WO2010025223A2 - Junction box for photovoltaic systems - Google Patents
Junction box for photovoltaic systems Download PDFInfo
- Publication number
- WO2010025223A2 WO2010025223A2 PCT/US2009/055154 US2009055154W WO2010025223A2 WO 2010025223 A2 WO2010025223 A2 WO 2010025223A2 US 2009055154 W US2009055154 W US 2009055154W WO 2010025223 A2 WO2010025223 A2 WO 2010025223A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- junction box
- electrical junction
- electrical
- housing
- cover
- Prior art date
Links
- 239000011888 foil Substances 0.000 claims abstract description 36
- 238000003780 insertion Methods 0.000 claims abstract description 14
- 230000037431 insertion Effects 0.000 claims abstract description 14
- 239000004020 conductor Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 description 8
- 239000012212 insulator Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920000544 Gore-Tex Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000881 depressing effect Effects 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 229920013683 Celanese Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004738 Fortron® Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/02—Arrangements of circuit components or wiring on supporting structure
- H05K7/026—Multiple connections subassemblies
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/34—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/34—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
- H02S40/345—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes with cooling means associated with the electrical connection means, e.g. cooling means associated with or applied to the junction box
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/02—Contact members
- H01R13/10—Sockets for co-operation with pins or blades
- H01R13/11—Resilient sockets
- H01R13/114—Resilient sockets co-operating with pins or blades having a square transverse section
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R31/00—Coupling parts supported only by co-operation with counterpart
- H01R31/08—Short-circuiting members for bridging contacts in a counterpart
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to an electrical junction box and, more particularly, an electrical junction box for use in connection with photovoltaic systems.
- An electrical junction box is an integral part of a photovoltaic system, as it provides electrical connections between individual solar panels (i.e., photovoltaic modules) of a solar array and between the solar panels to other system components (e.g., a DC/AC inverter, etc.). Consequently, the reliability of the junction box is crucial for maintaining a dependable and efficient photovoltaic system.
- Current junction boxes are complex in construction and installing them can be laborious. In addition, current junction boxes do not provide reliable electrical connections and their durability is low. What is needed, therefore, is a junction box that is simple in construction and easily installable, yet maintains a reliable electrical connection between the components of a photovoltaic system, and is durable enough to withstand a wide range of environmental conditions.
- the present invention overcomes the disadvantages and shortcomings of the prior art discussed above by providing a junction box for a photovoltaic system that includes a housing having a base and a cover removably attached thereto.
- a plurality of guide channels extend from an exterior surface of the housing to an interior portion thereof.
- the guide channels are sized and shaped to receive a plurality of conductive foil strips from a solar panel array.
- Each receptacle is sized and shaped to receive a buss bar.
- Each foil strip is connected to a corresponding buss bar by a low insertion connector.
- the junction box further includes a heat sink having a plurality of fins that protrude outwardly from the housing. Accordingly, heat is dissipated external of the housing.
- a heat sink having a plurality of fins that protrude outwardly from the housing. Accordingly, heat is dissipated external of the housing.
- the present invention has been adapted for use in connection with photovoltaic systems. However, the present invention can be utilized in connection with other power generating systems. Further features and advantages of the invention will appear more clearly on a reading of the following detailed description of an exemplary embodiment of the invention.
- FIG. 1 is a top perspective view of a junction box constructed in accordance with an exemplary embodiment of the present invention
- FIG. 2 is a bottom perspective view of the junction box shown in FIG. 1 ;
- FIG. 3 is an exploded perspective view, looking from above, of the junction box shown in FIG. 1;
- FIG. 4 is a top perspective view of the junction box shown in FIG. 1 with a cover employed by the junction box removed;
- FIG. 5 is a is a cross-sectional view, taken along section line 5-5 and looking in the direction of the arrows, of the junction box shown in FIG. 1 ;
- FIG. 6 is a top perspective view of a junction box constructed in accordance with another exemplary embodiment of the present invention
- FIG. 7 is an exploded perspective view, looking from above, of the junction box shown in FIG. 6;
- FIG. 8 is a top perspective view of the junction box shown in FIG. 6 with a cover employed by the junction box removed.
- an electrical junction box 10 includes a rectangular-shaped housing 12 having a base 14 and a cover 16 attached removably to the base 14.
- the base 14 and the cover 16 are separate and
- the housing 12 is manufactured from a thermoplastic polymer, such as polycarbonate. However, the housing 12 may be manufactured from any other suitable materials known in the art, especially materials having electrical insulating properties. Although the housing 12 is rectangular in shape, it may consist of
- the base 14 includes a floor 18 having an interior surface 20 and an exterior surface 22 opposite thereof, and a wall 24 that extends outwardly from the floor 18 and around the perimeter
- the wall 24 has an interior surface 26 and exterior surface 28 opposite thereof, and includes front and rear walls 30, 32 positioned opposite and parallel to one another and a pair of sidewalls 34, 36 that extend between the front and rear walls 30, 32 and parallel to one another.
- a top surface 38 of the front wall 30 includes a pair of semi-circular shaped notches 40a, 40b that are spaced apart from one another and extend from the exterior surface 28 to the interior surface 26 of the front wall 30. The purpose of the notches 40a, 40b shall be explained in greater detail below. Referring to FIGS. 1 and 3, the exterior surface 28 of the front wall
- each of the sidewalls 34, 36 include a sloped portion 46, whose purpose shall be explained below.
- An elongated, rectangular-shaped recess 48 is formed in the rear wall 32 and extends from the interior surface 26 to the exterior surface 28 thereof.
- the recess 48 is flanked by a pair of rectangular-shaped posts 50a, 50b that extend upwardly from the floor 18 and are positioned adjacent to the rear wall 32.
- Each of the posts 50a, 50b includes a rectangular-shaped aperture 50c, 5Od, respectively.
- the purposes and functions of the recess 48 and the posts 50a, 50b shall be described hereinafter.
- the base 14 includes an integral terminal block 52 having a plurality of rectangular-shaped receptacles 54 aligned linearly and spaced apart from one another. While the junction box 10 has the four receptacles 54, it can include greater or less than four. With particular reference to FIG. 5, each receptacle 54 includes a first wall 56 that transitions from a flat portion 58, which is positioned proximate to the interior surface 20 of the floor 18, to a convex portion 60 that extends to the exterior surface 22 of the floor 18 (see FIG. 5). Each of the receptacles 54 further includes a second wall 62 having a concave surface 64 and which is spaced apart from the first wall 56. With reference to FIG.
- each of the receptacles 54 includes a pair of shoulders 64a, which together with the first and second walls 56, 62 form a guide channel 66.
- the guide channel 66 terminates at a corresponding rectangular-shaped aperture 68 at the exterior surface 22 of the floor 18 (not shown in FIGS. 3 and 5, but see FIG. 2).
- Each of the innermost positioned shoulders 64a i.e., those not adjacent the sidewalls 34, 36
- the outer surface of the floor 18 includes a rectangular-shaped groove 72 formed around the perimeter thereof.
- the purpose and function of the groove 72 shall be explained below. Alternatively, the groove 72 need not be included.
- the cover 16 includes an exterior surface 76 and an interior surface 78 opposite thereof and a wall 80 that extends outwardly from the interior surface 78 and around the perimeter thereof.
- the wall 80 includes front and rear walls 82, 84 positioned opposite and parallel to one another and a pair of sidewalls 86, 88 that extend between the front and rear walls 82, 84 and parallel to one another.
- the cover 16 is sized and shaped to mate with the base 14.
- the cover 16 includes a pair of latch members 90a, 90b that extend from the front wall 82, a pair of latch members 92a, 92b that extend from respective sidewalls 86, 88, and a pair of hook members 94a, 94b that extend from a rear wall 84 and are spaced apart from one another.
- the hook members 94a, 94b are inserted within the apertures 50c, 5Od, respectively, and hingedly engage the receiving posts 50a, 50b of the base 14 (not shown in the Figures).
- the front wall 82 includes a pair of spaced apart, semi-circular shaped notches 96a, 96b.
- the latch members 90a, 90b interlock with the locking tabs 42 respectively, while the latch members 92a, 92b interlock with the locking tabs 44, respectively.
- the notches 40a, 96a cooperate to form a circular shaped aperture 98a
- the notches 40b, 96b cooperate to form a circular shaped aperture 98b (not shown in FIGS. 3 and 5, but see FIGS. 1 and 2).
- the purpose and function of the apertures 98a, 98b shall be discussed below.
- a gasket may be introduced between the cover 16 and the base 14 to form a seal therebetween (not shown in the Figures) from external environmental conditions, such as weather and foreign particles.
- a vent 100 is formed within the cover 16, extending from the exterior surface 76 to the interior surface 78 thereof.
- a filter 102 covers the vent 100 on the interior surface 78 of the cover 16.
- the filter 102 may be made of GOR-TEX® material, but it can be made of other suitable materials known in the art.
- the purpose and function of the vent 100 and the filter 102 shall be provided below.
- a plurality of bosses 104 extend outwardly from the interior surface 78 of the cover 16.
- the bosses 104 are arranged linearly and spaced apart from one another. The purpose and function of the bosses 104 shall be explained below. Referring to FIGS.
- the junction box 10 includes a plurality of buss bars 106, each having a central portion 108 and a pair of arms 110 extending laterally therefrom.
- the buss bars 106 are made of tin-plated brass, but they can be made from other suitable conductive materials known in the art.
- Each buss bar 106 is positioned within a corresponding one of the receptacles 54 such the arms 110 rest on the shoulders 64a adjacent to the flat portion 58, respectively, while that the central portion 108 thereof sits above the flat portion 58.
- Each of the partitions 70 physically separates one of the arms 110 of one of the buss bars 106 from one of the arms 110 of another adjacently positioned buss bar 106.
- the junction box 10 includes a heat sink
- the heat sink 112 having a mounting portion 114 and a plurality of fins 116 extending therefrom and spaced apart from one another.
- the mounting portion 114 of the heat sink 112 is positioned within the recess 48 of the base 12, and is secured in place by the cover 16 when it is fully engaged with the base 12. In such position, the fins 116 of the heat sink 112 extend outwardly and externally from the base 14.
- the heat sink 112 is manufactured from anodized aluminum, but it can be made from other thermally conductive materials known in the art, such as, for example, copper. Referring to FIG. 3, a plurality of diodes 118 are mounted linearly to the mounting portion 114 of the heat sink 112.
- the diodes 118 may be mounted to the heat sink by any sufficient means known in the art, such as, for instance, rivets or adhesives.
- Each of the diodes 118 includes a pair of leads 120. As shown in FIG. 4, one of the pair of leads 120 of one of the diodes 118 is attached (e.g., crimped, soldered, etc.) to one of the arms 110 of one of the buss bars 106, while the other of the pair of leads 120 of the diode 118 is attached to one of the arms 110 of another adjacent buss bar 106. As a result, each of the buss bars 106 are connected electrically with one another.
- the diodes 118 are TO220 pack diodes manufactured by Diotec Semiconductor AG of Germany, model number SBT1840. However, the diodes 118 can be made by other manufacturers and/or consist of any type of suitable diode or equivalent component.
- the junction box 10 is adapted to receive one or more flexible foil strips 122 of a solar panel array (not shown in the Figures).
- the foil strips 122 conduct power from the solar panel array and typically protrude from the solar panel substrate (not shown in the Figures). Accordingly, the strips 122 are made from a flexible, conductive material, such as nickel plated copper, but they could be made from other conductive materials.
- a free end 124 of the foil strip 122 is fed into one of the apertures 68 on the exterior surface 22 of the floor 18, slides through and is guided within the guide channel 66, and exits the receptacle 54 between the central portion 108 of the buss bar 106 and the flat portion 58 of the receptacle 54.
- the guide channel 66 is sized and shaped to enable the foil strip 122 to be easily guided into position (i.e., between the central portion 108 of the buss bar 106 and the flat portion 58 of the receptacle 54).
- the free end 124 of the foil strip 122 is, preferably, folded over so that it wraps around the central portion 108 of the buss bar 106 and between the arms 110 thereof, thereby increasing the contact area.
- Each of the remaining foil strips 122 is connected to a corresponding one of the remaining buss bars 106 in an identical manner as described above (see also FIG. 2).
- low insertion female connectors 126 clip the foil strips 122 to the buss bars 106 to ensure a reliable physical and electrical connection between them.
- the connectors 126 are quickly and easily connected and disconnected to the buss bars 106.
- the connectors 126 consist of female cord connectors manufactured by Heyco Products, Inc. of Toms River, New Jersey, part number 1155/7279.
- the connectors 126 are made of tin- plated brass, but they can be made of other electrically conductive materials known in the art. As shown in the Figures, an electrical wire 128a is connected to one of the connectors 126, while an electrical wire 128b is connected to another one of the connectors 126.
- the apertures 98a, 98b provide entry paths for the electrical wires 128a, 128b, respectively, into the interior of the housing 12.
- the remaining connectors 126 are utilized to maintain the physical and electrical connection between the associated foil strip 122 and buss bar 106. While the wires 128a, 128b are positioned as shown, they may be attached to any of the connectors 126 as desired. It is also noted that the sloped portions 46 of the sidewalls 34, 36 of the base 14 provide better maneuverability by a user to connect and disconnect the connectors 126.
- the electrical wires 128a, 128b serve as the positive and negative connections, respectively, to and from the junction box 10.
- free ends 130a, 130b of the wires 128a, 128b may include male or female connectors for physical and electrical connection to, for example, a DC/AC power inverter, additional junction boxes 10, or extension cables (not shown in the Figures).
- the positive electrical wire 128a of a first junction box 10 may be coupled to the negative electrical wire 128b of a second junction box 10
- the negative electrical wire 128a of the first junction box 10 could be coupled to the positive electrical wire 128a of a third junction box 10 (not shown in the Figures).
- the junction box 10 may be used to electrically connect an array of solar panels in series or in parallel.
- the cover 16 is attached to the base 14.
- each of the bosses 104 are forced against a corresponding one of the connectors 126, further compressing it and creating a spring tension thereon, which, in turn, pinches and retains the associated foil strip 122.
- a reliable physical and electrical connection between the foil strips 122 and the buss bars 106 is achieved.
- the junction box 10 is typically attached to the flat underside of a solar panel, but it can be attached to other suitable surfaces (not shown in the Figures).
- the groove 72 of the base 14 is sized and shaped to receive a sealant/adhesive, such as silicone or epoxy, so that the junction box 10 may be attached to the solar panel's underside (not shown in the Figures).
- a sealant/adhesive such as silicone or epoxy
- the profile of the junction box 10 may be sufficiently thin enough to be mounted between the underside of the solar panel and a roof (not shown in the Figures).
- the current generated by the solar panel is transferred to the junction box 10 through the foil strips 122 and flows through the buss bars 106 and diodes 118.
- the electrical wires 128a, 128b serve as the positive and negative connections and, in turn, may be connected electrically to either a DC/AC power inverter or to additional junction boxes 10 (not shown in the Figures).
- Certain features of the junction box 10 described herein enable it to operate efficiently, while protecting it from harsh environmental conditions.
- the heat sink 112 dissipates heat from the interior of the housing 12, especially the heat generated by the diodes 118, to the external atmosphere by the fins 116.
- vent 100 and filter 102 allow pressure and moisture laden air to pass outwardly from the interior of the housing 12 to the atmosphere, while only allowing air to pass from the atmosphere to the interior. As a result, pressure equilibrium within the housing 12 is maintained, thereby protecting the junction box 10 from damage caused by dangerous pressure levels.
- the filter 102 also prevents foreign particles from entering the housing 12.
- the diodes 118 have bypass features, such that they will conduct electricity if an associated solar panel becomes reverse biased. For instance, if one solar panel in a series string fails, due to shade, broken cells, or other factors, it can produce so much resistance that all the other panels in that string are cut off. Moreover, the non-affected panels may deliver current through the effected panel, generating high power losses, and possibly creating hot spots and solar cell breakdown. Therefore, the diodes 118 create a path around the disabled solar panel and protects its from thermal destruction while other panels are exposed to full light. Should the junction box 10 require repair or maintenance, the cover
- the latch members 90a, 90b and the latch members 92a, 92b are preferably configured to be released with an appropriate tool, so as to prevent tampering of the junction box 10.
- the spring tension on the connectors 126 by the bosses 104 is relieved, and the connectors 126 may be easily and quickly disconnected. Because the connectors 126 have quick and easy connect and disconnect features, any potential damage to the solar panels by a user is minimized.
- FIGS. 6 through 8 An alternate embodiment of a junction box constructed in accordance with the present invention is illustrated in FIGS. 6 through 8. To facilitate consideration and discussion, all elements, whether or not illustrated in FIGS. 6 through 8, which correspond to the elements described above with respect to FIGS. 1 through 5, have been designated by corresponding reference numerals increased by two hundred (200). New elements illustrated in FIGS. 6 through 8 which have no counterparts in FIGS. 1 through 5 are designated by odd reference numerals. The embodiment represented by FIGS. 6 through 8 is constructed and operates in the same manner as the junction box 10 shown in FIGS. 1 through 5, except as described below.
- an electrical junction box 210 includes a rectangular-shaped housing 212 having a base 214 and a cover 216 attached removably to the base 214.
- the base 214 and the cover 216 are separate and distinct components, but they may be of unitary construction.
- a gasket 217 is positioned between the cover 216 and the base 214 to form a seal therebetween (see FIG. 7) from external environmental conditions, such as weather and foreign particles.
- a front wall 230 of the base 214 includes a pair of locking receptacles 243a, 243b extending outwardly from an exterior surface 228 thereof, while the exterior surfaces 228 of sidewalls 234, 236 include locking tabs 245 formed therein (the locking tab on the sidewall 234 is not fully shown in the Figures).
- the cover 216 includes a pair of latch members 291a, 291b that extend from a front wall 282 thereof.
- a pair of side wings 293a, 293b having associated latch members 295a, 295b that extend from respective sidewalls 286, 288 of the cover 216.
- the latch members 291a, 291b of the cover 216 interlock with the locking receptacles 243a, 243b of the base 214, respectively, while the latch members 295a, 295b of the cover 216 interlock with the locking tabs 245 of the base 214.
- the side wings 293a, 293b of the cover 216 increase creepage and clearance for insulation purposes.
- a vent 300 is formed within the cover 216, extending from an exterior surface 276 to an interior surface opposite thereof.
- a filter 302 covers the vent 300 on the interior surface of the cover 216.
- the filter 302 may be made of GOR-TEX® material, but it can be made of other suitable materials known in the art.
- the base 212 includes a plurality of walls 271 that extend upwardly from a floor 218 thereof. Each of the walls 271 is juxtaposed with a terminal block 252 and is positioned offset between a pair of adjacent receptacles 254. A plurality of buss bars 306, each having a central portion 308 and a pair of arms 310 extending laterally therefrom, are positioned within the receptacles 254. Each of the arms 310 of the bus bars 306 includes a lance tab 311 to retain it within its corresponding receptacle 254. Still referring to FIGS.
- the junction box 210 includes a heat sink 312 having a mounting portion 314 and a plurality of fins 316 extending therefrom and spaced apart from one another.
- a thermally conductive insulator 317 (as shown in FIG. 7) is inserted onto the mounting portion 314 of the heat sink 312, while a plurality of diodes 318 are mounted linearly to the mounting portion 314 of the heat sink 312 via the insulator 317.
- the insulator 317 is made from a silicon-based, thermally conductive insulation material, such as the Sil-Pad® 900S insulator material manufactured by The Bergquist Company. Alternatively, the insulator 317 can be made from other suitable thermally conductive insulation materials known in the art.
- a diode clip 319 is clipped on to the mounting portion 314 of the heat sink 312 and covers the diodes 318.
- the diode clip 319 maintains the position of the diodes 318, and spreads out heat generated by the diodes 318 more efficiently during use of the junction box 210.
- the diode clip 319 is made from an injection molded plastic, such as FORTRON® 6850 L6 polyphenylene sulfide (PPS) supplied by Ticona/Celanese Corporation.
- PPS polyphenylene sulfide
- the diode clip 319 can be made from other suitable plastics or other materials known in the art. Referring to FIGS.
- the junction box 210 is adapted to receive one or more flexible foil strips 322 of a solar panel array (not shown in the Figures).
- the foil strips 322 are inserted within and connected to the junction box 210 in the same manner as that described above with respect to the junction box 10.
- low insertion female connectors 326 clip the foil strips 322 to the buss bars 306 to ensure a reliable physical and electrical connection between them.
- Each of the connectors 326 may include strength ribs for improved retention of the connection (not shown in the Figures).
- the connectors 326 are quickly and easily connected to and disconnected from to the buss bars 306. As shown in FIG.
- an electrical wire 328a is connected to one of the connectors 326, while an electrical wire 328b is connected to another one of the connectors 326.
- the remaining connectors 326 are utilized to maintain the physical and electrical connection between the associated foil strip 322 and the buss bar 306.
- the walls 271 separate and insulate the connectors 326 from one another.
- the cover 216 is opened or removed by depressing the latch members 295a, 295b and the latch members 291a, 291b from their unlatched (i.e., unlocked) positions.
- the latch members 291a, 291b and the latch members 295a, 295b are preferably configured to be released with an appropriate tool, so as to prevent tampering of the junction box 210.
- the cover 216 is opened or removed, the spring tension on the connectors 226 by the bosses (not shown) is relieved, and the connectors 226 may be easily and quickly disconnected.
- each of the junction boxes 10, 210 described herein are merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the full spirit and the scope of the embodiments described herein.
- each of the junction boxes 10, 210 may include more or less than the four receptacles 54, 254, respectively, as shown in the Figures, in order to accommodate more or less than the four foil strips 122, 322.
- the size and shape of the receptacles 54, 254 can be varied to accommodate foil strips having sizes and shapes different from those of the foil strips 122, 322.
- each of the housings 12, 112 can consist of different shapes and sizes in order to fulfill the needs of custom applications.
- junction box 10 includes the two latch members 90a, 90b, the two latch members 92a, 92b, the two tabs 42, and the two tabs 44, it can include more or less than two of each.
- the latch members 90a, 90b and the latch members 92a, 92b can consist of different designs that known in the art.
- the latch members 90a, 90b and the latch members 92a, 92b need not be included and the base 14 and the cover 16 may be attached to each other by other means known in the art (e.g., screws and other fasteners, adhesives, etc.).
- junction box 210 includes the latch members 291a, 291b, the latch members 295a, 295b, the two tabs 245, and the two locking receptacles 243a, 243b, it can include more or less than two of each.
- the latch members 291a, 291b and the latch members 295a, 295b can consist of different designs that known in the art.
- the latch members 291a, 291b and the latch members 295a, 295b need not be included and the base 214 and the cover 216 may be attached to each other by other means known in the art (e.g., screws and other fasteners, adhesives, etc.).
- the hook members 94a, 94b of the cover 16 and the posts 50a, 50b of the base 14 can be substituted or supplemented by other means for pivoting the cover 16 relative to the base 14, such as, for example, one or more living hinges (not shown in the Figures).
- the junction box 210 may have similar means for pivoting the cover 216 relative to the base 214 (not shown in the Figures).
- each set of the diodes 118, 318 may be substituted by a single diode or other suitable electrical components known in the art. Accordingly, all such variations and modifications are intended to be included within the scope of the invention as defined in the appended claims.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Connection Or Junction Boxes (AREA)
- Photovoltaic Devices (AREA)
Abstract
A junction box (10) for a photovoltaic system includes a housing (12) having a base (14) and a cover (16) removably attached thereto, and a plurality of guide channels (66) extending from an exterior surface of the housing (12) to an interior portion thereof. The guide channels (66) are sized and shaped to receive a plurality of conductive foil strips (122) from a solar panel array. When the strips (122) are fed into the guide channels (66), they are guided to and properly positioned within corresponding receptacles (54). Each receptacle (54) is sized and shaped to receive a buss bar (106), and each strip (122) is connected to a corresponding buss bar (106) by a low insertion connector (126). When the cover (16) is fully engaged with the base (14), bosses (104) extending from the cover (16) press against the connectors (126), creating a spring tension and pinch and retain the associated strip (122). As a result, a reliable physical and electrical connection between the strips (122) and the buss bars (106) is achieved. A heat sink (112) having a plurality of fins (116) protrude outwardly from the housing (12) to dissipate heat externally.
Description
JUNCTION BOX FOR PHOTOVOLTAIC SYSTEMS Cross-Reference to Related Applications
This application claims priority from commonly owned, co-pending U.S. Provisional Application Serial No. 61/092,840 entitled "JUNCTION BOX FOR PHOTOVOLTAIC SYSTEMS" filed August 29, 2008.
Technical Field of the Invention
The present invention relates to an electrical junction box and, more particularly, an electrical junction box for use in connection with photovoltaic systems.
Background Art
There is a growing need for renewable energy sources, with solar energy being at the forefront. As a result, the use of photovoltaic systems has increased exponentially in recent years. An electrical junction box is an integral part of a photovoltaic system, as it provides electrical connections between individual solar panels (i.e., photovoltaic modules) of a solar array and between the solar panels to other system components (e.g., a DC/AC inverter, etc.). Consequently, the reliability of the junction box is crucial for maintaining a dependable and efficient photovoltaic system. Current junction boxes, however, are complex in construction and installing them can be laborious. In addition, current junction boxes do not provide reliable electrical connections and their durability is low. What is needed, therefore, is a junction box that is simple in construction and easily
installable, yet maintains a reliable electrical connection between the components of a photovoltaic system, and is durable enough to withstand a wide range of environmental conditions.
Disclosure of the Invention
The present invention overcomes the disadvantages and shortcomings of the prior art discussed above by providing a junction box for a photovoltaic system that includes a housing having a base and a cover removably attached thereto. A plurality of guide channels extend from an exterior surface of the housing to an interior portion thereof. The guide channels are sized and shaped to receive a plurality of conductive foil strips from a solar panel array. When the foil strips are fed into the guide channels, they are guided to and properly positioned within corresponding receptacles. Each receptacle is sized and shaped to receive a buss bar. Each foil strip is connected to a corresponding buss bar by a low insertion connector. When the cover is fully engaged with the base, bosses extending from the cover press against the connectors, creating a spring tension, which, in turn, pinches and retains the associated foil strip. As a result, a reliable physical and electrical connection between the foil strips and the buss bars is achieved.
The junction box further includes a heat sink having a plurality of fins that protrude outwardly from the housing. Accordingly, heat is dissipated external of the housing.
Specifically, the present invention has been adapted for use in connection with photovoltaic systems. However, the present invention can be utilized in connection with other power generating systems. Further features and advantages of the invention will appear more clearly on a reading of the following detailed description of an exemplary embodiment of the invention.
Brief Description of the Drawings
Reference is made to the following detailed description of the exemplary embodiment considered in conjunction with the accompanying drawings, in which:
FIG. 1 is a top perspective view of a junction box constructed in accordance with an exemplary embodiment of the present invention;
FIG. 2 is a bottom perspective view of the junction box shown in FIG. 1 ;
FIG. 3 is an exploded perspective view, looking from above, of the junction box shown in FIG. 1;
FIG. 4 is a top perspective view of the junction box shown in FIG. 1 with a cover employed by the junction box removed; FIG. 5 is a is a cross-sectional view, taken along section line 5-5 and looking in the direction of the arrows, of the junction box shown in FIG. 1 ;
FIG. 6 is a top perspective view of a junction box constructed in accordance with another exemplary embodiment of the present invention;
FIG. 7 is an exploded perspective view, looking from above, of the junction box shown in FIG. 6; and
FIG. 8 is a top perspective view of the junction box shown in FIG. 6 with a cover employed by the junction box removed.
5
Best Mode for Carrying Out the Invention
Referring to FIGS. 1 and 2, an electrical junction box 10 includes a rectangular-shaped housing 12 having a base 14 and a cover 16 attached removably to the base 14. The base 14 and the cover 16 are separate and
I O distinct components, but they may be of unitary construction. The housing 12 is manufactured from a thermoplastic polymer, such as polycarbonate. However, the housing 12 may be manufactured from any other suitable materials known in the art, especially materials having electrical insulating properties. Although the housing 12 is rectangular in shape, it may consist
15 of other shapes and sizes (e.g., square, oblong, circular, elliptical, etc.) in order to accommodate a variety of applications.
Referring to FIGS. 2 and 3, the base 14 includes a floor 18 having an interior surface 20 and an exterior surface 22 opposite thereof, and a wall 24 that extends outwardly from the floor 18 and around the perimeter
20 thereof. The wall 24 has an interior surface 26 and exterior surface 28 opposite thereof, and includes front and rear walls 30, 32 positioned opposite and parallel to one another and a pair of sidewalls 34, 36 that extend between the front and rear walls 30, 32 and parallel to one another. With particular reference to FIG. 3, a top surface 38 of the front wall 30
includes a pair of semi-circular shaped notches 40a, 40b that are spaced apart from one another and extend from the exterior surface 28 to the interior surface 26 of the front wall 30. The purpose of the notches 40a, 40b shall be explained in greater detail below. Referring to FIGS. 1 and 3, the exterior surface 28 of the front wall
30 includes a pair of locking tabs 42 extending outwardly therefrom, while the exterior surfaces 28 of the sidewalls 34, 36 includes a locking tab 44 (the locking tab on the sidewall 34 is not shown in the Figures). The functions of the locking tabs 42 and the locking tabs 44 shall be explained in greater detail below. Each of the sidewalls 34, 36 include a sloped portion 46, whose purpose shall be explained below. An elongated, rectangular-shaped recess 48 is formed in the rear wall 32 and extends from the interior surface 26 to the exterior surface 28 thereof. The recess 48 is flanked by a pair of rectangular-shaped posts 50a, 50b that extend upwardly from the floor 18 and are positioned adjacent to the rear wall 32. Each of the posts 50a, 50b includes a rectangular-shaped aperture 50c, 5Od, respectively. The purposes and functions of the recess 48 and the posts 50a, 50b shall be described hereinafter.
Referring to FIGS. 3 and 5, the base 14 includes an integral terminal block 52 having a plurality of rectangular-shaped receptacles 54 aligned linearly and spaced apart from one another. While the junction box 10 has the four receptacles 54, it can include greater or less than four. With particular reference to FIG. 5, each receptacle 54 includes a first wall 56 that transitions from a flat portion 58, which is positioned proximate to the
interior surface 20 of the floor 18, to a convex portion 60 that extends to the exterior surface 22 of the floor 18 (see FIG. 5). Each of the receptacles 54 further includes a second wall 62 having a concave surface 64 and which is spaced apart from the first wall 56. With reference to FIG. 3, each of the receptacles 54 includes a pair of shoulders 64a, which together with the first and second walls 56, 62 form a guide channel 66. The guide channel 66 terminates at a corresponding rectangular-shaped aperture 68 at the exterior surface 22 of the floor 18 (not shown in FIGS. 3 and 5, but see FIG. 2). Each of the innermost positioned shoulders 64a (i.e., those not adjacent the sidewalls 34, 36) includes a rectangular-shaped partition 70 that extends upwardly therefrom. The purpose and function of the partitions 70 shall be described hereinafter.
Referring briefly to FIG. 2, the outer surface of the floor 18 includes a rectangular-shaped groove 72 formed around the perimeter thereof. The purpose and function of the groove 72 shall be explained below. Alternatively, the groove 72 need not be included.
Referring back to FIGS. 3 and 5, the cover 16 includes an exterior surface 76 and an interior surface 78 opposite thereof and a wall 80 that extends outwardly from the interior surface 78 and around the perimeter thereof. The wall 80 includes front and rear walls 82, 84 positioned opposite and parallel to one another and a pair of sidewalls 86, 88 that extend between the front and rear walls 82, 84 and parallel to one another. The cover 16 is sized and shaped to mate with the base 14. Along these lines, the cover 16 includes a pair of latch members 90a, 90b that extend
from the front wall 82, a pair of latch members 92a, 92b that extend from respective sidewalls 86, 88, and a pair of hook members 94a, 94b that extend from a rear wall 84 and are spaced apart from one another. The hook members 94a, 94b are inserted within the apertures 50c, 5Od, respectively, and hingedly engage the receiving posts 50a, 50b of the base 14 (not shown in the Figures). The front wall 82 includes a pair of spaced apart, semi-circular shaped notches 96a, 96b. When the cover 16 and the base 14 are fully engaged with one another, the latch members 90a, 90b interlock with the locking tabs 42 respectively, while the latch members 92a, 92b interlock with the locking tabs 44, respectively. In addition, when the cover 16 and the base 14 are fully engaged with one another, the notches 40a, 96a cooperate to form a circular shaped aperture 98a, while the notches 40b, 96b cooperate to form a circular shaped aperture 98b (not shown in FIGS. 3 and 5, but see FIGS. 1 and 2). The purpose and function of the apertures 98a, 98b shall be discussed below. A gasket may be introduced between the cover 16 and the base 14 to form a seal therebetween (not shown in the Figures) from external environmental conditions, such as weather and foreign particles.
Referring to FIGS. 1 and 3, a vent 100 is formed within the cover 16, extending from the exterior surface 76 to the interior surface 78 thereof. A filter 102 covers the vent 100 on the interior surface 78 of the cover 16. The filter 102 may be made of GOR-TEX® material, but it can be made of other suitable materials known in the art. The purpose and function of the vent 100 and the filter 102 shall be provided below.
Referring to FIG. 5, a plurality of bosses 104 extend outwardly from the interior surface 78 of the cover 16. The bosses 104 are arranged linearly and spaced apart from one another. The purpose and function of the bosses 104 shall be explained below. Referring to FIGS. 3 and 4, the junction box 10 includes a plurality of buss bars 106, each having a central portion 108 and a pair of arms 110 extending laterally therefrom. The buss bars 106 are made of tin-plated brass, but they can be made from other suitable conductive materials known in the art. Each buss bar 106 is positioned within a corresponding one of the receptacles 54 such the arms 110 rest on the shoulders 64a adjacent to the flat portion 58, respectively, while that the central portion 108 thereof sits above the flat portion 58. Each of the partitions 70 physically separates one of the arms 110 of one of the buss bars 106 from one of the arms 110 of another adjacently positioned buss bar 106. Referring to FIGS. 3 and 5, the junction box 10 includes a heat sink
112 having a mounting portion 114 and a plurality of fins 116 extending therefrom and spaced apart from one another. The mounting portion 114 of the heat sink 112 is positioned within the recess 48 of the base 12, and is secured in place by the cover 16 when it is fully engaged with the base 12. In such position, the fins 116 of the heat sink 112 extend outwardly and externally from the base 14. The heat sink 112 is manufactured from anodized aluminum, but it can be made from other thermally conductive materials known in the art, such as, for example, copper.
Referring to FIG. 3, a plurality of diodes 118 are mounted linearly to the mounting portion 114 of the heat sink 112. The diodes 118 may be mounted to the heat sink by any sufficient means known in the art, such as, for instance, rivets or adhesives. Each of the diodes 118 includes a pair of leads 120. As shown in FIG. 4, one of the pair of leads 120 of one of the diodes 118 is attached (e.g., crimped, soldered, etc.) to one of the arms 110 of one of the buss bars 106, while the other of the pair of leads 120 of the diode 118 is attached to one of the arms 110 of another adjacent buss bar 106. As a result, each of the buss bars 106 are connected electrically with one another. The diodes 118 are TO220 pack diodes manufactured by Diotec Semiconductor AG of Germany, model number SBT1840. However, the diodes 118 can be made by other manufacturers and/or consist of any type of suitable diode or equivalent component.
Referring to FIGS. 3 and 5, the junction box 10 is adapted to receive one or more flexible foil strips 122 of a solar panel array (not shown in the Figures). The foil strips 122 conduct power from the solar panel array and typically protrude from the solar panel substrate (not shown in the Figures). Accordingly, the strips 122 are made from a flexible, conductive material, such as nickel plated copper, but they could be made from other conductive materials. A free end 124 of the foil strip 122 is fed into one of the apertures 68 on the exterior surface 22 of the floor 18, slides through and is guided within the guide channel 66, and exits the receptacle 54 between the central portion 108 of the buss bar 106 and the flat portion 58 of the receptacle 54. The guide channel 66 is sized and shaped to enable
the foil strip 122 to be easily guided into position (i.e., between the central portion 108 of the buss bar 106 and the flat portion 58 of the receptacle 54). The free end 124 of the foil strip 122 is, preferably, folded over so that it wraps around the central portion 108 of the buss bar 106 and between the arms 110 thereof, thereby increasing the contact area. Each of the remaining foil strips 122 is connected to a corresponding one of the remaining buss bars 106 in an identical manner as described above (see also FIG. 2).
Referring to FIGS. 3 through 5, once the foil strips 122 are in position, low insertion female connectors 126 clip the foil strips 122 to the buss bars 106 to ensure a reliable physical and electrical connection between them. The connectors 126 are quickly and easily connected and disconnected to the buss bars 106. The connectors 126 consist of female cord connectors manufactured by Heyco Products, Inc. of Toms River, New Jersey, part number 1155/7279. The connectors 126 are made of tin- plated brass, but they can be made of other electrically conductive materials known in the art. As shown in the Figures, an electrical wire 128a is connected to one of the connectors 126, while an electrical wire 128b is connected to another one of the connectors 126. The apertures 98a, 98b provide entry paths for the electrical wires 128a, 128b, respectively, into the interior of the housing 12. The remaining connectors 126 are utilized to maintain the physical and electrical connection between the associated foil strip 122 and buss bar 106. While the wires 128a, 128b are positioned as shown, they may be attached to any of the connectors 126 as desired. It is
also noted that the sloped portions 46 of the sidewalls 34, 36 of the base 14 provide better maneuverability by a user to connect and disconnect the connectors 126.
The electrical wires 128a, 128b serve as the positive and negative connections, respectively, to and from the junction box 10. Along these lines, free ends 130a, 130b of the wires 128a, 128b may include male or female connectors for physical and electrical connection to, for example, a DC/AC power inverter, additional junction boxes 10, or extension cables (not shown in the Figures). For instance, the positive electrical wire 128a of a first junction box 10 may be coupled to the negative electrical wire 128b of a second junction box 10, while the negative electrical wire 128a of the first junction box 10 could be coupled to the positive electrical wire 128a of a third junction box 10 (not shown in the Figures). Accordingly, the junction box 10 may be used to electrically connect an array of solar panels in series or in parallel.
Referring to FIG. 5, once the connectors 126 are in place, the cover 16 is attached to the base 14. When the cover 16 is fully engaged with the base 14, each of the bosses 104 are forced against a corresponding one of the connectors 126, further compressing it and creating a spring tension thereon, which, in turn, pinches and retains the associated foil strip 122. As a result, a reliable physical and electrical connection between the foil strips 122 and the buss bars 106 is achieved.
The junction box 10 is typically attached to the flat underside of a solar panel, but it can be attached to other suitable surfaces (not shown in
the Figures). With reference to FIG. 2, the groove 72 of the base 14 is sized and shaped to receive a sealant/adhesive, such as silicone or epoxy, so that the junction box 10 may be attached to the solar panel's underside (not shown in the Figures). For a rooftop mounted solar panel, the profile of the junction box 10 may be sufficiently thin enough to be mounted between the underside of the solar panel and a roof (not shown in the Figures).
When the junction box 10 is fully assembled and connected to the photovoltaic system, the current generated by the solar panel is transferred to the junction box 10 through the foil strips 122 and flows through the buss bars 106 and diodes 118. As indicated above, the electrical wires 128a, 128b serve as the positive and negative connections and, in turn, may be connected electrically to either a DC/AC power inverter or to additional junction boxes 10 (not shown in the Figures). Certain features of the junction box 10 described herein enable it to operate efficiently, while protecting it from harsh environmental conditions. For instance, the heat sink 112 dissipates heat from the interior of the housing 12, especially the heat generated by the diodes 118, to the external atmosphere by the fins 116. Since heat dissipation occurs external of the housing 12, the temperature of the interior of the housing 12 is kept at relatively low levels, and, therefore, the internal components of the junction box 10 are protected from damage by extreme heat. In addition, the vent 100 and filter 102 allow pressure and moisture laden air to pass outwardly from the interior of the housing 12 to the atmosphere,
while only allowing air to pass from the atmosphere to the interior. As a result, pressure equilibrium within the housing 12 is maintained, thereby protecting the junction box 10 from damage caused by dangerous pressure levels. The filter 102 also prevents foreign particles from entering the housing 12.
The diodes 118 have bypass features, such that they will conduct electricity if an associated solar panel becomes reverse biased. For instance, if one solar panel in a series string fails, due to shade, broken cells, or other factors, it can produce so much resistance that all the other panels in that string are cut off. Moreover, the non-affected panels may deliver current through the effected panel, generating high power losses, and possibly creating hot spots and solar cell breakdown. Therefore, the diodes 118 create a path around the disabled solar panel and protects its from thermal destruction while other panels are exposed to full light. Should the junction box 10 require repair or maintenance, the cover
16 is opened or removed by depressing the latch members 90a, 90b and the latch members 92a, 92b from their unlatched (i.e., unlocked) positions, which enables the cover 16 to pivot via the hook members 94a, 94b on the posts 50a, 50b. The latch members 90a, 90b and the latch members 92a, 92b are preferably configured to be released with an appropriate tool, so as to prevent tampering of the junction box 10. When the cover 16 is opened or removed, the spring tension on the connectors 126 by the bosses 104 is relieved, and the connectors 126 may be easily and quickly disconnected.
Because the connectors 126 have quick and easy connect and disconnect features, any potential damage to the solar panels by a user is minimized.
An alternate embodiment of a junction box constructed in accordance with the present invention is illustrated in FIGS. 6 through 8. To facilitate consideration and discussion, all elements, whether or not illustrated in FIGS. 6 through 8, which correspond to the elements described above with respect to FIGS. 1 through 5, have been designated by corresponding reference numerals increased by two hundred (200). New elements illustrated in FIGS. 6 through 8 which have no counterparts in FIGS. 1 through 5 are designated by odd reference numerals. The embodiment represented by FIGS. 6 through 8 is constructed and operates in the same manner as the junction box 10 shown in FIGS. 1 through 5, except as described below.
With reference to FIGS. 6 through 8, an electrical junction box 210 includes a rectangular-shaped housing 212 having a base 214 and a cover 216 attached removably to the base 214. The base 214 and the cover 216 are separate and distinct components, but they may be of unitary construction. A gasket 217 is positioned between the cover 216 and the base 214 to form a seal therebetween (see FIG. 7) from external environmental conditions, such as weather and foreign particles.
Referring to FIGS. 6 through 8, a front wall 230 of the base 214 includes a pair of locking receptacles 243a, 243b extending outwardly from an exterior surface 228 thereof, while the exterior surfaces 228 of sidewalls 234, 236 include locking tabs 245 formed therein (the locking tab on the
sidewall 234 is not fully shown in the Figures). The cover 216 includes a pair of latch members 291a, 291b that extend from a front wall 282 thereof. A pair of side wings 293a, 293b having associated latch members 295a, 295b that extend from respective sidewalls 286, 288 of the cover 216. When the cover 216 and the base 214 are fully engaged with one another, the latch members 291a, 291b of the cover 216 interlock with the locking receptacles 243a, 243b of the base 214, respectively, while the latch members 295a, 295b of the cover 216 interlock with the locking tabs 245 of the base 214. The side wings 293a, 293b of the cover 216 increase creepage and clearance for insulation purposes.
With reference to FIG. 7, a vent 300 is formed within the cover 216, extending from an exterior surface 276 to an interior surface opposite thereof. A filter 302 covers the vent 300 on the interior surface of the cover 216. The filter 302 may be made of GOR-TEX® material, but it can be made of other suitable materials known in the art.
Referring to FIGS. 7 and 8, the base 212 includes a plurality of walls 271 that extend upwardly from a floor 218 thereof. Each of the walls 271 is juxtaposed with a terminal block 252 and is positioned offset between a pair of adjacent receptacles 254. A plurality of buss bars 306, each having a central portion 308 and a pair of arms 310 extending laterally therefrom, are positioned within the receptacles 254. Each of the arms 310 of the bus bars 306 includes a lance tab 311 to retain it within its corresponding receptacle 254.
Still referring to FIGS. 7 and 8, the junction box 210 includes a heat sink 312 having a mounting portion 314 and a plurality of fins 316 extending therefrom and spaced apart from one another. A thermally conductive insulator 317 (as shown in FIG. 7) is inserted onto the mounting portion 314 of the heat sink 312, while a plurality of diodes 318 are mounted linearly to the mounting portion 314 of the heat sink 312 via the insulator 317. The insulator 317 is made from a silicon-based, thermally conductive insulation material, such as the Sil-Pad® 900S insulator material manufactured by The Bergquist Company. Alternatively, the insulator 317 can be made from other suitable thermally conductive insulation materials known in the art.
Still referring to FIGS. 7 and 8, a diode clip 319 is clipped on to the mounting portion 314 of the heat sink 312 and covers the diodes 318. The diode clip 319 maintains the position of the diodes 318, and spreads out heat generated by the diodes 318 more efficiently during use of the junction box 210. The diode clip 319 is made from an injection molded plastic, such as FORTRON® 6850 L6 polyphenylene sulfide (PPS) supplied by Ticona/Celanese Corporation. Alternatively, the diode clip 319 can be made from other suitable plastics or other materials known in the art. Referring to FIGS. 7 and 8, the junction box 210 is adapted to receive one or more flexible foil strips 322 of a solar panel array (not shown in the Figures). The foil strips 322 are inserted within and connected to the junction box 210 in the same manner as that described above with respect to the junction box 10. Once the foil strips 322 are in position, low insertion
female connectors 326 clip the foil strips 322 to the buss bars 306 to ensure a reliable physical and electrical connection between them. Each of the connectors 326 may include strength ribs for improved retention of the connection (not shown in the Figures). The connectors 326 are quickly and easily connected to and disconnected from to the buss bars 306. As shown in FIG. 6 and 8, an electrical wire 328a is connected to one of the connectors 326, while an electrical wire 328b is connected to another one of the connectors 326. The remaining connectors 326 are utilized to maintain the physical and electrical connection between the associated foil strip 322 and the buss bar 306. The walls 271 separate and insulate the connectors 326 from one another. Once the connectors 326 are in place, the cover 216 is attached to the base 214. When the cover 216 is fully engaged with the base 214, bosses extending from the interior surface of the cover 216 (not shown in FIGS. 6 through 8) are forced against a corresponding one of the connectors 326, further compressing it and creating a spring tension thereon, which, in turn, pinches and retains the associated foil strip 322. As a result, a reliable physical and electrical connection between the foil strips 322 and the buss bars 306 is achieved.
Should the junction box 210 require repair or maintenance, the cover 216 is opened or removed by depressing the latch members 295a, 295b and the latch members 291a, 291b from their unlatched (i.e., unlocked) positions. The latch members 291a, 291b and the latch members 295a, 295b are preferably configured to be released with an appropriate tool, so as to prevent tampering of the junction box 210. When the cover 216 is
opened or removed, the spring tension on the connectors 226 by the bosses (not shown) is relieved, and the connectors 226 may be easily and quickly disconnected.
It will be understood that the junction boxes 10, 210 described herein are merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the full spirit and the scope of the embodiments described herein. For example, each of the junction boxes 10, 210 may include more or less than the four receptacles 54, 254, respectively, as shown in the Figures, in order to accommodate more or less than the four foil strips 122, 322. Moreover, the size and shape of the receptacles 54, 254 can be varied to accommodate foil strips having sizes and shapes different from those of the foil strips 122, 322. Also, as indicated above, each of the housings 12, 112 can consist of different shapes and sizes in order to fulfill the needs of custom applications.
In addition, while the junction box 10 includes the two latch members 90a, 90b, the two latch members 92a, 92b, the two tabs 42, and the two tabs 44, it can include more or less than two of each. Furthermore, the latch members 90a, 90b and the latch members 92a, 92b can consist of different designs that known in the art. Alternatively, the latch members 90a, 90b and the latch members 92a, 92b need not be included and the base 14 and the cover 16 may be attached to each other by other means known in the art (e.g., screws and other fasteners, adhesives, etc.). Similarly, while the junction box 210 includes the latch members 291a,
291b, the latch members 295a, 295b, the two tabs 245, and the two locking receptacles 243a, 243b, it can include more or less than two of each. Furthermore, the latch members 291a, 291b and the latch members 295a, 295b can consist of different designs that known in the art. Alternatively, the latch members 291a, 291b and the latch members 295a, 295b need not be included and the base 214 and the cover 216 may be attached to each other by other means known in the art (e.g., screws and other fasteners, adhesives, etc.).
Moreover, with respect to the junction box 10, the hook members 94a, 94b of the cover 16 and the posts 50a, 50b of the base 14 can be substituted or supplemented by other means for pivoting the cover 16 relative to the base 14, such as, for example, one or more living hinges (not shown in the Figures). Similarly, the junction box 210 may have similar means for pivoting the cover 216 relative to the base 214 (not shown in the Figures). Finally, each set of the diodes 118, 318 may be substituted by a single diode or other suitable electrical components known in the art. Accordingly, all such variations and modifications are intended to be included within the scope of the invention as defined in the appended claims.
Claims
1. An electrical junction box, comprising a housing having an exterior surface, an interior portion, at least one receptacle positioned within said interior portion, and at least one guide channel extending from said exterior surface to said interior portion, said at least one guide channel including an outer end located on said exterior surface of said housing and an inner end located within said interior portion of said housing in communication with said at least one receptacle, said inner and outer ends of said at least one guide channel having different orientations, whereby an electrical conductor is extendable through said at least one guide channel in a non-linear fashion.
2. The electrical junction box of Claim 1 , wherein said at least one guide channel includes guiding means, located between said inner and outer ends of said at least one guide channel, for guiding the electrical conductor from a first direction to a second direction different from said first direction.
3. The electrical junction box of Claim 2, wherein said guiding means of said at least one guide channel includes a first wall having a convex surface, and a second wall spaced from said first wall and having a concave surface.
4. The electrical junction box of Claim 3, wherein said first and second directions are substantially perpendicular to one another.
5. The electrical junction box of Claim 3, wherein said at least one receptacle includes a plurality of receptacles and said at least one guide channel includes a plurality of guide channels, whereby one of a plurality of electrical conductors is extendable through a corresponding one of said plurality of guide channels in a non-linear fashion.
6. The electrical junction box of Claim 5, further comprising a plurality of buss bars, each of said plurality of receptacles being sized and shaped to receive one of said plurality of buss bars, each of said plurality of buss bars being connectable to a corresponding one of the plurality of electrical conductors.
7. The electrical junction box of Claim 6, wherein each of said plurality of receptacles includes a pair of shoulders and a floor recessed between said pair of shoulders, and each of said plurality of buss bars includes a central portion and a pair of arms extending laterally therefrom, said arms of one of said plurality of buss bars rest on said shoulders of a corresponding one of said plurality of receptacles such that said central portion of said one of said plurality of buss bars is seated above said floor of said corresponding one of said plurality of receptacles.
8. The electrical junction box of Claim 7, further comprising first connecting means for electrically connecting said plurality of buss bars to one another.
9. The electrical junction box of Claim 8, wherein said first connecting means includes at least one diode.
10. The electrical junction box of Claim 9, wherein said at least one diode includes a plurality of diodes.
11. The electrical junction box of Claim 10, further comprising a heat sink mounted to said housing.
12. The electrical junction box of Claim 11 , wherein said heat sink includes a mounting portion positioned within said interior portion of said housing and a plurality of fins extending from said mounting portion and protruding externally from said housing.
13. The electrical junction box of Claim 12, wherein said plurality of diodes are mounted to said mounting portion of said heat sink.
14. The electrical junction box of Claim 13, wherein the plurality of electrical conductors includes a plurality of foil strips.
15. The electrical junction box of Claim 14, wherein one of the plurality of foil strips is directed between said flat portion of a corresponding one of said plurality of receptacles and said central portion of a corresponding one of said plurality of buss bars when the foil strip is received by said corresponding one of said plurality of receptacles.
16. The electrical junction box of Claim 15, further comprising second connecting means for connecting each of the plurality of foil strips to a corresponding one of said plurality of buss bars.
17. The electrical junction box of Claim 16, wherein said second connecting means includes a plurality of electrical connectors, each of the plurality of foil strips being connectable to a corresponding one of said plurality of buss bars by a corresponding one of said plurality of electrical connectors.
18. The electrical junction box of Claim 17, wherein said plurality of electrical connectors includes a plurality of low insertion connectors.
19. The electrical junction box of Claim 18, wherein said housing includes a base and a cover, said base including a first end and a second end opposite said first end, said cover being removably attached to said first end of said base.
20. The electrical junction box of Claim 19, wherein said outer ends of said plurality of guide channels are located at said second end of said base.
21. The electrical junction box of Claim 20, wherein said cover includes an interior surface and at least one boss member extending from said interior surface of said cover, whereby when said cover is attached to said base, said at least one boss member is urged against one of said plurality of low insertion connectors to facilitate a mechanical and an electrical connection between a corresponding one of the plurality foil strips and a corresponding one of said plurality of buss bars.
22. The electrical junction box of Claim 21 , wherein said at least one boss member includes a plurality of boss members, whereby when said cover is attached to said base, each of said plurality of boss members is urged against a corresponding one of said plurality of low insertion connectors to facilitate a mechanical and an electrical connection between a corresponding one of the plurality of foil strips and a corresponding one of said plurality of buss bars.
23. The electrical junction box of Claim 22, wherein said cover includes at least one latch member and said base includes at least one lock tab, said at least one latch member and said at least one lock tab being sized and shaped such that they are releasably engageable with one another.
24. The electrical junction box of Claim 23, wherein said at least one latch member includes a plurality of latch members, and said at least one lock tab includes a plurality of lock tabs, each of said plurality of latch members being releasably engageable with a corresponding one of said plurality of lock tabs.
25. The electrical junction box of Claim 18, wherein one of said plurality of low insertion connectors is electrically connected to an external device, and another of said plurality of low insertion connectors is electrically connected to the external device.
26. The electrical junction box of Claim 25, wherein said external device includes a DC/AC power inverter.
27. The electrical junction box of Claim 18, wherein one of said plurality of low insertion connectors is electrically connected to a first external device, and another of said plurality of low insertion connectors is electrically connected to a second external device.
28. The electrical junction box of Claim 27, wherein said first external device includes a second electrical junction box and said second external device includes a third electrical junction box.
29. The electrical junction box of Claim 24, wherein said plurality of foil strips are electrically connected to a photovoltaic system.
30. An electrical junction box, comprising a housing having an exterior surface, an interior portion, at least one receptacle positioned within said interior portion, and guiding means for guiding an electrical conductor from a location external of said housing to said at least one receptacle, whereby the electrical conductor is extendable through said guiding means in a nonlinear fashion.
31. The electrical junction box of Claim 30, wherein said guiding means includes at one guide channel extending from said exterior surface of said housing to said interior portion of said housing, said at least one guide channel including an outer end located on said exterior surface of said housing and an inner end located within said interior portion of said housing in communication with said at least one receptacle, said inner and outer ends of said at least one guide channel having different orientations, whereby the electrical conductor is extendable through said at least one guide channel in a non-linear fashion.
32. An electrical junction box, comprising a housing having an exterior surface, an interior portion, at least one receptacle positioned within said interior portion, and at least one guide channel extending from said exterior surface to said interior portion, said at least one guide channel including an outer end located on said exterior surface of said housing and an inner end located within said interior portion of said housing in communication with said at least one receptacle, whereby an electrical conductor is extendable through said at least one guide channel; at least one buss bar positioned within said at least one receptacle; and at least one low insertion connector for connecting the electrical conductor to said at least one buss bar.
33. An electrical junction box, comprising a housing having a base and a cover removably attached to said base, said base having an exterior surface, an interior portion, at least one receptacle positioned within said interior portion, and at least one guide channel extending from said exterior surface to said interior portion, said at least one guide channel including an outer end located on said exterior surface of said housing and an inner end located within said interior portion of said housing in communication with said at least one receptacle, whereby an electrical conductor is extendable through said at least one guide channel, said cover including an interior surface and at least one boss member extending from said interior surface of said cover; at least one buss bar positioned within said at least one receptacle; and at least one low insertion connector for connecting the electrical conductor to said at least one buss bar, whereby when said cover is attached to said base, said at least one boss member is urged against said at least one low insertion connector for facilitating a mechanical and an electrical connection between the electrical conductor and said at least one buss bar.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES09791985T ES2380205T3 (en) | 2008-08-29 | 2009-08-27 | Junction box for photovoltaic systems |
EP09791985A EP2332399B1 (en) | 2008-08-29 | 2009-08-27 | Junction box for photovoltaic systems |
AT09791985T ATE540564T1 (en) | 2008-08-29 | 2009-08-27 | CONNECTION BOX FOR PHOTOVOLTAIC SYSTEMS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9284008P | 2008-08-29 | 2008-08-29 | |
US61/092,840 | 2008-08-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010025223A2 true WO2010025223A2 (en) | 2010-03-04 |
WO2010025223A3 WO2010025223A3 (en) | 2010-06-24 |
Family
ID=41351668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/055154 WO2010025223A2 (en) | 2008-08-29 | 2009-08-27 | Junction box for photovoltaic systems |
Country Status (5)
Country | Link |
---|---|
US (1) | US8113853B2 (en) |
EP (1) | EP2332399B1 (en) |
AT (1) | ATE540564T1 (en) |
ES (1) | ES2380205T3 (en) |
WO (1) | WO2010025223A2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102231396A (en) * | 2011-05-11 | 2011-11-02 | 浙江鑫辉光伏科技有限公司 | Photovoltaic terminal box |
US20110308833A1 (en) * | 2011-08-30 | 2011-12-22 | Renewable Power Conversion, Inc. | Photovoltaic string sub-combiner |
EP2490266A1 (en) * | 2011-02-18 | 2012-08-22 | Yamaichi Electronics Deutschland GmbH | Connection box, method for production and use of the connection box |
CN102683447A (en) * | 2011-02-16 | 2012-09-19 | 安费诺有限公司 | Photovoltaic junction box |
EP2503601A1 (en) * | 2011-03-21 | 2012-09-26 | Lee, Ho IL | Junction box and manufacturing method thereof |
CN102694354A (en) * | 2011-03-25 | 2012-09-26 | 李浩日 | Junction box and manufacturing method thereof |
WO2012163604A2 (en) | 2011-06-03 | 2012-12-06 | Huber+Suhner Ag | Connecting device for solar panel |
WO2012168329A1 (en) * | 2011-06-08 | 2012-12-13 | Hirschmann Automotive Gmbh | Photovoltaic junction box with optimised heat balance |
EP2546888A2 (en) * | 2010-03-11 | 2013-01-16 | Ds Solar Energy Co. Ltd. | Junction box for solar cell module |
EP2860765A1 (en) * | 2013-10-11 | 2015-04-15 | Multi-Holding AG | Junction box, and method for mounting a junction box |
EP2906028A3 (en) * | 2014-02-10 | 2015-11-25 | Yazaki North America, Inc. | Bused electrical center for electric or hybrid electric vehicle |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK2118977T3 (en) * | 2007-02-05 | 2012-10-01 | Phoenix Contact Gmbh & Co | Assembly and connection box for a solar module |
US7833033B2 (en) * | 2008-04-16 | 2010-11-16 | Molex Incorporated | Solar panel junction box and components thereof |
JP5762296B2 (en) * | 2008-10-28 | 2015-08-12 | オスラム ゲーエムベーハーOSRAM GmbH | Housing and method for assembling the housing |
US7938661B2 (en) * | 2008-10-29 | 2011-05-10 | Tyco Electronics Corporation | Photovoltaic module connector assembly |
DE102008062034B4 (en) * | 2008-12-12 | 2010-08-12 | Tyco Electronics Amp Gmbh | Connecting device for connection to a solar module and solar module with such a connection device |
US8461453B2 (en) * | 2009-01-27 | 2013-06-11 | Connector Manufacturing Company | Wind turbine wiring enclosure cabinet |
US8435056B2 (en) * | 2009-04-16 | 2013-05-07 | Enphase Energy, Inc. | Apparatus for coupling power generated by a photovoltaic module to an output |
US8248804B2 (en) * | 2009-04-24 | 2012-08-21 | Connex Electronics Co., Ltd. | Smart junction box for solar cell module |
JP5295370B2 (en) * | 2009-06-29 | 2013-09-18 | 京セラ株式会社 | Terminal box for solar cell module and solar cell module using the same |
DE102010002565B8 (en) * | 2010-03-04 | 2012-03-22 | Tyco Electronics Amp Gmbh | Connecting device for a solar module |
FR2957721B1 (en) * | 2010-03-18 | 2014-09-12 | Airbus Operations Sas | COVER FOR AN AIRCRAFT POWER BARRIER HAVING AT LEAST ONE TERMINAL |
US9101082B1 (en) * | 2010-05-03 | 2015-08-04 | Sunpower Corporation | Junction box thermal management |
WO2012012137A1 (en) * | 2010-06-30 | 2012-01-26 | First Solar, Inc | Moisture resistant cord plate for a photovoltaic module |
US9425734B2 (en) | 2010-07-12 | 2016-08-23 | Lumos Lsx, Llc | Junction cover for photovoltaic panel modules |
CN201830173U (en) * | 2010-09-01 | 2011-05-11 | 富士康(昆山)电脑接插件有限公司 | Junction box |
US8137115B1 (en) * | 2010-09-17 | 2012-03-20 | Delta Electronics, Inc. | Junction box and conductor strip connection device thereof |
TWM410338U (en) * | 2010-11-22 | 2011-08-21 | Hon Hai Prec Ind Co Ltd | Junction box for photovoltaic power generation system |
WO2012083049A1 (en) | 2010-12-17 | 2012-06-21 | First Solar, Inc | Electrical connection system |
DE102010063776B4 (en) * | 2010-12-21 | 2016-02-18 | Siemens Aktiengesellschaft | Method for connecting at least two electrical cables and connecting device, kit, electric machine and vehicle therefor |
DE102011009005B4 (en) * | 2011-01-14 | 2014-07-31 | Solon Se | Electrical junction box for a photovoltaic module |
DE102011000351B4 (en) * | 2011-01-27 | 2014-12-04 | Günther Spelsberg GmbH & Co. KG | Method for producing a solar cell module and solar cell module |
GB2490499A (en) * | 2011-05-03 | 2012-11-07 | Solaredge Technologies Ltd | Junction box assembly for electrical connections to photovoltaic panels |
US8653167B2 (en) | 2011-05-26 | 2014-02-18 | Sabic Innovative Plastics Ip | Molding composition for photovoltaic junction boxes and connectors |
US8998635B2 (en) * | 2011-07-05 | 2015-04-07 | Hon Hai Precision Industry Co., Ltd. | Junction box for photovoltaic module |
US8907212B2 (en) * | 2011-07-05 | 2014-12-09 | Hon Hai Precision Industry Co., Ltd. | Junction box with improved heat dissipation |
TWM422759U (en) * | 2011-07-11 | 2012-02-11 | Ampower Technology Co Ltd | Cooling structure for junction box |
WO2013012852A1 (en) | 2011-07-18 | 2013-01-24 | Enphase Energy, Inc. | Resilient mounting assembly for photovoltaic modules |
JP5740232B2 (en) * | 2011-07-20 | 2015-06-24 | シャープ株式会社 | Terminal box and solar cell module |
US20130048334A1 (en) * | 2011-08-29 | 2013-02-28 | Tyco Electronics Corporation | Junction box |
JP5729648B2 (en) * | 2011-10-13 | 2015-06-03 | ホシデン株式会社 | Terminal box for solar cell module |
US8611088B2 (en) | 2011-11-16 | 2013-12-17 | Cooper Technologies Company | Mechanical heat pump for an electrical housing |
US20130153029A1 (en) * | 2011-12-15 | 2013-06-20 | Primestar Solar, Inc. | Methods of supporting a transparent substrate of a thin film photovoltaic device |
US8699209B2 (en) | 2012-01-10 | 2014-04-15 | Cooper Technologies Company | Externally fused enclosure for a solar power system |
CN202534666U (en) * | 2012-04-12 | 2012-11-14 | 浙江佳明天和缘光伏科技有限公司 | Solar energy cell conjunction box |
CN103383971A (en) * | 2012-05-04 | 2013-11-06 | 苏州快可光伏电子股份有限公司 | Photovoltaic junction box |
US8674012B1 (en) | 2012-09-07 | 2014-03-18 | Sabic Innovative Plastics Ip B.V. | Poly(phenylene ether) composition, article, and method |
US8791181B2 (en) | 2012-11-08 | 2014-07-29 | Sabic Innovative Plastics Ip B.V. | Reinforced poly(phenylene ether)-polysiloxane block copolymer composition, and article comprising same |
USD734653S1 (en) | 2012-11-09 | 2015-07-21 | Enphase Energy, Inc. | AC module mounting bracket |
US8911244B2 (en) | 2012-12-13 | 2014-12-16 | International Business Machines Corporation | Receptacle with heat management for electronic and optical systems |
CN103199470B (en) * | 2013-03-29 | 2015-07-15 | 国家电网公司 | Metering terminal box |
JP6094015B2 (en) * | 2013-04-12 | 2017-03-15 | ホシデン株式会社 | Terminal box |
JP6174934B2 (en) * | 2013-08-01 | 2017-08-02 | 日本端子株式会社 | Terminal box for solar cell module |
KR102272506B1 (en) * | 2014-04-23 | 2021-07-01 | 엘지전자 주식회사 | Solar cell module |
US9193868B1 (en) | 2014-05-06 | 2015-11-24 | Sabic Global Technologies B.V. | Article comprising poly(phenylene ether)-polysiloxane copolymer composition |
JP6423188B2 (en) * | 2014-07-11 | 2018-11-14 | ホシデン株式会社 | Terminal box |
US9685730B2 (en) | 2014-09-12 | 2017-06-20 | Steelcase Inc. | Floor power distribution system |
JP2016072456A (en) * | 2014-09-30 | 2016-05-09 | パナソニックIpマネジメント株式会社 | Outer shell structure of electronic equipment and terminal unit of load control system |
US9509102B2 (en) * | 2015-01-16 | 2016-11-29 | Tyco Electronics Corporation | Pluggable module for a communication system |
KR20170106493A (en) | 2015-04-27 | 2017-09-20 | 사빅 글로벌 테크놀러지스 비.브이. | Poly (phenylene ether) compositions and articles |
CN205039766U (en) * | 2015-08-26 | 2016-02-17 | 泰科电子(上海)有限公司 | Photovoltaic junction box |
CN205336219U (en) * | 2015-12-08 | 2016-06-22 | 泰科电子(上海)有限公司 | Photovoltaic terminal box and diode |
WO2018093036A1 (en) * | 2016-11-15 | 2018-05-24 | 케이유엠 유한회사 | Junction box for solar panel |
EP3723204B1 (en) * | 2017-12-06 | 2023-12-13 | Zeon Corporation | Connection device |
WO2019123352A1 (en) * | 2017-12-21 | 2019-06-27 | Allbro (Pty) Ltd | Security enclosure |
JP6819569B2 (en) * | 2017-12-28 | 2021-01-27 | 株式会社オートネットワーク技術研究所 | Electrical junction box |
US10958212B2 (en) * | 2018-06-05 | 2021-03-23 | Frank C Pao | Electrical connection support assembly and method of use |
US10499544B1 (en) * | 2018-10-17 | 2019-12-03 | Arris Enterprises Llc | Thermal energy dissipation systems and methods |
US12119779B2 (en) * | 2019-05-31 | 2024-10-15 | Sunpower Corporation | Photovoltaic module mounting assembly |
JP7214615B2 (en) * | 2019-12-05 | 2023-01-30 | 株式会社東芝 | Connected device |
US12068591B2 (en) * | 2020-06-09 | 2024-08-20 | Michael M. Bogart | Utility junction box |
CN111726073B (en) * | 2020-07-02 | 2021-07-09 | 江苏泽润新材料有限公司 | Processing method of photovoltaic module junction box |
US11942771B2 (en) * | 2021-01-13 | 2024-03-26 | Sumitomo Wiring Systems, Ltd. | Power distribution box with an engagement feature for overcoming a cantilevered force of a bend in a wire bundle |
CN116131048B (en) * | 2023-02-06 | 2024-02-13 | 深圳市盛基电源有限公司 | Power adapter |
WO2024188251A1 (en) * | 2023-03-16 | 2024-09-19 | 苏州快可光伏电子股份有限公司 | Mounting and fixing system for photovoltaic junction box |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4460232A (en) | 1982-05-24 | 1984-07-17 | Amp, Incorporated | Junction box for solar modules |
JP3624720B2 (en) * | 1998-10-29 | 2005-03-02 | 住友電装株式会社 | Terminal box device for solar cell module |
JP3443029B2 (en) | 1999-03-30 | 2003-09-02 | 鐘淵化学工業株式会社 | Solar cell module, power generation device, and method of manufacturing solar cell module |
US6665987B2 (en) * | 1999-05-13 | 2003-12-23 | Tread Ex, Inc. | Staircase, staircase repair device and methods of fabricating same |
JP3744458B2 (en) | 2002-04-10 | 2006-02-08 | 住友電装株式会社 | Terminal box device for solar cell module |
DE20311184U1 (en) | 2003-07-21 | 2004-02-19 | Tyco Electronics Amp Gmbh | Junction box for connection to a solar panel |
DE10358140B4 (en) | 2003-12-10 | 2006-01-05 | Günther Spelsberg GmbH & Co. KG | Electrical connection and connection box for a solar cell module |
JP2005310888A (en) | 2004-04-19 | 2005-11-04 | Sumitomo Wiring Syst Ltd | Terminal box for solar battery module and rectifying element unit |
JP3904114B2 (en) | 2004-04-23 | 2007-04-11 | 住友電装株式会社 | Manufacturing method of terminal box for solar cell module |
JP3744531B1 (en) | 2004-05-07 | 2006-02-15 | 住友電装株式会社 | Terminal box for solar cell module and rectifying element unit |
US7880080B2 (en) | 2005-02-11 | 2011-02-01 | Bp Corporation North America Inc. | Junction box for output wiring from solar module and method of installing same |
JP2007288975A (en) | 2006-04-19 | 2007-11-01 | Yazaki Corp | Electrical connection box |
US7291036B1 (en) | 2006-11-08 | 2007-11-06 | Tyco Electronics Corporation | Photovoltaic connection system |
US20080110490A1 (en) | 2006-11-15 | 2008-05-15 | Tyco Electronics Corporation | Photovoltaic connection system |
US7586038B2 (en) * | 2006-12-21 | 2009-09-08 | Yazaki Corporation | Electrical junction box and assembling method thereof |
DE102008022051A1 (en) * | 2008-05-03 | 2009-11-19 | Lumberg Connect Gmbh | Junction box for a solar module |
-
2009
- 2009-08-27 US US12/548,740 patent/US8113853B2/en active Active
- 2009-08-27 WO PCT/US2009/055154 patent/WO2010025223A2/en active Application Filing
- 2009-08-27 AT AT09791985T patent/ATE540564T1/en active
- 2009-08-27 EP EP09791985A patent/EP2332399B1/en active Active
- 2009-08-27 ES ES09791985T patent/ES2380205T3/en active Active
Non-Patent Citations (1)
Title |
---|
None |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2546888A2 (en) * | 2010-03-11 | 2013-01-16 | Ds Solar Energy Co. Ltd. | Junction box for solar cell module |
EP2546888A4 (en) * | 2010-03-11 | 2013-08-21 | Ds Solar Energy Co Ltd | Junction box for solar cell module |
AU2012200866B2 (en) * | 2011-02-16 | 2015-08-20 | Amphenol Corporation | Photovoltaic junction box |
CN102683447A (en) * | 2011-02-16 | 2012-09-19 | 安费诺有限公司 | Photovoltaic junction box |
US8519278B2 (en) | 2011-02-16 | 2013-08-27 | Amphenol Corporation | Photovoltaic junction box |
EP2530743A3 (en) * | 2011-02-16 | 2013-08-07 | Amphenol Corporation | Photovoltaic junction box |
EP2490266A1 (en) * | 2011-02-18 | 2012-08-22 | Yamaichi Electronics Deutschland GmbH | Connection box, method for production and use of the connection box |
EP2503601A1 (en) * | 2011-03-21 | 2012-09-26 | Lee, Ho IL | Junction box and manufacturing method thereof |
CN102694354A (en) * | 2011-03-25 | 2012-09-26 | 李浩日 | Junction box and manufacturing method thereof |
CN102231396B (en) * | 2011-05-11 | 2012-11-21 | 浙江鑫辉光伏科技有限公司 | Photovoltaic terminal box |
CN102231396A (en) * | 2011-05-11 | 2011-11-02 | 浙江鑫辉光伏科技有限公司 | Photovoltaic terminal box |
WO2012163604A2 (en) | 2011-06-03 | 2012-12-06 | Huber+Suhner Ag | Connecting device for solar panel |
WO2012168329A1 (en) * | 2011-06-08 | 2012-12-13 | Hirschmann Automotive Gmbh | Photovoltaic junction box with optimised heat balance |
WO2012168328A1 (en) * | 2011-06-08 | 2012-12-13 | Hirschmann Automotive Gmbh | Photovoltaic junction box with improved housing |
US8723370B2 (en) * | 2011-08-30 | 2014-05-13 | Renewable Power Conversion, Inc. | Photovoltaic string sub-combiner |
US20110308833A1 (en) * | 2011-08-30 | 2011-12-22 | Renewable Power Conversion, Inc. | Photovoltaic string sub-combiner |
EP2860765A1 (en) * | 2013-10-11 | 2015-04-15 | Multi-Holding AG | Junction box, and method for mounting a junction box |
EP2906028A3 (en) * | 2014-02-10 | 2015-11-25 | Yazaki North America, Inc. | Bused electrical center for electric or hybrid electric vehicle |
US9444183B2 (en) | 2014-02-10 | 2016-09-13 | Yazaki North America, Inc. | Bused electrical center for electric or hybrid electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
WO2010025223A3 (en) | 2010-06-24 |
ES2380205T3 (en) | 2012-05-09 |
US20100218797A1 (en) | 2010-09-02 |
US8113853B2 (en) | 2012-02-14 |
ATE540564T1 (en) | 2012-01-15 |
EP2332399A2 (en) | 2011-06-15 |
EP2332399B1 (en) | 2012-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2332399B1 (en) | Junction box for photovoltaic systems | |
US9627555B2 (en) | Power inverter docking system for photovoltaic modules | |
US7291036B1 (en) | Photovoltaic connection system | |
US8330035B2 (en) | Terminal box for solar cell modules | |
US8137115B1 (en) | Junction box and conductor strip connection device thereof | |
US8512050B2 (en) | Solar panel junction box | |
US7387537B1 (en) | Connector system for solar cell roofing tiles | |
US9225286B1 (en) | Micro-inverter quick mount and trunk cable | |
US6045374A (en) | Electrical wiring system | |
US8203075B2 (en) | BIPV junction box | |
US20110244719A1 (en) | Junction box with improved heat dissipation | |
EP2279529A2 (en) | Solar panel junction box | |
AU2012200866B2 (en) | Photovoltaic junction box | |
US20160380585A1 (en) | Terminal for solar junction box | |
US20130012058A1 (en) | Junction box with improved heat dissipation | |
CN211265583U (en) | Laminate polymer battery module and consumer | |
CN213601976U (en) | Electric connection assembly and battery pack | |
CN111162224A (en) | Laminate polymer battery module and consumer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09791985 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009791985 Country of ref document: EP |