WO2010024417A1 - Arteriosclerosis evaluating apparatus - Google Patents

Arteriosclerosis evaluating apparatus Download PDF

Info

Publication number
WO2010024417A1
WO2010024417A1 PCT/JP2009/065124 JP2009065124W WO2010024417A1 WO 2010024417 A1 WO2010024417 A1 WO 2010024417A1 JP 2009065124 W JP2009065124 W JP 2009065124W WO 2010024417 A1 WO2010024417 A1 WO 2010024417A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
wave
arteriosclerosis
blood flow
pulse wave
Prior art date
Application number
PCT/JP2009/065124
Other languages
French (fr)
Japanese (ja)
Inventor
真美 松川
好章 渡辺
雅史 齋藤
隆昭 浅田
未央 古谷
Original Assignee
学校法人同志社
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人同志社, 株式会社村田製作所 filed Critical 学校法人同志社
Priority to JP2010526803A priority Critical patent/JP5016717B2/en
Publication of WO2010024417A1 publication Critical patent/WO2010024417A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6822Neck
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow

Definitions

  • Patent Document 1 includes a pulse wave detection device attached to a predetermined part of a living body, and a compression device that is attached to the downstream side of the pulse wave detection device and suppresses blood flow by compressing the part.
  • a device that evaluates the degree of arteriosclerosis based on the peak of the traveling wave component and the peak of the reflected wave component detected by the pulse wave detection device while the blood flow is suppressed by the compression device has been proposed.
  • a cuff that is integrally provided with a first compression bag and a second compression bag is attached to the upper arm, and the brachial pulse wave is generated by the first compression bag in a state where the attachment site by the second compression bag is hemostatic.
  • Patent Document 1 as a means for separating a traveling wave and a reflected wave, a pulse wave is detected in a state where the artery is stopped using a second compression bag and the blood flow is suppressed.
  • the first compression bag measurement unit
  • the second compression bag hemostatic unit
  • the traveling wave and the reflected wave are separated, it is affected by the distance variation between the two devices.
  • the influence on the pulsation by using the second compression bag is not taken into consideration, and the amplitude intensity of the reflected wave component varies depending on the suppression force of the second compression bag.
  • JP 2004-113593 A Tomoki Kitawaki, et al., “Analysis of brachial artery pressure pulse waveform in biological circulatory system using one-dimensional numerical calculation model”, 18th Numerical Fluid Dynamics Symposium, C2-1, 2004
  • the present invention provides a first detecting means for detecting a pulse wave transmitted through an artery in one place of a living body, a second detecting means for measuring a blood flow velocity of an artery of the living body, First waveform specifying means for specifying the first waveform based on the blood flow velocity obtained by the second detection means, and subtracting the first waveform from the pulse wave detected by the first detection means.
  • An arteriosclerosis evaluation apparatus comprising: a second waveform determination unit that obtains a second waveform; and an evaluation unit that evaluates the degree of arteriosclerosis from the amplitude intensity of the first waveform and the second waveform. provide.
  • a pulse wave is a pressure wave propagating in a blood vessel that appears as a displacement on the body surface.
  • This displacement consists of the incident wave component due to the forward wave generated by the ejection of blood from the heart and the reflected wave component that is generated as it propagates through the blood vessel and is reflected at the periphery (hereinafter, each component is referred to as the incident wave and the reflected wave). Call). Since the reflected wave propagates to the periphery, it strongly depends on the viscoelastic properties of the blood vessel wall and changes significantly due to the hardening of the blood vessel wall. Therefore, if the incident wave and the reflected wave are separated and the reflected wave is evaluated, it is considered possible to determine the hardening state of the blood vessel.
  • the pulse wave detected in this way is a composite wave including an incident wave and a reflected wave.
  • the blood flow velocity of the living artery is measured by the second detection means.
  • This artery is preferably the same as the artery that detects the pulse wave by the first detection means, but it is not necessarily the same as the artery that detects the pulse wave by the first detection means.
  • the blood flow velocity can be measured using, for example, the Doppler function of an ultrasonic diagnostic apparatus. Note that the measurement locations of the first detection means and the second detection means do not need to be at the same position, and there may be some difference in position as long as the same blood flow flowing through the artery can be measured.
  • the measured blood flow velocity is converted into a displacement signal, for example, and estimated as an incident wave.
  • the blood flow velocity is converted into an internal pressure waveform (a time waveform of intravascular pressure).
  • the conversion to the internal pressure waveform can be calculated using a continuous equation of a one-dimensional fluid model, a motion equation, and the like known from Non-Patent Document 1 and the like.
  • the converted internal pressure waveform is converted into a displacement signal on the skin surface using the complex elastic modulus.
  • a Voigt model or a generalized Voigt model can be used as a model representing the complex elastic modulus.
  • the displacement signal thus converted is considered to represent an incident wave among pulse waves generated by the blood flow ejection of the actual subject's heart. The reason is that in arteries, blood flows in almost one direction from the heart to the periphery of the artery.
  • the pulse wave (synthetic wave) including the incident wave and the reflected wave is detected by the first detection means, the first waveform (incident wave) is subtracted from the synthesized wave to obtain the second waveform (reflected wave). ) That is, the reflected wave is estimated from the difference between the combined wave and the incident wave. Since the incident wave and the synthesized wave are waveforms detected by different detection means, it is preferable to fit the first waveform to the first peak waveform of the synthesized wave before taking the difference.
  • the degree of arteriosclerosis of the blood vessel is evaluated from a comparison of amplitude intensity (peak intensity) between the first waveform (incident wave) and the second waveform (reflected wave) estimated as described above.
  • the difference or ratio of the amplitude intensity between the reflected wave and the incident wave is obtained, and the degree of arteriosclerosis can be evaluated from this difference or ratio.
  • the degree of arteriosclerosis can be evaluated from the amplitude intensity ratio between the reflected wave and the incident wave. If the amplitude of the incident wave is standardized when fitting the incident wave, the amplitude of the reflected wave obtained after the fitting is a ratio to the amplitude of the incident wave. By comparing, the degree of arteriosclerosis can be easily evaluated.
  • the first detection means may be anything as long as it can detect a pulse wave.
  • a piezoelectric transducer can be used. Piezoelectric transducers are small and inexpensive detectors compared to medical pulse wave sensors, and can detect pulse waves simply by making contact with the skin surface of a human body. Further, since the pulse pressure is not directly measured as in the conventional pulse wave meter, but the vibration (displacement information) of the pulse wave is directly measured, the pulse wave can be measured more easily and accurately.
  • the second detection means is not limited to the ultrasonic diagnostic apparatus as long as it can measure the blood flow velocity.
  • the pulse wave (synthetic wave) is detected by the first detection unit, and the incident wave (first waveform) is estimated from the blood flow velocity measured by the second detection unit. Since the reflected wave (second waveform) is obtained by subtracting the incident wave from the pulse wave detected by the first detection means, the incident wave and the reflected wave are not affected by the measurement variation as in the prior art. Can be accurately measured separately. By evaluating the blood vessel function from the amplitude intensity of the incident wave and the reflected wave separated in this way, the degree of arteriosclerosis due to individual differences can be accurately evaluated.
  • FIG. 1 is a system diagram of a first embodiment of an arteriosclerosis evaluation apparatus according to the present invention. It is a schematic structure figure of an example of a piezoelectric transducer. It is an internal circuit diagram of the evaluation apparatus which concerns on this invention. It is a blood-flow velocity waveform figure in the carotid artery of the test subject in the 20s and the test subject in the 60s obtained by the ultrasonic diagnostic apparatus.
  • FIG. 5 is an internal pressure waveform diagram of subjects in their 20s and subjects in their 60s obtained by converting the blood flow waveform in FIG. 4.
  • FIG. 6 is a waveform diagram of a displacement signal (incident wave) on the skin surface obtained by converting the internal pressure waveform of FIG. 5 using a generalized Voigt model.
  • FIG. 1 shows an example of an arteriosclerosis evaluation method according to the present invention.
  • arteriosclerosis is evaluated by measuring the pulse wave and blood flow velocity of the cervical artery of a human body. While contacting the piezoelectric transducer 1 with the neck of the subject H and at the same time or before / after that, the subject for the superficial tissue probe (PLT-1204AT center frequency 12 MHz) 3 of the ultrasonic diagnostic apparatus (TOSHIBA Aplio SSA-700A) 2 Touch the same part of the neck of H.
  • the ultrasonic diagnostic apparatus 2 obtains an image of blood flow waveform and blood flow velocity information of the subject H's artery by the Doppler function, and the image signal is sent to the arteriosclerosis diagnostic apparatus 4 through wiring.
  • the piezoelectric transducer 1 is a kind of acoustic sensor that converts a pulse wave transmitted through an artery into a velocity signal.
  • the piezoelectric transducer 1 is connected to the arteriosclerosis evaluation apparatus main body 4 via wiring.
  • the arteriosclerosis evaluation apparatus main body 4 is provided with a display unit 4a for displaying the evaluation result. On the display unit 4a, the degree of arteriosclerosis of the subject is displayed by numerical values, symbols, graphs, and the like.
  • the measurement location is not limited to the cervix, and may be any site such as a wrist, ankle, or thigh as long as the pulse wave and blood flow velocity of the same artery can be measured.
  • An electrocardiograph output signal for measuring the electrical waveform of the heart beat can be connected to the arteriosclerosis evaluation apparatus body 4 to synchronize the pulse wave and blood flow velocity waveform with the heart beat.
  • FIG. 2 shows an example of the structure of the piezoelectric transducer 1.
  • the transducer 1 has a piezoelectric unimorph structure, a bottom portion 11 of a bottomed cylindrical case 10 is configured as a vibration surface, and a piezoelectric ceramic element 12 is fixed to the inner surface of the bottom portion 11.
  • the outer surface of the bottom 11 is brought into contact with the skin of the subject H.
  • the opening of the case 10 is closed by a sealing material 13, and a lead wire 14 is drawn through the sealing material 13.
  • the piezoelectric transducer 1 is not limited to the structure shown in FIG.
  • the blood flow velocity waveform obtained by the ultrasonic diagnostic apparatus 2 is sent to the block 43 in the arteriosclerosis evaluation apparatus main body 4.
  • the blood flow velocity waveform is converted into an internal pressure waveform (temporal waveform of intravascular pressure).
  • the conversion to the internal pressure waveform can be calculated from the continuous equation and equation of motion of a one-dimensional fluid model known from Non-Patent Document 1 and the like.
  • the time change of the blood vessel cross-sectional area is estimated from the blood flow velocity
  • the time waveform of the internal pressure is estimated from the relationship between the time change of the blood vessel cross-sectional area and the intravascular pressure.
  • the temporal waveform of the intravascular pressure is sent to the block 44, and the temporal waveform of the intravascular pressure p is converted into a displacement signal ⁇ on the skin surface using the generalized Voigt model shown in equations (1) and (2).
  • the displacement signal ⁇ thus converted is the displacement of the body surface estimated from the blood flow waveform, and is considered to represent the incident wave of the pulse wave generated by the blood flow ejection of the subject H's heart.
  • the shear elastic constant ⁇ and shear viscosity coefficient ⁇ vary depending on the age of the subject, for example, ⁇ for young people can be 5.6 kPa to 16.0 kPa, and ⁇ for elderly people can be 14.0 kPa to 40.0 kPa. . In addition, ⁇ can be 230,000 Pa ⁇ s to 1,100 Pa ⁇ s for both young and elderly people.
  • the generalized Voigt model is used here as a model representing the complex elastic modulus for converting the intravascular pressure into a displacement signal on the skin surface, but a Voigt model or another model may be used.
  • the displacement signal obtained in block 41 and the displacement signal obtained in block 44 are sent to block 45 where the difference is calculated. That is, the reflected wave is calculated by subtracting the displacement signal (incident wave) in block 44 from the displacement signal (combined wave) in block 41.
  • the amplitude intensity of the incident wave and the reflected wave is compared. For example, the ratio between the peak intensity of the reflected wave and the peak intensity of the incident wave is calculated. When arteriosclerosis is advanced, the peak intensity of the reflected wave is considered to be relatively large, so that the peak ratio is also increased.
  • the compared peak intensity is sent to block 47 where the degree of arteriosclerosis is evaluated or diagnosed.
  • FIG. 5A and 5B are internal pressure waveforms of the subject A and the subject B obtained by converting the blood flow waveform of FIG. 6A and 6B are skin surface displacement signals (incident waves) obtained by converting the internal pressure waveform of FIG. 5 using a generalized Voigt model. There is a slight difference in the rear part of the peak waveform of the incident wave between the subject A (20's) and the subject B (60's).
  • (A), (b) of FIG. 7 is a pulse wave waveform (the velocity signal is time-integrated and converted into a displacement) in the carotid arteries of the subject A and the subject B obtained by the piezoelectric transducer 1. It can be seen that the waveforms of both are greatly different. These pulse wave waveforms are combined waves of incident waves and reflected waves.
  • FIG. 8A and 8B show the results of separating the reflected wave by subtracting the incident wave obtained in FIG. 6 from the pulse wave waveform shown in FIG.
  • the incident wave was fitted to the first peak waveform of the pulse wave waveform.
  • the maximum peak is not the peak of the incident wave, so the fitting of the incident wave was performed at the inflection point starting from the rise of the waveform.
  • FIG. 8 after separating the pulse wave into an incident wave and a reflected wave, each waveform is normalized by setting the maximum amplitude of the incident wave to 1, so the amplitude intensity of the reflected wave is an amplitude intensity ratio with respect to the incident wave. If necessary, the separated reflected wave may be smoothed so that the peak can be easily obtained.
  • the reflected wave before the smoothing process is represented by dots
  • the reflected wave after the smoothing process is represented by a solid line.
  • the peak intensity (ratio) of the reflected wave is about 0.2 as shown in (a), whereas in the case of the subject B in the 60s, ( As shown in b), it can be seen that the peak intensity (ratio) of the reflected wave is as large as about 0.8. From this result, the timing at which the reflected wave arrives at the measurement site is almost the same, but the amplitude of the reflected wave is larger in the elderly than in the young, and a characteristic difference can be confirmed particularly in the amplitude of the late systole of the heart. It was. This is considered to be because the attenuation of reflected waves was less because the blood vessel walls of elderly people were generally harder. The degree of arteriosclerosis can be evaluated with higher accuracy by digitizing and statistically evaluating the amplitude intensity ratio of the reflected wave / incident wave.
  • both the first detection means and the second detection means are converted into displacement signals and compared, but it is also possible to make comparisons using speed signals. That is, when the first detection unit detects a pulse wave as a velocity signal, the velocity signal (incident wave) on the skin surface is estimated from the blood flow velocity waveform detected by the second detection unit, and the incident wave is converted into the pulse wave.
  • the reflected wave may be separated by fitting to.
  • frequency analysis of the reflected wave and the incident wave is performed, and the degree of arteriosclerosis is evaluated by comparing the amplitude by applying frequency analysis. It is also possible. For example, the waveform of the reflected wave may be subjected to frequency analysis, and the amplitude of a specific frequency may be extracted and evaluated.

Abstract

Provided is an arteriosclerosis evaluating apparatus capable of accurately separating incident waves and reflected waves and precisely evaluating the degree of arteriosclerosis due to an individual difference. A first detection means (1) detects, as a displacement signal, pulse waves transmitting through an artery at one point of a live body, and a second detection means (2) measures blood flow rate of the artery at the same point of the live body.  The blood flow rate obtained by the second detection means is converted to a displacement signal to obtain incident waves, after which reflected waves are obtained by subtracting the incident waves from the displacement signal detected by the first detection means.  A blood vessel function of the live body is evaluated from the amplitude intensities of the incident and reflected waves.

Description

動脈硬化評価装置Atherosclerosis evaluation device
本発明は動脈硬化などの血管機能を評価する装置に関するものである。 The present invention relates to an apparatus for evaluating vascular functions such as arteriosclerosis.
現代社会は生活習慣の変化や高齢化に伴い、動脈硬化症に起因する循環器疾患が増加している。しかし、これらに対する早期発見のための医療制度は未確定な状態である。動脈硬化症に対しては血管壁の柔軟さの評価が大変重要であり、現在の診断装置としては、MRI,X線CTによる画像診断や脈波伝播速度法と呼ばれるものが一般的である。しかし、MRI,X線CTは検査費用が高く、日々のモニタリングには不向きである。また、脈波伝播速度法と呼ばれる手法は、血管壁の硬軟に応じて脈波の伝播速度が変化することを利用したものであり、検査が簡便に行えるため医療現場では一般的に用いられている手法であるが、年齢と脈波伝播速度の関係が不明瞭であり、特に予防という観点や個人差を考慮するとその診断精度が低い。 In the modern society, cardiovascular diseases caused by arteriosclerosis are increasing with changes in lifestyle and aging. However, the medical system for early detection of these is uncertain. Evaluation of the flexibility of the blood vessel wall is very important for arteriosclerosis, and current diagnostic apparatuses generally use image diagnosis based on MRI and X-ray CT and a pulse wave velocity method. However, MRI and X-ray CT have high inspection costs and are not suitable for daily monitoring. In addition, a technique called pulse wave velocity method is based on the fact that the pulse wave velocity changes according to the hardness of the blood vessel wall. However, the relationship between age and pulse wave velocity is unclear, and its diagnostic accuracy is low especially considering the viewpoint of prevention and individual differences.
特許文献1には、生体の所定部位に装着される脈波検出装置と、この脈波検出装置の下流側に装着され、当該部位を圧迫することにより血流を抑制する圧迫装置とを備え、圧迫装置により血流が抑制されている状態で、脈波検出装置により検出される脈波の進行波成分のピークと反射波成分のピークとに基づいて、動脈硬化度を評価する装置が提案されている。具体的には、第1圧迫袋と第2圧迫袋とを一体に備えたカフを上腕部に装着し、第2圧迫袋によるその装着部位を止血した状態で第1圧迫袋により上腕脈波を検出すると、この上腕脈波は、進行波と第2圧迫袋の装着部位で生じた反射波との合成波となる。反射波は、動脈が硬いほど大きくなり且つ速度が速くなることから、動脈硬化情報算出手段により進行波成分のピークと反射波成分のピークとの時間差および強度比を算出すると、それら時間差および強度比は動脈硬化度によって変化するので、動脈硬化度を評価することができるとされている。 Patent Document 1 includes a pulse wave detection device attached to a predetermined part of a living body, and a compression device that is attached to the downstream side of the pulse wave detection device and suppresses blood flow by compressing the part. A device that evaluates the degree of arteriosclerosis based on the peak of the traveling wave component and the peak of the reflected wave component detected by the pulse wave detection device while the blood flow is suppressed by the compression device has been proposed. ing. Specifically, a cuff that is integrally provided with a first compression bag and a second compression bag is attached to the upper arm, and the brachial pulse wave is generated by the first compression bag in a state where the attachment site by the second compression bag is hemostatic. When detected, this brachial pulse wave is a composite wave of the traveling wave and the reflected wave generated at the wearing site of the second compression bag. Since the reflected wave becomes larger and faster as the artery becomes harder, the time difference and intensity ratio between the peak of the traveling wave component and the peak of the reflected wave component are calculated by the arteriosclerosis information calculation means. Since it changes depending on the degree of arteriosclerosis, it is said that the degree of arteriosclerosis can be evaluated.
特許文献1の場合、進行波と反射波の分離を行う手段として、第2圧迫袋を用いて動脈を止血させ、血流を抑制させた状態で脈波検出を行っている。このような手法を用いると、第1圧迫袋(測定部)と第2圧迫袋(止血部)の2種類の構成が必ず必要であり、2つの装置間の伝播経路を伝わる脈波の時間差から進行波と反射波を分離しているため、2つの装置間の距離ばらつきの影響を受ける。また、第2圧迫袋を用いることによる脈動への影響も考慮されておらず、第2圧迫袋の抑制力によって、その反射波成分の振幅強度は異なってしまう。さらに、皮下脂肪などは個人差があるため、その圧迫力の制御なども難しく、個体差を識別するための手法として不十分である。
特開2004-113593号公報 北脇知己,他「一次元数値計算モデルを用いた生体循環器系における上腕動脈圧脈波波形解析」第18回数値流体力学シンポジウム,C2-1,2004
In the case of Patent Document 1, as a means for separating a traveling wave and a reflected wave, a pulse wave is detected in a state where the artery is stopped using a second compression bag and the blood flow is suppressed. If such a method is used, two types of configurations, the first compression bag (measurement unit) and the second compression bag (hemostatic unit) are indispensable. Since the traveling wave and the reflected wave are separated, it is affected by the distance variation between the two devices. Moreover, the influence on the pulsation by using the second compression bag is not taken into consideration, and the amplitude intensity of the reflected wave component varies depending on the suppression force of the second compression bag. Furthermore, since there are individual differences in subcutaneous fat and the like, it is difficult to control the compression force, and this is insufficient as a method for identifying individual differences.
JP 2004-113593 A Tomoki Kitawaki, et al., "Analysis of brachial artery pressure pulse waveform in biological circulatory system using one-dimensional numerical calculation model", 18th Numerical Fluid Dynamics Symposium, C2-1, 2004
本発明の目的は、入射波と反射波とを正確に分離し、個体差による動脈硬化度を精度よく評価できる動脈硬化評価装置を提供することにある。 An object of the present invention is to provide an arteriosclerosis evaluation apparatus capable of accurately separating incident waves and reflected waves and accurately evaluating the degree of arteriosclerosis due to individual differences.
前記目的を達成するため、本発明は、生体の1箇所において動脈を伝わる脈波を検出する第1の検出手段と、前記生体の動脈の血流速度を測定する第2の検出手段と、前記第2の検出手段で得られた血流速度に基づいて第1の波形を特定する第1波形特定手段と、前記第1の検出手段によって検出された脈波から前記第1の波形を差し引いて第2の波形を得る第2波形決定手段と、前記第1の波形及び第2の波形の振幅強度から動脈硬化度を評価する評価手段と、を備えたことを特徴とする動脈硬化評価装置を提供する。 In order to achieve the above object, the present invention provides a first detecting means for detecting a pulse wave transmitted through an artery in one place of a living body, a second detecting means for measuring a blood flow velocity of an artery of the living body, First waveform specifying means for specifying the first waveform based on the blood flow velocity obtained by the second detection means, and subtracting the first waveform from the pulse wave detected by the first detection means. An arteriosclerosis evaluation apparatus comprising: a second waveform determination unit that obtains a second waveform; and an evaluation unit that evaluates the degree of arteriosclerosis from the amplitude intensity of the first waveform and the second waveform. provide.
脈波は、血管内を伝搬する圧力波が体表に変位として現れたものである。この変位は心臓の血流駆出により生じた前進波による入射波成分と、それが血管を伝搬し末梢で反射されて生じた反射波成分から成る(以下、各成分を入射波,反射波と呼ぶ)。反射波は末梢まで伝搬しているので、血管壁の粘弾性特性に強く依存し、血管壁の硬化により著しく変化する。したがって、入射波と反射波を分離し、反射波の評価を行えば、血管の硬化状態の判定が可能になると考えられる。 A pulse wave is a pressure wave propagating in a blood vessel that appears as a displacement on the body surface. This displacement consists of the incident wave component due to the forward wave generated by the ejection of blood from the heart and the reflected wave component that is generated as it propagates through the blood vessel and is reflected at the periphery (hereinafter, each component is referred to as the incident wave and the reflected wave). Call). Since the reflected wave propagates to the periphery, it strongly depends on the viscoelastic properties of the blood vessel wall and changes significantly due to the hardening of the blood vessel wall. Therefore, if the incident wave and the reflected wave are separated and the reflected wave is evaluated, it is considered possible to determine the hardening state of the blood vessel.
本発明では、まず第1の検出手段で生体の1箇所において動脈を伝わる脈波を検出する。例えば、脈波を変位信号として検出する。この検出手段としては、変位出力の公知の脈波センサを用いてもよいし、圧電トランスデューサを用いてもよい。速度出力の圧電トランスデューサの場合には、出力を時間積分することで、変位信号を得ることができる。なお、圧電トランスデューサは脈波を速度信号及び変位信号のいずれでも検出することができるが、速度信号として検出する方が好ましい。脈波のような皮膚表面の微小な変位を測定するには、測定変位を増幅する必要がある一方で、皮膚表面は安静状態であっても測定時の呼吸、体のゆらぎ等により細かいノイズが発生しやすい。脈波を速度信号として検出することで、ノイズに強く、DC的なゆらぎをカットすることができるため、測定誤差が生じにくいという利点がある。このようにして検出された脈波は、入射波と反射波とを含む合成波である。 In the present invention, first, a first detection means detects a pulse wave transmitted through an artery in one place of a living body. For example, a pulse wave is detected as a displacement signal. As this detection means, a known pulse wave sensor of displacement output may be used, or a piezoelectric transducer may be used. In the case of a piezoelectric transducer with velocity output, a displacement signal can be obtained by integrating the output with time. The piezoelectric transducer can detect a pulse wave by either a velocity signal or a displacement signal, but it is preferable to detect it as a velocity signal. In order to measure minute displacements of the skin surface such as pulse waves, it is necessary to amplify the measured displacement. On the other hand, even if the skin surface is at rest, fine noise is generated due to breathing and fluctuations in the body. Likely to happen. By detecting the pulse wave as a velocity signal, there is an advantage that it is resistant to noise and DC fluctuation can be cut, so that a measurement error hardly occurs. The pulse wave detected in this way is a composite wave including an incident wave and a reflected wave.
一方、第2の検出手段で、生体の動脈の血流速度を測定する。この動脈は、第1の検出手段で脈波を検出する動脈と同じ方が好ましいが、必ずしも第1の検出手段で脈波を検出する動脈と同じでなくてもよい。血流速度は、例えば超音波診断装置のドップラー機能を用いて測定できる。なお、第1の検出手段と第2の検出手段の測定箇所は同一位置である必要はなく、動脈を流れる同じ血流を測定できれば、多少の位置の違いがあってもよい。次に、測定された血流速度を、例えば変位信号に変換し、入射波として推定する。変換にあたって、まず血流速度から内圧波形(血管内圧の時間波形)に変換する。内圧波形への変換は、非特許文献1などから公知である一次元流体モデルの連続の式と運動方程式等を用いて算出することができる。次に、変換された内圧波形を複素弾性率を用いて皮膚表面の変位信号に変換する。複素弾性率を表すモデルとしては、例えばVoigt モデルや一般化Voigt モデルを用いることができる。このように変換された変位信号は、実際の被験者の心臓の血流駆出により生じた脈波のうちの入射波を表すと考えられる。その理由は、動脈において、血流は心臓から動脈の末梢に至るまでほぼ一方向に流れる。この一方向に流れる血流から得られる変位情報が、血流と同じく心臓から発生する脈波の入射波成分の変位情報と近似すると考えられるからである。入射波は、脈波のうち最も大きな振幅強度を有する最初の波形であり、これを第1の波形と呼ぶ。 On the other hand, the blood flow velocity of the living artery is measured by the second detection means. This artery is preferably the same as the artery that detects the pulse wave by the first detection means, but it is not necessarily the same as the artery that detects the pulse wave by the first detection means. The blood flow velocity can be measured using, for example, the Doppler function of an ultrasonic diagnostic apparatus. Note that the measurement locations of the first detection means and the second detection means do not need to be at the same position, and there may be some difference in position as long as the same blood flow flowing through the artery can be measured. Next, the measured blood flow velocity is converted into a displacement signal, for example, and estimated as an incident wave. In the conversion, first, the blood flow velocity is converted into an internal pressure waveform (a time waveform of intravascular pressure). The conversion to the internal pressure waveform can be calculated using a continuous equation of a one-dimensional fluid model, a motion equation, and the like known from Non-Patent Document 1 and the like. Next, the converted internal pressure waveform is converted into a displacement signal on the skin surface using the complex elastic modulus. For example, a Voigt model or a generalized Voigt model can be used as a model representing the complex elastic modulus. The displacement signal thus converted is considered to represent an incident wave among pulse waves generated by the blood flow ejection of the actual subject's heart. The reason is that in arteries, blood flows in almost one direction from the heart to the periphery of the artery. This is because it is considered that the displacement information obtained from the blood flow flowing in one direction approximates the displacement information of the incident wave component of the pulse wave generated from the heart like the blood flow. The incident wave is the first waveform having the largest amplitude intensity among the pulse waves, and this is called the first waveform.
入射波と反射波とを含む脈波(合成波)は、第1の検出手段によって検出されているので、この合成波から第1の波形(入射波)を差し引いて第2の波形(反射波)を得る。つまり、合成波と入射波との差分により反射波を推定する。なお、入射波と合成波とは異なる検出手段によって検出された波形であるため、差分を取る前に、合成波の最初のピーク波形に対して第1の波形をフィッティングさせるのがよい。以上のようにして推定された第1の波形(入射波)と第2の波形(反射波)との振幅強度(ピーク強度)の比較から血管の動脈硬化度を評価する。例えば、反射波と入射波との振幅強度の差又は比を求め、この差又は比から動脈硬化度を評価することができる。一般に、動脈硬化が進むと、血管の粘弾性が低下し、反射波の振幅強度が高くなる傾向にあるため、反射波と入射波との振幅強度比から動脈硬化度を評価することができる。なお、入射波をフィッティングする際に入射波の振幅を規格化しておけば、フィッティング後に得られた反射波の振幅は入射波の振幅に対する比となっているので、反射波の振幅を基準値と比較することで、動脈硬化度を容易に評価できる。 Since the pulse wave (synthetic wave) including the incident wave and the reflected wave is detected by the first detection means, the first waveform (incident wave) is subtracted from the synthesized wave to obtain the second waveform (reflected wave). ) That is, the reflected wave is estimated from the difference between the combined wave and the incident wave. Since the incident wave and the synthesized wave are waveforms detected by different detection means, it is preferable to fit the first waveform to the first peak waveform of the synthesized wave before taking the difference. The degree of arteriosclerosis of the blood vessel is evaluated from a comparison of amplitude intensity (peak intensity) between the first waveform (incident wave) and the second waveform (reflected wave) estimated as described above. For example, the difference or ratio of the amplitude intensity between the reflected wave and the incident wave is obtained, and the degree of arteriosclerosis can be evaluated from this difference or ratio. In general, as arteriosclerosis progresses, the viscoelasticity of the blood vessels decreases and the amplitude intensity of the reflected wave tends to increase. Therefore, the degree of arteriosclerosis can be evaluated from the amplitude intensity ratio between the reflected wave and the incident wave. If the amplitude of the incident wave is standardized when fitting the incident wave, the amplitude of the reflected wave obtained after the fitting is a ratio to the amplitude of the incident wave. By comparing, the degree of arteriosclerosis can be easily evaluated.
第2の波形を、フィット関数でフィッティングすることにより複数の展開波形に分解する分解手段を更に含んでもよい。フィット関数としては、公知の非線形フィット関数、例えばExponential Gaussian関数、Gauss関数、Voigt関数、Log-Normal関数、ローレンツ関数等、波形形状に応じて任意の関数を使用することができる。反射波と推定される第2の波形を複数の波形に分解することにより、動脈の硬化度情報をより詳細に把握できる。 Decomposition means for decomposing the second waveform into a plurality of developed waveforms by fitting with the fit function may be further included. As the fitting function, a known nonlinear fitting function such as an ExponentialonGaussian function, a Gauss function, a Voigt function, a Log-Normal function, a Lorentz function, or the like can be used depending on the waveform shape. By disassembling the second waveform estimated as a reflected wave into a plurality of waveforms, it is possible to grasp the arteriosclerosis degree information in more detail.
第1の検出手段としては、脈波を検出できるものであれば何でもよいが、例えば圧電トランスデューサを使用することができる。圧電トランスデューサは、医療用脈波センサに比べて小型で安価な検出器であり、人体の皮膚表面に接触させるだけで脈波を検出できるので、無傷、無痛で検出できる。また、従来のような脈波計のように脈圧を測定するのではなく、脈波の振動(変位情報)を直接測定するので、より簡単かつ正確に脈波を測定することができる。一方、第2の検出手段としては、血流速度を測定できるものであればよく、超音波診断装置に限るものではない。 The first detection means may be anything as long as it can detect a pulse wave. For example, a piezoelectric transducer can be used. Piezoelectric transducers are small and inexpensive detectors compared to medical pulse wave sensors, and can detect pulse waves simply by making contact with the skin surface of a human body. Further, since the pulse pressure is not directly measured as in the conventional pulse wave meter, but the vibration (displacement information) of the pulse wave is directly measured, the pulse wave can be measured more easily and accurately. On the other hand, the second detection means is not limited to the ultrasonic diagnostic apparatus as long as it can measure the blood flow velocity.
発明の好ましい実施の形態の効果Effects of preferred embodiments of the invention
以上のように、本発明によれば、第1の検出手段で脈波(合成波)を検出し、第2の検出手段で測定した血流速度から入射波(第1の波形)を推定し、第1の検出手段で検出した脈波から入射波を差し引いて反射波(第2の波形)を得るようにしたので、従来のように測定ばらつきの影響を受けることなく、入射波と反射波とを正確に分離測定することができる。このように分離された入射波と反射波との振幅強度から血管機能を評価することで、個体差による動脈硬化度を精度よく評価できる。 As described above, according to the present invention, the pulse wave (synthetic wave) is detected by the first detection unit, and the incident wave (first waveform) is estimated from the blood flow velocity measured by the second detection unit. Since the reflected wave (second waveform) is obtained by subtracting the incident wave from the pulse wave detected by the first detection means, the incident wave and the reflected wave are not affected by the measurement variation as in the prior art. Can be accurately measured separately. By evaluating the blood vessel function from the amplitude intensity of the incident wave and the reflected wave separated in this way, the degree of arteriosclerosis due to individual differences can be accurately evaluated.
本発明に係る動脈硬化評価装置の第1実施例のシステム図である。1 is a system diagram of a first embodiment of an arteriosclerosis evaluation apparatus according to the present invention. 圧電トランスデューサの一例の概略構造図である。It is a schematic structure figure of an example of a piezoelectric transducer. 本発明に係る評価装置の内部回路図である。It is an internal circuit diagram of the evaluation apparatus which concerns on this invention. 超音波診断装置で得られた20代の被験者と60代の被験者の頸動脈における血流速度波形図である。It is a blood-flow velocity waveform figure in the carotid artery of the test subject in the 20s and the test subject in the 60s obtained by the ultrasonic diagnostic apparatus. 図4の血流波形を変換して得られた20代の被験者と60代の被験者の内圧波形図である。FIG. 5 is an internal pressure waveform diagram of subjects in their 20s and subjects in their 60s obtained by converting the blood flow waveform in FIG. 4. 図5の内圧波形を 一般化Voigtモデルを用いて変換した皮膚表面の変位信号(入射波)の波形図である。FIG. 6 is a waveform diagram of a displacement signal (incident wave) on the skin surface obtained by converting the internal pressure waveform of FIG. 5 using a generalized Voigt model. 脈波検出器によって得られた被験者の頸動脈における脈波波形図である。It is a pulse-wave waveform diagram in a subject's carotid artery obtained by a pulse wave detector. 図7に示す脈波波形から、入射波と反射波とを分離した結果を示す波形図である。It is a wave form diagram which shows the result of having isolate | separated the incident wave and the reflected wave from the pulse wave waveform shown in FIG.
以下に、本発明の好ましい実施の形態を、実施例に基づいて説明する。 Hereinafter, preferred embodiments of the present invention will be described based on examples.
-第1実施例-
図1は、本発明に係る動脈硬化評価方法の一例を示す。この実施例は、人体の頸部動脈の脈波と血流速度とを測定することによって、動脈硬化を評価する例である。被験者Hの頸部に圧電トランスデューサ1を接触させると共に、それと同時又はその前/後に超音波診断装置(TOSHIBA Aplio SSA-700A)2の浅部組織用プローブ(PLT-1204AT 中心周波数12MHz)3を被験者Hの頸部の同じ箇所に接触させる。超音波診断装置2はドップラー機能により被験者Hの動脈の血流波形の画像及び血流速度情報を得るものであり、その画像信号は配線を介して動脈硬化診断装置4に送られる。圧電トランスデューサ1は動脈を伝わる脈波を速度信号に変換する一種の音響センサである。圧電トランスデューサ1は配線を介して動脈硬化評価装置本体4に接続されている。動脈硬化評価装置本体4には、評価結果を表示する表示部4aが設けられている。表示部4aには、被験者の動脈硬化度が数値、記号、グラフなどによって表示される。測定箇所は頸部に限るものではなく、同じ動脈の脈波と血流速度とを測定できる部位であれば、手首や足首、大腿部など如何なる部位でもよい。心臓の拍動の電気的な波形を測定する心電計の出力信号を動脈硬化評価装置本体4に接続し、脈波、血流速度波形と心臓の拍動との同期を取ることもできる。
-First Example-
FIG. 1 shows an example of an arteriosclerosis evaluation method according to the present invention. In this example, arteriosclerosis is evaluated by measuring the pulse wave and blood flow velocity of the cervical artery of a human body. While contacting the piezoelectric transducer 1 with the neck of the subject H and at the same time or before / after that, the subject for the superficial tissue probe (PLT-1204AT center frequency 12 MHz) 3 of the ultrasonic diagnostic apparatus (TOSHIBA Aplio SSA-700A) 2 Touch the same part of the neck of H. The ultrasonic diagnostic apparatus 2 obtains an image of blood flow waveform and blood flow velocity information of the subject H's artery by the Doppler function, and the image signal is sent to the arteriosclerosis diagnostic apparatus 4 through wiring. The piezoelectric transducer 1 is a kind of acoustic sensor that converts a pulse wave transmitted through an artery into a velocity signal. The piezoelectric transducer 1 is connected to the arteriosclerosis evaluation apparatus main body 4 via wiring. The arteriosclerosis evaluation apparatus main body 4 is provided with a display unit 4a for displaying the evaluation result. On the display unit 4a, the degree of arteriosclerosis of the subject is displayed by numerical values, symbols, graphs, and the like. The measurement location is not limited to the cervix, and may be any site such as a wrist, ankle, or thigh as long as the pulse wave and blood flow velocity of the same artery can be measured. An electrocardiograph output signal for measuring the electrical waveform of the heart beat can be connected to the arteriosclerosis evaluation apparatus body 4 to synchronize the pulse wave and blood flow velocity waveform with the heart beat.
図2は圧電トランスデューサ1の構造の一例を示す。トランスデューサ1は圧電ユニモルフ構造を有し、有底筒状のケース10の底部11が振動面として構成され、その底部11内面に圧電セラミック素子12が固定されている。底部11の外表面が被験者Hの皮膚に接触される。ケース10の開口部は封止材13によって閉じられ、この封止材13を介してリード線14が引き出されている。なお、圧電トランスデューサ1は図2の構造に限らないことは勿論である。 FIG. 2 shows an example of the structure of the piezoelectric transducer 1. The transducer 1 has a piezoelectric unimorph structure, a bottom portion 11 of a bottomed cylindrical case 10 is configured as a vibration surface, and a piezoelectric ceramic element 12 is fixed to the inner surface of the bottom portion 11. The outer surface of the bottom 11 is brought into contact with the skin of the subject H. The opening of the case 10 is closed by a sealing material 13, and a lead wire 14 is drawn through the sealing material 13. Needless to say, the piezoelectric transducer 1 is not limited to the structure shown in FIG.
図3は動脈硬化評価装置本体4の内部回路構成を示す。圧電トランスデューサ1で検出された脈波(速度信号)は増幅器40で増幅された後、ブロック41に入力される。入力された速度信号はブロック41で時間積分され、変位信号に変換される。この変位信号は、脈波の中の入射波と反射波とを含む合成波である。なお、圧電トランスデューサ1に代えて公知の医療用脈波センサを使用してもよい。 FIG. 3 shows an internal circuit configuration of the arteriosclerosis evaluation apparatus main body 4. The pulse wave (velocity signal) detected by the piezoelectric transducer 1 is amplified by the amplifier 40 and then input to the block 41. The input velocity signal is time integrated in block 41 and converted into a displacement signal. This displacement signal is a composite wave including an incident wave and a reflected wave in the pulse wave. A known medical pulse wave sensor may be used in place of the piezoelectric transducer 1.
一方、超音波診断装置2で得られた血流速度波形は、動脈硬化評価装置本体4の中のブロック43に送られる。ブロック43では、血流速度波形を内圧波形(血管内圧の時間波形)に変換する。内圧波形への変換は、非特許文献1などから公知である一次元流体モデルの連続の式と運動方程式とから算出することができる。具体的には、血流速度から血管断面積の時間変化を推定し、血管断面積の時間変化と血管内圧との関係から、内圧の時間波形を推定している。次に、血管内圧の時間波形はブロック44に送られ、血管内圧pの時間波形を(1),(2)式に示す 一般化Voigtモデルを用いて皮膚表面の変位信号εに変換する。このように変換された変位信号εは、血流波形から推定された体表面の変位であり、被験者Hの心臓の血流駆出により生じた脈波のうちの入射波を表すと考えられる。 On the other hand, the blood flow velocity waveform obtained by the ultrasonic diagnostic apparatus 2 is sent to the block 43 in the arteriosclerosis evaluation apparatus main body 4. In block 43, the blood flow velocity waveform is converted into an internal pressure waveform (temporal waveform of intravascular pressure). The conversion to the internal pressure waveform can be calculated from the continuous equation and equation of motion of a one-dimensional fluid model known from Non-Patent Document 1 and the like. Specifically, the time change of the blood vessel cross-sectional area is estimated from the blood flow velocity, and the time waveform of the internal pressure is estimated from the relationship between the time change of the blood vessel cross-sectional area and the intravascular pressure. Next, the temporal waveform of the intravascular pressure is sent to the block 44, and the temporal waveform of the intravascular pressure p is converted into a displacement signal ε on the skin surface using the generalized Voigt model shown in equations (1) and (2). The displacement signal ε thus converted is the displacement of the body surface estimated from the blood flow waveform, and is considered to represent the incident wave of the pulse wave generated by the blood flow ejection of the subject H's heart.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
但し、ずれ弾性定数γ、及びずれ粘性係数ηは被験者の年齢等によって変わるものであり、例えば若年者のγは5.6kPa~16.0kPa、高齢者のγは14.0kPa~40.0kPaを用いることができる。また、若年者及び高齢者共にηは230,000Pa・s~1,100Pa・s を用いることができる。なお、血管内圧を皮膚表面の変位信号に変換するための複素弾性率を表すモデルとして、ここでは一般化Voigtモデルを使用したが、Voigtモデルや他のモデルを使用してもよい。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
However, the shear elastic constant γ and shear viscosity coefficient η vary depending on the age of the subject, for example, γ for young people can be 5.6 kPa to 16.0 kPa, and γ for elderly people can be 14.0 kPa to 40.0 kPa. . In addition, η can be 230,000 Pa · s to 1,100 Pa · s for both young and elderly people. Note that the generalized Voigt model is used here as a model representing the complex elastic modulus for converting the intravascular pressure into a displacement signal on the skin surface, but a Voigt model or another model may be used.
ブロック41で得られた変位信号とブロック44で得られた変位信号とが、ブロック45へ送られ、ここで差分が計算される。つまり、ブロック41における変位信号(合成波)からブロック44における変位信号(入射波)を差し引いて反射波を計算する。ブロック46では、入射波と反射波の振幅強度を比較する。例えば、反射波のピーク強度と入射波のピーク強度との比を計算する。動脈硬化が進んでいる場合、反射波のピーク強度が相対的に大きくなると考えられるので、ピーク比も大きくなる。比較したピーク強度はブロック47へ送られ、ここで動脈硬化度が評価又は診断される。 The displacement signal obtained in block 41 and the displacement signal obtained in block 44 are sent to block 45 where the difference is calculated. That is, the reflected wave is calculated by subtracting the displacement signal (incident wave) in block 44 from the displacement signal (combined wave) in block 41. In block 46, the amplitude intensity of the incident wave and the reflected wave is compared. For example, the ratio between the peak intensity of the reflected wave and the peak intensity of the incident wave is calculated. When arteriosclerosis is advanced, the peak intensity of the reflected wave is considered to be relatively large, so that the peak ratio is also increased. The compared peak intensity is sent to block 47 where the degree of arteriosclerosis is evaluated or diagnosed.
-実験結果-
次に、2人の被験者A,Bについて、本評価装置を用いて評価した結果について説明する。ここで、被験者Aは20歳代、被験者Bは60歳代の健常男性である。図4の(a),(b)は、超音波診断装置2で得られた被験者A及び被験者Bの頸動脈における血流波形である。図5の(a),(b)は、図4の血流波形を変換して得られた被験者A及び被験者Bの内圧波形である。図6の(a),(b)は、図5の内圧波形を一般化Voigtモデルを用いて変換した皮膚表面の変位信号(入射波)である。被験者A(20歳代)と被験者B(60歳代)とで、入射波のピーク波形の後部に多少の違いが見られる。
-Experimental result-
Next, the results of evaluating two subjects A and B using this evaluation apparatus will be described. Here, subject A is a healthy male in his 20s and subject B is in his 60s. 4A and 4B are blood flow waveforms in the carotid arteries of the subject A and the subject B obtained by the ultrasonic diagnostic apparatus 2. FIG. 5A and 5B are internal pressure waveforms of the subject A and the subject B obtained by converting the blood flow waveform of FIG. 6A and 6B are skin surface displacement signals (incident waves) obtained by converting the internal pressure waveform of FIG. 5 using a generalized Voigt model. There is a slight difference in the rear part of the peak waveform of the incident wave between the subject A (20's) and the subject B (60's).
図7の(a),(b)は、圧電トランスデューサ1によって得られた被験者A及び被験者Bの頸動脈における脈波波形(速度信号を時間積分して変位に変換したもの)である。両者の波形は大きく異なることがわかる。これら脈波波形は入射波と反射波の合成波である。 (A), (b) of FIG. 7 is a pulse wave waveform (the velocity signal is time-integrated and converted into a displacement) in the carotid arteries of the subject A and the subject B obtained by the piezoelectric transducer 1. It can be seen that the waveforms of both are greatly different. These pulse wave waveforms are combined waves of incident waves and reflected waves.
図8の(a),(b)は、図7に示す脈波波形から図6で求めた入射波を差し引いて、反射波を分離した結果を示す。反射波を分離するに際し、入射波を脈波波形の最初のピーク波形にフィッティングさせた。なお、60才代の脈波波形の場合、最大ピークが入射波のピークではないため、波形の立ち上がりから始まって、変極点で入射波のフィッティングを行った。図8では、脈波を入射波と反射波とに分離後、入射波の最大振幅を1として各波形を規格化したため、反射波の振幅強度は入射波に対する振幅強度比となる。必要に応じて、分離した反射波を平滑処理し、ピークを求めやすくしてもよい。図8には、平滑処理前の反射波をドットで表し、平滑処理後の反射波を実線で表してある。 8A and 8B show the results of separating the reflected wave by subtracting the incident wave obtained in FIG. 6 from the pulse wave waveform shown in FIG. In separating the reflected wave, the incident wave was fitted to the first peak waveform of the pulse wave waveform. In the case of a pulse wave waveform in the 60s, the maximum peak is not the peak of the incident wave, so the fitting of the incident wave was performed at the inflection point starting from the rise of the waveform. In FIG. 8, after separating the pulse wave into an incident wave and a reflected wave, each waveform is normalized by setting the maximum amplitude of the incident wave to 1, so the amplitude intensity of the reflected wave is an amplitude intensity ratio with respect to the incident wave. If necessary, the separated reflected wave may be smoothed so that the peak can be easily obtained. In FIG. 8, the reflected wave before the smoothing process is represented by dots, and the reflected wave after the smoothing process is represented by a solid line.
図8から明らかなように、20代の被験者Aの場合、(a)のように反射波のピーク強度(比)が0.2程度であるのに対し、60代の被験者Bの場合、(b)のように反射波のピーク強度(比)は0.8程度と非常に大きくなっていることがわかる。この結果から、反射波が測定部位に到着するタイミングはほぼ同じであるが、反射波の振幅は若年者より高齢者の方が大きく、特に心臓の収縮後期の振幅に特徴的な差異が確認できた。この要因は、高齢者の血管壁の方が一般的に硬いため、反射波の減衰が少なかったからであると考えられる。反射波/入射波の振幅強度比を数値化し、統計的に評価することにより、動脈硬化度をより精度よく評価することができる。 As is clear from FIG. 8, in the case of the subject A in the 20s, the peak intensity (ratio) of the reflected wave is about 0.2 as shown in (a), whereas in the case of the subject B in the 60s, ( As shown in b), it can be seen that the peak intensity (ratio) of the reflected wave is as large as about 0.8. From this result, the timing at which the reflected wave arrives at the measurement site is almost the same, but the amplitude of the reflected wave is larger in the elderly than in the young, and a characteristic difference can be confirmed particularly in the amplitude of the late systole of the heart. It was. This is considered to be because the attenuation of reflected waves was less because the blood vessel walls of elderly people were generally harder. The degree of arteriosclerosis can be evaluated with higher accuracy by digitizing and statistically evaluating the amplitude intensity ratio of the reflected wave / incident wave.
前記実施例では、第1の検出手段も第2の検出手段も共に変位信号に変換して比較しているが、速度信号で比較することも可能である。すなわち、第1の検出手段が脈波を速度信号として検出する場合、第2の検出手段が検出した血流速度波形から皮膚表面の速度信号(入射波)を推定し、その入射波を脈波にフィッティングすることで、反射波を分離してもよい。また、反射波と入射波との振幅強度比から動脈硬化度を評価する場合に限らず、反射波と入射波とを周波数解析し、周波数解析を応用した振幅の比較によって動脈硬化度を評価することも可能である。例えば、反射波の波形を周波数解析し、特定周波数の振幅を取り出して評価してもよい。 In the above embodiment, both the first detection means and the second detection means are converted into displacement signals and compared, but it is also possible to make comparisons using speed signals. That is, when the first detection unit detects a pulse wave as a velocity signal, the velocity signal (incident wave) on the skin surface is estimated from the blood flow velocity waveform detected by the second detection unit, and the incident wave is converted into the pulse wave. The reflected wave may be separated by fitting to. In addition to evaluating the degree of arteriosclerosis based on the amplitude intensity ratio between the reflected wave and the incident wave, frequency analysis of the reflected wave and the incident wave is performed, and the degree of arteriosclerosis is evaluated by comparing the amplitude by applying frequency analysis. It is also possible. For example, the waveform of the reflected wave may be subjected to frequency analysis, and the amplitude of a specific frequency may be extracted and evaluated.
1      圧電トランスデューサ
2      超音波診断装置
3      プローブ
4      動脈硬化評価装置本体
40     増幅ブロック
41     積分ブロック
43     内圧変換ブロック
44     変位変換ブロック
45     差分ブロック
46     振幅強度比較ブロック
47     評価ブロック
DESCRIPTION OF SYMBOLS 1 Piezoelectric transducer 2 Ultrasonic diagnostic apparatus 3 Probe 4 Arteriosclerosis evaluation apparatus main body 40 Amplification block 41 Integration block 43 Internal pressure conversion block 44 Displacement conversion block 45 Difference block 46 Amplitude intensity comparison block 47 Evaluation block

Claims (8)

  1. 生体の1箇所において動脈を伝わる脈波を検出する第1の検出手段と、
    前記生体の動脈の血流速度を測定する第2の検出手段と、
    前記第2の検出手段で得られた血流速度に基づいて第1の波形を特定する第1波形特定手段と、
    前記第1の検出手段によって検出された脈波から前記第1の波形を差し引いて第2の波形を得る第2波形決定手段と、
    前記第1の波形及び第2の波形の振幅強度から動脈硬化度を評価する評価手段と、を備えたことを特徴とする動脈硬化評価装置。
    First detection means for detecting a pulse wave transmitted through an artery in one place of a living body;
    Second detection means for measuring a blood flow velocity of the living artery;
    First waveform specifying means for specifying a first waveform based on the blood flow velocity obtained by the second detection means;
    Second waveform determining means for subtracting the first waveform from the pulse wave detected by the first detecting means to obtain a second waveform;
    An arteriosclerosis evaluation apparatus comprising: evaluation means for evaluating the degree of arteriosclerosis from the amplitude intensity of the first waveform and the second waveform.
  2. 前記第1の検出手段は前記脈波を変位信号として検出し、
    前記第1波形特定手段は、前記第2の検出手段で得られた血流速度を変位信号に変換して、第1の波形として入射波を特定し、
    前記第2波形決定手段は、前記第1の検出手段によって検出された変位信号から前記入射波を差し引いて、第2の波形として反射波を得るものである、請求項1に記載の動脈硬化評価装置。
    The first detection means detects the pulse wave as a displacement signal,
    The first waveform specifying means converts the blood flow velocity obtained by the second detection means into a displacement signal, specifies an incident wave as a first waveform,
    2. The arteriosclerosis evaluation according to claim 1, wherein the second waveform determination unit obtains a reflected wave as a second waveform by subtracting the incident wave from the displacement signal detected by the first detection unit. apparatus.
  3. 前記第1波形特定手段は、前記血流速度を血管内圧の時間波形に変換する第1変換手段と、変換された血管内圧の時間波形を複素弾性率を用いて変位信号に変換する第2変換手段とを含むことを特徴とする、請求項2に記載の動脈硬化評価装置。 The first waveform specifying means includes first conversion means for converting the blood flow velocity into a time waveform of intravascular pressure, and second conversion for converting the converted time waveform of intravascular pressure into a displacement signal using a complex elastic modulus. The arteriosclerosis evaluation apparatus according to claim 2, further comprising: means.
  4. 前記第1変換手段は、血流速度から血管断面積の時間変化を推定し、血管断面積の時間変化と血管内圧との関係から、血管内圧の時間波形を推定するものである、請求項3に記載の動脈硬化評価装置。 The first conversion means estimates a time change of a blood vessel cross-sectional area from a blood flow velocity, and estimates a time waveform of the blood vessel internal pressure from a relationship between the time change of the blood vessel cross-sectional area and the blood pressure in the blood vessel. The arteriosclerosis evaluation apparatus according to 1.
  5. 前記第2変換手段における複素弾性率を表すモデルはVoigtモデルまたは一般化Voigtモデルであることを特徴とする、請求項3又は4に記載の動脈硬化評価装置。 The arteriosclerosis evaluation apparatus according to claim 3 or 4, wherein the model representing the complex elastic modulus in the second conversion means is a Voigt model or a generalized Voigt model.
  6. 前記第2の波形を、フィット関数でフィッティングすることにより複数の展開波形に分解する分解手段を更に含むことを特徴とする、請求項1乃至5のいずれか1項に記載の動脈硬化評価装置。 The arteriosclerosis evaluation apparatus according to any one of claims 1 to 5, further comprising a decomposing unit that decomposes the second waveform into a plurality of developed waveforms by fitting with a fit function.
  7. 前記第1の検出手段は、前記脈波を速度信号として検出する圧電トランスデューサを含むことを特徴とする請求項1乃至6のいずれか1項に記載の動脈硬化評価装置。 The arteriosclerosis evaluation apparatus according to claim 1, wherein the first detection unit includes a piezoelectric transducer that detects the pulse wave as a velocity signal.
  8. 前記第1の検出手段は、前記圧電トランスデューサの検出出力を時間積分する積分器を含むことを特徴とする請求項7に記載の動脈硬化評価装置。 The arteriosclerosis evaluation apparatus according to claim 7, wherein the first detection unit includes an integrator that time-integrates the detection output of the piezoelectric transducer.
PCT/JP2009/065124 2008-09-01 2009-08-29 Arteriosclerosis evaluating apparatus WO2010024417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010526803A JP5016717B2 (en) 2008-09-01 2009-08-29 Atherosclerosis evaluation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008223846 2008-09-01
JP2008-223846 2008-09-01

Publications (1)

Publication Number Publication Date
WO2010024417A1 true WO2010024417A1 (en) 2010-03-04

Family

ID=41721580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065124 WO2010024417A1 (en) 2008-09-01 2009-08-29 Arteriosclerosis evaluating apparatus

Country Status (2)

Country Link
JP (1) JP5016717B2 (en)
WO (1) WO2010024417A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020120839A (en) * 2019-01-30 2020-08-13 潤一郎 橋本 Disease assessment based on analysis of carotid artery blood flow waveform
US11395600B2 (en) 2016-04-28 2022-07-26 Taiyo Yuden Co., Ltd. Vibration waveform sensor and pulse wave detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079586A (en) * 2001-07-02 2003-03-18 Nippon Colin Co Ltd Arteriosclerosis evaluation apparatus
JP2004113593A (en) * 2002-09-27 2004-04-15 Nippon Colin Co Ltd Apparatus for evaluating arteriosclerotic degree

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079586A (en) * 2001-07-02 2003-03-18 Nippon Colin Co Ltd Arteriosclerosis evaluation apparatus
JP2004113593A (en) * 2002-09-27 2004-04-15 Nippon Colin Co Ltd Apparatus for evaluating arteriosclerotic degree

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11395600B2 (en) 2016-04-28 2022-07-26 Taiyo Yuden Co., Ltd. Vibration waveform sensor and pulse wave detection device
JP2020120839A (en) * 2019-01-30 2020-08-13 潤一郎 橋本 Disease assessment based on analysis of carotid artery blood flow waveform

Also Published As

Publication number Publication date
JP5016717B2 (en) 2012-09-05
JPWO2010024417A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5016718B2 (en) Atherosclerosis evaluation device
EP3157416B1 (en) System for cuff-less blood pressure (bp) measurement of a subject
Nabeel et al. Bi-modal arterial compliance probe for calibration-free cuffless blood pressure estimation
JP3006123B2 (en) Arterial stiffness observation device
Seo et al. Noninvasive arterial blood pressure waveform monitoring using two-element ultrasound system
KR101124641B1 (en) Apparatus for analyzing cerebral artery
US20120179053A1 (en) Apparatus for measuring a propagation velocity of a blood pressure wave
Saito et al. Noninvasive assessment of arterial stiffness by pulse wave analysis
US8414500B2 (en) Arteriosclerosis diagnostic device
Nabeel et al. Magnetic plethysmograph transducers for local blood pulse wave velocity measurement
Sahani et al. An imageless ultrasound device to measure local and regional arterial stiffness
Joseph et al. Arterial compliance probe for calibration free pulse pressure measurement
WO2014030174A2 (en) Automated evaluation of arterial stiffness for a non-invasive screening
Arathy et al. An accelerometer probe for local pulse wave velocity measurement
JP5016717B2 (en) Atherosclerosis evaluation device
EP2034901B1 (en) Global and local detection of blood vessel elasticity
Kribèche et al. The Actifetus system: A multidoppler sensor system for monitoring fetal movements
JP5344294B2 (en) Vessel wall hardness evaluation device
JP3057266B2 (en) Blood viscosity observation device
Nabeel et al. Non-invasive assessment of local pulse wave velocity as function of arterial pressure
KR20060078207A (en) The system and method for a cardiovascular diagnosis monitoring
Arathy et al. Carotid local pulse wave velocity measurement using dual-element accelerometric patch probe
Manoj et al. Measurement of Local Pulse Wave Velocity: Agreement Among Various Methodologies
JP6874166B2 (en) Pulse wave velocity measuring device and its method
JP4590609B2 (en) Ultrasonic inspection equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810065

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526803

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09810065

Country of ref document: EP

Kind code of ref document: A1