WO2010026124A1 - Picolinamide derivatives as kinase inhibitors - Google Patents

Picolinamide derivatives as kinase inhibitors Download PDF

Info

Publication number
WO2010026124A1
WO2010026124A1 PCT/EP2009/061205 EP2009061205W WO2010026124A1 WO 2010026124 A1 WO2010026124 A1 WO 2010026124A1 EP 2009061205 W EP2009061205 W EP 2009061205W WO 2010026124 A1 WO2010026124 A1 WO 2010026124A1
Authority
WO
WIPO (PCT)
Prior art keywords
equiv
amino
compound
methyl
added
Prior art date
Application number
PCT/EP2009/061205
Other languages
French (fr)
Inventor
Matthew T. Burger
Wooseok Han
Jiong Lan
Gisele Nishiguchi
Original Assignee
Novartis Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41228825&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010026124(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CA2734415A priority Critical patent/CA2734415C/en
Priority to ES09782396.7T priority patent/ES2551900T3/en
Priority to MEP-2011-37A priority patent/ME01291A/en
Priority to EA201100425A priority patent/EA020136B1/en
Priority to KR1020117007556A priority patent/KR101345920B1/en
Priority to MX2011002365A priority patent/MX2011002365A/en
Priority to UAA201101618A priority patent/UA103034C2/en
Priority to NZ591449A priority patent/NZ591449A/en
Priority to EP09782396.7A priority patent/EP2344474B1/en
Priority to AU2009289319A priority patent/AU2009289319C1/en
Priority to BRPI0918268-3A priority patent/BRPI0918268B1/en
Priority to CN200980143187.8A priority patent/CN102203079B/en
Priority to DK09782396.7T priority patent/DK2344474T3/en
Priority to PL09782396T priority patent/PL2344474T3/en
Application filed by Novartis Ag filed Critical Novartis Ag
Priority to SI200931330T priority patent/SI2344474T1/en
Priority to RS20150730A priority patent/RS54506B1/en
Priority to JP2011524408A priority patent/JP5412519B2/en
Publication of WO2010026124A1 publication Critical patent/WO2010026124A1/en
Priority to ZA2011/01118A priority patent/ZA201101118B/en
Priority to TN2011000070A priority patent/TN2011000070A1/en
Priority to IL211291A priority patent/IL211291A/en
Priority to MA33733A priority patent/MA32684B1/en
Priority to HK11111043.1A priority patent/HK1156627A1/en
Priority to HK12102246.4A priority patent/HK1162022A1/en
Priority to HRP20151410TT priority patent/HRP20151410T1/en
Priority to SM201600005T priority patent/SMT201600005B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4418Non condensed pyridines; Hydrogenated derivatives thereof having a carbocyclic group directly attached to the heterocyclic ring, e.g. cyproheptadine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings

Definitions

  • the present invention relates to new compounds and their tautomers and stereoisomers, and pharmaceutically acceptable salts, esters, metabolites or prodrugs thereof, compositions of the new compounds together with pharmaceutically acceptable carriers, and uses of the new compounds, either alone or in combination with at least one additional therapeutic agent, in the prophylaxis or treatment of cancer.
  • PIM-Kinase Maloney Kinase
  • Piml being the proto- oncogene originally identified by retrovirus integration.
  • transgenic mice over-expressing Piml or Pim2 show increased incidence of T-cell lymphomas (Breuer M et al., "Very high frequency of lymphoma induction by a chemical carcinogen in pim-1 transgenic mice” Nature 340(6228): 61-3 (1989)), while over-expression in conjunction with o-royo is associated with incidence of B -pel J lymphoma?
  • Piml, 2 & 3 are Serine/Threonine kinases that normally function in survival and proliferation of hematopoietic cells in response to growth factors and cytokines. Cytokines signaling through the Jak/Stat pathway leads to activation of transcription of the Pirn genes and synthesis of the proteins. No further post-translational modifications are required for the Kinase Pirn activity. Thus, signaling down stream is primarily controlled at the transcriptional/translational and protein turnover level.
  • Substrates for Pirn kinases include regulators of apoptosis such as the Bcl-2 family member BAD (Aho T et al., "Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Serl 12 gatekeeper site,: FEBS Letters 571: 43- 49 (2004)), cell cycle regulators such as p2 ⁇ WFAI/CEP1 (Wang Z 1 et ah, "Phosphorylation of the, cdl cycle inhibitor p21CJpl/WAFi by Pim- ⁇ kinase/' Biochem Biophys Acta ⁇ 593:45- 55 (200? ⁇ ) 5 CDC25A ( i 999), C-TAK (Bachma ⁇ n M et al.
  • BAD Bcl-2 family member BAD
  • cell cycle regulators such as p2 ⁇ WFAI/CEP1 (Wang Z 1 et ah, "P
  • Pim(s) in these regulators are consistent with a role in protection from apoptosis and promotion of cell proliferation and growth.
  • over-expression of Pim(s) in cancer is thought to play a role in promoting survival and proliferation of cancer cells and, therefore, their inhibitions should be an effective way of treating cancers on which they are over-expressed.
  • inhibitors to Piml, 2 &3 would be useful in the treatment of these malignancies.
  • inhibitors to Piml, 2 &3 could be useful to control expansion of immune cells in other pathologic condition such as autoimmune diseases, allergic reactions and in organ transplantation rejection syndromes.
  • Xl, X2, X3 and X 4 are independently selected from CR2 and N; provided that at least one but not more than two of X 1 , X 2 , X3 and X4 are N;
  • Y is selected from a group consisting of cycloalkyl, partially unsaturated cycloalkyl, andiieterocycloalkyl, wherein each member of said group may be substituted with up to four substituents;
  • Z 2 and Z3 are independently selected from CR 12 and N; provided that not more than one of Z 2 and Z3 can be N;
  • R 1 is selected from the group consisting of hydrogen, -NHR 3 halo, hydroxyl, alkyl, cyano, and nitro;
  • R 2 and R 12 independently at each occurrence are selected from the group consisting of hydrogen, halo, hydroxyl, nitro, cyano, SO 3 H and substituted or unsubstituted alkyl, alkenyl, alkynyl, alkoxy, amino, cycloalkyl, hetero cycloalkyl, and partially saturated cycloalkyl;
  • R3 is selected from the group consisting of hydrogen, -CO-R 4 and substituted or unsubstituted alkyl.;, eycloalkyl 5 heterocyclyl, aryi and heteroaryl; R 4 is selected from the group consisting of alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, and alkylamino; and
  • R 5 represents a group selected from substituted or unsubstituted aryl, C 3 -C 7 cycloalkyl, heteroaryl, partially unsaturated cycloalkyl and alkyl, wherein each said substituted R 5 group may be substituted with up to four subst ⁇ tuents selected from halo, cyano, amino, C M alkyl, C 3-6 cycloalkyl, alkoxy, nitro, carboxy, carbonyl, carboalkoxy, aminocarboxy, substituted aminocarbonyl, aminosulfonyl, substituted aminosulfonyl and alkoxy alkyl.
  • new compounds of Formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein X 2 is N and Xi, X 3 and X 4 are CR 2 .
  • new compounds of Formula I 5 or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R 2 is selected from hydrogen, methyl, ethyl, halo, cyano.
  • compounds of Formula I or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Z 2 and Z 3 are CR 12 .
  • compounds of Formula I or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Ri 2 is selected from hydrogen, halo, methyl, ethyl and cyano.
  • Y is selected from a group consisting of cyclohexyl, partially unsaturated cyclohexyl, and heterocyclo-Cs -alkyl, wherein each member of said group may be substituted with up to four substituents;
  • R 1 is selected from the group consisting of hydrogen, -NHR3 halo, hydroxyl, alkyl, C 3-4 cycloalkyl, cyano, and nitro;
  • R 12 independently at each occurrence is selected from the group consisting of hydrogen, halo, hydroxyl, amino, nitro, cyano, SO 3 H and substituted or unsubstituted alkyl, alkenyl, alkynyl, alkoxy, amino, cycloalkyl, hetero cycloalkyl, and partially saturated cycloalkyl;
  • R 3 is selected from the group consisting of hydrogen, -CO-R 4 and substituted or unsubstituted alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl;
  • R 4 is selected from the group consisting of alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, and alkylamino;
  • R5 represents a group selected from hydrogen and substituted or unsubstituted alkyl, C 6 -cycloalkyl, aryl and heteroaryl, wherein each said substituted R 5 group may be substituted with up to four substituents selected from halo, cyano, amino, C 1-4 alkyl, C 3 . 6 cycloalkyl, alkoxy, nitro, carboxy, carbonyl, carboalkoxy, aminocarboxy, substituted aminocarbonyl, aminosulfonyl, substituted aminosulfonyl and alkoxyalkyl.
  • Y is selected from a group consisting of substituted or unsubstituted cycloalkyl, cycloalkenyl, piperidinyl and piperazinyl, wherein each member of said group is substituted with up to four substituents.
  • Y is substituted with up to four substituents selected from, cyano, nitro, halo, hydroxyl, amino, alkoxy, substituted amino, C 1-4 alkyl, Ci -4 halo alkyl and C 3-4 cycloalkyl.
  • Y is substituted with up to four substituents selected from methyl, propyl, i-propyl, ethyl, hydroxyl, amino, halo, monohalo C 1-3 alkyl, trihalo C 1-3 alkyl and dihalo Ci -3 alkyl.
  • new compounds of Formula II or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein
  • Y is selected from a group consisting of substituted or unsubstituted cyclohexyl, cyclohexynyl, and piperidinyl, wherein each member of said group is substituted with up to four ⁇ ubstituent ⁇ .
  • Y is substituted with up to four substituents independently selected from hydrogen, cyano, nitro, halo, hydroxyl, amino, alkoxy, substituted amino, Ci -4 alkyl, C 1-4 halo alkyl and C 3 .4 cycloalkyl.
  • the substituents are independently selected from methyl, propyl, i-propyl, ethyl, hydroxyl, amino, halo, monohalo C 1 - S alkyl, trihalo C 1 - 3 alkyl and dihalo C 1-3 alkyl.
  • compounds of Formula II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Ri 2 is selected from hydrogen, halo, methyl, ethyl and cyano.
  • Y is selected from the group consisting of substituted or unsubstituted cyclohexyl, cyclohexenyl, piperidinyl, piperazinyl, wherein said the Y group may be substituted with up to three substituents selected from methyl, ethyl, hydroxyl, amino, and methoxy;
  • R j is selected from the group consisting of hydrogen, and amino; and
  • R 12 independently are each occurrence represents hydrogen, halo, or methyl.
  • compounds of Formula II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided, wherein Y is selected from a group consisting of substituted cyclohexyl, cyclohexenyl, piperidinyl, and piperazinyl; Rj'is selected from the group consisting of hydrogen, -NH 2 halo, Ci -4 alkyl,
  • Rj 2 independently at each occurrence is selected from the group consisting of hydrogen, halo, Ci -4 alkyl, and amino; and R 5 is selected from the group consisting of substituted or unsubstituted phenyl, cyclohexyl, cyclopentyl, thiazole, pyridyl, pyrimidyl and pyrazinyl, wherein the R 5 group may be substituted with up to three substituents selected from halo, hydrogen, methyl, substituted aminocarbonyl and alkoxy.
  • compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided, selected from the group consisting of N-(4-((lR,3R,4R,5S)-3-amino-4-hydroxy-5- methyic3/clohex34)pyridin-3-yI)-6-(2 5 6-difJi!orophe ⁇ yI)-5"f!.uoropico ⁇ inamide s N-(4- ((1 R,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-2,6-difluorophenyl)-5-fluoro- picolinamide,N -(4'((3R,4R,5S)-3- amino ⁇ 4 -hydroxy 5-methylpiperidin -1- yl)pyridin-3- yl)-6-(2,6-difluorophenyl)-5-fluoro
  • the present invention provides methods for treating Provirus Integration of Maloney Kinase (PIM Kinase) related disorders in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound of Formula I or II effective to inhibit PIM activity in the subject.
  • PIM Kinase Maloney Kinase
  • the present invention provides methods for treating PIM related disorders in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound of Formula I or II effective to reduce or prevent tumor growth in the subject.
  • the present invention provides methods for treating PIM related disorders in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound of Formula I or II effective to reduce or prevent tumor growth in the subject in combination with at least one additional agent for the treatment of cancer.
  • the present invention provides therapeutic compositions comprising at least one compound of Formula I or II in combination with one or more additional agents for the treatment of cancer, as are commonly employed in cancer therapy.
  • the compounds of the invention are useful in the treatment of cancers, including hematopoietic malignancies, carcinomas (e.g., of the lungs, liver, pancreas, ovaries, thyroid, bladder or colon), melanoma, myeloid disorders (e.g., myeloid leukemia, multiple myeloma and erythroleukemia), adenomas (e.g., villous colon adenoma), sarcomas (e.g., osteosarcoma), autoimmune diseases, allergic reactions and in organ transplantation rejection syndromes.
  • carcinomas e.g., of the lungs, liver, pancreas, ovaries, thyroid, bladder or colon
  • myeloid disorders e.g., myeloid leukemia, multiple myeloma and erythroleukemia
  • adenomas e.g., villous colon adenoma
  • sarcomas e.g., osteosarcoma
  • the invention further provides compositions, methods of use, and methods of manufacture as described in the detailed description of the invention. DESCRIPTION OF THE DRAWINGS
  • FIGURE 1 is a graph showing the efficacy of the compound of Example 99 from an evaluation in the KMSl 1-luc xenograft model, as described in Example 144.
  • FIGURE 2 is a graph showing the efficacy of the compound of Example 70 from an evaluation in the KMSl 1-luc xenograft model, as described in Example 144.
  • FIGURE 3 is a graph showing the efficacy of the compound of Example 96 from an evaluation in the KMSl 1-luc xenograft model, as described in Example 144.
  • Xj, X 2 , X3 and X4 are independently selected from CR 2 and N; provided that at least one but not more than two of Xi, X 2 , X3 and X4 are N;
  • Y is selected from a group consisting of cycloalkyl, partially unsaturated cycloalkyl, and heterocycloalkyl, wherein each member of said group may be substituted with up to four substituents;
  • Z 2 and Z3 are independently selected from CR] 2 and N; provided that not more than one of Z 2 and Z 3 can be N;
  • Rj is selected from the group consisting of hydrogen, -NHR3 halo, hydroxyl, alkyl, cyano, and nitro;
  • R2 and R 12 independently at each occurrence are selected from the group consisting of hydrogen, halo, hydroxyl, nitro, cyano, SO 3 H and substituted or unsubstituted alkyl, alkenyl, alkynyl, alkoxy, amino, cycloalkyl, hetero cycloalkyl, and partially saturated cycloalkyl;
  • R3 is selected from the group consisting of hydrogen, -CO-R 4 and substituted or unsubstituted alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl;
  • R 4 is selected from the group consisting of alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, and alkylamino;
  • R 5 represents a group selected from substituted or unsubstituted aryl, C3-C7 cycloalkyl, heteroaryl, partially unsaturated cycloalkyl and alkyl, wherein each said substituted R 5 group may be substituted with up to four substituents selected from halo, cyano, amino, C 1-4 alkyl, C 3-6 cycloalkyl, alkoxy, nitro, carboxy, carbonyl, carboalkoxy, aminocarboxy, substituted aminocarbonyl, aminosulfonyl, substituted aminosulfonyl and alkoxy alkyl.
  • new compounds of Formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein X 2 is N and X 1 , X 3 and X 4 are CR 2 .
  • new compounds of Formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R 2 is selected from hydrogen, methyl, ethyl, halo, cyano.
  • compounds of formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Z 2 and Z 3 are CR 12 .
  • compounds of formula I 5 or a stereoisomer, tautomer, or pharmaceutically acceptable ⁇ alt thereof are provided wherein Rj 2 is selected from hydrogen, halo, methyl, ethyl and cyamo.
  • Rj 2 is selected from hydrogen, halo, methyl, ethyl and cyamo.
  • new compounds, and their stereoisomers, tautomers and pharmaceutically acceptable salts are provided of the Formula II
  • Y is selected from a group consisting of cyclohexyl, partially unsaturated cyclohexyl, and heterocyclo-C 5 -alkyl, wherein each member of said group may be substituted with up to four substituents;
  • Rj is selected from the group consisting of hydrogen, -NHR 3 halo, hydroxyl, alkyl, C 34 cycloalkyl, cyano, and nitro;
  • R 12 independently at each occurrence is selected from the group consisting of hydrogen, halo, hydroxyl, amino, nitro, cyano, SO 3 H and substituted or unsubstituted alkyl, alkenyl, alkynyl, alkoxy, amino, cycloalkyl, hetero cycloalkyl, and partially saturated cycloalkyl; .
  • R 3 is selected from the group consisting of hydrogen, -CO-R 4 and substituted or unsubstituted alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl;
  • R 4 is selected from the group consisting of alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, and alkylamino;
  • R 5 is represents a group selected from hydrogen and substituted or unsubstituted alkyl, Ce-cycloalkyl, aryl and heteroaryl.
  • compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Y is selected from a group consisting of substituted or unsubstituted cycloalkyl, cycloalkenyl, piperidinyl and piperazinyl, wherein each member of said group is substituted with up to four substituents.
  • compounds of Formulas I or EI 5 or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Y is selected from a group consisting of substituted or unsubstituted cyclohexyl, cyclohexynyl, and piperidinyl, wherein each member of said group is substituted with up to four substituents.
  • Y is substituted with up to four substituents selected from hydrogen, cyano, nitro, halo, hydroxyl, amino, alkoxy, substituted amino, Ci. 4 alkyl, C M halo alkyl and C 3-4 cycloalkyl.
  • Y is substituted with up to four substituents selected from methyl, propyl, i-propyl, ethyl, hydroxyl, amino, halo, monohalo C 1 ⁇ alkyl, trihalo C ]-3 alkyl and dihalo Ci -3 alkyl.
  • compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R 1 is hydrogen, amino or fluoro.
  • R 5 is selected from substituted or unsubstituted aryl, C 5 -C 6 cycloalkyl, heteroaryl, partially unsaturated C 5 -C 6 cycloalkyl and Ci-C 4 alkyl, wherein each said group can be substituted with up to four substituents selected from halo, cyano, amino, Ci -4 alkyl, C 3-5 cycloalkyl, alkoxy, nitro, carboxy, carbonyl, carboalkoxy, aminocarboxy, substituted aminocarbonyl, aminosulfonyl, substituted ammosulfonyl and alkoxyalkyl.
  • compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R 5 is substituted or unsubstituted phenyl, wherein the phenyl group can be substituted with up to four substituents selected from hydrogen, cyano, nitro, halo, hydroxyl, amino, alkoxy, substituted amino, Ci -4 alkyl, Ci -4 halo alkyl and C 3-4 cycloalkyl.
  • compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R 5 is 2,6-difluororphenyl.
  • compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R12 is selected from hydrogen, halo, methyl, ethyl and cyano.
  • compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Y is selected from the group consisting of substituted or unsubstituted eye! ohe.ryl, cyclobexenyl, piperidinyl, p ⁇ peiazmyi, wherein safcf the Y group rosy be cubctituied with up to three substituentc selected from methyl. ethyl, hydroxyl, amino, and methoxy; R 1 is selected from the group consisting of hydrogen, and amino; and R 12 independently are each occurrence represents hydrogen, halo, or methyl.
  • compounds of Formula II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided, wherein Y is selected from a group consisting of substituted cyclohexyl, cyclohexenyl, piperidinyl, and piperazinyl; R 1 is selected from the group consisting of hydrogen, -NH 2 halo, C) -4 alkyl, C 3-4 cycloalkyl, and -CN; R 12 independently at each occurrence is selected from the group consisting of hydrogen, halo, C M alkyl, and amino; and R 5 is selected from the group consisting of substituted or unsubstituted phenyl, cyclohexyl, cyclopentyl, thiazole, pyridyl, pyrimidyl and pyrazinyl, wherein the R 5 group may be substituted with up to three substituents selected from halo, hydrogen, methyl, substituted aminocarbonyl and
  • a preferred embodiment of the present invention is a compound of Formula (II), wherein Y is cyclohexyl, substituted with one to three substitutents, said substituents preferably selected from hydroxyl, amino, C 1-4 alkyl or C 1-4 halo alkyl, and more preferably, selected from methyl, hydroxyl, amino, and CF 3 , and most preferably from methyl, amino, and hydroxy;
  • R 1 is hydrogen, NH 2 , or halo (preferably, R 1 is hydrogen, amino or fluoro, more preferably, Ri is hydrogen);
  • R ]2 are each independently hydrogen or halo (preferably, each R 12 is hydrogen, chloro or fluoro);
  • R 5 is cyclohexyl, phenyl, or pyridyl, wherein said cyclohexyl, said phenyl and said pyridyl are each independently substituted with up to three substituents selected form halo, hydroxyl, C 1-4 alkyl
  • Yet another preferred embodiment of the present invention provides a compound of Formula II, wherein Y is piperidinyl substituted with methyl, hydroxyl, and amino; R] is hydrogen, NE 2l or fluoro; Ri 2 independently at each occurrence is selected from the group consisting of hydro gen, and halo, and Rs is pjtldyl, fluoro pyridyl, cycl ⁇ bexylj or phenyl wherein said phenyl is substituted with up to three substituents selected from fluoro, hydroxyl, and methyl, preferably R 5 being difluoro phenyl.
  • Y is 3-amino-4-hydro ⁇ y-5-methylpipe ⁇ din-l-yl; R 1 is hydrogen; and R 5 is 2,6-difluoro phenyl.
  • preferred compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are selected from the group consisting of N-(4-((3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)- 6-(2,6-difiuorophenyi)-5 -fluoropicolinamide; 3 -amino-N-(4-(( 1 R,3R,4S,5 S)-3 -amino-4- hydroxy-S-methylcyclohexy ⁇ pyridin-S-y ⁇ - ⁇ -tl ⁇ -difluoropheny ⁇ picolinamide; N-(4- ((3R,4R,5S)-3-amino-4-hydroxy-5-methylpiperidin-l-yI)pyridin-3-yl)-6-(2,6- difluorophenyl)-5-fluoropicolinamide; N-(4-(((3S,5S)-3-
  • the present invention provides methods for treating Provirus Integration of Maloney Kinase (PIM Kinase) related, disorders in a human or animal, subject in need of such treatment comprising administering to said subject an amount of a. compound of Formula I or TT effective to inhibit PIM activity in the subject.
  • PIM Kinase Maloney Kinase
  • a preferred embodiment of the present invention provides a method for treating a condition by modulation of Provirus Integration of Maloney Kinase (PIM Kinase) activity comprising administering to a patient in need of such treatment an effective amount of a compound of Formula I.
  • the present invention provides methods for treating PIM related disorders in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound of Formula I or II effective to reduce or prevent tumor growth in the subject.
  • the present invention provides methods for treating PIM related disorders in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound of Formula I or II effective to reduce or prevent tumor growth in the subject in combination with at least one additional agent for the treatment of cancer.
  • the present invention provides therapeutic compositions comprising at least one compound of Formula I or II in combination with one or more additional agents for the treatment of cancer, as are commonly employed in cancer therapy.
  • the present invention thus provides a pharmaceutical composition comprising a compound of Formula I or Formula II.
  • a preferred embodiment of this aspect provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound selected from N- (4-((3S 5 5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5- fluoropicolinamide; 3-amino-N-(4-((lR,3R,4S,5S)-3-amino-4-hydroxy-5- methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)picolinamide; N-(4-((3R,4R,5S)-3- amino-4-hydroxy-5-methylpiperidin- 1 -yl)pyridin-3 -yl)-6-(2 ,6-difluorophenyl)-5- fluoropicolinamide; 3-amino-N-(4-((l R,3 S)-3-aminocyclohexyl)
  • Another preferred embodiment provides a pharmaceutical composition further comprising an additional agent for the treatment of cancer, wherein preferably the additional agent is selected from irinotecan, topotecan, gemcitabine, 5- fluorouracil, leucovorin carboplatin, cisplatin, taxanes, tezac ⁇ tabine, cyclophosphamide, vinca alkaloids, imatinib (Gleevec), anthracyclines, rituximab, and trastuzumab.
  • the additional agent is selected from irinotecan, topotecan, gemcitabine, 5- fluorouracil, leucovorin carboplatin, cisplatin, taxanes, tezac ⁇ tabine, cyclophosphamide, vinca alkaloids, imatinib (Gleevec), anthracyclines, rituximab, and trastuzumab.
  • the compounds of the invention are useful in the treatment of cancers, including hematopoietic malignancies, carcinomas (e.g., of the lungs, liver, pancreas, ovaries, thyroid, bladder or colon), melanoma, myeloid disorders (e.g., myeloid leukemia, multiple myeloma and erythroleukemia), adenomas (e.g., villous colon adenoma), sarcomas (e.g., osteosarcoma), autoimmune diseases, allergic reactions and in organ transplantation rejection syndromes.
  • carcinomas e.g., of the lungs, liver, pancreas, ovaries, thyroid, bladder or colon
  • myeloid disorders e.g., myeloid leukemia, multiple myeloma and erythroleukemia
  • adenomas e.g., villous colon adenoma
  • sarcomas e.g., osteosarcoma
  • a use of a compound of Formula I or Formula II for preparing a medicament for treating a condition by modulation of Provirus Integration of Maloney Kinase (PIM Kinase) activity is provided.
  • the condition is a cancer selected from carcinoma of the lungs, pancreas, thyroid, ovarian, bladder, breast, prostate, or colon, melanoma, myeloid leukemia, multiple myeloma and erythro leukemia, villous colon adenoma, and osteosarcoma.
  • the present invention relates to methods of inhibiting the activity of at least one kinase selected from the group consisting of Piml, Pim2 and Pim3, in a subject, or treating a biological condition mediated by at least one of Piml, Pi ⁇ r.2 and Pim3, in a human or animal subject in need of such treatment, comprising administering to the subject at least one compound of Formula I or JI in an amount effective to inhibit the kinase in the subject.
  • the therapeutic compounds are useful for treating patients with a need for such inhibitors (e.g., those suffering from cancer mediated by abnormal serine/threonine kinase receptor signaling).
  • PIM inhibitor is used herein to refer to a compound that exhibits an IC50 with respect to PIM Kinase activity of no more than about 100 ⁇ M and more typically not more than about 50 ⁇ M 5 as measured in the PIM depletion assays described hereinbelow.
  • alkyl refers to alkyl groups that do not contain heteroatoms.
  • the phrase includes straight chain alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and the like.
  • the phrase also includes branched chain isomers of straight chain alkyl groups, including but not limited to, the following which are provided by way of example: -CH(CHa) 2 , -CH(CH 3 )(CH 2 CH 3 ), -CH(CH 2 CH 3 K -C(CH 3 ) 3j -C(CH 2 CH 3 ) 3 , -CH 2 CH(CH 3 ) 2 , -CH 2 CH(CH 3 )(CH 2 CH 3 ), -CH 2 CH(CH 2 CH 3 ) 25 -CH 2 C(CH 3 ) 3 , -CH 2 C(CH 2 CH 3 ) 3 , -CH(CH 3 )CH(CH 3 )(CH 2 CH 3 ), -CH 2 CH 2 CH(CH 3 ) 2J -CH 2 CH 2 CH(CH 3 )(CH 2 CH 3 ), -CH 2 CH 2 CH(CH 2 CH 3 )Z, -CH 2 CH 2 C(CH 3 ) 3 , -CH 2 CH 2
  • alkyl groups includes primary alkyl groups, secondary alkyl groups, and tertiary alkyl groups.
  • Preferred alkyl groups include straight and branched chain alkyl groups having 1 to 12 carbon atoms.
  • a preferred "alkyl" definition refers to CM straight chain alkyl groups such as methyl, ethyl, n-propyl, and n-butyl.
  • the preferred alkyl definiton also includes C 3-5 branched alkyl groups, including CH(CH 3 ) 2 , CH 2 CH(CH 3 ) 2 , CH(CH 3 )CH 2 CH 3 , C(CH 3 ) 3 , CH(CH 3 )CH 2 CH 2 CH 3 , CH(CH 3 )CH(CH 3 ) 2 , CH 2 CH(CH 3 )CH 2 CH 3 , CH 2 CH 2 CH(CH 3 ) 2 , and CH(CH 2 CH 3 ) 2 , etc.
  • alkenyl refers to alkyl groups as defined above, wherein there is at least one point of unsaturation, i.e., wherein two adjacent carbon atoms are attached by a double bond.
  • alkynyl refers to alkyl groups wherein two adjacent carbon atoms are attached by a triple bond.
  • 'alkoxy refers to -OR, wherein R is alkyl.
  • halo refers to chloro s brcr ⁇ , fiuoro and r ⁇ d ⁇ groups.
  • RaJoafkyl refers to an afpyl radical substituted with one or more halogen atoms.
  • haloalkyl thus includes monohalo alkyl, dihalo alkyl, trihalo alkyl and the like.
  • Representative monohalo alkyl groups include -CH 2 F, - CH 2 Cl, -CH 2 CH 2 F, -CH 2 CH 2 Cl, -CH(F)CH 3 , -CH(Cl)CH 3 ;
  • representative dihalo alkyl groups include CHCl 2 , -CHF 2 , -CCl 2 CH 3 , -CH(Cl)CH 2 Cl, -CH 2 CHCl 2 , -CH 2 CHF 2 ;
  • representative trihalo alkyl groups include -CCl 3 , -CF 3 , -CCl 2 CH 2 Cl, -CF 2 CH 2 F, - CH(Cl)CHCl 2 , -CH(F)CHF 2 ;
  • representative perhalo alkyl groups include -CCl 3 , - CF 3 , -CCl 2 CCl 3 , -CF 2 CF 3 .
  • Amino refers herein to the group -NH 2 .
  • alkylamino refers herein to the group -NRR' where R and R' are each independently selected from hydrogen or a lower alkyl.
  • arylamino refers herein to the group -NRR 1 where R is aryl and R' is hydrogen, a lower alkyl, or an aryl.
  • aralkylamino refers herein to the group -NRR' where R is a lower aralkyl and R' is hydrogen, a loweralkyl, an aryl, or a loweraralkyl.
  • cyano refers to the group -CN.
  • nitro refers to the group -NO 2 .
  • alkoxyalkyl refers to the group -alk ! -OaIk 2 where alkj is alkyl or alkenyl, and alk 2 is alkyl or alkenyl.
  • loweralkoxyalkyl refers to an alkoxyalkyl where alki is loweralkyl or loweralkenyl, and alk 2 is loweralkyl or loweralkenyl.
  • aryloxyalkyl refers to the group -alkyl-O-aryl.
  • aralkoxyalkyl refers to the group -alkylenyl-O-aralkyl, where aralkyl is a loweraralkyl.
  • aminocarbonyl refers herein to the group -C(O)-NH 2 .
  • substituted aminocarbonyl refers herein to the group -C(O)-NRR' where R is loweralkyl and R 1 is hydrogen or a loweralkyl. In some embodiments, R and R', together with the N atom attached to them may be taken together to form a "heterocycloalkylcarbonyl” group.
  • arylaminocarbonyl refers herein to the group -C(O)-NRR' where R is an aryl and R' is hydrogen, loweralkyl or aryl.
  • aralkylaminocarbonyl refers herein to the group -C(O)-NRR' where R is loweraralkyl and R' is hydrogen, loweralkyl, aryl, or loweraralkyl.
  • aminosulfonyl refers herein to the group -S(O) 2 -NH 2 .
  • Substituted aminosulfonyl refers herein to the group -S(O) 2 -NRR' where R is loweralkyl and R' is hydrogen or a loweralkyl.
  • aralkylaminosulfonlyaryl refers herein to the group -aryi-S(0)2-NH-aralkyI s where the aralkyl is loweraralkyl
  • CarfaonyF refers to the divalent group -C(O)-
  • Alfc ⁇ xy ⁇ arb ⁇ nyJ refers to esfer -C(KJ)-OR wherein R is alkyl
  • Cycloalkyl refers to a mono- or polycyclic, carbocyclic alkyl substituent.
  • Carbocycloalkyl groups are cycloalkyl groups in which all ring atoms are carbon. Typical cycloalkyl substituents have from 3 to 8 backbone (i.e., ring) atoms in which each backbone atom is either carbon or a heteroatom.
  • heterocycloalkyl refers herein to cycloalkyl substituents that have from 1 to 5, and more typically from 1 to 4 heteroatoms in the ring structure. Suitable heteroatoms employed in compounds of the present invention are nitrogen, oxygen, and sulfur.
  • heterocycloalkyl moieties include, for example, morpholino, piperazinyl, piperidinyl and the like.
  • Carbocycloalkyl groups are cycloalkyl groups in which all ring atoms are carbon.
  • polycyclic refers herein to fused and non-fused alkyl cyclic structures.
  • partially unsaturated cycloalkyl all refer to a cycloalkyl group wherein there is at least one point of unsaturation, i.e., wherein to adjacent ring atoms are connected by a double bond or a triple bond.
  • Illustrative examples include cyclohexynyl, cyclohexynyl, cyclopropenyl, cyclobutynyl, and the like.
  • substituted heterocycle refers to any 3- or 4-membered ring containing a heteroatom selected from nitrogen, oxygen, and sulfur or a 5- or 6-membered ring containing from one to three heteroatoms selected from the group consisting of nitrogen, oxygen, or sulfur; wherein the 5-membered ring has 0-2 double bonds and the 6-membered ring has 0-3 double bonds; wherein the nitrogen and sulfur atom maybe optionally oxidized; wherein the nitrogen and sulfur heteroatoms may be optionally quarternized; and including any bicyclic group in which any of the above heterocyclic rings is fused to a benzene ring or another 5- or 6-membered heterocyclic ring independently defined above.
  • heterocycloalkyl refers to a 5- or 6-membered ring containing from one to three heteroatoms selected from the group consisting of nitrogen, oxygen, or sulfur, wherein the ring has no double bonds.
  • heterocyclo -C 5 -alkyl refers to a 6-membered ring containing 5 carbon atoms and a heter ⁇ atonij such as N.
  • heterocycle thus includes rings in which nitrogen is the heteroatom as weL ss partially and fully-saturated rings.
  • Preferred heterocycle ⁇ ircl/ide for example-; diazapkiyf, pyrryf 5 pyrroli ⁇ yJ, pyrrolidinyl, pyraz ⁇ lyf , pyraZoIinyf 5 pyrazolidinyl, imidazoyl, imidazolinyl, imidazolidinyl, pyridyl, piperidinyl, pyrazinyl, piperazinyl, N-methyl piperazinyl, azetidinyl, N-methylazetidinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazo ⁇ dinyl, isoxazolyl, isoazolidinyl, morpholinyl, thiazolyl, thiazolidinyl, isothiazolyl, isothiazolidinyl, indolyl, quinolinyl, isoquinolinyl, benzimi
  • heterocyclic groups may be attached at various positions as will be apparent to those having skill in the organic and medicinal chemistry arts in conjunction with the disclosure herein.
  • heterocyclics include, for example, imidazolyl, pyridyl, piperazinyl, piperidinyl, azetidinyl, thiazolyl, furanyl, triazolyl benzimidazolyl, benzothiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, indolyl, naphthpyridinyl, indazolyl, and quinolizinyl.
  • Aryl refers to optionally substituted monocyclic and polycyclic aromatic groups having from 3 to 14 backbone carbon or hetero atoms, and includes both carbocyclic aryl groups and heterocyclic aryl groups.
  • Carbocyclic aryl groups are aryl groups in which all ring atoms in the aromatic ring are carbon.
  • heteroaryl refers herein to aryl groups having from 1 to 4 heteroatoms as ring atoms in an aromatic ring with the remainder of the ring atoms being carbon atoms.
  • polycyclic aryl refers herein to fused and non-fused cyclic structures in which at least one cyclic structure is aromatic, such as, for example, benzodioxozolo (which has a heterocyclic structure fused to a phenyl group, i.e., , naphthyl, and the like.
  • Exemplary aryl moieties employed as substituents in compounds of the present invention include phenyl, pyridyl, pyrimidinyl, thiazolyl, indolyl, imidazolyl, oxadiazolyl, tetrazolyl, pyrazinyl, triazolyl, thiophenyl, furanyl, quinolinyl, purinyl, naphthyl, benzothiazolyl, benzopyridyl, and benzimidazolyl, and the like.
  • Optionally substituted refers to the replacement of ens oi" more hydrogen atoms with a monovalent or divalent radical.
  • Suitable substitution groups include, for example, hydroxy, nitro, amino,, imino, cyaao, halo, thio, sulfo ⁇ yJ, thioamido, amidino, imidino, oxo, oxamidmo, methoxamidino, imidino, guanidino, sulfonamide carboxyl, formyl, loweralkyl, haloloweralkyl, loweralkylamino, haloloweralkylamino, loweralkoxy, haloloweralkoxy, loweralkoxyalkyl, alkylcarbonyl, aminocarbonyl, arylcarbonyl, aralkylcarbonyl, heteroarylcarbonyl, heteroaralkylcarbonyl, alkylthi
  • the substitution group can itself be substituted.
  • the group substituted onto the substitution group can be carboxyl, halo; nitro, amino, cyano, hydroxy, loweralkyl, loweralkoxy, aminocarbonyl, -SR, thioamido, -SO 3 H, -SO 2 R or cycloalkyl, where R is typically hydrogen, hydroxyl or loweralkyl.
  • the substitution can occur either within the chain (e.g., 2-hydroxypropyl, 2-aminobutyl, and the like) or at the chain terminus (e.g., 2-hydroxyethyl, 3-cyanopropyl, and the like).
  • Substituted substituents can be straight chain, branched or cyclic arrangements of covalently bonded carbon or heteroatoms. It is understood that the above definitions are not intended to include impermissible substitution patterns (e.g., methyl substituted with five fluoro groups or a halogen atom substituted with another halogen atom). Such impermissible substitution patterns are well known to the skilled artisan.
  • the compounds of the invention may be subject to tautomerization and may therefore exist in various tautomeric forms wherein a proton of one atom of a molecule shifts to another atom and the chemical bonds between the atoms of the molecules are consequently rearranged.
  • tautomer refers to the compounds produced by the proton shift, and it should be understood that the all tautomeric forms, insofar as they may exist, are included within the invention.
  • the compounds of the invention may comprise asymmetrically substituted carbon atoms.
  • asymmetrically substituted carbon atoms can result in the compounds of the invention existing in enantiomers, df&slereomerSj and oilier stereoisomer ⁇ forms that may be defined, iu terms, of absolute ⁇ f ⁇ "eocbemr_tr; 5 such ac hi (R) or (S)- forms, As a rssuH, all such possibfe isomers.
  • salts refers to the nontoxic acid or alkaline earth metal salts of the compounds of Formula I or II. These salts can be prepared in situ during the final isolation and purification of the compounds of Formula I or II, or by separately reacting the base or acid functions with a suitable organic or inorganic acid or base, respectively.
  • Representative salts include but are not limited to the following: acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarate ⁇ hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-phenylproionate, picrate, pivalate, propionate, succinate, sulfate
  • the basic nitrogen-containing groups can be quaternized with such agents as loweralkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides, and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others. Water or oil-soluble or dispersible products are thereby obtained.
  • loweralkyl halides such as methyl, ethyl, propyl, and butyl chloride, bromides, and iodides
  • dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates
  • long chain halides such
  • acids which may be employed to form pharmaceutically acceptable acid addition salts
  • Liducfe such inorganic acidc as hydrochloric acid, ⁇ ulftix ⁇ id and pho ⁇ p ⁇ orh acid and ⁇ uc ⁇ organic adds a ⁇ oxafic scid. maido add, methanesulfonic acid, succinic acid and citric acid.
  • Basic addition salts can be prepared in situ during the final isolation and purification of the compounds of formula (I), or separately by reacting carboxylic acid moieties with a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation or with ammonia, or an organic primary, secondary or tertiary amine.
  • Pharmaceutically acceptable salts include, but are not limited to, cations based on the alkali and alkaline earth metals, such as sodium, lithium, potassium, calcium, magnesium, aluminum salts and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like.
  • Other representative organic amines useful for the formation of base addition salts include diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like.
  • ester refers to esters, which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof.
  • Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms.
  • esters include formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.
  • prodrugs refers to those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention.
  • prodrug refers to compounds that are rapidly transformed in vivo to yield the parent compound of the above formula, for example by hydrolysis in blood. A thorough discussion is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol.. 14 of the A. CS.
  • Any formula given herein is also intended to represent unlabeled forms as well as isotopically labeled forms of the compounds, lsotopically labeled compounds have structures depicted by the formulas given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number.
  • isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, and chlorine, such as 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 18 F 31 P, 32 P, 35 S, 36 Cl, 125 I respectively.
  • the invention includes various isotopically labeled compounds as defined herein, for example those into which radioactive isotopes, such as 3 H, 13 C, and 14 C , are present.
  • Such isotopically labelled compounds are useful in metabolic studies (with 14 C), reaction kinetic studies (with, for example H or H), detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays, or in radioactive treatment of patients.
  • PET positron emission tomography
  • SPECT single-photon emission computed tomography
  • an 18 F or labeled compound may be particularly desirable for PET or SPECT studies.
  • Isotopically labeled compounds of this invention and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the schemes or in the examples and preparations described below by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent
  • substitution with heavier isotopes may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements or an improvement in therapeutic index.
  • deuterium in this context is regarded as a substituent of a compound of the formula (I).
  • concentration of such a heavier isotope, specifically deuterium may be defined by the isotopic enrichment factor.
  • isotopic enrichment factor as used herein means the ratio between the isotopic abundance and the natural abundance of a specified isotope.
  • a substituent in a compound of this invention is denoted deuterium, such compound has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5% deuterium incorporation at each designated deuterium atom), at least 4000 (60% deuterium incorporation), at least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium incorporation), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).
  • Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the accompanying Examples and Preparations using an appropriate isotopically-labeled reagents in place of the non-labeled reagent previously employed.
  • the compounds of the invention may be processed in vivo through metabolism in a human or animal body or cell to produce metabolites.
  • the term "metabolite” as used herein refers to the formula of any derivative produced in a subject after administration of a parent compound.
  • the derivatives may be produced from the parent compound by various biochemical transformations in the subject such as, for example, oxidation, reduction, hydrolysis, or conjugation and include, for example, oxides and demethylated derivatives.
  • the metabolites of a compound of the invention may be identified using routine techniques known in the art.
  • cancer refers to cancer diseases that can be beneficially treated by the inhibition of Pirn kinase, including, for example, solid cancers, such as carcinomas (e.g., of the lungs, pancreas, thyroid, ovarian, bladder, breast, prostate, or colon), melanomas, myeloid disorders (e.g., myeloid leukemia, multiple myeloma and erythroleukemia), adenomas (e.g., villous colon adenoma) and sarcomas (e.g., osteosarcoma).
  • carcinomas e.g., of the lungs, pancreas, thyroid, ovarian, bladder, breast, prostate, or colon
  • melanomas e.g., myeloid disorders (e.g., myeloid leukemia, multiple myeloma and erythroleukemia), adenomas (e.g., villous colon adenoma) and sarcomas (e.
  • cyclohexanediones can be converted via monotriflates to the corresponding cyclohexenoneboronate esters which can undergo palladium mediated carbon bond formation with 4-chloro, 3-nitro pyridine to yield nitropyridine substituted cyclohexenones I.
  • Reduction of the enone functionality can yield a cyclohexenol II which upon alcohol protection, nitro and alkene reduction, amide coupling and deprotection can yield cyclohexanol amides III.
  • Cyclohexenol II can also undergo Mitsunobu reaction with phthalimide to yield a protected am ⁇ nocyclohexene IV.
  • phthalimide protected aminocyclohexyl pyridyl aniline Va can undergo amide coupling and deprotection, to yield aminocyclohexane amides VI.
  • the corresponding Boc protected aminocyclohexane pyridyl aniline Vb can also be prepared from cyclohexenol II in the following manner: alcohol protection, alkene and nitro reduction, pyridyl amine Cbz protection, silyl ether deprotection, Dess-Martin oxidation to the cyclohexanone, reductive amination with benzylamine, Cbz and Bn deprotection and primary aliphatic amine Boc protection.
  • the amides III and VI can be further modified by standard modifications to introduce substituted aryls, alkyls and heteroaryls at R 2 .
  • cyclohexenol II can be dehydrated yielding a cyclohexadiene which upon epoxidation (via bromohydrin formation and HBr elimination or from mCPB A directly) and azide epoxide opening yields cyclohexfenyl Bzido alcohol VI.
  • Cyclohexenyl azido alcohol VI can be converted to the trans protected amino hydroxy aniline Vila by azide reduction, alcohol protection and alkene and nitro reduction.
  • the cyclohexenyl azido alcohol VI can be converted to the protected cis amino hydroxy aniline VIIb by azide reduction and Boc protection, alcohol mesylation and intramolecular cyclization to the cis cyclic carbamate, followed by Boc protection and alkene and nitro reduction.
  • the resulting cyclohexylpyridyl anilines Vila and VIIb can be converted to the corresponding pyridine amides Villa and VIIIb by amide coupling, acetate or cyclic carbamate cleavage and Boc deprotection.
  • the amides Villa and VIIIb can be further modified by standard modifications to introduce substituted aryls, alkyls and heteroaryls at R 2 after amide bond, formation and prior to full deprotection.
  • R2 is Br
  • R2 by reaction with boronic a.dd ⁇ or orgaiaomatal ⁇ c reagents, or conversion to the corresponding boronate ester and reaction with aryl/heteroaryl halides or triflates, a variety of R2 modifications are possible.
  • trisubstituted 5-alkyl, 4-hydroxy, 3-aminopiperidines can be prepared and modified to yield trisubstituted 5-alkyl, 4-hydroxy, 3-aminopiperidinyl pyridine amides IX as follows. Reaction of Garner's aldehyde with (R)-4-benzyl-3-propionyloxazolidin-2-one followed by TBS protection of the resulting alcohol affords compound X. Reduction of the oxazolidinone followed by introduction of the azide group yields intermediate XI.
  • the amide IX can be further modified by standard modifications to introduce substituted aryls, alkyls and heteroaryls at Rj after amide bond formation and prior to full deprotection.
  • R j is Br
  • R j is Br
  • boronic acids or organometallic reagents or conversion to the corresponding boronate ester and reaction with aryl/heteroaryl halides or triflates, a variety of Rj modifications are possible.
  • trisubstituted 5-methyl, 4-hydroxy, 3-aminopiperidines can also be prepared and modified to yield trisubstituted 5-methyl, 4-hydroxy, 3-aminopiperidinyl amides XIII as follows. Reaction of crotyl boronate esters with SerOBn aldehyde followed by cyclic carbamate formation, alkene oxidative cleavage and reduction yields hydroxyl compound XIV. Benzyl deprotection followed by bistosylation and reaction with p-methoxybenzylamine, and amine deprotection yields piperidine XV.
  • XV can be further modified by standard modifications to introduce substituted aryls, alkyls and heteroaryls at R 3 .
  • R3 is Br 1 by reaction with boronic acids or orgair ⁇ metaJl ⁇ c reagents, or conversion 1c the corresponding horosate ester sn ⁇ reaction with aryl/heteroaryl halides or triflates, a variety of R 3 modifications are possible.
  • the compounds of the invention are useful in vitro and/or in vivo in inhibiting the growth of cancer cells.
  • the compounds may be used alone or in compositions together with a pharmaceutically acceptable carrier or excipient.
  • suitable pharmaceutically acceptable carriers or excipients include, for example, processing agents and drug delivery modifiers and enhancers, such as, for example, calcium phosphate, magnesium stearate, talc, monosaccharides, disaccharides, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, dextrose, hydroxypropyl- ⁇ - cyclodextrin, polyvinylpyrrolidinone, low melting waxes, ion exchange resins, and the like, as well as combinations of any two or more thereof.
  • Other suitable pharmaceutically acceptable excipients are described in "Remington's Pharmaceutical Sciences," Mack Pub. Co., New Jersey (1991), incorporated herein by reference.
  • Effective amounts of the compounds of the invention generally include any amount sufficient to detectably inhibit Pirn activity by any of the assays described herein, by other Pirn kinase activity assays known to those having ordinary skill in the art or by detecting an inhibition or alleviation of sympi orris of cancer.
  • the amount of active mgredieoi that may be combined with Ihe carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
  • the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination, and the severity of the particular disease undergoing therapy.
  • the therapeutically effective amount for a given situation can be readily determined by routine experimentation and is within the skill and judgment of the ordinary clinician.
  • a therapeutically effective dose will generally be a total daily dose administered to a host in single or divided doses may be in amounts, for example, of from 0.001 to 1000 mg/kg body weight daily and more preferred from 1.0 to 30 mg/kg body weight daily. Dosage unit compositions may contain such amounts of submultiples thereof to make up the daily dose.
  • the compounds of the present invention may be administered orally, parenterally, sublingually, by aerosolization or inhalation spray, rectally, or topically in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired. Topical administration may also involve the use of transdermal administration such as transdermal patches or ionophoresis devices.
  • parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, or infusion techniques.
  • Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3 -propanediol.
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or di-glycerides.
  • fatty acids such as oleic acid find use in the preparation of mjectables.
  • Suppositories for recta] administration of the drug can be prepared by mixing the drug with a suitable nc ⁇ imtatiiig excipie ⁇ f such as cocoa butler and polyethylene glycols, which are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • a suitable nc ⁇ imtatiiig excipie ⁇ f such as cocoa butler and polyethylene glycols, which are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules.
  • the active compound may be admixed with at least one inert diluent such as sucrose lactose or starch.
  • Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
  • the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
  • Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water.
  • Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, cyclodextrins, and sweetening, flavoring, and perfuming agents.
  • the compounds of the present invention can also be administered in the form of liposomes.
  • liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multilamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any nontoxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used.
  • the present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients, and the like.
  • the preferred lipids are the phospholipids and phosphatidyl cholines (lecithins), both natural and synthetic. Methods to form liposomes are known in the art. See, for example, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N. W., p. 33 et seq. (1976).
  • the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other agents used in the treatment of cancer.
  • the compounds of the present invention are also useful in combination with known therapeutic agents and anti-cancer agents, and combinations of the presently disclosed compounds with other anti-cancer or chemotherapeutic agents are within the scope of the invention. Examples of such agents can be r omid in Cancer Principles and Practice ⁇ f Oncology, V. T. Bevsla and S, HeJfman ( e ditors), ⁇ & ⁇ edition (Feb. f 5, 2001 ). Lippi ⁇ cott Wi ⁇ iamc & Wffkms Publishers.
  • anti-cancer agents include, but are not limited to, the following: estrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic/cytostatic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors and other angiogenesis inhibitors, inhibitors of cell proliferation and survival signaling, apoptosis inducing agents and agents that interfere with cell cycle checkpoints.
  • the compounds of the invention are also useful when coadministered with radiation therapy.
  • the compounds of the invention are also used in combination with known anticancer agents including, for example, estrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors, HIV protease inhibitors, reverse transcriptase inhibitors, and other angiogenesis inhibitors.
  • known anticancer agents including, for example, estrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors, HIV protease inhibitors, reverse transcriptase inhibitors, and other angiogenesis inhibitors.
  • representative agents useful in combination with the compounds of the invention for the treatment of cancer include, for example, irinotecan, topotecan, gemcitabine, 5- fluorouracil, leucovorin carboplatin, cisplatin, taxanes, tezacitabine, cyclophosphamide, vinca alkaloids, imatmib (Gleevec), anthracyclines, rituximab, trastuzumab, as well as other cancer chemotherapeutic agents.
  • the compounds of the invention and the other anticancer agents can be administered at the recommended maximum clinical dosage or at lower doses. Dosage levels of the active compounds in the compositions of the invention may be varied so as to obtain a desired therapeutic response depending on the route of administration, severity of the disease and the response of the patient.
  • the combination can be administered as separate compositions or ac a single dosage form containing both agents.
  • the therapeutic agents can be f ⁇ miJated a ⁇ separate compositions, which are given at the same time or different times, or the therapeutic agents, can be given as a single composition.
  • the invention provides a method of inhibiting Piml, Pim2 or Pim3 in a human or animal subject.
  • the method includes administering an effective amount of a compound, or a pharmaceutically acceptable salt thereof, of any of the embodiments of compounds of Formula I or II to a subject in need thereof.
  • HPLC high performance liquid chromatography
  • the analytical columns were reversed phase Phenomenex Luna Cl 8 -5 ⁇ , 4.6 x 50 mm, from Alltech (Deerfield, IL).
  • a gradient elution was used (flow 2.5 mL/min), typically starting with 5% acetonitrile/95% water and progressing to 100% acetonitrile over a period of 10 minutes.
  • AU solvents contained 0.1% trifluoroacetic acid (TFA).
  • UV ultraviolet light
  • HPLC solvents were from Burdick and Jackson (Muskegan, MI), or Fisher Scientific (Pittsburgh, PA).
  • TLC thin layer chromatography
  • glass or plastic backed silica gel plates such as, for example, Baker-Flex Silica Gel 1B2-F flexible sheets.
  • TLC results were readily detected visually under ultraviolet light, or by employing well-known iodine vapor and other various staining techniques.
  • Mass spectrometric analysis was performed on one of three LCMS instruments: a Waters System (Alliance HT HPLC and a Micromass ZQ mass spectrometer; Column: Eclipse XDB-Cl 8, 2.1 x 50 mm; gradient: 5-95% (or 35-95%, or 65-95% or 95-95%) acetonitrile in water with 0.05% TFA over a 4 min period; flow rale 0.8 mL/min; molecular weight range 200-1500; cone Voltage 20 V; column temperature 4O 0 C), another Waters System (ACQUITY UPLC system and a ZQ 2000 system; Column: ACQUITY UPLC HSS-C 18, 1.8um, 2.1 x 50mm; gradient: 5-95% (or 35-95%, or 65-95% or 95-95%) acetonitrile in water with 0.05% TFA over a 1.3 min period; flow rate 1.2 mL/min; molecular weight range 150-850; cone Voltage 20 V; column temperature
  • Preparative separations are carried out using a Flash 40 chromatography system and KP-SiI, 6OA (Biotage, Charlottesville, VA), or by flash column chromatography using silica gel (230-400 mesh) packing material, or by HPLC using a Waters 2767 Sample Manager, C-18 reversed phase column, 30X50 mm, flow 75 mL/min.
  • Typical solvents employed for the Flash 40 Biotage system and flash column chromatography are dichloromethane, methanol, ethyl acetate, hexane, acetone, aqueous ammonia (or ammonium hydroxide), and triethyl amine.
  • Typical solvents employed for the reverse phase HPLC are varying concentrations of acetonitrile and water with 0.1% trifluoroacetic acid.
  • racemic compound was resolved by chiral chromatography (IC column, 1 mL/min, 5%IPA in Heptane) to yield 4- ((lS,3S,4S 5 5R)-3,4-bis(tert-butyldimethylsilyloxy)-5-methylcyclohexyl)pyridin-3-amine (6.01 min) and 4-((lR,3R,4R,5S)-3,4-bis(tert-butyldimethylsilyloxy)-5- methylcyclohexyl)pyridin-3-amine (8.34 min).
  • Tbe crude material was purified by silica gel column chromatography eluting with ethyl acetate and hexanes (1 :2) to give tert-butyl (3R,4R,5S)-4-(tert-butyldimethylsilyloxy)-5-methyl-l-(3-nitropyridin-4-yl)piperidin-3- ylcarbamate in 76% yield.
  • Method 1 was followed using methyl 3-amino-6-bromo-5-fluoro- picolinate (1.0 equiv.) and 2,6-difluorophenylboronic acid (1.3 equiv.) and Pd(dppf)Cl2- DCM (0.05 equiv.) to give 3-amino-6-(2,6-difluorophenyl)-5-fluoropicolinate in 94% yield.
  • Method 1 was followed using 6-bromo-5-fluoropicolinic acid (1.0 equiv.) and 2,5 ⁇ difiuorophenylboronic acid (1.3 equiv.) and Pd(dppf)Cl 2 -DCM (0.05 equiv.) to give 6-(2,5-difluorophenyl)-5-fluoropicolinic acid in 80% yield.
  • the reaction was allowed to cool to room temperature, partitioned with ethyl acetate and water, the organic phase was dried with sodium sulfate, filtered, and concentrated.
  • the crude material was diluted in EtOH to 0.1 M, and 0.5 equiv. OfNaBH 4 was added to reduce the dba.
  • the reaction was stirred for one hour at room temperature, then quenched with water and concentrated under vacuo to remove the ethanol.
  • the product was extracted in ether 5 washed with brine ; the organics were dried over sodium sulfate, filtered, and concentrated.
  • the reaction was heated to 70 0 C for 2 hours at which time, LC/MS analysis indicated a mixture of 1 :3 : 1 ratio of hydrolyzed product, desired product and unknown by-product
  • the reaction was cooled to room temperature, diluted with ethyl acetate and washed with IN NaOH (2x).
  • the organic layer was dried over magnesium sulfate, filtered, and concentrated in vacuo to provide a brown oil.
  • the oil was redissolved in THF and treated with IN NaOH for one hour.
  • the reaction was then diluted with ethyl acetate and washed with IN NaOH (2x).
  • the basic washings were combined, acidified with concentrated HCl and extracted with ethyl acetate (3x).
  • an N-Boc protected amine was present, it was removed by treating with excess 4M HCl/ dioxane for 14 hours or by treating with 25% TFA/CH 2 C1 2 for 2 hours. Upon removal of the volatiles in vacuo, the material was purified by RP HPLC yielding after lyophilization the amide product as the TFA salt. Alternatively, the HPLC fractions could be added to EtOAc and solid Na 2 CO 3 , separated and washed with NaCl(sat). Upon drying over MgSO 4 , filtering and removing the volatiles in vacuo the free base was obtained. Upon dissolving in MeCN/H 2 O, adding 1 eq. of 1 N HCl and lyophilizing, the HCl salt of the amide product was obtained.
  • the amine was deprotected by treating with hydrazine in MeOH at 65 0 C for three hours. Upon cooling and filtering off the white precipitate, the filtrate was concentrated and purified by RP HPLC to yield the amino amide product.
  • TBDMS ether was present, it was deprotected prior to Boc removal by treating with 6N HCl, THF, methanol (1 :2: 1) at room temperature for 12 h. After removal of volatiles in vacuo, the Boc amino group was deprotected as described above.
  • the TBDMS ether and Boc group could be both deprotected with 6N HCl, THF, methanol (1 :2:1) if left at rt for 24 hours, or heated at 60 0 C for 3 hours.
  • (+/-)-tert-butyI 3-(3-aminopyridin-4-yl)-6-(tert- butyldimethylsilyloxy)cyclohex-2-enylcarbamate and 3-amino-6-(2,6-difluorophenyl)- picolinic acid were coupled and deprotected to yield (+/-)-3-amino-N-(4-(3-amino-4- hydroxycyclohex-l-enyl)pyridin-3-yl)-6-(2,6-difluorophenyl)picolinamide as the TFA salt.
  • (+/-)-tert-butyl 5-(3-aminopyridin-4-yl)-2-(tert- butyldimethylsilyloxy)cyclohexylcarbamate and 3 -amino-6-(2,6-difluorophenyl)picolmic acid were coupled and deprotected to yield (+/-)-3-amino-N-(4-(3-amino-4- hydroxycyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)picolinamide as the TFA salt in 18% yield.
  • LCMS (m/z): 440.3 (MH + ), LC R 1 2.04 min.
  • (+/-)-tert-butyl 5-(3-aminopyridin-4-yl)-7-methyl- 2-oxohexahydrobenzo[d]oxazole-3(2H)-carboxylate and ⁇ -bromo-S-fluoropicolinic acid were coupled and following addition of EtOAc and washing with H 2 O, NaCl( Sa t.) and drying over MgSO 4 , (+/-)-tert-butyl 5-(3-(6-bromo-5-fluoropicolinamido)pyridin-4-yl)-7- methyl-2-oxohexahydrobenzo[d]oxazole-3(2H)-carboxylate was obtained.
  • LCMS (m/z): 549.2/551.2 (MH + ), R t 0.78 min.
  • the activity of PIMl is measured using a luciferase-luciferin based ATP detection reagent to quantify ATP depletion resulting from kinase-catalyzed phosphoryl transfer to a peptide substrate.
  • Compounds to be tested are dissolved in 100% DMSO and directly distributed into white 384-well plates at 0.5 ⁇ l per well.
  • 10 ⁇ l of 5 nM Piml kinase and 80 ⁇ M BAD peptide (RSRHSSYPAGT-OH) in assay buffer (50 mM HEPES pH 7.5, 5 niM MgCl 2 , 1 mM DTT, 0.05% BSA) is added into each well.
  • IC 50 the half maximal inhibitory concentration, represents the concentration of a test compound that is required for 50% inhibition of its target in vitro.
  • the activity of PIM2 is measured using a luciferase-luciferin based ATP detection reagent to quantify ATP depletion resulting from kinase-catalyzed phosphoryl transfer to a peptide substrate.
  • Compounds to be tested are dissolved in 100% DMSO and directly distributed into white 384-well plates at 0.5 ⁇ l per well.
  • 10 ⁇ l of 10 nM Pim2 kinase and 20 ⁇ M BAD peptide (RSRHSSYPAGT-OH) in assay buffer (50 mM HEPES pH 7.5, 5 mM MgCl 2 , 1 mM DTT, 0.05% BSA) is added into each well.
  • the activity of PIM3 is measured using a luciferase-luciferin based ATP detection reagent to quantify ATP depletion resulting from kinase-catalyzed phosphoryl transfer to a peptide substrate.
  • Compounds to be tested are dissolved in 100% DMSO and directly distributed into white 384-well plates at 0.5 ⁇ l per well.
  • KMSl 1 human myeloma cell line
  • IMDM IMDM supplemented with 10% FBS, sodium pyruvate and antibiotics.
  • Cells were plated in the same medium at a density of 2000 cells per well into 96 well tissue culture plates, with outside wells vacant, on the day of assay.
  • MMLs human myeloma cell line
  • RPMI 1640 supplemented with 10% FBS, sodium pyruvate and antibiotics.
  • Cells were plated in the same medium at a density of 5000 cells per well into 96 well tissue culture plates, with outside wells vacant, on the day of assay.
  • Test compounds supplied in DMSO were diluted into DMSO at 500 times the desired final concentrations before dilution into culture media to 2 times final concentrations. Equal volumes of 2x compounds were added to the cells in 96 well plates and incubated at 37 0 C for 3 days.
  • Example 143 cell proliferation assay
  • the EC50 concentration of compounds of the examples in were determined in KMSl 1 cells as shown in Table 3.
  • KMSl 1-luc multiple myeloma cancer cells obtained from Suzanne Trudel (University Health Network, Toronto, Canada), express stable luciferase achieved by retroviral transfection and were maintained in DMEM supplemented with 10% heat- inactivated fetal bovine serum with 1% glutamine (Invitrogen, Inc.).
  • Female SCID/bg mice (8-12 weeks old, 20-25g, Charles River) were used for all in vivo pharmacology studies. The mice were housed and maintained in accordance with state and federal guidelines for the humane treatment and care of laboratory animals, and received food and water ad libitum.
  • Cancer cells were harvested from mid-log phase cultures, viable cell count was established with an automated cell counter (Vi-CELL, Beckman-Coulter), and cells were resuspended in equal parts HBSS and Matrigel (Invitrogen, Inc.). Ten millions cells were subcutaneously injected into the right flank of each mouse. Compound treatment was initiated when tumor size reached 250-35 Omm for PK/PD studies, and 150-250mm 3 for efficacy studies, with tumor volumes determined using StudyDirector software (StudyLog Systems, Inc.). All compound treatment was administered orally.
  • tumor- bearing mice were administered a single oral dose of vehicle or compound at different concentrations.
  • tumor tissues and blood samples were taken from individual mice. Resected tumor tissues were snap frozen and pulverized using a liquid nitrogen-cooled cryomortar and pestle. Blood samples were taken by cardiac puncture, and plasma was separated utilizing centrifugation tubes containing lithium heparin and plasma separator (BD Microtainer).
  • Frozen tumor samples were lysed in cold buffer (Meso Scale Discovery) supplemented with EDTA free protease inhibitor (Roche), phosphatase inhibitors 1 and 2, and IMNaF (Sigma) according to manufacturer's instructions. Following homogenization with a dounce apparatus or by MagNA Lyser (Roche), clear supernatant was obtained following centrifugation at 300xg for 30 minutes at 4°C and protein concentration was determined by BCA (BioRad). Target modulation was determined using the Meso Scale ⁇ hos ⁇ ho-Bad Serl l2 /total Bad duplex kit, according to manufacturer's instructions.
  • mice were randomized into groups with equivalent tumor volume variation ranging from 150-250mm 3 utilizing the StudyDirector software (StudyLog Systems, Inc.). Following randomization, mice were dosed orally daily or twice daily at multiple compound concentrations in 200 ⁇ l incipient. Tumor growth and animal body weight was measured at least twice weekly, and daily clinical observations were used to monitor potential toxicities related to the treatment. Animals were removed from study if tumor volume exceeded 2500mm 3 , or if body weight loss exceeded 20% of initial measurements.
  • Efficacy of the compound of Example 99 was evaluated in the KMSI l- luc xenograft model, with mice receiving oral administration of the compound of Example 99 twice daily at 50 and 100 mg/kg, and once daily at 100 mg/kg for 14 days. Dosing was initiated when tumor sizes reached approximately 250mm 3 . As shown in Figure 1, the compound of Example 99 exhibited dose-dependant effects in vivo, with tumor growth inhibition observed with 50 mg/kg twice daily (92%) and 100 mg/kg twice daily (4% regression). Once daily administration of 100 mg/kg was less efficacious (65%) than when dosed twice daily. These results correlate with the extent and magnitude of pBad Ser112 modulation, and suggest that extensive and prolonged target modulation is required for maximum efficacy.
  • Efficacy of the compound of Example 70 was evaluated in the KMS 11 - luc xenograft model, with mice receiving oral administration of the compound of Example 80 twice daily at 25 and 50 mg/kg, and once daily at 100 mg/kg for 14 days. Dosing was initiated when tumor sizes reached approximately 225mm 3 . As snown in Figure 2, the compound of Example 70 exhibited dose-dependant effects in vivo, witb tumor growth inhibition observed for 25 mg/kg (65%) and 50 mg/kg (100%). Significant tumor growth inhibition was also observed for 100 mg/kg once daily (84%).
  • Efficacy of the compound of Example 96 was evaluated in the KMS 11 - luc xenograft model, with mice receiving oral administration of the compound of Example 96 twice daily at 25 and 50 mg/kg, and once daily at 100 mg/kg for 14 days. Dosing was initiated when tumor sizes reached approximately 225mm 3 . As shown in Figure 3, compound the compound of Example 96 exhibited dose-dependant effects in vivo, with tumor growth inhibition observed for 25 mg/kg (67%), and 50 mg/kg (96%). Significant tumor growth inhibition was also observed for 100 mg/kg once daily (88%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

New picolinamide compounds, compositions and methods of inhibition of Provirus Integration of Maloney Kinase (PIM kinase) activity associated with tumorigenesis in a human or animal subject are provided. In certain embodiments, the compounds and compositions are effective to inhibit the activity of at least one PIM kinase. The new compounds and compositions may be used either alone or in combination with at least one additional agent for the treatment of a serine/threonine kinase- or receptor tyrosine kinase- mediated disorder, such as cancer.

Description

PICOLINAMIDE DERIVATIVES AS KINASE INHIBITORS
Cross-Reference to Related Applications
This application claims the benefit under 35 U.S.C. §119(e) to U.S. provisional application serial No. 61/093,666, filed on September 02, 2008, and to U.S. provisional application serial No. 61/225,660, filed July 15, 2009, which are incorporated herein in their entirety by reference.
FIELD OF THE INVENTION
[0001] The present invention relates to new compounds and their tautomers and stereoisomers, and pharmaceutically acceptable salts, esters, metabolites or prodrugs thereof, compositions of the new compounds together with pharmaceutically acceptable carriers, and uses of the new compounds, either alone or in combination with at least one additional therapeutic agent, in the prophylaxis or treatment of cancer. BACKGROUND
[0002] Infection with the Maloney retrovirus and genome integration in the host cell genome results in development of lymphomas in mice. Provirus Integration of Maloney Kinase (PIM-Kinase) was identified as one of the frequent proto-oncogenes capable of being transcriptionally activated by this retrovirus integration event (Cuypers HT et al., "Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region," Cell 37(1): 141-50 (1984); Selten G, et al., "Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas" EMBO J 4(7): 1793-8 (1985)), thus establishing a correlation between over-expression of this kinase and its oncogenic potential. Sequence homology analysis demonstrated that there are 3 highly homologous Pim-Kinases (Piml, 2 & 3), Piml being the proto- oncogene originally identified by retrovirus integration. Furthermore, transgenic mice over-expressing Piml or Pim2 show increased incidence of T-cell lymphomas (Breuer M et al., "Very high frequency of lymphoma induction by a chemical carcinogen in pim-1 transgenic mice" Nature 340(6228): 61-3 (1989)), while over-expression in conjunction with o-royo is associated with incidence of B -pel J lymphoma? (Verbeek S et aJ s "Mice bearing the E mυ-myc and E mu-piro-1 transgenes develop pra-B-cell leukemia prenatally" MoI Cell Biol 11(2):1176-9 (1991)). Thus, these animal models establish a strong correlation between Pirn over-expression and oncogenesis in hematopoietic malignancies. In addition to these animal models, Pirn over-expression has been reported in many other human malignancies. Piml, 2 & 3 over-expression is frequently observed in many hematopoietic malignancies (Amson R et al., "The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias," PNAS USA 86(22):8857-61 (1989); Cohen AM et al., "Increased expression of the hPim-2 gene in human chronic lymphocytic leukemia and non-Hodgkin lymphoma," Leuk Lymph 45(5):951-5 (2004), Huttmann A et al., "Gene expression signatures separate B-cell chronic lymphocytic leukaemia prognostic subgroups defined by ZAP-70 and CD38 expression status," Leukemia 20:1774-1782 (2006)) and in prostate cancer (Dhanasekaran SM, et al., "Delineation of prognostic biomarkers in prostate cancer," Nature 412(6849): 822-6 (2001); Cibull TL, et al., "Overexpression of Pim-1 during progression of prostatic adenocarcinoma," J Clin Pathol 59(3):285-8 (2006)), while overexpression of Pim3 is frequently observed in hepatocellular carcinoma (Fujii C, et al., "Aberrant expression of serine/threonine kinase Pim-3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines," Int J Cancer 114:209-218 (2005)) and pancreatic cancer (Li YY et al., "Pim-3, a proto-oncogene with serine/threonine kinase activity, is aberrantly expressed in human pancreatic cancer and phosphorylates bad to block bad-mediated apoptosis in human pancreatic cancer cell lines," Cancer Res 66(13):6741-7 (2006)).
[0003] Piml, 2 & 3 are Serine/Threonine kinases that normally function in survival and proliferation of hematopoietic cells in response to growth factors and cytokines. Cytokines signaling through the Jak/Stat pathway leads to activation of transcription of the Pirn genes and synthesis of the proteins. No further post-translational modifications are required for the Kinase Pirn activity. Thus, signaling down stream is primarily controlled at the transcriptional/translational and protein turnover level. Substrates for Pirn kinases include regulators of apoptosis such as the Bcl-2 family member BAD (Aho T et al., "Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Serl 12 gatekeeper site,: FEBS Letters 571: 43- 49 (2004)), cell cycle regulators such as p2ϊ WFAI/CEP1 (Wang Z1 et ah, "Phosphorylation of the, cdl cycle inhibitor p21CJpl/WAFi by Pim-Ϊ kinase/' Biochem Biophys Acta ϊ 593:45- 55 (200?})5 CDC25A (i 999), C-TAK (Bachmaπn M et al.s "The Oncogenic Serine/Threonine Kinase Pim-1 Phosphorylates and Inhibits the Activity of Cdc25C- associated Kinase 1 (C-TAKl). A novel role for Pim-1 at the G2/M cell cycle checkpoint," J Biol Chem 179:48319-48328 (2004)) and NuMA (Bhattacharya N, et al., "Pim-1 associates with protein complexes necessary for mitosis," Chromosoma lll(2):80-95 (2002)) and the protein synthesis regulator 4EBP1 (Hammerman PS et al., "Pirn and Akt oncogenes are independent regulators of hematopoietic cell growth and survival," Blood 105(ll):4477-83 (2005)). The effects of Pim(s) in these regulators are consistent with a role in protection from apoptosis and promotion of cell proliferation and growth. Thus, over-expression of Pim(s) in cancer is thought to play a role in promoting survival and proliferation of cancer cells and, therefore, their inhibitions should be an effective way of treating cancers on which they are over-expressed. In fact several reports indicate that knocking down expression of Pim(s) with siRNA results in inhibition of proliferation and cell death (Dai JM, et al., "Antisense oligodeoxynucleotides targeting the serine/threonine kinase Pim-2 inhibited proliferation of DU- 145 cells," Acta Pharmacol Sin 26(3):364-8 (2005); Fujii et al. 2005; Li et al. 2006). Furthermore, mutational activation of several well know oncogenes in hematopoietic malignancies are thought exert its effects at least in part through Pim(s). For example, targeted down regulation of pim expression impairs survival of hematopoietic cells transformed by Flt3 and BCR/ABL (Adam et al. 2006). Thus, inhibitors to Piml, 2 &3 would be useful in the treatment of these malignancies. In addition to a potential role in cancer treatment and myeloproliferative diseases, such inhibitor could be useful to control expansion of immune cells in other pathologic condition such as autoimmune diseases, allergic reactions and in organ transplantation rejection syndromes. This notion is supported by the findings that differentiation of ThI Helper T-cells by IL- 12 and IFN-α results in induction of expression of both Piml&2 (Aho T et al., "Expression of human Pim family genes is selectively up-regulated by cytokines promoting T helper type 1, but not T helper type 2, cell differentiation," Immunology 116: 82-88 (2005)). Moreover, Pim(s) expression is inhibited in both cell types by the immunosuppressive TGF-β (Aho et al. 2005). These results suggest that Pim kinases are involved in the early differentiation process of Helper T-cells, which coordinate the immunological responses in autoimmune diseases, allergic reaction and tissue transplant rejection.
[W04J A continuing need exist c for compounds that irj^Mt the proliferation cf capilførieSs, inhibit ike. grovth of tumors s treat cancer, modulate cell sycle arrest, and/or inhibit molecules such as Piml, Pim2 and Pim3, and pharmaceutical formulations and medicaments that contain such compounds. A need also exists for methods of administering such compounds, pharmaceutical formulations, and medicaments to patients or subjects in need thereof. SUMMARY OF INVENTION
[0005] New compounds, and their stereoisomers, tautomers and pharmaceutically acceptable salts, are provided of the Formula I
Figure imgf000005_0001
I wherein,
Xl, X2, X3 and X4 are independently selected from CR2 and N; provided that at least one but not more than two of X1, X2, X3 and X4 are N;
Y is selected from a group consisting of cycloalkyl, partially unsaturated cycloalkyl, andiieterocycloalkyl, wherein each member of said group may be substituted with up to four substituents;
Z2 and Z3 are independently selected from CR 12 and N; provided that not more than one of Z2 and Z3 can be N;
R1 is selected from the group consisting of hydrogen, -NHR3 halo, hydroxyl, alkyl, cyano, and nitro;
R2 and R 12 independently at each occurrence are selected from the group consisting of hydrogen, halo, hydroxyl, nitro, cyano, SO3H and substituted or unsubstituted alkyl, alkenyl, alkynyl, alkoxy, amino, cycloalkyl, hetero cycloalkyl, and partially saturated cycloalkyl;
R3 is selected from the group consisting of hydrogen, -CO-R4 and substituted or unsubstituted alkyl.;, eycloalkyl5 heterocyclyl, aryi and heteroaryl; R4 is selected from the group consisting of alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, and alkylamino; and
R5 represents a group selected from substituted or unsubstituted aryl, C3-C7 cycloalkyl, heteroaryl, partially unsaturated cycloalkyl and alkyl, wherein each said substituted R5 group may be substituted with up to four substϊtuents selected from halo, cyano, amino, CM alkyl, C3-6 cycloalkyl, alkoxy, nitro, carboxy, carbonyl, carboalkoxy, aminocarboxy, substituted aminocarbonyl, aminosulfonyl, substituted aminosulfonyl and alkoxy alkyl.
[0006] In some embodiments, new compounds of Formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein X2 is N and Xi, X3 and X4 are CR2.
[0007] In some embodiments, new compounds of Formula I5 or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R2 is selected from hydrogen, methyl, ethyl, halo, cyano.
[0008] In some embodiments, compounds of Formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Z2 and Z3 are CR12.
[0009] In some embodiments, compounds of Formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Ri2 is selected from hydrogen, halo, methyl, ethyl and cyano.
[0010] In other embodiments, new compounds, and their stereoisomers, tautomers and pharmaceutically acceptable salts, are provided of the Formula II
Figure imgf000006_0001
II wherein. Y is selected from a group consisting of cyclohexyl, partially unsaturated cyclohexyl, and heterocyclo-Cs -alkyl, wherein each member of said group may be substituted with up to four substituents;
R1 is selected from the group consisting of hydrogen, -NHR3 halo, hydroxyl, alkyl, C3-4 cycloalkyl, cyano, and nitro;
R12 independently at each occurrence is selected from the group consisting of hydrogen, halo, hydroxyl, amino, nitro, cyano, SO3H and substituted or unsubstituted alkyl, alkenyl, alkynyl, alkoxy, amino, cycloalkyl, hetero cycloalkyl, and partially saturated cycloalkyl;
R3 is selected from the group consisting of hydrogen, -CO-R4 and substituted or unsubstituted alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl;
R4 is selected from the group consisting of alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, and alkylamino; and
R5 represents a group selected from hydrogen and substituted or unsubstituted alkyl, C6-cycloalkyl, aryl and heteroaryl, wherein each said substituted R5 group may be substituted with up to four substituents selected from halo, cyano, amino, C1-4 alkyl, C3.6 cycloalkyl, alkoxy, nitro, carboxy, carbonyl, carboalkoxy, aminocarboxy, substituted aminocarbonyl, aminosulfonyl, substituted aminosulfonyl and alkoxyalkyl.
[0011] In some embodiments, compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein
Y is selected from a group consisting of substituted or unsubstituted cycloalkyl, cycloalkenyl, piperidinyl and piperazinyl, wherein each member of said group is substituted with up to four substituents. In some embodiments, Y is substituted with up to four substituents selected from, cyano, nitro, halo, hydroxyl, amino, alkoxy, substituted amino, C1-4 alkyl, Ci-4 halo alkyl and C3-4 cycloalkyl. In yet other embodiments, Y is substituted with up to four substituents selected from methyl, propyl, i-propyl, ethyl, hydroxyl, amino, halo, monohalo C1-3 alkyl, trihalo C1-3 alkyl and dihalo Ci-3 alkyl.
[0012] In some embodiments, new compounds of Formula II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein
Y is selected from a group consisting of substituted or unsubstituted cyclohexyl, cyclohexynyl, and piperidinyl, wherein each member of said group is substituted with up to four εubstituentε. [0013] In some embodiments, new compounds of Formula II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein
Y is substituted with up to four substituents independently selected from hydrogen, cyano, nitro, halo, hydroxyl, amino, alkoxy, substituted amino, Ci-4 alkyl, C1-4 halo alkyl and C3.4 cycloalkyl. In some embodiments, the substituents are independently selected from methyl, propyl, i-propyl, ethyl, hydroxyl, amino, halo, monohalo C1-S alkyl, trihalo C1 -3 alkyl and dihalo C1-3 alkyl.
[0014] In some embodiments, compounds of Formula II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Ri2 is selected from hydrogen, halo, methyl, ethyl and cyano.
[0015] In some embodiments, compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein
Y is selected from the group consisting of substituted or unsubstituted cyclohexyl, cyclohexenyl, piperidinyl, piperazinyl, wherein said the Y group may be substituted with up to three substituents selected from methyl, ethyl, hydroxyl, amino, and methoxy; Rj is selected from the group consisting of hydrogen, and amino; and R12 independently are each occurrence represents hydrogen, halo, or methyl.
[0016] In some embodiments, compounds of Formula II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided, wherein Y is selected from a group consisting of substituted cyclohexyl, cyclohexenyl, piperidinyl, and piperazinyl; Rj'is selected from the group consisting of hydrogen, -NH2 halo, Ci-4 alkyl,
C3.4 cycloalkyl, and -CN; Rj2 independently at each occurrence is selected from the group consisting of hydrogen, halo, Ci-4 alkyl, and amino; and R5 is selected from the group consisting of substituted or unsubstituted phenyl, cyclohexyl, cyclopentyl, thiazole, pyridyl, pyrimidyl and pyrazinyl, wherein the R5 group may be substituted with up to three substituents selected from halo, hydrogen, methyl, substituted aminocarbonyl and alkoxy.
[0017] In a representative embodiment, compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided, selected from the group consisting of N-(4-((lR,3R,4R,5S)-3-amino-4-hydroxy-5- methyic3/clohex34)pyridin-3-yI)-6-(256-difJi!oropheπyI)-5"f!.uoropicoϊinamides N-(4- ((1 R,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-2,6-difluorophenyl)-5-fluoro- picolinamide,N -(4'((3R,4R,5S)-3- amino~4 -hydroxy 5-methylpiperidin -1- yl)pyridin-3- yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide, 3-amino-N-(4-((3R,4R,5S)-3-amino-4- hydroxy- 5 -methylpiperidin- 1 -yl)pyridin-3 -yl)-6-(2 , 6-difluoroρhenyl)-5 -fluoropicolin- amide> and N-(4-((lR53S)-3-aminocyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5- fluoropicolinamide, and 3-amino-N-(4-((lR,3S)-3-aminocyclohexyl)pyridin-3-yl)-6-(2,6- difluorophenyl)-5 -fluoropicolinamide .
[0018] In other aspects, the present invention provides methods for treating Provirus Integration of Maloney Kinase (PIM Kinase) related disorders in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound of Formula I or II effective to inhibit PIM activity in the subject.
[0019] In other aspects, the present invention provides methods for treating PIM related disorders in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound of Formula I or II effective to reduce or prevent tumor growth in the subject.
[0020] In yet other aspects, the present invention provides methods for treating PIM related disorders in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound of Formula I or II effective to reduce or prevent tumor growth in the subject in combination with at least one additional agent for the treatment of cancer.
[0021] In yet other aspects, the present invention provides therapeutic compositions comprising at least one compound of Formula I or II in combination with one or more additional agents for the treatment of cancer, as are commonly employed in cancer therapy.
[0022] The compounds of the invention are useful in the treatment of cancers, including hematopoietic malignancies, carcinomas (e.g., of the lungs, liver, pancreas, ovaries, thyroid, bladder or colon), melanoma, myeloid disorders (e.g., myeloid leukemia, multiple myeloma and erythroleukemia), adenomas (e.g., villous colon adenoma), sarcomas (e.g., osteosarcoma), autoimmune diseases, allergic reactions and in organ transplantation rejection syndromes.
[0023] The invention further provides compositions, methods of use, and methods of manufacture as described in the detailed description of the invention. DESCRIPTION OF THE DRAWINGS
[0024] The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
[0025] FIGURE 1 is a graph showing the efficacy of the compound of Example 99 from an evaluation in the KMSl 1-luc xenograft model, as described in Example 144.
[0026] FIGURE 2 is a graph showing the efficacy of the compound of Example 70 from an evaluation in the KMSl 1-luc xenograft model, as described in Example 144.
[0027] FIGURE 3 is a graph showing the efficacy of the compound of Example 96 from an evaluation in the KMSl 1-luc xenograft model, as described in Example 144.
DETAILED DESCRIPTION
[0028] In accordance with one aspect of the present invention, new compounds, and their stereoisomers, tautomers and pharmaceutically acceptable salts, are provided of the Formula I:
Figure imgf000010_0001
I wherein,
Xj, X2, X3 and X4 are independently selected from CR2 and N; provided that at least one but not more than two of Xi, X2, X3 and X4 are N; Y is selected from a group consisting of cycloalkyl, partially unsaturated cycloalkyl, and heterocycloalkyl, wherein each member of said group may be substituted with up to four substituents;
Z2 and Z3 are independently selected from CR] 2 and N; provided that not more than one of Z2 and Z3 can be N;
Rj is selected from the group consisting of hydrogen, -NHR3 halo, hydroxyl, alkyl, cyano, and nitro;
R2 and R12 independently at each occurrence are selected from the group consisting of hydrogen, halo, hydroxyl, nitro, cyano, SO3H and substituted or unsubstituted alkyl, alkenyl, alkynyl, alkoxy, amino, cycloalkyl, hetero cycloalkyl, and partially saturated cycloalkyl;
R3 is selected from the group consisting of hydrogen, -CO-R4 and substituted or unsubstituted alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl;
R4 is selected from the group consisting of alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, and alkylamino; and
R5 represents a group selected from substituted or unsubstituted aryl, C3-C7 cycloalkyl, heteroaryl, partially unsaturated cycloalkyl and alkyl, wherein each said substituted R5 group may be substituted with up to four substituents selected from halo, cyano, amino, C1-4 alkyl, C3-6 cycloalkyl, alkoxy, nitro, carboxy, carbonyl, carboalkoxy, aminocarboxy, substituted aminocarbonyl, aminosulfonyl, substituted aminosulfonyl and alkoxy alkyl.
[0029] In some embodiments, new compounds of Formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein X2 is N and X1, X3 and X4 are CR2.
[0030] In some embodiments, new compounds of Formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R2 is selected from hydrogen, methyl, ethyl, halo, cyano.
[0031] In some embodiments, compounds of formula I, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Z2 and Z3 are CR12.
[0032} In some embodiments, compounds of formula I5 or a stereoisomer, tautomer, or pharmaceutically acceptable εalt thereof are provided wherein Rj2 is selected from hydrogen, halo, methyl, ethyl and cyamo. [0033] In other embodiments, new compounds, and their stereoisomers, tautomers and pharmaceutically acceptable salts, are provided of the Formula II
Figure imgf000012_0001
II wherein,
Y is selected from a group consisting of cyclohexyl, partially unsaturated cyclohexyl, and heterocyclo-C5-alkyl, wherein each member of said group may be substituted with up to four substituents;
Rj is selected from the group consisting of hydrogen, -NHR3 halo, hydroxyl, alkyl, C34 cycloalkyl, cyano, and nitro;
R12 independently at each occurrence is selected from the group consisting of hydrogen, halo, hydroxyl, amino, nitro, cyano, SO3H and substituted or unsubstituted alkyl, alkenyl, alkynyl, alkoxy, amino, cycloalkyl, hetero cycloalkyl, and partially saturated cycloalkyl;.
R3 is selected from the group consisting of hydrogen, -CO-R4 and substituted or unsubstituted alkyl, cycloalkyl, heterocyclyl, aryl and heteroaryl;
R4 is selected from the group consisting of alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, and alkylamino; and
R5 is represents a group selected from hydrogen and substituted or unsubstituted alkyl, Ce-cycloalkyl, aryl and heteroaryl.
[0034] In some embodiments, compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Y is selected from a group consisting of substituted or unsubstituted cycloalkyl, cycloalkenyl, piperidinyl and piperazinyl, wherein each member of said group is substituted with up to four substituents. In some embodiments, compounds of Formulas I or EI5 or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Y is selected from a group consisting of substituted or unsubstituted cyclohexyl, cyclohexynyl, and piperidinyl, wherein each member of said group is substituted with up to four substituents. In some embodiments, Y is substituted with up to four substituents selected from hydrogen, cyano, nitro, halo, hydroxyl, amino, alkoxy, substituted amino, Ci.4 alkyl, CM halo alkyl and C3-4 cycloalkyl. In yet other embodiments, Y is substituted with up to four substituents selected from methyl, propyl, i-propyl, ethyl, hydroxyl, amino, halo, monohalo C1^ alkyl, trihalo C]-3 alkyl and dihalo Ci-3 alkyl.
[0035] In some embodiments, compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R1 is hydrogen, amino or fluoro. In one embodiment are provided compounds of Formula II selected from Table I or Table II.
[0036] In some embodiments, compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R5 is selected from substituted or unsubstituted aryl, C5-C6 cycloalkyl, heteroaryl, partially unsaturated C5-C6 cycloalkyl and Ci-C4 alkyl, wherein each said group can be substituted with up to four substituents selected from halo, cyano, amino, Ci-4 alkyl, C3-5 cycloalkyl, alkoxy, nitro, carboxy, carbonyl, carboalkoxy, aminocarboxy, substituted aminocarbonyl, aminosulfonyl, substituted ammosulfonyl and alkoxyalkyl. In some embodiments, compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R5 is substituted or unsubstituted phenyl, wherein the phenyl group can be substituted with up to four substituents selected from hydrogen, cyano, nitro, halo, hydroxyl, amino, alkoxy, substituted amino, Ci-4 alkyl, Ci-4 halo alkyl and C3-4 cycloalkyl. In some embodiments, compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R5 is 2,6-difluororphenyl.
[0037] In some embodiments, compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein R12 is selected from hydrogen, halo, methyl, ethyl and cyano. In some embodiments, compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided wherein Y is selected from the group consisting of substituted or unsubstituted eye! ohe.ryl, cyclobexenyl, piperidinyl, pϊpeiazmyi, wherein safcf the Y group rosy be cubctituied with up to three substituentc selected from methyl. ethyl, hydroxyl, amino, and methoxy; R1 is selected from the group consisting of hydrogen, and amino; and R12 independently are each occurrence represents hydrogen, halo, or methyl.
[0038] In some embodiments, compounds of Formula II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are provided, wherein Y is selected from a group consisting of substituted cyclohexyl, cyclohexenyl, piperidinyl, and piperazinyl; R1 is selected from the group consisting of hydrogen, -NH2 halo, C)-4 alkyl, C3-4 cycloalkyl, and -CN; R12 independently at each occurrence is selected from the group consisting of hydrogen, halo, CM alkyl, and amino; and R5 is selected from the group consisting of substituted or unsubstituted phenyl, cyclohexyl, cyclopentyl, thiazole, pyridyl, pyrimidyl and pyrazinyl, wherein the R5 group may be substituted with up to three substituents selected from halo, hydrogen, methyl, substituted aminocarbonyl and alkoxy.
[0039] A preferred embodiment of the present invention is a compound of Formula (II), wherein Y is cyclohexyl, substituted with one to three substitutents, said substituents preferably selected from hydroxyl, amino, C1-4 alkyl or C1-4 halo alkyl, and more preferably, selected from methyl, hydroxyl, amino, and CF3, and most preferably from methyl, amino, and hydroxy; R1 is hydrogen, NH2, or halo (preferably, R1 is hydrogen, amino or fluoro, more preferably, Ri is hydrogen); R]2 are each independently hydrogen or halo (preferably, each R12 is hydrogen, chloro or fluoro); R5 is cyclohexyl, phenyl, or pyridyl, wherein said cyclohexyl, said phenyl and said pyridyl are each independently substituted with up to three substituents selected form halo, hydroxyl, C1-4 alkyl, and CM alkoxy (preferably, R5 is pyridyl or phenyl each independently substituted with up to three substitutents selected form halo, hydroxyl, Ci-4 alkyl or CM alkoxy, more preferably, R5 is phenyl substituted with up to three substituents selected form halo, hydroxyl, CM alkoxy and C1-4 alkyl, most preferably, phenyl substituted with up to three substitutents selected from fluoro, hydroxyl, methyl, ethyl, methoxy, or propoxy, most preferably, R5 is 2,6-difluorophenyl.
[0038] Yet another preferred embodiment of the present invention provides a compound of Formula II, wherein Y is piperidinyl substituted with methyl, hydroxyl, and amino; R] is hydrogen, NE2l or fluoro; Ri2 independently at each occurrence is selected from the group consisting of hydro gen, and halo, and Rs is pjtldyl, fluoro pyridyl, cyclσbexylj or phenyl wherein said phenyl is substituted with up to three substituents selected from fluoro, hydroxyl, and methyl, preferably R5 being difluoro phenyl. In a further preferred embodiment preferably Y is 3-amino-4-hydroχy-5-methylpipeπdin-l-yl; R1 is hydrogen; and R5 is 2,6-difluoro phenyl.
[0041] In a representative embodiment, preferred compounds of Formulas I or II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof are selected from the group consisting of N-(4-((3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)- 6-(2,6-difiuorophenyi)-5 -fluoropicolinamide; 3 -amino-N-(4-(( 1 R,3R,4S,5 S)-3 -amino-4- hydroxy-S-methylcyclohexy^pyridin-S-y^-ό-tl^-difluoropheny^picolinamide; N-(4- ((3R,4R,5S)-3-amino-4-hydroxy-5-methylpiperidin-l-yI)pyridin-3-yl)-6-(2,6- difluorophenyl)-5-fluoropicolinamide; N-(4-((3R,4R,5S)-3-amino-4-hydroxy-5- methylpiperidin-l-yl)pyridin-3-yl)-6-(256-difluorophenyl)-5-fluoropicolinamide; 3-amino-N-(4-((3R,4R,5S)-3-amino-4-hydroxy-5-methylpiperidin-l-yl)pyridin-3-yl)-6- (2,6-difluorophenyl)-5-fluoroρicolinamide; N-(4-((3R,4R,5S)-3-amino-4-hydroxy-5- methylpiperidin- 1 -yl)pyridin-3 -yl)-6-(2,6-difluoro-3-methylphenyl)-5 - fluoropicolinamide; 3-amino-N-(4-((lR,3 S)-3-aminocyclohexyl) pyridin-3-yl)-6-(2,6- difluorophenyl)-5-fluoropicolinamide; N-(4-((3S)-3-aminocyclohexyl)pyridin-3-yi)-6- (2;6-difluorophenyl)-5-fluoropicolinamide; N-(4-((lR,3R,4R,5S)-3-amino-4-hydroxy-5- methylcyclohejjyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide; N-(4-
((lR,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoro- picolinamide); N-(4-((3R,4R,5S)-3-amino-4-hydroxy-5-methylpiperidin-l-yl)pyridin- 3 -yl)-6-(2,6-difluorophenyl)-5 -fluoropicolinamide; N-(4-((lR,3S)-3 -aminocyclohexyl)- pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide; 3-amino-N-(4-((3R,4R,5S)-3- amino-4-hydroxy-5-methylpiperidin-l-yl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoro- picolinamide; and 3-amino-N-(4-((lR,3S)-3-aminocyclohexyl)pyridin-3-yl)-6-(2,6- difluorophenyl)-5 -fluoropicolinamide .
[003942J In other aspects, the present invention provides methods for treating Provirus Integration of Maloney Kinase (PIM Kinase) related, disorders in a human or animal, subject in need of such treatment comprising administering to said subject an amount of a. compound of Formula I or TT effective to inhibit PIM activity in the subject. A preferred embodiment of the present invention provides a method for treating a condition by modulation of Provirus Integration of Maloney Kinase (PIM Kinase) activity comprising administering to a patient in need of such treatment an effective amount of a compound of Formula I.
[0043] In other aspects, the present invention provides methods for treating PIM related disorders in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound of Formula I or II effective to reduce or prevent tumor growth in the subject. In yet other aspects, the present invention provides methods for treating PIM related disorders in a human or animal subject in need of such treatment comprising administering to said subject an amount of a compound of Formula I or II effective to reduce or prevent tumor growth in the subject in combination with at least one additional agent for the treatment of cancer.
[0044] hi yet other aspect, the present invention provides therapeutic compositions comprising at least one compound of Formula I or II in combination with one or more additional agents for the treatment of cancer, as are commonly employed in cancer therapy. The present invention thus provides a pharmaceutical composition comprising a compound of Formula I or Formula II. A preferred embodiment of this aspect provides a pharmaceutical composition comprising a compound selected from N- (4-((3S55S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5- fluoropicolinamide; 3-amino-N-(4-((lR,3R,4S,5S)-3-amino-4-hydroxy-5- methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)picolinamide; N-(4-((3R,4R,5S)-3- amino-4-hydroxy-5-methylpiperidin- 1 -yl)pyridin-3 -yl)-6-(2 ,6-difluorophenyl)-5- fluoropicolinamide; 3-amino-N-(4-((l R,3 S)-3-aminocyclohexyl) pyridin-3-yl)-6-(2,6- difluorophenyl)-5-fluoropicolinamide; N-(4-((3S)-3-aminocyclohexyl)pyridin-3-yl)-6- (2J6-difluorophenyl)-5-fluoropicolinamide; N-(4-((lR,3RJ4R,5S)-3-amino-4-hydroxy-5- methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide; N-(4-
(( 1 R,3 S ,5 S)-3 -amino- 5 -methylcyclohexyl)pyridin-3 -yl)- 6- (2 , 6-difluorophenyl)- 5 -fluoropicolinamide); N-(4-((3R,4R,5S)-3-amino-4-hydroxy-5-methylpiperidin-l-yl)pyridin- 3-yl)-6-(2,6-difJuorophenyI)-5-fiuoropicoIήiamide; N-(4-((lRs3S)-3-ammocycJohex.yl)- pyridin-3-yi)-6-(2,6-difluorophenyl)-5-fiuoropj.colinam.ide; 3-amino-N-(4-((3K<4R55S)-3~ amino-4-hydroxy-5-methylpiperidin-l-yl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoro- picolinamide; 3-amino-N-(4-((lR,3S)-3-ammocyclohexyl)pyridin-3-yl)-6-(2,6-difluoro- phenyl)-5-fluoropicolinamide; N-(4-((3R,4R,5S)-3-amino-4-hydroxy-5-methylpiperidin- l-yl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide; 3-amino-N-(4-
((3R,4R,5S)-3-amino-4-hydroxy-5-methylpiperidin-l-yl)pyridin-3-yl)-6-(2,6- difluorophenyl)-5-fluoropicolinamide; and N-(4-((3R,4R,5S)-3-amino-4-hydroxy-5- methylpiperidin- 1 -yl)pyridin-3 -yl)-6-(2,6-difluoro-3 -methylphenyl)-5 - fluoropicolinamide. Another preferred embodiment provides a pharmaceutical composition further comprising an additional agent for the treatment of cancer, wherein preferably the additional agent is selected from irinotecan, topotecan, gemcitabine, 5- fluorouracil, leucovorin carboplatin, cisplatin, taxanes, tezacϊtabine, cyclophosphamide, vinca alkaloids, imatinib (Gleevec), anthracyclines, rituximab, and trastuzumab.
[0040] The compounds of the invention are useful in the treatment of cancers, including hematopoietic malignancies, carcinomas (e.g., of the lungs, liver, pancreas, ovaries, thyroid, bladder or colon), melanoma, myeloid disorders (e.g., myeloid leukemia, multiple myeloma and erythroleukemia), adenomas (e.g., villous colon adenoma), sarcomas (e.g., osteosarcoma), autoimmune diseases, allergic reactions and in organ transplantation rejection syndromes.
[0046] In yet another aspect of the present invention is provided a use of a compound of Formula I or Formula II for preparing a medicament for treating a condition by modulation of Provirus Integration of Maloney Kinase (PIM Kinase) activity . In a preferred embodiment of this aspect of the invention the condition is a cancer selected from carcinoma of the lungs, pancreas, thyroid, ovarian, bladder, breast, prostate, or colon, melanoma, myeloid leukemia, multiple myeloma and erythro leukemia, villous colon adenoma, and osteosarcoma.
[0047] In another aspect, the present invention relates to methods of inhibiting the activity of at least one kinase selected from the group consisting of Piml, Pim2 and Pim3, in a subject, or treating a biological condition mediated by at least one of Piml, Piϊr.2 and Pim3, in a human or animal subject in need of such treatment, comprising administering to the subject at least one compound of Formula I or JI in an amount effective to inhibit the kinase in the subject. The therapeutic compounds are useful for treating patients with a need for such inhibitors (e.g., those suffering from cancer mediated by abnormal serine/threonine kinase receptor signaling).
DEFINITIONS
[0048] "PIM inhibitor" is used herein to refer to a compound that exhibits an IC50 with respect to PIM Kinase activity of no more than about 100 μM and more typically not more than about 50 μM5 as measured in the PIM depletion assays described hereinbelow.
[0049] The phrase "alkyl" refers to alkyl groups that do not contain heteroatoms. Thus the phrase includes straight chain alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and the like. The phrase also includes branched chain isomers of straight chain alkyl groups, including but not limited to, the following which are provided by way of example: -CH(CHa)2, -CH(CH3)(CH2CH3), -CH(CH2CH3K -C(CH3)3j -C(CH2CH3)3, -CH2CH(CH3)2, -CH2CH(CH3)(CH2CH3), -CH2CH(CH2CH3)25 -CH2C(CH3)3, -CH2C(CH2CH3)3, -CH(CH3)CH(CH3)(CH2CH3), -CH2CH2CH(CH3)2J -CH2CH2CH(CH3)(CH2CH3), -CH2CH2CH(CH2CH3)Z, -CH2CH2C(CH3)3, -CH2CH2C(CH2CH3)3, -CH(CH3)CH2- CH(CH3)2, -CH(CH3)CH(CH3)CH(CH3)25 -CH(CH2CH3)CH(CH3)CH(CH3)(CH2CH3), and others. Thus the phrase alkyl groups includes primary alkyl groups, secondary alkyl groups, and tertiary alkyl groups. Preferred alkyl groups include straight and branched chain alkyl groups having 1 to 12 carbon atoms. A preferred "alkyl" definition refers to CM straight chain alkyl groups such as methyl, ethyl, n-propyl, and n-butyl. The preferred alkyl definiton also includes C3-5 branched alkyl groups, including CH(CH3 )2, CH2CH(CH3)2, CH(CH3)CH2CH3, C(CH3)3, CH(CH3)CH2CH2CH3, CH(CH3)CH(CH3)2, CH2CH(CH3)CH2CH3, CH2CH2CH(CH3)2, and CH(CH2CH3)2, etc.
[0050] The term "alkenyl" refers to alkyl groups as defined above, wherein there is at least one point of unsaturation, i.e., wherein two adjacent carbon atoms are attached by a double bond. The term "alkynyl" refers to alkyl groups wherein two adjacent carbon atoms are attached by a triple bond. The term 'alkoxy" refers to -OR, wherein R is alkyl.
[004Ϊ] As used hereia5 the term "baiσger/ or "halo" refers to chloros brcrασ, fiuoro and rødα groups. "RaJoafkyl" refers to an afpyl radical substituted with one or more halogen atoms. The term "haloalkyl" thus includes monohalo alkyl, dihalo alkyl, trihalo alkyl and the like. Representative monohalo alkyl groups include -CH2F, - CH2Cl, -CH2CH2F, -CH2CH2Cl, -CH(F)CH3, -CH(Cl)CH3; representative dihalo alkyl groups include CHCl2, -CHF2, -CCl2CH3, -CH(Cl)CH2Cl, -CH2CHCl2, -CH2CHF2; representative trihalo alkyl groups include -CCl3, -CF3, -CCl2CH2Cl, -CF2CH2F, - CH(Cl)CHCl2, -CH(F)CHF2; and representative perhalo alkyl groups include -CCl3, - CF3, -CCl2CCl3, -CF2CF3.
[0042] "Amino" refers herein to the group -NH2. The term "alkylamino" refers herein to the group -NRR' where R and R' are each independently selected from hydrogen or a lower alkyl. The term "arylamino" refers herein to the group -NRR1 where R is aryl and R' is hydrogen, a lower alkyl, or an aryl. The term "aralkylamino" refers herein to the group -NRR' where R is a lower aralkyl and R' is hydrogen, a loweralkyl, an aryl, or a loweraralkyl. The term cyano refers to the group -CN. The term nitro refers to the group -NO2.
[0043] The term "alkoxyalkyl" refers to the group -alk! -OaIk2 where alkj is alkyl or alkenyl, and alk2 is alkyl or alkenyl. The term "loweralkoxyalkyl" refers to an alkoxyalkyl where alki is loweralkyl or loweralkenyl, and alk2 is loweralkyl or loweralkenyl. The term "aryloxyalkyl" refers to the group -alkyl-O-aryl. The term "aralkoxyalkyl" refers to the group -alkylenyl-O-aralkyl, where aralkyl is a loweraralkyl.
[0044] The term "aminocarbonyl" refers herein to the group -C(O)-NH2 . "Substituted aminocarbonyl" refers herein to the group -C(O)-NRR' where R is loweralkyl and R1 is hydrogen or a loweralkyl. In some embodiments, R and R', together with the N atom attached to them may be taken together to form a "heterocycloalkylcarbonyl" group. The term "arylaminocarbonyl" refers herein to the group -C(O)-NRR' where R is an aryl and R' is hydrogen, loweralkyl or aryl. "aralkylaminocarbonyl" refers herein to the group -C(O)-NRR' where R is loweraralkyl and R' is hydrogen, loweralkyl, aryl, or loweraralkyl.
[0045] "Aminosulfonyl" refers herein to the group -S(O)2-NH2. "Substituted aminosulfonyl" refers herein to the group -S(O)2-NRR' where R is loweralkyl and R' is hydrogen or a loweralkyl. The term "aralkylaminosulfonlyaryl" refers herein to the group -aryi-S(0)2-NH-aralkyIs where the aralkyl is loweraralkyl,
[0046] "CarfaonyF refers to the divalent group -C(O)-, "Carboxy" refers to- C(=O)-OH. "AlfcσxyσarbσnyJ" refers to esfer -C(KJ)-OR wherein R is alkyl "Loweralkoxycarbonyl" refers to ester -C(=O)-OR wherein R is loweralkyl. "Cycloalkyloxycarbonyl" refers to -C(=O)-OR wherein R is cycloalkyl.
[0047] "Cycloalkyl" refers to a mono- or polycyclic, carbocyclic alkyl substituent. Carbocycloalkyl groups are cycloalkyl groups in which all ring atoms are carbon. Typical cycloalkyl substituents have from 3 to 8 backbone (i.e., ring) atoms in which each backbone atom is either carbon or a heteroatom. The term "heterocycloalkyl" refers herein to cycloalkyl substituents that have from 1 to 5, and more typically from 1 to 4 heteroatoms in the ring structure. Suitable heteroatoms employed in compounds of the present invention are nitrogen, oxygen, and sulfur. Representative heterocycloalkyl moieties include, for example, morpholino, piperazinyl, piperidinyl and the like. Carbocycloalkyl groups are cycloalkyl groups in which all ring atoms are carbon. When used in connection with cycloalkyl substituents, the term "polycyclic" refers herein to fused and non-fused alkyl cyclic structures. The term "partially unsaturated cycloalkyl", "partially saturated cycloalkyl", and "cycloalkenyl" all refer to a cycloalkyl group wherein there is at least one point of unsaturation, i.e., wherein to adjacent ring atoms are connected by a double bond or a triple bond. Illustrative examples include cyclohexynyl, cyclohexynyl, cyclopropenyl, cyclobutynyl, and the like.
[0048] The terms "substituted heterocycle", "heterocyclic group" or "heterocycle" as used herein refers to any 3- or 4-membered ring containing a heteroatom selected from nitrogen, oxygen, and sulfur or a 5- or 6-membered ring containing from one to three heteroatoms selected from the group consisting of nitrogen, oxygen, or sulfur; wherein the 5-membered ring has 0-2 double bonds and the 6-membered ring has 0-3 double bonds; wherein the nitrogen and sulfur atom maybe optionally oxidized; wherein the nitrogen and sulfur heteroatoms may be optionally quarternized; and including any bicyclic group in which any of the above heterocyclic rings is fused to a benzene ring or another 5- or 6-membered heterocyclic ring independently defined above. The term or "heterocycloalkyl" as used herein refers to a 5- or 6-membered ring containing from one to three heteroatoms selected from the group consisting of nitrogen, oxygen, or sulfur, wherein the ring has no double bonds. For example, the term heterocyclo -C5 -alkyl refers to a 6-membered ring containing 5 carbon atoms and a heterαatonij such as N. The term "heterocycle" thus includes rings in which nitrogen is the heteroatom as weL ss partially and fully-saturated rings. Preferred heterocycleε ircl/ide, for example-; diazapkiyf, pyrryf5 pyrroliπyJ, pyrrolidinyl, pyrazαlyf , pyraZoIinyf 5 pyrazolidinyl, imidazoyl, imidazolinyl, imidazolidinyl, pyridyl, piperidinyl, pyrazinyl, piperazinyl, N-methyl piperazinyl, azetidinyl, N-methylazetidinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazoϋdinyl, isoxazolyl, isoazolidinyl, morpholinyl, thiazolyl, thiazolidinyl, isothiazolyl, isothiazolidinyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, furyl, thienyl, triazolyl and benzothienyl.
[0049] Heterocyclic moieties can be unsubstituted or monosubstituted or disubstituted or trisubstituted with various substituents independently selected from hydroxy, halo, oxo (C=O)5 alkylimino (RN=, wherein R is a loweralkyl or loweralkoxy group), amino, alkylamino, dialkylamino, acylaminoalkyl, alkoxy, thioalkoxy, polyalkoxy, loweralkyl, cycloalkyl or haloalkyl.
[0050] The heterocyclic groups may be attached at various positions as will be apparent to those having skill in the organic and medicinal chemistry arts in conjunction with the disclosure herein.
[0051] Representative heterocyclics include, for example, imidazolyl, pyridyl, piperazinyl, piperidinyl, azetidinyl, thiazolyl, furanyl, triazolyl benzimidazolyl, benzothiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, indolyl, naphthpyridinyl, indazolyl, and quinolizinyl.
[0052] "Aryl" refers to optionally substituted monocyclic and polycyclic aromatic groups having from 3 to 14 backbone carbon or hetero atoms, and includes both carbocyclic aryl groups and heterocyclic aryl groups. Carbocyclic aryl groups are aryl groups in which all ring atoms in the aromatic ring are carbon. The term "heteroaryl" refers herein to aryl groups having from 1 to 4 heteroatoms as ring atoms in an aromatic ring with the remainder of the ring atoms being carbon atoms. When used in connection with aryl substituents, the term "polycyclic aryl" refers herein to fused and non-fused cyclic structures in which at least one cyclic structure is aromatic, such as, for example, benzodioxozolo (which has a heterocyclic structure fused to a phenyl group, i.e., , naphthyl, and the like. Exemplary aryl moieties employed as substituents in compounds of the present invention include phenyl, pyridyl, pyrimidinyl, thiazolyl, indolyl, imidazolyl, oxadiazolyl, tetrazolyl, pyrazinyl, triazolyl, thiophenyl, furanyl, quinolinyl, purinyl, naphthyl, benzothiazolyl, benzopyridyl, and benzimidazolyl, and the like.
[0053] "Optionally substituted" or "substituted" refers to the replacement of ens oi" more hydrogen atoms with a monovalent or divalent radical. Suitable substitution groups include, for example, hydroxy, nitro, amino,, imino, cyaao, halo, thio, sulfoπyJ, thioamido, amidino, imidino, oxo, oxamidmo, methoxamidino, imidino, guanidino, sulfonamide carboxyl, formyl, loweralkyl, haloloweralkyl, loweralkylamino, haloloweralkylamino, loweralkoxy, haloloweralkoxy, loweralkoxyalkyl, alkylcarbonyl, aminocarbonyl, arylcarbonyl, aralkylcarbonyl, heteroarylcarbonyl, heteroaralkylcarbonyl, alkylthio, atninoalkyl, cyanoalkyl, aryl and the like.
[0054] The substitution group can itself be substituted. The group substituted onto the substitution group can be carboxyl, halo; nitro, amino, cyano, hydroxy, loweralkyl, loweralkoxy, aminocarbonyl, -SR, thioamido, -SO3H, -SO2R or cycloalkyl, where R is typically hydrogen, hydroxyl or loweralkyl.
[0055] When the substituted substituent includes a straight chain group, the substitution can occur either within the chain (e.g., 2-hydroxypropyl, 2-aminobutyl, and the like) or at the chain terminus (e.g., 2-hydroxyethyl, 3-cyanopropyl, and the like). Substituted substituents can be straight chain, branched or cyclic arrangements of covalently bonded carbon or heteroatoms. It is understood that the above definitions are not intended to include impermissible substitution patterns (e.g., methyl substituted with five fluoro groups or a halogen atom substituted with another halogen atom). Such impermissible substitution patterns are well known to the skilled artisan.
[0056] It will also be apparent to those skilled in the art that the compounds of the invention, or their stereoisomers, as well as the pharmaceutically acceptable salts, esters, metabolites and prodrugs of any of them, may be subject to tautomerization and may therefore exist in various tautomeric forms wherein a proton of one atom of a molecule shifts to another atom and the chemical bonds between the atoms of the molecules are consequently rearranged. See, e.g., March, Advanced Organic Chemistry- Reactions, Mechanisms and Structures, Fourth Edition, John Wiley & Sons, pages 69-74 (1992). As used herein, the term "tautomer" refers to the compounds produced by the proton shift, and it should be understood that the all tautomeric forms, insofar as they may exist, are included within the invention.
[0057] The compounds of the invention, or their tautomers, as well as the pharmaceutically acceptable salts, esters, metabolites and prodrugs of any of them, may comprise asymmetrically substituted carbon atoms. Such asymmetrically substituted carbon atoms can result in the compounds of the invention existing in enantiomers, df&slereomerSj and oilier stereoisomer^ forms that may be defined, iu terms, of absolute εfø"eocbemr_tr;5 such ac hi (R) or (S)- forms, As a rssuH, all such possibfe isomers. individual stereoisomers in their optically pure forms, mixtures thereof, racemic mixtures (or "racemates"), mixtures of diastereomers, as well as single diastereomers of the compounds of the invention are included in the present invention. The terms "S" and "R" configuration, as used herein, are as defined by the IUPAC 1974 RECOMMENDATIONS FOR SECTION E, FUNDAMENTAL STEREOCHEMISTRY, PureAppl Chem. 45:13-30 (1976). The terms α and β are employed for ring positions of cyclic compounds. The α-side of the reference plane is that side on which the preferred substituent lies at the lower numbered position. Those substituents lying on the opposite side of the reference plane are assigned β descriptor. It should be noted that this usage differs from that for cyclic stereoparents, in which "α" means "below the plane" and denotes absolute configuration. The terms α and β configuration, as used herein, are as defined by the CHEMICAL ABSTRACTS INDEX GUIDE-APPENDIX IV (1987) paragraph 203.
[0058] As used herein, the term "pharmaceutically acceptable salts" refers to the nontoxic acid or alkaline earth metal salts of the compounds of Formula I or II. These salts can be prepared in situ during the final isolation and purification of the compounds of Formula I or II, or by separately reacting the base or acid functions with a suitable organic or inorganic acid or base, respectively. Representative salts include but are not limited to the following: acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, fumarateτ hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, pamoate, pectinate, persulfate, 3-phenylproionate, picrate, pivalate, propionate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate and undecanoate. Also, the basic nitrogen-containing groups can be quaternized with such agents as loweralkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides, and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others. Water or oil-soluble or dispersible products are thereby obtained. fθO59J Examples of acids which may be employed to form pharmaceutically acceptable acid addition salts Liducfe such inorganic acidc as hydrochloric acid, εulftix ^id and phoεp^orh acid and εuc^ organic adds aε oxafic scid. maido add, methanesulfonic acid, succinic acid and citric acid. Basic addition salts can be prepared in situ during the final isolation and purification of the compounds of formula (I), or separately by reacting carboxylic acid moieties with a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation or with ammonia, or an organic primary, secondary or tertiary amine. Pharmaceutically acceptable salts include, but are not limited to, cations based on the alkali and alkaline earth metals, such as sodium, lithium, potassium, calcium, magnesium, aluminum salts and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like. Other representative organic amines useful for the formation of base addition salts include diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like.
[0060] As used herein, the term "pharmaceutically acceptable ester" refers to esters, which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular esters include formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.
[0061] The term "pharmaceutically acceptable prodrugs" as used herein refers to those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention. The term "prodrug" refers to compounds that are rapidly transformed in vivo to yield the parent compound of the above formula, for example by hydrolysis in blood. A thorough discussion is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol.. 14 of the A. CS. Symposium Series, and in Edward B. Roche, βd5 Bioreversible Carrierε in Drag Design s American Pharmaceutical Association and Pergamon Press, ?987; both of which are incorporated herein by reference [0062] Any formula given herein is also intended to represent unlabeled forms as well as isotopically labeled forms of the compounds, lsotopically labeled compounds have structures depicted by the formulas given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, and chlorine, such as 2H, 3H, 11C, 13C, 14C, 15N, 18F 31P, 32P, 35S, 36Cl, 125I respectively. The invention includes various isotopically labeled compounds as defined herein, for example those into which radioactive isotopes, such as 3H, 13C, and 14C , are present. Such isotopically labelled compounds are useful in metabolic studies (with 14C), reaction kinetic studies (with, for example H or H), detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays, or in radioactive treatment of patients. In particular, an 18F or labeled compound may be particularly desirable for PET or SPECT studies. Isotopically labeled compounds of this invention and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the schemes or in the examples and preparations described below by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent
[0073] Further, substitution with heavier isotopes, particularly deuterium (i.e., 2H or D) may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements or an improvement in therapeutic index. It is understood that deuterium in this context is regarded as a substituent of a compound of the formula (I). The concentration of such a heavier isotope, specifically deuterium, may be defined by the isotopic enrichment factor. The term "isotopic enrichment factor" as used herein means the ratio between the isotopic abundance and the natural abundance of a specified isotope. If a substituent in a compound of this invention is denoted deuterium, such compound has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5% deuterium incorporation at each designated deuterium atom), at least 4000 (60% deuterium incorporation), at least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium incorporation), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).
[0074] Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the accompanying Examples and Preparations using an appropriate isotopically-labeled reagents in place of the non-labeled reagent previously employed.
[0075] It will be apparent to those skilled in the art that the compounds of the invention, or their tautomers, prodrugs and stereoisomers, as well as the pharmaceutically acceptable salts, esters and prodrugs of any of them, may be processed in vivo through metabolism in a human or animal body or cell to produce metabolites. The term "metabolite" as used herein refers to the formula of any derivative produced in a subject after administration of a parent compound. The derivatives may be produced from the parent compound by various biochemical transformations in the subject such as, for example, oxidation, reduction, hydrolysis, or conjugation and include, for example, oxides and demethylated derivatives. The metabolites of a compound of the invention may be identified using routine techniques known in the art. See, e.g., Bertolini, G. et at., J. Med. Chem. 40:2011-2016 (1997); Shan, D. et al., J. Pharm. ScL SS(7):765-767; Bagshawe K., Drug Dev. Res. 34:220-230 (1995); Bodor, N., Advances in Drug Res. 75:224-331 (1984); Bundgaard, H., Design of Prodrugs (Elsevier Press 1985); and Larsen, I. K.5 Design and Application of Prodrugs, Drug Design and Development (Krogsgaard-Larsen et al., eds., Harwood Academic Publishers, 1991). It should be understood that individual chemical compounds that are metabolites of the compounds of formula I, formula II, or their tautomers, prodrugs and stereoisomers, as well as the pharmaceutically acceptable salts5 esters and prodrugs of any of them, are included within the invention. [0076] The term "cancer" refers to cancer diseases that can be beneficially treated by the inhibition of Pirn kinase, including, for example, solid cancers, such as carcinomas (e.g., of the lungs, pancreas, thyroid, ovarian, bladder, breast, prostate, or colon), melanomas, myeloid disorders (e.g., myeloid leukemia, multiple myeloma and erythroleukemia), adenomas (e.g., villous colon adenoma) and sarcomas (e.g., osteosarcoma).
SYNTHETIC METHODS
[0077] The compounds of the invention can be obtained through procedures known to the skilled in the art. For example, as shown in Scheme 1 , cyclohexanediones can be converted via monotriflates to the corresponding cyclohexenoneboronate esters which can undergo palladium mediated carbon bond formation with 4-chloro, 3-nitro pyridine to yield nitropyridine substituted cyclohexenones I. Reduction of the enone functionality can yield a cyclohexenol II which upon alcohol protection, nitro and alkene reduction, amide coupling and deprotection can yield cyclohexanol amides III. Cyclohexenol II can also undergo Mitsunobu reaction with phthalimide to yield a protected amϊnocyclohexene IV. Following nitro and alkene reduction, phthalimide protected aminocyclohexyl pyridyl aniline Va can undergo amide coupling and deprotection, to yield aminocyclohexane amides VI. The corresponding Boc protected aminocyclohexane pyridyl aniline Vb can also be prepared from cyclohexenol II in the following manner: alcohol protection, alkene and nitro reduction, pyridyl amine Cbz protection, silyl ether deprotection, Dess-Martin oxidation to the cyclohexanone, reductive amination with benzylamine, Cbz and Bn deprotection and primary aliphatic amine Boc protection. In the amide products III and VI, if R2 is halo or triflate, the amides III and VI can be further modified by standard modifications to introduce substituted aryls, alkyls and heteroaryls at R2. For example, if R2 is Br, by reaction with boronic acids or organometallic reagents, or conversion to the corresponding boronate ester and reaction with aryl/heteroaryl halides or triflates, a variety of R2 modifications are possible. Scheme 1.
Figure imgf000028_0001
DMF
Figure imgf000028_0002
[0078] Alternatively, as shown in Scheme 2, cyclohexenol II can be dehydrated yielding a cyclohexadiene which upon epoxidation (via bromohydrin formation and HBr elimination or from mCPB A directly) and azide epoxide opening yields cyclohexfenyl Bzido alcohol VI. Cyclohexenyl azido alcohol VI can be converted to the trans protected amino hydroxy aniline Vila by azide reduction, alcohol protection and alkene and nitro reduction. Alternatively, the cyclohexenyl azido alcohol VI can be converted to the protected cis amino hydroxy aniline VIIb by azide reduction and Boc protection, alcohol mesylation and intramolecular cyclization to the cis cyclic carbamate, followed by Boc protection and alkene and nitro reduction. The resulting cyclohexylpyridyl anilines Vila and VIIb can be converted to the corresponding pyridine amides Villa and VIIIb by amide coupling, acetate or cyclic carbamate cleavage and Boc deprotection. IfR2 is halo or triflate, the amides Villa and VIIIb can be further modified by standard modifications to introduce substituted aryls, alkyls and heteroaryls at R2 after amide bond, formation and prior to full deprotection. For example, if R2 is Br, by reaction with boronic a.ddε or orgaiaomatalϋc reagents, or conversion to the corresponding boronate ester and reaction with aryl/heteroaryl halides or triflates, a variety of R2 modifications are possible.
Scheme 2.
Figure imgf000029_0001
[0079] Alternatively, as shown in Scheme 3, trisubstituted 5-alkyl, 4-hydroxy, 3-aminopiperidines can be prepared and modified to yield trisubstituted 5-alkyl, 4-hydroxy, 3-aminopiperidinyl pyridine amides IX as follows. Reaction of Garner's aldehyde with (R)-4-benzyl-3-propionyloxazolidin-2-one followed by TBS protection of the resulting alcohol affords compound X. Reduction of the oxazolidinone followed by introduction of the azide group yields intermediate XI. Deprotection under acidic conditions reveals the corresponding amino alcohol, which upon protection with the Boc group followed by mesylation of the primary alcohol yields intermediate XIL Reduction of the azide affords formation of the piperidine which is subsequently reacted with 4-chΪGTO-3-mtropyridϊπe, reduced to the amine, ooupϊed with the corresnondmg carboxylic acid and deprotected to provide trisubstituted 5-røethyJ54-hydroxγ-3- aminopiperidinyl pyridine amides IX. IfR1 is halo or triflate, the amide IX can be further modified by standard modifications to introduce substituted aryls, alkyls and heteroaryls at Rj after amide bond formation and prior to full deprotection. For example, if Rj is Br, by reaction with boronic acids or organometallic reagents, or conversion to the corresponding boronate ester and reaction with aryl/heteroaryl halides or triflates, a variety of Rj modifications are possible.
Scheme 3.
Figure imgf000030_0001
[0080] Alternatively, as shown in Scheme 4, trisubstituted 5-methyl, 4-hydroxy, 3-aminopiperidines can also be prepared and modified to yield trisubstituted 5-methyl, 4-hydroxy, 3-aminopiperidinyl amides XIII as follows. Reaction of crotyl boronate esters with SerOBn aldehyde followed by cyclic carbamate formation, alkene oxidative cleavage and reduction yields hydroxyl compound XIV. Benzyl deprotection followed by bistosylation and reaction with p-methoxybenzylamine, and amine deprotection yields piperidine XV. Reaction of substituted piperidine XV with halo nitro substituted arenes or heteroarenes followed by carbamate protection, nitro reduction, amide coupling, cyclic carbamate opening and deprotection yields trisubstituted 5-methyl, 4-hydroxys 3-aminopiperidinyl amides XIII. If R3 is halo or triflate, the amide
XV can be further modified by standard modifications to introduce substituted aryls, alkyls and heteroaryls at R3. For example, if R3 is Br1 by reaction with boronic acids or orgairømetaJlϊc reagents,, or conversion 1c the corresponding horosate ester snή reaction with aryl/heteroaryl halides or triflates, a variety of R3 modifications are possible. Scheme 4,
Figure imgf000031_0001
Figure imgf000031_0002
XIII
[0081] The compounds of the invention are useful in vitro and/or in vivo in inhibiting the growth of cancer cells. The compounds may be used alone or in compositions together with a pharmaceutically acceptable carrier or excipient. Suitable pharmaceutically acceptable carriers or excipients include, for example, processing agents and drug delivery modifiers and enhancers, such as, for example, calcium phosphate, magnesium stearate, talc, monosaccharides, disaccharides, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, dextrose, hydroxypropyl-β- cyclodextrin, polyvinylpyrrolidinone, low melting waxes, ion exchange resins, and the like, as well as combinations of any two or more thereof. Other suitable pharmaceutically acceptable excipients are described in "Remington's Pharmaceutical Sciences," Mack Pub. Co., New Jersey (1991), incorporated herein by reference.
[0082] Effective amounts of the compounds of the invention generally include any amount sufficient to detectably inhibit Pirn activity by any of the assays described herein, by other Pirn kinase activity assays known to those having ordinary skill in the art or by detecting an inhibition or alleviation of sympi orris of cancer. The amount of active mgredieoi that may be combined with Ihe carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination, and the severity of the particular disease undergoing therapy. The therapeutically effective amount for a given situation can be readily determined by routine experimentation and is within the skill and judgment of the ordinary clinician.
[0083] For purposes of the present invention, a therapeutically effective dose will generally be a total daily dose administered to a host in single or divided doses may be in amounts, for example, of from 0.001 to 1000 mg/kg body weight daily and more preferred from 1.0 to 30 mg/kg body weight daily. Dosage unit compositions may contain such amounts of submultiples thereof to make up the daily dose.
[0084] The compounds of the present invention may be administered orally, parenterally, sublingually, by aerosolization or inhalation spray, rectally, or topically in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired. Topical administration may also involve the use of transdermal administration such as transdermal patches or ionophoresis devices. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, or infusion techniques.
[0085] Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3 -propanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or di-glycerides. In addition, fatty acids such as oleic acid find use in the preparation of mjectables.
[0086] Suppositories for recta] administration of the drug can be prepared by mixing the drug with a suitable ncπimtatiiig excipieπf such as cocoa butler and polyethylene glycols, which are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
[0087] Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings. Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, cyclodextrins, and sweetening, flavoring, and perfuming agents.
[0088] The compounds of the present invention can also be administered in the form of liposomes. As is known in the art, liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multilamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any nontoxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used. The present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients, and the like. The preferred lipids are the phospholipids and phosphatidyl cholines (lecithins), both natural and synthetic. Methods to form liposomes are known in the art. See, for example, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N. W., p. 33 et seq. (1976).
[0063] While the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other agents used in the treatment of cancer. The compounds of the present invention are also useful in combination with known therapeutic agents and anti-cancer agents, and combinations of the presently disclosed compounds with other anti-cancer or chemotherapeutic agents are within the scope of the invention. Examples of such agents can be romid in Cancer Principles and Practice σf Oncology, V. T. Bevsla and S, HeJfman (editors), <& edition (Feb. f 5, 2001 ). Lippiπcott Wiϊϊiamc & Wffkms Publishers. A person of ordinary skill in the art would be able to discern which combinations of agents would be useful based on the particular characteristics of the drugs and the cancer involved. Such anti-cancer agents include, but are not limited to, the following: estrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic/cytostatic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors and other angiogenesis inhibitors, inhibitors of cell proliferation and survival signaling, apoptosis inducing agents and agents that interfere with cell cycle checkpoints. The compounds of the invention are also useful when coadministered with radiation therapy.
[0064] Therefore, in one embodiment of the invention, the compounds of the invention are also used in combination with known anticancer agents including, for example, estrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors, HIV protease inhibitors, reverse transcriptase inhibitors, and other angiogenesis inhibitors.
[0065] In certain presently preferred embodiments of the invention, representative agents useful in combination with the compounds of the invention for the treatment of cancer include, for example, irinotecan, topotecan, gemcitabine, 5- fluorouracil, leucovorin carboplatin, cisplatin, taxanes, tezacitabine, cyclophosphamide, vinca alkaloids, imatmib (Gleevec), anthracyclines, rituximab, trastuzumab, as well as other cancer chemotherapeutic agents.
[0066] The above compounds to be employed in combination with the compounds of the invention will be used in therapeutic amounts as indicated in the Physicians' Desk Reference (PDR) 47th Edition (1993), which is incorporated herein by reference, or such therapeutically useful amounts as would be known to one of ordinary skill in the art.
[0067] The compounds of the invention and the other anticancer agents can be administered at the recommended maximum clinical dosage or at lower doses. Dosage levels of the active compounds in the compositions of the invention may be varied so as to obtain a desired therapeutic response depending on the route of administration, severity of the disease and the response of the patient. The combination can be administered as separate compositions or ac a single dosage form containing both agents. When zάmmktered a^ a combination, the therapeutic agents can be fαπmiJated aε separate compositions, which are given at the same time or different times, or the therapeutic agents, can be given as a single composition.
[0068] In one embodiment, the invention provides a method of inhibiting Piml, Pim2 or Pim3 in a human or animal subject. The method includes administering an effective amount of a compound, or a pharmaceutically acceptable salt thereof, of any of the embodiments of compounds of Formula I or II to a subject in need thereof.
[0069] The present invention will be understood more readily by reference to the following examples, which are provided by way of illustration and are not intended to be limiting of the present invention.
EXAMPLES
[0070] Referring to the examples that follow, compounds of the preferred embodiments were synthesized using the methods described herein, or other methods, which are known in the art.
[0071] The compounds and/or intermediates were characterized by high performance liquid chromatography (HPLC) using a Waters Millenium chromatography system with a 2695 Separation Module (Milford, MA). The analytical columns were reversed phase Phenomenex Luna Cl 8 -5 μ, 4.6 x 50 mm, from Alltech (Deerfield, IL). A gradient elution was used (flow 2.5 mL/min), typically starting with 5% acetonitrile/95% water and progressing to 100% acetonitrile over a period of 10 minutes. AU solvents contained 0.1% trifluoroacetic acid (TFA). Compounds were detected by ultraviolet light (UV) absorption at either 220 or 254 nm. HPLC solvents were from Burdick and Jackson (Muskegan, MI), or Fisher Scientific (Pittsburgh, PA).
[0072] In some instances, purity was assessed by thin layer chromatography (TLC) using glass or plastic backed silica gel plates, such as, for example, Baker-Flex Silica Gel 1B2-F flexible sheets. TLC results were readily detected visually under ultraviolet light, or by employing well-known iodine vapor and other various staining techniques.
[0073] Mass spectrometric analysis was performed on one of three LCMS instruments: a Waters System (Alliance HT HPLC and a Micromass ZQ mass spectrometer; Column: Eclipse XDB-Cl 8, 2.1 x 50 mm; gradient: 5-95% (or 35-95%, or 65-95% or 95-95%) acetonitrile in water with 0.05% TFA over a 4 min period; flow rale 0.8 mL/min; molecular weight range 200-1500; cone Voltage 20 V; column temperature 4O0C), another Waters System (ACQUITY UPLC system and a ZQ 2000 system; Column: ACQUITY UPLC HSS-C 18, 1.8um, 2.1 x 50mm; gradient: 5-95% (or 35-95%, or 65-95% or 95-95%) acetonitrile in water with 0.05% TFA over a 1.3 min period; flow rate 1.2 mL/min; molecular weight range 150-850; cone Voltage 20 V; column temperature 50°C) or a Hewlett Packard System (Series 1100 HPLC; Column: Eclipse XDB-C 18, 2.1 x 50 mm; gradient: 5-95% acetonitrile in water with 0.05% TFA over a 4 min period; flow rate 0.8 mL/min; molecular weight range 150-850; cone Voltage 50 V; column temperature 3O0C). All masses were reported as those of the protonated parent ions.
[0074] Nuclear magnetic resonance (NMR) analysis was performed on some of the compounds with a Varian 400 MHz NMR (Palo Alto, CA). The spectral reference was either TMS or the known chemical shift of the solvent.
[0075] Preparative separations are carried out using a Flash 40 chromatography system and KP-SiI, 6OA (Biotage, Charlottesville, VA), or by flash column chromatography using silica gel (230-400 mesh) packing material, or by HPLC using a Waters 2767 Sample Manager, C-18 reversed phase column, 30X50 mm, flow 75 mL/min. Typical solvents employed for the Flash 40 Biotage system and flash column chromatography are dichloromethane, methanol, ethyl acetate, hexane, acetone, aqueous ammonia (or ammonium hydroxide), and triethyl amine. Typical solvents employed for the reverse phase HPLC are varying concentrations of acetonitrile and water with 0.1% trifluoroacetic acid.
[0076] It should be understood that the organic compounds according to the preferred embodiments may exhibit the phenomenon of tautomerism. As the chemical structures within this specification can only represent one of the possible tautomeric forms, it should be understood that the preferred embodiments encompasses any tautomeric form of the drawn structure.
[0077] It is understood that the invention is not limited to the embodiments set forth herein for illustration, but embraces all such forms thereof as come within the scope of the above disclosure.
[0078] The examples below as well as throughout the application, the following abbreviations have the following meanings. If not defined, the terms have their generally accepted meanings. Synthesis of 3-oxocyclohex-l-enyl trifluoromethanesulfonate
Figure imgf000038_0001
[0079] To a solution of cyclohexane-1 ,3-dione (1 equiv) in DCM (0.4 M) was added Na2CO3 (1.0 equiv.) and cooled to 0 0C. Added Tf2O (1.0 equiv.) in DCM (5 M) dropwise over 1 hr at room temperature under a nitrogen atmosphere. Upon addition, the reaction was stirred for 2 hr (dark red solution). The solution was filtered and to the filtrate was added saturated NaHCO3 (carefully), then extracted the organics, dried with brine, then Na2SO4, and concentrated. The crude was used for the next step without further purification. 3-oxocyclohex-l-enyl trifluoromethanesulfonate was obtained in 67% yield. The triflate decomposes upon storage and should be used immediately for the next reaction. LC/MS=244.9/286.0 (M+H and M+CH3CN); Rt = 0.88 min.
Synthesis of 3-(4.4.5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)cvclohex-2-enone
Figure imgf000038_0002
[0080] To a solution of 3-oxocyclohex-l-enyl trifluoromethanesulfonate (1.0 equiv.) in degassed dioxane (0.3 M) was added bis(ρinacolato)diboron (2.0 equiv.), KOAc (3.0 equiv.), and Pd(dppf)Cl2-DCM (0.05 equiv.). The reaction was heated to 80 0C for 2 h, then filtered. The dioxane solution was used for the next step without further purification. LC/MS = 140.9 (M+H of boronic acid).
Synthesis of 3-(3-nitropyridin-4-yl)cyclohex-2-enone
Figure imgf000038_0003
[0081] To a solution of 3-(4 ,4,5,5-tetramethyl- 1 ,3,2-dioxaborolan-2- yl)cyclohex-2-enone (1.0 equiv.) in degassed dioxane and 2MNa2CO3 was added 4- chloro-3-nitropyridine (1.2 equiv.) and Pd(dppf)Cl2-DCM (0.05 equiv.). The reaction was heated in an oil bath to 110 0C for 2 hours. Cooled to room temperature, then diluted with EtOAc, added H2O - dark solution, lots of emulsions. Filtered to get rid of the solids, then extracted the organic phase, dried with Na2SO4, and concentrated. The crude was purified via silica gel chromatography eluting with ethyl acetate and hexanes (1 : 1) to yield 3-(3-nitropyridin-4-yl)cyclohex-2-enone (55%, 2 steps). LC/MS = 219 (M+H), LC = 2.294 min.
Synthesis of 3-D-nitroρyridin-4-yl')cvclohex-2-enol
Figure imgf000039_0001
[0082] To a solution of 3-(3-nitropyridin-4-yl)cyclohex-2-enone (1.0 equiv.) was added EtOH (0.2 M) and CeCl3-7H2O (1.3 equiv.). The reaction was cooled to 0 0C, then NaBH4 (1.3 equiv.) was added in portions. Stirred for 2 h at 0 0C, then quenched by adding water, concentrated to remove the EtOH, added EtOAc, extracted the organics, dried with brine, then Na2SO45 and concentrated to yield 3-(3-nitropyridin-4-yl)cyclohex- 2-enol (99%). LC/MS = 221.1 (M+H), LC = 2.235 min.
Synthesis of 2-f 3-(3 -nitropyridin-4-yl)cvclohex-2-enyl)isoindoHne- 1.3 -dione
Figure imgf000039_0002
[0083] To a solution of 3-(3-Mitropyridin-4-yl)cyclohex-2-enol (1.0 equiv.), triphenylphosphine (1.5 equiv.) and phthalimide (1.5 equiv.) in THF (0.3 M) at 0 0C was added (E)-di-tert-butyl diazene-l,2-dicarboxylate (1.5 equiv.) dropwise. The reaction was stirred at 0 0C for 2 hours. Concentrated to dryness under vacuo, then purified the crude via silica gel column chromatography eluting with EtOAc and hexanes (1:1 with 5% methanol) to afford the 2-(3-(3-nitropyridin-4-yl)cyclohex-2-enyl)isoindoline-l,3- dione (63% yield). LC/MS = 350.3 (M+H), LC = 3.936 min.
Synthesis of 2-f3-π-aminopyridin-4-yl)cvclohex-2-enyl)isoindoline- 1 ,3-dione
Figure imgf000040_0001
[0084] To a solution of 2-(3-(3-nitropyridin-4-yl)cyclohex-2-enyi)isoindoline- 1 ,3-dione (1.0 equiv.) in AcOH (0.38 M) was added Fe (6.0 equiv.) and the reaction was stirred at room temperature for 2 h. Filtered, then washed with methanol and concentrated the filtrate. To the crude was added ethyl acetate and saturated NaHCO3, the organics were dried with Na2SO4, and concentrated to give 2-(3-(3-aminopyridin-4- yl)cyclohex-2-enyl)isoindoline-l,3-dione as a yellow thick gum in 96% yield. LC/MS = 320.0 (M+H), LC = 2.410 min.
Synthesis of 2-G-Q-aminopyridin-4-yl)cyclohexyl)isoindoline-l ,3-dJone
Figure imgf000040_0002
[0085] To a solution of 2-(3-(3 -nitropyridin-4-yl)cyciohex-2-enyl)isoindoline-
1 ,3-dione (1.0 equiv.) in acetic acid (0.1 M) was added 10% Pd/C (0.2 equiv.) and the reaction was stirred under a H2 balloon. After 3 days, the reaction was filtered through Ceϊite, washed with ethyl acetate and methanol, the filtrate was diluted with ethyl acetate and washed twice with sat. 2M Na2CO3. The organic phase was dried with magnesium sulfate, filtered and concentrated. The crude material was triturated with hexanes and ethyl acetate to afford 2-(3-(3-aminopyridin-4-yl)cyclohexyl)isoindoline-l,3-dione in 73% yield. LC/MS = 322.2 (M+H), Rt = 0.64 min.
Synthesis of 5.5-dimethvI-3-oxocyclohex-l -enyl trifluoromethanesulfonate
Figure imgf000041_0001
[0086] In a 3-neck round-bottom flask, 5,5-dimethylcyclohexane- 1 ,3-dione (1.0 eq) was dissolved in DCM (0.2 M). Sodium carbonate (1.1 eq) was added and the mixture was cooled with magnetic stirring on an ice/salt water bath to ~ -5 0C under N2. Triflic anhydride (1.05 equiv.) diluted in DCM was added drop wise via addition runnel over 90 minutes. Upon completion of addition, the reaction was stirred at ~ 0 0C for Ih. From LCMS and IH NMR, there was still starting material left. Additional sodium carbonate (0.51 eq) and triflic anhydride (0.50 eq) were added. After 2 hours, the mixture was filtered through a coarse frit glass funnel (the cake was washed with DCM), transferred to an Erlenmeyer flask, quenched by careful addition of saturated aqueous sodium bicarbonate with vigorous stirring until pH ~7, transferred to a separatory funnel and the layers separated. The organic layer was washed with brine, dried over MgSO4, filtered and concentrated to give 5,5-dimethyl-3-oxocyclohex-l-enyl trifluoromethanesulfonate, which was used to the next step without further purification. LC/MS (m/z): MH*=273.1, Rt=I.03. Synthesis of 5.5-dimethyl-3-(4 AS.S-tetramethyl- U^-dioxaborolan^-vDcvclohex-Σ-enone
Figure imgf000041_0002
[ΘQ87| ALl of reagents 555-dimefhyϊ-3-oxocyclohex-i-enyl trifluoro- raethanesuffonate (1.0 eq), potassium acetate (3,0 eq)s and bϊs(pinacolato)di boron (2.0 eq) were added to 1,4-dioxane (0.2 M) in a round bottomed flask and degassed by bubbling N2 through the mixture for 10 min. PdCl2(dρρf) - DCM adduct (0.03 eq) was added and the reaction heated to 80 0C fitted with a reflux condenser on an oil bath under N2 overnight. The mixture was cooled to room temperature, filtered through a coarse frit glass funnel, the cake rinsed with 1,4-dioxane to give the 5,5-dimethyl-3-(4,4,5,5- tetramethyl-l,3,2-dioxaborolan-2-yl)cyclohex-2-enone in 1,4-dioxane which was used to next step without further purification. LC/MS (m/z): MH+(boronic acid) -169.1, Rt=0.50.
Synthesis of 5,5-dimethyl-3-f3-nitropγridin-4-yl)cyclohex-2-enone
Figure imgf000042_0001
[0088] The boronate ester 5,5-dimethyl-3-(4,4,5,5-tetramethyl- 1 ,3,2- dioxaborolan-2-yl)cyclohex-2-enone (1.0 eq) was dissolved in 1,4-dioxane in a round bottomed flask and degassed by bubbling N2 through the solution for 30 minutes. 4- chloro-3-nitro-pyridine (1.3 eq) and 2M(aq) sodium carbonate (2.0 eq) were added and N2 was bubbled through for 10 minutes and then PdCl2(dρpf) - DCM (0.05 eq) was added. The reaction mixture was stirred at 110 0C for 2 hr. The mixture was added to EtOAc and water. The resulting mixture was filtered through celite, the cake was washed with EtOAc. The organic layer was separated and the aqueous was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered and concentrated. The residue was purified by silica gel chromatography (eluted with EtOAc:Hexanes = 1:10 to 2:1) to give 5,5-dimethyl-3-(3-nitropyridin-4-yl)cyclohex-2- enone (46.7% for three steps). LC/MS (m/z): MH+=247.2, Rt=0.79.
Synthesis of 5.5-dimethyl-3-( 3-mtropyridin-4-vDcvclohex-2-enol
Figure imgf000042_0002
[0089] To a solution of 5 , 5 -dimethyl-3 -(3 -nitropyridin-4-yl)cyclohex-2-enone (1.0 eq), and CeCl3-7H2O (1.2 eq) in MeOH (0.2 M) was added NaBH4 (1.0 eq) at 0 0C. The solution was stirred for 1 hour, and then quenched by the addition of 5 mL of water. The volatiles were removed in vacuum and the residue was partitioned between EtOAc and H2O. The organic layer was separated and washed with brine. The combined aqueous was back extracted with EtOAc and the organic was washed with brine. The combined organics were dried over MgSO4, filtered and concentrated. The residue was purified by column (5% methanol in 1:1 ethyl acetate and hexanes) to give 5,5-dimethyl- 3-(3-nitropyridin-4-yl)cyclohex-2-enol (74%). LC/MS (m/z): MH+=249.2, Rt=0.76.
Synthesis of 2-(5.5-dimethyl-3-(3-nitropyridin-4-ylV cyclohex-2-enyl')isoindoline-1.3- dione
Figure imgf000043_0001
[0090] To a homogeneous solution of 5,5-dimethyl-3-(3-nitropyridin-4- yl)cyclohex-2-enol (1.0 eq ), triphenyl phosphine (1.5 eq), and phthalimide (1.5 eq) in THF (0.2 M) cooled Io 0 °C, ditertbutyl azodicarboxylate (1.5 eq) in THF was added to the solution. The mixture was stirred at 0 °C for 2 hours. The reaction was concentrated in vacuo. The residue was purified by column (5% methanol in 1 :1 ethyl acetate and hexanes) to give 2-(5, 5 -dimethyl-3 -(3 -nitropyridin-4-yl)cyclohex-2-enyl)isoindoline- 1,3- dione (99%). LC/MS (m/z): MH+=378.2, Rt=LlO.
Synthesis of 2-(3-r3-aminopyridin-4-ylV5.5-dimethyl-cvclohex-2-enyl)isoindoline-l,3- dione
Figure imgf000044_0001
[0091] A solution of 2-(5,5-dimethyl-3-(3-nitropyridin-4-yl)cyclohex-2- enyl)isoindoline- 1,3 -dione (1 eq) in acetic acid (0.1 M) was purged with nitrogen for 10 min. Then 10% Pd/C (0.10 eq) was added. The reaction mixture was stirred at room temperature overnight under an atmosphere of hydrogen. Solids were removed by filtration over celite, then rinsed with EtOAc and MeOH. The filtrate was concentrated, diluted with EtOAc and washed 2x with sat. aq. 2M Na2CO3. The organic layer was dried with MgSO4, filtered, and concentrated. The residue was purified by column (5% methanol in 1 :1 ethyl acetate and hexanes) to give 2-(3-(3-aminopyridin-4-yl)-5,5- dimethylcyclohex-2-enyl)isoindoline- 1,3 -dione (89%). LC/MS (m/z): MH+-348.3, Rt=0.79.
Synthesis of 2-(5-f3-aminopyridin-4-vO-3.3-dimethylcycloheχyl')isoindoline-L3 -dione
Figure imgf000044_0002
[0092] A solution of 2-(3-(3-aminopyridin-4-yl)-5,5-dimethylcyclohex-2- enyl)isoindoline- 1,3 -dione (1.0 eq) in acetic acid (0.1 M) was purged with nitrogen for 10 min. Then 10% Pd/C (0.1 eq) was added. The reaction mixture was stirred at 45 0C, 300 psi hydrogen atmosphere in a steel bomb overnight and at 65 0C, 300 psi for 5 hours.
Solids were removed by filtration over ceiite, then rinsed with EtOAc and MeOH. Tbe filtrate was concentrated, diluted with EtOAc and washed 2x with sat , aq, 2M Na2CO3 The organic layer was dried with MgSO4, filtered, and concentrated. The, residue was purified by column (5% methanol in 1:1 ethyl acetate and hexanes) to give 2-(5-(3- aminopyridin-4-yl)-3,3-dimethylcyclohexyl)isoindoline-l,3-dione (53%). LC/MS (m/z): MH+=SSOJ, Rt=0.78. The enantiomerically pure 2-((lΛ,5^)-5-(3-aminopyridin-4-yl)- 3,3-dimethylcyclohexyl)isoindoline-l ,3-dione and 2-((15,55}-5-(3-aminopyridin-4-yl)- 3,3-dimethylcyclohexyl)isoindoline-l,3-dione were resolved by chiral HPLC (For analysis Rt = 7.526 min and 13.105 min respectively; hexanes:ethanol= 80:20 (v:v), Chiralcel OJ-H 100 x 4.6 mm at 1 mL/min. For preparative separation, hexanes rethanol = 80:20 (v:v), Chiralcel OJ-H (250 x 20 mm at 20 mL/min ). 1H NMR (CDCl3): δ 8.04 (s, IH), 8.00 (d, IH), 7.82 (m, 2H), 7.71 (m, 2H), 7.06 (d, IH), 4.54 (m, IH), 3.71 (m, 2H), 2.89 (m, IH), 2.23-2.44 ( m, 2H), 1.90 (m, IH), 1.20-1.60 (m, 3H), 1.18 (s, 3H), 1.07 (s, 3H).
Synthesis of 4-( cvclohexa-1 ,3-dienyl)-3-nitropyridine
Figure imgf000045_0001
[0093] To a solution of 3-(3-nitropyridin-4-yl)cyclohex-2-enol (1.0 equiv.) was added dioxane (0.18 M) and p-TSA (1.1 equiv.). The solution was heated to 1000C for 4 h. Cooled to room temperature, worked up with sat. NaHCO3 and ethyl acetate, the organic phase was dried with Na2SO4 and concentrated. The crude was purified via silica gel column chromatography eluting with 100% DCM to give 4-(cyclohexa-l,3-dienyl)-3- nitropyridine as a yellow oil (27% yield). LCMS (m/z): 203.1 (MH+), LC Rt = 3.53 min, 1H-NMR (CDCl3): 9.02 (s, IH), 8.70 (d, J=5.3, IH)5 7.30 (d, J=5.3, IH), 6.15-6.17 (m, IH), 6.02-6.11 (m, 2H), 2.35-2.38 (m, 4H).
Synthesis of f+/-V2-azido-4-(3-nitropyridin-4-yl)cvclohex-3-enol
Figure imgf000045_0002
[0094] To a solution of 4-(cyclohexa- 1 ,3-dienyl)-3 -nitropyridine (1.0 equiv.) in DCM (0.1 M) was added NaHCO3 (1.2 equiv.) to give a yellow solution. Cooled to 0 0C, then added m-CPBA (1.0 equiv.) to the solution at once as a solid. The reaction was stirred at 0 0C for 3.5 hr. Monitored by both TLC and LC/MS. The product ionizes as M+H = 237 (diol); Rt=0.41min on UPLC. Quenched reaction with sat. NaHCO3, then extracted with DCM (3 times). The organic phase was further dried with brine, then Na2SOφ filtered and concentrated to give the crude epoxide as a yellow oil, which was used without further purification.
[0095] To a solution of the above crude material in EtOH and water (3:1) (cloudy yellow solution) was added NaN3 (2.0 equiv.) and NH4CI (2.0 equiv.) to give a clear orange solution. The reaction was stirred for 16 h, then concentrated. EtOAc and water were added, the organic phase was further dried with MgSO4 and concentrated to give a brown oil. The oil was loaded in silica gel and purified via column chromatography (ISCO, 0-50% EtOAc) to give (+/-)-2-azido-4-(3-nitropyridin-4- yl)cyclohex-3-enol as a yellow oil (44% for 2 steps). LCMS (m/z) = 262 (MH+), LC Rt = 2.35 min.
Synthesis of (+/- >4-(3 -azido^-ftert-butyldimethylsilyloxyteyclohex- 1 -enyl)-3 - nitropyridine
Figure imgf000046_0001
[0096] To a solution of (+/-)-2-azido-4-(3 -nitropyridin-4-yl)cyclohex-3 -enol (1.0 equiv.) in DCM (0.15 M) was added TBSCl (2.0 equiv.), imidazole (2.0 equiv.) and
DMAP (0.1 equiv.) at room temperature. After 18 h, water was added, the organics were dried with brine, then Na2SO4, and concentrated. The crude material was loaded to silica gel and purified via column chromatography (ISCO) eluting with ethyi acetate and hexaueε (20%). Obtained (+/~)-4-(3-azido-4-(tert-butyIdimethyIsiIyIoxy)cyclohex-l- enyl)-3-nitropyridine as a yellow oil in 60% yield. LCMS (m/z): 376.3 (MH+), LC R1 =5.848 min.
Synthesis of (+/-)-tert-butyl 6-(tert-butyldimethylsilyloxyV3-β-nitropyridin-4- vOcvclohex-2-enylcarbamate
Figure imgf000047_0001
[0097] In a round-bottomed flask was added (+/-)-4-(3-azido-4-(tert- butyldimethylsilyloxy)cyclohex-l-enyl)-3-nitropyridine (1.0 equiv.) and pyridine (0.1 M) to give a yellow solution. Ammonium hydroxide (10:1 pyridine: ammonium hydroxide) was added followed by PMe3 (3.0 equiv.). The reaction turned dark brown after 10 min.
Stirred at room temperature for 1.5 h. Quenched by adding EtOH, and concentrated. Repeated 2 more times. To the crude was added sat. NaHCO3 and dioxane (1 :1, 0.1 M). BoC2O (1.0 equiv.) was added. Stirred for one hour at room temperature. Washed with H2O and EtOAc, the organic phase was dried with MgSO4, filtered and concentrated. The residue was purified via silica gel column chromatography (ISCO, 5:1 Hex/EtOAc). Collected the pure fractions and concentrated to give (+/-)-tert-butyl 6-(tert- butyldimethylsilyloxy)-3-(3-nitropyridin-4-yl)cyclohex-2-enylcarbamate as a foam. LCMS (m/z): 450.3 (MH+), LC Rt = 5.83 min.
Synthesis of f+AVtert-butyl 3-( 3-aminopyridin-4-yl)-6-(tert-butyldimethylsilyloxy') cvclohex-2 -enylcarbamate
Figure imgf000047_0002
[0098] To a solution of (+/-)-tert-butyl 6-(tert-butyldimethylsilyloxy)-3-(3 - nitroρyridin-4-yl)cyclohex-2-enylcarbamate (1.0 equiv.) in AcOH (0.18 M) was added Fe (6.0 equiv.) and the reaction was stirred for 20 h. Worked up by diluting the reaction with methanol, filtered, and concentrated the filtrate. To the crude was added ethyl acetate and saturated NaHCθ3, the organics were dried with sodium sulfate and concentrated to give (+/-)-tert-butyl 3-(3-aminopyridin-4-yl)-6-(tert- butyldimethylsilyloxy)cyclohex-2-enylcarbamate as a yellow oil in 94% yield. LCMS (m/z): 420.3 (MH+), LC R4 = 3.88 min.
Synthesis of (+/-)-tert-butyl 5-( 3-aminopyHdin-4-yl)-2-(tert-butyldimethylsilyloxy) cvclohexylcarbamate
Figure imgf000048_0001
[0099] To a solution of (+/-)-tert-butyl 3-(3-aminopyridin-4-yl)-6-(tert- butyldimethylsilyloxy)cyclohex-2-enylcarbamate (1.0 equiv.) in MeOH (0.1 M) was added Pd/C (20% by wt) and the reaction was stirred under a hydrogen balloon for 18 h. LC/MS of the reaction indicated mixture of diastereomers, the reaction was filtered, washed with EtOAc and concentrated the filtrate. The crude material was purified via prep-HPLC (in DMSO), and the pure fractions were combined, neutralized with solid NaHCO3, extracted with ethyl acetate, washed with brine, dried under Na2SO4, and concentrated to give product A (8% yield) and product B (51% yield).
Product A: LCMS (m/z): 422.4 (MH+), LC Rt = 3.75 min.
Product B: LCMS (m/z): 422.4 (MH+), LC R1 =3.94 min. Synthesis of l,4-dioxaspiro[4.5]dec-7-en-8-yl trifluoromethanesulfonate
Figure imgf000049_0001
[0100] 1 ,4-Dioxaspiro[4.5]decan-8-one (1.0 equiv) was dissolved in Ether (0.1 M) and stirred at -15 0C then IM NaHMDS (1.05 equiv.) was added and stirred for 70 min then Tf2O (1.05 equiv.) added and reaction allowed to slowly warm to rt. The mixture was stirred for 28 hr, washed with sat. aq. NaHCO3 and then water. Aqueous layers combined and extracted with ether. Organic layers combined, dried over MgSO4, filtered, and concentrated. The residue was purified by column (ethyl ether : hexanes = 1 : 4) to give l,4-dioxaspiro[4.5]dec-7-en-8-yl trifluoromethanesulfonate (65%). LC/MS (m/z): MH+=289.0, Rt=0.97. HPLC Rt=3.77.
Synthesis of 4.4.5.5-tetramethyl-2-( 1.4-dioxaspiro F4.5] dec-7-en-8- vD- 1.3.2- dioxaborolane
Figure imgf000049_0002
[0101] A solution of l,4-dioχaspiro[4.5]dec-7-en-8-yl trifluoromethanesulfonate (1.0 equiv.) in dioxane (0.5 M) was purged with nitrogen for 30 min. Then 4,4?4',41,5,5,5',5'-octamethyl-2,21-bi(l,3,2-dioxaborolane) (1.0 equiv.), KOAc (3.0 equiv.), Pd(dppf)Cl2-DCM (0.2 equiv.) were added and the solution was stirred in a sealed bomb at 80 0C. The reaction was filtered over a pad of celitβ, then to the filtrate was added ethyl acetate, and washed with brine, dried over MgSCU5 filtered., and concentrated. The residue was purified by column (ethyl acetate : hexanes = 1 : 1) to give 43455;,5-tetrametb.yϊ-2- (l,4-dioxaspiro[4.5]dec-7-en-8-yl)-l,3,2-dioxaborolane (95%). LC/MS (m/z): MH+=267.1, Rt=0.95.
Synthesis of 3-nitro-4-π ,4-dioxaspiror4.51dec-7-en-8-yl)pyridine
Figure imgf000050_0001
[0102] A solution of DME (0.2 M) and 2M aq. sodium carbonate (1.7 equiv.) was purged with nitrogen for 20 min. Then 4-chloro-3-nitropyridine (1.6 equiv.), 4,4,5,5- tetramethyl-2-(l ,4-dioxaspiro[4.5]dec-7-en-8-yl)- 1 ,3,2-dioxaborolane (1.0 equiv.), Pd(dppf)Cl2-DCM (0.05 equiv.) were added and stirred in a sealed bomb at 110 0C. The reaction was stirred at that temperature for 3.5 hours. The reaction was diluted with ethyl acetate, washed with water, dried over MgSO4, filtered, and concentrated. The residue was purified by column (ethyl acetate : hexanes = 1 : 1 with 10% methanol) to give 3- nitro-4-(l,4-dioxaspiro[4.5]dec-7-en-8-yl)pyridine (83%). LC/MS (m/z): MH+=263.2, Rt=0.71.
Synthesis of 4-f3-nitropyridin-4-yl')cyclohex-3-enone
Figure imgf000050_0002
[0103J A mixture of 3-nitro-4-(l ,4-dioxaspiro[4.5]dec-7-en-8-yl)ρyridine (1.0 equiv.) in 20% TFA in CH2Cl2 (0.2 M) was stirred at room temperature overnight. The solvents were removed under reduced pressure. The residue was dissolved with ethyl acetate (200 mL)5 and washed with sat NaHCO3 (3OmL)5 and sat NaCl (3OmL). The organic was dried with MgSO45 filtered and concentrated to give 4-(3-nitropyridin-4- yl)cyclohex-3-enone (85%). The crude product was used to next step without further purification. LC/MS (m/z): MH+=218.9, Rt=0.60
Synthesis of 4-C3 -nitropyridin-4- yl)cvclohex-3 -enol
Figure imgf000051_0001
[0104] To a solution of 4-(3-nitropyridin-4-yl)cyclohex-3-enone (1.0 eq) in methanol (0.2 M) was added sodium borohydride (1.8 equiv.) at 0 0C. The reaction mixture was stirred at 0 0C for 2 hr. Methanol was removed under reduced pressure. The residue was dissolved with ethyl acetate (200 mL), and washed with sat. NaCl (3OmL). The organic was dried with MgSO4, filtered and concentrated to give 4-(3-nitropyridin-4- yl)cyclohex-3-enol (85%). The crude product was used in the next step without further purification. LC/MS (m/z): MH+=221.0, Rt=0.55
Synthesis of 4-f3-nitropyridin-4-yl)cyclohex-3-enyl methanesulfonate
Figure imgf000051_0002
[0105] To a solution of 4-(3-nitropyridin-4-yl)cyclohex-3-enol (1.0 equiv.) and DIPEA (2.5 equiv.) in CH2Cl2 (0.15 M) was added methanesulfonyl chloride (1.8 equiv.) at 0 0C. The reaction mixture was stirred at 0 0C for 1 hr. The reaction mixture was diluted with ethyl acetate (200 mL), and washed with sat NaCl (30 mL). The organic was dried MgSQ4, filtered arid concentrated to give 4-(3-nitropyridin-4-yl)cyclohex-3-enyl methanesulfonate (93%). The residue was used in the next step without further purification. LC/MS (m/∑): MH+=299.0, Rt=OJO
Synthesis of 4-( cvclohexa- 1 ,3 -dienyl)-3 -nitropyridine
Figure imgf000052_0001
[0106] To a solution of 4-(3-nitropyridin-4-yl)cyclohex-3-enyl methanesulfonate (1.0 equiv) in tetrahydrofuran (0.1 M) was added DBU (1.8 equiv.) at room temperature. The reaction mixture was stirred at rt overnight The reaction mixture was diluted with ethyl acetate (200 mL), and washed with sat NaCl (3OmL). The organic was dried with MgSO4, filtered and concentrated. The residue was purified by column (5% methanol in 1: 1 ethyl acetate and hexanes) to give 4-(cyclohexa-l,3-dienyl)-3- nitropyridine. LC/MS (m/z): MH+=203.2, Rt=0.85.
Synthesis of f+/-)-tert-butyl 6-hvdroxy-3-G-nitropyridin-4-vπcvclohex-2-enylcarbamate
Figure imgf000052_0002
[0107] To a solution of (+/-)-2-azido-4-(3-nitropyridin-4-yl)cyclohex-3-enol (1.0 equiv.) in Pyridine and NH4OH (8:1, 0.23 M) was added trimethylphosphine (3.0 equiv.) at room temperature. The mixture was stirred at room temperature for 3 hours. Solvents were removed. To the residue was added ethanol. Then ethanol was removed in vacuo to ensure removal of the ammonia totally. The residue was dissolved in 1 ,4- dioxane and sat. aq. sodium bicarbonate, and then Boc2O (1.0 eq) in THF were added to the mixture. The resulting mixture was stirred at room temperature for 2 hours. The reaction mixture was diluted with ethyl acetate, and washed with sat NaCl. The organic was dried with MgSO4, filtered and concentrated. The residue was purified by column (5% methanol in 1:1 ethyl acetate and hexanes) to give (+/-)-tert-butyl 6-hydroxy-3-(3- nitropyridin-4-yl)cyclohex-2-enylcarbamate (82%). LC/MS (m/z): MH4 =336.0, Rt=OJl
Synthesis of (+/->2-ftert-butoxycarbonylamino)-
4-(3 -nitropyridin-4-yr>cyclohex-3 -enyl methanesulfonate
Figure imgf000053_0001
[0108] To a solution of (+/-)-tert-butyl 6-hydroxy-3-(3-nitropyridin-4- yl)cyclohex-2-enylcarbamate (1.0 equiv.) and triethyl amine (1.5 equiv.) in CH2Cl2 (0.2 M) was added methanesulfonyl chloride (1.2 equiv.) at 0 0C. The mixture was stirred for 2 hours at that temperature. The reaction mixture was diluted with ethyl acetate, and washed with sat NaCl. The organic was dried with MgSO4, filtered and concentrated to give (+/-)-2-(tert-butoxycarbonylamino)-4-(3 -nitropyridin-4-yl)cyclohex-3 -enyl methanesulfonate (85%), which was used in the next step without further purification. LC/MS {m/z): MH+=414.0, Rt=0.82
Synthesis of ("+/-V5-r3-nitropyridin-4-yl')-3.3a.7.7a-tetrahvdrobenzord1oxazol-2C6HVone
Figure imgf000053_0002
[0109] The mixture of (+/-)-2-(tert-butoxycarbonylamino)-4-(3-nitropγridin-4- yl)cyclohex-3-enyl methanesulfonate (1.0 equiv.) in pyridine (0.21 M) was stirred at 110 0C for 10 min in microwave. Pyridine was removed under reduced pressure. The residue was dissolved in ethyl acetate, and washed with sat NaCl. The organic was dried with MgSO4, filtered and concentrated to give (+/-)-5-(3-nitropyridin-4-yl)-3,3a,7,7a- tetrahydrobenzo[d]oχazol-2(6H)-one (85%), which was used in the next step without further purification. LC/MS (m/z): MH+=262.1, Rt-0.49
Synthesis of f+M-tert-butyl 5-(3-nitropyridin-4-yl>2-oxo-3a,6,7Ja- tetrahydrobenzo fdl oxazole-3 (2H)-carboxylate
Figure imgf000054_0001
[0110] To a solution of (+/-)-5-(3-mtroρyridin-4-yl)-3,3a,7,7a- tetrahydrobenzo[d]oxazol-2(6H)-one (1.0 equiv.), TEA (1.8 equiv.), and catalytic amount DMAP in CH2Cl2 (0.19 M) was added di-tert-butyl dicarbonate (1.2 eqiv) at room temperature. The reaction mixture was stirred for 1 hour. The reaction mixture was diluted with ethyl acetate (100 mL), and washed with sat NaCl (3OmL). The organic was dried with MgSO4, filtered and concentrated. The residue was purified by column (5% methanol in 1 : 1 ethyl acetate and hexanes) to give (+/-)-tert-butyl 5-(3-nitropyridin-4-yl)- 2-oxo-3a,6,7,7a-tetrahydrobenzo[d]oxazole-3(2H)-carboxylate (98%). LC/MS (m/z): MH+=306.0, Rt=0.75 Synthesis of f+/-)-tert-butyl 5-f3-aminopyridin-4-yl)-2-oxohexahydrobenzo[dlOxazoIe- 3 f 2HV carboxylate
Figure imgf000055_0001
[0111] To a solution of (+/-)-tert-butyl 5-(3-nitropyridin-4-yl)-2-oxo-3a,6,7,7a- tetrahydrobenzo[d]oxazole-3(2H)-carboxylate (1.0 equiv.) in methanol and ethyl acetate (1:1, 0.1 M) was added 10% Pd/C (0.1 equiv.). The resulting mixture was stirred under H2 atmosphere for 6 hours. The solid was removed by filtration. The filtrate was concentrated under reduced pressure to give (+/-)-tert-butyl 5-(3-aminopyridin-4-yl)-2- oxohexahydrobenzo[d]oxazole-3(2H)-carboxylate (87%), which was used in the next step without further purification. LC/MS (m/z): MH+=334.1 , Rt=0.51.
Synthesis of S-methyl-S-oxocyclohex-l-enyltrifluoromethanesulfonate
Figure imgf000055_0002
[0112] To a solution of 5-methylcyclohexane- 1 ,3-dione (1.0 equiv.) in DCM (0.5M) was added Na2CO3 (1.1 equiv.) and cooled to 0 0C. Added Tf2O (1.0 equiv.) in DCM (5.0 M) drop wise over 1 hr at O0C under a nitrogen atmosphere. Upon addition, the reaction was stirred for 1 hr at room temperature (dark red solution). The solution was filtered and the filtrate was quenched by careful addition of saturated NaHCO3 with vigorous stirring until pH=7. The solution was transferred to a separatory funnel and the layers were separated. The organic layer was washed with brine, dried with Na2SO4, filtered, concentrated under vacuo and dried under high vacuum for 15 mm to yield S- methyl-3-oxocyclohex-1 -enγϊ trifiuorometiianesuifonate as light yellow oil in 78% yield. The triflate decomposes upon storage and should be used immediately for the next reaction. LC/MS=259.1/300.1 (M+H and M+CH3CN); Rt - 0.86 min, LC = 3.84 min. 1H-NMR (400 MHz, CDCl3) 6 ppm: 6.05 (s, IH), 2.70 (dd, J=I 7.2, 4.3, IH), 2.53 (dd, J=16.6, 3.7, IH)5 2.48-2.31 (m, 2H)5 2.16 (dd, J=16.4, 11.7. IH), 1.16 (d, J=5.9, 3H).
Synthesis of 5-methyl-3-(4.4.5.5-tetramethyl-l ,3,2-dioxaborolan-2-yl)cvclohex-2-enone
Figure imgf000056_0001
[0113] To a solution of S-methyW-oxocyclohex- 1 -enyl trifluoromethanesulfonate (1.0 equiv.) in degassed dioxane (0.7 M) was added bis(pinacolato)diboron (2.0 equiv.), KOAc (3.0 equiv.), and Pd(dρρf)Cl2-DCM (0.03 equiv.). The reaction was heated to 80 0C for 10 h (initial heating at large scale results in exothermic formation of an orange foam on top of the solution, the heating bath should be removed until the foam retracts, reheating to 800C at this point appears to be fine), then cooled to room temperature and filtered through a coarse frit glass funnel. The cake was rinsed with more dioxane and the filtrate solution was used for the next step without further purification. LC/MS = 155.1 (M+H of boronic acid); Rt = 0.41 min, LC = 1.37 min.
Synthesis of 5-methyl-3-(3-nitropyridin-4-yl')cvclohex-2-enone
Figure imgf000056_0002
[0114] To a solution of 5-methyl-3-(4,45555-tetramethyl- 1 ,3,2-dioxaborolan-2- yl)cyclohex-2-enone (1.0 equiv.) in degassed dioxane (0.5 M) and 2M Na2CO3 (2 equiv.) was added 4-chloro-3-nitropyridine (1.3 equiv.) and Pd(dppf)Cl2-DCM (0.05 equiv.). The reaction was placed under a reflux condenser and heated m an oil. bath to 11O0C for J fa. Cooled to room temperature, filtered through a pad of Celite, washed the pad with ethyl acetate and concentrated the filtrate under vacuo. The residue was further pumped at 800C on a rotary evaporator for one hour to remove boronate by-products (M+H = 101) via sublimation. The residue was partitioned between brine and ethyl acetate, and the layers were separated, the aqueous phase was further extracted with ethyl acetate (4x), the organics were combined, dried over sodium sulfate, filtered, and concentrated. The crude was purified via silica gel chromatography loading in DCM and elutϊng with 2-50% ethyl acetate and hexanes. The pure fractions were concentrated in vacuo to yield an orange oil. The oil was placed under high vacuum (~500 mtorr) with seed crystals overnight to yield an orange solid. The solid was further purified via trituration in hexanes to yield 5-methyl-3-(3-nitropyridin-4-yl)cyclohex-2-enone (48% 2 steps). LC/MS - 233.2 (M+H); Rt = 0.69 min, LC = 2.70 min. 1H-NMR (400 MHz, CdCl3) δ ppm: 9.31 (s, IH), 8.88 (d, J=5.1, IH), 7.30 (d, J=5.1, IH), 6.00 (d, J=2.4, IH), 2.62 (dd, J-16.4, 3.5, IH), 2.53-2.34 (m, 3H), 2.23 (dd, J=16.1, 11.7, IH), 1.16 (d, J=6.3, 3H).
Synthesis of cis-f +/-)-5-methyl-3 -(3-nitropyridin-4-vDcyclohex-2-enol
Figure imgf000057_0001
[0115] To a solution of 5-methyl-3-(3-nitropyridin-4-yl)cyclohex-2-enone (1.0 equiv.) in EtOH (0.3 M) was added CeCl3-7H2O (1.2 equiv.). The reaction was cooled to O0C, then NaBH4 (1.2 equiv.) was added in portions. Stirred for 1 h at O0C, then quenched by adding water, concentrated to remove the EtOH, added EtOAc, extracted the organics, washed with brine, then dried with Na2SO4, filtered and concentrated to yield cis-(+/-)-5-methyl-3-(3-nitropyridin-4-yl)cyclohex-2-enol (94%). LC/MS = 235.2 (M+H), LC = 2.62 min. Synthesis of 4-f 3 -(tert-butyldimethylsilyloxyy 5 -methylcyclohex- 1 -enyD- 3 -nitropyridine
Figure imgf000058_0001
[0116] To a solution of 5-methyl-3-(3-nitropyridin-4-yl)cyclohex-2-enol (1.0 equiv.) in DMF (0.5 M) was added imidazole (4.0 equiv.) and TBDMSCl (2.5 equiv.). After stirring for 18 hours the solution was portioned between EtOAc and H2O and separated. After washing further with H2O (3x) and NaCl(S31 ), drying over MgSO4, filtering and removal of solvents, 4-(3-(tert-butyldimethylsilyloxy)-5-methylcyclohex-l- enyl)-3 -nitropyridine was obtained (85%). LC/MS = 349.2 (M+H), LC = 5.99 min.
Synthesis of 4-f 3 -(tert-butyldimethylsilyloxy)-5 -methylcvclohex- 1 -enyl)pyridin-3 -amine
Figure imgf000058_0002
[0117] A heterogeneous solution of 4-(3-(tert-butyldimethylsilyloxy)-5- methylcyclohex-l-enyl)-3 -nitropyridine (1.0 eq.) and iron (6.0 eq) in acetic acid, at a concentration of 0.4 M, was stirred vigorously for 2 hours. The mixture was then passed through a celite pad, eluting with MeOH. Upon removal of the volatiles in vacuo, the residue was dissolved in EtOAc, washed with Na2CO3 (sat), NaCl(Sat), was dried over MgSO4, was filtered and the volatiles were removed in vacuo yielding 4-(3-(tert- butyldimethylsilyloxy)-5 -methylcyclohex- l-enyl)pyridin-3 -amine (78%). LCMS (m/z): 319.3 (MH+); LC Rt = 3.77 min. Synthesis of 4-(3 -ftert-butvldimethylsilvloxv)-5-_methvlcvclohexvl)pvridin-3 -amine
Figure imgf000059_0001
[0118] To a solution of 4-(3-(tert-butyldimethylsilyloxy)-5-methylcyclohex-l- enyl)-3-nitropyridine (1.0 equiv.) in methanol, at a concentration of 0.1 M, was added 10% palladium on carbon (0.1 eq.). The resultant heterogeneous solution was put under an atmosphere of hydrogen and was stirred for 15 hours. At this time the mixture was filtered through a pad of celite eluting with methanol. The volatϋes were removed in vacuo yielding 4-(3 -(tert-butyldϊmethylsilyloxy)-5 -methylcyclohexyl)pyridin-3 -amine (90%). LCMS (m/z): 321.3 (MH+); LC Rt - 3.85 min.
Synthesis of cis (+/-) benzyl 4-3-(tert-butyldimethylsilyloxy)-5-methylcvclohexyπ pyridin-3 -ylcarbamate
Figure imgf000059_0002
[0119] To a solution of cis-(+/-)-4-(3-(tert-butyldimethylsilyloχy)-5- methylcyclohexyl)pyridin-3-amine in dichloromethane at a concentration of 0.5 M was added benzyl 2,5-dioxopyrrolidin-l-yl carbonate (1.1 equiv.) and DMAP (0.05 equiv.). After stirring for 16 hours at rt, additional benzyl 2,5-dioxopyrrolidin-l-yl carbonate (0.55 equiv.) and DMAP (0.03 equiv.) were added. After stirring for an additional 24 hours at rt, additional benzyl 2,5-dioxopyrrolidin-l-yl carbonate (0.1 equiv.) and DMAP (0.03 equiv.) were added. After stirring for 18 more hours the solution was partitioned between EtOAc and Na2Cθ3(sat) and separated. Upon further washing with Na2CO3(SaI.) (2x) and NaCi(Sat.)3 drying over MgSO4, filtering and removal of solvents, cis (+/-) benzyl 4-3-(tert-butyldimethylsilyloxy)-5-methylcyclohexyl)pyridin-3-ylcarbamate was obtained. The crude material was used as is. LC/MS = 455.3 (M+H), LC = 4.39 min.
Synthesis of cis-(+/-)benzyl 4-f3-hydroxy-5-methylcyclohexyl')pyridin-3-ylcarbamate
Figure imgf000060_0001
[0120] A solution of cis (+/-) benzyl 4-3-(tert-butyldimethylsilyloxy)-5- methylcyclohexyl)pyridin-3-ylcarbamate in 1:2:1 6N HCl/THF/MeOH at a concentration of 0.1 M was stirred at rt for 6 hours. The pH was than adjusted to pH=7 by addition of 6N NaOH and the volatiles were removed in vacuo. The aqueous layer was extracted with EtOAc and the organic was washed with NaCl(^), dried over MgSO4, filtered and upon removal of the volatiles in vacuo, cis-(+/-)benzyl 4-(3-hydroxy-5- methylcyclohexyl)ρyridin-3-ylcarbamate was obtained. The crude material was used as is. LC/MS = 341.2 (M+H), LC = 2.38 min.
Synthesis of cis (+/-)-benzyl 4-(3-methyl-5-oxocvclohexyOpyridin-3-ylcarbamate
Figure imgf000060_0002
[0121] To a 0 0C solution of cis-(+/-)-benzyl 4-(3 -hydroxy- 5 -methyl- cyclohexyl)pyridin-3-ylcarbamate in wet CH2Cl2 at a concentration of 0.16 M was added Dess-Martin Periodinane (1.5 equiv.) and the solution was stirred for 18 hours as it warmed to rt. The solution was partitioned between EtOAc and 1:1 10% Na2S2θ3/NaHCO3(Sat ) and separated. Upon further washing with 1 : 1 10% Na2S2θ3/NaHCθ3(sat.) (2x) and NaCl(sat.), drying over MgSO^ filtering, removal of solvents and purification by silica gel chromatography (75-100% ElOAc/hexanes), cis- (+/-)-benzyl-4-(3-methyl-5-oxocyclohexyl)pyridin-3-ylcarbamate was obtained as a white solid (53%, 5 steps). LC/MS - 339.2 (M+H).
Synthesis of cJs-f+/-> benzyl 4-f-3-fberizylaminoV5-methylcyclohexyl')pyridin-3- ylcarbamate
Figure imgf000061_0001
[0122] A solution of cis-(+/-)-benzyl-4-(3-methyl-5-oxocyclohexyl)pyridin-3- ylcarbamate (1.0 equiv) and benzylamine (3.0 equiv) in MeOH, at a concentration of 0.25 M5 was stirred at rt for 2 hours. Upon cooling in a -78 0C bath, LiBH4 (1.1 equiv, 2.0 M in THF) was added and the solution was allowed to warm to rt with stirring over 16 hours. The solution was partitioned between EtOAc and NaHCO3(SSt ), separated, washed further with NaHCO3(Sat.) and NaCl(Sat.), dried over MgSO4, filtered and after removal of volatiles in vacuo, cis-(+/-)- benzyl 4-(-3-(benzylamino)-5-methylcyclohexyl)pyridin-3- ylcarbamate was obtained as a 4:1 mixture of isomers, with the all cis as predominant LC/MS = 430.3 (M+H), LC - 0.62 min.
Synthesis of cis (+/-)-tert-butyl r-3-r3-aminopyridJn-4-yl')-5-methylcvclohexylcarbamate
Figure imgf000061_0002
[0123] To a solution of cis-(+/-)- benzyl 4-(-3-(benzylamino)-5- methylcyclohexyl)pyridin-3-ylcarbamate was (1.0 equiv.) in methanol, at a concentration of 0.07 M, was added 20% palladium hydroxide on carbon (0.2 eq.). The resultant heterogeneous solution was put under an atmosphere of hydrogen and was stirred for 14 hours. A.t this time the reaction was purged with Ar, BOC2O (i.O equiv.) was added and the solution was stirred for 8 hours. Additional BOC2O (1.0 equiv.) was added and the solution was stirred for 16 more hours. At this time the mixture was filtered through a pad of celite eluting with methanol. Upon removal of volatiles in vacuo, purification by silica gel chromatography (2.5-2.5 MeOH/CH2Cl2 with 0.1% DIEA) and recrystallization from 10% EtOAc/hexanes yielded cis (+/-)-tert-butyl (-3-(3-aminopyridin-4-yl)-5- methylcyclohexylcarbamate (49%). LCMS (m/z): 306.3 (Mrf), LC R, = 2.59 min . Pure enantiomers could be obtained by chiral chromatography.
Synthesis of (+/-)-4-(5-methylcyclohexa- 1.3-dienyl)-3 -nitropyridine
Figure imgf000062_0001
[0124] To a solution of (+/-)-5-methyl-3-(3-nitropyridin-4-yl)cyclohex-2-enol (1.0 equiv.) in dioxane (0.1M) was added p-TSA (1.0 equiv.), and the reaction was stirred at 100 0C for 3 h. The solution was cooled to room temperature, then passed through a pad of neutral alumina eluting with EtOAc to yield (+/-)-4-(5-methylcyclohexa-l,3- dienyl)-3-nitropyridihe as a yellow oil in 68% yield. LC/MS = 217.1 (M+H), LC = 3.908 min.
Synthesis of (+/-)-2-azido-6-methyl-4-(3 -nitropyridin-4-yl)cvclohex-3 -enol
Figure imgf000062_0002
[0125] To a solution of (+/-)-4-(5-mβthylcyclohβxa-l 53-dienyl)-3-mtropyridine
(! .0 equiv.) in DCM (0.1 M) at 0 0C was added m-CPEA (ϊ .1 equiv.) and the reaction was allowed to warm to room temperature. After 3 hours, the mixture was quenched with saturated NaHCO3, extracted with DCM, and the organic phase was dried with sodium sulfate, filtered, and concentrated to give a yellow oil. The crude was dissolved in ethanol and water (3:1, 0.1 M), and sodium azide (2.0 equiv.) and ammonium chloride (2.0 equiv.) were added. The reaction was stirred for 4 hours, then concentrated in vacuo. To the crude was added ethyl acetate and water, the organic phase was washed with brine, dried with sodium sulfate, filtered, and concentrated. The crude material was purified via silica gel column chromatography eluting with ethyl acetate and hexanes (1:1) to afford (+/-)-2-azido-6-methyl-4-(3-nitropyridin-4-yl)cyclohex-3-enol as an oil in 49% yield. LC/MS = 276.1 (M+H), Rt - 0.71 min.
Synthesis of tert-butyl (+/-)-6-hydroxy- 5 -methyl-3 -( 3 -m'trop yridin-4- vDcyclohex-2- enylcarbamate
Figure imgf000063_0001
[0126] To a solution of (+/-)-2-azido-6-methyl-4-(3-nitroρyridin-4- yl)cyclohex-3-enol (1.0 equiv.) in pyridine and ammonium hydroxide (8:1, 0.08 M) was added trimethylphosphine (3.0 equiv.) and the brown solution was stirred at room temperature for 2 hours. Ethanol was added to the mixture and the solution was concentrated under vacuo (2x). The crude mixture was then dissolved in dioxane and sat. NaHCO3 (1:1, 0.08 M) and BoC2O (1.0 equiv.) was added. The solution was stirred at room temperature for 2 hours, then partitioned between ethyl acetate and water. The organic phase was dried with magnesium sulfate, filtered, and concentrated in vacuo. The crude product was purified via silica gel column chromatography eluting with ethyl acetate and hexanes (1 :1) to afford tert-butyl (+/-)-6-hydroxy-5-methyl-3-(3-nitropyridin- 4-yl)cyclohex-2-enylcarbamate in 69% yield. LC/MS = 350.1 (M+H), Rt = 0.76 min. Synthesis of r+/-V2-(tert-butoxycarbonylamino)-6-methyl-4-π-nitropyridin-4-yl) cvclohex-3-enyl methanesulfonate
Figure imgf000064_0001
[0127] To a solution of tert-butyl (+/-)-6-hydroxy-5-methyl-3-(3-nitropyridin- 4-yl)cyclohex-2-enylcarbamate (1.0 equiv.) in DCM (0.09 M) was added triethyl amine (1.5 equiv.). The reaction mixture was cooled to 0 0C and MsCl (1.2 equiv.) was added to the reaction and stirred for 3 hours. To the solution was added water, the organic phase was dried with sodium sulfate, filtered, and concentrated. The crude material was purified via silica gel column chromatography eluting with ethyl acetate and hexanes (1:1) to give (+/-)-2-(tert-butoxycarbonylamino)-6-methyl-4-(3-nitropyridin-4- yl)cyclohex-3-enyl methanesulfonate as a white foam in 65% yield. LC/MS = 428.2 (M+H), Rt = 0.88 min.
Synthesis of (+/-Vtert-butyl 7-methyl-5-f3-nitropyridin-4-ylV2-oxo-3a.6.7.7a- tetrahvdrobenzo rdioxazole-3 (2HVcarboxylate
Figure imgf000064_0002
[0128] A solution of (+/-)-2-(tert-butoxycarbonylamino)-6-methyl-4-(3- nitropyridin-4-yl)cyclohex-3-enyl methanesulfonate (1.0 equiv.) in pyridine (0.2 M) in a microwave vessel was heated to 110 0C for 10 min. The orange solution was then concentrated to dryness and worked up by partitioning between ethyl acetate and water.
The organic phase was dried with sodium sulfate, filtered and concentrated. The crude materia! was dissolved in DCM (0,2 M) and triethyl amine (1 ,8 equiv ) was added to the reaction, followed by Boc2O (1.2 equiv). After stirring at room temperature for 40 min...., the reaction was concentrated in vacuo and purified via silica gel column chromatography eluting with ethyl acetate and hexanes (1:1) to give (+/-)-tert-butyl 7-methyl-5-(3- nitropyridin-4-yl)-2-oxo-3a,6,7,7a-tetrahydrobenzo [d] oxazole-3 (2H) -carboxylate as a white foam in 66% yield. LC/MS = 376.0 (M+H), Rt = 0.87 min.
Synthesis of ( +/-)-tert-t>utyl 5-(3-aminopyridin-4-vD-7-methyl-2- oxohexahvdrobenzordloxazole-3(2H)-carboxylate
Figure imgf000065_0001
[0129] To a solution of (+/-)-tert-butyl 7-methyl-5-(3-nitropyridin-4-yl)-2-oxo- 3a,6,7,7a-tetrahydrobenzo[d]oxazole-3(2H)-carboxylate (1.0 equiv.) in MeOH and ethyl acetate (1:1, 0.07 M) was added 10% Pd/C (0.1 equiv.) and the reaction was stirred at room temperature under an atmosphere of hydrogen. Upon completion of the reaction, the solution was filtered through a pad of Celite, washed with MeOH and ethyl acetate, the filtrate was concentrated to dryness under vacuo to give (+/-)-tert-butyl 5-(3- aminopyridin-4-yl)-7-methyl-2-oxohexahydrobenzo [d] oxazole-3 (2H)-carboxylate as a mixture of diastereomers in >99% yield. LC/MS = 348.2 (M+H), Rt - 0.50 min.
Synthesis of T+/-V 6-bromo-5-methvl-3 -(3 -nitropvridin-4- vπcvclohex-2-enol
Figure imgf000065_0002
[QOQ) To a solution of 4-(5-methylcyclohexa-l,3-dienyl)-3-nitropyridine (1.0 equiv.) in THF and water (1 : 15 0.13 M) was added NBS (1.5 equiv.) and the reaction wag stirred at room temperature for 30 min. Upon completion, ethyl acetate and water were added to the reaction, the organic phase was dried with brine, then sodium sulfate, filtered, and concentrated. The crude material was purified via silica gel column chromatography eluting with ethyl acetate and hexanes (1:1) to give (+/-)-6-bromo-5- methyl-3-(3-nitropyridin-4-yl)cycIohex-2-enol as a yellow oil in 80% yield. LC/MS = 315.0/313.0 (M+H), LC = 2.966 min.
Synthesis of (+/-y2-azido-6-methyl-4-(3-nitroρyridin-4-vDcyclohex-3-enol
Figure imgf000066_0001
[01311 To a solution of (+/-)-6-bromo-5-methyl-3-(3-nitropyridin-4- yl)cyclohex-2-enol (1.0 equiv.) in THF (0.1 M) was added potassium tert-butoxide (1.5 equiv.). The reaction turned from orange to black almost immediately. By TLC, the formation of product is clean in 30 min. Quenched by adding saturated ammonium chloride and ethyl acetate. The organic phase was dried with brine, then sodium sulfate, filtered, and concentrated. The crude product was dissolved in ethanol and water (3:1, 0.1 M), and ammonium chloride (2.0 equiv) and sodium azide (2.0 equiv.) were added. The dark orange reaction was stirred at room temperature overnight. The conversion to product is clean as indicated by LC/MS. The reaction was concentrated to remove the ethanol, ethyl acetate and water were added, and the organic phase was dried with sodium sulfate, filtered, and concentrated. The crude material was purified via silica gel column chromatography eluting with ethyl acetate and hexanes (1:1) to give (+/-)-2-azido-6- methyl-4-(3-nitroρyridin-4-yl)cyclohex-3-enol in 55% yield. LC/MS = 276.0 (M+H), LC = 2.803 min. Synthesis of f+/-Vtert-butyl 6-hvdroxy-5-methyl-3-(3-nitropyridin-4-yl)cyclohex-2- enylcarbamate
Figure imgf000067_0001
[0132] To a solution of (+/-)-2-azido-6-methyl-4-(3-nitropyridin-4- yl)cyclohex-3-enol (1.0 equiv.) in pyridine and ammonium hydroxide (8:1, 0.08 M) was added trimethylphosphine (3.0 equiv.) and the brown solution was stirred at room temperature for 2 h. Upon completion, EtOH was added and the solution was concentrated in vacuo. More ethanol was added and the reaction was concentrated again. Dioxane and sat. NaHCO3 (1:1, 0.08 M) were added to the crude, followed by BoC2O (1.0 equiv.). Stirred the reaction mixture at room temperature for 2h, then added water and ethyl acetate. The organic phase was dried with MgSO4, and concentrated. The crude product was purified via silica gel column chromatography eluting with ethyl acetate and hexanes (1 :1) to afford (+/-)-tert-butyl 6-hydroxy-5-methyl-3-(3-nitropyridin- 4-yl)cyclohex-2-enylcarbamate (59%). LC/MS = 350.1 (M+H), Rt: 0.76 min.
Synthesis of (+/-)-2-ftert-butoxycarbonylaminoV6-methyl-4-(3-nitropyridin-4- vπcyclohex-3-enyl acetate
Figure imgf000067_0002
[0133] To a solution of (+/-)-tert-butyl 6-hydroxy-5-methyl-3-(3-nitropyridin-
4-yl)cyclohex-2-enylcarbamate (1.0 equiv.) in pyridine (0.1 M) was added Ac2O (2.0 equiv.) and the reaction was stirred at room temperature overnight. Upon completion; the reaction was concentrated to dryness, then worked-up with ethyl acetate and water. The organic phase was dried with brine, then sodium sulfate, filtered, and concentrated to give (+/-)-2-(tert-butoxycarbonylamino)-6-methyl-4-(3-nitropyridin-4-yl)cyclohex-3-enyl acetate in 94% yield. LC/MS = 392.2 (M+H), Rt = 0.94 min.
Synthesis of (+/-)-4-(3-aminopyridin-4-yl)-2-ftert-butoxycarbonylamino')-6- methylcyclohexyl acetate
OAc
Figure imgf000068_0001
[0134] To a degassed solution of (+/-)-2-(tert-butoxycarbonylamino)-6- methyl-4-(3-nitropyridin-4-yl)cyclohex-3-enyl acetate (1.0 equiv.) in MeOH and EtOAc (1:1, 0.1 M) was added 10% Pd/C (0.1 equiv.) and the reaction was stirred at room temperature under a hydrogen balloon for 3 days. Upon completion, the solution was filtered through a pad of Celite, the pad was washed with ethyl acetate and the filtrate was concentrated. The crude material contained about 10% of the undesired isomer. The crude was dissolved in ethyl acetate (-20%) and hexanes and heated until all dissolved. The solution Wg1S allowed to sit at room temperature for 2 days. The precipitate was then collected to give (+/-)-4-(3-aminopyridin-4-yl)-2-(tert-butoxycarbonylamino)-6- methylcyclohexyl acetate as the pure product in 59% yield. LC/MS = 364.3 (M+H), Rt = 0.63 min.
Synthesis of 2-(tert-butoxycarbonylamino)-6-methyl-4-(3 -nitropyridin-4-yl)cvclohex-3- enyl methanesulfonate
Figure imgf000069_0001
[0135] To a solution of tert-butyl 6-hydroxy-5 -methyl-3 -(3 -nϊtropyridin-4- yl)cyclohex-2-enylcarbamate (1.0 equiv.) in DCM (0.09 M) was added triethylamine (1.5 equiv.) and the reaction was cooled to 0 0C. MsCl (1.2 equiv.) was added to the reaction and stirred for 3 h. Another 1.0 equiv. of MsCl was added to the reaction and stirred for another 2 h. Worked up the reaction by adding water, the organic phase was dried with brine, sodium sulfate, and concentrated. The crude product was purified via silica gel column chromatography eluting with ethyl acetate and hexanes (1:1) to afford 2-(tert- butoxycarbonylamino)-6-methyl-4-(3-nitropyridin-4-yl)cyclohex-3-enyl methanesulfonate as a white foam in 65% yield. LC/MS = 428.2 (M+H), LC: 3.542 min.
Synthesis of f+Z-Vtert-butyl 7-methyl-5-(3-nitropyridin-4-ylV2-oxo-3a.6,7.7a- tetrahvdrobenzo FdI oxazole-3 ( 2H)-carboxylate
Figure imgf000069_0002
[0136] A solution of (+/-)-2-(teit-butoxycarbonylamino)-6-methyl-4-(3- nitropyridin-4-yl)cyclohex-3-enyl methanesulfonate (1.0 equiv.) in pyridine (0.2 M) was heated in the microwave at 110 0C for 10 min. The orange reaction was then concentrated under vacuo, the erode was dissolved in ethyl acetate and water5 the organic phase was dried with sodium sulfate and concentrated under vacuo. Tb.e crude material was dissolved in DCM (0.2 M), triethylamine (1.8 equiv.) was added, followed by BoC2O (1.2 equiv.). The reaction was stirred for 40 min, then concentrated to dryness. The crude material was purified via silica gel column chromatography eluting with hexane and ethyl acetate (1 :1) to afford (+/-)-tert-butyl 7-methyl-5-(3-nitropyridin-4-yl)-2-oxo- 3a,6,7,7a-tetrahydrobenzo[d]oxazole-3(2H)-carboxylate as a white foam in 66% yield. LC/MS = 376.0 (M+H), LC: 3.424 min.
Synthesis of f+M-tert-butyl 5-(3-aminopyridin-4-yl)-7-methyl-2- oxohexahydrobenzofd]oxazole-3(2HVcarboχylate
Figure imgf000070_0001
[0137] To a degassed solution of (+/-)-tert-butyl 7-methyl-5-(3-nitropyridin-4- yl)-2-oxo-3a,6,7,7a-tetrahydrobenzo[d]oxazole-3(2H)-carboxylate (1.0 equiv.) in MeOH and EtOAc (l:l, 0.1 M) was added 10% Pd/C (0.1 equiv.). The reaction was stirred under a hydrogen balloon overnight. Upon completion, the solution was filtered through a pad of Celite and the pad was washed with ethyl acetate. The filtrate was concentrated under vacuo to give (+/-)-tert-butyl 5-(3-aminopyridin-4-yl)-7-methyl-2- oxohexahydrobenzo[d]oxazole-3(2H)-carboxylate as the desired product as a yellow foam in 93% yield. LC/MS = 348.1 (M+H), Rt - 055 min.
Synthesis of ((+I- Vf 1 R.2R.6S V6-methyl-4-G -nitropyridin-4- vncvclohex-3 -ene- 1 ,2-diol and r+/-V(l R.2S.6SV6-methyl-4-f3-nitroϋyridin-4-vncvclohex-3-ene-1.2-dion
Figure imgf000070_0002
[0138] To a solution of (+/-)-(l S,5S,6S)-6-bromo-5-methyl-3-(3-nitropyridin- 4-yl)cyclohex-2-enol (1.0 equiv.) in THF (0.1M) was added potassium tert-butoxide (1.5 equiv.) at room temperature. The reaction mixture was stirred for 10 min. The reaction mixture was quenched with NH4Cl solution and worked up with EtOAc by washing with water and brine. The organic layer was dried over anhydrous sodium sulfate, filtered off, and dried in vacuo. The crude product was used for next step without further purification. Rf = 0.5 (50% EtOAc/Hexanes). LCMS: MH+ 251.2 (as a diol), R1 =0.49 min. To a solution of crude (+/-)-4-((l S,5S)-5-methyl-7-oxabicyclo[4.1 ,0]hept-2-en-3-yl)-3- nitropyridine (1.0 equiv.) in 2:1 CH3CN/H2O (0.1 M) was added acetic acid (0.3 equiv.) at room temperature. The reaction mixture was stirred for 16 h at room temperature. After quenched with NaHCθ3 solution, the reaction mixture was concentrated to remove the majority OfCH3CN and the residue was partitioned between EtOAc and water. The combined organic layer was washed with water and brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. A mixture of diols ((+A)-(I R,2R,6S)-6- methyl-4-(3-nitropyridin-4-yl)cyclohex-3-ene-l ,2-diol and (+/-)-(lR,2S,6S)-6-methyl-4- (3-nitroρyridin-4-yi)cyclohex-3-ene-l,2-diol) was obtained in 33.1% yield as a white solid by flash column chromatography. Rf = 0.3 (100% EtOAc; diols were not separable on TLC). LCMS: MH+ 251.2, Rt =0.49 min.
Synthesis of f+/-)-4-rf3S.4R.5SV3.4-bis(tert-butyldimethylsilyloxyV5-methylcvclohex-l- enylV3-nitropycidine and r+/-V4-rr3R.4R.5SV3.4-bisftert-buryldimethylsilyloxyV5- methylcvclohex- 1 -enylV3-nitropyridine
Figure imgf000071_0001
[0139] To a solution of a mixture of diols (1.0 equiv) in DMF (0.3 M) was added TBDMSCl (7.0 equiv.) and imidazole (9 equiv.) at room temperature. The reaction mixture was stirred at room temperature overnight. After quenched with sat NaHCO3, The reaction mixture was extracted with EtOAe. The combined organic layer was washed with water and brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The mixture was purified by sequential automated silica column chromatography (gradient eluting with EtOAc and Hexanes) and preparative reverse phase HPLC (55%-95% acetonitrile in water, then run 5%-95% acetonitrile in water to yield (+/-)-4-((3S,4RJ5S)-3,4-bis(tert-butyldimethylsilyloxy)~5-methylcyclohex-l-enyl)- 3-nitropyridine (27.2%) and (+/-)-4-((3R,4R,5S)-3,4-bis(tert-butyldimethylsilyloxy)-5- methylcyclohex-l-enyl)-3-nitropyridine (50.2%). LCMS: MH+ 479.2, Rt =1.60 and 1.63 min.
Synthesis of 4-rriS.3S.4S.5RV3.4-bisftert-butyldimethylsilyloxyV5- methylcvclohexyπpyridin-3-amine and of4-(πR,3R.4R.5S)-3.4-bis(tert- butyldimethylsilyloxy )-5 -methylcvclohexyl)Dyridin-3 -amine
OTBDMS S
Figure imgf000072_0002
Figure imgf000072_0001
[0140] To a solution of (+/-)-4-((3R,4R,5S)-3,4-bis(tert-butyldimethyl- silyloxy)-5-methylcyclohex-l-enyl)-3-nitropyridine (1.0 equiv.) in ethanol/EtOAc, at a concentration of 0.1 M, was added 10% palladium on carbon (0.1 eq.). The resultant heterogeneous solution was put under an atmosphere of hydrogen and was stirred for 14 hours. At this time the mixture was filtered through a pad of celite eluting with EtOAc. The volatiles were removed in vacuo and the crude material was purified by automated silica column chromatography (Rf = 0.2, 40% EtOAc in Heptane) to yield pure racemic product. LCMS: MH+ 451.3, Rt -1.35 min. The racemic compound was resolved by chiral chromatography (IC column, 1 mL/min, 5%IPA in Heptane) to yield 4- ((lS,3S,4S55R)-3,4-bis(tert-butyldimethylsilyloxy)-5-methylcyclohexyl)pyridin-3-amine (6.01 min) and 4-((lR,3R,4R,5S)-3,4-bis(tert-butyldimethylsilyloxy)-5- methylcyclohexyl)pyridin-3-amine (8.34 min). Synthesis of 4-Cf IRJ R,4S,5R)-3.4-bisrtert-butyldimethylsilyloxyV5- methylcvclohexyl)pyridin-3 -amine and of 4-(f 1 S,3 S .4R, 5 S V 3 ,4-bis(tert- butyldimethylsilyloXyi -5 -methylcyclohexyl^pyridin-3 -amine
Figure imgf000073_0001
[0141] To a solution of (+/-)-4-((3S,4R,5S)-3,4-bis(tert-butyldimethyl- silyloxy)-5-methylcyclohex-l-enyl)-3-nitropyridine (1.0 equiv.) in ethanol, at a concentration of 0.1 M, was added 10% palladium on carbon (0.1 eq.). The resultant heterogeneous solution was put under an atmosphere of hydrogen and was stirred for 14 hours. At this time the mixture was filtered through a pad of celite eluting with ethanol. The volatiles were removed in vacuo and the crude material was purified by automated silica column chromatography (Rf= 0.2, 40% EtOAc in Heptane) to yield pure racemic product (50.4%). LCMS: MH+ 451.3, Rt =1.35 min. The racemic compound was resolved by chiral chromatography (IC column, 1 mL/min, 5%IPA in Heptane) to yield 4-((lR,3R,4S,5R)-3,4-bis(tert-butyldimethylsilyloxy)-5-methylcyclohexyl)pyridin-3- amine (6.98 min) and 4-((lS,3S,4R,5S)-3,4-bis(tert-butyldimethylsilyloxy)-5-methyl- cyclohexyl)pyridin-3 -amine (8.67 min).
Synthesis of sodium 6-fmethoxycarbonyl>-3-oxo-5-rtrifluoromethvπcvclohex-l-enolate
Figure imgf000073_0002
[0142] To a freshly prepared solution of sodium (1.0 eq) in t-BuOH (1 M) was added ethyl acetoacetate (1.0 eq) by dropwise and the mixture stirred on an ice bath for an additional 15 min. ethyl 4,4,4-trifluorocrotonate (1.0 eq) was added dropwise and the mixture stirred at room temperature for an additional 30 min. After refiuxing for 2 h5 the mixture was cooled and hexanes was added. The precipitate was filtered without further purification to give sodium 6-(methoxycarbonyl)-3-oxo-5-(trifluoromethyl)cyclohex-l- enolate (46%). LC/MS (m/z): MH+= 253.1, Rt = 0.70min.
Synthesis of 5 -ftrifluoromethylicvclohexane- 1 ,3 -dione
Figure imgf000074_0001
[0143] Sodium 6-(Methoxycarbonyl)-3-oxo-5-(trifluoromethyl)cyclohex-l - enolate (1.0 eq) was dissolved in IMNaOH (1.0 eq), and the mixture refluxed for 1 h. After cooling to room temperature, the mixture was acidified with 5 M sulfuric acid. The mixture was extracted with EtOAc. After washing with water, the organic layer was dried over magnesium sulfate, the solvent was removed under reduced pressure to give 5- (trifluoromethyl)cyclohexane- 1,3 -dione, which was used to the next step without further purification (98%). LC/MS (m/z): MH+=18U, Rt = 0.55min.
Synthesis of 3-oxo-5-(trifluoromethyl)cyclohex-l-enyl trifluoromethanesulfonate
Figure imgf000074_0002
[0144] To a suspension of 5-(trifluoromethyl)cyclohexane-l,3-dione (1.0 eq) in DCM (0.23 M) was added TEA (1.2 eq) to give a clear solution. The mixture was cooled to 0 0C. And then Tf2O (1.05 eq) in DCM was added dropwise. The reaction mixture was stirred at that temperature for 2 hours. The reaction mixture was diluted with DCM, and washed with water, aq. NaHCO3, brine, and was dried over MgSO4, filtered and concentrated to give 3-oxo-5-(trifluoromethyl)cyclohex-l-enyl trifluoromethanesulfonate, which was used to next step directly. LC/MS (m/z): MH+- 313.0, Rt = 1.02 min. Synthesis of 3-f4,4,5,5-tetramethyl-l ,3,2-dioxaborolan-2-yl)-5- ftrifluoromethyl)cyclohex-2-enone
Figure imgf000075_0001
[0145] All of reagents 3-oxo-5-(trifluoromethyl)cyclohex-l-enyl trifluoromethanesulfonate (1.0 eq), NaOAc (3.0 eq), and bis(pinacolato)diboron (2.0 eq) were added to 1,4-dioxane (0.23 M) in a round bottom flask and degassed by bubbling N2 through the mixture for 10 min. PdCl2(dppf).CH2Cl2 adduct (0.1 eq) was added and the reaction heated to 80 0C fitted with a reflux condenser on an oil bath under N2 for two hours. The mixture was cooled to room temperature, filtered through a coarse frit glass funnel, the cake rinsed with -1OmL 1,4-dioxane to give 3-(4,4,5,5-tetramethyl- 1.3,2- dioxaborolan-2-yl)-5-(trifluoromethyl)cyclohex-2-enone in 1,4-dioxane, which was used to next step directly. LC/MS (m/z): MH+ = 209.1 (boronic acid), Rt=0.60 min.
Synthesis of 3 -(3 -nitroρyridin-4-yl)- 5 -(trifluoromethvDcyclohex-2-enone
Figure imgf000075_0002
[0146] The boronate ester 3 -(4,4,5,5 -tetramethyl-1 ,3,2-dioxaborolan-2-yl)-5- (trifluoromethyl)cyclohex-2-enone (1.0 eq) was dissolved in 1,4-dioxane (0.14 M) in a round bottom flask was degassed by bubbling N2 through the solution for 30 minutes. 4- chloro-3-nitropyridine (1.3 eq) and aq. Na2CO3 (2M, 2.0 eq) were added and N2 was bubbled through for 10 minutes and then PdCl2(dppf).CH2Cl2 adduct (0.1 eq) was added. The reaction mixture was stirred at 100 0C for 2 Hours. The mixture was added EtOAc and brine. The resulting mixture was filtered, through celite, the cake was washed with EtOAc. The organic layer was separated, and washed with brine, dried over MgSO4, and filtered and concentrated. The crude product was purified by silica gel chromatography (eluted with EtOAc :Hexanes = 1:10 to 2:1) to give 3-(3-nitropyridin-4-yl)-5- (trifluoromethyl)cyclohex-2-enone (73% for three steps from diketone). LC/MS (m/z): MH+= 287.1, Rt = 0.85 min.
Synthesis of cis-3-(3-nitroDyridin-4-ylV5-rtrifluoromethyl)cvclohex-2-enol
Figure imgf000076_0001
[0147] 3-(3-Nitropyridin-4-yl)-5-(trifluoromethyl)cyclohex-2-enone (1.0 eq) was mixed with cerium(III) chloride heptahydrate (1.0 eq) and absolute ethanol (0.17) was added. The mixture was stirred at ambient temperature until all solids dissolved, the mixture was cooled on an ice bath and NaBH4 (1.2 eq) was added portion wise. The reaction was stirred on the ice bath for Ih. The mixture was diluted with EtOAc, washed with water, dried over MgSO4, filtered and concentrated. The residue was purified by column (1:1 ethyl acetate and hexanes) to give cis-3-(3-nitropyridin-4-yl)-5- (trifluoromethyl)cyclohex-2-enol (66%). LC/MS (m/z): MH+ = 289.2, Rt - 0.72 min.
Synthesis of cis-4-f 3 -azido-5 -(trifluoromethyl)cvclohex- 1 -enyl>3 -nitropyridine
Figure imgf000076_0002
[0148] To a solution of cis-3-(3-nitropyridin-4-yl)-5-
(trifluoromethyl)cyclohex-2-enol (1.0 eq) in DCM (0.14 M) was added TEA (2.5 eq), and followed by MsCl (1.8 eq) at room temperature. The reaction mixture was stirred at room temperature for 2 hours. The solvent was removed. The residue was dissolved in DMF
(0, 19 M)5 and then the mixture was added sodium azide (i ,2 eq). The resulting mixture was stirred at room temperature for 1 hour. Another 1 !l eq of sodium azide was added. The mixture was stirred at room temperature overnight. The reaction mixture was diluted with ethyl acetate and heptane, and washed with sat NaCl. The organic was dried over MgSO4, filtered and concentrated. The residue was purified by column (1:1 ethyl acetate and hexanes) to give cis^-^-azido-S-ttrifluoromethyOcyclohex-l-enyl)-3-nitropyridine (58%). LC/MS (m/z): MH+- 314.1, Rt=0.96 min.
Synthesis of tert-butyl riR,3R.5S)3-(3aminopyridin-4-yl)-5- (trifluoromethyl)cyclohexylcarbamate
Figure imgf000077_0001
[0149] A solution of cis-4-(3-azido-5-(trifluoromethyl)cyclohex- 1 -enyl)-3- nitropyridine (1.0 eq) in Ethanol (0.13 M) was bubbled with N2 for 20 min. Then the reaction mixture was added Boc-anhydride (1.5 eq) and PdVC (0.2 eq). The reaction mixture was stirred at room temperature under H2 atmosphere overnight. Solid was removed by filtration over celite and rinsed with EtOH. The residue was purified by column (5% methanol in 1:1 ethyl acetate and hexanes) to give racemic cis-3-(3- aminopyridin-4-yl)-5-(trifluoromethyl)cyclohexylcarbamate (57%). LC/MS (m/z): MH+ = 360.2 , Rt - 0.72 min. The enantiomerically pure tert-butyl (lR,3R,5S)-3-(3- aminopyridin-4-yl)-5-(rrifluoromethyl)cyclohexylcarbamate and N-(4-((l S,3S,5R)-3- amino-5-(trifluoromethyl)cyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5- fiuoropicolinamide were resolved by chiral HPLC (For analysis Rt - 8.14 min and 10.59 min respectively; heptane:isopropanol= 90:10 (v:v), Chiralcel IC 100 x 4.6 mm at 1 mL/min. For preparative separation, heptane :isopropanol = 90:10 (v:v), Chiralcel IC 250 x 20 mm at 15 mL/min ). Synthesis of fRV4-benzyl-3-(T2R.3RV3-lYR)-2,2-dimethyl- 13-dioxolan-4-ylV3-hydroxy- 2-methylpropanoyl)oxazolidin-2-one
Figure imgf000078_0001
[0150] (R)-4-benzyl-3-((2R,3R)-3-((R)-2,2-dimethyl- 1 ,3-dioxolan-4-yl)-3- hydroxy-2-methylpropanoyl)oxazolidin-2-one was prepared in the reported manner (Proc.Nat. Acad. Sciences, 101, 33, 2004, pages 12042-12047) for the enantiomeric compound by starting with (R)-4-benzyl-3-propionyloxazolidin-2-one and R- glyceraldehyde acetonide.
Synthesis of (R1-4-benzyl-3-(r2R,3RV3-ftert-butyldimethylsilyloxyV3-ffR)-2.2-dimethyl- 1.3-dioxolan-4-ylV2-methylpropanov0oxazolidin-2-one
Figure imgf000078_0002
[0151] (R)-4-benzyl-3-((2R,3R)-3-(tert-butyldime%lsiIyloxy)-3-((R)-2,2- dimethyl-l,3-dioxolan-4-yl)-2-methylpropanoyl)oxazolidin-2-one was prepared in the reported manner (ProcNat. Acad. Sciences, 101, 33, 2004, pages 12042-12047) for the enantiomeric compound by starting with (R)-4-benzyl-3-((2R,3R)-3-((R)-2,2-dimethyl- 1 ,3-dioxolan-4-yl)-3 -hydroxy-2-methylpropanoyl)oxazolidin-2-one. Synthesis of f2S.3R)-3-rtert-butyldimethylsilyloxyV3-r('RV2.,2-dimethyl-L3-dioxolan-4- yD-2-methylpropan-l -ol
HO J f TBS
Figure imgf000079_0001
[0152] To a solution of (R)-4-benzyl-3-((2R,3R)-3-(tert- butyldimethylsilyloxy)-3-((R)-2,2-dimethyl-l,3-dioxolan-4-yl)-2- methylpropanoyl)oxazolidin-2-one (1.0 equiv.) and ethanol (3.0 equiv.) in THF (0.09 M) was added LiBH4 (1.0 equiv.) at -4O0C. The reaction mixture was allowed to warm up to rt slowly and stirred at that temperature for 12 hours. The solution was cooled back to - 4O0C and additional LiBH4 (0.3 equiv.) was added. After warming back up to rt and stirring for 2 hours the solution was then diluted with diethyl ether and IN NaOH) was added. The resulting mixture was extracted with ethyl acetate, the organic layer was separated, washed with NaCl(Sat ), dried over magnesium sulfate, filtered, and concentrated. The residue was purified via silica gel column chromatography (10-30% EtOAc/n-heptanes) yielding (2S,3R)-3-(tert-butyldimethylsilyloxy)-3-((R)-2,2-dimethyl- l,3-dioxolan-4-yl)-2-methylpropan-l-ol in (75%). LC/MS = 247.1 (M+H-ketal-H2O), R1 = 0.64 min.
Synthesis of (TlR.2SV3-azido-l-ffRV2,2-dimethyl-1.3-dioxolan-4-vn-2- methylpropoxyytert-butyDdimethylsilane
OTBS
1 O
Figure imgf000079_0002
[0153] To a solution of (2S,3R)-3-(tert-butyldimethylsilyloxy)-3-((R)-2,2- dimethyl-l,3-dioxolan-4-yl)-2-methylpropan-l-ol (1.0 equiv.), DIAD (2.0 equiv.), and PPh3 (2.0 equiv.) in THF (0.18 M) was added DPPA (1.0 equiv., IM solution in THF). The reaction mixture was stirred at room temperature overnight. Upon removal of the volatiles under vacuo, the residue waε purified by silica gel column chromatography (2 -3- 5% EtOAc/n-heptances) yielding ((1R,2S)-3-azido-1-((R)-2,2-dimethyl-1,3-dioxolan-4- yl)-2-methylpropoxy)(tert-butyl)dimethylsilane (62%). 1H-NMR (400 MHz, CDCl3): δ 4.04-4.10 (m, IH), 3.94 (dd, J-8.0, 6.4, IH), 3.72 (d, J=7.2, IH), 3.53 (t, J-8.0, IH), 3.36 (dd, J=12, 8.O5 IH), 3.19 (dd, J=12.0, 6.7, IH), 1.52-1.60 (m, IH), 1.41 (s, 3H), 1.34 (s, 3H), 0.92 (d, J=7.2, 3H), 0.90 (s, 9 H), 0.12 (s, 3H), 0.09 (s, 3H).
Synthesis of r2R.3R.4S)-5-azido-3-('tert-butyldimethylsilyloxyV4-methvbentane- 1.2-diol
Figure imgf000080_0001
[0154] To a solution of ((I R,2S)-3-azido-l -((R)-2,2-dimethyl- 1 ,3-dioxolan-4- yl)-2-methylpropoxy)(tert-butyl)dimethylsilane (LO equiv.) in MeOH (0.1 M) was added PPTS (1.0 equiv.) and the mixture was stirred at rt for 14 hours, 5O0C for 2 hours and 8O0C for 1 hour. The volatiles were removed under vacuo and the residue was purified via silica gel column chromatography (10-25% EtOAc/n-heptanes) yielding (2R,3R,4S)- 5-azido-3-(tert-butyldimethylsilyloxy)-4-methylpentane-l,2-diol (40%).
Synthesis of f2R3R.4S)-5-azido-3-ftert-butyldimethylsilyloxyV2-hvdroxy-4- methylpentyl 4-methylbenzenesulfonate
Figure imgf000080_0002
[0155] To a solution of tert-butyl (2R,3R,4S)-5-azido-3-(tert- butyldimethylsilyloxy)-l-hydroxy-4-methylpentan-2-ylcarbamate (1.0 equiv.) in pyridine (0.2 M) was added pTsCl (1.3 equiv.) at 0 0C. The mixture held at this temperature for 16 hours. The volatiles were removed in vacuo and the residue was purified by silica gel column chromatography (10-15-20% EtOAc/n-heptanes) yielding (2R,3R,4S)-5-azido-3- (tert-butyldimethylsilyloxy)-2-hydroxy-4-methylpentyl 4-methylbenzenesulfonate. Synthesis of r2R3R.4SV5-a2ido-23-bisrtert-butyldimethylsilyloxy)-4-methylρentyl 4- methylbenzenesulfonate
Figure imgf000081_0001
[0156] To a solution of (2R,3R,4S)-5-azido-3-(tert-butyldimethylsilyloxy)-2- hydroxy-4-methylpentyl 4-methylbenzenesulfonate (1.0 equiv.) and 2,6-lutidine (3.4 equiv.) was added TBDMSOTf (1.7 equiv.) at O0C. The solution was stirred for 7 hours as it warmed to rt. The solution was diluted with EtOAc, washed with 10% CuSO4, H2O, Na2CO3 (sat), NaCl(Sat), dried over MgSO4, filtered and concentrated. The residue was purified by silica gel column chromatography (2.5-5-10-20% EtOAc/n-heptanes) yielding (2R,3R,4S)-5-azido-2,3-bis(tert-butyldimethylsilyloxy)-4-methylpentyl 4- methylbenzenesulfonate (75%).
Synthesis of 4-f(3R.4R.5SV3.4-bis(tert-butyldimethylsilyloxyV5-methvbiperidin-l-yl)- 3-nitroρyridine
Figure imgf000081_0002
[0157] A solution of (2R,3R,4S)-5-azido-2,3-bis(tert-butyldimethylsilyloxy)-4- methylpentyl 4-methylbenzenesulfonate in EtOH (0.05 M) was degassed with argon. DIEA (1.5 equiv.) was added, followed by 10% Pd/C (0.1 equiv.). The reaction mixture was stirred under a hydrogen balloon for 3 hours. The solution was degassed and purged to argon, at which time 4-chloro-3-nitropyridine (1.5 equiv.) and additional DIEA (1.5 equiv.) were added. After stirring at rt for 15 hours the solution was filtered to remove the Pd/C and the volatiles were removed in vacuo. The residue was diluted with ethyl acetate and washed with Na2CG3 (Sat.)5NaCl(sat,), dried over IvIgSO'4, filtered and concentrated. The residue was purified by silica gel column cnromatograpby (10-15% EtOAc/n-heptanes) yielding 4-((3R,4R,5S)-3,4-bis(tert-butyldimethylsilyloxy)-5- methylpiperidIn-l-yl)-3-nitropyridine (40%). LC/MS = 482.4 (M+H), R1 = 1.26 min.
Synthesis of 4-f(3R.4R.5S')-3.4-bisrtert-butyldimethylsilyloxyV5-methylpiperidin-l- vDpyridin-3 -amine
Figure imgf000082_0001
[0158] To a solution of 4-((3R,4R,5S)-3,4-bis(tert-butyldimethylsilyloxy)-5- methylpiperidin-l-yl)-3-nitropyridine (1.0 equiv.) in ethanol, at a concentration of 0.05 M, was added 10% palladium on carbon (0.1 eq.). The resultant heterogeneous solution was put under an atmosphere of hydrogen and was stirred for 14 hours. At this time the mixture was filtered through a pad of celite eluting with ethanol. The volatiles were removed in vacuo yielding 4-((3R,4R,5S)-3,4-bis(tert-butyldimethylsilyloxy)-5- methylpiρeridin-l-yl)pyridin-3 -amine. LC/MS = 452.4 (M+H), Rt - 1.31 min.
Synthesis of (RVtert-butyl 4-fαR.2RV3-(fRy4-benzyl-2-oxooxazolidm-3-ylVl-hvdroxy- 2-methyl-3-oxoproρyl)-2,2-dimethyloxazolidine-3-carboxylate
Figure imgf000082_0002
[0159] To a solution of (R)-4-ben2yl-3-propionyloxazolidin-2-one (1.0 equiv.) in DCM (0.13 M) was added TiCl4 (1.0 equiv.) at -40 0C. The mixture was stirred at -40 0C for 10 min (yellow suspension), then DIPEA (2.5 equiv.) was added (dark red solution) and stirred at 0 0C for 20 min, (R)-tert-butyl 4-formyl-252-dimethyloxazolidine-
3-carboxylate (1.0 equiv.) in DCM (0.5 M) was then added dropwise and the resulting mixture was stirred for J .S hours. The reaction was quenched by the addition of aqueous ammonium chloride and the mixture was extracted with ethyl acetate. The organic phase was separated, washed with brine, dried with magnesium sulfate, filtered, and concentrated. The residue was purified via column chromatography eluting with ethyl acetate and hexanes (1 :4) to give (R)-tert-butyl 4-((lR,2R)-3-((R)-4-benzyl-2- oxooxazolidin-3-yl)-l-hydroxy-2-methyl-3-oxopropyl)-2,2-dimethyloxazolidine-3- carboxylate as the major product (5:2) in 58% yield. LC/MS = 363.3 (M+H-Boc), Rt = 1.09 min.
Synthesis of rRVtert-butyl 4-rnR.2RV3-(TRV4-benzyl-2-oxooxazolidin-3-vD-l-ftert- butyldimethylsilyloxy)-2-methyl-3-oxopror>yl)-2.2-dimethyloxazolidine-3-carboxylate
Figure imgf000083_0001
[0160] To a solution of (R)-tert-butyl 4-((lR,2R)-3-((R)-4-benzyl-2- oxooxazolidin-3-yl)-l-hydroxy-2-methyl-3-oxopropyl)-2,2-dimethyloxazolidine-3- carboxylate (1.0 equiv.) and lutidine (1.8 equiv.) in DCM (0.1M) was added TBSOTf (1.4 equiv.) at -40 0C. The reaction mixture was stirred at -400C for 2 hours. The solution was diluted with ethyl acetate and washed with sat. NaHCO3, sat. NaCl5 dried with magnesium sulfate, filtered, and concentrated. The residue was purified by silica gel column chromatography eluting with ethyl acetate and hexanes (1 :4) to give (R)-tert- butyl 4-((lR,2R)-3-((R)-4-benzyl-2-oxooxazolidin-3-yl)- 1 -(tert-butyldimethylsilyloxy)-2- methyl-3-oxopropyl)-2,2-dimethyloxazolidine-3-carboxylate as the major product (5:2) in 83% yield. LC/MS = 577.3 (M+H), Rt = 1.33 min (Frac 65%-95% method). Synthesis of (RVtert-butvI 4-(Y 1 R.2SV 1 -ftert-butyldimethylsilyloxy)-3 -hydroxy-2- methylpropyl)-2,2-dimethyloxazolidine-3-carboxylate
Figure imgf000084_0001
[0161] To a solution of (R)-tert-butyl 4-((lR,2R)-3-((R)-4-benzyl-2- oxooxazolidin-3 -yl)- 1 -(tert-butyldimethylsilyloxy)-2-methyl-3 -oxopropyl)-2,2-dimethyl- oxazolidine-3-carboxylate (1.0 equiv.) and ethanol (3.0 equiv.) in THF (0.09 M) was added LiBH4 (3.0 equiv.) at -30 0C. The reaction mixture was allowed to warm up to 0 0C and stirred at that temperature for 3 hours. The solution was then diluted with diethyl ether and IN NaOH was added. The resulting mixture was extracted with ethyl acetate, the organic layer was separated, washed with sat. NaCl, dried over magnesium sulfate, filtered, and concentrated. The residue was purified via silica gel column chromatography elutύig with ethyl acetate and hexanes (1:4) to give (R)-tert-butyl 4- ((lR,2S)-l-(tert-butyldimethylsilyloxy)-3-hydroxy-2-methylproρyl)-2,2-dimethyloxazoi- idine-3-carboxylate as the major product (5:2 ratio) in 71% yield. LC/MS = 304.3 (M+H-Boc), Rt = 0.95 min (Frac 65%-95% method).
Synthesis of fRV tert-butyl 4-( (T R.2S V3 -azido- 1 -( tert-butyldimethylsilyloxy)- 2-methylprorjylV2.2-dimethytoxazolidine-3-carboxylate
Figure imgf000084_0002
[0162] To a solution of (R)-tert-butyl 4-((lR,2S)- 1 -(tert-butyldimethyl- silyloxy)-3-hydroxy-2-methylproρyl)-2,2-dimethyloxazolidine-3-carboxylate (1.0 equiv.), DIAD (2.0 equiv.), and PPh3 (2.0 equiv.) in THF (0.18 M) was added DPPA (2.0 equiv., IM solution in THF). The reaction mixture was stirred at room temperature overnight. Upon removal of the volatiles under vacuo, the residue was purified by silica gel column chromatography eluting with ethyl acetate and hexanes (1 :6) to give (R)-tert-butyl A- (( 1 R,2S)-3 -azido- 1 -(tert-butyldirnethylsilyloxy)~2-methylpropyl )~2,2-dimethy loxazoJ - idine-3-carbox.yIate as the major product. (5:2) in 86% yield. LCMS = 329.3 (M+H- Boc), Rf = ϊ .40 min (Frac 65%-95% method). Synthesis of tert-butyl f2R.3R.4SV5-azido-3-ftert-butyldimethylsilyloxyV l-hvdroxy-4-methylpentan-2-ylcarbamate
Figure imgf000085_0001
[0163] To a solution of (R)-tert-butyl 4-((lR,2S)-3-azido-l-(tert- butyldimethylsilyloxy)-2-methylpropyl)-2,2-dimethyloxazoIidine-3-carboxylate (1.0 equiv.) in EtOH (0.1 M) was added PPTS (1.3 equiv.) and the mixture was refluxed for 2 days. The volatiles were removed under vacuo, the residue was dissolved in DCM (0.1 M) and DIEA (1.5 equiv.) and BOC2O (1.0 equiv.) were added to the reaction mixture. The solution was stirred for 3 hours at room temperature. The solvents were removed under reduced pressure and the residue was diluted with ethyl acetate, washed with water, aqueous NaHSO4, aqueous NaHCO3, sat. NaCl, the organic phase was dried with magnesium sulfate, filtered, and concentrated. The residue was purified via silica gel column chromatography eluting with ethyl acetate and hexanes (1 :3) to give tert-butyl (2R,3R,4S)-5-azido-3 -(tert-butyldimethylsilyloxy)- 1 -hydroxy-4-methylpentan-2- ylcarbamate as the major isomer (5:2) in 70% yield. LC/MS = 289.3 (M+H-Boc), Rt = 0.76 min (Frac 65%-95% method).
Synthesis of (2R.3R.4Sy5-azido-2-(tert-butoxycarbonylaminoV3-ftert- butyldimethylsi}yloχyV4-methylρentyl methanesulfonate
Figure imgf000085_0002
[0164] To a solution of tert-butyl (2R,3R,4S)-5-azido-3-(tert- butyldimethylsilyloxy)-l-hydroxy-4-methylpentan-2-ylcarbamate (1.0 equiv.) in pyridine (0.2 M) was added MsCl (1.3 equiv.) followed by DMAP (catalytic amount) at 0 0C. The mixture was stirred at that temperature for 1 hour. The solution was diluted with ether and ethyl acetate (4:1), washed with aq. NaHSO4, sat. NaHCO3, brine, dried over magnesium sulfate, filtered, and concentrated. The residue was purified by silica gel column chromatography eluting with ethyl acetate and hexanes (1 :3) to give (2R,3R,4S)- 5-azido-2-( tert-butoxycarbonylamino)-3-(tert-butyldimethylsilyloxy)-4-methylpentyl methanesulfonate as the major isomer (5:2) in 90% yield. LC/MS = 367.3 (M+H-Boc), Rt - 0.81 min (Frac 65%-95% method).
Synthesis of tert-butyl GR.4R.5S)-4-fart-butyldimethylsilyloxyV 5-methγlpiperidin-3-ylcarbamate
Figure imgf000086_0001
[0165] A solution of (2R,3R,4S)-5-azido-2-(tert-butoxycarbonylamino)-3-(tert- butyldimethylsilyloxy)-4-methylpentyl methanesulfonate in MeOH (0.09 M) was degassed with nitrogen for 20 min. DIEA (2.5 equiv.) was added, followed by 10% Pd/C (0.1 equiv.). The reaction mixture was stirred under a hydrogen balloon for 2 hours. The solution was filtered and the filtrate was concentrated under vacuo to afford tert-butyl (3R,4R,5S)-4-(tert-butyldimethylsilyloxy)-5-methylpiperidin-3-ylcarbamate as the major isomer (5:2) in >99% yield. LC/MS = 345.2 (M+H-Boc), Rt = 0.95 and 0.99 min.
Synthesis of tert-butyl GRΛR.SSM-ftert-butyldimethylsilyloxyVS-methyl-l-fS- nitropyridin-4-vDpiperidin-3-ylcarbamate
Figure imgf000086_0002
[0166] To a solution of tert-butyl (3R,4R,5S)-4-(tert-butyldimethylsilyloxy)-5- methylpiperidin-3-ylcarbamate (1.0 equiv.) in i-PrOH (0.09 M) was added DIEA (2.5 equiv.) and 4-chloro-3-nitropyridine (1.5 equiv.). The reaction mixture was stirred at 60 0C for 2 hours. The volatiies were removed under vacuo, the residue was diluted with ethyl acetate and washed with sat. NaCl. The organic phase was dried with magnesium sulfate, filtered, and concentrated. Tbe crude material was purified by silica gel column chromatography eluting with ethyl acetate and hexanes (1 :2) to give tert-butyl (3R,4R,5S)-4-(tert-butyldimethylsilyloxy)-5-methyl-l-(3-nitropyridin-4-yl)piperidin-3- ylcarbamate in 76% yield. LC/MS = 467.3 (M+H), Rt = 1.09 min.
Synthesis of tert-butyl (3R.4R,5Syi-(3-aminopyridin-4-ylV4-ftert- butyldimethylsilyloxyV5-methylpiperidin-3-ylcarbamate
Figure imgf000087_0001
[0167] A solution of tert-butyl (3R,4R,5S)-4-(tert-butyldimethylsilyloxy)-5- methyl-l-(3-nitropyridin-4-yl)piperidin-3 -ylcarbamate (1.0 equiv.) in MeOH (0.05 M) was degassed with nitrogen for 20 min. 10% Pd/C (0.2 equiv.) was added to the mixture and the solution was stirred under a hydrogen balloon for 3 hours. The reaction was filtered and the filtrate was concentrated under reduced pressure to give tert-butyl (3R,4R,5S)-l-(3-aminopyridin-4-yl)-4-(tert-butyldimethylsilyloxy)-5-methylpiperidin-3- ylcarbamate as the desired product in 94% yield. LC/MS = 437.4 (M+H), Rt = 1.08 min. 1H-NMR (300 MHz, CDCl3): δ 8.01 (s, IH), 7.95 (d, J - 6.0 Hz, IH)5 6.76 (d, J = 6.0 Hz, IH), 4.44 (br s, IH), 3.74 (br s, 2H), 3.59-3.55 (m, IH), 3.25-3.13 (m, 2H), 2.47-2.35 (m, 2H), 1.89 (br s, 2H), 1.44 (s, 9H), 1.04 (d, J = 6.0 , 3H), 0.92 (s, 9H), 0.13 (d, J = 9.0, 6H).
Synthesis of tert-butyl f 2RV 1 -fbenzyloxy)-3-hydroxy-4 -methylhex- 5 -en-2-ylcarbamate
Figure imgf000087_0002
[0168] To a solution of N-Boc, O-benzyl-D-Serine aldehyde (1.0 equiv) in DCM (0.1 M) at "7E0C under an Ar atmosphere was added (Z)-2-(but-2-enyJ)-4,4,5,5- tetram.ethyl.-l53?2-dioκaboro]ane (l.ϊ equiv) and the clear solution stirred for 16 hours as it warmed to rt. The solution was added to EtOAc and was washed with H2O (3x)s and NaCl(Sat.), dried over MgSO4 and purified by silica gel chromatography (15% EtOAc/hexanes) to yield tert-butyl (2R)-l-(benzyloxy)-3-hydroxy-4-methylhex-5-en-2- ylcarbamate (54%) as a 3:1 mixture of isomers as judged by 1H NMR. LCMS (m/∑): 236.3 (MH+-BoC); LC Rt = 4.37 and 4.51 min.
Synthesis of (4R)-4-(benzyloxymethyl)-5-(but-3-en-2-yl)oxazolidin-2-one
Figure imgf000088_0001
[0169] To a solution of (2R)-I -(benzyloxy)-3-hydroxy-4-methylhex-5-en-2- in THF (0.1 M) was added 60% sodium hydride in mineral oil (1.5 equiv.). After stirring for 3 days, the reaction was quenched by addition of NH4Cl(SaL) and solution was diluted with EtOAc and washed with NH4Cl(sat) and NaCl(sat.), dried over MgSO4 and purified by silica gel chromatography (50% EtOAc/hexanes) to yield (4R)-4-(benzyloxymethyl)-5- (but-3-en-2-yl)oxazolidin-2-one (89%) as a 3:1 mixture. LCMS (m/z): 262.2 (MH+); LC Rt = 3.47 min.
Synthesis of (4R)-4-(benzyloxymethyl)-5-( 1 -hvdroxypropan-2-yr)oxazolidin-2-one
Figure imgf000088_0002
[0170] To a solution of (4R)-4-(benzyloxymethyl)-5-(but-3-en-2- yl)oxazolidin-2-one (1.0 equiv.) in 2:1 MeOH/ H2O (0.04 M) was added osmium tetroxide 4% in H2O (0.07 equiv) and sodium periodate (3.0 equiv.). After stirring for 3 hours, the white precipitate was filtered and rinsed with EtOAc. The combined filtrate was concentrated in vacuo and the residue was dissolved in EtOAc, washed with NaCϊ{Sat.), dried over MgSCht, filtered and concentrated. The crude aldehyde was dissolved in EtOH (0.08 M) and upon cooling to O0C, sodium borohydride (2.0 equiv.) was added. After stirring for 15 hours and coming to room temperature the reaction was quenched by addition of H2O. After stirring for 20 minutes, the EtOH was removed in vacuo, EtOAc was added and the solution was washed with IN HCl, NaHCO3(sat.) and NaCl(sat.), dried over MgSO4, filtered and concentrated yielding after purification by silica gel chromatography (4R)-4-(benzyloxymethyl)-5-(l -hydroxypropan-2-yl)oxazolidin-2- one as a 3:1 mixture of isomers (60%). LCMS (m/z): 266.1 (MH+); LC Rt = 2.28 min.
Synthesis of (4RV4-(hvdroxymethylV5-π-hvdroxyproρan-2-yl)oxazolidin-2-one
Figure imgf000089_0001
[0171] To a solution of (4R)-4-(benzyloxymethyl)-5-(l-hydroxypropan-2- yl)oxazolidin-2-one (1.0 equiv.) in methanol, at a concentration of 0.1 M, was added 10% palladium on carbon (0.1 eq.). The resultant heterogeneous solution was put under an atmosphere of hydrogen and was stirred for 15 hours. At this time the mixture was filtered through a pad of celite eluting with methanol. The volatiles were removed in vacuo yielding (4R)-4-(hydroxymethyl)-5-(l -hydroxyρroρan-2-yl)oxazolidin-2-one (99%). LCMS (m/z): 176.1 (MH+).
Synthesis of 2-((4Ry2-oxo-4-(tosyloxymethv0oxazoHdin-5-yl)- uropyl 4-methylbenzenesulfonate
Figure imgf000089_0002
[0172] To a solution of (4R)-4-(hydroxymethyl)-5-(l -hydroxypropan-2- yl)oxazolidin-2-one (1.0 equiv.) in pyridine (0.15 M) at O0C was added p- toluenesulfonylchloride (2.1 equiv.). The solution was allowed to warm to rt as it stirred, for 14 hours, at which time EtOAc was added and the solution was washed with H2O(Sx), CuSO4(sat)(2x),H2O , Na2CO3(sat.) and NaCl(sat.), dried over MgSO4, filtered, concentrated and purified by silica gel chromatography (75%EtOAc/hexanes eluent) yielding 2-((4R)- 2-oxo-4~(tosyloxymethyl)oxazolidin-5-yl)propyl 4-methylbenzenesulfonate (68%). LCMS (m/z): 484.1 (MH+); LC Rt = 4.06 min.
Synthesis of (3aR.7R.7aS')-5-r4-methoxybenzyl')-7-methylhexahydrooxazolo[4.5- c1pyridin-2(3HVone and f3aR.7S.7aR)-5-f4-methoxybenzylV7- methylhexahydrooxazolor4,5-clr)yridin-2('3HVone
Figure imgf000090_0001
[0173] A solution of 2-((4R)-2-oxo-4-(tosyloxymethyl)oxazolidin-5-yl)propyl 4-methylbenzenesulfonate (1.0 equiv.), diisopropylethyl amine (3.0 equiv.) and para- methoxybenzylamine (1.5 equiv.) in NMP (0.05 M) was heated at 1000C for 14 hours. The solution was purified directly by RP HPLC. The product fractions were desalted by addition to EtOAc and Na2CO3(S)1 washed further with NaCl(sat), dried over MgSO4 and concentrated yielding two separate isomers of (3aR,7R,7aS)-5-(4-methoxybenzyl)-7- methylhexahydrooxazolo[4,5-c]pyridin-2(3H)-one and (3aR,7S,7aR)-5-(4-methoxy- benzyl)-7-methylhexahydrooxazolo[4,5-c]pyridin-2(3H)-one (27% and 8%). LCMS (m/z): 277.2 (MH+) at 0.40 and 0.42 min.
Synthesis of f3aR.7R,7aSV7-methylhexahvdrooxazolo[4.5-clpyridin-2(3H)-one
Figure imgf000090_0002
[0174] To a solution of (3aR,7R,7aS)-5-(4-methoxybenzyl)-7-methylhexahy- drooxazolo[4,5-c]pyridin-2(3H)-one (1.0 equiv.) in methanol, at a concentration of 0.1 M, was added 20% palladium hydroxide on carbon (0.3 eq.). The resultant heterogeneous solution was put under am atmosphere of hydrogen and was stirred for 2 hours. At this time the mixture was filtered through a pad of celite eluting with methanol, The volatiles were removed in vacuo yielding (3aR,7R,7aS)-7-methylhexahydro- oxazolo[4,5-c]pyridin-2(3H)-one (99%). LCMS (m/z): 157.1 (MH+) at 0.16 min.
Synthesis of (3aR.7R.7aSVtert-butyl 7-methyl-5-f3-nitropyridin-4-ylV2- oxohexahvdrooxazolo[4,5-c1ρyridine-3f2H)-carboχylate
Figure imgf000091_0001
[0175] A solution of 4-chloro-3-nitropyridine (1.3 equiv.) and (3aR,7R,7aS)-7- methylhexahydrooxazolo[4,5-c]pyridin-2(3H)-one (1.5 equiv.) in CH2Cl2, at a concentration of 0.1 M, was stirred at rt for 48 hours at which piperidine (0.4 equiv) was added to consume excess 4-chloro-3-nitropyridine. After stirring for an additional 2 hours, di-tert-butyl dicarbonate (2.0 equiv.) and dimethylaminopyridine (0.1 equiv.) were added. After stirring for 4 hours, the solution was partitioned between EtOAc and NaHCO3 (sat.), was washed further with NaHCO3 (sat.), and NaCl(Sat .), was dried over MgSO4, was filtered and purified by silica gel chromatography yielding (3aR,7R,7aS)- tert-butyl 7-methyl-5-(3 -nitropyridin-4-yl)-2-oxohexahydrooxazolo [4, 5 -c]pyridine- 3(2H)carboxylate (62%). LCMS (m/z): 379.0 (MH+) at 0.58 min..
Synthesis of (3 aR.7R.7aS Vtert-butyl 5-G -aminoρyridin-4- vB-7-methyl-2- oxohexahydrooxazolor4.5-clpyridine-3(2H)-carboxylate
Figure imgf000091_0002
[0176 ] To a solution of (3aR7R7aS)-tert-butyl 7-methyI-5-(3-nitropyridin-4' yl)-2-oxohexahydrooxazolo[4,5-c]pyridine-3(2H)-carboxylate (1 ,0 equiv.) in methanol, at a concentration of 0.1 M, was added 10% palladium on carbon (0.1 eq.). The resultant heterogeneous solution was put under an atmosphere of hydrogen and was stirred for 14 hours. At this time the mixture was filtered through a pad of celite eluting with methanol. The volatiles were removed in vacuo yielding (3aR,7R,7aS)-tert-butyl 5-(3-aminopyridin- 4-yl)-7-methyl-2-oxohexahydrooxazolo[4,5-c]pyridine-3(2H)-carboxylate. LCMS (m/z): 349.1 (MH+); LC R, = 2.06 min.
Synthesis of (f3aR.7S.7aRV7-methylhexahvdrooxazolor4.5-c1ρyridin-2f3HVone
Figure imgf000092_0001
[0177J To a solution of (3aR,7S,7aR)-5-(4-methoxybenzyl)-7-methylhexa- hydrooxazolo[4,5-c]pyridin-2(3H)-one (1.0 equiv.) in methanol, at a concentration of 0.1 M, was added 20% palladium hydroxide on carbon (0.3 eq.). The resultant heterogeneous solution was put under an atmosphere of hydrogen and was stirred for 2 hours. At this time the mixture was filtered through a pad of celite eluting with methanol. The volatiles were removed in vacuo yielding (3aR,7S,7aR)-7-methylhexa- hydrooxazolo[4,5-c]pyridin-2(3H)-one (99%). LCMS (m/z): 157.1 (MH+) at 0.17 min.
Synthesis of f 3aR.7S.7aRVtert-butyl 7-methyl-5-f3-nitropyridin-4-vn-2- oxohexahydrooxazolor4.5-clρyridine-3f2H)-carboxylate
Figure imgf000092_0002
[0178] A solution of 4-chloro-3-nitroρyridine (1.3 equiv.) and (3aR,7S,7aR)-7- methyIhexahydrooxazolo[4,5-c]pyridin-2(3H)-one (1.5 equiv.) in CHiCl2, at a. concentration of 0.1 M, was stirred at rt for 4S hours at which piperidϊne (0.4 equiv) was added to consume excess 4-chloro-3-nitropyridine. After stirring for an additional 2 hours, di-tert-butyl dicarbonate (2.0 equiv.) and dimethylaminopyridine (0.1 equiv.) were added. After stirring for 4 hours, the solution was partitioned between EtOAc and NaHCθ3 (sat ), was washed further with NaHCO3 (Sat ), and NaCl(Sat ), was dried over MgSO4, was filtered and purified by silica gel chromatography (75% EtOAc/hexanes eluent) yielding (3aR,7S,7aR)-tert-butyl 7-methyl-5-(3-nitropyridin-4-yl)-2-oxohexa- hydrooxazolo[4,5-c]pyridine-3(2H)-carboxylate (35%). LCMS (m/z): 379.0 (MH+). LC
Figure imgf000093_0001
Synthesis of (3aR.7R.7aSVtert-butyl 5-(3-aminopyridin-4-ylV7-methyl-2- oxohexahvdrooxazolor4.5 -clpyridine-3 ("2HV carboxylate
Figure imgf000093_0002
[0179J To a solution of (3aR,7S,7aR)-tert-butyl 7-methyl-5-(3-nitropyridin-4- yl)-2-oxohexahydrooxazolo[4,5-c]pyridine-3(2H)-carboxylate (1.0 equiv.) in methanol, at a concentration pf 0.1 M, was added 10% palladium on carbon (0.1 eq.). The resultant heterogeneous solution was put under an atmosphere of hydrogen and was stirred for 14 hours. At this time the mixture was filtered through a pad of celite eluting with methanol. The volatiles were removed in vacuo yielding (3aR,7S,7aR)-tert-butyl 5-(3-aminopyridin- 4-yl)-7-methyl-2-oxohexahydrooxazolo[4,5-c]pyridine-3(2H)-carboxylate. LCMS (m/z): 349.1 (MH+); LC Rt = 2.18 min. Method 1
Synthesis of methyl 3-amino-6-(2.6-diflurophenvBpicolmate
Figure imgf000094_0001
[0180] A solution of methyl 3-amino-6-bromoρicolinate (1.0 equiv.), 2,6-difluorophenyl-boronic acid (3.0 equiv), and Pd(dppf)Cl2-DCM (0.1 equiv.) in 3: 1 DME/ 2M Na2CO3 (0.5 M) was subjected to microwave irradiation at 120 °C for 15 min intervals. The reaction was filtered and washed with EtOAc. The organic was partitioned with H2O (25mL), was further washed with NaCl(Sat ) (25mL), was dried over MgSO4, and the volatiles were removed in vacuo. The residue was diluted in EtOAc and passed through a silica gel plug and the volatiles were removed in vacuo yielding methyl 3-amino-6-(2,6-difluorophenyl)picolinate (47%). LCMS (m/z): 265.1 (MH+); LC R1 = 2.70 min
Synthesis of 6-f2.3-difluorophenyl)-5-fluoropicolinic acid
Figure imgf000094_0002
[0181] To a solution of 6-bromo-5-fluoropicolinic acid (1.0 equiv.) in DME and 2M Na2CO3 (3:1, 0.25 M) was added 2,3-difluorophenylboronic acid (1.3 equiv.) and Pd(dppf)Cl2-DCM (0.05 equiv.) in a microwave vial. The vial was heated in the microwave at 1200C for 30 minutes. The mixture was diluted with ethyl acetate and IN NaOH was added. The organic phase was separated and extracted three more times with IN NaOH and once with 6N NaOH. The combined aqueous phases were filtered and acidified to pH 1 by the addition of concentrated HCl and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate, filtered, and concentrated to give 6- (2,3-difluorophenyl)-5-fϊuoropicolinic acid in 78%. LC/MS = 254.1 (M+H), Rt = 0.75 min. Method 2
Synthesis of 3-amino-6-f2.6-difluorophenyl)picolinic acid
Figure imgf000095_0001
[0182] To a solution of methyl 3-amino-6-(2,6-difluorophenyl)picolinate (1.0 equiv) in THF (0.5 M), was added IM LiOH (4.0 equiv). After stirring for 4 hours at 60 0C, 1 N HCl (4.0 equiv.) was added and the THF was removed in vacuo. The resulting solid was filtered and rinsed with cold H2O (3 x 2OmL) to yield 3-amino-6-(2,6- difluorophenyl)picolinic acid (90%). LCMS (m/z): 251.1 (MH+); LC Rt = 2.1 min.
Synthesis of 3-amino-6-(2-fluoro-5-propoxyphenyr)picolinic acid
Figure imgf000095_0002
[0183] Method 1 was followed using 3-amino-6-bromopicolinic acid (1.0 equiv.) and 2-fluoro-5-propoxyphenylboronic acid (1.5 equiv.) and Pd(dppf)Cl2-DCM (0.05 equiv.) to give 3-amino-6-(2-fluoro-5-propoxyphenyl)picolinic acid in 75% yield. LC/MS - 291.0 (M+H), Rt = 0.81 min. Synthesis of 3-amino-5-fluoro-6-(2-fluoro-5-propoxyphenyDpicolinic acid
Figure imgf000096_0001
[0184] Method 1 was followed using S-amino-β-bromo-S-fluoropicolinic acid (1.0 equiv.) and 2-fluoro-5-propoxyphenylboronic acid (1.3 equiv.) and Pd(dppf)Cl2- DCM (0.05 equiv.) to give 3-amino-5-fluoro-6-(2-fluoro-5-propoxyphenyl)picolinic acid in 28% yield. LC/MS = 309.1 (M+H), Rt = 1.00 min.
Synthesis of methyl 3-amino-5-fluoro-6--(2-fluoropheny0picolinate
Figure imgf000096_0002
[0185] Method 1 was followed using methyl 3-amino-6-bromo-5- fluoropicolinate (1.0 equiv.) and 2-fluoro-phenylboronic acid (1.5 equiv.) and Pd(dppf)Cl2-DCM " (0.05 equiv.) to give methyl 3-amino-5-fluoro-6-(2- fluorophenyl)picolinate in >99% yield. LC/MS = 265.0 (M+H), Rt = 0.77 min.
Synthesis of 3-amino-5-fluoro-6-(2-fluorophenyl)picolinic acid
Figure imgf000096_0003
[0186] Method 2 was followed using 3-amino-5-fluoro-6-(2- fluorophenyl)picolinate (1.0 equiv.) and LiOH (5,0 equiv.) to give 3-amino-5-fluoro-6-(2- f:iuorophenyl)picolinic acid in 90% yield. LC/MS = 251.1 (M+H), Rt = 0.80 min. Synthesis of methyl 3-amino-6-f2.6-difluorophenviy5-fluoropicolinate
Figure imgf000097_0001
[0187] Method 1 was followed using methyl 3-amino-6-bromo-5-fluoro- picolinate (1.0 equiv.) and 2,6-difluorophenylboronic acid (1.3 equiv.) and Pd(dppf)Cl2- DCM (0.05 equiv.) to give 3-amino-6-(2,6-difluorophenyl)-5-fluoropicolinate in 94% yield. LC/MS = 283.0 (M+H), Rt = 0.76 min.
Synthesis of 3-amino-6-(2.6-difluorophenyl>5-fluoropicolinic acid
Figure imgf000097_0002
[0188] Method 2 was followed using 3-amino-6-(2,6-difluoroρhenyl)-5- fluoropicolinate (1.0 equiv.) and LiOH (1.0 equiv.) to give 3-amino-6-(2,6- difluorophenyl)-5-fluoropicolinic acid in 79% yield. LC/MS = 269.0 (M+H), Rt = 0.79 min.
Synthesis of 5-fluoro-6-(2-fluorophenyDpicoh'nic acid
Figure imgf000097_0003
[0189] Method 1 was followed using 6-bromo-5-fluoropicolinic acid (1.0 equiv.) and 2-fiuorophenylboroiϊie acid (1.3 equiv.} and Pd(dppf)Cl2-DCM (0.05 equiv.) IQ gi-ze 5-fiuGro-δ-(2-fIuorophenyl)pieoiinic acid in 43% yield. LC/MS = 236.1 (M+R), Rt = 0.72 min. Synthesis of 6-(3,4-difluorophenvlV5-fluoropicolinic acid
Figure imgf000098_0001
[0190] Method 1 was followed using 6-bromo-5-fluoropicolinic acid (1.0 equiv.) and 3,4-difluorophenylboronic acid (1.3 equiv.) and Pd(dpρf)Cl2-DCM (0.05 equiv.) to give 6-(3,4-difluoroρhenyl)-5-fluoropicolinic acid in 70% yield. LC/MS = 254.1 (M+H), Rt = 0.8 l min.
Synthesis of 6-r2.5-difluorophenylV5-fluoropicolinic acid
Figure imgf000098_0002
[0191] Method 1 was followed using 6-bromo-5-fluoropicolinic acid (1.0 equiv.) and 2,5πdifiuorophenylboronic acid (1.3 equiv.) and Pd(dppf)Cl2-DCM (0.05 equiv.) to give 6-(2,5-difluorophenyl)-5-fluoropicolinic acid in 80% yield. LC/MS = 254.1 (M+H), Rt = 0.74 min.
Synthesis of 6-(2,4-difluorophenyl)-5-fluoropicolinic acid
Figure imgf000098_0003
[0192] Metho1 1 was followed using 6-bromo-5-fluoropϊcolinic acid (1.0 equiv.) and 2,4-difIuorophenyIboronic acid (1.3 equiv.} and Pd(dppf)Cl2-DCM (0.05 equiv.) to give 6-(2,4-difluorophenyl)-5-fluoropicolinic acid in 79% yield. LC/MS 254.1 (M+H), Rt = 0.75 min.
Synthesis of 5-fluoro-6-(2-fluoro-5-propoxyphenvl)picolinic acid
Figure imgf000099_0001
[0193] Method 1 was followed using ό-bromo-S-fluoropicolinic acid (1.0 equiv.) and 2-fluoro-5-propoxyphenylboronic acid (1.5 equiv.) and Pd(dppf)Cl2-DCM (0.05 equiv.) to give 5-fluoro-6-(2-fluoro-5-propoxyphenyl)picolinic acid. LC/MS = 294.2 (M+H), Rt = 0.95 min.
Synthesis of 6-f2-fluorophenyDρicolinic acid
Figure imgf000099_0002
[0194] Method 1 was followed using 6-bromopicolinic acid (1.0 equiv.) and 2- fluorophenylboronic acid (1.5 equiv.) and Pd(dppf)Cl2-DCM (0.05 equiv.) to give 6-(2- fluoroρhenyl)picolinic acid in 93% yield. LC/MS = 218.0 (M+H), Rt - 0.66 min.
Synthesis of 6-(2.6-difluorophenyl)picolinic acid
Figure imgf000099_0003
[0195| Method 1 was followed using 6-bromopicoIinic acid (ϊ .0 equiv.) and 2,6-difϊuorophenyiboronic acid (1.5 equiv.) and Pd(dppf)Cl2,-DCM (0.05 equiv.) to give 6-(2,6-difluorophenyl)ρicolinic acid in 38% yield. LC/MS = 236.0 (M+H), Rt = 0 87 min.
Synthesis of 6-f2-fluoro-5-methoxyphenyl)picolinic acid
Figure imgf000100_0001
[0196] Method 1 was followed using 6-bromopicolinic acid (1.0 equiv.) and 2- fluoro-5-methoxyphenylboronic acid (1.3 equiv.) and Pd(dppf)Cl2-DCM (0.15 equiv.) to give 6-(2-fluoro-5-methoxyphenyl)picolinic add in 95% yield. LC/MS = 248.2 (M+H), Rt = 0.78 min.
Synthesis of 6-(2-fluoro-5-propoxyphenyl)picolinic acid
Figure imgf000100_0002
[0197] Method 1 was followed using 6-bromopicolinic acid (1.0 equiv.) and 2- fluoro-5-propoxyphenylboronic acid (1.5 equiv.) and Pd(dppf)Cl2-DCM (0.15 equiv.) to give 6-(2-fluoro-5-propoxyphenyl)picolinic acid in 20% yield. LC/MS = 276.0 (M+H), Rt = 0.87 min.
Synthesis of 6-(2,6-difluoro-4-methoxvphenyr)picolinic acid
Figure imgf000101_0001
[0198] Method 1 was followed using 6-bromopicolinic acid (1.0 equiv.) and 2,6-difluoro-4-methoxyphenylboronic acid (1.3 equiv.) and Pd(dppf)Cl2-DC]VI (0.15 equiv.) to give 6-(2,6-difluoro-4-methoxyphenyl)picolinic acid in 42% yield. LC/MS = 266.1 (M+H), Rt = 0.75 min.
Synthesis of 3-fluoro-6-f2-fluorophenyl)picolinic acid
Figure imgf000101_0002
[0199] Method 1 was followed using 6-bromo-3-ftuoropicolinic acid (1.0 equiv.) and 2-fluorophenylboronic acid (1.5 equiv.) and Pd(dppf)Cl2-DCM (0.05 equiv.) to give 3-fluoro-6-(2-fluorophenyl)picolinic acid in 81% yield. LC/MS = 236.1 (M+H), Rt = 0.72 min.
Synthesis of 3-fluoro-6-(2-fluoro-5-methoxyphenyl)picolinic acid
Figure imgf000101_0003
Method 1 was followed using 6-bromo-3-fhroropicoiϊnic acid (1 .0 equiv.) and 2-fluoro-5-methoxyphenyIboronic acid (1.3 equiv.) and Pd(dppf)C-2-DCM (0.15 equiv.) to give 3-fluoro-6-(2-fluoro-5-methoxyphenyl)picolinic acid in 89% yield. LC/MS = 266.1 (M+H), Rt - 0.79 min.
Synthesis of 5-fluoro-6-(2-fluoro-5-methoxyphenyDpicolinic acid
Figure imgf000102_0001
[0201] Method 1 was followed using 6-bromo-5-fluoropicolinic acid (1.0 equiv.) and 2-fluoro-5-methoxyphenylboronic acid (1.3 equiv.) and Pd(dppf)Cl2-DCM (0.15 equiv.) to give 5-fluoro-6-(2-fluoro-5-methoxyphenyl)picolinic acid in 86% yield. LC/MS = 266.1 (M+H), Rt = 0.79 min.
Synthesis of 6-f4-(benzyloxyV2-fluorophenyl)-5-fluoropicolinic acid
Figure imgf000102_0002
[0202] Method 1 was followed using 6-bromo-5-fluoropicolinic acid (1.0 equiv.) and 4-(benzyloxy)-2-fluorophenylboronic acid (1.3 equiv.) and Pd(dppf)Cl2-DCM (0.15 equiv.) to give 6-(4-(benzyloxy)-2-fluorophenyl)-5-fluoropicolinic acid in 28% yield. LC/MS = 342.1 (M+H), Rt = 1.05 min. Synthesis of 6-(4-π3enzyloxy)-2-fluorophenyl)-3-fluoropicolinic acid
Figure imgf000103_0001
[0203] Method 1 was followed using 6-bromo-3-fluoropicolinic acid (1.0 equiv.) and 4-(benzyloxy)-2-fluorophenylboronic acid (1.3 equiv.) and Pd(dppf)Cl2-DCM (0.15 equiv.) to give 6-(4-(benzyloxy)-2-fluorophenyl)-3-fluoropicolinic acid in 41% yield. LC/MS - 342.1 (M+H), Rt = 1.06 min.
Synthesis of 6-(2.6-difluoro-4-methoχyphenyl)-3-fluoropicolinic acid
Figure imgf000103_0002
[0204] J Method 1 was followed using 6-bromo-3-fluoropicolinic acid (1.0 equiv.) and 2,6-difluoro-4-methoxyphenylboronic acid (1.3 equiv.) and Pd(dppf)Cl2- DCM (0.15 equiv.) to give 6-(2,6-difluoro-4-methoxyphenyl)-3-fluoropicolinic acid in 9% yield. LC/MS = 284.0 (M+H), Rt = 0.74 min.
Synthesis of 6-cvclohexenyl-5-fluoropicolinic acid
Figure imgf000103_0003
[0205] Method 1 was followed using 6-bromo -5 -fiuoropicolinic acid ( 1.0 equiv.) and cyclohexenylboronic acid (1 ,3 equiv.) and Pd(dppf]Cl2CDCM (0.15 equiv.) Io give 6-cyclohexenyl-5-fluoropicolinic acid in 61 % yield. LC/MS = 222.0 (M+H), Rt = 0.52 min. Method 3
Synthesis of 6-cyclohexyl-5-fluoropicolinic acid
Figure imgf000104_0001
[0206] To a degassed solution of 6-cyclohexenyl-5-fluoropicolinic acid (1.0 equiv.) in MeOH (0.07M) was added 10% Pd/C (0.1 equiv.) and the reaction was stirred under a hydrogen balloon overnight. The solution was then filtered, rinsed with MeOH, and the filtrate was concentrated to afford 6-cyclohexyl-5-fluoropicolinic acid in 65% yield. LC/MS = 224.2 (M+H), Rt = 0.95 min.
Synthesis of 5-fluoro-6-π .4-dioxaspiror4.51dec-7-en-8-yl')picolinic acid
Figure imgf000104_0002
[0207] Method 1 was followed using 6-bromo-5-fluoropicolinic acid (1.0 equiv.) and 4,4,555-tetramethyl-2-(l,4-dioxaspiro[4.5]dec-7-en-8-yl)-l ,3,2-dioxaborolane (2.0 equiv.) and Pd(dppf)Cl2-DCM (0.2 equiv.) to give 5-fluoro-6-(l,4- dioxaspiro[4.5]dec-7-en-8-yl)picolinic acid. LC/MS = 280.2 (M+H), Rt - 0.66 min. Synthesis of methyl 5-fluoro-6-π -4-dioxaspiror4.51dec-7-en-8-vr)picolinate
Figure imgf000105_0001
[0208] To a solution of 5-fluoro-6-(l,4-dioxaspiro[4.5]dec-7-en-8-yl)picolinic acid (1.0 equiv.) in DCM (0.3 M) was added EDC-HCl (1.0 equiv.), DMAP (1.0 equiv.), and MeOH (10 equiv.). The reaction mixture was allowed to stir at room temperature for 5 days, then diluted with ethyl acetate, washed with water, brine, dried over magnesium sulfate, filtered and concentrated. The crude product was purified by silica gel column chromatography eluting with 25-50% ethyl acetate in hexanes to yield methyl 5-fluoro-6- (l,4-dioxaspiro[4.5]dec-7-en-8-yl)picolinate as the desired product in 35% yield. LC/MS = 294.2 (M+H), Rt - 0.79 min.
Synthesis of methyl 5-fluoro-6-π.4-dioxaspiror4,51decan-8-vDpicolinate
Figure imgf000105_0002
[0209] To a degassed solution of methyl 5-fluoro-6-(l,4-dioxaspiro[4.5]dec-7- en-8-yl)picolinate (1.0 equiv.) in MeOH (0.07M) was added 10% Pd/C (0.1 equiv.) and the reaction was stirred under a hydrogen balloon overnight. The solution was then filtered, rinsed with MeOH, and the filtrate was concentrated to afford methyl 5-fluoro-6- (l,4-dioxaspiro[4.5]decan-8-yl)picolinate in 91% yield. LC/MS = 296.2 (M+H), Rt = 0.83 min. Synthesis of methyl 5-fluoro-6-r4-oxocvclohexyDpicolinate
Figure imgf000106_0001
[0210J To a solution of methyl 5-fluoro-6-(l,4-dioxaspiro[4.5]decan-8- yl)picolinat (1.0 equiv.) in acetone and water (1 :1, 0.04 M) was added oxalic acid dehydrate (2.0 equiv.) and the reaction mixture was stirred for 3 days. The solution was then neutralized by the addition of solid NaHCO3, the mixture was added to ethyl acetate and brine, the organic phase was dried over magnesium sulfate, filtered, and concentrated. Methyl 5-fluoro-6-(4-oxocyclohexyl)picolinate was obtained in 98% yield. LC/MS = 252.1 (M+H), Rt = 0.68 min.
Synthesis of methyl 5-fluoro-6-(4-hydroxycyclohexyr)ρicolinate
Figure imgf000106_0002
[0211] To a 0 0C solution of methyl 5-fluoro-6-(4-oxocyclohexyl)picolinate (1.0 equiv.) win MeOH (0.08 M) was added NaBH4. The solution was allowed to warm to room temperature overnight then partitioned between ethyl acetate and brine, the organic phase was dried over magnesium sulfate, filtered, and concentrated to give methyl 5-fluoro-6-(4-hydroxycyclohexyl)picolinate as a mixture of two isomers (5:1). LC/MS = 254.2 (M+H), Rt = 0.63 min. Synthesis of methyl 6-(4-rtert-butyldimethylsilyloxy)cvclohexylV5-fluoropicoIinate
Figure imgf000107_0001
[0212] To a solution of methyl 5-fluoro-6-(4-hydroxycyclohexyl)picolinate (1.0 equiv.) in DMF (0.15 M) was added imidazole (4.0 equiv.) and TBDMSCI (2.5 equiv.). The reaction mixture was stirred at room temperature for 2 days, then added to ethyl acetate, washed with water, brine, dried over magnesium sulfate, filtered and concentrated to give methyl 6-(4-(tert-butyldimethylsilyloxy)cyclohexyl)-5- fluoropicolinate in 97% yield as a mixture of isomers (3:1). LC/MS = 368.3 (M+H), Rt : 1.4 and 1.42 min.
Synthesis of 6-(4-(tert-butyldimethγlsilvIoxy)cyclohexyl)-5 -fluoropicolinic acid
Figure imgf000107_0002
[0213] To a solution of methyl 6-(4-(tert-butyldimethylsilyloxy)cyclohexyl)-5- fluoropicolinate (1.0 equiv.) in THF/MeOH (2:1, 0.09 M) was added LiOH (1.5 equiv.). The reaction mixture was stirred overnight at room temperature, then IN HCl and ethyl acetate were added, the organic phase was washed with brine, dried over magnesium sulfate, filtered and concentrated to give 6-(4-(tert-butyldimethylsilyloxy)cyclohexyl)-5- fluoropicolinic acid as a mixture of isomers (3:1) in 82% yield. LC/MS = 354.2 (M+H), Rt = 1.38 and 1.41 min. Synthesis of 6-bromo-5-fluoropicoiinic acid
Figure imgf000108_0001
[0214] To 2-bromo-3-fluoro-6-methylpyridine (1.0 equiv.) in H2O (30 niL) was added potassium permanganate (1.0 equiv.). The solution was heated at 100 0C for 5 hours at which time more potassium permanganate (1.0 equiv.) was added. After heating for an additional 48 hours the material was filtered through celite (4cm x 2 inches) and rinsed with H2O (150 mL). The combined aqueous was acidified with IN HCl to pH=4, extracted with ethyl acetate (200 mL), washed with NaCl(sat), dried over MgSO4, filtered and concentrated to yield 6-bromo-5-fluoropicolinic acid (17%) as a white solid. LCMS (m/z): 221.9 (MH+); LC Rt = 2.05 min. Method 4
Synthesis of 2-(2.6-difluorophenylV3-fluoro-6-methylρyridine
Figure imgf000108_0002
[0215] To a solution of 2-bromo-3-fluoro-6-methylpyridine (1.0 equiv.) in THF and Water (10:1, 0.2 M) was added 2,6-difluorophenylboronic acid (2.0 equiv.) and potassium fluoride (3.3 equiv.). The reaction was degassed for 10 minutes, then Pd2(dba)3 (0.05 equiv.) was added, followed by tri-t-butylphosphine (0.1 equiv.). The reaction was stirred to 60 0C for 1 hour at which point, all starting material was consumed as indicated by LC/MS. The reaction was allowed to cool to room temperature, partitioned with ethyl acetate and water, the organic phase was dried with sodium sulfate, filtered, and concentrated. The crude material was diluted in EtOH to 0.1 M, and 0.5 equiv. OfNaBH4 was added to reduce the dba. The reaction was stirred for one hour at room temperature, then quenched with water and concentrated under vacuo to remove the ethanol. The product was extracted in ether5 washed with brine; the organics were dried over sodium sulfate, filtered, and concentrated. The crude material was loaded on silica gel and purified via column chromatography (ISCO) eluting with hexanes and ethyl acetate (0%-10% ethyl acetate). The pure fractions were combined, and concentrated to yield 2-(2,6-difluorophenyl)-3-fluoro-6-methylpyridine as a light yellow oil in 86% yield. LC/MS = 224.0 (M+H), Rt - 0.84 min.
Method 5
Synthesis of 6-f2,6-difluorophenyl)-5-fluoroρicolinic acid
Figure imgf000109_0001
[0216] To a solution of 2-(2,6-difluoroρhenyl)-3 -fluoro-6-methylpyridine (1.0 equiv.) in water (0.05 M) was added KMnO4 (2.0 equiv.) and the reaction was heated to reflux overnight. Another 2.0 equiv. OfKMnO4 were added and stirred at reflux for another 8 hours. The solution was cooled to room temperature, filtered through Celite and washed with water. The filtrate was acidified with 6N HCl to pH =3, the white precipitate was filtered. The filtrate was further acidified to pH - 1 and filtered again. The filtrate was extracted with ethyl acetate until no more product in the aqueous layer. The organic phase was washed with brine and dried over magnesium sulfate, filtered, and concentrated. The residue was dissolved in ethyl acetate, washed with IN NaOH, the aqueous layer was acidified to pH=l and the white crystals were filtered. The combined products yielded 6-(2,6-difluorophenyl)-5-fluoropicolinic acid in 32% yield as a white solid. LC/MS = 254.0 (M+H), Rt - 0.71 min.
Synthesis of 6-(2,6-difluorophenvlV3-fluoro-2-methvlpyridine
Figure imgf000110_0001
[0217] To a solution of 6-bromo-3 -fluoro-2-methylpyridine (1.0 equiv.) in ethanol and toluene (1 :1, 0.2 M) was added 2,6-difluorophenylboronic acid, DIEA (5 equiv.) and Pd(PPli3)4 (0.2 equiv.). The reaction was heated in the microwave at 120 0C for 30 min. The solution was filtered and rinsed with ethyl acetate. The volatiles were removed in vacuo and the crude was purified via silica gel column chromatography eluting with ethyl acetate and hexanes (2.5-20% ethyl acetate). Upon concentration of the pure fractions, 6-(2,6-difluorophenyl)-3-fluoro-2-methylpyridine was isolated in 88% yield. LCMS = 224.1 (M+H), Rt = 0.87 min.
Synthesis of 6-r2.6-difluorophenvπ-3-fluoroρicolinic acid
Figure imgf000110_0002
[0218] Method 5 was followed using 6-(2,6-difluorophenyi)-3-fluoro-2- methylpyridine (1.0 equiv.) and potassium permanganate (6.0 equiv.) to give 6-(2,6- difluoroρhenyl)-3-fluoropicolinic acid in 30% yield. LC/MS = 254.1 (M+H), Rt - 0.70 min. Synthesis of 2-(2.6-difluoro-3-methoxyphenyl>-3-fluoro-6-niethylpyridine
Figure imgf000111_0001
[0219] Method 4 was followed using 2-bromo-3-fluoro-6-methylpyridine (1.0 equiv.) and 2,6-difluoro-3-methoxyphenylboronic acid (2.0 equiv.) to give 2-(2,6- difluoro-3-methoxyphenyl)-3-fluoro-6-methylpyridine in 60% yield. LC/MS = 254.1 (M+H), Rt = 0.85 min.
Synthesis of 6-(2.6-difluoro-3-methoxyphenylV5-fluoropicolmic acid
Figure imgf000111_0002
[0220] Method 5 was followed using 2-(2,6-difluoro-3-methoxyphenyl)-3- fluoro-6-methylpyridine (1.0 equiv.) and potassium permanganate (4.0 equiv.) to give 6- (2,6-difluoro-3-methoxyphenyl)-5-fluoropicolinic acid in 27% yield. LC/MS = 284.1 (M+H), Rt - 0.75 min.
Synthesis of 3-fluoro-6-methyl-2-(2.3.5-trifluorophenvDpyridine
Figure imgf000111_0003
[0221] To a solution of 2-bromo-3-fluoro-6-methylpyridine (1.0 equiv.) in dioxane (0.2 M) was added 2,3,5-trifluorophenylboronic acid and Pd(dppfjCl2-DCM (0.1 equϊv.}. Aqueous sodium carbonate (2M solution, 2.0 equiv.) was added and the reaction was heated in the microwave at 120 0C for 15 min. The solution was partitioned between ethyl acetate and sat. NaHCO3, the organic phase was washed with brine, dried with magnesium sulfate, filtered, and concentrated. The crude material was purified via silica gel column chromatography eluting with ethyl acetate and hexanes (1 :3) to give 3-fluoro- 6-methyl-2-(2,3,5-trifluorophenyl)pyridine in 87% yield. LC/MS = 242.1 (M+H), Rt = 0.98 min.
Synthesis of 5-fluoro-6-(23.5-trifluorophenyl)picolinic acid
Figure imgf000112_0001
[0222] To a solution of 3-fluoro-6-methyl-2-(2,3,5-trifluorophenyl)pyridine (1.0 equiv.) in water and t-BuOH (2:1, 0.06 M) was added potassium permanganate (10 equiv.) and the solution was heated at 90 0C for 5 hours. Upon cooling to room temperature, the solution was filtered, and the filtrate was concentrated under reduced pressure to yield 5-fluoro-6-(2,3,5-trifluorophenyl)picolinic acid in 89% yield. LC/MS = 272.0 (M+H), Rt = 0.80 min.
Synthesis of methyl 6-bromo-5-fluoropicolinate
Figure imgf000112_0002
[0223] To a solution of β-bromo-S-fluoropicolinic acid (1.0 equiv.) in methanol (0.2 M) was added H2SO4 (4.2 equiv.) and the reaction was stirred at room temperature for two hours. Upon completion of the reaction as monitored by LC/MS, the reaction was diluted with ethyl acetate and quenched slowly with saturated aqueous NaHCO3. The reaction was poured into a separatory funnel and extracted with ethyl acetate. The organic phase was dried with magnesium sulfate, filtered, and concentrated in vacuo to provide methyl 6-bromo-5-fliioropicolinate as a white so) id (>99%). LC/MS - 233.9/23S.5 (M+H), Rt = 0,69 mm. Method 6
Synthesis of methyl 6-G-(berizyloxyV2,6-difluoroρhenylV5-fluoropicolinate
Figure imgf000113_0001
[0224] To a solution of methyl 6-bromo-5-fluoroρicolinate (1.0 equiv.) in THF and water (10:1, 0.1 M) was added 3-(benzyloxy)-2,6-difluoroρhenylboromc acid (2.5 equiv.) and potassium fluoride (3.3 equiv.). The reaction was degassed with nitrogen, then Pd2(dba)3 (0.25 equiv.) and tri-tert-butylphosphine (0.5 equiv.) were added and the reaction was heated to 800C for one hour. LC/MS analysis indicated complete conversion of the starting material to product. The reaction was cooled to room temperature, then concentrated in vacuo and fused to silica gel. The crude product was purified by ISCO flash chromatography eluting with ethyl acetate and hexanes (0% to 30% ethyl acetate) to provide methyl 6-(3-(benzyloxy)-2,6-difluorophenyl)-5- fluoropicolinate as the desired product as a light yellow oil in 96% yield. LC/MS = 374.0 (M+H), Rt = 1.07 min.
Synthesis of methyl 6-(3-CbenzyloxyV2,6-difluoroOhenyl)picolinate
Figure imgf000113_0002
[0225] Method 6 was followed using methyl 6-bromopicolinate (1.0 equiv.) and 3-(benzyloxy)-2,6-difluoroρhenylboronic acid (2.5 equiv.) to give methyl 6-(3- (benzyloxy)-2s6-difluorophenyl)picoiinate as a light yellow solid in 95% yield. LC/MS 356.2 (M+H), Rt = 1.03 min. Synthesis of methyl 6-(2.6-difluoro-4-methoxyphenviy5-fluoropicolinate
Figure imgf000114_0001
[0226] Method 6 was followed using methyl 6-bromopicolinate (1.0 equiv.) and 2,6-difluoro-4-methoxyphenylboronic acid (2.5 equiv.) to give methyl 6-(2,6- difluoro-4-methoxyphenyl)-5-fluoropicolinate as a white solid in 85% yield. LC/MS = 298.0 (M+H), Rt = 0.89 min.
Synthesis of 6-(2,6-difluoro-4-methoxyphenyl)-5-fluoropicolinic acid
Figure imgf000114_0002
[0227] J To a solution of methyl 6-(2,6-difluoro-4-methoxyphenyl)-5- fluoropicolinate (1.0 equiv.) in THF/MeOH (2:1, 0.09 M) was added LiOH (1.5 equiv.) and the reaction was stirred at room temperature for 1 hour. The solution was quenched with IN HCl, extracted with ethyl acetate, washed with brine, dried with sodium sulfate, filtered and concentrated to give 6-(2,6-difluoro-4-methoxyphenyl)-5-fluoropάcolinic acid in 84% yield. LC/MS = 284.1 (M+H), Rt = 0.76 min. Method 7
Synthesis of methyl 6-(2,6-difluoro-3-hvdroχyphenviy 5-fluoropicolinate
Figure imgf000115_0001
[0228] To a solution of methyl 6-(3 -(benzyloxy)-2,6-difluorophenyl)-5- fluoropicolinate (1.0 equiv.) in methanol (0.1 M) was added 10% Pd/C (0.1 equiv.) in ethyl acetate. The reaction was placed under an atmosphere of hydrogen and stirred for 2 hours. Upon completion, the solution was filtered over a pad of Celite, the pad was washed with methanol, the filtrate was concentrated in vacuo to give methyl 6-(2,6- difluoro-3-hydroxyphenyl)-5-fluoropicolinate as a grey oil in 86% yield. LC/MS = 284.0 (M+H), Rt = 0.90 min.
Synthesis of methyl 6-(2,6-difluoro-3-hydroxyphenyl)picolinate
Figure imgf000115_0002
[0229] Method 7 was followed using methyl 6-(3-(benzyloxy)-2,6- difluorophenyl)picolinate (1.0 equiv.) to yield methyl 6-(2,6-difluoro-3- hydroxyphenyOpicolinate as a light brown solid in 96% yield. LC/MS - 266.0 (M+H), Rt = 0.68 min. Synthesis of methyl 6-(2-fluoro-5-formylphenyπpicolinate
Figure imgf000116_0001
[0230] To a solution of methyl 6-bromopicolinate (1.0 equiv.) in DME (0.03 M) in a microwave vial was added Pd(dppf)Cl2-DCM (0.05 equiv.), 2-fluoro-5- formylphenylboronic acid (1.5 equiv.) and 2M Na2CO3 (2 equiv.). The reagents were heated to 120 0C for 20 min. A mixture of the desired product and the corresponding carboxylϊc acid was detected by LC/MS, the reaction was diluted with ethyl acetate, washed with HCl (pH=5), the acidic phase was extracted with ethyl acetate, the combined organic layers were dried with magnesium sulfate, filtered, and concentrated in vacuo to provide a light brown solid. The solid was dissolved in MeOH and treated with 3 equiv. of TMS-diazomethane at room temperature. Upon complete conversion of the carboxylic acid to the corresponding methyl ester, the reaction was concentrated in vacuo and the crude material was purified via silica gel column chromatography (ISCO) eluting with 30% ethyl acetate in hexanes to provide methyl 6-(2-fluoro-5-formylphenyl)picolinate as a yellow solid in 58% yield. LC/MS = 260.0 (M+H), Rt = 0.70 min.
Synthesis of TEVmethyl 6-(2-fluoro-5-(ρroρ- 1 -enyl)phenyl)picolinate
Figure imgf000116_0002
[0231] To a solution of methyl 6-(2-fluoro-5-formylphenyl)picolinate (1.0 equiv.) in MeOH (0.17 M) was added ethyltriphenylphosphonium bromide (1.0 equiv.) followed by sodium methoxide (1.5 equiv.). The reaction was heated to 65 0C for 5 hours, then cooled to room temperature and concentrated in vacuo. The crude material was purified via silica gel column chromatography (ISCO) eluting with 50% ethyl acetate in hexanes to provMe (E)-methyl 6-(2-fluoro-5-(prop-l-enyl)phenyl)picolinate as a white solid in 81% yield- LC/MS = 272.0 (M+H), Rt = 0.73 min.
Synthesis of methyl 6-(2-fluoro-5-propylphenyl)picolinate
Figure imgf000117_0001
[0232] To a solution of (E)-methyl 6-(2-fluoro-5 -(prop- 1 -enyl)phenyl> picolinate (1.0 equiv.) in MeOH (0.04 M) was 10% Pd/C (0.5 equiv.) and the reaction was placed under an atmosphere of hydrogen and left stirring overnight. The mixture was filtered over a pad of Celite and washed with MeOH. The filtrate was concentrated in vacuo to provide methyl 6-(2-fluoro-5-propylphenyl)picolinate as a light grey oil in 97% yield. LC/MS - 274.2 (M+H), Rt = 0.61 min.
Synthesis of 6-f2-fluoro-5-propylphenyl')picolinic acid
Figure imgf000117_0002
[0233] To a solution of methyl 6-(2-fluoro-5-propylphenyl)picolinate (1.0 equiv.) in THF was added lithium hydroxide (10 equiv.) and the reaction was stirred at room temperature for 1 hour. The THF solvent was removed in vacuo and the remaining basic phase was acidified with concentrated HCl. The aqueous layer was extracted with ethyl acetate (2x), the organic phase was dried with sodium sulfate, filtered and concentrated to give 6-(2-fluoro-5-propylphenyl)picolinic acid in 35% yield. LC/MS = 260.2 (M+H), Rt = 0.36 min. Method 8
Synthesis of methyl 6-(2.6-difluoro-3-ftrifluorornethyl- sulfonyloxy)phenylV 5 -fluoropicolinate
Figure imgf000118_0001
[0234] To a solution of methyl 6-(2,6-difluoro-3-hydroxyphenyl)-5- fluoropicolinate (1.0 equiv.) in DCM (0.2 M) was added DIEA (2.0 equiv.) and 1,1,1- trifluoro-N-phenyl-N-(trifluoromethylsulfonyl)methanesulfonamide (1.5 equiv.). The reaction was allowed to stir overnight at room temperature. The solution was quenched with water, the organic phase was dried with sodium sulfate, and concentrated. The crude material was purified via ISCO chromatography eluting with ethyl acetate and hexanes (0-30% ethyl acetate). The pure fractions were concentrated to give methyl 6- (2,6-difluoro-3-(trifiuoromethylsulfonyloxy)phenyl)-5 -fluoropicolinate as the desired product as a clear oil in 68% yield. LC/MS = 416.1 (M+H), Rt = 1.08 min.
Synthesis of methyl 6-f 2 , 6-difluoro-3 -(trifluoromethylsulfonyloxyVphenvDpicolinate
Figure imgf000118_0002
[0235] Method 8 was followed using methyl 6-(2,6-difluoro-3- (trifluoromethylsulfonyloxy)phenyl)-5-fluoropicolinate (1.0 equiv.) to yield methyl 6- (2,6-difluoro-3-(trifluoromethylsulfonyloχy)phenyl)picolinate as a colorless oil in >99% yield. LC/MS = 397.9 (M+H), Rt = 1.03 min. Synthesis of 6-(2,6-difluoro-3-methylphenyl>5-fluoroρicolinic acid
Figure imgf000119_0001
[0236] To a solution methyl 6-(2,6-difluoro-3-(trifluoromethylsulfonyloxy) phenyl)-5-fluoropicolinate (1.0 equiv.) in dioxane and water (10:1, 0.15 M) was added methyl boronic acid (3.0 equiv.) and potassium carbonate (3.0 equiv.). The reaction was degassed with nitrogen for 10 min, then Pd(PPlIs)4 (0.1 equiv.) was added to the solution and heated to 100 0C for 3 hours. LC/MS of the reaction at this point indicated complete conversion to the carboxylic acid product (M+H = 268). Cooled to room temperature and added water and ethyl acetate. The two layers were separated, the aqueous phase was acidified with concentrated HCl to pH =1 and extracted with ethyl acetate. The organic phase was dried with sodium sulfate, filtered, and concentrated under vacuo to give 6- (2,6-difluoro-3-methylphenyl)-5-fluoropicolinic acid as a clear oil in 97% yield. LC/MS = 268.1 (M+H), Rt = 0.82 min.
Synthesis of methyl 6-f2,6-difluoro-3-methylphenyl)ρicolinate
Figure imgf000119_0002
[0237] To a solution of methyl 6-(256-difluoro-3-(trifluoromethylsulfonyloxy)- phenyl)picolinate (1.0 equiv.) in toluene was added Pd(dppf)Cl2-DCM (0.1 equiv.) followed by dimethyl zinc (3 .0 equiv.). The solution turned from orange to bright yellow. The reaction was heated to 800C for 2 hours at which time, LC/MS analysis indicated complete conversion to product. The reaction was cooled to room temperature, diluted with ethyl acetate and washed with brine. The organic layer was dried with, magnesium sulfetes filtered, snά concentrated in vacuo to provide methyl 6-(256-diflυoro- 3-methylphenyl)picolinate as a brown oil in quantitative yield. LC/MS = 264.0 (M+H), Rt = 0.90 min.
Synthesis of 6-(2,6-difluoro-3-methylphenyl)picolinic acid
Figure imgf000120_0001
[0238] To a solution of methyl 6-(2,6-difluoro-3-methylphenyl)picolinate (1.0 equiv.) in THF was added sodium hydroxide (10 equiv.) and the reaction was stirred for 2 hours. The solution was diluted with ethyl acetate and washed with IN NaOH (2x). The combined basic aqueous washes were combined and acidified with concentrated HCl. The acidic aqueous phase was extracted with ethyl acetate (2x), the combined organic layers were dried with magnesium sulfate, filtered, and concentrated in vacuo to provide 6-(2,6-difluoro-3-methylphenyl)picolinic acid as a white solid in 85% yield. LC/MS = 250.0 (M+H), Rt = 0.76 min.
Synthesis of 6-(3-ethyl-2.6-difluoroρhenyr>ρicolinic acid
Figure imgf000120_0002
[0239] To a solution of methyl 6-(2,6-difluoro-3-(trifluoromethylsulfonyloxy)- phenyl)ρicolinate (1.0 equiv.) in toluene (0.15 M) was added Pd(dppf)Cl2-DCM (0.1 equiv.) followed by diethyl zinc (3 .0 equiv.). The solution turned from orange to bright yellow. The reaction was heated to 70 0C for 2 hours at which time, LC/MS analysis indicated a mixture of 1 :3 : 1 ratio of hydrolyzed product, desired product and unknown by-product The reaction was cooled to room temperature, diluted with ethyl acetate and washed with IN NaOH (2x). The organic layer was dried over magnesium sulfate, filtered, and concentrated in vacuo to provide a brown oil. The oil was redissolved in THF and treated with IN NaOH for one hour. The reaction was then diluted with ethyl acetate and washed with IN NaOH (2x). The basic washings were combined, acidified with concentrated HCl and extracted with ethyl acetate (3x). The organic phase was dried with magnesium sulfate, filtered, and concentrated in vacuo to provide 6-(3-ethyl- 2,6-difluorophenyl)picolinic acid as a light brown oil in >99% yield. LC/MS = 264.1 (M+H), Rt = 0.88 min.
Method 9
[0240] A homogeneous solution of 1 eq each of amine, carboxylic acid, HOAT and EDC in DMF, at a concentration of 0.5 M, was left standing for 24 hours at which time water and ethyl acetate were added. The organic phase was dried with sodium sulfate and purified via silica gel column chromatography eluting with ethyl acetate and hexanes to give the desired protected amide product. Alternatively the crude reaction mixture was directly purified by HPLC. Upon lyophilization, the TFA salt of the protected amide product was obtained. Alternatively, the HPLC fractions could be added to EtOAc and solid Na2CO3, separated and washed with NaCl(sat ). Upon drying over MgSO4, filtering and removing the volatiles in vacuo, the protected amide product was obtained as a free base. Alternatively, the crude reaction mixture was used for the deprotection step without further purification.
[0241] If an N-Boc protected amine was present, it was removed by treating with excess 4M HCl/ dioxane for 14 hours or by treating with 25% TFA/CH2C12 for 2 hours. Upon removal of the volatiles in vacuo, the material was purified by RP HPLC yielding after lyophilization the amide product as the TFA salt. Alternatively, the HPLC fractions could be added to EtOAc and solid Na2CO3, separated and washed with NaCl(sat). Upon drying over MgSO4, filtering and removing the volatiles in vacuo the free base was obtained. Upon dissolving in MeCN/H2O, adding 1 eq. of 1 N HCl and lyophilizing, the HCl salt of the amide product was obtained.
[0242] If an N-Bocl,2 amino alcohol cyclic carbamate was present, prior to Boc deprotection the cyclic carbamate could be cleaved by treating with Cs2CO3 (0.5 eq) in ethanol at a concentration of 0.1 M for three hours. After removal of volatiles in vacuo, the Boc amino group was deprotected as described above. [0243] If an N-Boc, OAc group were present, prior to Boc deprotection, the acetate group could be cleaved by treating with K2CO3 (2.0 equiv.) in ethanol at a concentration of 0.1 M for 24 hours.
[0244] If an N-phthalimide group was present, the amine was deprotected by treating with hydrazine in MeOH at 650C for three hours. Upon cooling and filtering off the white precipitate, the filtrate was concentrated and purified by RP HPLC to yield the amino amide product.
[0245] If a TBDMS ether was present, it was deprotected prior to Boc removal by treating with 6N HCl, THF, methanol (1 :2: 1) at room temperature for 12 h. After removal of volatiles in vacuo, the Boc amino group was deprotected as described above. Alternatively, the TBDMS ether and Boc group could be both deprotected with 6N HCl, THF, methanol (1 :2:1) if left at rt for 24 hours, or heated at 60 0C for 3 hours.
[0246] If a OMe group was present, it was deprotected by treating with 1 M BBr3 in DCM (2.0 equiv.) for 24 hours. Water was added dropwise and the volatiles were removed in vacuo. The material was purified via reverse phase HPLC as described above.
[0247] If a OBn group was present, it was deprotected by treatment with 10% Pd/C (0.2 equiv.) under an atmosphere of hydrogen in ethyl acetate and methanol (1 :2). Upon completion, the reaction was filtered through Celite, washed with methanol, and the filtrate was concentrated in vacuo.
Synthesis of (+/-)-3-amino-N-f 4-(3 -amino-4 -hvdroxycyclohex- 1 -envDpyridin- 3 -yl)-6- (2.6-difluoroρhenyDpicolinamide
Figure imgf000122_0001
[0248] Following Method 9, (+/-)-tert-butyI 3-(3-aminopyridin-4-yl)-6-(tert- butyldimethylsilyloxy)cyclohex-2-enylcarbamate and 3-amino-6-(2,6-difluorophenyl)- picolinic acid were coupled and deprotected to yield (+/-)-3-amino-N-(4-(3-amino-4- hydroxycyclohex-l-enyl)pyridin-3-yl)-6-(2,6-difluorophenyl)picolinamide as the TFA salt. LCMS (m/z): 438.2 (MH+), LC R1 - 2.00 min.
Synthesis of f+/-V3-amino-N-(4-f3-amino-4-hvdroχycyclohexyl)- pyridin-3-yr)-6-(2.6-difluorophenvDpicolinamide
Figure imgf000123_0001
[0249] Following Method 9, (+/-)-tert-butyl 5-(3-aminopyridin-4-yl)-2-(tert- butyldimethylsilyloxy)cyclohexylcarbamate and 3 -amino-6-(2,6-difluorophenyl)picolmic acid were coupled and deprotected to yield (+/-)-3-amino-N-(4-(3-amino-4- hydroxycyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)picolinamide as the TFA salt in 18% yield. LCMS (m/z): 440.3 (MH+), LC R1 = 2.04 min.
[0250] Following the procedures of Method 9, the following compounds were prepared:
TABLE 1
Figure imgf000124_0001
Figure imgf000125_0001
-
-
Figure imgf000126_0001
-
n-3-
Figure imgf000127_0001
n-3-
n-3-
Figure imgf000128_0001
i n-3-
Figure imgf000129_0001
Figure imgf000130_0001
Figure imgf000131_0001
Figure imgf000132_0001
in-3-
π-3-
Figure imgf000133_0001
Figure imgf000134_0001
n-3-
Figure imgf000135_0001
in-3-
-
Figure imgf000136_0001
n-3-
Figure imgf000137_0001
-
Figure imgf000138_0001
I) py
I ) py I) py
Figure imgf000139_0001
n-3- -
Figure imgf000140_0001
Figure imgf000141_0002
Synthesis of 6-bromo-N-(4-f 3 -( tert-butyldimethylsilyloxyV5 -methylcyclohex- l-envDpyridin-S-yiyS-fluoropicolinamide
Figure imgf000141_0001
[0251] 4 Following Method 9, 4-(3-(tert-butyldimethylsilyloxy)-5-methylcyclo- hex-l-enyl)ρyridin-3 -amine and 6-bromo-5-fluoropicolinic acid were coupled and following addition of EtOAc and washing with H2O, NaCl(sat.) and drying over MgSO4, 6- bromo-N-(4-(3-(tert-butyldimethylsilyloxy)-5-methylcyclohex-l-enyl)pyridin-3-yl)-5- fluoropicolinamide was obtained. LCMS (m/z): 455.3 (MH+); LC Rt = 2.09 min.
Synthesis of 6-bromo-N-(4-(Yl R.3S)-3-d ,3-dioxoisoindolin-2-vD- cvclohexyDpyridin-S-vD-S-fluoropicolinamide
Figure imgf000142_0001
[0252] Following Method 9, 2-(3-(3-aminopyridin-4-yl)cyclohexyl)iso- indoline-l,3-dione and 6-bromo-5-fluoropicolinic acid were coupled and following addition of EtOAc and washing with H2O, NaCl(sat ) and drying over MgSO4, 6-bromo-N- (4-((lR,3S)-3-(ls3-dioχoisoindoHn-2-yl)cyclohexyl)pyridin-3-yl)-5-fluoropicolinamide was obtained. LCMS (m/z): 523.2/525.2 (MH+); LC Rt = 3.31 min.
Synthesis of 3-amino-6-bromo-N-(4-(YlR,3 SV3-C1.3-dioxoisoindolin-2- vOcyclohexyl'lp yridin-3 -yl)-5 -fluoropicolinamide
Figure imgf000142_0002
[0253] Following Method 9, 2-(3-(3-aminopyridin-4-yl)cyclohexyl)- isoindoline-l,3-dione and S-amino-6-bromo-5-fluoropicolinic acid were coupled and following addition of EtOAc and washing with H2O, NaCl(sat) and drying over MgSO4, 3- amino-6-bromo-N-(4-(( lR,3S)-3-(l,3 -dioxoisoindolin-2-yl)cyclohexyl)pyridin-3 -yl) -5- fluoropicolinamide was obtained. LCMS (m/z): 538.1/540.1 (MH+); LC R1 = 3.46 min. Synthesis of tert-butyl (1 S,3R,5S)-3-(3-(6-bromo-5-fluoropicolinamido)- pyridin-4-yl')-5-methylcyclohexylcarbamate
Figure imgf000143_0001
[0254] Following Method 9, tert-butyl (1 S,3R,5S)-3-(3-aminopyridin-4-yl)-5- methylcyclohexylcarbamate and 6-bromo-5-fluoropicolinic acid were coupled and following addition of EtOAc and washing with H2O, NaCl(Sat > and drying over MgSO4, tert-butyl ( 1 S ,3 R, 5 S)-3 -(3 - (6-bromo- 5 -fluoropicolinamido)pyridin-4-yl)-5-methylcyclo - hexylcarbamate was obtained. LCMS (m/z): 507.1/509.1 (MH+), R1 = 0.90 min.
Synthesis off lR.2R,4R,6SV4-r3-(6-bromo-5-fluoropicolinamido)pyridin-4-ylV 2-ftert-butoxycarbonylamino)-6-methylcvclohexyl acetate
Figure imgf000143_0002
[0255] Following Method 9, (lR,2R,4R,6S)-4-(3-aminopyridin-4-yl)-2-(tert- butoxycarbonylamino)-6-methylcyclohexyl acetate and ό-bromo-S-fluoropicolinic acid were coupled and following addition of EtOAc and washing with H2O, NaCl(Sat > and drying over MgSO4, (lR,2R,4R,6S)-4-(3-(6-bromo-5-fluoropicolinamido)pyridin-4-yl)-2- (tert-butoxycarbonylamino)-6-methylcyclohexyl acetate was obtained. LCMS (m/z): 567.2 (MH+X Rt = O^ mUi. Synthesis of (+/-)-tert-bυtyl 5-(3-f6-bromo-5-fluoropicolinamido)pyridin-4-yl)-77 methyl-2-oxoheχahydrobenzo fdl oxazole-3 (2H Vcarboxylate
Figure imgf000144_0001
[0256] Following Method 9, (+/-)-tert-butyl 5-(3-aminopyridin-4-yl)-7-methyl- 2-oxohexahydrobenzo[d]oxazole-3(2H)-carboxylate and ό-bromo-S-fluoropicolinic acid were coupled and following addition of EtOAc and washing with H2O, NaCl(Sat.) and drying over MgSO4, (+/-)-tert-butyl 5-(3-(6-bromo-5-fluoropicolinamido)pyridin-4-yl)-7- methyl-2-oxohexahydrobenzo[d]oxazole-3(2H)-carboxylate was obtained. LCMS (m/z): 549.2/551.2 (MH+), Rt = 0.78 min.
Synthesis of tert-butyl 5-(3-( 6-bromo-5-fluoropicolinaniido)pyridin-4-ylV2- oxohexahydrobenzo FdI oxazole-3 (2H)-carboχylate
Figure imgf000144_0002
[0257] Following Method 9, tert-butyl 5-(3-aminopyridin-4-yl)-2-oxohexa- hydrobenzo[d]oxazole-3(2H)-carboxylate and 6-bromo-5-fluoropicolinic acid were coupled and following addition of EtOAc and washing with H2O, NaCl(sat.) and drying over MgSO4, tert-butyl 5-(3-(6-bromo-5-fluoropicolinamido)pyridin-4-yl)-2- oxohexahydrobenzofd] oxazole-3 (2H)-carboxylate was obtained. LCMS (m/z): 537.1 (MH+); LCMS R1 = 0.71 min. Synthesis of 6-bromo-N-f4-(Y 1 R.5RV 5-f 13-dioxoisoindolin-2-vIV3.3- dimethylcvclohexyDpyridin-S-vD-S-fluoropicolinamide
Figure imgf000145_0001
[0258] Following Method 9, 2-((lR,5R)-5-(3-aminopyridin-4-yl)-3J3- dimethylcyclohexyl)isoindoline-l,3-dione and β-bromo-S-fiuoropicolinic acid were coupled and following addition of EtOAc and washing with H2O, NaCl(sat ) and drying over MgSO4, 6-bromo-N-(4-((lR,5R)-5-(l,3-dioxoisoindolin-2-yl)-3,3-dimethylcyclo- hexyl)pyridin-3-yl)-5-fluoropicolinamide was obtained. LCMS (m/z): 551/553 (MH+), Rt = 0.95 min.
Synthesis of N-f4-friR.3R.4S,5RV3.4-bisftert-butyldimethylsilyloxy')-5- methylcvclohexyDpyridin-S-viyo-bromo-S-fluoropicolinamide
Figure imgf000145_0002
[0259] Following Method 9, 4-((lR,3R,4S,5R)-3,4-bis(tert- butyldimethylsilyloxy)-5-methylcyclohexyl)pyridin-3-amine and 6-bromo- 5-fluoropicolinic acid were coupled and following addition of EtOAc and washing with H2O, NaCl(S-.) and drying over MgSO4, N-(4-((lR,3R,4S,5R)-3J4-bis(tert- butyldimethylsilyloxy)-5-methylcyclohexyl)pyridin-3-yl)-6-bromo-5-fluoropicolinamide was obtained. LCMS (m/z): 652.5, 652.4 (MH+); LC R, = 5.82 min. Synthesis of N-(4-rπS.3S.4R.5S)-3.4-bisrtert-butyldimethylsilyloxy)-5- methylcvclohexyDpyridin-S-ylVό-bromo-S-fluoropicolinamide
Figure imgf000146_0001
[0260] Following Method 9, 4-((l S,3S,4R?5S)-3,4-bis(tert- butyldimethylsilyloxy)-5-methylcyclohexyl)pyridin-3-amine and 6-bromo- 5-fluoroρicolinic acid were coupled and following addition of EtOAc and washing with H2O5 NaCl(S31 ) and drying over MgSO4, N-(4-((lS,3S,4R,5S)-3,4-bis(tert- butyldimethylsilyloxy)-5-methylcyclohexyl)pyridin-3-yl)-6-bromo-5-fluoropicolinamide was obtained. LCMS (m/z): 652.5, 652.4 (MH+); LC R1 = 5.83 min.
Method 10
Synthesis of 6-(2,6-difluorophenyl V5-fluoro-N-(4-(3-hydroxy-5 -methylcyclohex- 1 -envDpyridin-3 -yppicolinamide
Figure imgf000146_0002
[0261] A solution of 6-bromo-N-(4-(3-(tert-butyldimethylsilyloxy)-5-methyl- cyclohex-l-enyl)pyridin-3-yl)-5-ftuoropicolinaraide (1.0 equiv), 2,6-difluorophenyl boronic acid (3.0 equiv.), tetrakistriphenylphosphine (0.2 equiv.) and triethylamine (3.0 equiv.) in 1:1 EtOH/toluene (0.1 M) was heated at 120 0C with microwave irradiation for 1200 seconds. Upon cooling, removal of the volatiles in vacuo, the Suzuki product was directly purified by reverse phase HPLC. The product fraction was lyophilized and the resulting TBDMS ether was deprotected as described in Method 9 yielding, after RP HPLC purification and iyophilizatϊon, 6-(2,6-difiuorophenyI)-5-fluoro-N-(4-(3-hydroxy- 5-methylcyclohex-l-enyl)pyridin-3-yl)picolinamide as the TFA salt.. LCMS (m/z): 438.2 (MH+); LC Rt = 2.00 min.
Synthesis of N-(4-((l R, 3 S V 3 -aminocyclohexyl)pyridin-3 - yl)- 6-f2.6-difluorophenyl')-5-fluoroρicolinamide
Figure imgf000147_0001
[0262] A solution of 6-bromo-N-(4-((lR,3S)-3-(l ,3-dioxoisoindolin-2-yl)- cyclohexyl)pyridin-3-yl)-5-fluoroρicolinamide (1.0 equiv), 2,6-difluoroρhenyl boronic acid (3.0 equiv.), tetrakistriphenylphosphine (0.2 equiv.) and triethylamine (3.0 equiv.) in 1:1 EtOH/toluene (0.1 M) was heated at 120 0C with microwave irradiation for 1200 seconds. Upon cooling, removal of the volatiles in vacuo > the Suzuki product was directly purified by reverse phase HPLC. The product fraction was lyophilized and the resulting phthalimide group was deprotected as described in Method 9 yielding, after RP HPLC purification and lyophilization, N-(4-((lR,3S)-3-aminocyclohexyl)pyridin-3-yl)- 6-(2,6-difluorophenyl)-5-fluoropicolinamide as the TFA salt. LCMS (m/z): 427.2 (MH+); LC Rt = 2.26 min.
Synthesis of 3-amino-N-(4-(Yl R,3S)-3-aminocvclohexyl)pyridin-3-ylV 6-(2.6-difluorophenv0-5-fluoropicolinamide
Figure imgf000147_0002
[0263J A solution of 3-amino-6-bromo-N-(4-((lR,3S)-3-(l53-dioxoisoindolin- ?-yl)cyclohexyl)pyridin-3-yJ)-5-fluoropicolinamide () .0 eqυϊv), 2,6-difluorophenyϊ boronic acid (3.0 equiv.), tetrakistriphenylphosphine (0.2 equiv.) and triethyiamine (3.0 equiv.) in 1:1 EtOH/toluene (0.1 M) was heated at 120 °C with microwave irradiation for 1200 seconds. Upon cooling, removal of the volatiles in vacuo, the Suzuki product was directly purified by reverse phase HPLC. The product fraction was lyophilized and the resulting phthalimide group was deprotected as described in Method 9 yielding, after RP HPLC purification and lyophilization, 3-amino-N-(4-((lR,3S)-3-aminocyclo- hexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamideas the TFA salt. LCMS (m/z): 442.2 (MH+); LC Rt = 2.24 min.
Synthesis of N-(4-f 3-amino-4-hydroxycvclohexyl)pyridin-3 -vp- 6-( 2.6-difluorophenyl V 5 -fluoropicolinamide
Figure imgf000148_0001
[0264] A solution of tert-butyl 5-(3-(6-bromo-5-fluoropicolinamido)pyridin-4- yl)-2-oxohexahydrobenzo[d]oxazole-3(2H)-carboxylate (1.0 equiv), 2,6-difluorophenyl boronic acid (3.0 equiv.), tetrakistriphenylphosphine (0.2 equiv.) and triethylamine (3.0 equiv.) in 1 :1 EtOH/toluene (0.1 M) was heated at 1200C with microwave irradiation for 1200 seconds. Upon" cooling, removal of the volatiles in vacuo, the Suzuki product was directly purified by reverse phase HPLC. The product fraction was lyophilized and the resulting cyclic carbamate and Boc groups were deprotected as described in Method 9 yielding, after RP HPLC purification and lyophilization, N-(4-(3-amino-4-hydroxycyclo- hexyl)pyridin-3-yl)-6-(2,6-difiuorophenyl)-5-fiuoroρicolinamideas the TFA salt. LCMS (m/z): 443.2 (MH+); LC Rt = 2.11 min. Synthesis of 5-amino-N-(4-(Y 1 R,3SV3-aminocyclohexyl)ρyridin-3-γl)- 33'-difluoro-2,4'-bipyridine-6-carboxaniide
Figure imgf000149_0001
[0265] A solution of 3-amino-6-bromo-N-(4-((lR,3S)-3-(l ,3-dioxoisoindolin- 2-yI)cycIohexyl)pyridin-3-yl)-5-fluoropicolinamide (1.0 equiv), 3-fluoroρyridin-4-yl- boronic acid (3.0 equiv.), tetrakistriphenylphosphine (0.2 equiv.) and triethylamine (3.0 equiv.) in 1:1 EtOH/toluene (0.1 M) was heated at 120 0C with microwave irradiation for 1200 seconds. Upon cooling, removal of the volatiles in vacuo, the Suzuki product was directly purified by reverse phase HPLC. The product fraction was lyophilized and the resulting phthalimide group was deprotected as described in Method 9 yielding, after RP HPLC purification and lyophilization, 5-amino-N-(4-((lR,3S)-3-aminocyclohexyl)- pyridin-3-yl)-3,3l-difluoro-2,4'-bipyridine-6-carboxamide as the TFA salt. LCMS (m/z): 425.1 (MH+); LC Rt = 2.08 min.
Synthesis of N-( 4-(( 1 R.3 S.5 SV3 -amino-5-methylcvclohexyl')pyridin-3-yl V 6-(2,6-difluoro-θ-hvdroxyphenylV5-fluoropicolinamide
Figure imgf000149_0002
[0266] To a solution of tert-butyl (1 S,3R,5S)-3-(3-(6-bromo-5- fluoropicoIinamido)pyridin-4-yI)-5-methy]cycIohexyIcarbamate (1.0 equiv.) in a microwave vial was added.2,6-difiuoro-3-hydroxyphenyIboronic acid (5.0 equiv.), KF (5.5 equiv.) and Pd2(dba)3 (0.2 equiv.) followed by THF and water (10:1, 0.03 M)- To this mixture was added P(t-Bu)3 (0.4 equiv.) and the reaction was heated in the microwave at 100 0C for 30 min. The organic phase was then separated, the aqueous layer was washed with ethyl acetate, and the organics were combined and concentrated in vacuo. The crude mixture was purified via prep-HPLC, the product fractions were lyophilized and the resulting BOC group was deprotected as described in Method 9 yielding, after RP HPLC purification and lyophilization, N-(4-((lR,3S,5S)-3-amino-5- niethylcyclohexyl)pyridin-3-yl)-6-2,6-difluoro-3-hydroxyphenyl)-5 fluoropicolinamide as the TFA salt. LCMS (m/z): 457.2 (MH+); LC Rt = 2.17 min.
[0267] The following compounds were prepared using Method 10:
TABLE 2
n-3-
Figure imgf000150_0001
n-3-
Figure imgf000151_0001
i n-3-
bipyridine-6-carboxamide
Figure imgf000152_0001
Example 139
Synthesis of N-f4-(riR.3R.4S.5SV3-amino-4-fluoro-5-methylcvclohexyl>- ρyridin-3-yl)-6-f2.6-difluorophenyl)-5-fluoropicolinamide
Figure imgf000153_0001
[0268] To a solution of tert-butyl (lR,2R,3S,5R)-5-(3-(6-(2,6-difluorophenyl)- 5-ftuoropicolinamido)pyridin-4-yl)-2-hydroxy-3-methylcyclohexylcarbaniate (1.0 equiv.) in DCM (0.04 M) at 0 0C was added DAST (1.0 equiv.). The reaction was stirred for 1.5 h at 0 0C, then TFA (10 equiv.) was added to the reaction. After 2 h, the reaction was concentrated in vacuo and the residue was purified via prep-HPLC to afford N-(4- ((lR,3R,4S,5S)-3-amino-4-fluoro-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-Λdifluoro- phenyl)-5-fluoroρicolinamide as the TFA salt. LCMS (m/z): 459.3 (MH+); LC Rt = 2.39 min.
[0269] In addition to LC/MS and LC characterization, representative compounds were analyzed by 1H-NMR. The following are typical spectra of the compounds of the invention.
Figure imgf000153_0002
Figure imgf000154_0001
Example 140
Piml ATP depletion assay
[0270] The activity of PIMl is measured using a luciferase-luciferin based ATP detection reagent to quantify ATP depletion resulting from kinase-catalyzed phosphoryl transfer to a peptide substrate. Compounds to be tested are dissolved in 100% DMSO and directly distributed into white 384-well plates at 0.5 μl per well. To start the reaction, 10 μl of 5 nM Piml kinase and 80 μM BAD peptide (RSRHSSYPAGT-OH) in assay buffer (50 mM HEPES pH 7.5, 5 niM MgCl2, 1 mM DTT, 0.05% BSA) is added into each well. After 15 minutes, 10 μl of 40 μM ATP in assay buffer Is added. Final assay concentrations are 2.5 nM PIMl5 20 μM ATP5 40 μM BAD peptide and 2,5% DMSO. The reaction is performed until approximately 50% of the ATP is depleted;, then stopped with the addition of 20 μJ KinaseGIo Plus (Prσmega Corporation) solution. The stopped reaction is incubated for 10 minutes and the remaining ATP detected via luminescence on the Victor2 (Perkin Elmer). Compounds of the foregoing examples were tested by the Piml ATP depletion assay and found to exhibit an IC50 values as shown in Table 3, below. IC50, the half maximal inhibitory concentration, represents the concentration of a test compound that is required for 50% inhibition of its target in vitro.
Example 141
Pim2 ATP depletion assay
[0271] The activity of PIM2 is measured using a luciferase-luciferin based ATP detection reagent to quantify ATP depletion resulting from kinase-catalyzed phosphoryl transfer to a peptide substrate. Compounds to be tested are dissolved in 100% DMSO and directly distributed into white 384-well plates at 0.5 μl per well. To start the reaction, 10 μl of 10 nM Pim2 kinase and 20 μM BAD peptide (RSRHSSYPAGT-OH) in assay buffer (50 mM HEPES pH 7.5, 5 mM MgCl2, 1 mM DTT, 0.05% BSA) is added into each well. After 15 minutes, 10 μl of 8 μM ATP in assay buffer is added. Final assay concentrations are 5 nM PIM2, 4 μM ATP, 10 μM BAD peptide and 2.5% DMSO. The reaction is performed until approximately 50% of the ATP is depleted, then stopped with the addition of 20 μl KinaseGlo Plus (Promega Corporation) solution. The stopped reaction is incubated for 10 minutes and the remaining ATP detected via luminescence on the Victor2 (Perkin Elmer). Compounds of the foregoing examples were tested by the Pim2 ATP depletion assay and found to exhibit an IC5Q values as shown in Table 3, below.
Example 142
Pim3 ATP depletion assay
[0272] The activity of PIM3 is measured using a luciferase-luciferin based ATP detection reagent to quantify ATP depletion resulting from kinase-catalyzed phosphoryl transfer to a peptide substrate. Compounds to be tested are dissolved in 100% DMSO and directly distributed into white 384-well plates at 0.5 μl per well. To start the react) on, \ 0 μϊ of J 0 nM Pim3 kinase and 200 μM BAD peptide (RSRHSSYPAGT-OH) in assay buffer (50 mM HEPES pH 7.5, 5 mM MgCi2, \ mM DTT, 0.05% BSA) is added into each well. After 15 minutes, 10 μl of 80 μM ATP in assay buffer is added. Final assay concentrations are 5 nM PIMl, 40 μM ATP, 100 μM BAD peptide and 2.5% DMSO. The reaction is performed until approximately 50% of the ATP is depleted, then stopped by the addition of 20 μl KinaseGlo Plus (Promega Corporation) solution. The stopped reaction is incubated for 10 minutes and the remaining ATP detected via luminescence on the Victor2 (Perkin Elmer). Compounds of the foregoing examples were tested by the Pim3 ATP depletion assay and found to exhibit an IC50 values as shown in Table 3, below.
Example 143
Cell Proliferation Assay
[0273] KMSl 1 (human myeloma cell line), were cultured in IMDM supplemented with 10% FBS, sodium pyruvate and antibiotics. Cells were plated in the same medium at a density of 2000 cells per well into 96 well tissue culture plates, with outside wells vacant, on the day of assay. MMLs (human myeloma cell line), were cultured in RPMI 1640 supplemented with 10% FBS, sodium pyruvate and antibiotics. Cells were plated in the same medium at a density of 5000 cells per well into 96 well tissue culture plates, with outside wells vacant, on the day of assay.
[0274] Test compounds supplied in DMSO were diluted into DMSO at 500 times the desired final concentrations before dilution into culture media to 2 times final concentrations. Equal volumes of 2x compounds were added to the cells in 96 well plates and incubated at 37 0C for 3 days.
[0275] After 3 days plates were equilibrated to room temperature and equal volume of CellTiter-Glow Reagent (Promega) was added to the culture wells. The plates were agitated briefly and luminescent signal was measured with luminometer. The percent inhibition of the signal seen in cells treated with DMSO alone vs. cells treated with control compound was calculated and used to determine EC50 values (i.e., the concentration of a test compound that is required to obtain 50% of the maximum effect in the cells) for tested compounds, as shown in Table 3.
[0276] Using the procedures of Examples 140 (Piml ATP depletion assay),
141 (Pim2 ATP depletion assay), and 142 (Pim3 ATP depletion assay), the IC50 concentration of compounds of the previous examples were determined as shown in the following table 3.
[0277] Using the procedures of Example 143 (cell proliferation assay), the EC50 concentration of compounds of the examples in were determined in KMSl 1 cells as shown in Table 3.
TABLE 3
Figure imgf000157_0001
Figure imgf000158_0001
Figure imgf000159_0001
Figure imgf000160_0001
Figure imgf000161_0001
Figure imgf000162_0001
Figure imgf000163_0001
Figure imgf000164_0001
Figure imgf000165_0001
Figure imgf000166_0001
Figure imgf000167_0001
Figure imgf000168_0001
Figure imgf000169_0001
Figure imgf000170_0001
Figure imgf000171_0001
Figure imgf000172_0001
Figure imgf000173_0001
Figure imgf000174_0001
Figure imgf000175_0001
Figure imgf000176_0001
Figure imgf000177_0001
Example 144
Biological Method: Pharmacology Target Modulation and Efficacy Study in Multiple Myeloma Xenograft Model
[0278] KMSl 1-luc multiple myeloma cancer cells, obtained from Suzanne Trudel (University Health Network, Toronto, Canada), express stable luciferase achieved by retroviral transfection and were maintained in DMEM supplemented with 10% heat- inactivated fetal bovine serum with 1% glutamine (Invitrogen, Inc.). Female SCID/bg mice (8-12 weeks old, 20-25g, Charles River) were used for all in vivo pharmacology studies. The mice were housed and maintained in accordance with state and federal guidelines for the humane treatment and care of laboratory animals, and received food and water ad libitum. Cancer cells were harvested from mid-log phase cultures, viable cell count was established with an automated cell counter (Vi-CELL, Beckman-Coulter), and cells were resuspended in equal parts HBSS and Matrigel (Invitrogen, Inc.). Ten millions cells were subcutaneously injected into the right flank of each mouse. Compound treatment was initiated when tumor size reached 250-35 Omm for PK/PD studies, and 150-250mm3 for efficacy studies, with tumor volumes determined using StudyDirector software (StudyLog Systems, Inc.). All compound treatment was administered orally.
[0279] For in vivo target modulation in PK/PD time-course studies, tumor- bearing mice were administered a single oral dose of vehicle or compound at different concentrations. At i, 8 and 24 hours after dosing, tumor tissues and blood samples were taken from individual mice. Resected tumor tissues were snap frozen and pulverized using a liquid nitrogen-cooled cryomortar and pestle. Blood samples were taken by cardiac puncture, and plasma was separated utilizing centrifugation tubes containing lithium heparin and plasma separator (BD Microtainer). Frozen tumor samples were lysed in cold buffer (Meso Scale Discovery) supplemented with EDTA free protease inhibitor (Roche), phosphatase inhibitors 1 and 2, and IMNaF (Sigma) according to manufacturer's instructions. Following homogenization with a dounce apparatus or by MagNA Lyser (Roche), clear supernatant was obtained following centrifugation at 300xg for 30 minutes at 4°C and protein concentration was determined by BCA (BioRad). Target modulation was determined using the Meso Scale ρhosρho-BadSerl l2/total Bad duplex kit, according to manufacturer's instructions. Briefly, an equal amount of protein was loaded into each well of a Meso Scale phospho-Serine112/total Bad duplex 96-well plate (Meso Scale Discovery) and samples were incubated for 30 minutes at room temperature or overnight at 4°C, shaking. Plates were washed with Ix MSD wash buffer, and Sulfo-Tag detection antibody was added to the wells and incubated for 1 hour at room temperature, shaking. The plates were washed again and captured analyte detected following the addition of Read Buffer T to the wells. Plates were read on a SECTOR Imager 6000 Instrument (Meso Scale Discovery). Ratios of the signal from pBad to total Bad were used to correct for variability between samples. Data shown in the following table express the percent inhibition of pBadSer112 phosphorylation relative to total Bad phosphorylation by representative compounds of the invention, normalized to vehicle control group. The extent of modulation is expressed as a percent, relative to vehicle control (n.d., not determined).
Compound of .. O1_ _ ., „ , ,T lhr 8hr 24hr Example No.
99 (50 mg/kg) 40 55 0
99 (100 mg/kg) 62 66 24
70 (25 mg/kg) 34 50 n.d
70 (50 mg/kg) 28 62 0
70 (100 mg/kg) 5 67 68
96 (25 mg/kg) 0 24 n.d.
96 (50 mg/kg) 44 69 16
96(100 mg/kg) 58 71 53
[0280] For efficacy studies, tumor-bearing mice were randomized into groups with equivalent tumor volume variation ranging from 150-250mm3 utilizing the StudyDirector software (StudyLog Systems, Inc.). Following randomization, mice were dosed orally daily or twice daily at multiple compound concentrations in 200 μl incipient. Tumor growth and animal body weight was measured at least twice weekly, and daily clinical observations were used to monitor potential toxicities related to the treatment. Animals were removed from study if tumor volume exceeded 2500mm3, or if body weight loss exceeded 20% of initial measurements.
[0281] Efficacy of the compound of Example 99 was evaluated in the KMSI l- luc xenograft model, with mice receiving oral administration of the compound of Example 99 twice daily at 50 and 100 mg/kg, and once daily at 100 mg/kg for 14 days. Dosing was initiated when tumor sizes reached approximately 250mm3. As shown in Figure 1, the compound of Example 99 exhibited dose-dependant effects in vivo, with tumor growth inhibition observed with 50 mg/kg twice daily (92%) and 100 mg/kg twice daily (4% regression). Once daily administration of 100 mg/kg was less efficacious (65%) than when dosed twice daily. These results correlate with the extent and magnitude of pBadSer112 modulation, and suggest that extensive and prolonged target modulation is required for maximum efficacy.
[0282] Efficacy of the compound of Example 70 was evaluated in the KMS 11 - luc xenograft model, with mice receiving oral administration of the compound of Example 80 twice daily at 25 and 50 mg/kg, and once daily at 100 mg/kg for 14 days. Dosing was initiated when tumor sizes reached approximately 225mm3, As snown in Figure 2, the compound of Example 70 exhibited dose-dependant effects in vivo, witb tumor growth inhibition observed for 25 mg/kg (65%) and 50 mg/kg (100%). Significant tumor growth inhibition was also observed for 100 mg/kg once daily (84%).
[0283] Efficacy of the compound of Example 96 was evaluated in the KMS 11 - luc xenograft model, with mice receiving oral administration of the compound of Example 96 twice daily at 25 and 50 mg/kg, and once daily at 100 mg/kg for 14 days. Dosing was initiated when tumor sizes reached approximately 225mm3. As shown in Figure 3, compound the compound of Example 96 exhibited dose-dependant effects in vivo, with tumor growth inhibition observed for 25 mg/kg (67%), and 50 mg/kg (96%). Significant tumor growth inhibition was also observed for 100 mg/kg once daily (88%).
[0284] While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims

1. A compound of Formula II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof,
Figure imgf000181_0001
wherein,
Y is cyclohexyl, substituted with one to three substituents; Rl is hydrogen, -NH2, or halo;
R12 independently at each occurrence is selected from the group consisting of hydrogen, and halo; and
R5 is selected from cyclohexyl, phenyl, and pyridyl, wherein said cyclohexyl, said phenyl, and said pyridyl are each independently substituted with up to three substituents selected from halo, hydroxyl, Cj-4 alkyl, and OCM alkyl.
2. A compound of Claim 1 wherein Y is substituted with one to three substituents selected from hydroxyl, amino, C1-4 alkyl, and C1-4 halo alkyl.
3. A compound of Claim 2 wherein Y is substituted with one to three substituents selected from methyl, hydroxyl, amino, and CF3.
4. A compound of Claim 2 wherein R1 is hydrogen, amino, or fluoro.
5. A compound of Claim 2 wherein R$ is pyridyl or phenyl.
6. A compound of Claim 5 wherein R5 is phenyl substituted with up to three substituents selected from halo, hydroxyl, alkoxy, and C1-4 alkyl.
7. A compound of Claim 5 wherein Y is substituted with one to three substituents selected from methyl, hydroxy!, amino, and CF3; R1 is hydrogen; and R5 is phenyl substituted with up to three substituents selected from fluoro, hydroxyl, methyl, ethyl, methoxy, and propoxy.
8. A compound of Claim 7 wherein R1 is 2,6-difluorophenyl.
9. A compound of Claim 1 , selected from the group consisting of
N-(4-((3 S,5 S)-3-amino-5 -methylcyclohexyl)pyridin-3 -yl)-6-(2,6-difϊuorophenyl)- 5 -fluoropicolinamide;
3-amino-N-(4-((lR,3RJ4SJ5S)-3-amino-4-hydroxy-5-methylcyclohexyl)pyridin-3- yl)-6-(2,6-difluorophenyl)picolinamide;
N-(4-((3R,4R,5S)-3-amino-4-hydroxy-5-methylpiperidin-l-yl)pyridin-3-yl)-6- (2,6-difluorophenyl)- 5 -fluoropicolinamide ;
3 -amino-N-(4-(( 1 R,3 S)-3 -aminocyclohexyl)pyridin-3 -yl)-6-(2 , 6-difluorophenyl)- 5-fluoroρicolinamide; and
N-(4-((3 S)-3 -aminocyclohexyl)pyridin-3 -yl)-6-(2 ,6-difluorophenyl)-5 - fluoropicolinamide, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof.
10. A pharmaceutical composition comprising a compound of any of Claim 1 to Claim 9.
11. A pharmaceutical composition comprising a compound of any of Claim 1 to Claim 9, wherein said pharmaceutical composition comprises an additional agent for the treatment of cancer.
12. A pharmaceutical composition of Claim 11 wherein the additional agent is selected from irinotecan, topotecan, gemcitabine, 5-fluorouracil, leucovorin carboplatin, cisplatin, taxanes, tezacitabine, cyclophosphamide, vinca alkaloids, imatinib (Gleevec), anthracyclines, rituximab, and trastuzumab.
13. A use of a compound of any of Claim 1 to Claim 9 for preparing a medicament for treating a condition by modulation of Pro virus ΪEtegratϊon of Maloney Kinase (PIM Kinase) activity ,
14. The use of Claim 13 wherein the condition is a cancer selected from carcinoma of the lungs, pancreas, thyroid, ovarian, bladder, breast, prostate, or colon, melanoma, myeloid leukemia, multiple myeloma and erythro leukemia, villous colon adenoma, and osteosarcoma.
15. A compound of Claim 1 to 9 for use in treating a condition by modulation of Provirus Integration of Maloney Kinase (PIM Kinase) activity .
16. The compound of Claim 15 wherein the condition is a cancer selected from carcinoma of the lungs, pancreas, thyroid, ovarian, bladder, breast, prostate, or colon, melanoma, myeloid leukemia, multiple myeloma and erythro leukemia, villous colon adenoma, and osteosarcoma.
17. A compound of Formula II selected from Table I or Table II.
18. A compound of Formula II, or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof,
Figure imgf000183_0001
wherein,
Y is piperidinyl substituted with methyl, hydroxyl, and amino;
Rj is selected from the group consisting of hydrogen, NH2, and fluoro;
R12 independently at each occurrence is selected from the group consisting of hydrogen, and halo; and
R5 is selected from pyridyl, fluoro pyridyl, cyclohexyl, and phenyl, wherein said phenyl is substituted up to three substituents selected from fluoro, hydroxyl, and methyl.
19. A compound of Claim Ig wherein Y represents 3-amino-4-hydroxy-5- metnyϊpiperiάin- 1 -yL
20. A compound of Claim 18 or 19 wherein R1 is hydrogen.
21. A compound of Claim 20 wherein R5 is difluoro phenyl.
22. A compound of Claim 18 or Claim 19 wherein R5 is 2,6-difluoro phenyl.
23. A compound of Claim 18 selected from N-(4-((3R,4R,5S)-3-amino-4- hydroxy-5-methylpiperidin-l-yl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5- fluoropicolinamide, 3-amino-N-(4-((3R,4R,5S)-3-amino-4-hydroxy-5-methylpiperidin-
1 -yl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide, and N-(4-((3R,4R,5S)-3- amino-4-hydroxy-5-methylpiperidin-l-yl)pyridin-3-yl)-6-(2,6-difluoro-3-methylphenyl)- 5 -fluoropicolinamide.
24. A pharmaceutical composition comprising a compound of Claim 18 or Claim 23, wherein said pharmaceutical composition comprises at least one additional agent for the treatment of cancer.
25. The pharmaceutical composition of Claim 24 wherein the additional agent is selected from the group consisting of irinotecan, topotecan, gemcitabine, 5- fluorouracil, leucovorin carboplatin, cisplatin, taxanes, tezacitabine, cyclophosphamide, vinca alkaloids, imatinib (Gleevec), anthracyclines, rituximab, and trastuzumab.
26. A use of a compound of Claim 18 for preparing a medicament for treating a condition by modulation of Provirus Integration of Maloney Kinase (PIM Kinase) activity .
27. The use of Claim 26 wherein the condition is a cancer selected from carcinoma of the lungs, pancreas, thyroid, ovarian, bladder, breast, prostate, or colon, melanoma, myeloid leukemia, multiple myeloma and erythro leukemia, villous colon adenoma, and osteosarcoma.
28. A compound of Claim 18 to 23 for use in treating a condition by modulation of Provirus Integration of Maloney Kinase (PIM Kinase) activity .
29. The compound of Claim 28 wherein the condition is a cancer selected from carcinoma of the lungs, pancreas, thyroid, ovarian, bladder, breast, prostate, or colon, melanoma, myeloid leukemia, multiple myeloma and erythro leukemia, villous colon adenoma, and osteosarcoma.
28. A compound of Formula II selected from Table I or Table II.
PCT/EP2009/061205 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors WO2010026124A1 (en)

Priority Applications (25)

Application Number Priority Date Filing Date Title
ES09782396.7T ES2551900T3 (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
PL09782396T PL2344474T3 (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
DK09782396.7T DK2344474T3 (en) 2008-09-02 2009-08-31 Picolinamidderivater as kinase inhibitors
EA201100425A EA020136B1 (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
KR1020117007556A KR101345920B1 (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
MX2011002365A MX2011002365A (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors.
UAA201101618A UA103034C2 (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
NZ591449A NZ591449A (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
EP09782396.7A EP2344474B1 (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
AU2009289319A AU2009289319C1 (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
BRPI0918268-3A BRPI0918268B1 (en) 2008-09-02 2009-08-31 PICOLINAMIDE DERIVATIVES, THEIR USE, AND PHARMACEUTICAL COMPOSITION
CN200980143187.8A CN102203079B (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
MEP-2011-37A ME01291A (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
CA2734415A CA2734415C (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
JP2011524408A JP5412519B2 (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
SI200931330T SI2344474T1 (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
RS20150730A RS54506B1 (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors
TN2011000070A TN2011000070A1 (en) 2009-08-31 2011-02-11 Picolinamide derivatives as kinase inhibitors
ZA2011/01118A ZA201101118B (en) 2008-09-02 2011-02-11 Picolinamide derivatives as kinase inhibitors
IL211291A IL211291A (en) 2008-09-02 2011-02-17 Picolinamide compounds, pharmaceutical compositions comprising the same and their use in the preparation of medicaments for treating cancer
MA33733A MA32684B1 (en) 2008-09-02 2011-04-01 Picolinamide derivatives act as kinase inhibitors
HK11111043.1A HK1156627A1 (en) 2008-09-02 2011-10-17 Picolinamide derivatives as kinase inhibitors
HK12102246.4A HK1162022A1 (en) 2008-09-02 2012-03-06 Picolinamide derivatives as kinase inhibitors
HRP20151410TT HRP20151410T1 (en) 2008-09-02 2015-12-22 Picolinamide derivatives as kinase inhibitors
SM201600005T SMT201600005B (en) 2008-09-02 2016-01-05 DERIVATIVES OF PICOLINAMIDE WHICH INHIBITORS OF CHINASIS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9366608P 2008-09-02 2008-09-02
US61/093,666 2008-09-02
US22566009P 2009-07-15 2009-07-15
US61/225,660 2009-07-15

Publications (1)

Publication Number Publication Date
WO2010026124A1 true WO2010026124A1 (en) 2010-03-11

Family

ID=41228825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/061205 WO2010026124A1 (en) 2008-09-02 2009-08-31 Picolinamide derivatives as kinase inhibitors

Country Status (39)

Country Link
US (4) US8329732B2 (en)
EP (1) EP2344474B1 (en)
JP (2) JP5412519B2 (en)
KR (1) KR101345920B1 (en)
CN (3) CN103333157A (en)
AU (1) AU2009289319C1 (en)
BR (1) BRPI0918268B1 (en)
CA (1) CA2734415C (en)
CL (1) CL2011000454A1 (en)
CO (1) CO6351725A2 (en)
CR (1) CR20110114A (en)
DK (1) DK2344474T3 (en)
DO (1) DOP2011000067A (en)
EA (1) EA020136B1 (en)
EC (1) ECSP11010859A (en)
ES (1) ES2551900T3 (en)
GE (1) GEP20135849B (en)
HK (2) HK1156627A1 (en)
HN (1) HN2011000629A (en)
HR (1) HRP20151410T1 (en)
HU (1) HUE026381T2 (en)
IL (1) IL211291A (en)
MA (1) MA32684B1 (en)
ME (1) ME01291A (en)
MX (1) MX2011002365A (en)
MY (1) MY150136A (en)
NI (1) NI201100052A (en)
NZ (1) NZ591449A (en)
PE (1) PE20110298A1 (en)
PL (1) PL2344474T3 (en)
PT (1) PT2344474E (en)
RS (1) RS54506B1 (en)
SI (1) SI2344474T1 (en)
SM (1) SMT201600005B (en)
SV (1) SV2011003849A (en)
TW (1) TWI434843B (en)
UY (1) UY32085A (en)
WO (1) WO2010026124A1 (en)
ZA (1) ZA201101118B (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177606A1 (en) 2011-06-20 2012-12-27 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as jak inhibitors
JP2013530199A (en) * 2010-07-06 2013-07-25 ノバルティス アーゲー Cyclic ether compounds useful as kinase inhibitors
US8592455B2 (en) 2008-09-02 2013-11-26 Novartis Ag Kinase inhibitors and methods of their use
WO2013175388A1 (en) 2012-05-21 2013-11-28 Novartis Ag Novel ring-substituted n-pyridinyl amides as kinase inhibitors
WO2014033630A1 (en) 2012-08-31 2014-03-06 Novartis Ag Novel aminothiazole carboxamides as kinase inhibitors
WO2014033631A1 (en) 2012-08-31 2014-03-06 Novartis Ag N-(3-pyridyl) biarylamides as kinase inhibitors
US8722693B2 (en) 2007-06-13 2014-05-13 Incyte Corporation Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
WO2014099880A1 (en) 2012-12-19 2014-06-26 Novartis Ag Aryl-substituted fused bicyclic pyridazine compounds
WO2014110574A1 (en) * 2013-01-14 2014-07-17 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
US8933085B2 (en) 2010-11-19 2015-01-13 Incyte Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US8933086B2 (en) 2005-12-13 2015-01-13 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B]pyridines and pyrrolo[2,3-B]pyrimidines as Janus kinase inhibitors
WO2015019320A1 (en) 2013-08-08 2015-02-12 Novartis Ag Pim kinase inhibitor combinations
US8987443B2 (en) 2013-03-06 2015-03-24 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9034884B2 (en) 2010-11-19 2015-05-19 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors
WO2015081083A1 (en) 2013-11-27 2015-06-04 Novartis Ag Combination therapy comprising an inhibitor of jak, cdk and pim
WO2015138920A1 (en) 2014-03-14 2015-09-17 Novartis Ag Antibody molecules to lag-3 and uses thereof
US9193733B2 (en) 2012-05-18 2015-11-24 Incyte Holdings Corporation Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US9200004B2 (en) 2013-01-15 2015-12-01 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US9216984B2 (en) 2009-05-22 2015-12-22 Incyte Corporation 3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane—or heptane-nitrile as JAK inhibitors
US9249145B2 (en) 2009-09-01 2016-02-02 Incyte Holdings Corporation Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
WO2016054555A2 (en) 2014-10-03 2016-04-07 Novartis Ag Combination therapies
WO2016057841A1 (en) 2014-10-08 2016-04-14 Novartis Ag Compositions and methods of use for augmented immune response and cancer therapy
WO2016061142A1 (en) 2014-10-14 2016-04-21 Novartis Ag Antibody molecules to pd-l1 and uses thereof
US9334274B2 (en) 2009-05-22 2016-05-10 Incyte Holdings Corporation N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
US9359358B2 (en) 2011-08-18 2016-06-07 Incyte Holdings Corporation Cyclohexyl azetidine derivatives as JAK inhibitors
WO2016145102A1 (en) 2015-03-10 2016-09-15 Aduro Biotech, Inc. Compositions and methods for activating "stimulator of interferon gene" -dependent signalling
US9452998B2 (en) 2014-08-06 2016-09-27 Novartis Ag Protein kinase C inhibitors and methods of their use
US9464088B2 (en) 2010-03-10 2016-10-11 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US9487521B2 (en) 2011-09-07 2016-11-08 Incyte Holdings Corporation Processes and intermediates for making a JAK inhibitor
US9498467B2 (en) 2014-05-30 2016-11-22 Incyte Corporation Treatment of chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) by inhibitors of JAK1
US9540347B2 (en) 2015-05-29 2017-01-10 Incyte Corporation Pyridineamine compounds useful as Pim kinase inhibitors
US9556197B2 (en) 2013-08-23 2017-01-31 Incyte Corporation Furo- and thieno-pyridine carboxamide compounds useful as pim kinase inhibitors
WO2017019894A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to lag-3
WO2017019897A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to tim-3
US9580418B2 (en) 2014-07-14 2017-02-28 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as Pim kinase inhibitors
US9655854B2 (en) 2013-08-07 2017-05-23 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
WO2017106656A1 (en) 2015-12-17 2017-06-22 Novartis Ag Antibody molecules to pd-1 and uses thereof
US9822124B2 (en) 2014-07-14 2017-11-21 Incyte Corporation Bicyclic heteroaromatic carboxamide compounds useful as Pim kinase inhibitors
CN107519175A (en) * 2016-06-21 2017-12-29 上海方予健康医药科技有限公司 A kind of pyrimidine compound or its salt are preparing the application in being used to prevent and/or treat the medicine of the disease related to FLT3 or obstacle
US9862705B2 (en) 2015-09-09 2018-01-09 Incyte Corporation Salts of a pim kinase inhibitor
US9920032B2 (en) 2015-10-02 2018-03-20 Incyte Corporation Heterocyclic compounds useful as pim kinase inhibitors
WO2018198076A1 (en) 2017-04-28 2018-11-01 Aduro Biotech, Inc. Bis 2'-5'-rr-(3'f-a)(3'f-a) cyclic dinucleotide compound and uses thereof
WO2018237173A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
US10166191B2 (en) 2012-11-15 2019-01-01 Incyte Corporation Sustained-release dosage forms of ruxolitinib
EP3514179A1 (en) 2014-01-24 2019-07-24 Dana-Farber Cancer Institute, Inc. Antibody molecules to pd-1 and uses thereof
WO2019200254A1 (en) 2018-04-13 2019-10-17 Tolero Pharmaceuticals, Inc. Pim kinase inhibitors for treatment of myeloproliferative neoplasms and fibrosis associated with cancer
US10472419B2 (en) 2014-01-31 2019-11-12 Novartis Ag Antibody molecules to TIM-3 and uses thereof
WO2019229658A1 (en) 2018-05-30 2019-12-05 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
US10570204B2 (en) 2013-09-26 2020-02-25 The Medical College Of Wisconsin, Inc. Methods for treating hematologic cancers
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US10758543B2 (en) 2010-05-21 2020-09-01 Incyte Corporation Topical formulation for a JAK inhibitor
US10875864B2 (en) 2011-07-21 2020-12-29 Sumitomo Dainippon Pharma Oncology, Inc. Substituted imidazo[1,2-B]pyridazines as protein kinase inhibitors
US10894830B2 (en) 2015-11-03 2021-01-19 Janssen Biotech, Inc. Antibodies specifically binding PD-1, TIM-3 or PD-1 and TIM-3 and their uses
US10899736B2 (en) 2018-01-30 2021-01-26 Incyte Corporation Processes and intermediates for making a JAK inhibitor
WO2021053559A1 (en) 2019-09-18 2021-03-25 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2021091788A1 (en) * 2019-11-07 2021-05-14 Crinetics Pharmaceuticals, Inc. Melanocortin subtype-2 receptor (mc2r) antagonists and uses thereof
US11098077B2 (en) 2016-07-05 2021-08-24 Chinook Therapeutics, Inc. Locked nucleic acid cyclic dinucleotide compounds and uses thereof
US11304949B2 (en) 2018-03-30 2022-04-19 Incyte Corporation Treatment of hidradenitis suppurativa using JAK inhibitors
US11344620B2 (en) 2014-09-13 2022-05-31 Novartis Ag Combination therapies
US11471456B2 (en) 2019-02-12 2022-10-18 Sumitomo Pharma Oncology, Inc. Formulations comprising heterocyclic protein kinase inhibitors
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
WO2024097653A1 (en) 2022-10-31 2024-05-10 Sumitomo Pharma America, Inc. Pim1 inhibitor for treating myeloproliferative neoplasms
EP4378957A2 (en) 2015-07-29 2024-06-05 Novartis AG Combination therapies comprising antibody molecules to pd-1

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140249135A1 (en) * 2007-03-01 2014-09-04 Novartis Ag Pim kinase inhibitors and methods of their use
JP5564045B2 (en) * 2008-09-02 2014-07-30 ノバルティス アーゲー Bicyclic kinase inhibitor
WO2011124580A1 (en) * 2010-04-07 2011-10-13 F. Hoffmann-La Roche Ag Pyrazol-4-yl-heterocyclyl-carboxamide compounds and methods of use
WO2012109749A1 (en) * 2011-02-14 2012-08-23 The Governors Of The University Of Alberta Boronic acid catalysts and methods of use thereof for activation and transformation of carboxylic acids
CN103429572A (en) * 2011-03-04 2013-12-04 诺瓦提斯公司 Tetrasubstituted cyclohexyl compounds as kinase inhibitors
UY33930A (en) * 2011-03-04 2012-10-31 Novartis Ag NEW QUINASE INHIBITORS
WO2012148775A1 (en) 2011-04-29 2012-11-01 Amgen Inc. Bicyclic pyridazine compounds as pim inhibitors
US9458151B2 (en) * 2011-08-11 2016-10-04 Jikai Biosciences, Inc. Isothiazole derivatives as PIM kinase inhibitors and preparation methods and use in medicinal manufacture thereof
US9453003B2 (en) * 2011-08-11 2016-09-27 Jikai Biosciences, Inc. Pyrimidine derivatives as PIM kinase inhibitors and preparation methods and use in medicinal manufacture thereof
HUE049611T2 (en) 2012-09-26 2020-09-28 Hoffmann La Roche Cyclic ether pyrazol-4-yl-heterocyclyl-carboxamide compounds and methods of use
CN103724301A (en) * 2012-10-10 2014-04-16 上海特化医药科技有限公司 (2R)-2-desoxy-2,2-disubstituted-1,4-ribonolactones, preparation method and purpose thereof
US9113629B2 (en) * 2013-03-15 2015-08-25 Dow Agrosciences Llc 4-amino-6-(4-substituted-phenyl)-picolinates and 6-amino-2-(4-substituted-phenyl)-pyrimidine-4-carboxylates and their use as herbicides
WO2015140189A1 (en) 2014-03-18 2015-09-24 F. Hoffmann-La Roche Ag Oxepan-2-yl-pyrazol-4-yl-heterocyclyl-carboxamide compounds and methods of use
CN105130959B (en) * 2015-09-18 2018-08-03 上海吉铠医药科技有限公司 Pyrimidine derivatives PIM kinase inhibitors and preparation method thereof and the application in pharmacy
CN105254624B (en) * 2015-09-18 2019-08-09 上海吉铠医药科技有限公司 Isothizole derivatives PIM kinase inhibitor and preparation method thereof and the application in pharmacy
CN107522695B (en) * 2016-06-21 2018-09-14 上海方予健康医药科技有限公司 A kind of hydrochloride and its preparation method and application of PIM kinase inhibitors
CN107522696B (en) * 2016-06-21 2019-02-19 上海方予健康医药科技有限公司 A kind of hydrochloride of pyrimidines and its preparation method and application
AU2018291021B2 (en) 2017-06-30 2022-07-28 Bristol-Myers Squibb Company Substituted Quinolinylcyclohexylpropanamide Compounds And Improved Methods For Their Preparation
LT3762368T (en) 2018-03-08 2022-06-10 Incyte Corporation Aminopyrazine diol compounds as pi3k-y inhibitors
WO2020010003A1 (en) 2018-07-02 2020-01-09 Incyte Corporation AMINOPYRAZINE DERIVATIVES AS PI3K-γ INHIBITORS
CN110078706B (en) * 2019-05-31 2022-02-01 浙江师范大学 Imatinib derivative and preparation method and application thereof
CN110452164B (en) * 2019-09-10 2022-07-22 上海皓鸿生物医药科技有限公司 Preparation method of PIM447 key intermediate
CN112915086B (en) * 2021-01-27 2022-04-12 广州市力鑫药业有限公司 Pharmaceutical composition containing Akt targeted kinase inhibitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001055115A1 (en) * 2000-01-27 2001-08-02 Cytovia, Inc. Substituted nicotinamides and analogs as activators of caspases and inducers of apoptosis and the use thereof
WO2008054702A1 (en) * 2006-10-31 2008-05-08 Schering Corporation Anilinopiperazine derivatives and methods of use thereof
WO2008054749A1 (en) * 2006-10-31 2008-05-08 Schering Corporation 2-aminothiazole-4-carboxylic amides as protein kinase inhibitors
WO2008106692A1 (en) * 2007-03-01 2008-09-04 Novartis Vaccines And Diagnostics, Inc. Pim kinase inhibitors and methods of their use
WO2009014637A2 (en) * 2007-07-19 2009-01-29 Schering Corporation Heterocyclic amide compounds as protein kinase inhibitors

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825187B2 (en) 2000-01-26 2004-11-30 Meiji Seika Kaisha, Ltd. Carbapenem derivatives of quarternary salt type
US8618085B2 (en) 2000-04-28 2013-12-31 Koasn Biosciences Incorporated Therapeutic formulations of desoxyepothilones
MXPA03008560A (en) 2001-03-22 2004-06-30 Abbot Gmbh & Co Kg Single-stage pfc + ballast control circuit/general purpose power converter.
KR100557093B1 (en) 2003-10-07 2006-03-03 한미약품 주식회사 Tetrazole derivatives having inhibitory activity against multi-drug resistance and preparation thereof
TW200523252A (en) 2003-10-31 2005-07-16 Takeda Pharmaceutical Pyridine compounds
CA2548172A1 (en) 2003-12-04 2005-06-23 Vertex Pharmaceuticals Incorporated Quinoxalines useful as inhibitors of protein kinases
US7459562B2 (en) 2004-04-23 2008-12-02 Bristol-Myers Squibb Company Monocyclic heterocycles as kinase inhibitors
US20060004197A1 (en) 2004-07-02 2006-01-05 Thomas Thrash Sulfonamide-based compounds as protein tyrosine kinase inhibitors
CR9465A (en) 2005-03-25 2008-06-19 Surface Logix Inc PHARMACOCINETICALLY IMPROVED COMPOUNDS
PT1910384E (en) 2005-08-04 2013-01-23 Sirtris Pharmaceuticals Inc Imidazo [2,1-b]thiazole derivatives as sirtuin modulating compounds
JP5238506B2 (en) 2005-10-06 2013-07-17 エグゼリクシス, インコーポレイテッド Pyridopyrimidinone inhibitors of PIM-1 and / or PIM-3
GB0520657D0 (en) * 2005-10-11 2005-11-16 Ludwig Inst Cancer Res Pharmaceutical compounds
HRPK20050957B3 (en) * 2005-11-11 2008-09-30 Džanko Nikša Collapsible hanger
NZ583790A (en) 2007-09-10 2012-04-27 Cipla Ltd Process for the preparation the raf kinase inhibitor sorafenib and intermediates for use in the process
AR070531A1 (en) * 2008-03-03 2010-04-14 Novartis Ag PIM KINASE INHIBITORS AND METHODS FOR USE
GEP20135849B (en) * 2008-09-02 2013-06-10 Novartis Ag Picolinamide derivatives as kinase inhibitors
US8809380B2 (en) 2009-08-04 2014-08-19 Raqualia Pharma Inc. Picolinamide derivatives as TTX-S blockers
EP2665711A1 (en) 2011-01-21 2013-11-27 Abbvie Inc. Picolinamide inhibitors of kinases

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001055115A1 (en) * 2000-01-27 2001-08-02 Cytovia, Inc. Substituted nicotinamides and analogs as activators of caspases and inducers of apoptosis and the use thereof
WO2008054702A1 (en) * 2006-10-31 2008-05-08 Schering Corporation Anilinopiperazine derivatives and methods of use thereof
WO2008054749A1 (en) * 2006-10-31 2008-05-08 Schering Corporation 2-aminothiazole-4-carboxylic amides as protein kinase inhibitors
WO2008106692A1 (en) * 2007-03-01 2008-09-04 Novartis Vaccines And Diagnostics, Inc. Pim kinase inhibitors and methods of their use
WO2009014637A2 (en) * 2007-07-19 2009-01-29 Schering Corporation Heterocyclic amide compounds as protein kinase inhibitors

Cited By (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079912B2 (en) 2005-12-13 2015-07-14 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase inhibitors
US8933086B2 (en) 2005-12-13 2015-01-13 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B]pyridines and pyrrolo[2,3-B]pyrimidines as Janus kinase inhibitors
US8946245B2 (en) 2005-12-13 2015-02-03 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US10398699B2 (en) 2005-12-13 2019-09-03 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors
US9814722B2 (en) 2005-12-13 2017-11-14 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
US11744832B2 (en) 2005-12-13 2023-09-05 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US11331320B2 (en) 2005-12-13 2022-05-17 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US9662335B2 (en) 2005-12-13 2017-05-30 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
US9974790B2 (en) 2005-12-13 2018-05-22 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
US10639310B2 (en) 2005-12-13 2020-05-05 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US9206187B2 (en) 2005-12-13 2015-12-08 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase
US8829013B1 (en) 2007-06-13 2014-09-09 Incyte Corporation Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US8822481B1 (en) 2007-06-13 2014-09-02 Incyte Corporation Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d] pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US11213528B2 (en) 2007-06-13 2022-01-04 Incyte Holdings Corporation Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US8722693B2 (en) 2007-06-13 2014-05-13 Incyte Corporation Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US10016429B2 (en) 2007-06-13 2018-07-10 Incyte Corporation Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US10610530B2 (en) 2007-06-13 2020-04-07 Incyte Corporation Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US9376439B2 (en) 2007-06-13 2016-06-28 Incyte Corporation Salts of the janus kinase inhibitor (R)-3(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US9079889B2 (en) 2008-09-02 2015-07-14 Novartis Ag Kinase inhibitors and methods of their use
US8592455B2 (en) 2008-09-02 2013-11-26 Novartis Ag Kinase inhibitors and methods of their use
US9623029B2 (en) 2009-05-22 2017-04-18 Incyte Holdings Corporation 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane- or heptane-nitrile as JAK inhibitors
US9216984B2 (en) 2009-05-22 2015-12-22 Incyte Corporation 3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane—or heptane-nitrile as JAK inhibitors
US9334274B2 (en) 2009-05-22 2016-05-10 Incyte Holdings Corporation N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
US9249145B2 (en) 2009-09-01 2016-02-02 Incyte Holdings Corporation Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
US9464088B2 (en) 2010-03-10 2016-10-11 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US11285140B2 (en) 2010-03-10 2022-03-29 Incyte Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US9999619B2 (en) 2010-03-10 2018-06-19 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US10695337B2 (en) 2010-03-10 2020-06-30 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US10869870B2 (en) 2010-05-21 2020-12-22 Incyte Corporation Topical formulation for a JAK inhibitor
US11219624B2 (en) 2010-05-21 2022-01-11 Incyte Holdings Corporation Topical formulation for a JAK inhibitor
US10758543B2 (en) 2010-05-21 2020-09-01 Incyte Corporation Topical formulation for a JAK inhibitor
US11571425B2 (en) 2010-05-21 2023-02-07 Incyte Corporation Topical formulation for a JAK inhibitor
US11590136B2 (en) 2010-05-21 2023-02-28 Incyte Corporation Topical formulation for a JAK inhibitor
JP2013530199A (en) * 2010-07-06 2013-07-25 ノバルティス アーゲー Cyclic ether compounds useful as kinase inhibitors
US9034884B2 (en) 2010-11-19 2015-05-19 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors
US10640506B2 (en) 2010-11-19 2020-05-05 Incyte Holdings Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidines derivatives as JAK inhibitors
US8933085B2 (en) 2010-11-19 2015-01-13 Incyte Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US10513522B2 (en) 2011-06-20 2019-12-24 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US9611269B2 (en) 2011-06-20 2017-04-04 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US9023840B2 (en) 2011-06-20 2015-05-05 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US8691807B2 (en) 2011-06-20 2014-04-08 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
WO2012177606A1 (en) 2011-06-20 2012-12-27 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as jak inhibitors
US11214573B2 (en) 2011-06-20 2022-01-04 Incyte Holdings Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US10875864B2 (en) 2011-07-21 2020-12-29 Sumitomo Dainippon Pharma Oncology, Inc. Substituted imidazo[1,2-B]pyridazines as protein kinase inhibitors
US9359358B2 (en) 2011-08-18 2016-06-07 Incyte Holdings Corporation Cyclohexyl azetidine derivatives as JAK inhibitors
US9718834B2 (en) 2011-09-07 2017-08-01 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9487521B2 (en) 2011-09-07 2016-11-08 Incyte Holdings Corporation Processes and intermediates for making a JAK inhibitor
US9193733B2 (en) 2012-05-18 2015-11-24 Incyte Holdings Corporation Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
AU2013264831B2 (en) * 2012-05-21 2016-04-21 Novartis Ag Novel ring-substituted N-pyridinyl amides as kinase inhibitors
US9173883B2 (en) 2012-05-21 2015-11-03 Novartis Ag Ring-substituted N-pyridinyl amides as kinase inhibitors
WO2013175388A1 (en) 2012-05-21 2013-11-28 Novartis Ag Novel ring-substituted n-pyridinyl amides as kinase inhibitors
US8987457B2 (en) 2012-05-21 2015-03-24 Novartis Ag Ring-substituted N-pyridinyl amides as kinase inhibitors
EA026432B1 (en) * 2012-05-21 2017-04-28 Новартис Аг Novel ring-substituted n-pyridinyl amides as kinase inhibitors
WO2014033630A1 (en) 2012-08-31 2014-03-06 Novartis Ag Novel aminothiazole carboxamides as kinase inhibitors
WO2014033631A1 (en) 2012-08-31 2014-03-06 Novartis Ag N-(3-pyridyl) biarylamides as kinase inhibitors
US10166191B2 (en) 2012-11-15 2019-01-01 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US11896717B2 (en) 2012-11-15 2024-02-13 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
US11337927B2 (en) 2012-11-15 2022-05-24 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
US11576865B2 (en) 2012-11-15 2023-02-14 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US10874616B2 (en) 2012-11-15 2020-12-29 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US11576864B2 (en) 2012-11-15 2023-02-14 Incyte Corporation Sustained-release dosage forms of ruxolitinib
WO2014099880A1 (en) 2012-12-19 2014-06-26 Novartis Ag Aryl-substituted fused bicyclic pyridazine compounds
US9676750B2 (en) 2013-01-14 2017-06-13 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
US9278950B2 (en) 2013-01-14 2016-03-08 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as Pim kinase inhibitors
WO2014110574A1 (en) * 2013-01-14 2014-07-17 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
US9550765B2 (en) 2013-01-15 2017-01-24 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US11229631B2 (en) 2013-01-15 2022-01-25 Incyte Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US10828290B2 (en) 2013-01-15 2020-11-10 Incyte Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as pim kinase inhibitors
US9849120B2 (en) 2013-01-15 2017-12-26 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US10517858B2 (en) 2013-01-15 2019-12-31 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as PIM kinase inhibitors
US10265307B2 (en) 2013-01-15 2019-04-23 Incyte Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US9200004B2 (en) 2013-01-15 2015-12-01 Incyte Holdings Corporation Thiazolecarboxamides and pyridinecarboxamide compounds useful as Pim kinase inhibitors
US9221845B2 (en) 2013-03-06 2015-12-29 Incyte Holdings Corporation Processes and intermediates for making a JAK inhibitor
US9714233B2 (en) 2013-03-06 2017-07-25 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US8987443B2 (en) 2013-03-06 2015-03-24 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9655854B2 (en) 2013-08-07 2017-05-23 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US11045421B2 (en) 2013-08-07 2021-06-29 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US10561616B2 (en) 2013-08-07 2020-02-18 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
WO2015019320A1 (en) 2013-08-08 2015-02-12 Novartis Ag Pim kinase inhibitor combinations
US20160175293A1 (en) * 2013-08-08 2016-06-23 Novartis Ag Pim kinase inhibitor combinations
US10000507B2 (en) 2013-08-23 2018-06-19 Incyte Corporation Furo- and thieno-pyridine carboxamide compounds useful as pim kinase inhibitors
US9556197B2 (en) 2013-08-23 2017-01-31 Incyte Corporation Furo- and thieno-pyridine carboxamide compounds useful as pim kinase inhibitors
US11708412B2 (en) 2013-09-26 2023-07-25 Novartis Ag Methods for treating hematologic cancers
US10570204B2 (en) 2013-09-26 2020-02-25 The Medical College Of Wisconsin, Inc. Methods for treating hematologic cancers
WO2015081083A1 (en) 2013-11-27 2015-06-04 Novartis Ag Combination therapy comprising an inhibitor of jak, cdk and pim
EP3514179A1 (en) 2014-01-24 2019-07-24 Dana-Farber Cancer Institute, Inc. Antibody molecules to pd-1 and uses thereof
US10752687B2 (en) 2014-01-24 2020-08-25 Novartis Ag Antibody molecules to PD-1 and uses thereof
US11827704B2 (en) 2014-01-24 2023-11-28 Novartis Ag Antibody molecules to PD-1 and uses thereof
US10981990B2 (en) 2014-01-31 2021-04-20 Novartis Ag Antibody molecules to TIM-3 and uses thereof
EP4324518A2 (en) 2014-01-31 2024-02-21 Novartis AG Antibody molecules to tim-3 and uses thereof
US11155620B2 (en) 2014-01-31 2021-10-26 Novartis Ag Method of detecting TIM-3 using antibody molecules to TIM-3
US10472419B2 (en) 2014-01-31 2019-11-12 Novartis Ag Antibody molecules to TIM-3 and uses thereof
WO2015138920A1 (en) 2014-03-14 2015-09-17 Novartis Ag Antibody molecules to lag-3 and uses thereof
EP3660050A1 (en) 2014-03-14 2020-06-03 Novartis AG Antibody molecules to lag-3 and uses thereof
US9498467B2 (en) 2014-05-30 2016-11-22 Incyte Corporation Treatment of chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) by inhibitors of JAK1
US9890162B2 (en) 2014-07-14 2018-02-13 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
US9580418B2 (en) 2014-07-14 2017-02-28 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as Pim kinase inhibitors
US9822124B2 (en) 2014-07-14 2017-11-21 Incyte Corporation Bicyclic heteroaromatic carboxamide compounds useful as Pim kinase inhibitors
US10508101B2 (en) 2014-08-06 2019-12-17 Novartis Ag Protein kinase C inhibitors and methods of their use
US9845309B2 (en) 2014-08-06 2017-12-19 Novartis Ag Protein kinase C inhibitors and methods of their use
US11059804B2 (en) 2014-08-06 2021-07-13 Novartis Ag Protein kinase C inhibitors and methods of their use
US11505541B2 (en) 2014-08-06 2022-11-22 Novartis Ag Protein kinase C inhibitors and methods of their use
US9452998B2 (en) 2014-08-06 2016-09-27 Novartis Ag Protein kinase C inhibitors and methods of their use
US11344620B2 (en) 2014-09-13 2022-05-31 Novartis Ag Combination therapies
EP3662903A2 (en) 2014-10-03 2020-06-10 Novartis AG Combination therapies
WO2016054555A2 (en) 2014-10-03 2016-04-07 Novartis Ag Combination therapies
WO2016057841A1 (en) 2014-10-08 2016-04-14 Novartis Ag Compositions and methods of use for augmented immune response and cancer therapy
EP4245376A2 (en) 2014-10-14 2023-09-20 Novartis AG Antibody molecules to pd-l1 and uses thereof
WO2016061142A1 (en) 2014-10-14 2016-04-21 Novartis Ag Antibody molecules to pd-l1 and uses thereof
WO2016145102A1 (en) 2015-03-10 2016-09-15 Aduro Biotech, Inc. Compositions and methods for activating "stimulator of interferon gene" -dependent signalling
US11040053B2 (en) 2015-03-10 2021-06-22 Chinook Therapeutics, Inc. Compositions and methods for activating “stimulator of interferon gene”13 dependent signalling
US10449211B2 (en) 2015-03-10 2019-10-22 Aduro Biotech, Inc. Compositions and methods for activating “stimulator of interferon gene”—dependent signalling
US9540347B2 (en) 2015-05-29 2017-01-10 Incyte Corporation Pyridineamine compounds useful as Pim kinase inhibitors
US9802918B2 (en) 2015-05-29 2017-10-31 Incyte Corporation Pyridineamine compounds useful as Pim kinase inhibitors
EP3964528A1 (en) 2015-07-29 2022-03-09 Novartis AG Combination therapies comprising antibody molecules to lag-3
EP3878465A1 (en) 2015-07-29 2021-09-15 Novartis AG Combination therapies comprising antibody molecules to tim-3
WO2017019894A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to lag-3
EP4378957A2 (en) 2015-07-29 2024-06-05 Novartis AG Combination therapies comprising antibody molecules to pd-1
WO2017019897A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to tim-3
US11066387B2 (en) 2015-09-09 2021-07-20 Incyte Corporation Salts of a Pim kinase inhibitor
US11505540B2 (en) 2015-09-09 2022-11-22 Incyte Corporation Salts of a Pim kinase inhibitor
US12043614B2 (en) 2015-09-09 2024-07-23 Incyte Corporation Salts of a Pim kinase inhibitor
US10336728B2 (en) 2015-09-09 2019-07-02 Incyte Corporation Salts of a Pim kinase inhibitor
US9862705B2 (en) 2015-09-09 2018-01-09 Incyte Corporation Salts of a pim kinase inhibitor
US11053215B2 (en) 2015-10-02 2021-07-06 Incyte Corporation Heterocyclic compounds useful as Pim kinase inhibitors
US10450296B2 (en) 2015-10-02 2019-10-22 Incyte Corporation Heterocyclic compounds useful as Pim kinase inhibitors
US9920032B2 (en) 2015-10-02 2018-03-20 Incyte Corporation Heterocyclic compounds useful as pim kinase inhibitors
US10894830B2 (en) 2015-11-03 2021-01-19 Janssen Biotech, Inc. Antibodies specifically binding PD-1, TIM-3 or PD-1 and TIM-3 and their uses
EP4424322A2 (en) 2015-12-17 2024-09-04 Novartis AG Antibody molecules to pd-1 and uses thereof
WO2017106656A1 (en) 2015-12-17 2017-06-22 Novartis Ag Antibody molecules to pd-1 and uses thereof
CN107519175A (en) * 2016-06-21 2017-12-29 上海方予健康医药科技有限公司 A kind of pyrimidine compound or its salt are preparing the application in being used to prevent and/or treat the medicine of the disease related to FLT3 or obstacle
US11098077B2 (en) 2016-07-05 2021-08-24 Chinook Therapeutics, Inc. Locked nucleic acid cyclic dinucleotide compounds and uses thereof
WO2018198076A1 (en) 2017-04-28 2018-11-01 Aduro Biotech, Inc. Bis 2'-5'-rr-(3'f-a)(3'f-a) cyclic dinucleotide compound and uses thereof
US10975114B2 (en) 2017-04-28 2021-04-13 Chinook Therapeutics, Inc. Bis 2′-5′-RR-(3′F-A)(3′F-A) cyclic dinucleotide compound and uses thereof
WO2018237173A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
US11278541B2 (en) 2017-12-08 2022-03-22 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US10899736B2 (en) 2018-01-30 2021-01-26 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US11304949B2 (en) 2018-03-30 2022-04-19 Incyte Corporation Treatment of hidradenitis suppurativa using JAK inhibitors
WO2019200254A1 (en) 2018-04-13 2019-10-17 Tolero Pharmaceuticals, Inc. Pim kinase inhibitors for treatment of myeloproliferative neoplasms and fibrosis associated with cancer
WO2019229658A1 (en) 2018-05-30 2019-12-05 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
US11471456B2 (en) 2019-02-12 2022-10-18 Sumitomo Pharma Oncology, Inc. Formulations comprising heterocyclic protein kinase inhibitors
WO2021053559A1 (en) 2019-09-18 2021-03-25 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2021091788A1 (en) * 2019-11-07 2021-05-14 Crinetics Pharmaceuticals, Inc. Melanocortin subtype-2 receptor (mc2r) antagonists and uses thereof
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
WO2024097653A1 (en) 2022-10-31 2024-05-10 Sumitomo Pharma America, Inc. Pim1 inhibitor for treating myeloproliferative neoplasms

Also Published As

Publication number Publication date
MY150136A (en) 2013-11-29
US8592455B2 (en) 2013-11-26
DK2344474T3 (en) 2015-12-14
CN102203079B (en) 2014-12-10
ES2551900T3 (en) 2015-11-24
JP5412519B2 (en) 2014-02-12
JP5813701B2 (en) 2015-11-17
US9079889B2 (en) 2015-07-14
JP2013231049A (en) 2013-11-14
AU2009289319C1 (en) 2013-12-05
CN103333157A (en) 2013-10-02
HUE026381T2 (en) 2016-06-28
PE20110298A1 (en) 2011-05-21
ME01291A (en) 2013-06-20
SV2011003849A (en) 2011-07-07
SI2344474T1 (en) 2015-12-31
TW201028393A (en) 2010-08-01
US20150315150A1 (en) 2015-11-05
RS54506B1 (en) 2016-06-30
KR20110048585A (en) 2011-05-11
CA2734415A1 (en) 2010-03-11
GEP20135849B (en) 2013-06-10
DOP2011000067A (en) 2017-01-15
HN2011000629A (en) 2015-08-10
CN102203079A (en) 2011-09-28
ECSP11010859A (en) 2011-04-29
NZ591449A (en) 2012-12-21
EA201100425A1 (en) 2011-10-31
EA020136B1 (en) 2014-08-29
ZA201101118B (en) 2011-09-28
BRPI0918268A2 (en) 2020-11-17
US20100056576A1 (en) 2010-03-04
HRP20151410T1 (en) 2016-01-15
CN104311480A (en) 2015-01-28
US8329732B2 (en) 2012-12-11
CA2734415C (en) 2016-07-26
US20140079693A1 (en) 2014-03-20
HK1156627A1 (en) 2012-06-15
PL2344474T3 (en) 2016-03-31
PT2344474E (en) 2015-12-28
MX2011002365A (en) 2011-04-04
NI201100052A (en) 2011-09-03
EP2344474B1 (en) 2015-09-23
SMT201600005B (en) 2016-02-25
TWI434843B (en) 2014-04-21
KR101345920B1 (en) 2014-02-06
AU2009289319A1 (en) 2010-03-11
MA32684B1 (en) 2011-10-02
CO6351725A2 (en) 2011-12-20
CR20110114A (en) 2011-05-10
HK1162022A1 (en) 2012-08-17
IL211291A0 (en) 2011-04-28
AU2009289319B2 (en) 2011-10-27
IL211291A (en) 2014-05-28
BRPI0918268B1 (en) 2021-08-03
EP2344474A1 (en) 2011-07-20
UY32085A (en) 2010-03-26
JP2012501314A (en) 2012-01-19
US20120134987A1 (en) 2012-05-31
CL2011000454A1 (en) 2011-09-30

Similar Documents

Publication Publication Date Title
EP2344474B1 (en) Picolinamide derivatives as kinase inhibitors
JP5412448B2 (en) Pim kinase inhibitor and method of using the same
JP5564045B2 (en) Bicyclic kinase inhibitor
US8168794B2 (en) Pim kinase inhibitors and methods of their use
EP2861585B1 (en) Novel ring-substituted n-pyridinyl amides as kinase inhibitors
EP2681197A1 (en) Tetrasubstituted cyclohexyl compounds as kinase inhibitors
WO2014033631A1 (en) N-(3-pyridyl) biarylamides as kinase inhibitors
WO2014033630A1 (en) Novel aminothiazole carboxamides as kinase inhibitors
AU2011265439B2 (en) Picolinamide derivatives as kinase inhibitors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143187.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09782396

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009289319

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2734415

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 211291

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1211/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011020327

Country of ref document: EG

Ref document number: 591449

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2011524408

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011000454

Country of ref document: CL

WWE Wipo information: entry into national phase

Ref document number: 000444-2011

Country of ref document: PE

Ref document number: CR2011-000114

Country of ref document: CR

Ref document number: MX/A/2011/002365

Country of ref document: MX

Ref document number: 12011500440

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11028419

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2009289319

Country of ref document: AU

Date of ref document: 20090831

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201100425

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: DZP2011000234

Country of ref document: DZ

Ref document number: 2009782396

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117007556

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12163/1

Country of ref document: GE

WWE Wipo information: entry into national phase

Ref document number: A201101618

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: P-2015/0730

Country of ref document: RS

ENP Entry into the national phase

Ref document number: PI0918268

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110301