WO2010024598A2 - Method for preparing antimicrobial, antifungal, and antiviral compositions - Google Patents

Method for preparing antimicrobial, antifungal, and antiviral compositions Download PDF

Info

Publication number
WO2010024598A2
WO2010024598A2 PCT/KR2009/004779 KR2009004779W WO2010024598A2 WO 2010024598 A2 WO2010024598 A2 WO 2010024598A2 KR 2009004779 W KR2009004779 W KR 2009004779W WO 2010024598 A2 WO2010024598 A2 WO 2010024598A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
virus
silver
influenza
Prior art date
Application number
PCT/KR2009/004779
Other languages
French (fr)
Korean (ko)
Other versions
WO2010024598A3 (en
Inventor
조일훈
박동아
양영열
Original Assignee
주식회사 지피엔이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지피엔이 filed Critical 주식회사 지피엔이
Priority claimed from KR1020090079524A external-priority patent/KR101083609B1/en
Publication of WO2010024598A2 publication Critical patent/WO2010024598A2/en
Publication of WO2010024598A3 publication Critical patent/WO2010024598A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group

Definitions

  • the present invention relates to methods of making antimicrobial, antifungal and antiviral compositions. More specifically, the present invention comprises the steps of i) preparing a silver colloidal solution by reacting a silver precursor with a first alcohol containing at least one dispersion stabilizer; ii) adding a titanium precursor, a second alcohol and an acid catalyst to a solution of diluting the silver colloidal solution with water to produce titanium dioxide nanoparticles in the silver colloidal solution, wherein 0.0000005 parts by weight of the silver colloid To 10 parts by weight, 0.0000001 parts by weight to 15 parts by weight of the titanium dioxide nanoparticles, 0.00001 parts by weight to 6 parts by weight of the at least one dispersion stabilizer, and 55 parts by weight to 99 parts by weight of water, antibacterial, A method for preparing antifungal and antiviral compositions and a method for killing influenza A (H1N1) virus using the composition.
  • silver has long been known to have antimicrobial effects.
  • silver colloid refers to a substance dispersed in an aqueous solution in a clustered state (10 nm to 150 nm in size). It has been shown to have strong antibacterial activity against harmful bacteria and fungi. It is also observed that these silver colloidal particles do not kill most of the beneficial bacteria when applied to the human body.
  • silver colloidal solution is recognized as a natural substance harmless to the human body registered in the FDA pharmaceutical range, and recently, it is known as a nontoxic substance to human or living body enough to be recognized as a food additive as a nontoxic preservative.
  • the silver colloidal solution has been proved to be very excellent in antibacterial and non-toxic to human body.
  • manufacture of silver particles more effective for antibacterial and eradication and treatment of pathogenic bacteria using the same, cosmetics, textiles, wallpaper, washing machine Research has been conducted to utilize silver in various products such as clothing and clothing.
  • Photocatalysts generate active oxygen and hydroxyl radicals (OH radicals) when they receive light with more than the appropriate energy. They exhibit decomposing and antimicrobial effects of odorous substances by their strong oxidation and reduction. It is called.
  • a semiconductor is excited from the valence band to the conduction band when a certain area of energy is applied. At this time, electrons ( e ⁇ ) are formed in the conduction band, and holes (h +) are formed in the valence electron band. The electrons and holes thus formed cause various reactions such as decomposing harmful substances by strong oxidation or reduction.
  • titanium dioxide (TiO 2 ) is most widely used because of its chemical stability and excellent advantages as a semiconductor among various oxide materials having photocatalyst properties.
  • titanium dioxide when it receives an energy of about 3.0 eV (the atom corresponds to light of 380 nm wavelength in the energy gap between the electron band and the conduction band), it fully functions as a photocatalyst.
  • the light hits the photocatalyst is titanium dioxide electrons generated (e-) and holes (h +) is a superoxide anion on the titanium dioxide surface causes the O 2, H 2 O and the reaction of each air (O 2 -) and hydroxyl radical It produces two kinds of active oxygen which are (.OH).
  • the hydroxyl radical has a high redox potential, it is excellent for purifying NOx, volatile organic compounds (VOCs) and various odors. Not only can it be completely removed, but it also has the ability to oxidize all the target substances such as pathogenic E. coli, Staphylococcus aureus, O-157, etc.
  • titanium dioxide is also reacted by solar energy or fluorescent light, and is economical because it exhibits a permanent function by the cycle of 'fixing to an object ⁇ photolysis ⁇ regeneration'.
  • the by-products after the reaction is a material that is harmless to humans and the environment with water and CO 2 , and can be applied to various fields.
  • SARS is likely to be a variant of the existing corona virus that causes colds, according to the World Health Organization.
  • Corona viruses not only have a high incidence of mutations specific to RNA viruses, but also have a high recombination frequency as RNA polymerases tend to jump from place to place as they replicate genomes.
  • Corona virus causes respiratory symptoms such as colds when it is infected with humans, but it has not been a major problem since it is not high in risk.
  • some animals such as cows, dogs, pigs, and birds, have sometimes acted as deadly pathogens, which is why infectious disease experts estimate that the corona virus has been transformed into livestock, such as pigs and chickens, into human bodies, causing deadly diseases.
  • SARS spreads the virus as it moves into the respiratory tract after inhaling “air droplets,” which are protruding drops when the patient coughs, or touching objects (such as door handles or telephone computer keyboards) used by the patient.
  • HI Human influenza
  • a pandemic flu that is popular during the transitional season and in winter (usually from November to March), is a communicable disease caused by the influenza virus, unlike the common cold.
  • Influenza A, B, and C are single-stranded RNAs of the orthomyxovirus family.
  • influenza A has frequent nuclear rearrangements, causing pandemic and pandemic, and influenza C only causes minor respiratory diseases.
  • Avian influenza is a virus that occurs in poultry or wild birds such as chickens and ducks. Influenza viruses are generally classified into types A, B, and C. Among them, A and B are known to cause human infection, and only A type is known to cause pandemic.
  • HA hemagglutinin
  • NA neuraminidase
  • the H5N1 virus is highly pathogenic and is known to be the cause of the poultry avian influenza outbreak as we know it.
  • H1N1 The novel influenza A (H1N1) virus, which has recently caused respiratory infections in humans around the world, began spreading humans in Mexico and the United States in early April 2009.
  • Influenza A (H1N1) virus infection has been reported to be possible up to seven days after symptom onset, and in children, this period may be longer. To prevent this, it is important to wash your hands.
  • the door handles and payphones that we touch unintentionally can also contain viruses, so wash your hands frequently and avoid touching your eyes, nose, and mouth while you are away.
  • Antimicrobial products using silver colloid or titanium dioxide photocatalyst alone as inorganic materials are based on the above known theory.
  • Various products such as silver coated clothing, antibacterial spray (Korea Patent Publication No. 2002-0008375), filter coating agent for air purifier, etc.
  • silver When silver is used, there is almost no change in performance according to ambient conditions, but a product using only a photocatalyst has a big disadvantage in that it does not properly display performance in an environment in which light is insufficient.
  • Korean Patent Publication No. 1998-0007982 Metal for preparing inorganic antimicrobial agent
  • 2001-0057595 Metal for preparing photocatalyst coated with silver
  • 2003-0037050 titanium dioxide photocatalyst containing an antibacterial metal component and a method for producing the same.
  • the Patent Publication No. 2003-0037050 discloses an antimicrobial metal such as silver in the form of a colloid, mixed with titanium dioxide, a hydrothermal synthesis process to produce a crystalline oxide, and their surface is coated with a sol-gel method to obtain micro A photocatalytic material containing an antibacterial metal is made through a complex process of encapsulation.
  • No. 1998-0007982 mixes phosphoric acid, silver nitrate, titanium dioxide powder and colloidal silica, and then dry and calcinates them to carry the silver ions and simultaneously carry the silver ions.
  • One inorganic antimicrobial agent is prepared, and No. 2001-0057595 relates to a method for producing a fine powder photocatalyst in the form of applying silver to the outside of the photocatalyst powder by substituting silver to the photocatalyst.
  • composition according to the present invention and a method for synthesizing the same are different from those of the conventional silver and titanium dioxide, which exhibit antimicrobial properties and manufacturing methods.
  • the inventors of the present invention in order to overcome the problems of the prior art described above, two nanomaterials having antimicrobial, antifungal and antiviral functions, silver colloid and titanium dioxide, a simple mixture such as the above patents, composite hydrothermal synthesis, and intermetallic substitution
  • a simple mixture such as the above patents
  • composite hydrothermal synthesis and intermetallic substitution
  • the synergistic effect of silver and titanium dioxide is shown in the antimicrobial / antifungal and antiviral ability as well as the simplicity of synthesis.
  • the inorganic solution prepared according to the present invention is synthesized with colloidal and titanium dioxide particles, and exhibits strong antibacterial, antifungal and antiviral ability even in the presence or absence of light.
  • the solution prepared according to the present invention not only removes various existing viruses, bacteria, fungi and odors, but also coronaviruses (TGEV, PEDV) and avian influenza (AI) virus, swine influenza (SI) virus, which in particular cause SARS, and It has a potent antibacterial / antifungal and antiviral activity of at least 99.9% against human influenza (HI) virus.
  • TGEV, PEDV coronaviruses
  • AI avian influenza
  • SI swine influenza
  • HI human influenza
  • the basic object of the present invention is i) preparing a silver colloidal solution by reacting a silver precursor with a first alcohol containing at least one dispersion stabilizer; ii) adding a titanium precursor, a second alcohol and an acid catalyst to a solution of diluting the silver colloidal solution with water to produce titanium dioxide nanoparticles in the silver colloidal solution, wherein 0.0000005 parts by weight of the silver colloid To 10 parts by weight, 0.0000001 parts by weight to 15 parts by weight of the titanium dioxide nanoparticles, 0.00001 parts by weight to 6 parts by weight of the at least one dispersion stabilizer, and 55 parts by weight to 99 parts by weight of water, antibacterial, It is to provide an antifungal and antiviral composition.
  • Still another object of the present invention is 0.0000005 to 10 parts by weight of silver colloidal particles, 0.0000001 to 15 parts by weight of titanium dioxide nanoparticles, 0.00001 to 6 parts by weight of at least one dispersion stabilizer, and 55 to 99 parts by weight It is to provide a composition for killing influenza A (H1N1) virus, which contains negative water.
  • Still another object of the present invention is 0.0000005 to 10 parts by weight of silver colloidal particles, 0.0000001 to 15 parts by weight of titanium dioxide nanoparticles, 0.00001 to 6 parts by weight of at least one dispersion stabilizer, and 55 to 99 parts by weight It provides a method for killing a new influenza A (H1N1) virus, comprising the step of applying a composition for killing the new influenza A (H1N1) virus containing the water.
  • Still another object of the present invention is to provide a novel influenza A (H1N1) virus blocking filter coated with a composition for killing influenza A (H1N1) virus including silver colloid particles, titanium dioxide nanoparticles, and at least one dispersion stabilizer. To provide.
  • the basic object of the present invention described above is i) preparing a silver colloid solution by reacting a silver precursor with a first alcohol containing at least one dispersion stabilizer; ii) adding a titanium precursor, a second alcohol and an acid catalyst to a solution of diluting the silver colloidal solution with water to produce titanium dioxide nanoparticles in the silver colloidal solution, wherein 0.0000005 parts by weight of the silver colloid To 10 parts by weight, 0.0000001 parts by weight to 15 parts by weight of the titanium dioxide nanoparticles, 0.00001 parts by weight to 6 parts by weight of the at least one dispersion stabilizer, and 55 parts by weight to 99 parts by weight of water, antibacterial, It can be achieved by providing a method for preparing antifungal and antiviral compositions.
  • the particles are agglomerated with each other by the self-association reaction, and thus, it is difficult to maintain homogeneity due to precipitation due to an increase in particle diameter. Therefore, in the production method of the present invention to prepare a nano-sized silver particle colloid in order to eliminate such disadvantages, the prepared silver colloidal solution and nano-sized titanium dioxide solution is synthesized through hydrolysis and condensation reaction.
  • the silver colloidal particles prepared in step i) of the method for preparing a composition of the present invention have an average particle diameter of 1 nm to 100 nm, and a silver colloidal solution having a concentration of about 50,000 ppm is prepared.
  • the silver colloidal solution is diluted with water to a concentration of 10 ppm to 5,000 ppm and used in step ii).
  • the silver precursor used in step i) is preferably silver nitrate (AgNO 3 ) or silver acetate (CH 3 COOAg).
  • the first alcohol of step i) is preferably selected from methanol, ethanol, isopropyl alcohol or butanol.
  • the dispersion stabilizer of step i) is lysolecithin, flavonoid, flavonoid, Tween 20, tween 40, tween 80, polyvinylpyrrolidone and polyvinyl alcohol (polyvinylalcohol) It is preferably at least one selected from the group consisting of.
  • reaction temperature and reaction time of step i) is preferably 70 °C to 90 °C and 2 hours to 5 hours, respectively.
  • the titanium precursor of step ii) of the method of preparing a composition of the present invention is preferably selected from the group consisting of titanium tetraisopropoxide (TTIP), titaniumethoxyorthotitanate (TEOT), and titaniumbutoxyorthotitanate (TBOT).
  • TTIP titanium tetraisopropoxide
  • TEOT titaniumethoxyorthotitanate
  • TBOT titaniumbutoxyorthotitanate
  • the second alcohol of step ii) is preferably selected from the group consisting of isopropyl alcohol, ethanol and butanol.
  • the acid catalyst of step ii) is preferably selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid and oxalic acid.
  • reaction temperature and the reaction time of the step ii) is preferably 60 °C to 85 °C and 4 hours to 8 hours, respectively.
  • the size of the titanium dioxide nanoparticles prepared according to the method for producing a composition of the present invention is preferably 1 nm to 100 nm.
  • the composition prepared according to the above production method contains 1 wt% to 5 wt% of titanium dioxide particles having an average particle diameter of milky white of 1 nm to 100 nm.
  • titanium dioxide when titanium dioxide is prepared in a silver colloidal solution, when the concentration of the silver colloid is higher than a certain value or when the concentration of the titanium dioxide raw material used in the sol-gel reaction is high, the stability of the silver colloidal titanium dioxide is very poor. Precipitation occurs.
  • the silver colloid particle concentration of 10ppm to 5,000ppm, titanium dioxide concentration 0.01wt% to 5wt% can be sufficiently controlled within the limit to achieve homogeneous dispersion without aggregation.
  • composition prepared according to the method of the present invention is preferably used after neutralizing with a base.
  • composition prepared by the method of the present invention As a result of analyzing the composition prepared by the method of the present invention through the TEM photograph of Figure 1, it formed a uniform particle size and uniform distribution of 20nm or less, and also excellent antibacterial, antifungal and antiviral activity. 2 is different from the pattern of silver colloid, titanium dioxide and “silver colloid / titanium dioxide-mixing” through XRD analysis, the composition prepared by the method of the present invention has a structure in which silver colloid and titanium dioxide are ideally bonded to each other. Indicates.
  • the antimicrobial mechanism of the composition prepared by the method of the present invention can be expressed in two ways. First, viruses, bacteria, and fungi interfere with the function of the absorption system (Coenzyme A), which is necessary for oxygen and digestive metabolism (nanoparticles bind to the virus and coagulate), suffocating or assuring, ie nanoparticles. Binds to proteins such as cell membranes and enzymes and inhibits cell metabolism. Second, the nanoparticles penetrate into the virus / bacteria body and destroy and remove the organic structure of the cell, and the nanocomposite destroys the cell membrane by binding strongly and momentarily with the microorganism's -SH, -COOH, and -OH groups. Plays a role in disturbing the cells.
  • composition prepared according to the method of the present invention can be sprayed by diluting with distilled water, alcohol, etc., depending on the application object, and prepared by spraying a sprayable solution, vial, spray, aerosol, or the like. Or by applying or impregnated with natural fibers, nonwovens, masks, filters, etc. can be applied to antibacterial and anti-rust products.
  • Another object of the present invention described above is 0.0000005 parts by weight to 10 parts by weight of silver colloidal particles, 0.0000001 parts by weight to 15 parts by weight of titanium dioxide nanoparticles, 0.00001 parts by weight to 6 parts by weight of at least one dispersion stabilizer, and 55 parts by weight to It can be achieved by providing a composition for killing influenza A (H1N1) virus, comprising 99 parts by weight of water.
  • H1N1 influenza A
  • Dispersion stabilizers of the composition for killing influenza A (H1N1) virus of the present invention are lysolecithin, flavonoid, tween 20, tween 40, tween 80, polyvinylpyrrolidone and It is preferably at least one selected from the group consisting of polyvinyl alcohol.
  • the size of the silver colloidal particles and titanium dioxide nanoparticles of the new influenza A (H1N1) virus killing composition of the present invention is preferably 1 nm to 100 nm.
  • Another object of the present invention described above is 0.0000005 parts by weight to 10 parts by weight of silver colloidal particles, 0.0000001 parts by weight to 15 parts by weight of titanium dioxide nanoparticles, 0.00001 parts by weight to 6 parts by weight of at least one dispersion stabilizer, and 55 parts by weight to It can be achieved by providing a method for killing a new influenza A (H1N1) virus, comprising applying a composition for killing a new influenza A (H1N1) virus comprising 99 parts by weight of water.
  • composition for killing influenza A (H1N1) virus of the present invention effectively kills the influenza A (H1N1) virus, as described in the following examples. Therefore, it is possible to control and remove the H1N1 virus by applying the H1N1 virus composition as necessary.
  • Dispersion stabilizers used in the method of killing the new influenza A (H1N1) virus of the present invention are lysolecithin, flavonoid, tween 20, tween 40, tween 80, polyvinylpyrrolidone ( It is preferably at least one selected from the group consisting of polyvinylpyrrolidone) and polyvinyl alcohol.
  • the size of the silver colloidal particles and titanium dioxide nanoparticles used in the method of killing the influenza A (H1N1) virus is preferably 1 nm to 100 nm, respectively.
  • Another object of the present invention described above is a novel influenza comprising 0.0000005 parts by weight to 10 parts by weight of silver colloidal particles, 0.0000001 parts by weight to 15 parts by weight of titanium dioxide nanoparticles, and 0.000005 parts by weight to 6 parts by weight of at least one dispersion stabilizer.
  • a (H1N1) virus killing composition can be achieved by providing a filter for the new influenza A (H1N1) virus blocking.
  • Dispersion stabilizers used in the novel influenza A (H1N1) virus blocking filter of the present invention is lysolecithin, flavonoids, tween 20, tween 40, tween 80, polyvinylpyrrolidone ) And polyvinyl alcohol (polyvinylalcohol) is preferably any one or more selected from the group consisting of.
  • the size of the silver colloidal particles and the titanium dioxide nanoparticles used in the new influenza A (H1N1) virus blocking filter is preferably 1 nm to 100 nm.
  • composition of the present invention is characterized in that it can exert a synergistic effect to enhance the strong antibacterial and antiviral ability by nano silver particles and photocatalyst particles even in the presence or absence of light, and volatility due to the unique organic oxidation ability It also possesses the decomposition function of organic substances and odorous substances at the same time and is easy to use because it is manufactured in a sprayable form.
  • the composition of the present invention is a strong antibacterial and odorous substance against various viruses, bacteria and fungi, including varietal coronavirus, swine epidemic diarrheal virus, swine infectious gastroenteritis virus, E. coli, influenza, etc. It has a wide range of uses for the purpose of simultaneously deodorizing, decomposing trace volatile organic substances and obtaining the purpose of fragrance.
  • the composition of the present invention can be used for the prevention and killing of H1N1 virus because of its excellent killing effect against H1N1 virus.
  • the swine flu can be effectively prevented through a mask using a filter coated with the composition of the present invention.
  • 2 is XRD results for silver colloidal particles, titanium dioxide nanoparticles, a mixture of silver colloidal particles and titanium dioxide nanoparticles, and a composition prepared according to the method of the present invention.
  • Antibacterial activity test against Staphylococcus aureus bactericidal test against E. coli, antifungal test, antiviral test against SARS coronavirus and influenza virus, oral toxicity and skin irritation of the composition prepared according to the method of the present invention
  • Each test method is as follows.
  • Turbidity was adjusted to 0.5 by measuring O.D. (optical density) at 660 nm.
  • test solution adjusted to 0.5 was inoculated in 5 ml of LB broth for 100-fold dilution.
  • Treatment Concentration Samples were treated so that the final concentration was 10 3 fold dilution.
  • Treatment time 1 hour and 3 hours of incubation of the sample, and diluted (100 times, 10,000 times), 100 ⁇ l was applied to the LB plate (LB broth + agar 15 ⁇ 20g / L) and overnight at 37 °C Incubated for
  • the number of colonies was measured and the antimicrobial activity was measured compared to the number of colonies of the control group.
  • E. coli Esscherichia coli
  • the solution of the present invention diluted 103 times in distilled water is sprayed three times (about 0.5 ml) each.
  • the treated medium was incubated in an incubator equipped with three fluorescent lamps for 24 hours, and then bactericidal power was examined by measuring colony numbers.
  • test temperature and test period are as follows.
  • PEDV Porcine Epidemic Diarrhea Virus
  • TGEV Transmissible GastroEnteric Virus
  • Test methods, data processing and evaluation methods are as follows.
  • Vero cells the host cells of the virus, were placed in each well of a 96 well plate, and 2 ⁇ 10 4 cells were incubated for 16 hours to completely cover the cells with a monolayer on the bottom of each well.
  • composition according to the present invention was diluted 10-fold continuously in distilled water, and the virus solution diluted to a constant concentration was mixed and left at 4 ° C. for 30 minutes, and then inoculated into each well of a plate in which each cell was cultured.
  • a culture medium containing no composition according to the present invention As a control, a culture medium containing no composition according to the present invention, a culture containing only virus, and a well containing only a composition according to the present invention and containing no virus were used.
  • Test 96 well plates were terminated after 40 hours and the cells in 96 well plates were fixed with 70% acetone solution and completely dried.
  • the assay was performed by staining the cell proteins remaining in each well with SRB (0.4% Sulforhodamine B in 1% acetic acid) and re-dissolving the absorbance of each well using an EIA reader (96 well plate reader). The ratio of the treated group to the untreated control group was analyzed.
  • Plaque assay Plaque forming unit (pfu) using MDCK cells
  • Test Virus A / Shangdong / 9/93 EC 50 : 0.02-0.04%
  • Test Virus A / equation / 7/95 EC 50 : 0.08-0.16%
  • Test Virus B / Yamagata / 16/88 EC 50 : 0.02-0.04%
  • embryo infection index calculated EC 50
  • the inoculated fertilized eggs are incubated in an incubator at 35 ° C. for 48 hours and then refrigerated for 4 hours in a refrigerator at 4 ° C.
  • the filter treated or untreated filter of the composition of the present invention is cut into about 2 cm X 2 cm and placed in a petri dish.
  • the inoculated fertilized eggs are incubated in an incubator at 35 ° C. for 48 hours and then refrigerated in a refrigerator at 4 ° C. for 4 hours.
  • oral toxicity test and skin irritation test were conducted in accordance with Korean Food Safety Agency No. 1999-61.
  • silver colloid was prepared by using 10 g of silver nitrate (AgNO 3 ), 20 g of ethanol, and 0.01 g of flavonoid (flavonoid) as a dispersion stabilizer at 80 ° C. for 5 hours to prepare silver colloidal particles by alcohol reduction.
  • the silver colloidal solution prepared was diluted with distilled water so that the average particle diameter was 20-50 nm in size and a 50,000 ppm silver colloidal solution was prepared to have a concentration of 10-5,000 ppm.
  • a silver colloidal solution diluted to 500 ppm with water was used as a solvent, and a solution of 35 g of titaniumethoxyorthotitanate (TEOT) and ethanol was added thereto.
  • TEOT titaniumethoxyorthotitanate
  • HNO 3 was used as a catalyst for the hydrolysis reaction.
  • the reaction temperature was heated to 60 to 85 °C and stirred for 4 to 8 hours to synthesize a composition according to the present invention containing titanium dioxide particles having an average particle diameter of 1 to 100 nm in milky white at a concentration of 1wt% to 5wt%.
  • composition according to the present invention was synthesized in the same manner as in Example 1 with only the addition amounts of silver nitrate and TEOT added.
  • Example 1 Silver Nitrate Content (g) Ethanol Content (g) Flavonoid Content (g) TEOT Content (g) Nitric acid content (g) stability
  • Example 1 10 20 0.01 35 0.5 ⁇ Example 2 5 20 0.01 35 0.5 ⁇ Example 3 15 20 0.01 35 0.5 ⁇ Example 4 20 20 0.01 35 0.5 ⁇ Example 5 10 20 0.01 20 0.5 ⁇ Example 6 10 20 0.01 40 0.5 ⁇ Example 7 10 20 0.01 50 0.5 ⁇
  • the antimicrobial activity of the composition prepared by the method of the present invention and the solution prepared by the conventional mixing method showed that the removal rate for Staphylococcus aureus was 100% and 63% after 1 hour of treatment time.
  • the prepared composition showed more excellent antimicrobial activity results (Table 2).
  • the conventional mixing method is a solution in which the silver colloid and the titanium dioxide solution are prepared, and then the titanium dioxide solution is simply mixed with the silver colloid solution. At this time, the mixing ratio of silver colloid solution: titanium dioxide solution was 8: 2.
  • composition according to the present invention eliminated up to 99.999% E. coli.
  • influenza virus of the composition according to the present invention According to the antiviral activity test method for influenza virus of the composition according to the present invention, the effect was demonstrated for human influenza virus and avian influenza virus (Table 5).
  • composition according to the present invention was tested according to the test for inactivation against the swine flu virus, and the composition was 100% free of the swine flu virus.
  • the filter treated with the composition removed more than 99.99% of swine flu virus (Table 6)
  • Table 6 sample Virus titer (log 10 EID 50 / ml) Compositions of the Invention 0 0 0 0 0 Filter Treated with Composition of the Invention ⁇ 1.0 ⁇ 1.0 ⁇ 1.0 ⁇ 1.0 Filter not treated with the composition of the present invention 6.0 6.5 6.5 6.0 6.0 Virus control 6.5 6.0 6.5 6.5 6.0
  • test result Test Methods Oral Toxicity After the oral administration of the test substance to the rat at a concentration of 5,000 mg / kg BW, the number of dead animals, general symptoms, weight change and autopsy findings were observed for 14 days. The general symptoms and autopsy findings related to the administration of the test substance were recognized. No deaths were observed, and no significant weight changes were recognized. Therefore, the approximate lethal dose for the composition is judged to be more than 5,000 mg / kg BW for both male and female. KFDA Notification No.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention relates to a method for preparing antimicrobial, antifungal, and antiviral compositions. In detail, the present invention relates to a method for preparing antimicrobial, antifungal, and antiviral compositions including the steps of: i) reacting a first alcohol containing at least one dispersion stabilizer and a silver precursor to prepare a silver colloid solution; and ii) adding a titanium precursor, a second alcohol, and an acid catalyst to the obtained solution by diluting the silver colloid solution with water to generate titanium dioxide nanoparticles in the silver colloid solution. The compositions of the present invention contain 0.0000005 to 10 weight parts of the silver colloid, 0.0000001 to 15 weight parts of the titanium dioxide nanoparticles, 0.00001 to 6 weight parts of at least one dispersion stabilizer, and 55 to 99 weight parts of water. The present invention also relates to a method for destroying the new H1N1 virus by using the compositions.

Description

항균, 항진균 및 항바이러스성 조성물 제조 방법Method for preparing antimicrobial, antifungal and antiviral compositions
본 발명은 항균, 항진균 및 항바이러스성 조성물의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 i) 적어도 하나의 분산안정제가 포함된 제1 알콜과 은 전구체를 반응시켜 은 콜로이드 용액을 제조하는 단계; ii) 상기 은 콜로이드 용액을 물로 희석한 용액에 티타늄 전구체, 제2 알콜 및 산(acid) 촉매를 가하여 상기 은 콜로이드 용액 내에 이산화티탄 나노입자를 생성시키는 단계를 포함하고, 상기 은 콜로이드를 0.0000005 중량부 내지 10 중량부, 상기 이산화티탄 나노입자를 0.0000001 중량부 내지 15 중량부, 상기 적어도 하나의 분산안정제를 0.00001 중량부 내지 6 중량부, 그리고 상기 물을 55 중량부 내지 99 중량부 함유하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법과, 상기 조성물을 사용한 신종 인플루엔자A(H1N1) 바이러스 사멸 방법에 대한 것이다.The present invention relates to methods of making antimicrobial, antifungal and antiviral compositions. More specifically, the present invention comprises the steps of i) preparing a silver colloidal solution by reacting a silver precursor with a first alcohol containing at least one dispersion stabilizer; ii) adding a titanium precursor, a second alcohol and an acid catalyst to a solution of diluting the silver colloidal solution with water to produce titanium dioxide nanoparticles in the silver colloidal solution, wherein 0.0000005 parts by weight of the silver colloid To 10 parts by weight, 0.0000001 parts by weight to 15 parts by weight of the titanium dioxide nanoparticles, 0.00001 parts by weight to 6 parts by weight of the at least one dispersion stabilizer, and 55 parts by weight to 99 parts by weight of water, antibacterial, A method for preparing antifungal and antiviral compositions and a method for killing influenza A (H1N1) virus using the composition.
은(silver)은 예로부터 항균효과를 갖는 것으로 알려져 왔는데, 특히 은 콜로이드(silver colloid)는 수용액에서 클러스터 상태(10nm 내지 150nm 크기)로 분산되어 있는 상태의 물질을 말하며, 이러한 분산용액은 약 650 여종의 유해세균 및 곰팡이류에 대해 강한 항균력이 있음이 밝혀져 있다. 또한 이러한 은 콜로이드 입자들은 인체에 적용하였을 경우에 대부분의 유익한 세균은 사멸시키지 않음이 관찰되고 있다.Silver has long been known to have antimicrobial effects. Particularly, silver colloid refers to a substance dispersed in an aqueous solution in a clustered state (10 nm to 150 nm in size). It has been shown to have strong antibacterial activity against harmful bacteria and fungi. It is also observed that these silver colloidal particles do not kill most of the beneficial bacteria when applied to the human body.
더욱이, 미국 등지에서는 은 콜로이드 용액이 FDA 제약범위에 등제된 인체에는 무해한 천연물질로 인정되고 있고, 최근에는 무독성 방부제로서 식품첨가제로 기능이 인정될 만큼 인체나 생체에 무독한 물질로 알려져 있다.Moreover, in the United States, silver colloidal solution is recognized as a natural substance harmless to the human body registered in the FDA pharmaceutical range, and recently, it is known as a nontoxic substance to human or living body enough to be recognized as a food additive as a nontoxic preservative.
상기와 같이 은 콜로이드 용액은 항균성이 매우 우수하며 인체에 무독하다는 것이 입증됨에 따라 현재 세계 각국에서는 항균에 더욱 효과적인 은 입자의 제조 및 이를 이용한 병원성 세균의 박멸 및 치료제 개발 외에 화장품, 섬유류, 벽지, 세탁기, 의복 등과 같은 각종 제품에 은을 활용하는 연구가 진행되고 있다.As described above, the silver colloidal solution has been proved to be very excellent in antibacterial and non-toxic to human body. Currently, in the world, the manufacture of silver particles more effective for antibacterial and eradication and treatment of pathogenic bacteria using the same, cosmetics, textiles, wallpaper, washing machine Research has been conducted to utilize silver in various products such as clothing and clothing.
광촉매란 적정 에너지 이상을 갖는 빛을 받게 되면 활성산소, 수산기 라디칼(OH radical)을 발생시켜서 이들의 강한 산화·환원 작용에 의해 악취물질의 분해 및 항균 작용을 보이며 전기적으로 반도체적 성질을 갖는 물질을 일컫는다. 반도체는 일정한 영역의 에너지가 가해지면 원자가 전자대(Valence Band)에서 전도대(Conduction Band)로 여기 된다. 이때 전도대에는 전자(e-)들이 형성되게 되고 원자가 전자대에는 정공(h+)이 형성되게 된다. 이렇게 형성된 전자와 정공은 강한 산화 또는 환원 작용에 의해 유해물질을 분해시키는 등 다양한 반응을 일으키게 된다.Photocatalysts generate active oxygen and hydroxyl radicals (OH radicals) when they receive light with more than the appropriate energy. They exhibit decomposing and antimicrobial effects of odorous substances by their strong oxidation and reduction. It is called. A semiconductor is excited from the valence band to the conduction band when a certain area of energy is applied. At this time, electrons ( e − ) are formed in the conduction band, and holes (h +) are formed in the valence electron band. The electrons and holes thus formed cause various reactions such as decomposing harmful substances by strong oxidation or reduction.
이와 같이 광촉매의 특성을 갖는 다양한 산화물질 중에서 이산화티탄(TiO2)이 화학적 안정성과 반도체로서의 우수한 장점 때문에 가장 널리 사용되고 있다. 이산화티탄의 경우 약 3.0eV (원자가 전자대와 전도대의 에너지 갭으로 380nm 파장의 빛에 해당함) 이상의 에너지를 받으면 광촉매로서의 기능을 충분히 발휘한다.As such, titanium dioxide (TiO 2 ) is most widely used because of its chemical stability and excellent advantages as a semiconductor among various oxide materials having photocatalyst properties. In the case of titanium dioxide, when it receives an energy of about 3.0 eV (the atom corresponds to light of 380 nm wavelength in the energy gap between the electron band and the conduction band), it fully functions as a photocatalyst.
광촉매인 이산화티탄에 빛이 닿아 발생한 전자(e-)와 정공(h+)은 각각 공기 중의 O2, H2O와 반응을 일으켜 이산화티탄 표면에 슈퍼옥사이드 음이온(O2 -)과 하이드록실기 라디칼(ㆍOH)로 된 2종의 활성산소를 생성한다. 특히 하이드록실기 라디칼은 높은 산화·환원 전위를 가지고 있기 때문에 NOx, 휘발성 유기화합물(VOCs) 및 각종 악취 정화에 탁월하고, 축산폐수, 오수, 공장폐수의 BOD, 색도 및 난분해성 오염물질, 환경호르몬 등을 완벽히 제거할 수 있을 뿐만 아니라, 병원성 대장균, 황색포도상구균, O-157 등 각종 병원균과 박테리아를 99% 이상 살균하는 등 모든 대상물질을 산화시키는 능력이 있다.The light hits the photocatalyst is titanium dioxide electrons generated (e-) and holes (h +) is a superoxide anion on the titanium dioxide surface causes the O 2, H 2 O and the reaction of each air (O 2 -) and hydroxyl radical It produces two kinds of active oxygen which are (.OH). In particular, since the hydroxyl radical has a high redox potential, it is excellent for purifying NOx, volatile organic compounds (VOCs) and various odors. Not only can it be completely removed, but it also has the ability to oxidize all the target substances such as pathogenic E. coli, Staphylococcus aureus, O-157, etc.
이러한 이산화티탄은 태양에너지 또는 형광 빛에 의해서도 반응이 일어나며, ‘물체에의 정착→광분해→재생’의 사이클에 의해 영속적인 기능을 발휘하므로 경제적이다. 또한, 반응후의 부산물은 물과 CO2로 인체 및 환경에 무해한 물질이며, 다양한 분야에 적용이 가능하다.Such titanium dioxide is also reacted by solar energy or fluorescent light, and is economical because it exhibits a permanent function by the cycle of 'fixing to an object → photolysis → regeneration'. In addition, the by-products after the reaction is a material that is harmless to humans and the environment with water and CO 2 , and can be applied to various fields.
사스(SARS, 중증급성호흡기증후군)는 세계보건기구(WHO)에 의하면 그 발병원인이 감기를 일으키는 기존의 코로나 바이러스(corona virus)의 변종일 가능성이 높다고 한다. 코로나 바이러스는 RNA 바이러스 특유의 돌연변이 발생률이 높을 뿐만 아니라 RNA 중합효소가 지놈을 복제하면서 이곳저곳으로 점프하는 성향을 가지고 있어 재조합 빈도가 높다.SARS is likely to be a variant of the existing corona virus that causes colds, according to the World Health Organization. Corona viruses not only have a high incidence of mutations specific to RNA viruses, but also have a high recombination frequency as RNA polymerases tend to jump from place to place as they replicate genomes.
코로나 바이러스는 사람에게 감염되었을 때 코감기 등 주로 호흡기 증상을 일으키지만 위험성이 높지 않아 그 동안 크게 문제되지 않았었다. 그러나 소나 개, 돼지, 새 등 일부 동물에서는 때로 치명적인 병원균으로 작용해 왔고 이 때문에 전염병 전문가들은 돼지나 닭과 같은 가축의 몸 안에 코로나 바이러스가 변형되어 인간의 몸속으로 들어와 치명적인 질병을 일으킨 것으로 추정하고 있다. 사스는 환자가 기침할 때 튀어나오는 침방울인 ‘공기비말(飛沫)’을 흡입하거나, 환자가 사용한 물건 (문손잡이나 전화기 컴퓨터 자판 등)을 만진 후 바이러스가 호흡기로 옮아가면서 전염된다.Corona virus causes respiratory symptoms such as colds when it is infected with humans, but it has not been a major problem since it is not high in risk. However, some animals, such as cows, dogs, pigs, and birds, have sometimes acted as deadly pathogens, which is why infectious disease experts estimate that the corona virus has been transformed into livestock, such as pigs and chickens, into human bodies, causing deadly diseases. . SARS spreads the virus as it moves into the respiratory tract after inhaling “air droplets,” which are protruding drops when the patient coughs, or touching objects (such as door handles or telephone computer keyboards) used by the patient.
환절기 및 겨울철에(대개 11월∼3월) 유행하는 유행성 독감인 인체 인플루엔자(HI)는 감기와는 달리 인플루엔자 바이러스에 의해 발병하는 전염병으로 증상이 아주 심하고 전염성이 강하여 단 시일 내에 유행하는 병이다. 유행성독감의 원인으로는 orthomyxovirus 계통의 single-stranded RNA인 인플루엔자 A, B 그리고 C 등이 있다. 특히, 인플루엔자 A는 빈번한 핵의 재배열이 있어 유행성과 범유행성을 일으키며, 인플루엔자 C는 단지 경미한 호흡기 질환을 일으킨다.Human influenza (HI), a pandemic flu that is popular during the transitional season and in winter (usually from November to March), is a communicable disease caused by the influenza virus, unlike the common cold. Influenza A, B, and C are single-stranded RNAs of the orthomyxovirus family. In particular, influenza A has frequent nuclear rearrangements, causing pandemic and pandemic, and influenza C only causes minor respiratory diseases.
조류 인플루엔자(AI)는 닭이나 오리와 같은 가금류 또는 야생조류에서 생기는 바이러스(Virus)의 하나로서, 일종의 동물전염병이다. 일반적으로 인플루엔자 바이러스는 A, B, C형으로 구분되는데, 이 중 A, B형이 인체감염의 우려가 있으며, 그 중 A형만이 대유행을 초래할 수 있다고 알려져 있다.Avian influenza (AI) is a virus that occurs in poultry or wild birds such as chickens and ducks. Influenza viruses are generally classified into types A, B, and C. Among them, A and B are known to cause human infection, and only A type is known to cause pandemic.
인플루엔자 바이러스의 표면에는 적혈구응집소(hemagglutinin, HA)와 뉴라미니다제(neuraminidase, NA)라는 두 가지 단백질이 있는데, HA는 16종이, NA는 9종이 있으므로 이론상으로는 두 가지 단백질의 조합에 따라 모두 144종류(=16×9)의 인플루엔자 바이러스가 존재하게 된다. 이 중에서 사람에게 인플루엔자 감염을 일으키는 바이러스의 형태로는, 일반적으로 3종류의 HA(H1, H2, H3)와 2종류의 NA(N1과 N2)가 보고되고 있고, 조류의 인플루엔자 감염은 주로 H5형이나 H7형과 관련이 있는 것으로 알려져 있다.There are two proteins on the surface of the influenza virus: hemagglutinin (HA) and neuraminidase (NA) .There are 16 types of HA and 9 types of NA. Influenza virus of the kind (= 16x9) will exist. Among them, three types of HA (H1, H2, H3) and two types of NA (N1 and N2) are generally reported as a type of virus causing human influenza infection, and influenza infection of birds is mainly H5 type. Or H7 type.
그리고 이 중에서 H5N1 바이러스가 고병원성으로서, 우리가 알고 있는 가금류 조류 인플루엔자 집단 발생의 원인으로 알려져 있다. 조류 인플루엔자는 바이러스에 감염된 조류의 콧물, 호흡기 분비물, 대변에 접촉한 조류들이 다시 감염되는 형태로 전파되고, 특히 인플루엔자에 오염된 대변이 구강을 통해 감염을 일으키는 경우가 많다. 따라서 조류의 호흡기 분비물이나 대변 등에 오염된 기구, 매개체, 사료, 새장, 옷 등은 조류인플루엔자 전파에서 중요한 역할을 한다.And among these, the H5N1 virus is highly pathogenic and is known to be the cause of the poultry avian influenza outbreak as we know it. Avian influenza spreads in the form of virus-infested bird runny nose, respiratory secretions, and birds in contact with feces again, especially feces contaminated with influenza cause infection through the oral cavity. Therefore, instruments, media, feed, cages and clothes contaminated with respiratory secretions or feces of birds play an important role in the spread of avian influenza.
코로나 바이러스 및 인플루엔자 바이러스 억제제, 은 또는 이산화티탄 광촉매에 의한 살균 및 멸균물질에 대한 선행기술은 다음과 같다. 현재 코로나 바이러스에 대한 억제력을 갖는 제품은 주로 합성유기물 또는 천연물에서 추출한 물질(대한민국 공개특허 제2003-0063961호 및 일본 공개특허 제2000-44473호)로서, 무기 용액이 아니다.Prior arts for sterilization and sterilization by corona virus and influenza virus inhibitors, silver or titanium dioxide photocatalysts are as follows. Currently, products having inhibitory ability against coronaviruses are mainly substances extracted from synthetic organic matter or natural products (Korean Unexamined Patent Publication No. 2003-0063961 and Japanese Unexamined Patent Publication No. 2000-44473), and are not inorganic solutions.
최근에 전 세계적으로 사람에게 호흡기 감염을 일으키고 있는 신종 인플루엔자A(H1N1) 바이러스(novel H1N virus)는 2009년 4월 초 멕시코 및 미국에서 사람간의 전염을 시작하여 전 세계적으로 확산되고 있다.The novel influenza A (H1N1) virus, which has recently caused respiratory infections in humans around the world, began spreading humans in Mexico and the United States in early April 2009.
신종 인플루엔자A(H1N1) 바이러스에 감염되면 증상 발현 후 7일까지 전염이 가능한 것으로 보고되고 있고, 어린이의 경우에는 이러한 전염가능 기간이 더 길어질 수도 있다. 예방을 위해서는 무엇보다 손을 깨끗이 씻는 것이 중요하다. 우리가 무심코 만지는 출입문 손잡이, 공중전화 등에도 바이러스가 있을 수 있기 때문에 외출 중에도 손을 자주 씻고 눈, 코, 입 등을 손으로 만지는 것을 되도록 피하는 것이 좋다.Influenza A (H1N1) virus infection has been reported to be possible up to seven days after symptom onset, and in children, this period may be longer. To prevent this, it is important to wash your hands. The door handles and payphones that we touch unintentionally can also contain viruses, so wash your hands frequently and avoid touching your eyes, nose, and mouth while you are away.
코로나 바이러스 및 인플루엔자 바이러스 억제제, 은 또는 이산화티탄 광촉매에 의한 살균 및 멸균물질에 대한 선행기술은 다음과 같다.Prior arts for sterilization and sterilization by corona virus and influenza virus inhibitors, silver or titanium dioxide photocatalysts are as follows.
현재 코로나 바이러스에 대한 억제력을 갖는 제품은 주로 합성유기물 또는 천연물에서 추출한 물질(대한민국 공개특허 제2003-0063961호 및 일본 공개특허 제2000-44473호)로서, 무기 용액이 아니다.Currently, products having inhibitory ability against coronaviruses are mainly substances extracted from synthetic organic matter or natural products (Korean Unexamined Patent Publication No. 2003-0063961 and Japanese Unexamined Patent Publication No. 2000-44473), and are not inorganic solutions.
무기 물질로서 은 콜로이드 또는 이산화티탄 광촉매를 단독으로 이용한 항균제품은 위와 같은 기지의 이론을 바탕으로 은 도포 의류, 항균스프레이(대한민국 공개특허 제2002-0008375호), 공기정화기용 필터 코팅제 등과 같은 다양한 제품이 나와 있는데 은만을 이용한 경우에는 주위조건에 따른 성능변화가 거의 없으나, 광촉매만 이용한 제품은 광량이 부족한 환경에서는 성능을 제대로 나타내지 못하는 큰 단점이 있다.Antimicrobial products using silver colloid or titanium dioxide photocatalyst alone as inorganic materials are based on the above known theory. Various products such as silver coated clothing, antibacterial spray (Korea Patent Publication No. 2002-0008375), filter coating agent for air purifier, etc. When silver is used, there is almost no change in performance according to ambient conditions, but a product using only a photocatalyst has a big disadvantage in that it does not properly display performance in an environment in which light is insufficient.
또한 은과 이산화티탄을 이용하여 항균성을 내도록 한 제품 및 제조방법에 관한 기술로는 대한민국 공개특허 제1998-0007982호(무기항균제의 제조방법), 제2001-0057595호(은이 도포된 광촉매 제조방법) 및 제2003-0037050호(항균금속성분을 함유하는 이산화티타늄 광촉매 및 그의 제조방법) 등이 있다.In addition, as a technology for a product and a method for producing antimicrobial properties using silver and titanium dioxide, Korean Patent Publication No. 1998-0007982 (Method for preparing inorganic antimicrobial agent), 2001-0057595 (Method for preparing photocatalyst coated with silver) And 2003-0037050 (titanium dioxide photocatalyst containing an antibacterial metal component and a method for producing the same).
상기 공개특허 제2003-0037050호는 은과 같은 항균금속을 콜로이드형태로 제조하고 이를 이산화티탄과 혼합한 후 수열합성과정을 거쳐 결정성 산화물로 제조한 후 이들의 표면을 졸겔법으로 코팅 처리하여 마이크로캡슐화하는 복잡한 공정을 거쳐서 항균금속을 함유하는 광촉매물질을 만들고 있으며, 제1998-0007982호는 인산과 질산은, 이산화티탄분말 및 콜로이드 실리카를 혼합한 후 이들을 건조 소성하여 담지체 제조와 동시에 은 이온을 담지한 무기항균제를 제조하며, 제2001-0057595호는 광촉매제에 은을 치환시켜서 광촉매 분말의 외부를 은으로 도포한 형태의 미세분말형 광촉매를 제조하는 방법에 관한 것이다.The Patent Publication No. 2003-0037050 discloses an antimicrobial metal such as silver in the form of a colloid, mixed with titanium dioxide, a hydrothermal synthesis process to produce a crystalline oxide, and their surface is coated with a sol-gel method to obtain micro A photocatalytic material containing an antibacterial metal is made through a complex process of encapsulation. No. 1998-0007982 mixes phosphoric acid, silver nitrate, titanium dioxide powder and colloidal silica, and then dry and calcinates them to carry the silver ions and simultaneously carry the silver ions. One inorganic antimicrobial agent is prepared, and No. 2001-0057595 relates to a method for producing a fine powder photocatalyst in the form of applying silver to the outside of the photocatalyst powder by substituting silver to the photocatalyst.
그러나 본 발명에 따른 조성물 및 이의 합성방법은 상기 기존의 은과 이산화티탄을 이용하여 항균성을 나타내는 제품이나 제조방법과는 그 구성요소가 다르다.However, the composition according to the present invention and a method for synthesizing the same are different from those of the conventional silver and titanium dioxide, which exhibit antimicrobial properties and manufacturing methods.
본 발명의 발명자들은 전술한 선행기술들의 문제점을 극복하고자 항균, 항진균 및 항바이러스 기능을 갖는 두 가지 나노물질인 은 콜로이드와 이산화티탄을 위의 특허들과 같은 단순 혼합, 복합물 수열합성, 금속간 치환, 소성 등의 복잡한 과정을 거치지 않고 나노크기의 은 입자 콜로이드가 균질하게 분산된 용액을 증류수를 사용하여 적정비율(10ppm 내지 5,000ppm)로 희석한 후, 이산화티탄과의 합성에 필요한 용매로 사용함으로써, 본 발명을 완성하였다.The inventors of the present invention, in order to overcome the problems of the prior art described above, two nanomaterials having antimicrobial, antifungal and antiviral functions, silver colloid and titanium dioxide, a simple mixture such as the above patents, composite hydrothermal synthesis, and intermetallic substitution By diluting a solution in which nano-sized colloids of silver are uniformly dispersed without distillation, calcination, etc. with distilled water to an appropriate ratio (10 ppm to 5,000 ppm), and then using it as a solvent for synthesis with titanium dioxide The present invention has been completed.
또한, 합성제조의 간편성을 도모하는 동시에 항균/항진균 및 항바이러스 능력에서도 은과 이산화티탄에 의한 시너지(synergy) 효과를 나타낸다. 특히, 본 발명에 따라 제조된 무기 용액은 콜로이드 및 이산화티탄 입자로 합성되어 빛이 있거나 또는 없는 곳에서도 강력한 항균, 항진균 및 항바이러스능을 발휘한다.In addition, the synergistic effect of silver and titanium dioxide is shown in the antimicrobial / antifungal and antiviral ability as well as the simplicity of synthesis. In particular, the inorganic solution prepared according to the present invention is synthesized with colloidal and titanium dioxide particles, and exhibits strong antibacterial, antifungal and antiviral ability even in the presence or absence of light.
본 발명에 따라 제조된 용액은 기존의 각종 바이러스, 세균, 곰팡이 및 악취의 제거뿐만 아니라, 특히 SARS의 원인인 코로나 바이러스(TGEV, PEDV)와 조류 인플루엔자(AI) 바이러스, 돼지 인플루엔자(SI) 바이러스 및 인체 인플루엔자(HI) 바이러스에 대해 99.9% 이상의 강력한 항균/항진균 및 항바이러스능을 가진다.The solution prepared according to the present invention not only removes various existing viruses, bacteria, fungi and odors, but also coronaviruses (TGEV, PEDV) and avian influenza (AI) virus, swine influenza (SI) virus, which in particular cause SARS, and It has a potent antibacterial / antifungal and antiviral activity of at least 99.9% against human influenza (HI) virus.
본 발명의 기본적인 목적은 i) 적어도 하나의 분산안정제가 포함된 제1 알콜과 은 전구체를 반응시켜 은 콜로이드 용액을 제조하는 단계; ii) 상기 은 콜로이드 용액을 물로 희석한 용액에 티타늄 전구체, 제2 알콜 및 산(acid) 촉매를 가하여 상기 은 콜로이드 용액 내에 이산화티탄 나노입자를 생성시키는 단계를 포함하고, 상기 은 콜로이드를 0.0000005 중량부 내지 10 중량부, 상기 이산화티탄 나노입자를 0.0000001 중량부 내지 15 중량부, 상기 적어도 하나의 분산안정제를 0.00001 중량부 내지 6 중량부, 그리고 상기 물을 55 중량부 내지 99 중량부 함유하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법을 제공하는 것이다.The basic object of the present invention is i) preparing a silver colloidal solution by reacting a silver precursor with a first alcohol containing at least one dispersion stabilizer; ii) adding a titanium precursor, a second alcohol and an acid catalyst to a solution of diluting the silver colloidal solution with water to produce titanium dioxide nanoparticles in the silver colloidal solution, wherein 0.0000005 parts by weight of the silver colloid To 10 parts by weight, 0.0000001 parts by weight to 15 parts by weight of the titanium dioxide nanoparticles, 0.00001 parts by weight to 6 parts by weight of the at least one dispersion stabilizer, and 55 parts by weight to 99 parts by weight of water, antibacterial, It is to provide an antifungal and antiviral composition.
본 발명의 또 다른 목적은 0.0000005 중량부 내지 10 중량부의 은 콜로이드 입자, 0.0000001 중량부 내지 15 중량부의 이산화티탄 나노입자, 0.00001 중량부 내지 6 중량부의 적어도 하나의 분산안정제, 그리고 55 중량부 내지 99 중량부의 물을 포함하는, 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물을 제공하는 것이다.Still another object of the present invention is 0.0000005 to 10 parts by weight of silver colloidal particles, 0.0000001 to 15 parts by weight of titanium dioxide nanoparticles, 0.00001 to 6 parts by weight of at least one dispersion stabilizer, and 55 to 99 parts by weight It is to provide a composition for killing influenza A (H1N1) virus, which contains negative water.
본 발명의 또 다른 목적은 0.0000005 중량부 내지 10 중량부의 은 콜로이드 입자, 0.0000001 중량부 내지 15 중량부의 이산화티탄 나노입자, 0.00001 중량부 내지 6 중량부의 적어도 하나의 분산안정제, 그리고 55 중량부 내지 99 중량부의 물을 포함하는 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물을 도포하는 단계를 포함하는, 신종 인플루엔자A(H1N1) 바이러스를 사멸시키는 방법을 제공하는 것이다.Still another object of the present invention is 0.0000005 to 10 parts by weight of silver colloidal particles, 0.0000001 to 15 parts by weight of titanium dioxide nanoparticles, 0.00001 to 6 parts by weight of at least one dispersion stabilizer, and 55 to 99 parts by weight It provides a method for killing a new influenza A (H1N1) virus, comprising the step of applying a composition for killing the new influenza A (H1N1) virus containing the water.
본 발명의 또 다른 목적은 은 콜로이드 입자, 이산화티탄 나노입자, 그리고 적어도 하나의 분산안정제를 포함하는 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물이 코팅된, 신종 인플루엔자A(H1N1) 바이러스 차단용 필터를 제공하는 것이다.Still another object of the present invention is to provide a novel influenza A (H1N1) virus blocking filter coated with a composition for killing influenza A (H1N1) virus including silver colloid particles, titanium dioxide nanoparticles, and at least one dispersion stabilizer. To provide.
전술한 본 발명의 기본적인 목적은 i) 적어도 하나의 분산안정제가 포함된 제1 알콜과 은 전구체를 반응시켜 은 콜로이드 용액을 제조하는 단계; ii) 상기 은 콜로이드 용액을 물로 희석한 용액에 티타늄 전구체, 제2 알콜 및 산(acid) 촉매를 가하여 상기 은 콜로이드 용액 내에 이산화티탄 나노입자를 생성시키는 단계를 포함하고, 상기 은 콜로이드를 0.0000005 중량부 내지 10 중량부, 상기 이산화티탄 나노입자를 0.0000001 중량부 내지 15 중량부, 상기 적어도 하나의 분산안정제를 0.00001 중량부 내지 6 중량부, 그리고 상기 물을 55 중량부 내지 99 중량부 함유하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법을 제공함으로써 달성될 수 있다.The basic object of the present invention described above is i) preparing a silver colloid solution by reacting a silver precursor with a first alcohol containing at least one dispersion stabilizer; ii) adding a titanium precursor, a second alcohol and an acid catalyst to a solution of diluting the silver colloidal solution with water to produce titanium dioxide nanoparticles in the silver colloidal solution, wherein 0.0000005 parts by weight of the silver colloid To 10 parts by weight, 0.0000001 parts by weight to 15 parts by weight of the titanium dioxide nanoparticles, 0.00001 parts by weight to 6 parts by weight of the at least one dispersion stabilizer, and 55 parts by weight to 99 parts by weight of water, antibacterial, It can be achieved by providing a method for preparing antifungal and antiviral compositions.
용액 중에서 나노크기 입자들이 고농도로 존재하게 되면 자기회합 반응에 의해 입자들이 서로 뭉치게 되고 따라서 입경의 증가로 인한 침전 등으로 인해 균질성(homogeneity)을 유지하는 것이 힘들게 된다. 따라서 본 발명의 제조 방법에서는 이와 같은 단점을 없애고자 나노크기의 은 입자 콜로이드를 제조한 후 제조된 은 콜로이드 용액과 나노크기의 이산화티탄 용액을 가수분해와 축합반응을 통해 합성한다.When nano-sized particles are present in a high concentration in the solution, the particles are agglomerated with each other by the self-association reaction, and thus, it is difficult to maintain homogeneity due to precipitation due to an increase in particle diameter. Therefore, in the production method of the present invention to prepare a nano-sized silver particle colloid in order to eliminate such disadvantages, the prepared silver colloidal solution and nano-sized titanium dioxide solution is synthesized through hydrolysis and condensation reaction.
본 발명의 조성물 제조 방법의 i)단계에서 제조된 은 콜로이드 입자는 평균 입경이 1nm 내지 100nm 이고, 약 50,000ppm 농도의 은 콜로이드 용액이 제조된다. 바람직하게는, 상기 은 콜로이드 용액을 10 ppm 내지 5,000ppm의 농도가 되도록 물로 희석하여 ii)단계에서 사용한다.The silver colloidal particles prepared in step i) of the method for preparing a composition of the present invention have an average particle diameter of 1 nm to 100 nm, and a silver colloidal solution having a concentration of about 50,000 ppm is prepared. Preferably, the silver colloidal solution is diluted with water to a concentration of 10 ppm to 5,000 ppm and used in step ii).
또한, 상기 i)단계에서 사용되는 은 전구체는 질산은(AgNO3) 또는 초산은(CH3COOAg)인 것이 바람직하다.In addition, the silver precursor used in step i) is preferably silver nitrate (AgNO 3 ) or silver acetate (CH 3 COOAg).
또한, 상기 i)단계의 제1 알콜은 메탄올, 에탄올, 이소프로필알콜 또는 부탄올로부터 선택되는 것이 바람직하다.In addition, the first alcohol of step i) is preferably selected from methanol, ethanol, isopropyl alcohol or butanol.
또한, 상기 i)단계의 분산안정제는 리소레시틴(lysolecithin), 플라보노이드(flavonoid), 트윈 20(Tween 20), 트윈 40, 트윈 80, 폴리비닐피롤리돈(polyvinylpyrrolidone) 및 폴리비닐알콜(polyvinylalcohol)로 이루어진 군에서 선택되는 어느 하나 이상인 것이 바람직하다.In addition, the dispersion stabilizer of step i) is lysolecithin, flavonoid, flavonoid, Tween 20, tween 40, tween 80, polyvinylpyrrolidone and polyvinyl alcohol (polyvinylalcohol) It is preferably at least one selected from the group consisting of.
또한, 상기 i)단계의 반응 온도 및 반응 시간은 각각 70℃ 내지 90℃ 및 2시간 내지 5시간인 것이 바람직하다.In addition, the reaction temperature and reaction time of step i) is preferably 70 ℃ to 90 ℃ and 2 hours to 5 hours, respectively.
본 발명의 조성물 제조 방법의 ii)단계의 티타늄 전구체는 TTIP(titaniumtetraisopropoxide), TEOT(titaniumethoxyorthotitanate) 및 TBOT(titaniumbutoxyorthotitanate)로 이루어진 군에서 선택되는 것이 바람직하다.The titanium precursor of step ii) of the method of preparing a composition of the present invention is preferably selected from the group consisting of titanium tetraisopropoxide (TTIP), titaniumethoxyorthotitanate (TEOT), and titaniumbutoxyorthotitanate (TBOT).
또한, 상기 ii)단계의 제2 알콜은 이소프로필알콜, 에탄올 및 부탄올로 이루어진 군에서 선택되는 것이 바람직하다.In addition, the second alcohol of step ii) is preferably selected from the group consisting of isopropyl alcohol, ethanol and butanol.
또한, 상기 ii)단계의 산 촉매는 질산, 염산, 황산 및 옥살산으로 이루어진 군에서 선택되는 것이 바람직하다.In addition, the acid catalyst of step ii) is preferably selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid and oxalic acid.
또한, 상기 ii)단계의 반응 온도 및 반응 시간은 각각 60℃ 내지 85℃ 및 4시간 내지 8시간인 것이 바람직하다.In addition, the reaction temperature and the reaction time of the step ii) is preferably 60 ℃ to 85 ℃ and 4 hours to 8 hours, respectively.
본 발명의 조성물 제조 방법에 따라 제조되는 상기 이산화티탄 나노입자의 크기는 1 nm 내지 100 nm인 것이 바람직하다.The size of the titanium dioxide nanoparticles prepared according to the method for producing a composition of the present invention is preferably 1 nm to 100 nm.
상기 제조 방법에 따라 제조된 조성물은 유백색의 평균 입경이 1nm 내지 100nm 크기의 이산화티탄 입자를 1wt% 내지 5wt% 함유한다. 통상, 은 콜로이드 용액에서 이산화티탄을 제조하는 경우, 은 콜로이드의 농도가 특정 값 이상으로 높거나, 졸-겔 반응시 사용한 이산화티탄 원료의 농도가 높을 경우에는 은 콜로이드-이산화티탄의 안정성이 매우 떨어져서 침전이 일어난다.The composition prepared according to the above production method contains 1 wt% to 5 wt% of titanium dioxide particles having an average particle diameter of milky white of 1 nm to 100 nm. In general, when titanium dioxide is prepared in a silver colloidal solution, when the concentration of the silver colloid is higher than a certain value or when the concentration of the titanium dioxide raw material used in the sol-gel reaction is high, the stability of the silver colloidal titanium dioxide is very poor. Precipitation occurs.
본 발명의 방법에 따르면, 은 콜로이드 입자 농도 10ppm 내지 5,000ppm, 이산화티탄 농도 0.01wt% 내지 5wt%는 응집이 일어나지 않고 균질한 분산을 이루는 한도 내에서는 충분히 조절이 가능하다.According to the method of the present invention, the silver colloid particle concentration of 10ppm to 5,000ppm, titanium dioxide concentration 0.01wt% to 5wt% can be sufficiently controlled within the limit to achieve homogeneous dispersion without aggregation.
또한, 본 발명의 방법에 따라 제조된 조성물은 염기를 사용하여 중화시킨 후 사용하는 것이 바람직하다.In addition, the composition prepared according to the method of the present invention is preferably used after neutralizing with a base.
본 발명의 방법에 의해 제조된 조성물을 도 1의 TEM사진을 통해 분석한 결과, 균일한 20nm 이하의 일정한 입자크기와 균일한 분포도를 형성하였으며, 항균, 항진균 및 항바이러스능 또한 매우 우수하였다. 그리고 도 2는 XRD 분석을 통해 은 콜로이드, 이산화티탄, “은 콜로이드/이산화티탄-혼합”의 패턴과 다르게, 본 발명의 방법에 의해 제조한 조성물은 은 콜로이드와 이산화티탄이 이상적으로 결합한 형태의 구조를 나타내고 있다.As a result of analyzing the composition prepared by the method of the present invention through the TEM photograph of Figure 1, it formed a uniform particle size and uniform distribution of 20nm or less, and also excellent antibacterial, antifungal and antiviral activity. 2 is different from the pattern of silver colloid, titanium dioxide and “silver colloid / titanium dioxide-mixing” through XRD analysis, the composition prepared by the method of the present invention has a structure in which silver colloid and titanium dioxide are ideally bonded to each other. Indicates.
본 발명의 방법에 의해 제조된 조성물의 항균 메카니즘은 크게 2가지로 나타낼 수 있다. 첫째, 바이러스, 박테리아, 균류 등이 산소, 소화 대사 작용시 필요한 흡수계(Coenzyme A)의 기능을 방해하면서(나노 입자들이 바이러스와 결합하여 응집반응), 질식케 하거나 아사케 하는 기능, 즉 나노 입자가 세포막 및 효소 등의 단백질과 결합하여 세포의 에너지대사를 저해한다. 둘째, 나노 입자가 바이러스/세균 본체 속에 침투하여 세포의 유기구조를 파괴하여 제거하여 나노 복합체가 미생물의 -SH기, -COOH기, -OH기 등과 강력하고도 순간적인 결합을 함으로써 세포막을 파괴하고 세포를 교란시키는 역할을 수행한다.The antimicrobial mechanism of the composition prepared by the method of the present invention can be expressed in two ways. First, viruses, bacteria, and fungi interfere with the function of the absorption system (Coenzyme A), which is necessary for oxygen and digestive metabolism (nanoparticles bind to the virus and coagulate), suffocating or assuring, ie nanoparticles. Binds to proteins such as cell membranes and enzymes and inhibits cell metabolism. Second, the nanoparticles penetrate into the virus / bacteria body and destroy and remove the organic structure of the cell, and the nanocomposite destroys the cell membrane by binding strongly and momentarily with the microorganism's -SH, -COOH, and -OH groups. Plays a role in disturbing the cells.
전술한 바와 같이, 본 발명의 방법에 따라 제조된 조성물은 그 적용 대상에 따라 증류수, 알코올 등으로 희석하여 살포할 수 있고, 분무 가능한 용액, 바이얼, 스프레이, 에어로졸 등의 형태로 제조하여 분무하거나 또는 천연섬유, 부직포, 마스크, 필터 등에 도포 또는 함침함으로써 항균 및 방역제품에 적용 가능하다.As described above, the composition prepared according to the method of the present invention can be sprayed by diluting with distilled water, alcohol, etc., depending on the application object, and prepared by spraying a sprayable solution, vial, spray, aerosol, or the like. Or by applying or impregnated with natural fibers, nonwovens, masks, filters, etc. can be applied to antibacterial and anti-rust products.
전술한 본 발명의 또 다른 목적은 0.0000005 중량부 내지 10 중량부의 은 콜로이드 입자, 0.0000001 중량부 내지 15 중량부의 이산화티탄 나노입자, 0.00001 중량부 내지 6 중량부의 적어도 하나의 분산안정제, 그리고 55 중량부 내지 99 중량부의 물을 포함하는, 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물을 제공함으로써 달성될 수 있다.Another object of the present invention described above is 0.0000005 parts by weight to 10 parts by weight of silver colloidal particles, 0.0000001 parts by weight to 15 parts by weight of titanium dioxide nanoparticles, 0.00001 parts by weight to 6 parts by weight of at least one dispersion stabilizer, and 55 parts by weight to It can be achieved by providing a composition for killing influenza A (H1N1) virus, comprising 99 parts by weight of water.
본 발명의 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물의 분산안정제는 리소레시틴(lysolecithin), 플라보노이드(flavonoid), 트윈 20(Tween 20), 트윈 40, 트윈 80, 폴리비닐피롤리돈(polyvinylpyrrolidone) 및 폴리비닐알콜(polyvinylalcohol)로 이루어진 군에서 선택되는 어느 하나 이상인 것이 바람직하다.Dispersion stabilizers of the composition for killing influenza A (H1N1) virus of the present invention are lysolecithin, flavonoid, tween 20, tween 40, tween 80, polyvinylpyrrolidone and It is preferably at least one selected from the group consisting of polyvinyl alcohol.
또한, 본 발명의 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물의 은 콜로이드 입자와 이산화티탄 나노입자의 크기는 각각 1 nm 내지 100 nm인 것이 바람직하다.In addition, the size of the silver colloidal particles and titanium dioxide nanoparticles of the new influenza A (H1N1) virus killing composition of the present invention is preferably 1 nm to 100 nm.
전술한 본 발명의 또 다른 목적은 0.0000005 중량부 내지 10 중량부의 은 콜로이드 입자, 0.0000001 중량부 내지 15 중량부의 이산화티탄 나노입자, 0.00001 중량부 내지 6 중량부의 적어도 하나의 분산안정제, 그리고 55 중량부 내지 99 중량부의 물을 포함하는 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물을 도포하는 단계를 포함하는, 신종 인플루엔자A(H1N1) 바이러스를 사멸시키는 방법을 제공함으로써 달성될 수 있다.Another object of the present invention described above is 0.0000005 parts by weight to 10 parts by weight of silver colloidal particles, 0.0000001 parts by weight to 15 parts by weight of titanium dioxide nanoparticles, 0.00001 parts by weight to 6 parts by weight of at least one dispersion stabilizer, and 55 parts by weight to It can be achieved by providing a method for killing a new influenza A (H1N1) virus, comprising applying a composition for killing a new influenza A (H1N1) virus comprising 99 parts by weight of water.
본 발명의 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물은, 하기 실시예에 기재된 바와 같이, 신종 인플루엔자A(H1N1) 바이러스를 효과적으로 사멸시킨다. 따라서 상기 신종 인플루엔자A(H1N1) 바이러스 조성물을 필요한 곳에 도포함으로써 신종 인플루엔자A(H1N1) 바이러스의 방제 및 제거할 수 있다.The composition for killing influenza A (H1N1) virus of the present invention effectively kills the influenza A (H1N1) virus, as described in the following examples. Therefore, it is possible to control and remove the H1N1 virus by applying the H1N1 virus composition as necessary.
본 발명의 신종 인플루엔자A(H1N1) 바이러스를 사멸시키는 방법에 사용되는 분산안정제는 리소레시틴(lysolecithin), 플라보노이드(flavonoid), 트윈 20(Tween 20), 트윈 40, 트윈 80, 폴리비닐피롤리돈(polyvinylpyrrolidone) 및 폴리비닐알콜(polyvinylalcohol)로 이루어진 군에서 선택되는 어느 하나 이상인 것이 바람직하다.Dispersion stabilizers used in the method of killing the new influenza A (H1N1) virus of the present invention are lysolecithin, flavonoid, tween 20, tween 40, tween 80, polyvinylpyrrolidone ( It is preferably at least one selected from the group consisting of polyvinylpyrrolidone) and polyvinyl alcohol.
또한, 상기 신종 인플루엔자A(H1N1) 바이러스를 사멸시키는 방법에 사용되는 은 콜로이드 입자와 이산화티탄 나노입자의 크기는 각각 1 nm 내지 100 nm인 것이 바람직하다.In addition, the size of the silver colloidal particles and titanium dioxide nanoparticles used in the method of killing the influenza A (H1N1) virus is preferably 1 nm to 100 nm, respectively.
전술한 본 발명의 또 다른 목적은 0.0000005 중량부 내지 10 중량부의 은 콜로이드 입자, 0.0000001 중량부 내지 15 중량부의 이산화티탄 나노입자, 그리고 0.000005 중량부 내지 6 중량부의 적어도 하나의 분산안정제를 포함하는 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물이 코팅된, 신종 인플루엔자A(H1N1) 바이러스 차단용 필터를 제공함으로써 달성될 수 있다.Another object of the present invention described above is a novel influenza comprising 0.0000005 parts by weight to 10 parts by weight of silver colloidal particles, 0.0000001 parts by weight to 15 parts by weight of titanium dioxide nanoparticles, and 0.000005 parts by weight to 6 parts by weight of at least one dispersion stabilizer. A (H1N1) virus killing composition can be achieved by providing a filter for the new influenza A (H1N1) virus blocking.
본 발명의 신종 인플루엔자A(H1N1) 바이러스 차단용 필터에 사용되는 분산안정제는 리소레시틴(lysolecithin), 플라보노이드(flavonoid), 트윈 20(Tween 20), 트윈 40, 트윈 80, 폴리비닐피롤리돈(polyvinylpyrrolidone) 및 폴리비닐알콜(polyvinylalcohol)로 이루어진 군에서 선택되는 어느 하나 이상인 것이 바람직하다.Dispersion stabilizers used in the novel influenza A (H1N1) virus blocking filter of the present invention is lysolecithin, flavonoids, tween 20, tween 40, tween 80, polyvinylpyrrolidone ) And polyvinyl alcohol (polyvinylalcohol) is preferably any one or more selected from the group consisting of.
또한, 상기 신종 인플루엔자A(H1N1) 바이러스 차단용 필터에 사용되는 은 콜로이드 입자와 이산화티탄 나노입자의 크기는 각각 1 nm 내지 100 nm인 것이 바람직하다.In addition, the size of the silver colloidal particles and the titanium dioxide nanoparticles used in the new influenza A (H1N1) virus blocking filter is preferably 1 nm to 100 nm.
본 발명의 조성물은 빛이 있거나 없는 곳에서도 나노 은 입자와 광촉매 입자에 의해 강력한 항균 및 항바이러스능을 높여주는 시너지(synergy)효과를 발휘할 수 있도록 하는 특징이 있고, 특유의 유기물 산화능력에 의한 휘발성유기물 및 악취물질의 분해 기능도 동시에 보유하고 있으며 분무 가능한 형태로 제조되어 사용이 간편하다.The composition of the present invention is characterized in that it can exert a synergistic effect to enhance the strong antibacterial and antiviral ability by nano silver particles and photocatalyst particles even in the presence or absence of light, and volatility due to the unique organic oxidation ability It also possesses the decomposition function of organic substances and odorous substances at the same time and is easy to use because it is manufactured in a sprayable form.
상기와 같은 특징으로 인해 본 발명의 조성물은 사스의 원인균인 변종 코로나바이러스, 돼지 유행성 설사병 바이러스, 돼지 전염성 위장염 바이러스, 대장균, 인플루엔자 등을 포함하는 각종 바이러스, 세균과 곰팡이에 대한 강력한 항균, 악취성 물질의 탈취, 미량 휘발성유기물질의 분해 및 방향의 목적을 동시에 얻고자 할 경우 등에 대하여 광범위한 용도를 갖는다.Due to the above characteristics, the composition of the present invention is a strong antibacterial and odorous substance against various viruses, bacteria and fungi, including varietal coronavirus, swine epidemic diarrheal virus, swine infectious gastroenteritis virus, E. coli, influenza, etc. It has a wide range of uses for the purpose of simultaneously deodorizing, decomposing trace volatile organic substances and obtaining the purpose of fragrance.
특히, 본 발명의 조성물은 신종 인플루엔자A(H1N1) 바이러스에 대한 사멸 효과가 탁월하기 때문에 신종 인플루엔자A(H1N1) 바이러스의 예방, 사멸에 사용될 수 있다. 또한, 본 발명의 조성물이 도포된 필터를 사용한 마스크를 통하여 신종 플루를 효과적으로 예방할 수 있다.In particular, the composition of the present invention can be used for the prevention and killing of H1N1 virus because of its excellent killing effect against H1N1 virus. In addition, the swine flu can be effectively prevented through a mask using a filter coated with the composition of the present invention.
도 1은 본 발명의 방법에 따라 제조된 조성물의 TEM 사진이다.1 is a TEM photograph of a composition prepared according to the method of the present invention.
도 2는 은 콜로이드 입자, 이산화티탄 나노입자, 은 콜로이드 입자와 이산화티탄 나노입자의 혼합물, 그리고 본 발명의 방법에 따라 제조된 조성물에 대한 XRD 결과이다.2 is XRD results for silver colloidal particles, titanium dioxide nanoparticles, a mixture of silver colloidal particles and titanium dioxide nanoparticles, and a composition prepared according to the method of the present invention.
이하, 다음의 실시예 또는 도면을 들어 본 발명을 보다 구체적으로 설명하고자 한다. 그러나 다음의 실시예 또는 도면에 대한 설명은 본 발명의 구체적인 실시 태양을 특정하여 설명하고자 하는 것일 뿐이며, 본 발명의 권리 범위를 이들에 기재된 내용으로 한정하거나 제한해석하고자 의도하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples or drawings. However, the following description of the embodiments or drawings is only intended to specifically describe the specific embodiments of the present invention, it is not intended to limit or limit the scope of the present invention to the contents described therein.
본 발명의 방법에 따라 제조된 조성물의 황색포도상구균에 대한 항균능 시험, 대장균에 대한 살균력 시험, 항진균 시험, 사스 코로나바이러스 및 인플루엔자바이러스에 대한 항바이러스능 시험, 경구독성 및 피부자극에 대한 안전성시험을 실시하였으며, 각각의 구체적인 시험방법은 아래와 같다.Antibacterial activity test against Staphylococcus aureus, bactericidal test against E. coli, antifungal test, antiviral test against SARS coronavirus and influenza virus, oral toxicity and skin irritation of the composition prepared according to the method of the present invention Each test method is as follows.
가. 황색포도상구균에 대한 항균능 시험방법 end. Test method for antibacterial activity against Staphylococcus aureus
1. LB broth 배지(펩톤(peptone) 10g, 효모 추출물 5g, NaCl 10g, 우무(agar) 15-20g/L) 5ml에 시험균주의 단일집락(single colony) 접종하여 37℃에서 하룻밤 동안(overnight) 배양하였다.    1. Inoculate a single colony of test strain into 5 ml of LB broth medium (10 g of peptone, 5 g of yeast extract, 10 g of NaCl, 15-20 g / L of agar), and overnight at 37 ° C. Incubated.
2. 660nm에서 O.D.(optical density, 광학밀도)로 탁도(turbidity)를 측정하여 0.5로 조정하였다.     2. Turbidity was adjusted to 0.5 by measuring O.D. (optical density) at 660 nm.
3. 0.5로 조정된 시험균액을 100배 희석이 되게 LB broth 5ml에 접종하였다.     3. The test solution adjusted to 0.5 was inoculated in 5 ml of LB broth for 100-fold dilution.
4. 시료처리는 다음과 같다.     4. Sample processing is as follows.
처리농도: 최종농도가 103배 희석이 되도록 시료를 처리하였다.Treatment Concentration: Samples were treated so that the final concentration was 10 3 fold dilution.
처리시간: 시료를 처리하여 각각 1시간과 3시간 배양한 후 희석(100배, 10,000배)하여 100μl를 LB plate(LB broth + agar 15~20g/L)에 도포(spreading)하고 37℃에서 하룻밤 동안 배양하였다.      Treatment time: 1 hour and 3 hours of incubation of the sample, and diluted (100 times, 10,000 times), 100 μl was applied to the LB plate (LB broth + agar 15 ~ 20g / L) and overnight at 37 ℃ Incubated for
5. 집락(colony)수를 측정하여 시료를 처리하지 않은 대조군의 집락수와 비교하여 항균활성을 측정하였다.     5. The number of colonies was measured and the antimicrobial activity was measured compared to the number of colonies of the control group.
나. 대장균에 대한 항균능 시험방법I. Test method for antibacterial activity against Escherichia coli
배지에 대장균(Escherichia coli)을 도말한 후 본 발명에 의한 조성물을 증류수에 103배로 희석한 용액을 각각 3회 살포(약 0.5ml)한다. 처리된 배지를 3개의 형광등이 설치된 배양기에서 24시간 배양한 후에 colony수를 측정하여 살균력을 조사하였다.After spreading E. coli (Escherichia coli) to the medium, the solution of the present invention diluted 103 times in distilled water is sprayed three times (about 0.5 ml) each. The treated medium was incubated in an incubator equipped with three fluorescent lamps for 24 hours, and then bactericidal power was examined by measuring colony numbers.
다. 5대 공시균주에 대한 항진균능 시험방법All. Antifungal Test Method for Five Species
본 발명에 의한 조성물에 대한 항진균 시험은 ASTM G 21-96(2002)에 의거하여 5가지 곰팡이 사용공시균주(Aspergillus niger ATCC 9642, Chaetomium globosum ATCC 6205, Penicillium pinophilum ATCC 11787, Gliocladium virens ATCC 9645, Aureobasidium pullulans ATCC 15233)를 사용하여 실시하였다. 시험온도 및 시험기간은 다음과 같다.The antifungal test for the composition according to the present invention was carried out according to ASTM G 21-96 (2002). ATCC 15233). Test temperature and test period are as follows.
1. 시험온도: 28±1℃       1.Test temperature: 28 ± 1 ℃
2. 시험기간: 4주       2. Test period: 4 weeks
라. 코로나바이러스에 대한 항바이러스능 시험방법la. Test method for antiviral activity against coronavirus
본 발명에 의한 조성물에 대한 항바이러스능을 측정할 대상바이러스로서 먼저 코로나바이러스의 일종인 PEDV(Porcine Epidemic Diarrhea Virus, 돼지 유행성 설사 바이러스) 및 TGEV(Transmissible GastroEnteric Virus, 돼지 전염성 위장염 바이러스)를 선택하였다. PEDV는 사스바이러스의 감염세포주로 알려진 동물세포주(VeroE6)와 같이 원숭이 신장 세포주 Vero 세포에서 증식하는 코로나바이러스로서 VeroE6 세포주는 Vero 세포주의 파생세포주로서 그 특성이 거의 같다. 시험방법, 자료처리 및 평가방법은 다음과 같다.As a virus to measure antiviral activity for the composition according to the present invention, PEDV (Porcine Epidemic Diarrhea Virus) and TGEV (Transmissible GastroEnteric Virus) were selected. PEDV is a coronavirus that proliferates in the monkey kidney cell line Vero cells, such as the animal cell line known as SARS virus (VeroE6), and the VeroE6 cell line is a derivative cell line of Vero cell line. Test methods, data processing and evaluation methods are as follows.
1. 바이러스의 숙주세포인 Vero 세포를 96 well plate의 각 well에 2×104 개 되게 하여 넣고 16시간 배양하여 세포들이 완전히 monolayer로 각 well의 바닥에 덮이도록 하였다.1. Vero cells, the host cells of the virus, were placed in each well of a 96 well plate, and 2 × 10 4 cells were incubated for 16 hours to completely cover the cells with a monolayer on the bottom of each well.
2. 본 발명에 의한 조성물을 증류수에 10배씩 연속희석하고 일정한 농도로 희석된 바이러스 용액을 혼합하고 4℃에서 30분간 방치한 후 각 세포가 배양되어 있는 plate의 각 well에 접종하였다. 2. The composition according to the present invention was diluted 10-fold continuously in distilled water, and the virus solution diluted to a constant concentration was mixed and left at 4 ° C. for 30 minutes, and then inoculated into each well of a plate in which each cell was cultured.
3. 대조군으로 본 발명에 의한 조성물을 포함하지 않은 배양액, 바이러스만이 포함된 배양액, 본 발명에 의한 조성물만 첨가되고 바이러스가 포함되어 있지 않은 배양액을 넣은 well을 사용하였다. 3. As a control, a culture medium containing no composition according to the present invention, a culture containing only virus, and a well containing only a composition according to the present invention and containing no virus were used.
4. 시험 96 well plate는 40시간 후에 종료하고 70% 아세톤 용액으로 96 well plate 내의 세포들을 고정하고 완전히 건조시켰다. 4. Test 96 well plates were terminated after 40 hours and the cells in 96 well plates were fixed with 70% acetone solution and completely dried.
5. 분석은 각 well에서 잔존해있는 세포단백질을 SRB(0.4% Sulforhodamine B in 1% acetic acid)로 염색하여 이를 다시 녹인 후에 각 well의 흡광도를 EIA reader(96 well plate reader)로 측정하고 본 발명에 의한 조성물을 처리한 군과 처리하지 않은 대조군과의 비를 내어 분석하였다. 5. The assay was performed by staining the cell proteins remaining in each well with SRB (0.4% Sulforhodamine B in 1% acetic acid) and re-dissolving the absorbance of each well using an EIA reader (96 well plate reader). The ratio of the treated group to the untreated control group was analyzed.
6. 각 시험은 3회씩 반복하였다. 6. Each test was repeated three times.
7. 바이러스를 처리하지 않은 군(A), 본 발명에 의한 조성물을 처리한 군(B), 바이러스만을 처리한 군(C) 및 바이러스와 본 발명에 의한 조성물을 같이 처리한 군(D)의 흡광도 값을 기준으로 하여 다음과 같은 식에 의해 항바이러스능을 계산하여 본 발명에 의한 조성물의 제반성능을 평가하였다. 7. Of group (A) not treated with virus, group (B) treated with composition according to the present invention, group (C) treated with virus only and group (D) treated with virus and composition according to the present invention together Based on the absorbance value, antiviral activity was calculated by the following equation to evaluate the overall performance of the composition according to the present invention.
- 항바이러스능(%) = (D-C)/(B-C) x 100           % Antiviral activity = (D-C) / (B-C) x 100
마. 인플루엔자 바이러스에 대한 항바이러스능 시험방법hemp. Antiviral test method for influenza virus
1. 인체 인플루엔자(Human Influenza, HI) 바이러스        Human Influenza (HI) Virus
시험관 내(In vitro)에서의 항바이러스 기능 검증 In vitro (In vitroAntiviral function in
조건: 접촉시간 1시간         Condition: Contact time 1 hour
방법: Plaque assay: MDCK cell 이용하여 pfu (plaque forming unit)         Plaque assay: Plaque forming unit (pfu) using MDCK cells
계산         Calculation
1) A형 독감바이러스 (H3N2)      1) Influenza A virus (H3N2)
시험 바이러스: A/Shangdong/9/93 EC50: 0.02 - 0.04% Test Virus: A / Shangdong / 9/93 EC 50 : 0.02-0.04%
2) A형 독감바이러스 (H1N1)      2) Influenza A virus (H1N1)
시험 바이러스: A/Bayern/7/95 EC50: 0.08 - 0.16% Test Virus: A / Bayern / 7/95 EC 50 : 0.08-0.16%
A/PR/8/34 EC50: 0.04 - 0.08% A / PR / 8/34 EC 50 : 0.04-0.08%
3) B형 독감바이러스       3) Influenza B virus
시험 바이러스: B/Yamagata/16/88 EC50: 0.02 - 0.04% Test Virus: B / Yamagata / 16/88 EC 50 : 0.02-0.04%
4) 50% 불활성화에 걸리는 시간: 1% 용액 사용시 접촉 후 1-5분 이내      4) 50% inactivation time: within 1-5 minutes after contact with 1% solution
0.05% 용액 사용시 접촉 후 1시간 이내                                       Within 1 hour after contact with 0.05% solution
2. 조류 인플루엔자(Avian Influenza, AI) 바이러스      2. Avian Influenza (AI) Virus
생체 내(In vivo)에서의 항바이러스 기능 검증Validation of antiviral function in vivo
조건: 접촉 시간 1시간         Condition: 1 hour contact time
방법: 수정란에 감염하여 바이러스 생장여부(수정란 감염지수 EC50 계산)By: whether the embryos infected with the virus grown (embryo infection index calculated EC 50)
시험 바이러스: H9N2형 조류인플루엔자 EC50: 0.02 - 0.04%Test Virus: H9N2 Avian Influenza EC 50 : 0.02-0.04%
바. 신종 플루(H1N1) 바이러스에 대한 불활화능 측정 방법bar. How to measure inactivation against the H1N1 virus
1. 본 발명의 조성물의 신종 플루 바이러스에 대한 불활화능 측정 방법1.Method for measuring inactivation of the swine flu virus of the composition of the present invention
1) 본 발명의 조성물을 PBS(pH 7.4)로 10배 희석한다.1) Dilute the composition of the present invention 10 times with PBS pH 7.4.
2) 희석한 상기 조성물에 106EID50/ml의 100 μl의 신종 플루(H1N1) 바이러스를 적용한다(EID50 = 50% egg infective dose).2) Apply 100 μl of H1N1 virus of 10 6 EID 50 / ml to the diluted composition (EID 50 = 50% egg infective dose).
3) 실험실온도에서 20분간 반응시킨다.3) React at room temperature for 20 minutes.
4) 20분간 반응시킨 후, PBS를 사용하여 10 배씩 연속적으로 희석한다.4) After reacting for 20 minutes, dilute serially 10 times with PBS.
5) 10배씩 희석한 용액을 10일령의 유정란에 접종한다.5) Inoculate 10-fold diluted eggs into 10-day-old eggs.
6) 접종한 유정란을 48시간 동안 35℃의 부화기에서 배양 후, 4℃의 냉장고에서 4시간 동안 냉장한다.6) The inoculated fertilized eggs are incubated in an incubator at 35 ° C. for 48 hours and then refrigerated for 4 hours in a refrigerator at 4 ° C.
7) 냉장한 유정란의 요수에 바이러스의 존재를 혈구응집반응에 의해 측정하여, 1og10EID50/ml를 측정한다.7) The presence of virus in the ureters of chilled fertilized eggs is measured by hemagglutination, and 1og 10 EID 50 / ml is measured.
2. 본 발명의 조성물이 처리된 필터의 신종 플루 바이러스에 대한 불활화능 측정 방법2. Method for measuring inactivation ability against the swine flu virus of a filter treated with the composition of the present invention
1) 본 발명의 조성물이 처리된 필터 또는 처리되지 않은 필터를 약 2 cm X 2 cm로 잘라 페티리디쉬 (petri dish)에 놓는다.1) The filter treated or untreated filter of the composition of the present invention is cut into about 2 cm X 2 cm and placed in a petri dish.
2) 자른 필터에 106EID50/ml의 신종 플루 바이러스 100 ml를 적용한다.2) Apply 100 ml of the H1N1 virus to 10 6 EID 50 / ml on the cut filter.
3) 바이러스를 적용받은 필터를 실험실온도에서 20분간 반응시킨다.3) React the virus-filtered filter at the laboratory temperature for 20 minutes.
4) 20분간 반응시킨 후 필터를 1ml의 PBS (pH 7.4)로 씻어내고 PBS를 사용하여 10 배씩 연속적으로 희석한다.4) After reacting for 20 minutes, wash the filter with 1 ml of PBS (pH 7.4) and dilute serially 10 times with PBS.
5) 10배씩 희석한 액을 10일령의 유정란에 접종한다.5) Inoculate 10-fold dilutions into 10-day-old fertilized eggs.
6) 접종한 유정란을 48시간 동안 35℃의 부화기에서 배양 후, 4℃의 냉장고에서 4시간 동안 냉장한다.6) The inoculated fertilized eggs are incubated in an incubator at 35 ° C. for 48 hours and then refrigerated in a refrigerator at 4 ° C. for 4 hours.
7) 냉장한 유정란의 요수에 바이러스의 존재를 혈구응집반응에 의해 측정하여, 1og10EID50/ml를 측정한다.7) The presence of virus in the ureters of chilled fertilized eggs is measured by hemagglutination, and 1og 10 EID 50 / ml is measured.
사. 경구독성 및 피부자극에 대한 안전성시험four. Safety test for oral toxicity and skin irritation
본 발명에 의한 조성물에 대한 안전성시험의 일환으로 경구독성시험과 피부자극시험을 식품안전청고시 제 1999-61호에 의거하여 실시하였다.As part of the safety test for the composition according to the present invention, oral toxicity test and skin irritation test were conducted in accordance with Korean Food Safety Agency No. 1999-61.
실시예 1. 본 발명에 의한 조성물의 합성법Example 1 Synthesis of Compositions According to the Present Invention
먼저 은 콜로이드 제조에는 질산은(AgNO3) 10g 및 에탄올 20g, 분산 안정제인 플라보노이드(flavonoid) 0.01g을 사용하여 80℃에서 5시간 유지하여 알코올 환원법에 의해 은 콜로이드 입자를 제조하였다. 이때 제조된 은 콜로이드 용액은 평균입경이 20 내지 50nm 크기이며 50,000ppm 농도의 은 콜로이드 용액을 제조하여 10 내지 5,000ppm의 농도가 되도록 증류수로 희석하였다.First, silver colloid was prepared by using 10 g of silver nitrate (AgNO 3 ), 20 g of ethanol, and 0.01 g of flavonoid (flavonoid) as a dispersion stabilizer at 80 ° C. for 5 hours to prepare silver colloidal particles by alcohol reduction. At this time, the silver colloidal solution prepared was diluted with distilled water so that the average particle diameter was 20-50 nm in size and a 50,000 ppm silver colloidal solution was prepared to have a concentration of 10-5,000 ppm.
이어서 물을 사용하여 500ppm으로 희석된 은 콜로이드 용액을 용매로서 사용하여 TEOT(titaniumethoxyorthotitanate) 35g과 에탄올을 혼합한 용액을 넣고 졸-겔법(sol-gel method)을 이용하여 상온에서 가수분해와 축합반응을 수행하였다. 이때 가수분해 반응의 촉매로서 HNO3 0.5g을 사용하였다. 반응 온도는 60 내지 85℃로 가열하고 4시간 내지 8시간 교반하여 유백색의 평균입경이 1 내지 100nm 크기의 이산화티탄 입자를 1wt% 내지 5wt%의 농도로 함유하는 본 발명에 의한 조성물을 합성하였다.Subsequently, a silver colloidal solution diluted to 500 ppm with water was used as a solvent, and a solution of 35 g of titaniumethoxyorthotitanate (TEOT) and ethanol was added thereto. Was performed. At this time, 0.5 g of HNO 3 was used as a catalyst for the hydrolysis reaction. The reaction temperature was heated to 60 to 85 ℃ and stirred for 4 to 8 hours to synthesize a composition according to the present invention containing titanium dioxide particles having an average particle diameter of 1 to 100 nm in milky white at a concentration of 1wt% to 5wt%.
실시예 2 내지 실시예 7.Examples 2-7.
표 1과 같이 질산은과 TEOT의 첨가량만 달리한 채 상기 실시예 1의 방법과 동일한 방법으로 본 발명에 의한 조성물을 합성하였다.As shown in Table 1, the composition according to the present invention was synthesized in the same manner as in Example 1 with only the addition amounts of silver nitrate and TEOT added.
표 1
질산은 함량(g) 에탄올 함량(g) 플라보노이드 함량(g) TEOT 함량(g) 질산 함량(g) 안정성
실시예 1 10 20 0.01 35 0.5
실시예 2 5 20 0.01 35 0.5
실시예 3 15 20 0.01 35 0.5
실시예 4 20 20 0.01 35 0.5 ×
실시예 5 10 20 0.01 20 0.5
실시예 6 10 20 0.01 40 0.5
실시예 7 10 20 0.01 50 0.5 ×
Table 1
Silver Nitrate Content (g) Ethanol Content (g) Flavonoid Content (g) TEOT Content (g) Nitric acid content (g) stability
Example 1 10 20 0.01 35 0.5
Example 2 5 20 0.01 35 0.5
Example 3 15 20 0.01 35 0.5
Example 4 20 20 0.01 35 0.5 ×
Example 5 10 20 0.01 20 0.5
Example 6 10 20 0.01 40 0.5
Example 7 10 20 0.01 50 0.5 ×
○: 침전이 전혀 일어나지 않고 안정한 실버-이산화티탄의 콜로이드를 합성○: Synthesis of colloid of stable silver-titanium dioxide without precipitation occurs at all
×: 합성 후 곧바로 침전이 일어남×: precipitation immediately after synthesis
가. 황색포도상구균에 대한 항균능 시험결과end. Antibacterial Activity Test Results for Staphylococcus Aureus
본 발명의 방법에 의해 제조된 조성물과 종래의 혼합법에 의해 제조된 용액의 항균활성비교결과 처리시간 1시간경과 후 황색포도상구균에 대한 각각의 제거율이 100%와 63%로 본 발명의 방법에 의해 제조된 조성물이 더욱 뛰어난 항균활성결과를 나타내었다(표 2).     The antimicrobial activity of the composition prepared by the method of the present invention and the solution prepared by the conventional mixing method showed that the removal rate for Staphylococcus aureus was 100% and 63% after 1 hour of treatment time. The prepared composition showed more excellent antimicrobial activity results (Table 2).
표 2 본 발명의 방법과 종래의 혼합법에 의해 제조된 용액의 황색포도상구균에 대한 항균활성결과 비교 (cfu/plate)
황색포도상구균 본 발명의 방법에 의해 제조된은 콜로이드/이산화티탄 용액 종래의 혼합법에 의해 제조된 용액*
O.D.=0.5를 1/100로 희석 O.D.=0.5를 1/100로 희석
1시간 3시간 1시간 3시간
10-4 희석 10-4 희석 10-4 희석 10-4 희석
대조군 약 1,000 셀 수 없이 많음 582 셀 수 없이 많음
잔존 세균수/제거율(%) 0/100 0/100 216/63 280/-
TABLE 2 Comparison of Antimicrobial Activity Results against Staphylococcus Aureus of a Solution Prepared by the Method of the Present Invention and the Conventional Mixing Method (cfu / plate)
Staphylococcus aureus Silver colloid / titanium dioxide solution prepared by the method of the present invention Solution prepared by conventional mixing method *
Dilute OD = 0.5 to 1/100 Dilute OD = 0.5 to 1/100
1 hours 3 hours 1 hours 3 hours
10 -4 dilution 10 -4 dilution 10 -4 dilution 10 -4 dilution
Control About 1,000 Innumerable 582 Innumerable
Residual bacteria count / removal rate (%) 0/100 0/100 216/63 280 /-
*: 종래의 혼합법은 각각의 은 콜로이드와 이산화티탄 용액을 제조한 후, 은 콜로이드 용액에 이산화티탄 용액을 단순히 혼합한 용액이다. 이때 혼합비율은 은 콜로이드 용액:이산화티탄 용액을 8:2로 하였다.*: The conventional mixing method is a solution in which the silver colloid and the titanium dioxide solution are prepared, and then the titanium dioxide solution is simply mixed with the silver colloid solution. At this time, the mixing ratio of silver colloid solution: titanium dioxide solution was 8: 2.
나. 대장균(E. coli)에 대한 항균능 시험 결과I. Antibacterial activity test results for E. coli
본 발명에 의한 조성물은 대장균을 99.999%까지 제거하였다.The composition according to the present invention eliminated up to 99.999% E. coli.
다. 5대 공시균주에 대한 항진균능 시험 결과All. Antifungal Test Results of Five Species
5가지 곰팡이 사용공시균주에 대해서 곰팡이가 전혀 자라지 않는 “0등급”의 결과를 나타내었다(표 3).The results of “grade 0” showed no mold growth at all for five fungal strains (Table 3).
표 3
사용공시균주 Aspergillus niger ATCC 9642Chaetomium globosum ATCC 6205Penicillium pinophilum ATCC 11787Gliocladium virens ATCC 9645Aureobasidium pullulans ATCC 15233 ASTM G 21-96(2002)
등급 0
TABLE 3
Used strain Aspergillus niger ATCC 9642 Chatomium globosum ATCC 6205 Penicillium pinophilum ATCC 11787 Gliocladium virens ATCC 9645 Aureobasidium pullulans ATCC 15233 ASTM G 21-96 (2002)
ranking 0
라. 코로나바이러스에 대한 항바이러스능 시험 결과la. Antiviral test results for coronavirus
항바이러스능 시험을 3회씩 반복한 결과 각기 비슷한 유형을 나타내었다. 이 희석범위 내에서는 조성물에 의한 세포독성이 거의 나타나지 않았다. 조성물을 100배 희석하였을 경우는 PEDV(Porcine Epidemic Diarrhea Virus, 돼지 유행성 설사 바이러스)와 TGEV(Transmissible Gastroenteric Virus, 돼지 전염성 위장염 바이러스)에 대한 항바이러스능은 각각 99.99%, 99.9%이상이었다. 그리고 1,000배 희석한 경우에서는 99.9%, 93.0%이상으로서 모두 90% 이상의 바이러스 억제능을 나타내었다. 대체로 조성물의 농도가 높아질수록 바이러스에 대한 억제능 수치도 증가하였다(표 4).Three replicates of antiviral activity revealed similar types. Within this dilution range, there was little cytotoxicity by the composition. When the composition was diluted 100-fold, antiviral activity against PEDV (Porcine Epidemic Diarrhea Virus) and TGEV (Transmissible Gastroenteric Virus) was 99.99% and 99.9%, respectively. In the case of diluting 1,000-fold, 99.9% and 93.0% or more showed more than 90% virus inhibition. In general, the higher the concentration of the composition, the higher the inhibitory activity against the virus (Table 4).
표 4
시험 방법 본 발명에 의한 조성물
활성 시험 효능(100배 희석) 효능(1,000배 희석)
PEDV TGEV PEDV TGEV
항바이러스능 99.99% 이상 99.99% 이상 99.99% 이상 93.0% 이상
Table 4
Test Methods Composition according to the present invention
Active test Efficacy (100-fold dilution) Efficacy (1,000-fold dilution)
PEDV TGEV PEDV TGEV
Antiviral activity 99.99% or more 99.99% or more 99.99% or more 93.0% or more
마. 조성물의 인플루엔자 바이러스에 대한 항바이러스능 시험 결과hemp. Results of antiviral activity test against influenza virus in the composition
본 발명에 의한 조성물의 인플루엔자바이러스에 대한 항바이러스능 시험방법에 따라 시험한 결과 인체 인플루엔자 바이러스 및 조류 인플루엔자 바이러스에 대해 효과가 입증되었다(표 5).According to the antiviral activity test method for influenza virus of the composition according to the present invention, the effect was demonstrated for human influenza virus and avian influenza virus (Table 5).
표 5
종 류 인체 인플루엔자 바이러스;A형:H1N1, A형:H3N2, B형 조류 인플루엔자 바이러스;H9N2
결 과 EC50: 0.02~0.04% EC50: 0.02~0.04%
Table 5
Kinds Human influenza virus; A type: H1N1, A type: H3N2, B type Avian influenza virus; H9N2
result EC 50 : 0.02-0.04% EC 50 : 0.02-0.04%
바. 본 발명의 조성물의 신종 플루(H1N1) 바이러스에 대한 불활화능 시험 결과bar. Inactivation test results for swine flu (H1N1) virus of the composition of the present invention
본 발명에 의한 조성물의 신종 플루 바이러스에 대한 불활화능 시험방법에 따라 시험한 결과, 상기 조성물은 신종 플루 바이러스를 100% 제하였다. 또한, 상기 조성물이 처리된 필터는 신종 플루 바이러스를 99.99% 이상 제거하였다(표 6)The composition according to the present invention was tested according to the test for inactivation against the swine flu virus, and the composition was 100% free of the swine flu virus. In addition, the filter treated with the composition removed more than 99.99% of swine flu virus (Table 6)
표 6
시 료 바이러스 역가(log10EID50/ml)
본 발명의 조성물 0 0 0 0 0
본 발명의 조성물이 처리된 필터 <1.0 <1.0 <1.0 <1.0 <1.0
본 발명의 조성물으로 처리되지 아니한 필터 6.0 6.5 6.5 6.0 6.0
바이러스 대조군 6.5 6.0 6.5 6.5 6.0
Table 6
sample Virus titer (log 10 EID 50 / ml)
Compositions of the Invention 0 0 0 0 0
Filter Treated with Composition of the Invention <1.0 <1.0 <1.0 <1.0 <1.0
Filter not treated with the composition of the present invention 6.0 6.5 6.5 6.0 6.0
Virus control 6.5 6.0 6.5 6.5 6.0
사. 본 발명에 의한 조성물의 경구독성 및 피부자극에 대한 안전성시험 결과four. Safety test results for oral toxicity and skin irritation of the composition according to the present invention
본 발명에 의한 조성물에 대한 안전성시험으로서 경구독성시험과 피부자극시험을 식품안전청고시 제1999-61호에 의거하여 실시한 결과는 표 7과 같다.As a safety test for the composition according to the present invention, the oral toxicity test and the skin irritation test based on the Korean Food Safety Agency Notification No. 1999-61 are shown in Table 7.
표 7
시험 항목 시 험 결 과 시험 방법
경구독성 시험물질을 5,000mg/kg B.W.의 농도로 랫드에 1회 경구 투여한 후 14일간 치사 동물수, 일반증상, 체중변화 및 부검소견을 관찰한 결과, 시험물질 투여와 관련된 일반증상과 부검소견은 인정되지 않았고, 사망동물 또한 관찰되지 않았으며 유의성 있는 체중변화도 인정되지 않았다. 따라서 조성물에 대한 개략의 치사량치는 암, 수 모두 5,000mg/kg B.W.이상으로 판단된다. 식약청 고시제1999-61호
피부자극 New Zealand White계 토끼에 있어서 조성물에 대한 피부적용은 홍반, 가피 및 부종 등을 유발하지 않아 일차피부자극지수인 P.I.I.(Primary Irritation Index)값이 “0.0”으로 산출되어 비자극성물질(None Irritation)로 평가되었다. 이상의 결과를 통해 조성물을 인체 또는 동물에 적용시 무해한 물질임이 확인되었다.
TABLE 7
Test Items Test result Test Methods
Oral Toxicity After the oral administration of the test substance to the rat at a concentration of 5,000 mg / kg BW, the number of dead animals, general symptoms, weight change and autopsy findings were observed for 14 days. The general symptoms and autopsy findings related to the administration of the test substance were recognized. No deaths were observed, and no significant weight changes were recognized. Therefore, the approximate lethal dose for the composition is judged to be more than 5,000 mg / kg BW for both male and female. KFDA Notification No. 1999-61
Skin irritation The skin application of the composition in New Zealand White rabbits does not cause erythema, skin and swelling, so the primary skin irritation index PII (Primary Irritation Index) value is calculated as “0.0”, resulting in non-irritating substances. Was evaluated. The above results confirmed that the composition is a harmless substance when applied to humans or animals.

Claims (25)

  1. i) 적어도 하나의 분산안정제가 포함된 제1 알콜과 은 전구체를 반응시켜 은 콜로이드 용액을 제조하는 단계;i) preparing a silver colloidal solution by reacting a first alcohol containing at least one dispersion stabilizer with a silver precursor;
    ii) 상기 은 콜로이드 용액을 물로 희석한 용액에 티타늄 전구체, 제2 알콜 및 산(acid) 촉매를 가하여 상기 은 콜로이드 용액 내에 이산화티탄 나노입자를 생성시키는 단계를 포함하고,ii) adding titanium precursor, a second alcohol and an acid catalyst to a solution of diluting the silver colloidal solution with water to produce titanium dioxide nanoparticles in the silver colloidal solution;
    상기 은 콜로이드를 0.0000005 중량부 내지 10 중량부, 상기 이산화티탄 나노입자를 0.0000001 중량부 내지 15 중량부, 상기 적어도 하나의 분산안정제를 0.00001 중량부 내지 6 중량부, 그리고 상기 물을 55 중량부 내지 99 중량부 함유하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법.0.0000005 to 10 parts by weight of the silver colloid, 0.0000001 to 15 parts by weight of the titanium dioxide nanoparticles, 0.00001 to 6 parts by weight of the at least one dispersion stabilizer, and 55 to 99 parts by weight of the water. A method for producing an antibacterial, antifungal and antiviral composition, containing by weight.
  2. 제1항에 있어서, 상기 i)단계의 은 전구체가 질산은(AgNO3) 또는 초산은(CH3COOAg)인 것임을 특징으로 하는 항균, 항진균 및 항바이러스성 조성물 제조 방법.The method of claim 1, wherein the silver precursor of step i) is silver nitrate (AgNO 3 ) or silver acetate (CH 3 COOAg).
  3. 제1항에 있어서, 상기 i)단계의 제1 알콜이 메탄올, 에탄올, 이소프로필알콜 및 부탄올로 이루어진 군에서 선택되는 것임을 특징으로 하는 항균, 항진균 및 항바이러스성 조성물 제조 방법.The method of claim 1, wherein the first alcohol of step i) is selected from the group consisting of methanol, ethanol, isopropyl alcohol and butanol.
  4. 제1항에 있어서, 상기 i)단계의 분산안정제가 리소레시틴(lysolecithin), 플라보노이드(flavonoid), 트윈 20(Tween 20), 트윈 40, 트윈 80, 폴리비닐피롤리돈(polyvinylpyrrolidone) 및 폴리비닐알콜(polyvinylalcohol)로 이루어진 군에서 선택되는 어느 하나 이상인 것임을 특징으로 하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법.The method of claim 1, wherein the dispersion stabilizer of step i) is lysolecithin, flavonoids, Tween 20, Tween 40, Tween 80, polyvinylpyrrolidone and polyvinyl alcohol (polyvinylalcohol), characterized in that any one or more selected from the group consisting of, antimicrobial, antifungal and antiviral composition production method.
  5. 제1항에 있어서, 상기 ii)단계의 티타늄 전구체가 TTIP(titaniumtetraisopropoxide), TEOT(titaniumethoxyorthotitanate) 및 TBOT(titaniumbutoxyorthotitanate)로 이루어진 군에서 선택되는 것임을 특징으로 하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법.The method of claim 1, wherein the titanium precursor of step ii) is selected from the group consisting of titanium tetraisopropoxide (TTIP), titaniumethoxyorthotitanate (TEOT), and titaniumbutoxyorthotitanate (TBOT).
  6. 제1항에 있어서, 상기 ii)단계의 제2 알콜이 이소프로필알콜, 에탄올 및 부탄올로 이루어진 군에서 선택되는 것임을 특징으로 하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법.The method of claim 1, wherein the second alcohol of step ii) is selected from the group consisting of isopropyl alcohol, ethanol and butanol.
  7. 제1항에 있어서, 상기 ii)단계의 산 촉매가 질산, 염산, 황산 및 옥살산으로 이루어진 군에서 선택되는 것임을 특징으로 하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법.The method of claim 1, wherein the acid catalyst of step ii) is selected from the group consisting of nitric acid, hydrochloric acid, sulfuric acid and oxalic acid.
  8. 제1항에 있어서, 상기 i)단계의 반응 온도 및 반응 시간이 각각 70℃ 내지 90℃ 및 2시간 내지 5시간인 것임을 특징으로 하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법.According to claim 1, wherein the reaction temperature and reaction time of step i) is characterized in that 70 ℃ to 90 ℃ and 2 hours to 5 hours, respectively, antimicrobial, antifungal and antiviral composition production method.
  9. 제1항에 있어서, 상기 ii)단계의 반응 온도 및 반응 시간이 각각 60℃ 내지 85℃ 및 4시간 내지 8시간인 것임을 특징으로 하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법.The method of claim 1, wherein the reaction temperature and reaction time of step ii) are 60 ° C to 85 ° C and 4 hours to 8 hours, respectively.
  10. 제1항에 있어서, 상기 은 콜로이드 입자의 크기가 1 nm 내지 100 nm인 것임을 특징으로 하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법.The method of claim 1, wherein the silver colloidal particles have a size of 1 nm to 100 nm, antimicrobial, antifungal and antiviral composition.
  11. 제1항에 있어서, 상기 이산화티탄 나노입자의 크기가 1 nm 내지 100 nm인 것임을 특징으로 하는, 항균, 항진균 및 항바이러스성 조성물 제조 방법.The method of claim 1, wherein the titanium dioxide nanoparticles have a size of 1 nm to 100 nm, antimicrobial, antifungal and antiviral composition.
  12. 0.0000005 중량부 내지 10 중량부의 은 콜로이드 입자, 0.0000001 중량부 내지 15 중량부의 이산화티탄 나노입자, 0.00001 중량부 내지 6 중량부의 적어도 하나의 분산안정제, 그리고 55 중량부 내지 99 중량부의 물을 포함하는, 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물.A new species, comprising 0.0000005 to 10 parts by weight of silver colloidal particles, 0.0000001 to 15 parts by weight of titanium dioxide nanoparticles, 0.00001 to 6 parts by weight of at least one dispersion stabilizer, and 55 to 99 parts by weight of water Composition for influenza A (H1N1) virus killing.
  13. 제12항에 있어서, 상기 분산안정제가 리소레시틴(lysolecithin), 플라보노이드(flavonoid), 트윈 20(Tween 20), 트윈 40, 트윈 80, 폴리비닐피롤리돈(polyvinylpyrrolidone) 및 폴리비닐알콜(polyvinylalcohol)로 이루어진 군에서 선택되는 어느 하나 이상인 것임을 특징으로 하는 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물.The method of claim 12 wherein the dispersion stabilizer is lysolecithin, flavonoids, Tween 20, Tween 40, Tween 80, polyvinylpyrrolidone and polyvinyl alcohol (polyvinylalcohol) Swine influenza A (H1N1) virus killing composition, characterized in that any one or more selected from the group consisting of.
  14. 제12항에 있어서, 상기 은 콜로이드 입자의 크기가 1 nm 내지 100 nm인 것임을 특징으로 하는 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물.13. The composition for killing influenza A (H1N1) virus according to claim 12, wherein the silver colloidal particles have a size of 1 nm to 100 nm.
  15. 제12항에 있어서, 상기 이산화티탄 나노입자의 크기가 1 nm 내지 100 nm인 것임을 특징으로 하는 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물.13. The novel influenza A (H1N1) virus killing composition according to claim 12, wherein the titanium dioxide nanoparticles have a size of 1 nm to 100 nm.
  16. 0.0000005 중량부 내지 10 중량부의 은 콜로이드 입자, 0.0000001 중량부 내지 15 중량부의 이산화티탄 나노입자, 0.00001 중량부 내지 6 중량부의 적어도 하나의 분산안정제, 그리고 55 중량부 내지 99 중량부의 물을 포함하는 항-신종 인플루엔자A(H1N1) 바이러스 조성물을 도포하는 단계를 포함하는, 신종 인플루엔자A(H1N1) 바이러스를 사멸시키는 방법.An anti-compound comprising 0.0000005 parts by weight to 10 parts by weight of silver colloidal particles, 0.0000001 parts by weight to 15 parts by weight of titanium dioxide nanoparticles, 0.00001 parts by weight to 6 parts by weight of at least one dispersion stabilizer, and 55 parts by weight to 99 parts by weight of water. A method of killing Swine Influenza A (H1N1) virus, comprising applying a Swine Influenza A (H1N1) virus composition.
  17. 제16항에 있어서, 상기 분산안정제가 리소레시틴(lysolecithin), 플라보노이드(flavonoid), 트윈 20(Tween 20), 트윈 40, 트윈 80, 폴리비닐피롤리돈(polyvinylpyrrolidone) 및 폴리비닐알콜(polyvinylalcohol)로 이루어진 군에서 선택되는 어느 하나 이상인 것임을 특징으로 하는 신종 인플루엔자A(H1N1) 바이러스를 사멸시키는 방법.The method of claim 16 wherein the dispersion stabilizer is lysolecithin, flavonoids, Tween 20, Tween 40, Tween 80, polyvinylpyrrolidone and polyvinyl alcohol (polyvinylalcohol) A method of killing a new influenza A (H1N1) virus, characterized in that at least one selected from the group consisting of.
  18. 제16항에 있어서, 상기 은 콜로이드 입자의 크기가 1 nm 내지 100 nm인 것임을 특징으로 하는 신종 인플루엔자A(H1N1) 바이러스를 사멸시키는 방법.17. The method of claim 16, wherein the silver colloidal particles are 1 nm to 100 nm in size.
  19. 제16항에 있어서, 상기 이산화티탄 나노입자의 크기가 1 nm 내지 100 nm인 것임을 특징으로 하는 신종 인플루엔자A(H1N1) 바이러스를 사멸시키는 방법.17. The method of claim 16, wherein the titanium dioxide nanoparticles have a size of 1 nm to 100 nm.
  20. 0.0000005 중량부 내지 10 중량부의 은 콜로이드 입자, 0.0000001 중량부 내지 15 중량부의 이산화티탄 나노입자, 그리고 0.00001 중량부 내지 6 중량부의 적어도 하나의 분산안정제를 포함하는 신종 인플루엔자A(H1N1) 바이러스 사멸용 조성물이 코팅된, 신종 인플루엔자A(H1N1) 바이러스 차단용 필터.A novel influenza A (H1N1) virus killing composition comprising 0.0000005 parts by weight to 10 parts by weight of silver colloidal particles, 0.0000001 parts by weight to 15 parts by weight of titanium dioxide nanoparticles, and 0.00001 parts by weight to 6 parts by weight of at least one dispersion stabilizer. Coated, Influenza A (H1N1) virus blocking filter.
  21. 제20항에 있어서, 상기 분산안정제가 리소레시틴(lysolecithin), 플라보노이드(flavonoid), 트윈 20(Tween 20), 트윈 40, 트윈 80, 폴리비닐피롤리돈(polyvinylpyrrolidone) 및 폴리비닐알콜(polyvinylalcohol)로 이루어진 군에서 선택되는 어느 하나 이상인 것임을 특징으로 하는 신종 인플루엔자A(H1N1) 바이러스 차단용 필터.21. The method of claim 20, wherein the dispersion stabilizer is lysolecithin, flavonoid, Tween 20, tween 40, tween 80, polyvinylpyrrolidone and polyvinylalcohol. New influenza A (H1N1) virus blocking filter, characterized in that any one or more selected from the group consisting of.
  22. 제20항에 있어서, 상기 은 콜로이드 입자의 크기가 1 nm 내지 100 nm인 것임을 특징으로 하는 신종 인플루엔자A(H1N1) 바이러스 차단용 필터.21. The novel influenza A (H1N1) virus blocking filter according to claim 20, wherein the silver colloid particles have a size of 1 nm to 100 nm.
  23. 제20항에 있어서, 상기 이산화티탄 나노입자의 크기가 1 nm 내지 100 nm인 것임을 특징으로 하는 신종 인플루엔자A(H1N1) 바이러스 차단용 필터.21. The novel influenza A (H1N1) virus blocking filter according to claim 20, wherein the titanium dioxide nanoparticles have a size of 1 nm to 100 nm.
  24. 제20항에 있어서, 상기 필터가 폴리프로필렌으로 제조된 것임을 특징으로 하는 신종 인플루엔자A(H1N1) 바이러스 차단용 필터.21. The new influenza A (H1N1) virus blocking filter according to claim 20, wherein the filter is made of polypropylene.
  25. 제20항의 필터를 포함하는 신종 인플루엔자A(H1N1) 바이러스 차단용 마스크.A new influenza A (H1N1) virus blocking mask comprising the filter of claim 20.
PCT/KR2009/004779 2008-08-27 2009-08-27 Method for preparing antimicrobial, antifungal, and antiviral compositions WO2010024598A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20080083764 2008-08-27
KR10-2008-0083764 2008-08-27
KR10-2009-0079524 2009-08-27
KR1020090079524A KR101083609B1 (en) 2008-08-27 2009-08-27 Antibacterial, abtifungal and antiviral composition and method for preparing the same

Publications (2)

Publication Number Publication Date
WO2010024598A2 true WO2010024598A2 (en) 2010-03-04
WO2010024598A3 WO2010024598A3 (en) 2010-06-17

Family

ID=41722120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004779 WO2010024598A2 (en) 2008-08-27 2009-08-27 Method for preparing antimicrobial, antifungal, and antiviral compositions

Country Status (1)

Country Link
WO (1) WO2010024598A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199951A1 (en) * 2015-06-09 2016-12-15 ㈜엔트리엘엔에이치 Water-treatment membrane having antibacterial and microbe-preventing function, and production method for same
CN111533225A (en) * 2020-05-08 2020-08-14 北京崇高纳米科技有限公司 Antibacterial water activation ball and preparation method and application thereof
US20220061327A1 (en) * 2020-08-28 2022-03-03 Uop Llc Antiviral metal treatments for fiber substrates, filter media having antiviral metal treatments, and processes for treating fiber substrates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187806A (en) * 2000-12-20 2002-07-05 Nihon Tetra Pak Kk Antimicrobial material
WO2006049378A1 (en) * 2004-11-08 2006-05-11 Bio Dreams Co. Ltd. Nano-silicasilver and method for the preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187806A (en) * 2000-12-20 2002-07-05 Nihon Tetra Pak Kk Antimicrobial material
WO2006049378A1 (en) * 2004-11-08 2006-05-11 Bio Dreams Co. Ltd. Nano-silicasilver and method for the preparation thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI Y. ET AL: 'ANTIMICROBIAL EFFECT OF SURGICAL MASKS COATED WITH NANOPARTICLES' JOURNAL OF HOSPITAL INFECTION vol. 62, 2006, pages 58 - 63 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199951A1 (en) * 2015-06-09 2016-12-15 ㈜엔트리엘엔에이치 Water-treatment membrane having antibacterial and microbe-preventing function, and production method for same
CN111533225A (en) * 2020-05-08 2020-08-14 北京崇高纳米科技有限公司 Antibacterial water activation ball and preparation method and application thereof
CN111533225B (en) * 2020-05-08 2022-07-12 北京崇高纳米科技有限公司 Antibacterial water activation ball and preparation method and application thereof
US20220061327A1 (en) * 2020-08-28 2022-03-03 Uop Llc Antiviral metal treatments for fiber substrates, filter media having antiviral metal treatments, and processes for treating fiber substrates

Also Published As

Publication number Publication date
WO2010024598A3 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
KR101083609B1 (en) Antibacterial, abtifungal and antiviral composition and method for preparing the same
US8673331B2 (en) Composition with sterilizing activity against bacteria, fungus and viruses, application thereof and method for preparation thereof
US11044914B2 (en) Antimicrobial sanitizer compositions and their use
KR100695264B1 (en) Antibiosis filter manufacture method and Antibiosis filter
WO2021100930A1 (en) Antibacterial deodorant composition and production method therefor
CN1918999A (en) Preparation process of nano antibacterial agent
WO2010024598A2 (en) Method for preparing antimicrobial, antifungal, and antiviral compositions
US20120295939A1 (en) Anti-viral agent
CN110628246A (en) Composite photocatalyst wall coating
WO2020235774A1 (en) Freeze-resistant disinfectant composition and preparation method therefor
JP5189291B2 (en) Viricidal activity of cetylpyridinium chloride.
US20010053378A1 (en) Antiviral fumaric acid composition
KR102306660B1 (en) Antibacterial deodorant containing titanium dioxide photocatalyst
CN104054753A (en) Antibacterial and sterilization disinfectant for killing avian influenza viruses
WO2016104966A1 (en) Cleansing or disinfecting composition having antiviral activity by comprising green tea extract as active ingredient
CN113499389A (en) Antibacterial anti-mite spray and preparation method and application thereof
JP4413465B2 (en) Silver antibacterial agent
CN108402079A (en) Bird flu disinfection sanitizer
CN111296416A (en) Antibacterial, antifungal and antiviral composition with enhanced deodorizing function and preparation method thereof
WO2023136435A1 (en) Eco-friendly quarantine composition having function of killing phospholipid enveloped virus
KR20060079388A (en) The synthesis of nano inorganic antiviral agent that is effective against sars corona virus and influenza virus
KR101425347B1 (en) Fabric having antibiosis and method for manufacturing the same
KR20050077887A (en) Nano inorganic antiviral agent that is effective against corona virus and influenza virus
CN107141851A (en) A kind of photocatalyst-type powdery paints
CN111248223A (en) Nano disinfectant and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810203

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09810203

Country of ref document: EP

Kind code of ref document: A2