WO2010024408A1 - Conductive endless belt - Google Patents

Conductive endless belt Download PDF

Info

Publication number
WO2010024408A1
WO2010024408A1 PCT/JP2009/065112 JP2009065112W WO2010024408A1 WO 2010024408 A1 WO2010024408 A1 WO 2010024408A1 JP 2009065112 W JP2009065112 W JP 2009065112W WO 2010024408 A1 WO2010024408 A1 WO 2010024408A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
meth
resin
belt
endless belt
Prior art date
Application number
PCT/JP2009/065112
Other languages
French (fr)
Japanese (ja)
Inventor
隆太 田中
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2010024408A1 publication Critical patent/WO2010024408A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1665Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat
    • G03G15/167Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat at least one of the recording member or the transfer member being rotatable during the transfer
    • G03G15/1685Structure, details of the transfer member, e.g. chemical composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1605Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
    • G03G15/162Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support details of the the intermediate support, e.g. chemical composition

Definitions

  • the present invention relates to a conductive endless belt in which a resin layer containing an ultraviolet curable resin is formed on a belt substrate.
  • Typical image forming apparatuses in copiers, laser beam printers (LBP), color copiers, etc. include tandem, intermediate transfer, and tandem intermediate transfer systems.
  • a conductive endless belt is used at a site where such an image is transferred.
  • Such conductive endless belts are required to have both belt characteristics and surface characteristics, and in order to achieve particularly good transfer efficiency, conductive endless belts having a multilayer structure in which various layers are formed on a belt substrate are proposed. Has been.
  • Patent Document 1 discloses an electrophotographic belt having a base layer and a cured resin film.
  • ultraviolet curable dipentaerythritol hexaacrylate is used to impart bending resistance, wear resistance, good electrical characteristics, and the like to the belt.
  • Employing such an ultraviolet curable resin has the advantage that the resin layer can be cured easily in a short time by simply controlling the amount of ultraviolet irradiation.
  • Patent Document 2 discloses an endless belt having a multilayer structure such as a heat-resistant resin layer, a metal layer, an elastic layer, an adhesive layer, and a release layer.
  • a fluororesin is used for the release layer to improve interlayer adhesion while maintaining toner release properties.
  • Patent Document 3 discloses a conductive endless belt in which a resin layer containing an ultraviolet curable resin is formed on a belt substrate and a fluorine-containing compound is added to the resin. With this belt, it is possible to improve the releasability and durability due to fluorine while utilizing the advantages of the ultraviolet curable resin.
  • an ultraviolet curable resin is used for the resin layer of the conductive endless belt
  • the ultraviolet curing reaction is a radical reaction
  • it is susceptible to inhibition by oxygen, and there is a risk of causing poor curing or poor reaction due to additives, These can cause a decrease in surface hardness and occurrence of tack.
  • fluorine is added to the resin, if a curing failure becomes obvious in the belt surface layer, it becomes difficult to retain the fluorine in the surface layer, and there is a high possibility that desired properties cannot be imparted. Therefore, after applying the photocurable composition to a substrate, it is necessary to proceed with an ultraviolet curing reaction in a nitrogen atmosphere so that contact with oxygen can be avoided.
  • the UV curing reaction under a nitrogen atmosphere makes it difficult to shorten the cycle time and requires a large apparatus, which may lead to an increase in cost.
  • the ultraviolet curing reaction is not performed in a nitrogen atmosphere, there is a possibility that the toner releasability and durability added by blending fluorine cannot be sufficiently ensured. Therefore, there is a strong demand for a conductive endless belt that can solve these problems while utilizing the advantage of employing an ultraviolet curable resin.
  • the present invention provides an electroconductive endless belt that does not require a curing reaction to proceed in a nitrogen atmosphere while maintaining good belt characteristics and surface characteristics by employing an ultraviolet curable resin in the resin layer. It is aimed.
  • the present inventor has found that a resin layer containing a thiol compound in addition to an ultraviolet curable resin can be formed without curing in a nitrogen atmosphere.
  • the present invention has been completed.
  • the conductive endless belt of the present invention is characterized in that a resin layer containing an ultraviolet curable resin is formed on a belt substrate, and the resin layer contains a thiol compound.
  • the resin layer may further contain a fluorine-containing compound.
  • the thiol compound is preferably contained in an amount of 1 to 30 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  • the fluorine-containing compound is preferably contained in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  • the ultraviolet curable resin is obtained from a monomer having at least 6 functional groups.
  • the thiol compound may be a compound having three or more —SH groups.
  • the resin layer contains a thiol compound, it is not necessary to cure the ultraviolet curable resin in a nitrogen atmosphere when forming the resin layer. It can be cured sufficiently by reaction. Therefore, it is possible to reduce the time required for forming the resin layer and reduce capital investment.
  • FIG. 2 is a schematic view showing a tandem type image forming apparatus using the conductive endless belt of the present invention as a transfer conveyance belt.
  • 1 is a schematic view showing an image forming apparatus using an intermediate transfer method using a conductive endless belt of the present invention as an intermediate transfer member.
  • 1 is a schematic view showing an image forming apparatus by a tandem intermediate transfer system using a conductive endless belt of the present invention as a tandem intermediate transfer member.
  • the conductive endless belt of the present invention is characterized in that a resin layer containing an ultraviolet curable resin is formed on a belt substrate, and the resin layer contains a thiol compound.
  • FIG. 1 shows a cross-sectional view in the width direction of one embodiment of the conductive endless belt of the present invention.
  • FIG. 1 (a) shows an example in which a single continuous protrusion is provided as a fitting portion.
  • This fitting portion has a number of protrusions arranged in a line along the circumferential direction (rotation direction) of the belt. They may be provided side by side, or two or more fitting portions may be provided (FIG. 1B), or may be provided at the center in the width direction of the belt.
  • a groove along the circumferential direction (rotation direction) of the belt is provided as a fitting portion instead of the protrusion shown in FIG. 1, and this is formed along the circumferential direction on the circumferential surface of the driving member such as the driving roller. You may make it make it fit with the protruding item
  • a resin layer 102 containing an ultraviolet curable resin is formed on a belt base 101, and the resin layer contains a thiol compound. Since the resin layer 102 is formed using an ultraviolet curable resin, the resin layer 102 can be cured and formed easily and reliably in a short time by appropriately controlling the amount of ultraviolet irradiation.
  • the resin layer 102 is not limited to such a single-layer structure, and may be formed of a plurality of layers having different materials and physical properties. In that case, at least one of the layers is composed of the ultraviolet curable resin and the thiol compound. A layer containing may be used.
  • the ultraviolet curable resin used for the resin layer of the conductive endless belt of the present invention is not particularly limited as long as it is a resin that is cured by irradiation with ultraviolet rays (UV) having a wavelength of about 200 to 400 nm.
  • UV ultraviolet rays
  • (meth) acrylate ultraviolet curable resins are preferable, and for example, urethane (meth) acrylate prepolymers and the like can be suitably used.
  • an ultraviolet polymerization initiator is added to the ultraviolet curable resin, and other additives are appropriately added as necessary.
  • the ultraviolet curable resin has a hydroxyl group-containing (meth) acrylate monomer, that is, one or more hydroxyl groups, and a (meth) acryloyloxy group (CH 2 ⁇ CHCOO— or CH 2 ⁇ C (CH 3 ) COO— ) May be added.
  • a hydroxyl group-containing (meth) acrylate monomer that is, one or more hydroxyl groups
  • a (meth) acryloyloxy group CH 2 ⁇ CHCOO— or CH 2 ⁇ C (CH 3 ) COO—
  • Examples of the acrylate having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and pentaerythritol triacrylate. These acrylates having a hydroxyl group may be used alone or in combination of two or more.
  • the (meth) acrylate monomer is a monomer having one or more acryloyloxy groups (CH 2 ⁇ CHCOO—) or methacryloyloxy groups (CH 2 ⁇ C (CH 3 ) COO—), and is a monofunctional monomer, bifunctional monomer Either a functional monomer or a polyfunctional monomer may be used.
  • Examples of the monofunctional monomer include isobornyl (meth) acrylate, bornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, cyclohexyl (meth) ) Alicyclic (meth) acrylate such as acrylate; benzyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, (meth) acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate 2-hydroxybutyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate , Amyl (meth) acrylate
  • bifunctional monomer examples include ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6.
  • Examples of the trifunctional or higher polyfunctional monomer include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, and pentaerythritol tri (meth).
  • Examples include acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and dipentaerythritol monohydroxypenta (meth) acrylate.
  • These photopolymerizable monomers may be used alone or in combination of two or more.
  • monomers having 6 or less functional groups are preferable. If it is a monomer having more than six functional groups, the ultraviolet curable resin is cured more than necessary, and the conductive endless belt cannot be provided with appropriate flexibility, and crack resistance may be deteriorated.
  • an ultraviolet polymerization initiator for accelerating the initiation of the curing reaction by irradiation with ultraviolet rays is added to the ultraviolet curable resin.
  • an ultraviolet polymerization initiator known ones can be adopted and are not particularly limited, and examples thereof include ⁇ -aminoacetophenone, acyl phosphine oxide, thioxanthone amine and the like. Specifically, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 1-hydroxycyclohexylphenyl Examples include ketones.
  • the short wavelength (the maximum wavelength in the ultraviolet absorption wavelength band is 400 nm as in 1-hydroxycyclohexyl phenyl ketone). It is desirable that the polymerization initiator be an ultraviolet polymerization initiator having an absorption band in a range of
  • Such an ultraviolet polymerization initiator is usually blended in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  • additives may be added to the ultraviolet curable resin as desired, as long as the effects of the present invention are not impaired.
  • additives include tertiary amines such as triethylamine and triethanolamine, alkylphosphine photopolymerization accelerators such as triphenylphosphine, thioether photopolymerization accelerators such as p-thiodiglycol, and carbon-based conductivity.
  • a conductive agent such as an ionic conductive agent such as an agent and dodecyltrimethylammonium or octadecyltrimethylammonium, conductive metal oxide, lubricating particles such as polytetrafluoroethylene (PTFE), molybdenum disulfide, and silicone fine particles.
  • PTFE polytetrafluoroethylene
  • silicone fine particles such as polytetrafluoroethylene (PTFE), molybdenum disulfide, and silicone fine particles.
  • the resin layer containing the ultraviolet curable resin contains a thiol compound.
  • the thiol compound is a compound having an —SH group, and by containing it, it becomes possible to sufficiently cure the resin without avoiding an oxygen atmosphere, and it is not particularly necessary to replace gas such as nitrogen. Therefore, the device of the conductive endless belt can be simplified and the cycle time can be shortened.
  • a thiol compound having 3 or more —SH groups is preferable, and the upper limit is not particularly limited, but is usually 6 or less. Further, a thiol compound having 3 to 4 —SH groups is more preferable. With such a thiol compound, it is possible to impart more appropriate flexibility to the resin layer, and it is possible to further improve the folding resistance of the conductive endless belt.
  • the thiol compound having three or more —SH groups include thiol compounds obtained from trimethylolpropane, isocyanuric acid, pentaerythritol, or dipentaerythritol.
  • these thiol compounds are compounds in which the hydrogen atom of —OH group or ⁇ NH group of trimethylolpropane, isocyanuric acid, pentaerythritol, or dipentaerythritol is substituted with a substituent having an —SH group, These form the main skeleton of the thiol compound.
  • a thiol compound obtained from trimethylolpropane or isocyanuric acid is preferable.
  • examples of the thiol compound include trimethylolpropane tris (3-mercaptopropionate) represented by formula (I) and tris [(3-mercaptopropioni represented by formula (II).
  • Roxy) -ethyl] isocyanurate pentaerythritol tetrakis (3-mercaptopropionate) represented by formula (III), dipentaerythritol hexakis (3-mercaptopropionate) represented by formula (IV), etc. Is mentioned.
  • thiol compounds are usually blended in an amount of 1 to 30 parts by mass, preferably 5 to 25 parts by mass, more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  • the resin layer containing the ultraviolet curable resin further contains a fluorine-containing compound.
  • a fluorine-containing compound As a result, the surface energy of the resin layer located on the outermost layer can be reduced. As a result, the frictional resistance of the belt surface can be reduced and the toner releasability can be improved. , And durability can be improved.
  • the properties imparted by the fluorine-containing compound are exhibited by the migration of the compound to the vicinity of the surface layer when the resin is cured. Therefore, even after the resin layer is cured, the resin layer, particularly the resin layer located in the outermost layer In which the compound must be well retained. If poor curing occurs in the resin layer located at the outermost layer, the compound may be detached from the resin layer.
  • the resin layer used in the present invention contains the thiol compound, it can be cured well without avoiding an oxygen atmosphere. Therefore, even if it is cured in the air, the fluorine-containing compound in the resin layer located in the outermost layer can be sufficiently retained, and the above-described effects exerted by the fluorine-containing compound can be utilized to the maximum.
  • Such a fluorine-containing compound is a compound having a polymerizable double bond between carbon atoms, the compound may be used alone, and the compound having another polymerizable double bond between carbon atoms And may be used in combination.
  • known compounds can be employed, and examples thereof include fluoroolefins and fluoro (meth) acrylates.
  • fluoroolefins having 2 to 12 carbon atoms in which 1 to all hydrogen atoms are substituted with fluorine are preferred.
  • fluoro (meth) acrylates fluoroalkyl (meth) acrylates having 5 to 16 carbon atoms in which 1 to all hydrogen atoms are substituted with fluorine are preferable.
  • 2,2,2-tri Fluoroethyl acrylate CF 3 CH 2 OCOCH ⁇ CH 2 , fluorine content 34% by weight
  • 2,2,3,3,3-pentafluoropropyl acrylate CF 3 CF 2 CH 2 OCOCH ⁇ CH 2 , fluorine content 44 wt%)
  • the fluorine-containing compound is preferably a monomer, an oligomer, or a mixture of a monomer and an oligomer.
  • the oligomer is preferably a 2 to 20 mer.
  • These fluorine-containing compounds are usually blended in an amount of 0.5 to 5 parts by mass, preferably 0.7 to 3 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  • the UV curable resin, the thiol compound and other appropriately selected components are mixed and stirred together with a solvent to form a coating solution, and the coating solution is applied onto the belt substrate. Then, a method of curing in the air by ultraviolet irradiation can be used.
  • the solvent used in this case is not particularly limited, but is preferably a highly volatile solvent such as propylene glycol monomethyl ether acetate at room temperature. With such a method, it is not necessary to replace gas such as nitrogen or methyl ethyl ketone (MEK), and it is possible to save a large amount of equipment and space and to effectively reduce the cost.
  • MEK methyl ethyl ketone
  • a dipping method in which the belt substrate is immersed in the coating solution a spray coating method, a roll coating method, or the like can be appropriately selected as necessary.
  • any of commonly used mercury lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, xenon lamps and the like can be used.
  • Conditions of ultraviolet ray irradiation may be appropriately selected depending on the type and coating amount of the ultraviolet curable resin but, illuminance 100 ⁇ 700mW / cm 2, about accumulated light quantity 100 ⁇ 3000mJ / cm 2 is suitable.
  • the thickness of the resin layer is not particularly limited, but it is usually preferably 1 to 30 ⁇ m, particularly 2 to 20 ⁇ m, especially 3 to 10 ⁇ m. If the thickness is too thin, the charging performance of the belt surface may not be sufficiently secured due to friction during long-term use, whereas if it is too thick, the belt surface becomes hard and damages the toner, There is a possibility that the toner adheres to the image forming body or the like and causes a problem such as an image defect.
  • the configuration of the belt base is not particularly limited, and can be appropriately selected from conventionally known materials as the base resin for the belt base.
  • the resin include thermoplastic polyamide (PA), thermoplastic polyarylate (PAR), thermoplastic polyacetal (POM), thermoplastic polyethylene naphthalate (PEN) resin, and thermoplastic polybutylene naphthalate (
  • thermoplastic polyalkylene naphthalate resin such as PBN resin
  • thermoplastic polyterylene terephthalate resin such as thermoplastic polyethylene terephthalate (PET) resin and thermoplastic polybutylene terephthalate (PBT) resin
  • PPS polyphenylene sulfide
  • Examples thereof include a polyimide resin and a polyamideimide resin.
  • any two or more polymer alloys or polymer blends of these resins, or any one or more of these resins and other thermoplastic resins, in particular, a polymer alloy or polymer blend of a thermoplastic elastomer. Etc. may be used.
  • a conductive agent that can be used for the above-described resin layer can be employed, and is not particularly limited.
  • the addition amount is usually about 1.0 to 30 parts by mass, preferably about 5 to 20 parts by mass with respect to 100 parts by mass of the base resin.
  • other functional components may be appropriately added to the belt base 101 in addition to the above-described components within a range not impairing the effects of the present invention.
  • various fillers, coupling agents, antioxidants, lubricants, surface treatment agents, pigments, ultraviolet absorbers, antistatic agents, dispersants, neutralizing agents, foaming agents, crosslinking agents, and the like can be appropriately blended.
  • the thickness of the conductive endless belt of the present invention can be appropriately selected according to the form of the transfer / conveying belt or the intermediate transfer member, but is usually 50 to 200 ⁇ m in total thickness with the belt substrate and the resin layer. Within range.
  • the surface roughness is preferably 3.0 ⁇ m or less, particularly 2.0 ⁇ m or less, more preferably 1.0 ⁇ m or less in JIS Ra.
  • the volume resistivity is preferably adjusted to about 10 2 ⁇ cm to 10 13 ⁇ cm by appropriately adding a conductive agent to the resin layer and / or the belt substrate.
  • the conductive endless belt of the present invention can be used in the tandem type image forming apparatus shown in FIG. 2, the intermediate transfer type image forming apparatus shown in FIG. 3, and the tandem intermediate transfer type image forming apparatus shown in FIG. Also, the present invention is not particularly limited to these image forming apparatuses.
  • FIG. 2 is a configuration example of a printing unit of a tandem image forming apparatus.
  • the conductive endless belt of the present invention can be used as the transfer conveyance belt 10.
  • a printing unit composed of the photosensitive drum 1, the charging roll 2, the developing roll 3, the developing blade 4, the toner supply roll 5, and the cleaning blade 6 corresponds to each toner of yellow Y, magenta M, cyan C, and black B 4
  • the toner images are sequentially transferred onto a sheet that is circulated by a driving roller (driving member) 9 and conveyed by a transfer conveying belt 10 to form a color image.
  • Charging and discharging of the transfer / conveying belt are performed by the charging roll 7 and the discharging roll 8, respectively.
  • a suction roller (not shown) is used for charging the paper for sucking the paper onto the belt. Owing to these measures, generation of ozone can be suppressed.
  • the suction roller places the paper on the transfer conveyance belt from the conveyance path and performs electrostatic adsorption on the transfer conveyance belt. Further, the sheet separation after the transfer can be performed only by the curvature separation by lowering the transfer voltage to weaken the adsorption force between the sheet and the transfer conveyance belt.
  • FIG. 3 is a configuration example of a printing unit of an image forming apparatus using an intermediate transfer method.
  • the conductive endless belt of the present invention can be used as the intermediate transfer member 20.
  • reference numeral 11 denotes a drum-shaped photoconductor, which rotates in the direction of the arrow in the figure.
  • the photosensitive member 11 is charged by the primary charger 12, and then the charged portion of the exposed portion is erased by image exposure 13, and an electrostatic latent image corresponding to the first color component is formed on the photosensitive member 11.
  • the electrostatic latent image is developed with the first color magenta toner M by the developing device 41, and a first color magenta toner image is formed on the photoreceptor 11.
  • the toner image is circulated and driven by a driving roller (driving member) 30 and transferred to the intermediate transfer member 20 that circulates and rotates while contacting the photoreceptor 11.
  • transfer from the photoconductor 11 to the intermediate transfer member 20 is performed by a primary transfer bias applied from the power source 61 to the intermediate transfer member 20 at the nip portion between the photoconductor 11 and the intermediate transfer member 20.
  • the surface of the photoconductor 11 is cleaned by the cleaning device 14, and the development transfer operation for the first rotation of the photoconductor 11 is completed.
  • the photoconductor rotates three times, and the cyan toner image of the second color, the yellow toner image of the third color, and the black toner image of the fourth color are sequentially used by the developing devices 42 to 44 for each turn.
  • the toner image is formed on the intermediate transfer member 20 and is superimposed and transferred to the intermediate transfer member 20 every round, so that a composite color toner image corresponding to the target color image is formed on the intermediate transfer member 20.
  • the developing devices 41 to 44 are sequentially replaced with each rotation of the photoconductor 11 so that development with magenta toner M, cyan toner C, yellow toner Y, and black toner B is sequentially performed. It has become.
  • the transfer roller 25 contacts the intermediate transfer member 20 on which the composite color toner image is formed, and a recording medium 26 such as paper is fed from the paper feed cassette 19 to the nip portion.
  • a secondary transfer bias is applied from the power source 29 to the transfer roller 25, and the composite color toner image is transferred from the intermediate transfer member 20 onto the recording medium 26 and heated and fixed to form a final image.
  • the transfer residual toner on the surface is removed by the cleaning device 35, and the intermediate transfer member 20 returns to the initial state to prepare for the next image formation.
  • a voltage can be appropriately applied from the power source 61 to the driving roller or driving gear for rotating the intermediate transfer member 20, and the voltage applied in this case is such that only the direct current is applied or the direct current is applied to the direct current. Can be selected in a timely manner.
  • FIG. 4 is a configuration example of a printing unit of a tandem intermediate transfer method in which a tandem method and an intermediate transfer method are combined.
  • the conductive endless belt of the present invention can be used as the tandem intermediate transfer member 50.
  • a first developing portion 54a to a fourth developing portion 54d for developing the electrostatic latent images on the photosensitive drums 52a to 52d with yellow, magenta, cyan, and black, respectively, are sequentially arranged along the tandem intermediate transfer member 50.
  • the tandem intermediate transfer member 50 is circulated and driven in the direction of the arrow in the figure to sequentially transfer the four color toner images formed on the photosensitive drums 52a to 52d of the developing units 54a to 54d.
  • a color toner image is formed on the tandem intermediate transfer member 50, and the toner image is transferred onto a recording medium 53 such as paper to perform printout.
  • Reference numeral 55 denotes a driving roller or tension roller for circulatingly driving the tandem intermediate transfer member 50
  • reference numeral 56 denotes a recording medium feeding roller
  • reference numeral 57 denotes a recording medium feeding device
  • reference numeral 58 denotes an image on the recording medium, and the like.
  • 1 shows a fixing device for fixing.
  • Reference numeral 59 denotes a power supply device (voltage applying means) for applying a voltage to the tandem intermediate transfer member 50.
  • the power supply device 59 transfers the toner image from the photosensitive drums 52a to 52d to the tandem intermediate transfer member 50. In this case, the polarity of the applied voltage can be reversed between the case where the image is transferred from the tandem intermediate transfer member 50 onto the recording medium 53.
  • Polyester resin PBT resin; DURANEX (registered trademark) 800FP, manufactured by Polyplastics Co., Ltd.
  • acetylene black Denki Kagaku Kogyo Co., Ltd.
  • the belt substrate having an inner diameter of 200 mm, a thickness of 100 ⁇ m, and a width of 250 mm was obtained by kneading and extruding the obtained kneaded product using an annular die.
  • Example 1 100 parts by mass of pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer (UA-306H, manufactured by Kyoeisha Chemical Co., Ltd.), 3 parts by mass of a fluorine-containing compound (OPTOOL DAC, manufactured by Daikin Industries, Ltd.), 1-hydroxycyclohexyl phenyl ketone 3 parts by mass, 0.5 part by mass of trimethylolpropane tris (3-mercaptopropionate) (thiol compound represented by the above formula (I)) and 954 parts by mass of propylene glycol monomethyl ether acetate were mixed and stirred. A working solution was obtained.
  • pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer U-306H, manufactured by Kyoeisha Chemical Co., Ltd.
  • OPTOOL DAC fluorine-containing compound
  • the coating liquid is spray-coated on the belt substrate, dried with hot air, then irradiated with ultraviolet rays (integrated light amount 390 mJ / cm 2 ) to cure the resin, and a conductive endless belt having a resin layer formed on the belt substrate.
  • the film thickness of the resin layer at this time was 2.0 ⁇ m.
  • Examples 2 to 14 As shown in Table 1, a conductive endless belt was obtained in accordance with Example 1 except that the type of thiol compound and its blending amount and the blending amount of the fluorine-containing compound were changed.
  • Example 1 A conductive endless belt was obtained according to Example 1 except that no thiol compound was added.
  • Oil repellency (change rate) ⁇ (oil contact angle before alcohol rubbing test ⁇ oil contact angle after alcohol rubbing test) / (oil contact angle before alcohol rubbing test) ⁇ ⁇ 100 (%) (X)
  • Examples 1 to 14 in which the thiol compound was blended showed better results in both oil repellency and steel wool resistance than Comparative Example 1 in which no thiol compound was blended, and excellent transfer efficiency.
  • the blending amount of the thiol compound was 1 to 30 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  • Examples 2 to 3 and 7 to 10 which are amounts within the range of parts both oil repellency and steel wool resistance are better within 10.0% compared to Examples 1 and 11 which are outside the range. It can also be seen that it shows a good result.
  • the blending amount of the fluorine-containing compound was 0.5 to 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin. ⁇ 6 clearly show better transfer efficiency compared to Example 4 in which no fluorine-containing compound was blended. Further, when Examples 3 and 12 to 14 containing the same amount of different types of thiol compounds were compared, Examples 3 and 12 to 13 containing 3 to 4 thiol compounds having —SH groups were It can be seen that good oil repellency and steel wool resistance are exhibited in a well-balanced manner while maintaining transfer efficiency superior to that of Example 14 in which thiol groups having two —SH groups are blended.

Abstract

Disclosed is a conductive endless belt having good belt characteristics and surface characteristics by using an ultraviolet-curable resin in a resin layer, wherein the curing reaction is not necessarily caused to proceed in a nitrogen atmosphere.  The conductive endless belt is characterized in that the resin layer containing an ultraviolet-curable resin is formed on a belt base and the resin layer contains a thiol compound.

Description

導電性エンドレスベルトConductive endless belt
 本発明は、ベルト基体上に紫外線硬化性樹脂を含む樹脂層が形成された導電性エンドレスベルトに関する。 The present invention relates to a conductive endless belt in which a resin layer containing an ultraviolet curable resin is formed on a belt substrate.
 複写機やレーザービームプリンター(LBP)、カラー複写機などにおける画像形成装置には、代表的なものとしてタンデム方式、中間転写方式、タンデム中間転写方式などがあり、それぞれ転写搬送ベルトや中間転写部材のような画像の転写を行う部位に導電性エンドレスベルトが用いられている。こうした導電性エンドレスベルトには、ベルト特性と表面特性を兼ね備えることが要求され、特に良好な転写効率を実現するためにベルト基体上に種々の層を形成した多層構造を有する導電性エンドレスベルトが提案されている。 Typical image forming apparatuses in copiers, laser beam printers (LBP), color copiers, etc. include tandem, intermediate transfer, and tandem intermediate transfer systems. A conductive endless belt is used at a site where such an image is transferred. Such conductive endless belts are required to have both belt characteristics and surface characteristics, and in order to achieve particularly good transfer efficiency, conductive endless belts having a multilayer structure in which various layers are formed on a belt substrate are proposed. Has been.
 たとえば、特許文献1には、基層と樹脂硬化膜とを有する電子写真用ベルトが開示されている。該樹脂硬化膜には、紫外線硬化性のジペンタエリスリトールヘキサアクリレートを用い、耐屈曲性や耐摩耗性、良好な電気的特性などを該ベルトに付与している。こうした紫外線硬化性樹脂を採用すれば、紫外線の照射量を制御するだけで、短時間かつ容易に樹脂層を硬化させることができるという利点がある。 For example, Patent Document 1 discloses an electrophotographic belt having a base layer and a cured resin film. For the resin cured film, ultraviolet curable dipentaerythritol hexaacrylate is used to impart bending resistance, wear resistance, good electrical characteristics, and the like to the belt. Employing such an ultraviolet curable resin has the advantage that the resin layer can be cured easily in a short time by simply controlling the amount of ultraviolet irradiation.
 また、特許文献2には、耐熱性樹脂層、金属層、弾性層、接着層および離型層などの多層構造からなる無端ベルトが開示されている。該離型層にフッ素樹脂を採用してトナー離型性を保持しつつ、層間密着性の向上を図っている。 Patent Document 2 discloses an endless belt having a multilayer structure such as a heat-resistant resin layer, a metal layer, an elastic layer, an adhesive layer, and a release layer. A fluororesin is used for the release layer to improve interlayer adhesion while maintaining toner release properties.
 一方、特許文献3には、ベルト基体上に紫外線硬化性樹脂を含有する樹脂層を形成し、該樹脂にフッ素含有化合物を添加した導電性エンドレスベルトが開示されている。該ベルトであれば、紫外線硬化性樹脂の利点を活用しつつ、フッ素に起因する離型性や耐久性の向上を実現することができる。 On the other hand, Patent Document 3 discloses a conductive endless belt in which a resin layer containing an ultraviolet curable resin is formed on a belt substrate and a fluorine-containing compound is added to the resin. With this belt, it is possible to improve the releasability and durability due to fluorine while utilizing the advantages of the ultraviolet curable resin.
特開2006-330692号公報JP 2006-330692 A 特開2004-70155号公報JP 2004-70155 A 特開2006-184785号公報JP 2006-184785 A
 しかしながら、導電性エンドレスベルトの樹脂層に紫外線硬化性樹脂を採用すると、紫外線硬化反応がラジカル反応であるために酸素による阻害を受けやすく、硬化不良や添加剤による反応不良などが生じるおそれがあり、これらが表面硬度の低下やタック発生の原因となり得る。特に樹脂にフッ素を添加している場合、ベルト表層において硬化不良が顕在化すると表層内にフッ素が保持されにくくなり、所望の特性を付与できなくなる可能性が高くなる。そのため、上記光硬化性組成物を基材に塗布した後、酸素との接触を回避し得るよう、窒素雰囲気下で紫外線硬化反応を進行させる必要がある。 However, when an ultraviolet curable resin is used for the resin layer of the conductive endless belt, since the ultraviolet curing reaction is a radical reaction, it is susceptible to inhibition by oxygen, and there is a risk of causing poor curing or poor reaction due to additives, These can cause a decrease in surface hardness and occurrence of tack. In particular, when fluorine is added to the resin, if a curing failure becomes obvious in the belt surface layer, it becomes difficult to retain the fluorine in the surface layer, and there is a high possibility that desired properties cannot be imparted. Therefore, after applying the photocurable composition to a substrate, it is necessary to proceed with an ultraviolet curing reaction in a nitrogen atmosphere so that contact with oxygen can be avoided.
 ところが、窒素雰囲気下で紫外線硬化反応させるとサイクルタイムを短縮しにくい上に大掛かりな装置を要し、コストアップに繋がりかねない。その一方で、窒素雰囲気下で紫外線硬化反応させなければ、フッ素を配合することにより付加されるトナー離型性や耐久性などを充分に確保できない可能性がある。したがって、紫外線硬化性樹脂を採用する利点を生かしつつ、こうした問題を解決し得る導電性エンドレスベルトが強く望まれている。 However, the UV curing reaction under a nitrogen atmosphere makes it difficult to shorten the cycle time and requires a large apparatus, which may lead to an increase in cost. On the other hand, if the ultraviolet curing reaction is not performed in a nitrogen atmosphere, there is a possibility that the toner releasability and durability added by blending fluorine cannot be sufficiently ensured. Therefore, there is a strong demand for a conductive endless belt that can solve these problems while utilizing the advantage of employing an ultraviolet curable resin.
 そこで、本発明は、樹脂層に紫外線硬化性樹脂を採用して良好なベルト特性および表面特性を保持しつつ、窒素雰囲気下で硬化反応を進行させる必要のない導電性エンドレスベルトを提供することを目的としている。 Therefore, the present invention provides an electroconductive endless belt that does not require a curing reaction to proceed in a nitrogen atmosphere while maintaining good belt characteristics and surface characteristics by employing an ultraviolet curable resin in the resin layer. It is aimed.
 本発明者は、上記課題を解決すべく、紫外線硬化性樹脂に加えてチオール化合物を配合した樹脂層とすることで、窒素雰囲気下で硬化させることなく該樹脂層を形成することができることを見出し、本発明を完成させるに至った。 In order to solve the above problems, the present inventor has found that a resin layer containing a thiol compound in addition to an ultraviolet curable resin can be formed without curing in a nitrogen atmosphere. The present invention has been completed.
 すなわち、本発明の導電性エンドレスベルトは、ベルト基体上に紫外線硬化性樹脂を含む樹脂層が形成されてなり、かつ、該樹脂層がチオール化合物を含有することを特徴とする。
 また、前記樹脂層は、さらにフッ素含有化合物を含有してもよい。
That is, the conductive endless belt of the present invention is characterized in that a resin layer containing an ultraviolet curable resin is formed on a belt substrate, and the resin layer contains a thiol compound.
The resin layer may further contain a fluorine-containing compound.
 前記チオール化合物は、前記紫外線硬化性樹脂100質量部に対し、1~30質量部の量で含有されるのが好ましい。
 また、前記フッ素含有化合物は、前記紫外線硬化性樹脂100質量部に対し、0.5~5質量部の量で含有されるのが好ましい。
 さらに、前記紫外線硬化性樹脂は、少なくとも6官能以下のモノマーから得られるのが望ましい。
 前記チオール化合物は、-SH基を3つ以上有する化合物であってもよい。
The thiol compound is preferably contained in an amount of 1 to 30 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
The fluorine-containing compound is preferably contained in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
Furthermore, it is desirable that the ultraviolet curable resin is obtained from a monomer having at least 6 functional groups.
The thiol compound may be a compound having three or more —SH groups.
 本発明の導電性エンドレスベルトによれば、樹脂層にチオール化合物が含有されているので、該樹脂層を形成するに際し、紫外線硬化性樹脂を窒素雰囲気下で硬化させる必要がなく、大気中での反応で充分に硬化させることができる。したがって、樹脂層の形成における所要時間を短縮できるとともに設備投資の削減をも実現できる。 According to the conductive endless belt of the present invention, since the resin layer contains a thiol compound, it is not necessary to cure the ultraviolet curable resin in a nitrogen atmosphere when forming the resin layer. It can be cured sufficiently by reaction. Therefore, it is possible to reduce the time required for forming the resin layer and reduce capital investment.
 また、樹脂層にさらにフッ素含有化合物を含有させることにより、大気中での反応で充分に硬化させることでフッ素保持力の向上を図ることができ、良好なトナー離型性を保持しつつ耐久性の向上をも図ることができる。 In addition, by further containing a fluorine-containing compound in the resin layer, it is possible to improve the fluorine retention by sufficiently curing in a reaction in the atmosphere, and durability while maintaining good toner releasability Can also be improved.
本発明の導電性エンドレスベルトの一態様であり、該ベルトの幅方向断面図を示す図である。It is an aspect of the conductive endless belt of the present invention, and is a view showing a sectional view in the width direction of the belt. 本発明の導電性エンドレスベルトを転写搬送ベルトとして用いたタンデム方式による画像形成装置を示す概略図である。FIG. 2 is a schematic view showing a tandem type image forming apparatus using the conductive endless belt of the present invention as a transfer conveyance belt. 本発明の導電性エンドレスベルトを中間転写部材として用いた中間転写方式による画像形成装置を示す概略図である。1 is a schematic view showing an image forming apparatus using an intermediate transfer method using a conductive endless belt of the present invention as an intermediate transfer member. 本発明の導電性エンドレスベルトをタンデム中間転写部材として用いたタンデム中間転写方式による画像形成装置を示す概略図である。1 is a schematic view showing an image forming apparatus by a tandem intermediate transfer system using a conductive endless belt of the present invention as a tandem intermediate transfer member.
 以下、本発明について、好ましい実施の形態を挙げて、必要に応じて図面を参酌しつつ具体的に説明する。
 本発明の導電性エンドレスベルトは、ベルト基体上に紫外線硬化性樹脂を含む樹脂層が形成されてなり、かつ、該樹脂層がチオール化合物を含有することを特徴としている。
Hereinafter, the present invention will be described in detail with reference to the preferred embodiments and with reference to the drawings as necessary.
The conductive endless belt of the present invention is characterized in that a resin layer containing an ultraviolet curable resin is formed on a belt substrate, and the resin layer contains a thiol compound.
 一般に、導電性エンドレスベルトにはジョイントありのものとジョイントなしのもの(いわゆるシームレスベルト)とがあるが、本発明の導電性エンドレスベルトは、いずれのものであってもよい。図1に、本発明の導電性エンドレスベルトの一態様の幅方向断面図を示す。図1(a)は、1本の連続する凸条を嵌合部として設けた例を示したが、この嵌合部は多数の凸部をベルトの周方向(回転方向)に沿って一列に並べて突設してもよく、また嵌合部を2本以上設けたり(図1(b))、ベルトの幅方向中央部に設けてもよい。さらに、嵌合部として図1に示した凸条ではなく、ベルトの周方向(回転方向)に沿った溝を設け、これを前記駆動ローラ等の駆動部材の周面に周方向に沿って形成した凸条と嵌合させるようにしてもよい。 Generally, there are conductive endless belts with joints and those without joints (so-called seamless belts), but any of the conductive endless belts of the present invention may be used. FIG. 1 shows a cross-sectional view in the width direction of one embodiment of the conductive endless belt of the present invention. FIG. 1 (a) shows an example in which a single continuous protrusion is provided as a fitting portion. This fitting portion has a number of protrusions arranged in a line along the circumferential direction (rotation direction) of the belt. They may be provided side by side, or two or more fitting portions may be provided (FIG. 1B), or may be provided at the center in the width direction of the belt. In addition, a groove along the circumferential direction (rotation direction) of the belt is provided as a fitting portion instead of the protrusion shown in FIG. 1, and this is formed along the circumferential direction on the circumferential surface of the driving member such as the driving roller. You may make it make it fit with the protruding item | line which carried out.
 本発明の導電性ベルト100は、ベルト基体101上に紫外線硬化性樹脂を含む樹脂層102が一層形成されてなり、該樹脂層はチオール化合物を含有する。樹脂層102は紫外線硬化型樹脂を用いて形成されていることから、紫外線の照射量を適切に制御することにより、短時間で容易かつ確実に樹脂層102を硬化形成することができる。樹脂層102はこのような一層の構成に限定されず、材料や物性が相互に異なる複数の層で構成してもよく、その場合には、そのうち少なくとも一層を上記紫外線硬化型樹脂とチオール化合物とを含む層とすればよい。 In the conductive belt 100 of the present invention, a resin layer 102 containing an ultraviolet curable resin is formed on a belt base 101, and the resin layer contains a thiol compound. Since the resin layer 102 is formed using an ultraviolet curable resin, the resin layer 102 can be cured and formed easily and reliably in a short time by appropriately controlling the amount of ultraviolet irradiation. The resin layer 102 is not limited to such a single-layer structure, and may be formed of a plurality of layers having different materials and physical properties. In that case, at least one of the layers is composed of the ultraviolet curable resin and the thiol compound. A layer containing may be used.
 [紫外線硬化性樹脂]
 本発明の導電性エンドレスベルトの樹脂層に用いる紫外線硬化性樹脂とは、波長200~400nm程度の紫外線(UV)の照射により硬化する樹脂であれば特に限定されない。具体的には、たとえば、ポリエステル樹脂、ポリエーテル樹脂、フッ素樹脂、エポキシ樹脂、アミノ樹脂、ポリアミド樹脂、アクリル樹脂、アクリルウレタン樹脂、ウレタン樹脂、アルキド樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、シリコーン樹脂、ポリビニルブチラール樹脂などが挙げられる。これらは1種単独で用いてもよく、2種以上混合して用いてもよい。これら上記紫外線硬化性樹脂のなかでも、(メタ)アクリレート系紫外線硬化性樹脂が好ましく、たとえば、ウレタン系(メタ)アクリレートプレポリマー等を好適に用いることができる。なお、通常上記紫外線硬化性樹脂には、紫外線重合開始剤を添加し、適宜必要に応じてその他の添加剤を添加する。
[UV curable resin]
The ultraviolet curable resin used for the resin layer of the conductive endless belt of the present invention is not particularly limited as long as it is a resin that is cured by irradiation with ultraviolet rays (UV) having a wavelength of about 200 to 400 nm. Specifically, for example, polyester resin, polyether resin, fluororesin, epoxy resin, amino resin, polyamide resin, acrylic resin, acrylic urethane resin, urethane resin, alkyd resin, phenol resin, melamine resin, urea resin, silicone resin And polyvinyl butyral resin. These may be used alone or in combination of two or more. Among these ultraviolet curable resins, (meth) acrylate ultraviolet curable resins are preferable, and for example, urethane (meth) acrylate prepolymers and the like can be suitably used. In general, an ultraviolet polymerization initiator is added to the ultraviolet curable resin, and other additives are appropriately added as necessary.
 また、上記紫外線硬化性樹脂に水酸基を有する(メタ)アクリレートモノマー、すなわち、水酸基を1つ以上有し、(メタ)アクリロイルオキシ基(CH2=CHCOO-またはCH2=C(CH3)COO-)を1つ以上有するモノマーを付加させてもよい。該水酸基を有するアクリレートとしては、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、ペンタエリスリトールトリアクリレート等が挙げられる。これら水酸基を有するアクリレートは、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。 Further, the ultraviolet curable resin has a hydroxyl group-containing (meth) acrylate monomer, that is, one or more hydroxyl groups, and a (meth) acryloyloxy group (CH 2 ═CHCOO— or CH 2 ═C (CH 3 ) COO— ) May be added. Examples of the acrylate having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and pentaerythritol triacrylate. These acrylates having a hydroxyl group may be used alone or in combination of two or more.
 (メタ)アクリレートモノマーは、アクリロイルオキシ基(CH2=CHCOO-)またはメタクロイルオキシ基(CH2=C(CH3)COO-)を1つ以上有するモノマーであり、単官能性モノマー、2官能性モノマーおよび多官能性モノマーのいずれであってもよい。 The (meth) acrylate monomer is a monomer having one or more acryloyloxy groups (CH 2 ═CHCOO—) or methacryloyloxy groups (CH 2 ═C (CH 3 ) COO—), and is a monofunctional monomer, bifunctional monomer Either a functional monomer or a polyfunctional monomer may be used.
 単官能性モノマーとしては、たとえば、イソボルニル(メタ)アクリレート、ボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の脂環式(メタ)アクリレート;ベンジル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、(メタ)アクリロイルモルホリン、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、パルミチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ポリオキシエチレンノニルフェニルエーテルアクリレート、フェノキシエチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート;エーテル骨格(メタ)アクリレート類等が挙げられる。 Examples of the monofunctional monomer include isobornyl (meth) acrylate, bornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, cyclohexyl (meth) ) Alicyclic (meth) acrylate such as acrylate; benzyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, (meth) acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate 2-hydroxybutyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate , Amyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) Acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, lauryl (meth) Acrylate, stearyl (meth) acrylate, myristyl (meth) acrylate, palmityl (meth) acrylate, isostearyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate , Butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, polyoxyethylene nonylphenyl ether acrylate, phenoxyethyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, methoxyethylene Glycol (meth) acrylate, ethoxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 7-amino-3, 7-dimethyloctyl (meth) acrylate; ether skeleton (meth) acrylates and the like.
 2官能性モノマーとしては、たとえば、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAのアルキレンオキシド付加ジオールのジ(メタ)アクリレート、水添ビスフェノールAのアルキレンオキシド付加ジオールのジ(メタ)アクリレート、ビスフェノールAのジグリシジルエーテルに(メタ)アクリレートを付加させたエポキシ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional monomer include ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6. -Hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tris (2-hydroxyethyl) isocyanurate di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, dimethylol tricyclodecandi (Meth) acrylate, di (meth) acrylate of bisphenol A alkylene oxide addition diol, di (meth) acrylate of hydrogenated bisphenol A alkylene oxide addition diol, diglycidyl bisphenol A Ether (meth) epoxy obtained by adding acrylate (meth) acrylate.
 3官能以上の多官能性モノマーとしては、たとえば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート等が挙げられる。
 これら光重合性モノマーは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
Examples of the trifunctional or higher polyfunctional monomer include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, and pentaerythritol tri (meth). Examples include acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and dipentaerythritol monohydroxypenta (meth) acrylate.
These photopolymerizable monomers may be used alone or in combination of two or more.
 これらモノマーのなかでも、6官能以下のモノマーであるのが好ましい。6官能を超えるモノマーであると、紫外線硬化性樹脂が必要以上に硬化して、導電性エンドレスベルトに適度な柔軟性を付与できず、耐割れ性が悪化するおそれがある。 Among these monomers, monomers having 6 or less functional groups are preferable. If it is a monomer having more than six functional groups, the ultraviolet curable resin is cured more than necessary, and the conductive endless belt cannot be provided with appropriate flexibility, and crack resistance may be deteriorated.
 [紫外線重合開始剤およびその他の添加剤]
 また、上記紫外線硬化性樹脂に、紫外線の照射により硬化反応の開始を促進させるための紫外線重合開始剤を添加する。このような紫外線重合開始剤としては、公知のものを採用することができ、特に制限されないが、たとえばα-アミノアセトフェノン、アシルフォスフィンオキサイド、チオキサントンノアミン等が挙げられる。具体的には、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトンなどが挙げられる。なかでも、樹脂層内部だけでなく、樹脂層表面近傍においても良好に硬化反応を進行させることができる観点から、1-ヒドロキシシクロヘキシルフェニルケトンのように短波長(紫外線吸収波長帯域の最大波長が400nm未満)に吸収帯域を有する紫外線重合開始剤であるのが望ましい。
[UV polymerization initiators and other additives]
Further, an ultraviolet polymerization initiator for accelerating the initiation of the curing reaction by irradiation with ultraviolet rays is added to the ultraviolet curable resin. As such an ultraviolet polymerization initiator, known ones can be adopted and are not particularly limited, and examples thereof include α-aminoacetophenone, acyl phosphine oxide, thioxanthone amine and the like. Specifically, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 1-hydroxycyclohexylphenyl Examples include ketones. In particular, from the viewpoint of allowing the curing reaction to proceed well not only inside the resin layer but also in the vicinity of the resin layer surface, the short wavelength (the maximum wavelength in the ultraviolet absorption wavelength band is 400 nm as in 1-hydroxycyclohexyl phenyl ketone). It is desirable that the polymerization initiator be an ultraviolet polymerization initiator having an absorption band in a range of
 このような紫外線重合開始剤は、紫外線硬化性樹脂100質量部に対し、通常0.1~10質量部の量で配合される。 Such an ultraviolet polymerization initiator is usually blended in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
 上記紫外線硬化性樹脂には、本発明の効果を損なわない範囲内で、所望によりその他の添加剤を添加してもよい。このような添加剤としては、トリエチルアミン、トリエタノールアミンなどの第3級アミン、トリフェニルホスフィンなどのアルキルホスフィン系光重合促進剤、p-チオジグリコールなどのチオエーテル系光重合促進剤、カーボン系導電剤やドデシルトリメチルアンモニウムもしくはオクタデシルトリメチルアンモニウムのようなイオン導電剤などの導電剤、導電性金属酸化物、ポリテトラフルオロエチレン(PTFE)、二硫化モリブデン、シリコーン微粒子などの潤滑性粒子などが挙げられる。これら添加剤は、上記紫外線硬化性樹脂100質量部に対し、通常0.01~10質量部の量で配合される。 Other additives may be added to the ultraviolet curable resin as desired, as long as the effects of the present invention are not impaired. Examples of such additives include tertiary amines such as triethylamine and triethanolamine, alkylphosphine photopolymerization accelerators such as triphenylphosphine, thioether photopolymerization accelerators such as p-thiodiglycol, and carbon-based conductivity. And a conductive agent such as an ionic conductive agent such as an agent and dodecyltrimethylammonium or octadecyltrimethylammonium, conductive metal oxide, lubricating particles such as polytetrafluoroethylene (PTFE), molybdenum disulfide, and silicone fine particles. These additives are usually blended in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
 [チオール化合物]
 上記紫外線硬化性樹脂を含む樹脂層は、チオール化合物を含有する。該チオール化合物は-SH基を有する化合物であり、これを含有することで、酸素雰囲気を回避することなく充分に樹脂を硬化させることが可能となり、特に窒素等のガス置換を要しない。したがって、導電性エンドレスベルトの装置の簡略化が図れるとともにサイクルタイムの短縮をも実現することができる。
[Thiol compound]
The resin layer containing the ultraviolet curable resin contains a thiol compound. The thiol compound is a compound having an —SH group, and by containing it, it becomes possible to sufficiently cure the resin without avoiding an oxygen atmosphere, and it is not particularly necessary to replace gas such as nitrogen. Therefore, the device of the conductive endless belt can be simplified and the cycle time can be shortened.
 なかでも、-SH基を3つ以上有するチオール化合物であるのが好ましく、上限値については特に制限されないが、通常6つ以下である。さらに、-SH基を3~4つ有するチオール化合物であるのがより好ましい。このようなチオール化合物であると、より適度な柔軟性を樹脂層に付与することができ、導電性エンドレスベルトの耐折れ性の向上をさらに図ることが可能となる。-SH基を3つ以上有するチオール化合物としては、たとえばトリメチロールプロパン、イソシアヌル酸、ペンタエリストール、またはジペンタエリスリトールから得られるチオール化合物が挙げられる。すなわち、これらチオール化合物は、トリメチロールプロパン、イソシアヌル酸、ペンタエリストール、またはジペンタエリスリトールが有する-OH基または=NH基の水素原子を、-SH基を有する置換基で置換した化合物であり、これらがチオール化合物の主骨格を形成する。なかでも、トリメチロールプロパンまたはイソシアヌル酸から得られるチオール化合物であるのが好ましい。このように本発明に用いるチオール化合物の主骨格を適宜選択することで、該化合物が有する-SH基数を調整することができ、樹脂層に所望の柔軟性を付与することができる。 Among them, a thiol compound having 3 or more —SH groups is preferable, and the upper limit is not particularly limited, but is usually 6 or less. Further, a thiol compound having 3 to 4 —SH groups is more preferable. With such a thiol compound, it is possible to impart more appropriate flexibility to the resin layer, and it is possible to further improve the folding resistance of the conductive endless belt. Examples of the thiol compound having three or more —SH groups include thiol compounds obtained from trimethylolpropane, isocyanuric acid, pentaerythritol, or dipentaerythritol. That is, these thiol compounds are compounds in which the hydrogen atom of —OH group or ═NH group of trimethylolpropane, isocyanuric acid, pentaerythritol, or dipentaerythritol is substituted with a substituent having an —SH group, These form the main skeleton of the thiol compound. Of these, a thiol compound obtained from trimethylolpropane or isocyanuric acid is preferable. Thus, by appropriately selecting the main skeleton of the thiol compound used in the present invention, the number of —SH groups possessed by the compound can be adjusted, and desired flexibility can be imparted to the resin layer.
 上記チオール化合物としては、より具体的には、たとえば式(I)で表されるトリメチロールプロパントリス(3-メルカプトプロピオナート)、式(II)で表されるトリス[(3-メルカプトプロピオニロキシ)-エチル]イソシアヌレート、式(III)で表されるペンタエリスリトールテトラキス(3-メルカプトプロピオナート)、式(IV)で表されるジペンタエリスリトールヘキサキス(3-メルカプトプロピオナート)などが挙げられる。 More specifically, examples of the thiol compound include trimethylolpropane tris (3-mercaptopropionate) represented by formula (I) and tris [(3-mercaptopropioni represented by formula (II). Roxy) -ethyl] isocyanurate, pentaerythritol tetrakis (3-mercaptopropionate) represented by formula (III), dipentaerythritol hexakis (3-mercaptopropionate) represented by formula (IV), etc. Is mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 これらチオール化合物は、上記紫外線硬化性樹脂100質量部に対し、通常1~30質量部、好ましくは5~25質量部、より好ましくは10~20質量部の量で配合される。 These thiol compounds are usually blended in an amount of 1 to 30 parts by mass, preferably 5 to 25 parts by mass, more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
 [フッ素含有化合物]
 上記紫外線硬化性樹脂を含む樹脂層は、さらにフッ素含有化合物を含有するのが好ましい。これにより、最外層に位置する樹脂層の表面エネルギーを低減することができ、その結果、ベルト表面の摩擦抵抗を低下させるとともに、トナー離型性を向上させることができ、長時間の使用における摩擦を低減して、耐久性をも向上させることができる。上記フッ素含有化合物により付与される特性は、樹脂の硬化の際、表層近傍に該化合物が移行することにより発揮されるので、樹脂層の硬化後においても樹脂層、特に最外層に位置する樹脂層において該化合物が良好に保持されていなければならない。仮に最外層に位置する樹脂層において硬化不良が生じると、樹脂層から該化合物が脱離するおそれがある。
[Fluorine-containing compounds]
It is preferable that the resin layer containing the ultraviolet curable resin further contains a fluorine-containing compound. As a result, the surface energy of the resin layer located on the outermost layer can be reduced. As a result, the frictional resistance of the belt surface can be reduced and the toner releasability can be improved. , And durability can be improved. The properties imparted by the fluorine-containing compound are exhibited by the migration of the compound to the vicinity of the surface layer when the resin is cured. Therefore, even after the resin layer is cured, the resin layer, particularly the resin layer located in the outermost layer In which the compound must be well retained. If poor curing occurs in the resin layer located at the outermost layer, the compound may be detached from the resin layer.
 しかしながら、本発明で用いる樹脂層は上記チオール化合物を含有するので、酸素雰囲気を回避することなく良好に硬化させることができる。そのため、大気中で硬化させても最外層に位置する樹脂層におけるフッ素含有化合物を充分に保持することができ、フッ素含有化合物が奏する上記効果を最大限活用することができる。 However, since the resin layer used in the present invention contains the thiol compound, it can be cured well without avoiding an oxygen atmosphere. Therefore, even if it is cured in the air, the fluorine-containing compound in the resin layer located in the outermost layer can be sufficiently retained, and the above-described effects exerted by the fluorine-containing compound can be utilized to the maximum.
 このようなフッ素含有化合物は、重合可能な炭素原子間二重結合を有する化合物であり、該化合物を単独で用いてもよく、該化合物と他の重合可能な炭素原子間二重結合を有する化合物とを混合して用いてもよい。これらフッ素含有化合物としては、公知のものを採用することができ、たとえばフルオロオレフィン類、およびフルオロ(メタ)アクリレート類を挙げることができる。 Such a fluorine-containing compound is a compound having a polymerizable double bond between carbon atoms, the compound may be used alone, and the compound having another polymerizable double bond between carbon atoms And may be used in combination. As these fluorine-containing compounds, known compounds can be employed, and examples thereof include fluoroolefins and fluoro (meth) acrylates.
 具体的には、たとえばフルオロオレフィン類としては、1ないしすべての水素原子がフッ素と置換された炭素数2~12のものが好適であり、具体的には、ヘキサフルオロプロペン[CF3CF=CF2,フッ素含有率76重量%]、(パーフルオロブチル)エチレン[F(CF24CH=CH2,フッ素含有率69重量%]、(パーフルオロヘキシル)エチレン[F(CF26CH=CH2,フッ素含有率71重量%]、(パーフルオロオクチル)エチレン[F(CF28CH=CH2,フッ素含有率72重量%]、(パーフルオロデシル)エチレン[F(CF210CH=CH2,フッ素含有率73重量%]、クロロトリフルオロエチレン[CF2=CFCl,フッ素含有率49重量%]、1-メトキシ-(パーフルオロ-2-メチル-1-プロペン[(CF32C=CFOCH3,フッ素含有率63重量%]、1,4-ジビニルオクタフルオロブタン[(CF24(CH=CH22,フッ素含有率60重量%]、1,6-ジビニルドデカフルオロヘキサン[(CF26(CH=CH22,フッ素含有率64重量%]、1,8-ジビニルヘキサデカフルオロオクタン[(CF28(CH=CH22,フッ素含有率67重量%]が挙げられる。 Specifically, for example, fluoroolefins having 2 to 12 carbon atoms in which 1 to all hydrogen atoms are substituted with fluorine are preferred. Specifically, hexafluoropropene [CF 3 CF═CF 2 , fluorine content 76 wt%], (perfluorobutyl) ethylene [F (CF 2 ) 4 CH═CH 2 , fluorine content 69 wt%], (perfluorohexyl) ethylene [F (CF 2 ) 6 CH = CH 2 , fluorine content 71 wt%], (perfluorooctyl) ethylene [F (CF 2 ) 8 CH═CH 2 , fluorine content 72 wt%], (perfluorodecyl) ethylene [F (CF 2 ) 10 CH = CH 2 , fluorine content 73 wt%], chlorotrifluoroethylene [CF 2 = CFCl, fluorine content 49 wt%], 1-methoxy- (perfluoro-2-me Til-1-propene [(CF 3 ) 2 C═CFOCH 3 , fluorine content 63 wt%], 1,4-divinyloctafluorobutane [(CF 2 ) 4 (CH═CH 2 ) 2 , fluorine content 60 % By weight], 1,6-divinyldodecafluorohexane [(CF 2 ) 6 (CH═CH 2 ) 2 , fluorine content 64% by weight], 1,8-divinylhexadecafluorooctane [(CF 2 ) 8 ( CH = CH 2 ) 2 , fluorine content 67 wt%].
 フルオロ(メタ)アクリレート類としては、1ないしすべての水素原子がフッ素と置換された炭素数5~16のフルオロアルキル(メタ)アクリレートが好適であり、具体的には、2,2,2-トリフルオロエチルアクリレート(CF3CH2OCOCH=CH2、フッ素含有率34重量%)、2,2,3,3,3-ペンタフルオロプロピルアクリレート(CF3CF2CH2OCOCH=CH2、フッ素含有率44重量%)、F(CF24CH2CH2OCOCH=CH2(フッ素含有率51重量%)、2,2,2-トリフルオロエチルアクリレート[CF3CH2OCOCH=CH2,フッ素含有率37重量%]、2,2,3,3,3-ペンタフルオロプロピルアクリレート[CF3CF2CH2OCOCH=CH2,フッ素含有率47重量%]、2-(パーフルオロブチル)エチルアクリレート[F(CF24CH2CH2OCOCH=CH2,フッ素含有率54重量%]、3-(パーフルオロブチル)-2-ヒドロキシプロピルアクリレート[F(CF24CH2CH(OH)CH2OCOCH=CH2,フッ素含有率49重量%]、2-(パーフルオロヘキシル)エチルアクリレート[F(CF26CH2CH2OCOCH=CH2,フッ素含有率59重量%]、3-(パーフルオロヘキシル)-2-ヒドロキシプロピルアクリレート[F(CF26CH2CH(OH)CH2OCOCH=CH2,フッ素含有率55重量%]、2-(パーフルオロオクチル)エチルアクリレート[F(CF28CH2CH2OCOCH=CH2,フッ素含有率62重量%]、3-(パーフルオロオクチル)-2-ヒドロキシプロピルアクリレート[F(CF28CH2CH(OH)CH2OCOCH=CH2,フッ素含有率59重量%]、2-(パーフルオロデシル)エチルアクリレート[F(CF210CH2CH2OCOCH=CH2,フッ素含有率65重量%]、2-(パーフルオロ-3-メチルブチル)エチルアクリレート[(CF32CF(CF22CH2CH2OCOCH=CH2,フッ素含有率57重量%]、3-(パーフルオロ-3-メチルブチル)-2-ヒドロキシプロピルアクリレート[(CF32CF(CF22CH2CH(OH)CH2OCOCH=CH2,フッ素含有率52重量%]、2-(パーフルオロ-5-メチルヘキシル)エチルアクリレート[(CF32CF(CF24CH2CH2OCOCH=CH2,フッ素含有率61重量%]、3-(パーフルオロ-5-メチルヘキシル)-2-ヒドロキシプロピルアクリレート[(CF32CF(CF24CH2CH(OH)CH2OCOCH=CH2,フッ素含有率57重量%]、2-(パーフルオロ-7-メチルオクチル)エチルアクリレート[(CF32CF(CF26CH2CH2OCOCH=CH2,フッ素含有率64重量]、3-(パーフルオロ-7-メチルオクチル)-2-ヒドロキシプロピルアクリレート[(CF32CF(CF26CH2CH(OH)CH2OCOCH=CH2,フッ素含有率60重量%]、1H,1H,3H-テトラフルオロプロピルアクリレート[H(CF22CH2OCOCH=CH2,フッ素含有率41重量%]、1H,1H,5H-オクタフルオロペンチルアクリレート[H(CF24CH2OCOCH=CH2,フッ素含有率53重量%]、1H,1H,7H-ドデカフルオロヘプチルアクリレート[H(CF26CH2OCOC(CH3)=CH2,フッ素含有率59重量%]、1H,1H,9H-ヘキサデカフルオロノニルアクリレート[H(CF28CH2OCOCH=CH2,フッ素含有率63重量%]、1H-1-(トリフルオロメチル)トリフルオロエチルアクリレート[(CF32CHOCOCH=CH2,フッ素含有率51重量%]、1H,1H,3H-ヘキサフルオロブチルアクリレート[CF3CHFCF2CH2OCOCH=CH2,フッ素含有率48重量%]、2,2,2-トリフルオロエチルメタクリレート[CF3CH2OCOC(CH3)=CH2,フッ素含有率34重量%]、2,2,3,3,3-ペンタフルオロプロピルメタクリレート[CF3CF2CH2OCOC(CH3)=CH2,フッ素含有率44重量%]、2-(パーフルオロブチル)エチルメタクリレート[F(CF24CH2CH2OCOC(CH3)=CH2,フッ素含有率51重量%]、3-(パーフルオロブチル)-2-ヒドロキシプロピルメタクリレート[F(CF24CH2CH(OH)CH2OCOC(CH3)=CH2,フッ素含有率47重量%]、2-(パーフルオロヘキシル)エチルメタクリレート[F(CF26CH2CH2OCOC(CH3)=CH2,フッ素含有率57重量%]、3-(パーフルオロヘキシル)-2-ヒドロキシプロピルメタクリレート[F(CF26CH2CH(OH)CH2OCOC(CH3)=CH2,フッ素含有率53重量%]、2-(パーフルオロオクチル)エチルメタクリレート[F(CF28CH2CH2OCOC(CH3)=CH2,フッ素含有率61重量%]、3-パーフルオロオクチル-2-ヒドロキシプロピルメタクリレート[F(CF28CH2CH(OH)CH2OCOC(CH3)=CH2,フッ素含有率57重量%]、2-(パーフルオロデシル)エチルメタクリレート[F(CF210CH2CH2OCOC(CH3)=CH2,フッ素含有率63重量%]、2-(パーフルオロ-3-メチルブチル)エチルメタクリレート[(CF32CF(CF22CH2CH2OCOC(CH3)=CH2,フッ素含有率55重量%]、3-(パーフルオロ-3-メチルブチル)-2-ヒドロキシプロピルメタクリレート[(CF32CF(CF22CH2CH(OH)CH2OCOC(CH3)=CH2,フッ素含有率51重量%]、2-(パーフルオロ-5-メチルヘキシル)エチルメタクリレート[(CF32CF(CF24CH2CH2OCOC(CH3)=CH2,フッ素含有率59重量%]、3-(パーフルオロ-5-メチルヘキシル)-2-ヒドロキシプロピルメタクリレート[(CF32CF(CF24CH2CH(OH)CH2OCOC(CH3)=CH2,フッ素含有率56重量%]、2-(パーフルオロ-7-メチルオクチル)エチルメタクリレート[(CF32CF(CF26CH2CH2OCOC(CH3)=CH2,フッ素含有率62重量%]、3-(パーフルオロ-7-メチルオクチル)-2-ヒドロキシプロピルメタクリレート[(CF32CF(CF26CH2CH(OH)CH2OCOC(CH3)=CH2,フッ素含有率59重量%]、1H,1H,3H-テトラフルオロプロピルメタクリレート[H(CF22CH2OCOC(CH3)=CH2,フッ素含有率51重量%]、1H,1H,5H-オクタフルオロペンチルメタクリレート[H(CF24CH2OCOC(CH3)=CH2,フッ素含有率51重量%]、1H,1H,7H-ドデカフルオロヘプチルメタクリレート[H(CF26CH2OCOC(CH3)=CH2,フッ素含有率57重量%]、1H,1H,9H-ヘキサデカフルオロノニルメタクリレート[H(CF28CH2OCOC(CH3)=CH2,フッ素含有率61重量%]、1H-1-(トリフルオロメチル)トリフルオロエチルメタクリレート[(CF32CHOCOC(CH3)=CH2,フッ素含有率48重量%]、1H,1H,3H-ヘキサフルオロブチルメタクリレート[CF3CHFCF2CH2OCOC(CH3)=CH2,フッ素含有率46重量%]などが挙げられる。 As the fluoro (meth) acrylates, fluoroalkyl (meth) acrylates having 5 to 16 carbon atoms in which 1 to all hydrogen atoms are substituted with fluorine are preferable. Specifically, 2,2,2-tri Fluoroethyl acrylate (CF 3 CH 2 OCOCH═CH 2 , fluorine content 34% by weight), 2,2,3,3,3-pentafluoropropyl acrylate (CF 3 CF 2 CH 2 OCOCH═CH 2 , fluorine content 44 wt%), F (CF 2 ) 4 CH 2 CH 2 OCOCH═CH 2 (fluorine content 51 wt%), 2,2,2-trifluoroethyl acrylate [CF 3 CH 2 OCOCH═CH 2 , containing fluorine rate 37% by weight], 2,2,3,3,3-pentafluoro-propyl acrylate [CF 3 CF 2 CH 2 OCOCH = CH 2, the fluorine content 4 Wt%], 2- (perfluorobutyl) ethyl acrylate [F (CF 2) 4 CH 2 CH 2 OCOCH = CH 2, fluorine content 54 wt%], 3- (perfluorobutyl) -2-hydroxypropyl acrylate [F (CF 2 ) 4 CH 2 CH (OH) CH 2 OCOCH═CH 2 , fluorine content 49% by weight], 2- (perfluorohexyl) ethyl acrylate [F (CF 2 ) 6 CH 2 CH 2 OCOCH = CH 2 , fluorine content 59 wt%], 3- (perfluorohexyl) -2-hydroxypropyl acrylate [F (CF 2 ) 6 CH 2 CH (OH) CH 2 OCOCH═CH 2 , fluorine content 55 wt% ], 2- (perfluorooctyl) ethyl acrylate [F (CF 2) 8 CH 2 CH 2 OCOCH = CH 2, fluorine content 62 wt% 3- (perfluorooctyl) -2-hydroxypropyl acrylate [F (CF 2) 8 CH 2 CH (OH) CH 2 OCOCH = CH 2, fluorine content 59 wt%], 2- (perfluoro decyl) ethyl acrylate [F (CF 2 ) 10 CH 2 CH 2 OCOCH═CH 2 , fluorine content 65 wt%], 2- (perfluoro-3-methylbutyl) ethyl acrylate [(CF 3 ) 2 CF (CF 2 ) 2 CH 2 CH 2 OCOCH = CH 2 , fluorine content 57 wt%], 3- (perfluoro-3-methylbutyl) -2-hydroxypropyl acrylate [(CF 3 ) 2 CF (CF 2 ) 2 CH 2 CH (OH) CH 2 OCOCH = CH 2, fluorine content 52 wt%], 2- (perfluoro-5-methylhexyl) ethyl acrylate [(CF 3) 2 CF ( F 2) 4 CH 2 CH 2 OCOCH = CH 2, fluorine content 61 wt%], 3- (perfluoro-5-methylhexyl) -2-hydroxypropyl acrylate [(CF 3) 2 CF ( CF 2) 4 CH 2 CH (OH) CH 2 OCOCH═CH 2 , fluorine content 57 wt%], 2- (perfluoro-7-methyloctyl) ethyl acrylate [(CF 3 ) 2 CF (CF 2 ) 6 CH 2 CH 2 OCOCH = CH 2 , fluorine content 64 weights], 3- (perfluoro-7-methyloctyl) -2-hydroxypropyl acrylate [(CF 3 ) 2 CF (CF 2 ) 6 CH 2 CH (OH) CH 2 OCOCH = CH 2 , fluorine content 60 wt%], 1H, 1H, 3H-tetrafluoropropyl acrylate [H (CF 2 ) 2 CH 2 OCOCH = CH 2 , fluorine content 41 wt%], 1H, 1H, 5H-octafluoropentyl acrylate [H (CF 2 ) 4 CH 2 OCOCH═CH 2 , fluorine content 53 wt%], 1H, 1H, 7H-dodecafluoroheptyl acrylate [H (CF 2 ) 6 CH 2 OCOC (CH 3 ) = CH 2 , fluorine content 59 wt%], 1H, 1H, 9H-hexadecafluorononyl acrylate [H (CF 2 ) 8 CH 2 OCOCH═CH 2 , fluorine Content 63 wt%], 1H-1- (trifluoromethyl) trifluoroethyl acrylate [(CF 3 ) 2 CHOCOCH═CH 2 , fluorine content 51 wt%], 1H, 1H, 3H-hexafluorobutyl acrylate [ CF 3 CHFCF 2 CH 2 OCOCH = CH 2, fluorine content 48 wt%, 2,2,2-trifluoroethyl main Acrylate [CF 3 CH 2 OCOC (CH 3) = CH 2, fluorine content 34 wt%], 2,2,3,3,3-pentafluoro-propyl methacrylate [CF 3 CF 2 CH 2 OCOC (CH 3) = CH 2 , fluorine content 44 wt%], 2- (perfluorobutyl) ethyl methacrylate [F (CF 2 ) 4 CH 2 CH 2 OCOC (CH 3 ) = CH 2 , fluorine content 51 wt%], 3- (Perfluorobutyl) -2-hydroxypropyl methacrylate [F (CF 2 ) 4 CH 2 CH (OH) CH 2 OCOC (CH 3 ) = CH 2 , fluorine content 47 wt%], 2- (perfluorohexyl) methacrylate [F (CF 2) 6 CH 2 CH 2 OCOC (CH 3) = CH 2, fluorine content 57 wt%], 3- (perfluorohexyl) -2-hydro Shi methacrylate [F (CF 2) 6 CH 2 CH (OH) CH 2 OCOC (CH 3) = CH 2, fluorine content 53 wt%], 2- (perfluorooctyl) ethyl methacrylate [F (CF 2) 8 CH 2 CH 2 OCOC (CH 3 ) = CH 2 , fluorine content 61 wt%], 3-perfluorooctyl-2-hydroxypropyl methacrylate [F (CF 2 ) 8 CH 2 CH (OH) CH 2 OCOC ( CH 3 ) = CH 2 , fluorine content 57 wt%], 2- (perfluorodecyl) ethyl methacrylate [F (CF 2 ) 10 CH 2 CH 2 OCOC (CH 3 ) = CH 2 , fluorine content 63 wt% ], 2- (perfluoro-3-methylbutyl) ethyl methacrylate [(CF 3) 2 CF ( CF 2) 2 CH 2 CH 2 OCOC (CH 3) = CH 2, fluoride Content of 55 wt%], 3- (perfluoro-3-methylbutyl) -2-hydroxypropyl methacrylate [(CF 3) 2 CF ( CF 2) 2 CH 2 CH (OH) CH 2 OCOC (CH 3) = CH 2 , fluorine content 51% by weight], 2- (perfluoro-5-methylhexyl) ethyl methacrylate [(CF 3 ) 2 CF (CF 2 ) 4 CH 2 CH 2 OCOC (CH 3 ) = CH 2 , containing fluorine 59% by weight], 3- (perfluoro-5-methylhexyl) -2-hydroxypropyl methacrylate [(CF 3 ) 2 CF (CF 2 ) 4 CH 2 CH (OH) CH 2 OCOC (CH 3 ) = CH 2 , fluorine content 56% by weight], 2- (perfluoro-7-methyloctyl) ethyl methacrylate [(CF 3 ) 2 CF (CF 2 ) 6 CH 2 CH 2 OCOC (CH 3 ) = CH 2 , fluorine content 62 wt%], 3- (perfluoro-7-methyloctyl) -2-hydroxypropyl methacrylate [(CF 3 ) 2 CF (CF 2 ) 6 CH 2 CH (OH) CH 2 OCOC (CH 3 ) = CH 2 , fluorine content 59 wt%], 1H, 1H, 3H-tetrafluoropropyl methacrylate [H (CF 2 ) 2 CH 2 OCOC (CH 3 ) = CH 2 , fluorine content 51 wt% ] 1H, 1H, 5H-octafluoropentyl methacrylate [H (CF 2 ) 4 CH 2 OCOC (CH 3 ) = CH 2 , fluorine content 51 wt%], 1H, 1H, 7H-dodecafluoroheptyl methacrylate [H (CF 2) 6 CH 2 OCOC (CH 3) = CH 2, fluorine content 57 wt%], 1H, 1H, 9H- hexadecafluoro nonyl meth click relay [H (CF 2) 8 CH 2 OCOC (CH 3) = CH 2, fluorine content 61 wt%], 1H-1- (trifluoromethyl) trifluoroethyl methacrylate [(CF 3) 2 CHOCOC ( CH 3) = CH 2 , fluorine content 48 wt%], 1H, 1H, 3H-hexafluorobutyl methacrylate [CF 3 CHFCF 2 CH 2 OCOC (CH 3 ) = CH 2 , fluorine content 46 wt%] and the like.
 上記フッ素含有化合物は、モノマー、オリゴマー、または、モノマーとオリゴマーとの混合物であることが好ましい。オリゴマーとしては2~20量体であるのが好ましい。 The fluorine-containing compound is preferably a monomer, an oligomer, or a mixture of a monomer and an oligomer. The oligomer is preferably a 2 to 20 mer.
 これらフッ素含有化合物は、上記紫外線硬化性樹脂100質量部に対し、通常0.5~5質量部、好ましくは0.7~3質量部の量で配合される。 These fluorine-containing compounds are usually blended in an amount of 0.5 to 5 parts by mass, preferably 0.7 to 3 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
 [樹脂層の形成]
 ベルト基体上に上記樹脂層を形成するには、上記紫外線硬化型樹脂およびチオール化合物とその他適宜選択した成分とを溶剤とともに混合攪拌して塗工液とし、該塗工液をベルト基体上に塗布して、紫外線照射により大気中で硬化させる方法を用いることができる。この際に用いる溶剤としては、特に制限されないが、プロピレングリコールモノメチルエーテルアセテートのような常温において揮発性の高い溶剤であるのが望ましい。このような方法であると、窒素やメチルエチルケトン(MEK)等のガス置換を必要とすることがなく、大掛かりな設備およびスペースを節減することができるとともにコストを有効に削減することが可能となる。
[Formation of resin layer]
In order to form the resin layer on the belt substrate, the UV curable resin, the thiol compound and other appropriately selected components are mixed and stirred together with a solvent to form a coating solution, and the coating solution is applied onto the belt substrate. Then, a method of curing in the air by ultraviolet irradiation can be used. The solvent used in this case is not particularly limited, but is preferably a highly volatile solvent such as propylene glycol monomethyl ether acetate at room temperature. With such a method, it is not necessary to replace gas such as nitrogen or methyl ethyl ketone (MEK), and it is possible to save a large amount of equipment and space and to effectively reduce the cost.
 この塗工液を塗布する方法としては、塗工液中にベルト基体を浸漬するディップ法や、スプレーコート法、ロールコート法などの中から、必要に応じて適宜選択して用いることができる。 As a method for applying this coating solution, a dipping method in which the belt substrate is immersed in the coating solution, a spray coating method, a roll coating method, or the like can be appropriately selected as necessary.
 紫外線を照射するための光源としては、通常使用される水銀灯、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、キセノンランプ等のいずれも使用することができる。紫外線照射の条件は、紫外線硬化型樹脂の種類や塗布量に応じて適宜選択すればよいが、照度100~700mW/cm2 、積算光量100~3000mJ/cm2程度が適切である。 As a light source for irradiating with ultraviolet rays, any of commonly used mercury lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, xenon lamps and the like can be used. Conditions of ultraviolet ray irradiation may be appropriately selected depending on the type and coating amount of the ultraviolet curable resin but, illuminance 100 ~ 700mW / cm 2, about accumulated light quantity 100 ~ 3000mJ / cm 2 is suitable.
 樹脂層の厚さとしては、特に制限されるものではないが、通常1~30μm、特には2~20μm、とりわけ3~10μm程度とすることが好ましい。厚さが薄すぎると、長期使用時の摩擦により充分にベルト表面の帯電性能を確保することができなくなる場合があり、一方、厚すぎると、ベルト表面が硬くなって、トナーにダメージを与え、画像形成体等へのトナーの固着が発生して画像不良などの問題を生ずるおそれがある。 The thickness of the resin layer is not particularly limited, but it is usually preferably 1 to 30 μm, particularly 2 to 20 μm, especially 3 to 10 μm. If the thickness is too thin, the charging performance of the belt surface may not be sufficiently secured due to friction during long-term use, whereas if it is too thick, the belt surface becomes hard and damages the toner, There is a possibility that the toner adheres to the image forming body or the like and causes a problem such as an image defect.
 [ベルト基体]
 ベルト基体の構成については、特に制限されるものではなく、またベルト基体の基材樹脂として、従来公知の材料のうちから適宜選択して用いることができる。該樹脂としては、具体的には例えば、熱可塑性ポリアミド(PA)、熱可塑性ポリアリレート(PAR)、熱可塑性ポリアセタール(POM)、熱可塑性ポリエチレンナフタレート(PEN)樹脂や熱可塑性ポリブチレンナフタレート(PBN)樹脂等の熱可塑性ポリアルキレンナフタレート樹脂、熱可塑性ポリエチレンテレフタレート(PET)樹脂や熱可塑性ポリブチレンテレフタレート(PBT)樹脂等の熱可塑性ポリアルキレンテレフタレート樹脂等のほか、ポリフェニレンサルファイド(PPS)樹脂、ポリイミド樹脂、ポリアミドイミド樹脂等を挙げることができる。また、これら樹脂のうちいずれか2種以上のポリマーアロイまたはポリマーブレンドや、これら樹脂のうちいずれか1種または2種以上と他の熱可塑性樹脂、特には熱可塑性エラストマーとのポリマーアロイまたはポリマーブレンドなどを用いてもよい。
[Belt base]
The configuration of the belt base is not particularly limited, and can be appropriately selected from conventionally known materials as the base resin for the belt base. Specific examples of the resin include thermoplastic polyamide (PA), thermoplastic polyarylate (PAR), thermoplastic polyacetal (POM), thermoplastic polyethylene naphthalate (PEN) resin, and thermoplastic polybutylene naphthalate ( In addition to thermoplastic polyalkylene naphthalate resin such as PBN resin, thermoplastic polyterylene terephthalate resin such as thermoplastic polyethylene terephthalate (PET) resin and thermoplastic polybutylene terephthalate (PBT) resin, polyphenylene sulfide (PPS) resin, Examples thereof include a polyimide resin and a polyamideimide resin. Further, any two or more polymer alloys or polymer blends of these resins, or any one or more of these resins and other thermoplastic resins, in particular, a polymer alloy or polymer blend of a thermoplastic elastomer. Etc. may be used.
 ベルト基体中には、導電剤を添加して導電性の調整を行うのが望ましい。該導電剤としては、上述した樹脂層に用いることのできる導電剤を採用することができ、特に制限されるものではない。また、その添加量は、基材樹脂100質量部に対して、通常1.0~30質量部、好ましくは5~20質量部程度である。 It is desirable to adjust the conductivity by adding a conductive agent to the belt substrate. As the conductive agent, a conductive agent that can be used for the above-described resin layer can be employed, and is not particularly limited. The addition amount is usually about 1.0 to 30 parts by mass, preferably about 5 to 20 parts by mass with respect to 100 parts by mass of the base resin.
 さらに、ベルト基体101中には、本発明の効果を損なわない範囲で、上述の成分に加えて他の機能性成分を適宜添加してもよい。例えば、各種充填材、カップリング剤、酸化防止剤、滑剤、表面処理剤、顔料、紫外線吸収剤、帯電防止剤、分散剤、中和剤、発泡剤、架橋剤等を適宜配合することができる。さらに、着色剤を添加して着色を施してもよい。 Furthermore, other functional components may be appropriately added to the belt base 101 in addition to the above-described components within a range not impairing the effects of the present invention. For example, various fillers, coupling agents, antioxidants, lubricants, surface treatment agents, pigments, ultraviolet absorbers, antistatic agents, dispersants, neutralizing agents, foaming agents, crosslinking agents, and the like can be appropriately blended. . Furthermore, you may color by adding a coloring agent.
 本発明の導電性エンドレスベルトの厚さは、転写搬送ベルトまたは中間転写部材等の形態に応じて適宜選定され得るものであるが、通常、ベルト基体および樹脂層との総厚で50~200μmの範囲内である。また、その表面粗さとしては、好適には、JIS Raで3.0μm以下、特に2.0μm以下、さらには1.0μm以下である。さらに、体積抵抗率としては、前述のように、樹脂層および/またはベルト基体中に適宜導電剤を添加することにより、102Ωcm~1013Ωcmの範囲内程度に調整することが好ましい。 The thickness of the conductive endless belt of the present invention can be appropriately selected according to the form of the transfer / conveying belt or the intermediate transfer member, but is usually 50 to 200 μm in total thickness with the belt substrate and the resin layer. Within range. The surface roughness is preferably 3.0 μm or less, particularly 2.0 μm or less, more preferably 1.0 μm or less in JIS Ra. Further, as described above, the volume resistivity is preferably adjusted to about 10 2 Ωcm to 10 13 Ωcm by appropriately adding a conductive agent to the resin layer and / or the belt substrate.
 [導電性エンドレスベルトの用途]
 本発明の導電性エンドレスベルトは、図2に示すタンデム方式による画像形成装置や、図3に示す中間転写方式による画像形成装置、図4に示すタンデム中間転写方式による画像形成装置に用いることができ、また特にこれらの画像形成装置に限定されない。
[Use of conductive endless belt]
The conductive endless belt of the present invention can be used in the tandem type image forming apparatus shown in FIG. 2, the intermediate transfer type image forming apparatus shown in FIG. 3, and the tandem intermediate transfer type image forming apparatus shown in FIG. Also, the present invention is not particularly limited to these image forming apparatuses.
 図2は、タンデム方式の画像形成装置の印字部構成例である。本発明の導電性エンドレスベルトは、転写搬送ベルト10として用いることができる。感光体ドラム1、帯電ロール2、現像ロール3、現像ブレード4、トナー供給ロール5およびクリーニングブレード6で構成する印字ユニットをイエローY、マゼンタM、シアンC、ブラックBの各トナーに対応して4個並べており、駆動ローラ(駆動部材)9により循環駆動されて転写搬送ベルト10で搬送した用紙上に、トナーを順次転写しカラー画像を形成する。転写搬送ベルトの帯電および除電は、それぞれ帯電ロール7および除電ロール8で行う。また、用紙をベルトへ吸着させるための用紙帯電には吸着ローラ(図示せず)が使用される。これらの対応により、オゾンの発生を抑えることができる。吸着ローラでは、用紙を搬送路から転写搬送ベルトに乗せるとともに、転写搬送ベルトへの静電吸着を行う。また、転写後の用紙分離は、転写電圧を低くすることにより用紙と転写搬送ベルトの吸着力を弱くして、曲率分離のみで行うことができる。 FIG. 2 is a configuration example of a printing unit of a tandem image forming apparatus. The conductive endless belt of the present invention can be used as the transfer conveyance belt 10. A printing unit composed of the photosensitive drum 1, the charging roll 2, the developing roll 3, the developing blade 4, the toner supply roll 5, and the cleaning blade 6 corresponds to each toner of yellow Y, magenta M, cyan C, and black B 4 The toner images are sequentially transferred onto a sheet that is circulated by a driving roller (driving member) 9 and conveyed by a transfer conveying belt 10 to form a color image. Charging and discharging of the transfer / conveying belt are performed by the charging roll 7 and the discharging roll 8, respectively. Further, a suction roller (not shown) is used for charging the paper for sucking the paper onto the belt. Owing to these measures, generation of ozone can be suppressed. The suction roller places the paper on the transfer conveyance belt from the conveyance path and performs electrostatic adsorption on the transfer conveyance belt. Further, the sheet separation after the transfer can be performed only by the curvature separation by lowering the transfer voltage to weaken the adsorption force between the sheet and the transfer conveyance belt.
 図3は、中間転写方式による画像形成装置の印字部構成例である。本発明の導電性エンドレスベルトは、中間転写部材20として用いることができる。図3中、11はドラム状の感光体であり、図中矢印方向に回転するようになっている。この感光体11は、一次帯電器12によって帯電され、次いで画像露光13により露光部分の帯電が消去され、第1の色成分に対応した静電潜像がこの感光体11上に形成され、さらに静電潜像が現像器41により第1色のマゼンタトナーMで現像され、第1色のマゼンタトナー画像が感光体11上に形成される。次いで、このトナー画像が、駆動ローラ(駆動部材)30により循環駆動されて感光体11と接触しながら循環回転する中間転写部材20に転写される。この場合、感光体11から中間転写部材20への転写は、感光体11と中間転写部材20とのニップ部において、中間転写部材20に電源61から印加される一次転写バイアスにより行われる。この中間転写部材20に第1色のマゼンタトナー画像が転写された後、前記感光体11はその表面がクリーニング装置14により清掃され、感光体11の1回転目の現像転写操作が完了する。以降、感光体が3回転し、各周回ごとに現像器42~44を順次用いて第2色のシアントナー画像、第3色のイエロートナー画像、第4色のブラックトナー画像が順次感光体11上に形成され、これが周回ごとに中間転写部材20に重畳転写され、目的のカラー画像に対応した合成カラートナー画像が中間転写部材20上に形成される。なお、図3の装置にあっては、感光体11の周回ごとに現像器41~44が順次入れ替わってマゼンタトナーM、シアントナーC、イエロートナーY、ブラックトナーBによる現像が順次行われるようになっている。 FIG. 3 is a configuration example of a printing unit of an image forming apparatus using an intermediate transfer method. The conductive endless belt of the present invention can be used as the intermediate transfer member 20. In FIG. 3, reference numeral 11 denotes a drum-shaped photoconductor, which rotates in the direction of the arrow in the figure. The photosensitive member 11 is charged by the primary charger 12, and then the charged portion of the exposed portion is erased by image exposure 13, and an electrostatic latent image corresponding to the first color component is formed on the photosensitive member 11. The electrostatic latent image is developed with the first color magenta toner M by the developing device 41, and a first color magenta toner image is formed on the photoreceptor 11. Next, the toner image is circulated and driven by a driving roller (driving member) 30 and transferred to the intermediate transfer member 20 that circulates and rotates while contacting the photoreceptor 11. In this case, transfer from the photoconductor 11 to the intermediate transfer member 20 is performed by a primary transfer bias applied from the power source 61 to the intermediate transfer member 20 at the nip portion between the photoconductor 11 and the intermediate transfer member 20. After the first color magenta toner image is transferred to the intermediate transfer member 20, the surface of the photoconductor 11 is cleaned by the cleaning device 14, and the development transfer operation for the first rotation of the photoconductor 11 is completed. Thereafter, the photoconductor rotates three times, and the cyan toner image of the second color, the yellow toner image of the third color, and the black toner image of the fourth color are sequentially used by the developing devices 42 to 44 for each turn. The toner image is formed on the intermediate transfer member 20 and is superimposed and transferred to the intermediate transfer member 20 every round, so that a composite color toner image corresponding to the target color image is formed on the intermediate transfer member 20. In the apparatus shown in FIG. 3, the developing devices 41 to 44 are sequentially replaced with each rotation of the photoconductor 11 so that development with magenta toner M, cyan toner C, yellow toner Y, and black toner B is sequentially performed. It has become.
 次に、前記合成カラートナー画像が形成された中間転写部材20に転写ローラ25が当接し、そのニップ部に給紙カセット19から紙等の記録媒体26が給送される。これと同時に二次転写バイアスが電源29から転写ローラ25に印加され、中間転写部材20から記録媒体26上に合成カラートナー画像が転写されて加熱定着され、最終画像となる。合成カラートナー画像を記録媒体26へと転写した後の中間転写部材20は、表面の転写残留トナーがクリーニング装置35により除去され、初期状態に戻り次の画像形成に備えるようになっている。なお、中間転写部材20を回転させる駆動ローラまたは駆動ギアには適宜電源61から電圧を印加することができ、この場合の電圧は直流のみの印加または直流に交流を重量する印加など、印加条件は適時選択することができる。 Next, the transfer roller 25 contacts the intermediate transfer member 20 on which the composite color toner image is formed, and a recording medium 26 such as paper is fed from the paper feed cassette 19 to the nip portion. At the same time, a secondary transfer bias is applied from the power source 29 to the transfer roller 25, and the composite color toner image is transferred from the intermediate transfer member 20 onto the recording medium 26 and heated and fixed to form a final image. After the composite color toner image is transferred to the recording medium 26, the transfer residual toner on the surface is removed by the cleaning device 35, and the intermediate transfer member 20 returns to the initial state to prepare for the next image formation. A voltage can be appropriately applied from the power source 61 to the driving roller or driving gear for rotating the intermediate transfer member 20, and the voltage applied in this case is such that only the direct current is applied or the direct current is applied to the direct current. Can be selected in a timely manner.
 図4は、タンデム方式と中間転写方式とを組み合わせたタンデム中間転写方式の印字部構成例である。本発明の導電性エンドレスベルトは、タンデム中間転写部材50として用いることができる。感光体ドラム52a~52d上の静電潜像をそれぞれイエロー、マゼンタ、シアン、ブラックにより現像する第1現像部54a~第4現像部54dが、タンデム中間転写部材50に沿って順次配置されており、このタンデム中間転写部材50を図中の矢印方向に循環駆動させて、各現像部54a~54dの感光体ドラム52a~52d上に形成された4色のトナー像を順次転写することにより、このタンデム中間転写部材50上にカラーのトナー像を形成し、このトナー像を紙等の記録媒体53上に転写することにより、プリントアウトを行う。符号55は、タンデム中間転写部材50を循環駆動するための駆動ローラ若しくはテンションローラを示し、符号56は記録媒体送りローラ、符号57は記録媒体送り装置、符号58は記録媒体上の画像を加熱等により定着させる定着装置を示す。また、符号59はタンデム中間転写部材50に電圧を印加する電源装置(電圧印加手段)を示し、この電源装置59は、トナー像を、感光ドラム52a~52dから上記タンデム中間転写部材50に転写する場合と、タンデム中間転写部材50から記録媒体53上に転写する場合とで、印加する電圧の正負を反転させることができるようになっている。 FIG. 4 is a configuration example of a printing unit of a tandem intermediate transfer method in which a tandem method and an intermediate transfer method are combined. The conductive endless belt of the present invention can be used as the tandem intermediate transfer member 50. A first developing portion 54a to a fourth developing portion 54d for developing the electrostatic latent images on the photosensitive drums 52a to 52d with yellow, magenta, cyan, and black, respectively, are sequentially arranged along the tandem intermediate transfer member 50. The tandem intermediate transfer member 50 is circulated and driven in the direction of the arrow in the figure to sequentially transfer the four color toner images formed on the photosensitive drums 52a to 52d of the developing units 54a to 54d. A color toner image is formed on the tandem intermediate transfer member 50, and the toner image is transferred onto a recording medium 53 such as paper to perform printout. Reference numeral 55 denotes a driving roller or tension roller for circulatingly driving the tandem intermediate transfer member 50, reference numeral 56 denotes a recording medium feeding roller, reference numeral 57 denotes a recording medium feeding device, reference numeral 58 denotes an image on the recording medium, and the like. 1 shows a fixing device for fixing. Reference numeral 59 denotes a power supply device (voltage applying means) for applying a voltage to the tandem intermediate transfer member 50. The power supply device 59 transfers the toner image from the photosensitive drums 52a to 52d to the tandem intermediate transfer member 50. In this case, the polarity of the applied voltage can be reversed between the case where the image is transferred from the tandem intermediate transfer member 50 onto the recording medium 53.
 このように、本発明によれば、図2~図4に示される転写搬送ベルト10や中間転写部材20、タンデム中間転写部材50等として用いることができる導電性エンドレスベルトを、良好なトナー離型性および耐久性を保持しつつ簡易な工程により得ることができる。 As described above, according to the present invention, the conductive endless belt that can be used as the transfer conveyance belt 10, the intermediate transfer member 20, the tandem intermediate transfer member 50, and the like shown in FIGS. It can be obtained by a simple process while maintaining the properties and durability.
 以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
 [ベルト基体の作製]
 ポリエステル系樹脂(PBT樹脂;ジュラネックス(登録商標)800FP、ポリプラスチックス(株)製)とアセチレンブラック(デンカブラック(登録商標);電気化学工業(株)製)とを二軸混練機により溶融混練して、得られた混練物を環状ダイスを用いて押し出し成形することにより、内径200mm、厚さ100μm、幅250mmの寸法を有するベルト基体を得た。
[Preparation of belt substrate]
Polyester resin (PBT resin; DURANEX (registered trademark) 800FP, manufactured by Polyplastics Co., Ltd.) and acetylene black (Denka Black (registered trademark); manufactured by Denki Kagaku Kogyo Co., Ltd.) are melted with a twin-screw kneader. The belt substrate having an inner diameter of 200 mm, a thickness of 100 μm, and a width of 250 mm was obtained by kneading and extruding the obtained kneaded product using an annular die.
 [実施例1]
 ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー(UA-306H、共栄社化学(株)製)100質量部、フッ素含有化合物(オプツールDAC、ダイキン工業(株)製)3質量部、1-ヒドロキシシクロヘキシルフェニルケトン3質量部、トリメチロールプロパントリス(3-メルカプトプロピオナート)(上記式(I)で表されるチオール化合物)0.5質量部、およびプロピレングリコールモノメチルエーテルアセテート954質量部を混合攪拌し、塗工液を得た。該塗工液を上記ベルト基体上にスプレー塗装し、熱風乾燥させた後、紫外線照射(積算光量390mJ/cm2)して樹脂を硬化させ、ベルト基体に樹脂層が形成された導電性エンドレスベルトを得た。このときの樹脂層の膜厚は、2.0μmであった。
[Example 1]
100 parts by mass of pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer (UA-306H, manufactured by Kyoeisha Chemical Co., Ltd.), 3 parts by mass of a fluorine-containing compound (OPTOOL DAC, manufactured by Daikin Industries, Ltd.), 1-hydroxycyclohexyl phenyl ketone 3 parts by mass, 0.5 part by mass of trimethylolpropane tris (3-mercaptopropionate) (thiol compound represented by the above formula (I)) and 954 parts by mass of propylene glycol monomethyl ether acetate were mixed and stirred. A working solution was obtained. The coating liquid is spray-coated on the belt substrate, dried with hot air, then irradiated with ultraviolet rays (integrated light amount 390 mJ / cm 2 ) to cure the resin, and a conductive endless belt having a resin layer formed on the belt substrate. Got. The film thickness of the resin layer at this time was 2.0 μm.
 [実施例2~14]
 表1に示すように、チオール化合物の種類とその配合量、及びフッ素含有化合物の配合量を代えた以外、実施例1にしたがって導電性エンドレスベルトを得た。
[Examples 2 to 14]
As shown in Table 1, a conductive endless belt was obtained in accordance with Example 1 except that the type of thiol compound and its blending amount and the blending amount of the fluorine-containing compound were changed.
 [比較例1]
 チオール化合物を配合しなかった以外、実施例1にしたがって導電性エンドレスベルトを得た。
[Comparative Example 1]
A conductive endless belt was obtained according to Example 1 except that no thiol compound was added.
 実施例1~14および比較例1で得られた導電性エンドレスベルトを用い、下記評価項目にしたがって評価を行った。各評価結果を表1に示す。 Using the conductive endless belts obtained in Examples 1 to 14 and Comparative Example 1, evaluation was performed according to the following evaluation items. Each evaluation result is shown in Table 1.
 〈撥油性の評価〉
 撥油性を評価するためにアルコールラビング試験(エタノールを染み込ませたワイパーに500gの荷重をかけ、50往復させる試験)を行い、試験前後の油接触角(°)をn-ドデカンを用いて接触角測定器(DM300、協和界面科学(株)製)により測定し、下記式(X)にしたがってその変化率を求めた。
 撥油性(変化率)={(アルコールラビング試験前の油接触角-アルコールラビング試験後の油接触角)/(アルコールラビング試験前の油接触角)}×100(%)・・・(X)
<Evaluation of oil repellency>
In order to evaluate oil repellency, an alcohol rubbing test (a test in which a 500 g load is applied to a wiper soaked with ethanol and reciprocated 50 times) is performed, and the oil contact angle (°) before and after the test is determined using n-dodecane. It measured with the measuring device (DM300, Kyowa Interface Science Co., Ltd.), and calculated | required the change rate according to following formula (X).
Oil repellency (change rate) = {(oil contact angle before alcohol rubbing test−oil contact angle after alcohol rubbing test) / (oil contact angle before alcohol rubbing test)} × 100 (%) (X)
 フッ素含有化合物が充分に保持されていないとアルコールが脱離し、油接触角が低下することとなる。したがって、上記変化率が低い値であるほど、導電性エンドレスベルトの樹脂層が良好に硬化してフッ素含有化合物を有効に保持していることを示す。 If the fluorine-containing compound is not sufficiently retained, alcohol is desorbed and the oil contact angle is lowered. Therefore, the lower the change rate, the better the resin layer of the conductive endless belt is cured and the fluorine-containing compound is effectively retained.
 〈耐スチールウール性の評価〉
 耐スチールウール磨耗試験(ボンスター#0000を用い、500gの荷重をかけて100往復させる試験)を行い、試験前後の光沢度を測定器(ハンディ光沢度計;IG-320、(株)堀場製作所製)を用いて測定し、下記式(Y)にしたがってその変化率を求めた。
 光沢度(変化率)={(耐スチールウール磨耗試験前の油接触角-耐スチールウール磨耗試験後の油接触角)/(アルコールラビング試験前の油接触角)}×100(%)・・・(Y)
<Evaluation of steel wool resistance>
Steel wool wear resistance test (test using bonster # 0000 and 100 reciprocations with a load of 500 g) is performed, and the gloss before and after the test is measured (handy gloss meter; IG-320, manufactured by HORIBA, Ltd.) ) And the rate of change was determined according to the following formula (Y).
Glossiness (change rate) = {(oil contact angle before steel wool abrasion test−oil contact angle after steel wool abrasion test) / (oil contact angle before alcohol rubbing test)} × 100 (%) ・ ・・ (Y)
 該変化率が低いほど、耐スチールウール性が良好であることを示し、紙や紙粉に含まれる炭酸カルシウムやシリカに起因するベルト表面の磨耗を抑制し、転写性やクリーニング性を有効に保持することができることを意味する。 The lower the rate of change, the better the steel wool resistance, and the belt surface wear caused by calcium carbonate and silica contained in paper and paper dust is suppressed, and the transferability and cleaning properties are effectively maintained. Means that you can.
 〈画像試験(転写効率の測定)〉
 図4に示すタンデム中間転写方式による画像形成装置を用い、記録媒体への転写(二次転写)中に、プリンターのフロントカバーを開け、二次転写ローラ(図4の記録媒体送りローラ56)のニップ部を通過したベルト上に残留したトナーをメンディングテープ(3M社製)に貼り付けて回収し、このメンディングテープをOHPシートに貼り付けた。次いで、このテープの濃度をマクベス濃度計で測定した値をC1とし、記録媒体に印字された画像濃度をマクベス濃度計で測定した値をC2として、下記計算式により算出した値を転写効率とした。90%以上の値であれば、良好な結果であることを示す。
    転写効率(%)={1-C1/(C1+C2)}×100
<Image test (measurement of transfer efficiency)>
The image forming apparatus of the tandem intermediate transfer system shown in FIG. 4 is used, and the front cover of the printer is opened during the transfer to the recording medium (secondary transfer), and the secondary transfer roller (recording medium feeding roller 56 in FIG. 4) The toner remaining on the belt that passed through the nip portion was collected by being attached to a mending tape (manufactured by 3M), and this mending tape was attached to an OHP sheet. Next, the value measured by the Macbeth densitometer was C1, the image density printed on the recording medium was C2 and the value measured by the Macbeth densitometer was C2. . A value of 90% or more indicates a good result.
Transfer efficiency (%) = {1−C1 / (C1 + C2)} × 100
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 ※1:トリメチロールプロパントリス(3-メルカプトプロピオナート)(上記式(I)で表されるチオール化合物)
 ※2:トリス[(3-メルカプトプロピオニロキシ)-エチル]イソシアヌレート(上記式(II)で表されるチオール化合物)
 ※3:ペンタエリスリトールテトラキス(3-メルカプトプロピオナート)(上記式(III)で表されるチオール化合物)
 ※4:ジペンタエリスリトールヘキサキス(3-メルカプトプロピオナート)(上記式(IV)で表されるチオール化合物)
* 1: Trimethylolpropane tris (3-mercaptopropionate) (thiol compound represented by the above formula (I))
* 2: Tris [(3-mercaptopropionyloxy) -ethyl] isocyanurate (thiol compound represented by the above formula (II))
* 3: Pentaerythritol tetrakis (3-mercaptopropionate) (thiol compound represented by the above formula (III))
* 4: Dipentaerythritol hexakis (3-mercaptopropionate) (thiol compound represented by the above formula (IV))
 チオール化合物を配合した実施例1~14は、チオール化合物を配合しなかった比較例1に比べ、撥油性および耐スチールウール性ともに良好な結果を示し、優れた転写効率を示すことがわかる。また、同じチオール化合物を配合しつつ同量のフッ素含有化合物を配合した実施例1~3、7~11のうち、チオール化合物の配合量が紫外線硬化性樹脂100質量部に対して1~30質量部の範囲内の量である実施例2~3、7~10は、かかる範囲外である実施例1および実施例11に比べ、撥油性および耐スチールウール性ともに10.0%以内とより良好な結果を示すこともわかる。 It can be seen that Examples 1 to 14 in which the thiol compound was blended showed better results in both oil repellency and steel wool resistance than Comparative Example 1 in which no thiol compound was blended, and excellent transfer efficiency. Further, among Examples 1 to 3 and 7 to 11 in which the same amount of fluorine-containing compound was blended while blending the same thiol compound, the blending amount of the thiol compound was 1 to 30 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin. In Examples 2 to 3 and 7 to 10 which are amounts within the range of parts, both oil repellency and steel wool resistance are better within 10.0% compared to Examples 1 and 11 which are outside the range. It can also be seen that it shows a good result.
 さらに、同じチオール化合物を同量で配合した実施例3~7のうち、フッ素含有化合物の配合量が紫外線硬化性樹脂100質量部に対して0.5~5質量部である実施例3、5~6は、フッ素含有化合物を配合しなかった実施例4に比べ、良好な転写効率を明示している。またさらに、異なる種類のチオール化合物を同量づつ配合した実施例3、12~14を比較すれば、3~4つの-SH基を有するチオール化合物を配合した実施例3、12~13が、6つの-SH基を有するチオール基を配合した実施例14よりも優れた転写効率を保持しつつ、良好な撥油性と耐スチールウール性とをバランスよく発揮することがわかる。 Further, among Examples 3 to 7 in which the same amount of the same thiol compound was blended, the blending amount of the fluorine-containing compound was 0.5 to 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin. ˜6 clearly show better transfer efficiency compared to Example 4 in which no fluorine-containing compound was blended. Further, when Examples 3 and 12 to 14 containing the same amount of different types of thiol compounds were compared, Examples 3 and 12 to 13 containing 3 to 4 thiol compounds having —SH groups were It can be seen that good oil repellency and steel wool resistance are exhibited in a well-balanced manner while maintaining transfer efficiency superior to that of Example 14 in which thiol groups having two —SH groups are blended.
 1、11、52a~52d  感光体ドラム
 2、7  帯電ロール
 3  現像ロール
 4  現像ブレード
 5  トナー供給ロール
 6  クリーニングブレード
 8  除電ロール
 9、30、55  駆動ローラ(駆動部材)
 10  転写搬送ベルト
 12  一次帯電器
 13  画像露光
 14、35  クリーニング装置
 19  給紙カセット
 20  中間転写部材
 25  転写ローラ
 26、53  記録媒体
 29、61  電源
 41、42、43、44  現像器
 50  タンデム中間転写部材
 54a~54d  第1現像部~第4現像部
 56  記録媒体送りローラ
 57  記録媒体送り装置
 58  定着装置
 59  電源装置(電圧印加手段)
DESCRIPTION OF SYMBOLS 1, 11, 52a-52d Photosensitive drum 2, 7 Charging roll 3 Developing roll 4 Developing blade 5 Toner supply roll 6 Cleaning blade 8 Static elimination roll 9, 30, 55 Driving roller (driving member)
DESCRIPTION OF SYMBOLS 10 Transfer conveyance belt 12 Primary charger 13 Image exposure 14, 35 Cleaning device 19 Paper feed cassette 20 Intermediate transfer member 25 Transfer roller 26, 53 Recording medium 29, 61 Power supply 41, 42, 43, 44 Developer 50 Tandem intermediate transfer member 54a to 54d First development unit to fourth development unit 56 Recording medium feeding roller 57 Recording medium feeding device 58 Fixing device 59 Power supply device (voltage applying means)

Claims (6)

  1.  ベルト基体上に紫外線硬化性樹脂を含む樹脂層が形成されてなり、かつ、該樹脂層がチオール化合物を含有することを特徴とする導電性エンドレスベルト。 A conductive endless belt, wherein a resin layer containing an ultraviolet curable resin is formed on a belt substrate, and the resin layer contains a thiol compound.
  2.  前記樹脂層が、さらにフッ素含有化合物を含有することを特徴とする請求項1に記載の導電性エンドレスベルト。 The conductive endless belt according to claim 1, wherein the resin layer further contains a fluorine-containing compound.
  3.  前記チオール化合物が、前記紫外線硬化性樹脂100質量部に対し、1~30質量部の量で含有されることを特徴とする請求項1または2に記載の導電性エンドレスベルト。 3. The conductive endless belt according to claim 1, wherein the thiol compound is contained in an amount of 1 to 30 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  4.  前記フッ素含有化合物が、前記紫外線硬化性樹脂100質量部に対し、0.5~5質量部の量で含有されることを特徴とする請求項2または3に記載の導電性エンドレスベルト。 The conductive endless belt according to claim 2 or 3, wherein the fluorine-containing compound is contained in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  5.  前記紫外線硬化性樹脂が、少なくとも6官能以下のモノマーから得られることを特徴とする請求項1~4のいずれかに記載の導電性エンドレスベルト。 The conductive endless belt according to any one of claims 1 to 4, wherein the ultraviolet curable resin is obtained from a monomer having at least six functional groups.
  6.  前記チオール化合物が、-SH基を3つ以上有する化合物であることを特徴とする請求項1~5のいずれかに記載の導電性エンドレスベルト。 The conductive endless belt according to any one of claims 1 to 5, wherein the thiol compound is a compound having three or more -SH groups.
PCT/JP2009/065112 2008-08-28 2009-08-28 Conductive endless belt WO2010024408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008220149 2008-08-28
JP2008-220149 2008-08-28

Publications (1)

Publication Number Publication Date
WO2010024408A1 true WO2010024408A1 (en) 2010-03-04

Family

ID=41721571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065112 WO2010024408A1 (en) 2008-08-28 2009-08-28 Conductive endless belt

Country Status (1)

Country Link
WO (1) WO2010024408A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199447A (en) * 2013-03-15 2014-10-23 株式会社リコー Image forming apparatus and process cartridge

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139525A (en) * 1989-10-24 1991-06-13 Sunstar Eng Inc Ultraviolet-curable composition
JPH04356082A (en) * 1991-03-29 1992-12-09 Bando Chem Ind Ltd Transfer-carrying belt
JPH0512125U (en) * 1991-03-22 1993-02-19 バンドー化学株式会社 Transfer conveyor belt
JPH1060252A (en) * 1996-08-14 1998-03-03 Asahi Optical Co Ltd Ultraviolet light-curable composition
JP2001207086A (en) * 2000-01-28 2001-07-31 Riken Vinyl Industry Co Ltd Ultraviolet curable coating material composition and method for manufacturing laminated product by using the same
JP2004264763A (en) * 2003-03-04 2004-09-24 C I Kasei Co Ltd Conductive belt
JP2006184785A (en) * 2004-12-28 2006-07-13 Bridgestone Corp Conductive endless belt, its manufacturing method, and image forming apparatus using same
JP2008107532A (en) * 2006-10-25 2008-05-08 Seiko Epson Corp Intermediate transfer body for liquid development system, method for manufacturing the same and image forming apparatus using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139525A (en) * 1989-10-24 1991-06-13 Sunstar Eng Inc Ultraviolet-curable composition
JPH0512125U (en) * 1991-03-22 1993-02-19 バンドー化学株式会社 Transfer conveyor belt
JPH04356082A (en) * 1991-03-29 1992-12-09 Bando Chem Ind Ltd Transfer-carrying belt
JPH1060252A (en) * 1996-08-14 1998-03-03 Asahi Optical Co Ltd Ultraviolet light-curable composition
JP2001207086A (en) * 2000-01-28 2001-07-31 Riken Vinyl Industry Co Ltd Ultraviolet curable coating material composition and method for manufacturing laminated product by using the same
JP2004264763A (en) * 2003-03-04 2004-09-24 C I Kasei Co Ltd Conductive belt
JP2006184785A (en) * 2004-12-28 2006-07-13 Bridgestone Corp Conductive endless belt, its manufacturing method, and image forming apparatus using same
JP2008107532A (en) * 2006-10-25 2008-05-08 Seiko Epson Corp Intermediate transfer body for liquid development system, method for manufacturing the same and image forming apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199447A (en) * 2013-03-15 2014-10-23 株式会社リコー Image forming apparatus and process cartridge

Similar Documents

Publication Publication Date Title
JP6008245B2 (en) Cleaning blade, image forming apparatus, and process cartridge
US7809315B2 (en) Transfer/transport conductive endless belt for a tandem system, method for producing same, and image forming apparatus employing same
JP5632396B2 (en) Conductive endless belt
JP6410658B2 (en) Electrophotographic transfer member and electrophotographic image forming apparatus
JP2013186361A (en) Transfer member, process cartridge, and image forming apparatus
JP4616297B2 (en) Conductive roller and image forming apparatus having the same
US9904216B2 (en) Intermediate transfer member and electrophotographic image forming apparatus using the same
JP2017016083A (en) Cleaning blade, process cartridge, and image forming apparatus
JP4996866B2 (en) Conductive roller and image forming apparatus having the same
WO2010024408A1 (en) Conductive endless belt
US20130302076A1 (en) Glossing device
JP2006184785A (en) Conductive endless belt, its manufacturing method, and image forming apparatus using same
JP2006184787A (en) Conductive endless belt, its manufacturing method, and image forming apparatus using same
JP2006235538A (en) Conductive endless belt, its manufacturing method, and image forming apparatus using the same
JP5882844B2 (en) Conductive endless belt
JP6394397B2 (en) Cleaning blade, process cartridge and image forming apparatus including the same
JP6191652B2 (en) Intermediate transfer belt and image forming apparatus
JP2018156033A (en) Cleaning blade, image forming apparatus, and process cartridge
WO2013151132A1 (en) Conductive endless belt
JP2016173386A (en) Cleaning blade, process cartridge and image formation device
JP2006184786A (en) Conductive endless belt, its manufacturing method, and image forming apparatus using same
JP6237750B2 (en) Intermediate transfer member, method for producing the same, and electrophotographic image forming apparatus
JP2024013656A (en) Image forming device members, transfer devices, and image forming devices
JP6503978B2 (en) Intermediate transfer belt and image forming apparatus
JP2019105762A (en) Fixing member and fixing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09810056

Country of ref document: EP

Kind code of ref document: A1