elapsed from the rising time of the clock signal SCL.
 一方、検出部13がチャンネル信号SCHとしてハイレベルの信号を出力すると、マイク100にハイレベルの信号が入力され、マイク100はRチャンネルに設定される。Rチャンネルに設定されたマイク100は、クロック信号SCLの立ち下がり時刻から所定の遅延時間tdv経過した時刻における電気信号S2を出力する。 On the other hand, when the detection unit 13 outputs a high level signal as the channel signal SCH, the high level signal is input to the microphone 100, and the microphone 100 is set to the R channel. The microphone 100 set to the R channel outputs the electric signal S2 at a time when a predetermined delay time tdv has elapsed from the falling time of the clock signal SCL.
 マイク100より出力された電気信号S1は、データライン4cを介して検出部13に入力される。 The electrical signal S1 output from the microphone 100 is input to the detection unit 13 via the data line 4c.
 ホルダ32に設けられた比較マイク38は、検査対象のマイク100と同種のマイクであり、検出部13より信号線4を介してクロック信号及びチャンネル信号が入力され、設定されたチャンネルに応じた所定のタイミングでテスト音波によって生じた電気信号S2を出力する。なお、この比較マイク38としては、入力されたチャンネル信号SCHに応じてLチャンネルとRチャンネルとを正常に切り換えることができ、設定されたチャンネルに応じた正しいタイミングで電気信号を出力することが確認されたマイクを使用する。 The comparison microphone 38 provided in the holder 32 is a microphone of the same type as the microphone 100 to be inspected. A clock signal and a channel signal are input from the detection unit 13 via the signal line 4 and a predetermined value corresponding to the set channel is set. The electric signal S2 generated by the test sound wave is output at the timing of It is confirmed that the comparison microphone 38 can normally switch between the L channel and the R channel according to the input channel signal SCH, and outputs an electric signal at the correct timing according to the set channel. Use the microphone that was installed.
 比較マイク38は、否定回路19を介してチャンネルライン4bに接続されており、検査対象のマイク100と異なるチャンネルに設定される。 The comparison microphone 38 is connected to the channel line 4b via the negation circuit 19, and is set to a channel different from that of the microphone 100 to be inspected.
 比較マイク38の出力端子はデータライン4cに接続されており、比較マイク38より出力された電気信号S2とマイク100から出力された電気信号S1とが多重化され、検出部13に入力される。 The output terminal of the comparison microphone 38 is connected to the data line 4c, and the electrical signal S2 output from the comparison microphone 38 and the electrical signal S1 output from the microphone 100 are multiplexed and input to the detection unit 13.
 このような検査装置1は、図20に示すように、ステップS31において搬送機構8が、トレイ6より検査対象のマイク100をマイク収容部34に載置する。 In such an inspection apparatus 1, as shown in FIG. 20, in step S <b> 31, the transport mechanism 8 places the microphone 100 to be inspected from the tray 6 in the microphone housing 34.
 次いで、ステップS32において、制御部15が、押圧体48によって検査対象のマイク100を上方から押さえ付け、移動機構29を制御して中空体12の開口部12aを蓋体16で閉塞する。 Next, in step S <b> 32, the control unit 15 presses the microphone 100 to be inspected from above with the pressing body 48, controls the moving mechanism 29, and closes the opening 12 a of the hollow body 12 with the lid body 16.
 次いで、ステップS33において、制御部15は、検査対象のマイク100及び比較マイク38に電源電圧を入力し、検査対象のマイク100及び比較マイク38を動作させる。 Next, in step S33, the control unit 15 inputs the power supply voltage to the inspection target microphone 100 and the comparison microphone 38, and operates the inspection target microphone 100 and the comparison microphone 38.
 次いで、ステップS34において、検出部13がマイク100及び比較マイク38に信号線4を介してクロック信号及びチャンネル信号を入力する。ここでは、例えば、検出部13は、チャンネル信号としてローレベルの信号を出力し、検査対象のマイク100をLチャンネルに設定し、比較マイク38をRチャンネルに設定する。 Next, in step S34, the detection unit 13 inputs a clock signal and a channel signal to the microphone 100 and the comparison microphone 38 via the signal line 4. Here, for example, the detection unit 13 outputs a low-level signal as a channel signal, sets the inspection target microphone 100 to the L channel, and sets the comparison microphone 38 to the R channel.
 次いで、ステップS35において、制御部15は、スピーカ駆動信号を信号発生部54よりスピーカ14に入力し、テスト音波を検査対象のマイク100及び比較マイク38に入力する。これにより、マイク100からは、クロック信号の立ち上がり時刻から所定の遅延時間tdv経過した時刻における電気信号S1が出力され、比較マイク38からは、クロック信号の立ち下がり時刻から所定の遅延時間tdv経過した時刻における電気信号S2が出力される。そして検出部13には、電気信号S1と電気信号S2とを多重化した多重化データDMがデータライン4cを介して入力される。 Next, in step S35, the control unit 15 inputs a speaker drive signal from the signal generation unit 54 to the speaker 14, and inputs a test sound wave to the microphone 100 and the comparison microphone 38 to be inspected. As a result, the electric signal S1 at the time when the predetermined delay time tdv has elapsed from the rising time of the clock signal is output from the microphone 100, and the predetermined delay time tdv has elapsed from the falling time of the clock signal from the comparison microphone 38. The electric signal S2 at the time is output. Then, multiplexed data DM obtained by multiplexing the electrical signal S1 and the electrical signal S2 is input to the detection unit 13 via the data line 4c.
 次いで、ステップS36において、検出部13は、入力された多重化データDMをLチャンネルに設定されたマイク100の電気信号S1とRチャンネルの比較マイク38の電気信号S2とに分割する。そして、検出部13は、電気信号S1からLチャンネルに設定されたマイク100の周波数特性を検出し、電気信号S2からRチャンネルに設定された比較マイク38の周波数特性を検出する。 Next, in step S36, the detection unit 13 divides the input multiplexed data DM into the electric signal S1 of the microphone 100 set to the L channel and the electric signal S2 of the comparison microphone 38 of the R channel. Then, the detection unit 13 detects the frequency characteristic of the microphone 100 set to the L channel from the electric signal S1, and detects the frequency characteristic of the comparison microphone 38 set to the R channel from the electric signal S2.
 次いで、ステップS37において、検出部13は、チャンネル信号SCHを切り換え、マイク100に設定したチャンネルと、比較マイク38に設定したチャンネルとを入れ替える。ここでは、検出部13は、チャンネル信号としてローレベルの信号からハイレベルの信号に切り換えて出力し、検査対象のマイク100をRチャンネルに設定し、比較マイク38をLチャンネルに設定する。 Next, in step S37, the detection unit 13 switches the channel signal SCH and switches the channel set for the microphone 100 with the channel set for the comparison microphone 38. Here, the detection unit 13 switches and outputs a channel signal from a low level signal to a high level signal, sets the inspection target microphone 100 to the R channel, and sets the comparison microphone 38 to the L channel.
 次いで、ステップS38において、上記したステップS35と同様、制御部15が、テスト音波を検査対象のマイク100及び比較マイク38に入力する。これにより、マイク100からは、クロック信号の立ち下がり時刻から所定の遅延時間tdv経過した時刻よりテスト音波によって生じた電気信号S1が出力され、比較マイク38からは、クロック信号の立ち上がり時刻から所定の遅延時間tdv経過した時刻よりテスト音波によって生じた電気信号S2が出力される。そして検出部13には、電気信号S1と電気信号S2とを時分割多重化した多重化データDMがデータライン4cを介して入力される。 Next, in step S38, as in step S35 described above, the control unit 15 inputs a test sound wave to the microphone 100 and the comparison microphone 38 to be inspected. As a result, the microphone 100 outputs the electrical signal S1 generated by the test sound wave from the time when the predetermined delay time tdv has elapsed from the falling time of the clock signal, and the comparison microphone 38 outputs the predetermined signal from the rising time of the clock signal. The electric signal S2 generated by the test sound wave is output from the time when the delay time tdv has elapsed. Then, multiplexed data DM obtained by time-division multiplexing the electrical signal S1 and the electrical signal S2 is input to the detection unit 13 via the data line 4c.
 次いで、ステップS39において、上記したステップS36と同様、検出部13は、入力された多重化データDMをLチャンネルに設定されたマイク100の電気信号S1とRチャンネルの比較マイク38の電気信号S2とに分割する。そして、検出部13は、電気信号S1からRチャンネルに設定されたマイク100の周波数特性を検出し、電気信号S2からLチャンネルに設定された比較マイク38の周波数特性を検出する。 Next, in step S39, as in step S36 described above, the detection unit 13 sets the input multiplexed data DM to the electrical signal S1 of the microphone 100 set to the L channel and the electrical signal S2 of the comparison microphone 38 of the R channel. Divide into Then, the detection unit 13 detects the frequency characteristic of the microphone 100 set to the R channel from the electric signal S1, and detects the frequency characteristic of the comparison microphone 38 set to the L channel from the electric signal S2.
 次いで、ステップS40において、制御部15は、検出部13がマイク100の周波数特性を検出することができたか否かによって、検査対象のマイク100が、入力されたチャンネル信号SCHに応じてLチャンネルとRチャンネルとを正常に切り換えることができるか否かの判別を行う。 Next, in step S40, the control unit 15 determines whether the microphone 100 to be inspected has the L channel according to the input channel signal SCH depending on whether or not the detection unit 13 has detected the frequency characteristics of the microphone 100. It is determined whether or not the R channel can be switched normally.
 具体的には、検査対象100のマイクが、入力されたチャンネル信号SCHに応じてLチャンネルとRチャンネルとを正常に切り換えることができるマイクであると、マイク100から出力された電気信号S1と比較マイク38より出力された電気信号S2とが、重なり合うことなく異なるタイミングで出力され時分割多重化される。そのため、検出部13は、入力された多重化データDMをマイク100の電気信号S1と比較マイク38の電気信号S2とに分割することができ、入力されたテスト音波に対応した周波数特性値が算出される。 Specifically, when the microphone of the inspection target 100 is a microphone that can normally switch between the L channel and the R channel according to the input channel signal SCH, it is compared with the electric signal S1 output from the microphone 100. The electric signal S2 output from the microphone 38 is output at different timing without overlapping and is time-division multiplexed. Therefore, the detection unit 13 can divide the input multiplexed data DM into the electric signal S1 of the microphone 100 and the electric signal S2 of the comparison microphone 38, and calculate a frequency characteristic value corresponding to the input test sound wave. Is done.
 一方、検査対象100のマイクが、入力されたチャンネル信号SCHに応じてLチャンネルとRチャンネルとを正常に切り換えることができないマイクであると、マイク100から出力された電気信号S1と比較マイク38より出力された電気信号S2とが、異なるタイミングで出力されず正しく時分割多重化されない。そのため、検出部13は、入力された多重化データDMをマイク100の電気信号S1と比較マイク38の電気信号S2とに分割することができず、入力されたテスト音波に対応した周波数特性値が得られない。 On the other hand, if the microphone to be inspected 100 is a microphone that cannot normally switch between the L channel and the R channel according to the input channel signal SCH, the electric signal S1 output from the microphone 100 and the comparison microphone 38 The output electrical signal S2 is not output at different timings and is not correctly time-division multiplexed. Therefore, the detection unit 13 cannot divide the input multiplexed data DM into the electric signal S1 of the microphone 100 and the electric signal S2 of the comparison microphone 38, and a frequency characteristic value corresponding to the input test sound wave is not obtained. I can't get it.
 つまり、ステップS36においてLチャンネルに設定されたマイク100からテスト音波に対応した周波数特性値が得られ、かつ、ステップS39においてRチャンネルに設定されたマイク100からテスト音波に対応した周波数特性値が得られると、制御部15は、検査を行ったマイク100が入力されたチャンネル信号SCHに応じてLチャンネルとRチャンネルとを正常に切り換えることができるマイクであると判断する。 That is, the frequency characteristic value corresponding to the test sound wave is obtained from the microphone 100 set to the L channel in step S36, and the frequency characteristic value corresponding to the test sound wave is obtained from the microphone 100 set to the R channel in step S39. Then, the control unit 15 determines that the examined microphone 100 is a microphone that can normally switch between the L channel and the R channel according to the input channel signal SCH.
 また、Lチャンネル及びRチャンネルに設定されたマイク100の少なくとも一方からテスト音波に対応した周波数特性値が得られないと、制御部15は、検査を行ったマイク100が入力されたチャンネル信号SCHに応じてLチャンネルとRチャンネルとを正常に切り換えることができない不良品のマイクであると判断する。 If the frequency characteristic value corresponding to the test sound wave cannot be obtained from at least one of the microphones 100 set to the L channel and the R channel, the control unit 15 applies the channel signal SCH to which the tested microphone 100 is input. Accordingly, it is determined that the microphone is a defective product that cannot normally switch between the L channel and the R channel.
 次いで、ステップS41において、搬送機構8が、マイク収容部34から検査が終了した検査対象のマイク100を取り出し、制御部15は、次に検査するマイク100がトレイ6に存在するか否か判断する(ステップS42)。次に検査するマイク100が存在すればステップS43に進み、次に検査するマイク100が存在しなければ、検査を終了する。 Next, in step S <b> 41, the transport mechanism 8 takes out the microphone 100 to be inspected from the microphone housing portion 34, and the control unit 15 determines whether or not the microphone 100 to be inspected next exists on the tray 6. (Step S42). If there is a microphone 100 to be inspected next, the process proceeds to step S43.
 ステップS43では、搬送機構8が、次の検査対象のマイク100をマイク収容部34に載置し、その後、ステップS31に戻る。そして、ステップS32からステップS43を繰り返すことで、順次、トレイ6に収容された検査対象のマイク100について周波数特性値を取得してマイクロフォンの検査を行う。 In step S43, the transport mechanism 8 places the microphone 100 to be inspected next on the microphone housing 34, and then returns to step S31. And by repeating step S32 to step S43, the frequency characteristic value is sequentially acquired about the microphone 100 to be inspected accommodated in the tray 6, and the microphone is inspected.
 以上のように、本実施形態では、スピーカ14よりテスト音波を検査対象のマイク100及び比較マイク38に入力しながら、検査対象のマイク100と比較マイク38との間でLチャンネル及びRチャンネルの2チャンネルを切り換えて設定することで、検査対象のマイク100が、入力されたチャンネル信号SCHに応じてLチャンネルとRチャンネルとを正常に切り換えることができるマイクであるか否か判別することができる。 As described above, in the present embodiment, while the test sound wave is input from the speaker 14 to the microphone 100 and the comparative microphone 38 to be inspected, the L channel and the R channel 2 between the microphone 100 and the comparative microphone 38 are inspected. By switching and setting the channel, it is possible to determine whether or not the microphone 100 to be inspected is a microphone that can normally switch between the L channel and the R channel according to the input channel signal SCH.
 しかも、本実施形態の検査装置1では、周波数特性値を校正するためだけでなく、LチャンネルとRチャンネルとの切換の検査のために比較マイク38を兼用することができる。そのため、部品点数の増加に伴う製造コストの増加を抑えつつ、検査装置1にLチャンネル及びRチャンネルの切換検査機能を追加することができる。 Moreover, in the inspection apparatus 1 of the present embodiment, the comparison microphone 38 can be used not only for calibrating the frequency characteristic value but also for inspection of switching between the L channel and the R channel. Therefore, an L channel and R channel switching inspection function can be added to the inspection apparatus 1 while suppressing an increase in manufacturing cost accompanying an increase in the number of parts.

Claims (21)

  1.  可動部の動きに基づいて電気信号を出力するマイクロフォンにテスト音波を入力するスピーカと、前記テスト音波に応答した前記可動部の動きにより出力される電気信号を検出する検出部とを備えたマイクロフォンの検査装置において、
     密閉した有響空間であって、前記スピーカ及び前記マイクロフォンが配置されるキャビティを備えることを特徴とするマイクロフォンの検査装置。
    A microphone including a speaker that inputs a test sound wave to a microphone that outputs an electric signal based on the movement of the movable part, and a detection unit that detects an electric signal output by the movement of the movable part in response to the test sound wave In inspection equipment,
    An inspection apparatus for a microphone, which is a sealed anechoic space and includes a cavity in which the speaker and the microphone are arranged.
  2.  開口部が設けられた中空体と、
     前記開口部を閉塞する蓋体と、
     前記中空体及び前記蓋体を相対的に近接離反させる移動機構とを備え、
     前記移動機構が、前記中空体及び前記蓋体を相対的に近接させて前記開口部を前記蓋体で閉塞し、前記中空体の内部に前記キャビティを形成することを特徴とする請求項1に記載のマイクロフォンの検査装置。
    A hollow body provided with an opening,
    A lid for closing the opening;
    A moving mechanism for moving the hollow body and the lid relatively close to and away from each other,
    The said moving mechanism makes the said hollow body and the said cover body approach relatively, closes the said opening part with the said cover body, The said cavity is formed in the inside of the said hollow body, It is characterized by the above-mentioned. The microphone inspection apparatus as described.
  3.  前記スピーカは前記中空体に配設され、
     前記マイクロフォンは、前記蓋体までの距離が前記テスト音波の半波長の整数倍となる位置を避けて配置されていることを特徴とする請求項2に記載のマイクロフォンの検査装置。
    The speaker is disposed in the hollow body;
    The microphone inspection apparatus according to claim 2, wherein the microphone is disposed so as to avoid a position where a distance to the lid body is an integral multiple of a half wavelength of the test sound wave.
  4.  前記蓋体に固定され、前記マイクロフォンを保持するホルダを備え、
     前記蓋体が前記開口部を閉塞した状態において、前記ホルダが前記キャビティ内に配置されていることを特徴とする請求項2に記載のマイクロフォンの検査装置。
    A holder fixed to the lid and holding the microphone;
    The microphone inspection apparatus according to claim 2, wherein the holder is disposed in the cavity in a state where the opening closes the opening.
  5.  前記移動機構は、前記中空体を移動させることを特徴とする請求項4に記載のマイクロフォンの検査装置。 The microphone inspection apparatus according to claim 4, wherein the moving mechanism moves the hollow body.
  6.  前記マイクロフォンから前記蓋体までの距離を調整する調整機構を備えることを特徴とする請求項2に記載のマイクロフォンの検査装置。 The microphone inspection apparatus according to claim 2, further comprising an adjustment mechanism that adjusts a distance from the microphone to the lid.
  7.  前記マイクロフォンから出力される電気信号が所定値になるように前記スピーカから出力される前記テスト音波を調整する制御部を備えることを特徴とする請求項1に記載のマイクロフォンの検査装置。 The microphone inspection apparatus according to claim 1, further comprising a control unit that adjusts the test sound wave output from the speaker so that an electric signal output from the microphone has a predetermined value.
  8.  前記キャビティ内に配置され、前記テスト音波に応答した可動部の動きに基づいて電気信号を出力する比較マイクロフォンと、前記比較マイクロフォンから出力される電気信号に基づいて前記マイクロフォンから出力される電気信号を校正する校正部と、を備えることを特徴とする請求項1に記載のマイクロフォンの検査装置。 A comparison microphone that is disposed in the cavity and outputs an electric signal based on the movement of the movable part in response to the test sound wave, and an electric signal output from the microphone based on the electric signal output from the comparison microphone. The microphone inspection apparatus according to claim 1, further comprising a calibration unit that performs calibration.
  9.  前記マイクロフォンが、前記テスト音波の入力により前記キャビティ内に発生する定常波の節部を避けた位置に配置されていることを特徴とする請求項1に記載のマイクロフォンの検査装置。 2. The microphone inspection apparatus according to claim 1, wherein the microphone is disposed at a position avoiding a nodal portion of a standing wave generated in the cavity by the input of the test sound wave.
  10.  前記キャビティ内で前記マイクロフォンを保持するホルダと、前記マイクロフォンを前記ホルダへ搬送する搬送機構と、前記搬送機構を制御する制御部とを備え、
     前記検出部が前記マイクロフォンより出力される電気信号を検出する時に、前記制御部は前記搬送機構を停止させることを特徴とする請求項1に記載のマイクロフォンの検査装置。
    A holder for holding the microphone in the cavity, a transport mechanism for transporting the microphone to the holder, and a controller for controlling the transport mechanism;
    The microphone inspection apparatus according to claim 1, wherein the control unit stops the transport mechanism when the detection unit detects an electrical signal output from the microphone.
  11.  前記キャビティ内で前記マイクロフォンを保持するホルダと、前記マイクロフォンを前記ホルダに固定させる押さえ機構と、前記押さえ機構を制御する制御部とを備え、
     前記押さえ機構が空圧式のアクチュエータを備え、
     前記検出部が前記マイクロフォンより出力される電気信号を検出する時に、前記制御部は前記アクチュエータへのエアの供給を中止することを特徴とする請求項1に記載のマイクロフォンの検査装置。
    A holder for holding the microphone in the cavity, a pressing mechanism for fixing the microphone to the holder, and a control unit for controlling the pressing mechanism,
    The holding mechanism includes a pneumatic actuator;
    2. The microphone inspection apparatus according to claim 1, wherein when the detection unit detects an electrical signal output from the microphone, the control unit stops supplying air to the actuator.
  12.  前記キャビティ内に配置された前記マイクロフォンに光を照射する照明装置を備えることを特徴とする請求項1に記載のマイクロフォンの検査装置。 2. The microphone inspection apparatus according to claim 1, further comprising an illumination device that irradiates light to the microphone disposed in the cavity.
  13.  前記照明装置が点滅光を前記マイクロフォンに照射することを特徴とする請求項12に記載のマイクロフォンの検査装置。 13. The microphone inspection apparatus according to claim 12, wherein the illumination device irradiates the microphone with blinking light.
  14.  前記照明装置が照射する点滅光の周波数が、前記テスト音波の周波数と異なることを特徴とする請求項13に記載のマイクロフォンの検査装置。 14. The microphone inspection device according to claim 13, wherein the frequency of the flashing light emitted by the illumination device is different from the frequency of the test sound wave.
  15.  前記マイクロフォンがMEMSマイクロフォンであることを特徴とする請求項1~14のいずれか1項に記載のマイクロフォンの検査装置。 The microphone inspection device according to any one of claims 1 to 14, wherein the microphone is a MEMS microphone.
  16.  可動部の動きに基づいて電気信号を出力するマイクロフォンにスピーカから出力されるテスト音波を入力し、前記テスト音波に応答した前記可動部の動きにより出力される電気信号を検出するマイクロフォンの検査方法において、
     密閉した有響空間であるキャビティ内に前記スピーカ及び前記マイクロフォンを配置することを特徴とする検査方法。
    In a microphone inspection method, a test sound wave output from a speaker is input to a microphone that outputs an electric signal based on a movement of a movable part, and an electric signal output by the movement of the movable part in response to the test sound wave is detected. ,
    An inspection method, wherein the speaker and the microphone are arranged in a cavity which is a sealed anechoic space.
  17.  可動部の動きに基づいて電気信号を出力する基準マイクロフォンを前記キャビティ内に配置し、
     前記基準マイクロフォンから出力される電気信号が所定値になるように前記テスト音波を調整し、
     前記キャビティ内に配置された前記マイクロフォンに前記調整したテスト音波を入力することを特徴とする請求項16に記載のマイクロフォンの検査方法。
    A reference microphone that outputs an electrical signal based on the movement of the movable part is disposed in the cavity,
    Adjusting the test sound wave so that the electrical signal output from the reference microphone has a predetermined value;
    The microphone test method according to claim 16, wherein the adjusted test sound wave is input to the microphone disposed in the cavity.
  18.  前記基準マイクロフォンを配置した位置に前記マイクロフォンを配置することを特徴とする請求項17に記載のマイクロフォンの検査方法。 The microphone inspection method according to claim 17, wherein the microphone is disposed at a position where the reference microphone is disposed.
  19.  開口部が設けられた中空体と蓋体とを相対的に近接させて前記開口部を前記蓋体で閉塞し、前記中空体の内部に前記マイクロフォンが配置された前記キャビティを形成し、
     前記中空体に前記スピーカを配設し、
     前記マイクロフォンから前記蓋体までの距離が前記テスト音波の半波長の整数倍となる位置を避けて、前記マイクロフォンを配置することを特徴とする請求項16に記載のマイクロフォンの検査方法。
    The hollow body provided with the opening and the lid are relatively close to each other, the opening is closed with the lid, and the cavity in which the microphone is disposed is formed inside the hollow body,
    Arranging the speaker in the hollow body;
    The microphone inspection method according to claim 16, wherein the microphone is disposed avoiding a position where a distance from the microphone to the lid is an integral multiple of a half wavelength of the test sound wave.
  20.  可動部の動きに基づいて電気信号を出力する比較マイクロフォンを前記キャビティ内に配置し、
     前記マイクロフォン及び前記比較マイクロフォンに前記テスト音波を入力し、
     前記比較マイクロフォンから出力される電気信号に基づいて前記マイクロフォンから出力される電気信号を校正することを特徴とする請求項16に記載のマイクロフォンの検査方法。
    A comparative microphone that outputs an electrical signal based on the movement of the movable part is disposed in the cavity,
    Inputting the test sound wave to the microphone and the comparison microphone;
    The microphone inspection method according to claim 16, wherein the electric signal output from the microphone is calibrated based on the electric signal output from the comparison microphone.
  21.  前記マイクロフォンが、前記テスト音波の入力により前記キャビティ内に発生する定常波の節部を避けた位置に配置されていることを特徴とする請求項16~20のいずれか1項に記載のマイクロフォンの検査方法。 The microphone inspection according to any one of claims 16 to 20, wherein the microphone is disposed at a position avoiding a node of a standing wave generated in the cavity by the input of the test sound wave. Method.
PCT/JP2009/004221 2008-09-04 2009-08-28 Microphone check device and check method WO2010026724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010527674A JPWO2010026724A1 (en) 2008-09-04 2009-08-28 Microphone inspection apparatus and inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-227465 2008-09-04
JP2008227465 2008-09-04

Publications (1)

Publication Number Publication Date
WO2010026724A1 true WO2010026724A1 (en) 2010-03-11

Family

ID=41796910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004221 WO2010026724A1 (en) 2008-09-04 2009-08-28 Microphone check device and check method

Country Status (2)

Country Link
JP (1) JPWO2010026724A1 (en)
WO (1) WO2010026724A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2373066A1 (en) * 2010-03-16 2011-10-05 Rasco GmbH Microelectromechanical system testing device
CN102572671A (en) * 2010-12-20 2012-07-11 歌尔声学股份有限公司 Test method, test tool and test system for microphone tightness
WO2013092706A1 (en) * 2011-12-21 2013-06-27 Brüel & Kjær Sound & Vibration Measurement A/S A microphone test stand for acoustic testing
KR101368963B1 (en) 2014-01-17 2014-02-28 주식회사 플렉스컴 Microphone test apparatus
WO2014043357A1 (en) * 2012-09-14 2014-03-20 Robert Bosch Gmbh Testing for defective manufacturing of microphones and ultralow pressure sensors
CN103974179A (en) * 2013-01-29 2014-08-06 宏相科技股份有限公司 microphone correction method
TWI460402B (en) * 2011-08-17 2014-11-11 Hon Tech Inc Electronic unit testing machine
JP2015019341A (en) * 2013-07-12 2015-01-29 株式会社タムラ製作所 Sound adjustment console and acoustic system using the same
US9247366B2 (en) 2012-09-14 2016-01-26 Robert Bosch Gmbh Microphone test fixture
CN105722003A (en) * 2016-01-20 2016-06-29 苏州搏技光电技术有限公司 MEMS microphone testing mechanism
US9674626B1 (en) * 2014-08-07 2017-06-06 Cirrus Logic, Inc. Apparatus and method for measuring relative frequency response of audio device microphones
CN108111957A (en) * 2017-12-28 2018-06-01 上海传英信息技术有限公司 Microphone performing leak test System and method for
CN108462930A (en) * 2017-12-19 2018-08-28 深圳市豪恩声学股份有限公司 Earphone diaphragm compression test system, method and computer storage media
TWI644577B (en) * 2017-10-11 2018-12-11 四方自動化機械股份有限公司 Microphone test device
CN110087176A (en) * 2019-05-22 2019-08-02 格云特自动化科技(深圳)有限公司 Microphone multiband clock frequency response detection device
TWI669966B (en) * 2018-04-20 2019-08-21 致伸科技股份有限公司 Microphone detection device
TWI669965B (en) * 2015-01-06 2019-08-21 德商羅伯特博斯奇股份有限公司 Method for testing the signal-to-noise ratio of mems microphones and related mems microphones performing the same
CN110392333A (en) * 2018-04-20 2019-10-29 致伸科技股份有限公司 Microphone detection device
CN111491250A (en) * 2020-05-29 2020-08-04 北京百度网讯科技有限公司 Microphone testing device and microphone testing method
JP2020145637A (en) * 2019-03-08 2020-09-10 パナソニックIpマネジメント株式会社 Microphone module and checker of microphone module
US20210377682A1 (en) * 2020-05-26 2021-12-02 USound GmbH Test device for testing a microphone
CN114885268A (en) * 2022-05-07 2022-08-09 河北初光汽车部件有限公司 Vehicle-mounted microphone detection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217216A (en) * 1988-02-26 1989-08-30 Ono Sokki Co Ltd Calibrator for correcting characteristic difference
JPH0549097A (en) * 1991-08-19 1993-02-26 Ono Sokki Co Ltd Large sound pressure provision device for measuring and calibrating microphone characteristic
JPH0623668B2 (en) * 1987-11-13 1994-03-30 株式会社日立製作所 Acoustic measuring device
JP2561451B2 (en) * 1989-03-29 1996-12-11 株式会社小野測器 Calibrator for characteristic difference correction
JPH08338758A (en) * 1995-06-13 1996-12-24 Kuriharanto:Kk Adjusting method for vibration meter
JP3645794B2 (en) * 2000-06-08 2005-05-11 リオン株式会社 Acoustic calibrator
JP2006308567A (en) * 2005-03-30 2006-11-09 Rion Co Ltd Acoustic calibrator
WO2007100015A1 (en) * 2006-02-28 2007-09-07 Matsushita Electric Industrial Co., Ltd. Electret capacitor type composite sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623668B2 (en) * 1987-11-13 1994-03-30 株式会社日立製作所 Acoustic measuring device
JPH01217216A (en) * 1988-02-26 1989-08-30 Ono Sokki Co Ltd Calibrator for correcting characteristic difference
JP2561451B2 (en) * 1989-03-29 1996-12-11 株式会社小野測器 Calibrator for characteristic difference correction
JPH0549097A (en) * 1991-08-19 1993-02-26 Ono Sokki Co Ltd Large sound pressure provision device for measuring and calibrating microphone characteristic
JPH08338758A (en) * 1995-06-13 1996-12-24 Kuriharanto:Kk Adjusting method for vibration meter
JP3645794B2 (en) * 2000-06-08 2005-05-11 リオン株式会社 Acoustic calibrator
JP2006308567A (en) * 2005-03-30 2006-11-09 Rion Co Ltd Acoustic calibrator
WO2007100015A1 (en) * 2006-02-28 2007-09-07 Matsushita Electric Industrial Co., Ltd. Electret capacitor type composite sensor

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8336670B2 (en) 2010-03-16 2012-12-25 Rasco Gmbh Microelectromechanical system testing device
EP2373066A1 (en) * 2010-03-16 2011-10-05 Rasco GmbH Microelectromechanical system testing device
CN102572671B (en) * 2010-12-20 2014-06-04 歌尔声学股份有限公司 Test method, test tool and test system for microphone tightness
CN102572671A (en) * 2010-12-20 2012-07-11 歌尔声学股份有限公司 Test method, test tool and test system for microphone tightness
TWI460402B (en) * 2011-08-17 2014-11-11 Hon Tech Inc Electronic unit testing machine
KR102008457B1 (en) * 2011-12-21 2019-10-21 브루엘 앤드 크재르 사운드 앤드 바이브레이션 미져먼트 에이/에스 A microphone test stand for acoustic testing
US9560462B2 (en) 2011-12-21 2017-01-31 Brüel & Kjær Sound & Vibration Measurement A/S Microphone test stand for acoustic testing
WO2013092706A1 (en) * 2011-12-21 2013-06-27 Brüel & Kjær Sound & Vibration Measurement A/S A microphone test stand for acoustic testing
KR20140106728A (en) * 2011-12-21 2014-09-03 브루엘 앤드 크재르 사운드 앤드 바이브레이션 미져먼트 에이/에스 A microphone test stand for acoustic testing
CN104137572A (en) * 2011-12-21 2014-11-05 布鲁尔及凯尔声音及振动测量公司 A microphone test stand for acoustic testing
US20140328489A1 (en) * 2011-12-21 2014-11-06 Brüel & Kjær Sound & Vibration Measurement A/S Microphone test stand for acoustic testing
CN104137572B (en) * 2011-12-21 2017-05-17 布鲁尔及凯尔声音及振动测量公司 Microphone testboard for acoustical testing and method for testing small microphone assembly
WO2014043357A1 (en) * 2012-09-14 2014-03-20 Robert Bosch Gmbh Testing for defective manufacturing of microphones and ultralow pressure sensors
CN104620606B (en) * 2012-09-14 2018-03-30 罗伯特·博世有限公司 Test for the defective manufacture of microphone and ultra low pressure sensor
CN104620606A (en) * 2012-09-14 2015-05-13 罗伯特·博世有限公司 Testing for defective manufacturing of microphones and ultralow pressure sensors
US9247366B2 (en) 2012-09-14 2016-01-26 Robert Bosch Gmbh Microphone test fixture
US9400262B2 (en) 2012-09-14 2016-07-26 Robert Bosch Gmbh Testing for defective manufacturing of microphones and ultralow pressure sensors
CN103974179B (en) * 2013-01-29 2017-11-28 宏相科技股份有限公司 Microphone correction method
CN103974179A (en) * 2013-01-29 2014-08-06 宏相科技股份有限公司 microphone correction method
JP2015019341A (en) * 2013-07-12 2015-01-29 株式会社タムラ製作所 Sound adjustment console and acoustic system using the same
KR101368963B1 (en) 2014-01-17 2014-02-28 주식회사 플렉스컴 Microphone test apparatus
US9674626B1 (en) * 2014-08-07 2017-06-06 Cirrus Logic, Inc. Apparatus and method for measuring relative frequency response of audio device microphones
US20170251317A1 (en) * 2014-08-07 2017-08-31 Cirrus Logic, Inc. Apparatus and Method for Measuring Relative Frequency Response of Audio Device Microphones
US9980070B2 (en) 2014-08-07 2018-05-22 Cirrus Logic, Inc. Apparatus and method for measuring relative frequency response of audio device microphones
TWI669965B (en) * 2015-01-06 2019-08-21 德商羅伯特博斯奇股份有限公司 Method for testing the signal-to-noise ratio of mems microphones and related mems microphones performing the same
CN105722003A (en) * 2016-01-20 2016-06-29 苏州搏技光电技术有限公司 MEMS microphone testing mechanism
TWI644577B (en) * 2017-10-11 2018-12-11 四方自動化機械股份有限公司 Microphone test device
CN108462930A (en) * 2017-12-19 2018-08-28 深圳市豪恩声学股份有限公司 Earphone diaphragm compression test system, method and computer storage media
CN108462930B (en) * 2017-12-19 2020-09-04 深圳市豪恩声学股份有限公司 Earphone diaphragm compression-resistant test system, method and computer storage medium
CN108111957A (en) * 2017-12-28 2018-06-01 上海传英信息技术有限公司 Microphone performing leak test System and method for
CN108111957B (en) * 2017-12-28 2019-11-22 上海传英信息技术有限公司 Microphone performing leak test System and method for
TWI669966B (en) * 2018-04-20 2019-08-21 致伸科技股份有限公司 Microphone detection device
CN110392333A (en) * 2018-04-20 2019-10-29 致伸科技股份有限公司 Microphone detection device
CN110392333B (en) * 2018-04-20 2021-03-09 致伸科技股份有限公司 Microphone detection device
JP2020145637A (en) * 2019-03-08 2020-09-10 パナソニックIpマネジメント株式会社 Microphone module and checker of microphone module
JP7281781B2 (en) 2019-03-08 2023-05-26 パナソニックIpマネジメント株式会社 Microphone module and inspection device for said microphone module
CN110087176A (en) * 2019-05-22 2019-08-02 格云特自动化科技(深圳)有限公司 Microphone multiband clock frequency response detection device
US20210377682A1 (en) * 2020-05-26 2021-12-02 USound GmbH Test device for testing a microphone
US11589179B2 (en) * 2020-05-26 2023-02-21 USound GmbH Test device for testing a microphone
CN111491250A (en) * 2020-05-29 2020-08-04 北京百度网讯科技有限公司 Microphone testing device and microphone testing method
CN114885268A (en) * 2022-05-07 2022-08-09 河北初光汽车部件有限公司 Vehicle-mounted microphone detection device
CN114885268B (en) * 2022-05-07 2023-03-24 河北初光汽车部件有限公司 Vehicle-mounted microphone detection device

Also Published As

Publication number Publication date
JPWO2010026724A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
WO2010026724A1 (en) Microphone check device and check method
EP2795928B1 (en) A microphone test stand for acoustic testing
US9400262B2 (en) Testing for defective manufacturing of microphones and ultralow pressure sensors
CN102655628B (en) Device and method for detecting high sound pressure-phase shifting characteristic of microphone
US8336670B2 (en) Microelectromechanical system testing device
CN101241697B (en) Playing device
CN107219301A (en) A kind of device for being used to test vehicle glass sound insulation value
CN102204813A (en) Apparatus and method for driving capacitive electromechanical transduction apparatus
US5226326A (en) Vibration chamber
EP0826140A1 (en) Intensity acoustic calibrator
JP2004297368A (en) Array speaker inspection apparatus, array speaker device, and method for determining wiring of device
KR101699263B1 (en) Little Rocket acoustic test equipment
CN100567914C (en) Testing tone key of musical box is with sensor and proving installation
JP2015511320A (en) Common calibration system and calibration method
CN102395095A (en) Test method of omnidirectional microphone and test equipment thereof
JP5372529B2 (en) Soundproof box
CN202488713U (en) Omnidirectional microphone testing device
CN205902075U (en) Terminal equipment&#39;s audio frequency characteristic test silence case
ZHOU et al. The anti-interference method of Michelson optical fiber interferometer for GIS partial discharge ultrasonic detection
JP2001201531A (en) Simulation partial discharge signal generator
JP4901280B2 (en) Sound acquisition device, sound calibration device, sound measurement device, and program.
CN204408448U (en) Detection system
JP2009111622A (en) Microphone apparatus, film stiffness measuring device thereof, film stiffness measurement method and method for manufacturing electronic equipment
EP1389906B1 (en) Device for acoustic rodent control
GB2260875A (en) Feedback controlled noise source for acoustic testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811254

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527674

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811254

Country of ref document: EP

Kind code of ref document: A1