WO2010024264A1 - Fiber ring laser and fiber ring laser gyro using the same - Google Patents

Fiber ring laser and fiber ring laser gyro using the same Download PDF

Info

Publication number
WO2010024264A1
WO2010024264A1 PCT/JP2009/064816 JP2009064816W WO2010024264A1 WO 2010024264 A1 WO2010024264 A1 WO 2010024264A1 JP 2009064816 W JP2009064816 W JP 2009064816W WO 2010024264 A1 WO2010024264 A1 WO 2010024264A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
laser
ring laser
wavelength
ring
Prior art date
Application number
PCT/JP2009/064816
Other languages
French (fr)
Japanese (ja)
Inventor
能徳 久保田
英之 岡本
健 春日
育成 原
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2010024264A1 publication Critical patent/WO2010024264A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers

Definitions

  • the present invention relates to a fiber ring laser used for angular velocity measurement, distance measurement light source, surface shape measurement light source, display light source, image projection light source and the like.
  • the present invention also relates to a fiber ring laser gyro using the same.
  • a high-quality and high-efficiency light source for visible light has been demanded for reasons such as high definition of image projection display, large display area, 3D display technology advancement, and 3D content enhancement.
  • short wavelength light sources such as a visible light source are expected to be realized in application fields such as precise surface shape inspection, internal processing of transparent bodies such as glass, and precision laser processing.
  • fiber lasers are widely used as lasers with high laser beam quality.
  • the fiber ring laser (F-RLG) is known as one of the main forms of fiber lasers because of its low laser oscillation threshold and high design freedom.
  • a fiber laser capable of directly oscillating a short wavelength of less than 1 ⁇ m such as visible light is required.
  • the influence of non-radiation relaxation due to the high phonon energy of the medium is large, and it is difficult to directly oscillate a short wavelength of less than 1 ⁇ m. Therefore, second-order harmonic generation technology that converts the wavelength of a fiber laser to half has attracted attention, and has been widely used particularly for green laser generation.
  • LiNbO3 crystal (LN) and ⁇ -BaB2O4 crystal ( ⁇ -BBO) are used for second harmonic generation, and a waveguide type and a periodically poled type are known in addition to the bulk type.
  • LN with periodically poled is widely used as PPLN (Periodically Polly Lithium Niobate).
  • Non-Patent Document 1 As a method for obtaining a short wavelength, there is a short wavelength laser by multistage excitation of an infrared laser, which is known as an upconversion laser.
  • the lifetime of the excited intermediate level is very important for upconversion lasers, and low phonon glass materials such as fluoride glass doped with rare earths and low phonon crystal compositions such as fluoride crystals doped with rare earths are used.
  • Non-patent Document 2 discloses a visible laser using a GaN-based semiconductor laser as an excitation light source.
  • 630-670 nm band red semiconductor lasers are already being applied to laser television, and 405 nm band GaN semiconductor lasers are being used for high density DVD recording.
  • the 460 nm band is expected as a blue light source for display applications.
  • a ring laser using an existing rare earth-doped fiber is invisible light having a laser oscillation wavelength of 1 ⁇ m or more and cannot be used for a display or projection application.
  • a light source having a wavelength of at least a visible light region or less is required.
  • a visible light wavelength region in which the material is transparent is desired for fine processing inside the transparent body.
  • a combination with wavelength conversion using a nonlinear optical crystal such as LN or ⁇ -BBO is known. It is difficult to grow and has a problem of low wavelength conversion efficiency. Further, in order to improve the wavelength conversion efficiency, LN or the like that is periodically poled is used. However, since the optimum wavelength conversion wavelength is sensitive to temperature, precise temperature control is required. For this reason, there is a problem that the power consumption of the laser device increases and the device becomes large. Further, a Fabry-Perot laser using a GaN-based semiconductor laser as an excitation source is known.
  • an upconversion laser is known as a method for obtaining a short-wavelength laser beam directly from a fiber.
  • an upconversion laser is a multi-step process, and laser power fluctuations due to temperature fluctuations are likely to occur. There is a problem of low conversion efficiency.
  • Non-patent Documents 3 and 4, Patent Document 1 the He-Ne ring laser gyro
  • I-FOG interference type fiber gyro
  • narrowing of the laser line width is effective for improving the sensitivity of F-RLG
  • a method in which a rare earth-doped fiber is disposed as a saturable absorber in a part of the ring has been proposed (Non-patent Document 5).
  • a method for facilitating detection by using a fiber ring laser as a mode-locked laser has been proposed (Non-Patent Document 6).
  • Optical gyros not limited to F-RLG, use the Sagnac effect, but in a ring laser with an amplifying medium in the ring, the following formula (1) is applied to the clockwise (CW) and counterclockwise (CCW) laser oscillation frequencies: ) Is generated.
  • ⁇ f Laser oscillation frequency difference
  • A Ring area
  • Angular velocity
  • Laser oscillation wavelength when there is no rotation
  • P Ring laser resonator length.
  • this frequency difference is detected by a method such as interference.
  • R represents the ring radius
  • the conditions for the laser oscillation frequency difference to be large and easy detection are as follows: a) large angular velocity, b) large ring diameter, or c) short lasing wavelength. There are three conditions.
  • a laser material that can be used as a fiber ring laser Nd-doped silica fiber, Yb-doped silica fiber, Er-doped silica fiber, and the like are known, and the laser oscillation wavelength is 1 ⁇ m or more.
  • the conventional rare earth-doped silica-based fiber has a rare earth addition concentration as low as several hundred ppm or less, and a fiber having a ring laser resonator length of at least 10 m is required, so that miniaturization is difficult.
  • the present invention provides a fiber ring laser capable of directly oscillating a short wavelength, which is useful for angular velocity measurement, distance measurement, surface shape measurement, display, image projection, high-precision processing, etc.
  • An object is to provide a fiber ring laser gyro.
  • the present inventors have found that when a rare earth-doped fluoride fiber pumped with a semiconductor laser having a wavelength of 340 nm or more and 500 nm or less is used as a gain medium of a ring laser, the wavelength is less than 1 ⁇ m.
  • the inventors have found that it is possible to directly oscillate a short wavelength, and have reached the present invention.
  • an excitation light source for exciting a gain medium, at least one closed ring resonator (ring laser resonator), and a rare earth-doped fiber as the gain medium in the ring laser resonator.
  • a fiber ring laser as the rare earth-doped fiber, a fiber having a core to which at least one kind of rare earth selected from Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, and Tm is added is used.
  • a fiber ring laser (first laser) characterized in that the oscillation wavelength is a short wavelength of less than 1 ⁇ m.
  • the first laser is a fiber ring laser (second laser), wherein the rare earth-doped fiber is a fluoride glass fiber, and a semiconductor light source that emits a wavelength of 340 nm to 500 nm is used as the excitation light source. ).
  • the first or second laser is a fiber ring laser (third laser) characterized in that it comprises at least two or more of the rare earth-doped fibers and can individually control the pumping conditions of the rare earth-doped fibers. May be.
  • Any one of the first to third lasers includes a ring laser resonator including at least one saturable absorber that operates at a laser oscillation wavelength of the fiber ring laser. 4 lasers).
  • any one of the first to fourth lasers is characterized in that at least one fluoride fiber having a core transparent to the excitation wavelength and the laser oscillation wavelength is provided in the ring laser resonator. It may be a ring laser (fifth laser).
  • CW clockwise
  • CCW counterclockwise
  • a fiber ring laser gyro (F-RLG) using an angular velocity detection method for detecting a signal a fiber ring laser gyro characterized by using any one of first to fifth lasers is provided.
  • FIG. 6 is a configuration diagram of a ring laser gyro according to a third embodiment. It is a figure which shows the setup which measures the angular velocity detection characteristic of the ring laser gyro of Example 3.
  • FIG. It is a figure which shows the measurement result of the relationship between the angular velocity of Example 3, and an interference frequency.
  • a short-wavelength laser beam having a wavelength of less than 1 ⁇ m can be obtained directly and stably in a fiber.
  • Surface shape measurement with visible light, display, projector, 3D television, high-precision surface shape measurement, high Application to precision processing, transparent body internal processing, high-performance fiber laser gyro, etc. becomes possible.
  • a short-wavelength fiber laser can be used, a laser frequency shift equal to or higher than that of a conventional fiber ring laser using a quartz fiber can be obtained even when the ring diameter is small. Therefore, the ring laser gyro can be made smaller and more accurate.
  • a laser having a short wavelength with a laser oscillation wavelength of less than 1 ⁇ m can be obtained directly without using a method such as wavelength conversion.
  • the laser resonator is a ring laser resonator, no optical alignment shift occurs with respect to vibration or temperature fluctuation, so that stable laser oscillation can be obtained.
  • a ring laser can be constructed at low cost by using a semiconductor light source as an excitation light source.
  • the gain of CW light and CCW light is controlled to be the same, and the power difference due to the rotation direction is made very small. Therefore, in applications that use interference between CW light and CCW light, the contrast of interference fringes can be maximized. Further, such a laser can be used widely as a light source for interference measurement because it can simultaneously obtain a set of laser beams having the same power.
  • At least one saturable absorber that operates at the laser oscillation wavelength of the fiber ring laser is provided in the ring laser resonator, thereby removing unnecessary noise components and controlling the laser oscillation state.
  • Reduction in laser noise improves processing accuracy and measurement accuracy.
  • the occurrence of rocking can be suppressed when applied to a laser gyro.
  • the gain medium of the ring laser is a rare earth doped fiber
  • scattered light or spontaneous emission light may circulate in the ring resonator in addition to the laser oscillation wavelength.
  • the wavelength of spontaneous emission light generated by the transition between the same levels as laser oscillation is close to the laser oscillation wavelength. Therefore, the amplified spontaneous emission passes through and circulates through the optical components that make up the ring laser resonator with low loss. It becomes light (ASE light). Since the ASE light has a wide emission spectrum width, the integrated power is relatively large even when the peak power is low, which not only prevents laser oscillation but also causes laser noise.
  • the saturable absorber has a characteristic of absorbing when the light intensity is low and transmitting when the light intensity is high.
  • the saturable absorber is in the ring laser resonator, it can be absorbed and removed before the ASE light grows, and there is an advantage that the noise of the laser is greatly reduced.
  • scattered light having a laser wavelength is difficult to remove by a normal method, scattered light existing at a time other than when the laser pulse passes can be removed when pulsed laser oscillation is performed, so that noise can be reduced.
  • the optical length is represented by [ring laser resonator length] ⁇ [average refractive index of ring laser resonator].
  • the materials constituting the ring laser resonator most of oxide-based materials and semiconductor-based materials have a positive linear expansion coefficient and a positive temperature dependency of the refractive index. For this reason, when the ambient temperature rises, the optical length increases monotonously.
  • fluoride glass has a positive coefficient of linear expansion but negative temperature dependency of the refractive index. For this reason, an increase in the optical length due to the temperature dependence of other materials can be corrected by providing a combination of fluoride fibers having an appropriate length in the ring laser resonator. Furthermore, since the fluoride fiber to be used is a fiber that is transparent to the laser wavelength and the excitation wavelength, the temperature dependence can be suppressed without affecting the optical characteristics of the ring laser.
  • the accuracy of detecting the angular velocity of the laser gyro is improved by applying the short wavelength ring laser of the present invention to the laser gyro.
  • the ring laser of the present invention oscillates at a short wavelength, a highly accurate laser gyro can be realized even if the diameter of the ring laser resonator is reduced. For this reason, a laser gyro can be reduced in size.
  • the composition of the rare earth-doped fiber used for laser oscillation must be at least the core glass composition of low phonon energy, and low phonon energy laser base materials include fluoride glass, tungstate glass, and molybdic acid. Salt glass, germanate glass, tellurite glass, bismuthate glass, chloride glass, fluorophosphate glass, chalcogenide glass and the like can be used. Among these, fluoride glass is particularly preferable because of its ease of production and high emission efficiency of short wavelength light. In a glass fiber with a high phonon energy such as a silica-based glass fiber, laser oscillation at a short wavelength is hindered by multiphonon relaxation.
  • Structural parameters such as fiber core diameter and numerical aperture are determined taking into account the mode overlap and pumping light density determined by the pumping light wavelength and laser oscillation wavelength.
  • it may be designed to be a single mode at the excitation light wavelength, or may be a multimode design in which a low-order mode can exist. This is because laser oscillation is possible without propagation over a long distance as in a transmission fiber for optical communication.
  • the core diameter is about 10 ⁇ m to 50 ⁇ m, and when the output is about 100 W, the core diameter is 100 ⁇ m to 500 ⁇ m.
  • a range is preferred.
  • power density when a fluoride fiber is used as a laser medium, a value obtained by dividing the total optical power of pumping light and ring laser light by the core area is preferably 100 MW / cm 2 or less. Exceeding this power density significantly increases the risk of fiber breakage. On the other hand, when the power density is 50 kW / cm 2 or less, efficient laser oscillation is difficult.
  • the concentration of rare earth added cannot be unconditionally defined because the optimum value varies depending on structural parameters such as the core diameter and numerical aperture of the fiber and the confinement efficiency of the resonator, but the concentration in the range of approximately 100 ppm to 10,000 ppm can be determined. It is suitable to add to. If it is less than 100 ppm, since the absorption coefficient at the excitation light wavelength is too small, the required fiber length becomes long, which is not preferable for practical use. A concentration exceeding 10,000 ppm is not preferable because the non-emissive transition probability increases due to energy transfer between rare earth ions.
  • a semiconductor light source As the excitation light source in terms of cost and productivity.
  • Semiconductor light sources with a light emitting part in a spot form include semiconductor lasers and LEDs (Light Emission Diodes), which are not only used as they are, but also one-dimensional light sources integrated in an array, two-dimensional integrated in a planar shape.
  • the light source can be used as a three-dimensional light source that is three-dimensionally arranged.
  • organic EL and inorganic EL can be originally produced as a two-dimensional light-emitting panel, they are suitable for uniformly exciting a large area. These excitation light sources can be used in appropriate combinations in order to obtain the necessary excitation power.
  • the use of a GaN-based semiconductor laser whose output has recently been greatly increased and the wavelength range has been greatly expanded is particularly preferable because of its good compatibility with the fiber system.
  • a laser obtained by converting the wavelength of a solid laser, fiber laser or the like with a nonlinear optical element can be used as an excitation light source.
  • excitation is performed at 420 nm to 490 nm, and laser oscillation is possible in the 490 nm band, 520 nm band, 600 nm band, 710 nm band, and the like. Further, excitation is performed at 560 nm to 600 nm, and laser oscillation is possible in the 600 nm band, the 710 nm band, and the like.
  • the 600 nm band has a wide laser oscillating band and can oscillate in a very wide wavelength range from 598 nm to 643 nm, and can be applied to a broadband wavelength tunable laser and an ultrashort pulse laser.
  • excitation is possible in the band of 320 nm to 370 nm, 420 nm band, 440 to 480 nm, and laser oscillation is possible in the 490 nm band, 850 to 900 nm band, 1 ⁇ m band, and the like. Further, excitation is performed at 490 nm to 540 nm, 550 nm to 600 nm, and laser oscillation is possible in the 850 to 900 nm band, 1 ⁇ m band, and the like.
  • excitation is possible particularly in the 400 nm band
  • laser oscillation is possible in the 420 nm band, 450 nm band, 560 nm band, 595 nm band, 640 nm band, and 700 nm band.
  • excitation is performed in the 340 to 410 nm band and the 465 nm band, and laser oscillation is possible in the 590 nm band, 613 nm band, and 696 nm band.
  • Tb when added to fluoride glass, it is excited in the 340 nm to 390 nm band and can oscillate in the 488 nm band and the 543 nm band. Further, it can be excited in the 470 to 500 nm band and can oscillate in the 543 nm band.
  • excitation is performed in the 320 nm band, 350 nm band, and 364 nm band, and laser oscillation is possible in the 370 nm band, 480 nm band, 575 nm band, 660 nm band, 749 nm band, and the like. Further, excitation is possible in the 387 nm band and 450 nm band, and laser oscillation is possible in the 480 nm band, 575 nm band, 660 nm band, 749 nm band, and the like.
  • excitation is performed in the 360 nm band, 415 nm band, and laser oscillation is possible in the 430 nm band, 545 nm band, 658 nm band, and 750 nm band. Further, it can be excited in the 450 nm to 500 nm band and can oscillate in the 545 nm band, 658 nm band, and 750 nm band. Further, it is excited in the 640 nm band and can oscillate in the 658 nm band and the 750 nm band.
  • excitation is possible in the 378 nm band, 405 nm band, 440 nm band, 485 nm band, 520 nm band, and 540 nm band, and laser oscillation occurs in the 543 nm band, 667 nm band, 850 nm band, and the like. Further, excitation is possible in the 650 nm band, and laser oscillation occurs in the 667 nm band, the 850 nm band, and the like.
  • excitation is performed in the 355 nm band, 455 nm to 485 nm band, and laser oscillation is possible in the 480 nm band, 650 nm band, 795 nm band, and the like.
  • the saturable absorber operating in the laser oscillation wavelength of the fiber ring laser in the ring laser resonator, it is possible to absorb unnecessary scattered light and spontaneous emission light, but to pass the laser light. Can be adjusted.
  • a rare earth-doped fiber, a transition metal-doped fiber, a dye-added plastic, or the like having a slight absorption at a target laser oscillation wavelength is suitable.
  • a fluoride fiber or quartz fiber doped with Nd, Er, Sm, Tm, or the like can be used.
  • a semiconductor thin film element, a rare earth-added crystal, a transition metal-added crystal, an element using a carbon nanotube, or the like can be used in addition to the above candidates.
  • the saturable absorber in order to adjust the absorption saturation power of the saturable absorber, it is possible to excite the saturable absorber and adjust the laser oscillation state. For example, when a Pr-doped fluoride fiber is excited at 440 nm and lasing at 520 nm, when an Er-doped fluoride fiber is used as a saturable absorber, the Er-doped fluoride fiber is excited at 440 nm and absorbed saturation power If it is configured to be lowered, it can be used for laser oscillation wavelength control and power control in the 520 nm band. It can also be used to select continuous laser oscillation or pulsed laser oscillation.
  • a saturable absorber having an appropriate amount of absorption is obtained by setting at least one of the rare earth-doped fibers in a non-excited or low-pumped state and adjusting the resonance state and balance of the fiber ring laser. It becomes possible to operate.
  • the dispersion amount of the ring laser resonator is controlled by a technique such as fiber Bragg grating, a short pulse with a pulse width of several tens of nanoseconds or less can be obtained. it can.
  • quartz-based fibers used in the ring laser resonator and others It is possible to compensate for the change in the optical length due to the temperature dependence of the optical component, and to perform an operation that apparently suppresses the temperature dependence. As a result, it is possible to suppress frequency fluctuations, power fluctuations, detection sensitivity fluctuations at low angular velocities, and the like caused by the change in optical length.
  • the negative dn / dT value of the fluoride glass is almost the same as the positive dn / dT value of optical materials used for other optical components, but at least in the laser medium. It is not uncommon for the energy difference between the excitation light wavelength and the laser oscillation wavelength to be converted into heat and become about ten degrees higher than the ambient temperature. For this reason, the fluoride glass as the laser medium can increase the compensation amount of the optical length even when it is shorter than the length of other general optical materials.
  • the dn / dT value of fluoride glass is about ⁇ 15 ⁇ 10 ⁇ 6 / K, and that of quartz glass is 11.9 ⁇ 10 ⁇ 6 / K.
  • the fluoride glass is a laser medium
  • the temperature fluctuation is larger than that of the quartz fiber, so that it can be compensated with a length of 50% or less with respect to the quartz fiber.
  • the optimum compensation length varies depending on the excitation conditions, the heat dissipation state of the fiber, the Ge addition amount of the silica fiber used, etc., but it cannot be generally stated, but in general, about 5 to 20% of the length of the silica fiber is appropriate. is there.
  • the quartz fiber is a pure silica core fiber
  • the length of the fluoride fiber relative to the quartz fiber is suitably about 1 to 15%.
  • the length adjustment of rare-earth doped fibers is difficult to fine-tune because priority is given to the output characteristics and mode characteristics of the fiber ring laser. Therefore, by using an appropriate amount of a fluoride fiber transparent to the pumping light and laser light in the ring laser resonator, the temperature dependence of the optical length is compensated without affecting the optical characteristics of the fiber ring laser, It is possible to suppress power fluctuations due to the longitudinal mode hop of the fiber ring laser and detection sensitivity fluctuations at a low angular velocity.
  • the appropriate length of the fluoride fiber that is transparent at the laser light wavelength and the pump light wavelength varies depending on the resonator configuration and the excitation state of the rare earth-doped fiber.
  • a range of about 5 to 50% of the total silica fiber length in the ring laser resonator is preferable. This compensation makes it possible to suppress changes in the resonator length to about several ⁇ m / ° C., and to easily suppress longitudinal mode hops due to temperature changes.
  • the ring laser resonator If gain hole burning occurs, it becomes difficult to oscillate the CW light and CCW light at close wavelengths. For this reason, if there is one rare earth doped fiber in the ring laser resonator, it will be at an arbitrary location in the ring laser resonator, and if there are multiple rare earth doped fibers in the ring laser resonator, its center or rare earth doped It is preferable to insert a Faraday rotator, optical rotator, polarization controller, polarization scrambler, etc. between the fibers to avoid oscillation in a specific polarization state. As the optical rotator, a transparent crystal having a wide wavelength range is suitable.
  • the polarization controller is preferably of a type that utilizes the twist of a fiber or a type that adjusts the angle between the paddles that controls the winding diameter and the number of turns.
  • Other polarization controllers include those using a birefringent crystal such as calcite and those using a polarization maintaining fiber, which can be used according to the purpose.
  • a device in which a plurality of stages are fused by shifting the angle of the stress applying portion within the fiber cross section is commercially available and is preferable because it is easily connected to a ring laser resonator. In addition to these methods, it is preferable to limit the oscillation wavelength by inserting a narrow band filter or the like in the ring laser resonator.
  • the remaining optical power that has been returned can be circulated many times by setting the TAP rate (the ratio of extracted power) of the fiber ring laser to 50% or less.
  • the TAP rate the ratio of extracted power
  • the sensitivity is improved, but the power that can be extracted becomes small, so a low-noise detection method or an improvement in the optical power in the resonator is required.
  • the TAP rate is increased, the sensitivity decreases, but the power that can be extracted increases, so that detection becomes easy.
  • the optimal TAP rate varies depending on the rare earth species, doping concentration, pumping wavelength, pumping power, fiber structural parameters, loss in the ring laser resonator, etc., but cannot be specified unconditionally, but generally from 0.1% It is in the range of 50%.
  • the TAP rate is preferably 0.1% or more and 20% or less.
  • the TAP rate is less than 0.1%, the optical power incident on the light receiving element becomes extremely low, and detection with high accuracy becomes difficult. On the other hand, if it exceeds 20%, it becomes difficult to obtain the effect of improving the sensitivity due to the multiple turns.
  • a fiber ring laser gyro can be constructed using an angular velocity detection method for detecting the above.
  • the CW light and CCW light extracted from the ring laser resonator by the TAP are interfered by the 3 dB coupler through the optical isolator, and the interference output is incident on the photodiode and converted into an electric signal.
  • the reflected return light on the light receiving element side can be suppressed, and the operation of the fiber ring laser can be stabilized and the destruction can be prevented.
  • a functional component using a fiber as a gain medium is very susceptible to the return light.
  • the fiber ring laser may be destroyed. There is. Such an accident can be prevented by inserting an optical isolator between the TAP coupler and the detection unit.
  • a light receiving element not only a PIN photodiode or an avalanche photodiode can be used as a simple light receiving element formed of a single element, but also a line sensor or an image pickup element formed of a large number of elements can be used.
  • a fiber-type polarization controller can be installed between the optical isolator and the 3 dB coupler to control the polarization. Since polarization control can be performed with respect to either the extracted clockwise laser signal or counterclockwise laser signal, a fiber-type polarization controller can be installed between the optical isolator and the 3 dB coupler. Good.
  • the fiber ring laser of the present invention can be equipped with generally attached polarization control means and temperature control means. Also, a modulator can be inserted to initiate the mode lock operation.
  • a polarization control means a polarization controller using a combination of fiber rings and a polarization controller using a combination of anisotropic optical crystals such as calcite and quartz can be used.
  • a temperature control electronic cooling using a Peltier device or the like, or a method using refrigerant circulation can be used, but electronic cooling is preferable from the viewpoint of vibration.
  • a vibration type modulator that vibrates the fiber ring or an optical waveguide device using a crystal exhibiting an electro-optic effect can be used.
  • a LiNbO 3 (LN) microwave-coupled modulator is particularly preferable because it has a high modulation frequency and operates outside the band used as a sensor.
  • the entire fiber ring laser is housed in an iron alloy casing having good thermal conductivity, and a copper heat channel is provided in the casing to intensively cool the excitation laser, and the temperature of the entire casing is
  • the casing is preferably feedback-controlled by bringing the Peltier element into contact with the casing so as to be uniformly stable. Furthermore, it is preferable to seal the outside of the housing with a high-performance heat insulating material in order to prevent heat from entering. In this case, the temperature fluctuation in the housing can be suppressed to ⁇ 0.01 ° C./hr or less when the outside air temperature fluctuation is about 5 ° C./hr.
  • a technique called dithering that raises the apparent angular velocity by vibrating the entire fiber system can be used.
  • periodic vibrations caused by piezoelectric elements are used for dithering.
  • the frequency at a low angular velocity is used. It is possible to prevent a dead zone (rocking) from occurring due to the pull-in.
  • a cooling mechanism that can cool the vibrator by disposing the vibrator in a cooling material having good thermal conductivity such as copper.
  • a cooling material having good thermal conductivity such as copper.
  • phase modulation waveform a device such as an LN modulator may be used, or a periodic stress can be applied to the fiber in the ring laser resonator with a piezoelectric element or the like. Examples are shown below. However, the present invention is not limited to these examples.
  • the fiber ring laser unit used in the experiment will be described with reference to FIG.
  • the feature of this arrangement is that most parts are arranged symmetrically, and consideration is given so that no difference occurs in the clockwise (CW) and counterclockwise (CCW) laser characteristics.
  • the semiconductor laser 25a for excitation and the semiconductor laser 25b for excitation are completely symmetrical.
  • a crystal rotator (crystal rotator 27) is inserted into the resonator, and the laser beam is polarized by 90 degrees each time the laser beam goes around the ring. Rotate.
  • the power ratio between the CW light and the CCW light approaches 1: 1, and the power stability is improved.
  • the gain media are fluoride fibers having the same composition, fiber parameters, and fiber length.
  • Its core composition is 53ZrF 4 -18.5BaF 2 -3AlF 3 -18.5NaF-3.2YF 3 -3.5LaF 3 -0.3ErF 3 (the number before each component is mol%)
  • the clad composition is fluoride glass represented by 38ZrF 4 -15HfF 4 -20BaF 2 -1LaF 3 -3AlF 3 -3YF 3 -20NaF (the number before each component is mol%).
  • the NA of the fluoride fibers 20a and 20b is 0.13, the cutoff wavelength is 0.52 ⁇ m, and the core diameter is 3 ⁇ m.
  • the fiber length is 60 cm. Both ends of these fibers are fused and connected to a quartz fiber 34 which is a main component of the ring laser resonator.
  • the quartz fiber 34 has the same fiber parameters as the gain medium (fluoride fiber 20a and fluoride fiber 20b), and is fused and connected to the gain medium (fluoride fiber 20a and fluoride fiber 20b).
  • the saturable absorbing media are fluoride fibers having the same composition, fiber parameters, and fiber length.
  • Its core composition is fluoride glass represented by 53ZrF 4 -18.5BaF 2 -3AlF 3 -18.5NaF-3YF 3 -3.5LaF 3 -0.5ErF 3 (the numbers before each component are mol%). is there.
  • the clad composition is fluoride glass represented by 38ZrF 4 -15HfF 4 -20BaF 2 -1LaF 3 -3AlF 3 -3YF 3 -20NaF (the number before each component is mol%).
  • the NA of the fluoride fibers 23a and 23b is 0.13, the cutoff wavelength is 0.52 ⁇ m, and the fiber length is 10 cm. Both ends of these fibers are fused and connected to a quartz fiber 34 which is a main component of the ring laser resonator.
  • the quartz fiber 34 has the same fiber parameters as the saturable absorption medium (fluoride fiber 23a and fluoride fiber 23b), and is fused and connected to the saturable absorption medium (fluoride fiber 23a and fluoride fiber 23b).
  • the wave element 24b is inserted into the quartz fiber 34 in the ring laser resonator, and each is used to introduce an excitation laser.
  • excitation lasers There are 2 types of excitation lasers, 2 each for a total of 4 units.
  • a semiconductor laser with a fiber pigtail (excitation semiconductor laser 22a, excitation semiconductor laser 22b) having a wavelength of 444 nm and an output of 140 mW was used.
  • a semiconductor laser with a fiber pigtail (excitation semiconductor laser 25a, excitation semiconductor laser 25b) having a wavelength of 448 nm and an output of 50 mW was used.
  • a fiber type polarization controller (polarization controller 29) was installed in the ring laser resonator.
  • a TAP coupler 28 that can extract 5% of the optical power in the ring is installed, and each isolator 30 is set so that reflected light does not return to the fiber ring laser during measurement. Installed in the port. The optical spectrum was measured with an optical spectrum analyzer 31 and the optical power was measured with an optical power meter 32 attached to the target port.
  • the length of the ring laser resonator in the above configuration is 5 m, and the fiber in the ring laser resonator other than the optical components is wound to a diameter of 6.7 cm.
  • Gain medium excitation condition 60 mW
  • saturable absorber excitation condition 15 mW
  • FIG. 2 shows a spectrum of light emitted from the ring laser measured in (1). It can be seen that the laser oscillates at a wavelength of 544 nm, and a visible light laser is obtained directly from the fiber ring laser.
  • the CW output and the CCW output were 0.52 mW and 0.54 mW, respectively, and the total calculation power was 1.06 mW, which coincided within the measurement error range.
  • Example 1 The configuration is the same as in Example 1, but the laser oscillation experiment similar to that in Example 1 was performed (Nos. 1 to 8) with various changes in the type of fiber used, the rare earth to be added, the excitation laser wavelength, and the like. Table 1 summarizes the results of the measured oscillation wavelength and the total calculation force. Two types of pumping light were used separately: a semiconductor laser and a wavelength conversion laser in which the wavelength of the semiconductor laser oscillation was converted into half using a PPLN which is a SHG (Second Harmonic Generation) element. As a result, laser oscillation with a wavelength of less than 1 ⁇ m was obtained from any of the fiber ring lasers.
  • PPLN which is a SHG (Second Harmonic Generation) element.
  • the same ring laser as in Example 1 was used for the ring laser part, a ring laser gyro was constructed, and the angular velocity was detected.
  • the experimental configuration of the light source part is shown in FIG.
  • a fiber type polarization controller 33 for controlling the polarization state is installed.
  • the CW light and the CCW light were caused to interfere with each other by the 3 dB coupler 34, and after passing through the optical isolator 35, the light intensity modulation signal after the interference was received by the silicon PIN light receiving element 36.
  • FIG. 4 shows an outline when the fiber ring laser unit and the electrical wiring of FIG.
  • a Kovar alloy casing (ring laser casing 40) having a small coefficient of thermal expansion and relatively good thermal conductivity is surrounded by a Peltier element 43, and waste heat is radiated from the radiation fins 44 to reduce the temperature inside the casing. It can be kept uniform.
  • the internal set temperature was 25 ° C
  • forced air cooling was required when the ambient temperature was 40 ° C or higher.
  • the internal temperature could be controlled to a constant 25 ° C. up to 60 ° C. by forced air cooling at a wind speed of 2 m / sec. Further, when the internal set temperature is 25 ° C., the control is difficult when the ambient temperature is ⁇ 5 ° C. or lower.
  • a connector (electric connector 41) is attached to the housing for supplying power to the Peltier element 43 and the four excitation lasers, supplying a control signal to the polarization controller, taking out the received interference signal, and the like.
  • FIG. 5 shows the setup for angular velocity detection.
  • a housing 50 in which the fiber ring laser shown in FIG. 4 is accommodated, a ring laser control board 52, and an oscilloscope 51 for detecting an interference signal are installed and fixed on a turntable 53, and a rotation control computer (turntable control computer). 54), the interference signal was measured while controlling the rotational angular velocity.

Abstract

Provided is a fiber ring laser which comprises an excitation light source exciting a gain medium, at least one resonator in the shape of a closed ring (ring resonator) and a rare earth-doped fiber serving as the gain medium in the ring laser resonator, characterized in that a fiber provided with a core doped with at least one rare earth selected from among Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er and Tm is used as the rare earth-doped fiber and the laser oscillation wavelength is a short wavelength that is less than 1 μm.

Description

ファイバリングレーザおよびそれを用いたファイバリングレーザジャイロFiber ring laser and fiber ring laser gyro using the same
 本発明は、角速度計測、距離計測光源、表面形状計測光源、ディスプレイ光源、画像プロジェクション光源などに用いられるファイバリングレーザに関する。また、これを用いたファイバリングレーザジャイロに関する。 The present invention relates to a fiber ring laser used for angular velocity measurement, distance measurement light source, surface shape measurement light source, display light source, image projection light source and the like. The present invention also relates to a fiber ring laser gyro using the same.
発明の背景Background of the Invention
 最近、画像のプロジェクション表示の高精細化、ディスプレイの大面積化、3D表示技術の進歩、3Dコンテンツの充実などの理由から、可視光の高品質高効率光源が求められるようになっている。また、可視光光源などの短波長光源は、精密な表面形状検査やガラスのような透明体の内部加工、精密レーザ加工などの応用分野で実現が期待されている。 Recently, a high-quality and high-efficiency light source for visible light has been demanded for reasons such as high definition of image projection display, large display area, 3D display technology advancement, and 3D content enhancement. In addition, short wavelength light sources such as a visible light source are expected to be realized in application fields such as precise surface shape inspection, internal processing of transparent bodies such as glass, and precision laser processing.
 既存の高精度レーザの中で、ファイバレーザはレーザビーム品質が高いレーザとして広く用いられている。特にファイバリングレーザ(F-RLG)は、レーザ発振閾値が低く設計自由度が高いことから、ファイバレーザの主要な一形態として知られている。 Among existing high-precision lasers, fiber lasers are widely used as lasers with high laser beam quality. In particular, the fiber ring laser (F-RLG) is known as one of the main forms of fiber lasers because of its low laser oscillation threshold and high design freedom.
 このため、可視光などレーザ波長1μm未満の短波長を直接発振可能なファイバレーザが求められている。しかし、一般的な希土類添加石英ファイバを用いたファイバレーザでは、媒質のもつ高いフォノンエネルギーによる非輻射緩和の影響が大きく、1μm未満の短波長を直接レーザ発振することは困難である。そこで、ファイバレーザの波長を半分に変換する第二次高調波発生技術が注目され、特に緑色レーザ発生に広く使用されるようになってきた。第二次高調波発生にはLiNbO3結晶(LN)やβ‐BaB2O4結晶(β‐BBO)が用いられており、バルク型以外に導波路型や周期分極反転型などが知られている。特に周期分極反転したLNはPPLN(Periodically Poled Lithium Niobate)として広く使われている。 For this reason, a fiber laser capable of directly oscillating a short wavelength of less than 1 μm such as visible light is required. However, in a fiber laser using a general rare earth-doped silica fiber, the influence of non-radiation relaxation due to the high phonon energy of the medium is large, and it is difficult to directly oscillate a short wavelength of less than 1 μm. Therefore, second-order harmonic generation technology that converts the wavelength of a fiber laser to half has attracted attention, and has been widely used particularly for green laser generation. LiNbO3 crystal (LN) and β-BaB2O4 crystal (β-BBO) are used for second harmonic generation, and a waveguide type and a periodically poled type are known in addition to the bulk type. In particular, LN with periodically poled is widely used as PPLN (Periodically Polly Lithium Niobate).
 このほかに短波長を得る方法としては、赤外レーザの多段階励起による短波長レーザがあり、アップコンバージョンレーザとして知られている。アップコンバージョンレーザには励起中間準位の寿命が非常に重要であり、希土類を添加したフッ化物ガラスのような低フォノンガラス材料や、希土類を添加したフッ化物結晶のような低フォノン結晶組成が用いられている(非特許文献1)。 In addition to this, as a method for obtaining a short wavelength, there is a short wavelength laser by multistage excitation of an infrared laser, which is known as an upconversion laser. The lifetime of the excited intermediate level is very important for upconversion lasers, and low phonon glass materials such as fluoride glass doped with rare earths and low phonon crystal compositions such as fluoride crystals doped with rare earths are used. (Non-Patent Document 1).
 また最近、赤や青の波長帯域では半導体レーザの高出力化が急速に進み、特にGaN系半導体レーザによる340~500nm帯レーザの進歩が著しい。そこで、GaN系半導体レーザを励起光源に用いた可視レーザの試みが盛んに行われつつある(非特許文献2)。 Recently, in the wavelength bands of red and blue, the output of semiconductor lasers has rapidly increased, and the progress of 340-500 nm lasers using GaN-based semiconductor lasers has been remarkable. Therefore, attempts have been actively made on a visible laser using a GaN-based semiconductor laser as an excitation light source (Non-patent Document 2).
 また、630~670nm帯の赤色半導体レーザはすでにレーザテレビ応用が進みつつあり、405nm帯GaN系半導体レーザは高密度DVD記録に使用されつつある。また、460nm帯はディスプレイ用途の青色光源として期待されている。 In addition, 630-670 nm band red semiconductor lasers are already being applied to laser television, and 405 nm band GaN semiconductor lasers are being used for high density DVD recording. The 460 nm band is expected as a blue light source for display applications.
 上記のとおり、既存の希土類添加ファイバを用いたリングレーザは、レーザ発振波長1μm以上の不可視光であり、ディスプレイやプロジェクション用途には使用できない。また、表面形状が数十nm~100nm程度の凹凸で構成される機械加工仕上げ面などを高精度に検査するためには、少なくとも可視光領域以下の波長の光源が必要である。さらに、透明体内部の微細加工には、材料が透明である可視光波長域が望まれている。 As described above, a ring laser using an existing rare earth-doped fiber is invisible light having a laser oscillation wavelength of 1 μm or more and cannot be used for a display or projection application. In addition, in order to inspect a machined finished surface composed of irregularities having a surface shape of about several tens to 100 nm with high accuracy, a light source having a wavelength of at least a visible light region or less is required. Furthermore, a visible light wavelength region in which the material is transparent is desired for fine processing inside the transparent body.
 また、上記のとおりレーザ発振波長が1μm未満のレーザを得る技術として、LNやβ‐BBOなどの非線形光学結晶による波長変換との組み合わせが知られているが、非線形光学結晶は高品質な結晶の育成が困難である上に、波長変換効率が低い問題がある。また、波長変換効率を向上させるために周期分極反転したLNなどが用いられるが、最適波長変換波長が温度に対して敏感であることから、精密温度制御が必要となる。このため、レーザ装置の消費電力が増大し、装置が大型化する問題がある。さらに、GaN系半導体レーザを励起源として用いたファブリペローレーザが知られているが、空間光学系を使用する必要があるため温度変化や振動の影響を受けやすく、設置環境に制限がある。特にリングレーザジャイロのような移動体組み込みの場合は、振動で光学系のアライメントずれが起こり、正確な計測が困難となる。 As described above, as a technique for obtaining a laser having a laser oscillation wavelength of less than 1 μm, a combination with wavelength conversion using a nonlinear optical crystal such as LN or β-BBO is known. It is difficult to grow and has a problem of low wavelength conversion efficiency. Further, in order to improve the wavelength conversion efficiency, LN or the like that is periodically poled is used. However, since the optimum wavelength conversion wavelength is sensitive to temperature, precise temperature control is required. For this reason, there is a problem that the power consumption of the laser device increases and the device becomes large. Further, a Fabry-Perot laser using a GaN-based semiconductor laser as an excitation source is known. However, since it is necessary to use a spatial optical system, it is easily affected by temperature changes and vibrations, and the installation environment is limited. In particular, when a moving body such as a ring laser gyro is incorporated, the optical system is misaligned due to vibration, and accurate measurement becomes difficult.
 さらに、上記のとおりファイバから直接短波長のレーザ光が得られる方法として、アップコンバージョンレーザが知られているが、アップコンバージョンレーザは多段階過程であり、温度変動によるレーザパワー変動が起こりやすく、パワー変換効率は低い問題がある。 Furthermore, as described above, an upconversion laser is known as a method for obtaining a short-wavelength laser beam directly from a fiber. However, an upconversion laser is a multi-step process, and laser power fluctuations due to temperature fluctuations are likely to occur. There is a problem of low conversion efficiency.
 また、ファイバリングレーザは角速度の検出応用が検討されており、これまで航空機を中心に使用されてきたHe-Neリングレーザジャイロ(RLG)や干渉型ファイバジャイロ(I-FOG)のような非常に高精度であるが高価で大型の機械に代わる、小型高精度光学ジャイロとして期待されている(非特許文献3,4,特許文献1)。また、F-RLGの感度向上にはレーザ線幅の狭窄化が有効であることから、リングの一部に可飽和吸収体として希土類添加ファイバを配置した方法も提案されている(非特許文献5)。また、ファイバリングレーザをモードロックレーザとすることで、検出を容易にする方法も提案されている(非特許文献6)。 In addition, the application of angular velocity detection to fiber ring lasers has been studied, and very much like the He-Ne ring laser gyro (RLG) and interference type fiber gyro (I-FOG) that have been used mainly in aircraft until now. It is expected as a small high-precision optical gyro that can replace high-precision but expensive and large machines (Non-patent Documents 3 and 4, Patent Document 1). Further, since narrowing of the laser line width is effective for improving the sensitivity of F-RLG, a method in which a rare earth-doped fiber is disposed as a saturable absorber in a part of the ring has been proposed (Non-patent Document 5). ). In addition, a method for facilitating detection by using a fiber ring laser as a mode-locked laser has been proposed (Non-Patent Document 6).
 F-RLGに限らず、光学式のジャイロはSagnac効果を利用しているが、リング内に増幅媒質があるリングレーザでは右回り(CW)と左回り(CCW)レーザ発振周波数に下記式(1)で表される周波数差が発生する。 Optical gyros, not limited to F-RLG, use the Sagnac effect, but in a ring laser with an amplifying medium in the ring, the following formula (1) is applied to the clockwise (CW) and counterclockwise (CCW) laser oscillation frequencies: ) Is generated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ただし、
 Δf :レーザ発振周波数差
 A :リングの囲む面積
 Ω :角速度
 λ :回転がない場合のレーザ発振波長
 P :リングレーザ共振器長
を表す。
 リングレーザジャイロでは、この周波数差を干渉などの方法で検出する。
However,
Δf: Laser oscillation frequency difference A: Ring area Ω: Angular velocity λ: Laser oscillation wavelength when there is no rotation P: Ring laser resonator length.
In the ring laser gyro, this frequency difference is detected by a method such as interference.
 リングレーザにファイバを用いた場合に、ファイバが円形に巻かれていると仮定すると、さらに整理できて、下記式(2)のように表すことができる。 When a fiber is used for the ring laser, assuming that the fiber is wound in a circular shape, it can be further arranged and can be expressed as the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ただし、
 R :リング半径
を表す。
However,
R: represents the ring radius.
 式(2)から直ちに理解できるように、レーザ発振周波数差が大きくなり検出が容易になる条件としては、a) 角速度が大きい、b) リング直径が大きい、またはc) レーザ発振波長が短波長である、の3条件が挙げられる。ファイバリングレーザとして利用可能なレーザ材料としては、Nd添加石英ファイバ、Yb添加石英ファイバ、Er添加石英ファイバなどが知られており、いずれもレーザ発振波長は1μm以上である。 As can be readily understood from Equation (2), the conditions for the laser oscillation frequency difference to be large and easy detection are as follows: a) large angular velocity, b) large ring diameter, or c) short lasing wavelength. There are three conditions. As a laser material that can be used as a fiber ring laser, Nd-doped silica fiber, Yb-doped silica fiber, Er-doped silica fiber, and the like are known, and the laser oscillation wavelength is 1 μm or more.
 また、これらのファイバリングレーザや光増幅器では、特に断りがない場合もあるが希土類としてEr,Nd,Ybなどを100~1000ppm含む石英光ファイバが用いられており、励起光の吸収に必要な長さの制限から、10m~100m程度のファイバが使用されている。 In these fiber ring lasers and optical amplifiers, there is a case where there is no particular notice, but a quartz optical fiber containing 100 to 1000 ppm of Er, Nd, Yb, etc. is used as a rare earth, which is necessary for absorption of pumping light. Due to this limitation, a fiber of about 10 m to 100 m is used.
 上記のとおり、リングレーザをリングレーザジャイロに応用する場合、角速度検出条件に関わるパラメータは3つ[a)、b)、c)]ある。しかし、リングレーザジャイロの高精度化には、リング直径の大口径化[b)]とレーザ発振波長の短波長化[c)]の2つの条件のみが有効である。既存のファイバレーザは上記式(2)のλを1μm未満の短波長にすることは困難であるため、リング直径を大きくする以外に高分解能にする方法が無く、大型化を避けることができない。さらに、従来の希土類添加石英系ファイバは、希土類添加濃度が数百ppm以下と低く、リングレーザ共振器長には少なくとも10mを超えるファイバが必要なため、小型化は困難である。 As described above, when a ring laser is applied to a ring laser gyro, there are three parameters [a), b), and c)] related to angular velocity detection conditions. However, in order to improve the accuracy of the ring laser gyro, only two conditions, that is, a large ring diameter [b)] and a short laser oscillation wavelength [c)] are effective. In the existing fiber laser, it is difficult to make λ of the above formula (2) to be a short wavelength of less than 1 μm. Therefore, there is no method for high resolution other than increasing the ring diameter, and an increase in size cannot be avoided. Furthermore, the conventional rare earth-doped silica-based fiber has a rare earth addition concentration as low as several hundred ppm or less, and a fiber having a ring laser resonator length of at least 10 m is required, so that miniaturization is difficult.
特開2007-212247号公報JP 2007-212247 A
 上記のとおり、波長1μm未満の短波長でレーザ発振可能なファイバレーザ、特に可視光を直接レーザ発振可能で、かつレーザ発振が安定して得られ、高いパワー変換効率のファイバレーザを得ることは困難であった。 As described above, it is difficult to obtain a fiber laser that can oscillate at a short wavelength of less than 1 μm, particularly a fiber laser that can directly oscillate visible light and that can stably oscillate laser light and has high power conversion efficiency. Met.
 また、上記のとおり、リングレーザをリングレーザジャイロに応用する場合、高精度化において小型化は困難であった。 Also, as described above, when a ring laser is applied to a ring laser gyro, it is difficult to reduce the size for high accuracy.
 そこで本発明は、角速度計測、距離計測、表面形状計測、ディスプレイ、画像プロジェクション、高精度加工などに有用な、短波長を直接レーザ発振可能なファイバリングレーザを提供し、またこれを利用した小型のファイバリングレーザジャイロを提供することを目的としている。 Therefore, the present invention provides a fiber ring laser capable of directly oscillating a short wavelength, which is useful for angular velocity measurement, distance measurement, surface shape measurement, display, image projection, high-precision processing, etc. An object is to provide a fiber ring laser gyro.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、波長340nm以上500nm以下の半導体レーザで励起した希土類添加フッ化物ファイバをリングレーザの利得媒質に用いれば、波長1μm未満の短波長を直接レーザ発振可能であることを見いだし、本発明に到達した。 As a result of intensive studies to achieve the above object, the present inventors have found that when a rare earth-doped fluoride fiber pumped with a semiconductor laser having a wavelength of 340 nm or more and 500 nm or less is used as a gain medium of a ring laser, the wavelength is less than 1 μm. The inventors have found that it is possible to directly oscillate a short wavelength, and have reached the present invention.
 本発明に依れば、利得媒質を励起する励起光源と、少なくとも一つの閉じたリング状の共振器(リングレーザ共振器)と、該リングレーザ共振器内に該利得媒質として希土類添加ファイバを持つファイバリングレーザにおいて、該希土類添加ファイバとして、Pr,Nd,Sm,Eu,Tb,Dy,Ho,Er,Tmから選ばれる少なくとも1種類の希土類が添加されているコアを備えたファイバを用い、レーザ発振波長が1μm未満の短波長である事を特徴とする、ファイバリングレーザ(第1レーザ)が提供される。 According to the present invention, an excitation light source for exciting a gain medium, at least one closed ring resonator (ring laser resonator), and a rare earth-doped fiber as the gain medium in the ring laser resonator. In a fiber ring laser, as the rare earth-doped fiber, a fiber having a core to which at least one kind of rare earth selected from Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, and Tm is added is used. There is provided a fiber ring laser (first laser) characterized in that the oscillation wavelength is a short wavelength of less than 1 μm.
 第1レーザは、該希土類添加ファイバがフッ化物ガラスファイバであり、かつ該励起光源として波長340nm以上500nm以下の波長を放射する半導体光源を使用する事を特徴とする、ファイバリングレーザ(第2レーザ)であってもよい。 The first laser is a fiber ring laser (second laser), wherein the rare earth-doped fiber is a fluoride glass fiber, and a semiconductor light source that emits a wavelength of 340 nm to 500 nm is used as the excitation light source. ).
 第1又は第2レーザは、該希土類添加ファイバを少なくとも2個以上備え、且つ該希土類添加ファイバの励起条件を個々に制御可能である事を特徴とする、ファイバリングレーザ(第3レーザ)であってもよい。 The first or second laser is a fiber ring laser (third laser) characterized in that it comprises at least two or more of the rare earth-doped fibers and can individually control the pumping conditions of the rare earth-doped fibers. May be.
 第1乃至第3レーザのいずれか1つは、ファイバリングレーザのレーザ発振波長で動作する少なくとも1個の可飽和吸収体をリングレーザ共振器内に備える事を特徴とする、ファイバリングレーザ(第4レーザ)であってもよい。 Any one of the first to third lasers includes a ring laser resonator including at least one saturable absorber that operates at a laser oscillation wavelength of the fiber ring laser. 4 lasers).
 第1乃至第4レーザのいずれか1つは、励起波長とレーザ発振波長に対して透明なコアを備えたフッ化物ファイバをリングレーザ共振器内に少なくとも1個以上備える事を特徴とする、ファイバリングレーザ(第5レーザ)であってもよい。 Any one of the first to fourth lasers is characterized in that at least one fluoride fiber having a core transparent to the excitation wavelength and the laser oscillation wavelength is provided in the ring laser resonator. It may be a ring laser (fifth laser).
 本発明に依れば、リングレーザ共振器から右回り(CW)のレーザ信号と左回り(CCW)のレーザ信号を取り出し、取り出されたCWレーザ信号とCCWレーザ信号とを干渉させて得られるビート信号を検出する角速度検出方法を用いるファイバリングレーザジャイロ(F-RLG)において、第1乃至第5レーザのいずれか1つを用いることを特徴とするファイバリングレーザジャイロが提供される。 According to the present invention, a beat obtained by extracting a clockwise (CW) laser signal and a counterclockwise (CCW) laser signal from a ring laser resonator and causing the extracted CW laser signal and CCW laser signal to interfere with each other. In a fiber ring laser gyro (F-RLG) using an angular velocity detection method for detecting a signal, a fiber ring laser gyro characterized by using any one of first to fifth lasers is provided.
実施例1、2のファイバリングレーザ部の構成を示す図である。It is a figure which shows the structure of the fiber ring laser part of Example 1,2. 実施例1のファイバリングレーザの発振スペクトルを示す図である。It is a figure which shows the oscillation spectrum of the fiber ring laser of Example 1. FIG. 実施例3のリングレーザ光源部分を示す図である。It is a figure which shows the ring laser light source part of Example 3. FIG. 実施例3のリングレーザジャイロの構成図である。FIG. 6 is a configuration diagram of a ring laser gyro according to a third embodiment. 実施例3のリングレーザジャイロの角速度検出特性を測定するセットアップを示す図である。It is a figure which shows the setup which measures the angular velocity detection characteristic of the ring laser gyro of Example 3. FIG. 実施例3の角速度と干渉周波数の関係の測定結果を示す図である。It is a figure which shows the measurement result of the relationship between the angular velocity of Example 3, and an interference frequency.
詳細な説明Detailed description
 本発明により、波長1μm未満の短波長レーザ光が直接ファイバ内で安定かつ高効率で得られるようになり、可視光での表面形状計測、ディスプレイ、プロジェクタ、3Dテレビ、高精度表面形状計測、高精度加工、透明体内部加工、高性能ファイバレーザジャイロなどへの応用が可能となる。また、F-RLG応用に関し、短波長のファイバレーザを利用できることから、石英ファイバを用いる従来のファイバリングレーザを用いた場合に比べ、リング直径が小さくても同等以上のレーザ周波数シフトを得ることが可能となり、リングレーザジャイロを小型化、高精度化することができる。 According to the present invention, a short-wavelength laser beam having a wavelength of less than 1 μm can be obtained directly and stably in a fiber. Surface shape measurement with visible light, display, projector, 3D television, high-precision surface shape measurement, high Application to precision processing, transparent body internal processing, high-performance fiber laser gyro, etc. becomes possible. In addition, for F-RLG applications, since a short-wavelength fiber laser can be used, a laser frequency shift equal to or higher than that of a conventional fiber ring laser using a quartz fiber can be obtained even when the ring diameter is small. Therefore, the ring laser gyro can be made smaller and more accurate.
 さらには、本発明を用いることによって、レーザ発振波長が1μm未満の短波長のレーザを、波長変換などの方法によらず、直接得ることができる。また、レーザ共振器がリングレーザ共振器なので、振動や温度変動に対して光学アライメントずれが発生しないことから、安定なレーザ発振が得られる。 Furthermore, by using the present invention, a laser having a short wavelength with a laser oscillation wavelength of less than 1 μm can be obtained directly without using a method such as wavelength conversion. Further, since the laser resonator is a ring laser resonator, no optical alignment shift occurs with respect to vibration or temperature fluctuation, so that stable laser oscillation can be obtained.
 また本発明において、励起光源に半導体光源を使用することで、安価にリングレーザを構成することができる。 In the present invention, a ring laser can be constructed at low cost by using a semiconductor light source as an excitation light source.
 また本発明において、複数の希土類添加ファイバに対して独立に励起状態を制御することで、CW光とCCW光の利得が同一となるように制御し、回転方向によるパワー差を非常に小さくすることができるため、CW光とCCW光の干渉を利用する用途では、干渉縞のコントラストを最大にすることができる。また、このようなレーザはパワーが揃った一組のレーザ光を同時に得られるので、干渉計測用光源として広く用いることができる。 Also, in the present invention, by controlling the pumping state independently for a plurality of rare earth doped fibers, the gain of CW light and CCW light is controlled to be the same, and the power difference due to the rotation direction is made very small. Therefore, in applications that use interference between CW light and CCW light, the contrast of interference fringes can be maximized. Further, such a laser can be used widely as a light source for interference measurement because it can simultaneously obtain a set of laser beams having the same power.
 また本発明において、ファイバリングレーザのレーザ発振波長で動作する少なくとも1個の可飽和吸収体をリングレーザ共振器内に備える事で、不要な雑音成分を除去したり、レーザ発振状態を制御することが可能となる。レーザの雑音が減少することで、加工精度や計測精度が向上する。また、誘導ブリルアン散乱を吸収除去することによって、レーザジャイロに応用した場合にロッキングの発生を抑制できる。 Also, in the present invention, at least one saturable absorber that operates at the laser oscillation wavelength of the fiber ring laser is provided in the ring laser resonator, thereby removing unnecessary noise components and controlling the laser oscillation state. Is possible. Reduction in laser noise improves processing accuracy and measurement accuracy. Further, by absorbing and removing the stimulated Brillouin scattering, the occurrence of rocking can be suppressed when applied to a laser gyro.
 ここで、リングレーザの利得媒質は希土類添加ファイバであるため、レーザ発振波長以外に散乱光や自然放出光がリング共振器内を循環する場合がある。特にレーザ発振と同じ準位間の遷移で発生する自然放出光の波長は、レーザ発振波長と近いので、リングレーザ共振器を構成する光学部品を低損失で通過、周回し、増幅された自然放出光(ASE光)となる。ASE光は発光スペクトル幅が広いので、ピークパワーが低い場合でも積分パワーは比較的大きく、レーザ発振を妨げるだけでなく、レーザの雑音となる。可飽和吸収体は、光強度が低い場合は吸収し、光強度が高い場合は透過する特性を持っている。このため、可飽和吸収体がリングレーザ共振器内にあると、ASE光が成長する前に吸収除去できるので、レーザの雑音が大幅に低下する利点がある。また、レーザ波長の散乱光は通常の方法では除去困難であるが、パルスレーザ発振している場合はレーザパルス通過時以外の時間に存在している散乱光を除去できるため、低雑音化できる。 Here, since the gain medium of the ring laser is a rare earth doped fiber, scattered light or spontaneous emission light may circulate in the ring resonator in addition to the laser oscillation wavelength. In particular, the wavelength of spontaneous emission light generated by the transition between the same levels as laser oscillation is close to the laser oscillation wavelength. Therefore, the amplified spontaneous emission passes through and circulates through the optical components that make up the ring laser resonator with low loss. It becomes light (ASE light). Since the ASE light has a wide emission spectrum width, the integrated power is relatively large even when the peak power is low, which not only prevents laser oscillation but also causes laser noise. The saturable absorber has a characteristic of absorbing when the light intensity is low and transmitting when the light intensity is high. For this reason, if the saturable absorber is in the ring laser resonator, it can be absorbed and removed before the ASE light grows, and there is an advantage that the noise of the laser is greatly reduced. In addition, although scattered light having a laser wavelength is difficult to remove by a normal method, scattered light existing at a time other than when the laser pulse passes can be removed when pulsed laser oscillation is performed, so that noise can be reduced.
 また本発明において、励起波長とレーザ発振波長に対して透明なコアを備えたフッ化物ファイバをリングレーザ共振器内に少なくとも1個以上備える事で、温度変化による光学長変化を抑制することができる。この結果、急な温度変化によるレーザ発振波長変化やパワー変動を防止し、安定なレーザ発振動作を確保できる。ここで、光学長は、[リングレーザ共振器長]×[リングレーザ共振器の平均屈折率]で表される。また、リングレーザ共振器を構成する材料のうち、酸化物系の材料や半導体系材料のほとんどは、線膨張係数が正であり且つ屈折率の温度依存性も正である。このため、周囲温度が上昇すると光学長は単調増加する。一方、フッ化物ガラスは線膨張係数が正であるが屈折率の温度依存性は負である。このため、リングレーザ共振器内に、適度の長さのフッ化物ファイバを組み合わせて備えることにより、他の材料の温度依存性による光学長の増加を補正することができる。さらに、使用するフッ化物ファイバがレーザ波長と励起波長に対して透明なファイバであるためで、リングレーザの光学特性に影響を与えることなく温度依存性を抑制できる。 Further, in the present invention, by providing at least one fluoride fiber having a core transparent to the excitation wavelength and the laser oscillation wavelength in the ring laser resonator, the change in the optical length due to the temperature change can be suppressed. . As a result, it is possible to prevent laser oscillation wavelength changes and power fluctuations due to sudden temperature changes, and to ensure stable laser oscillation operation. Here, the optical length is represented by [ring laser resonator length] × [average refractive index of ring laser resonator]. Of the materials constituting the ring laser resonator, most of oxide-based materials and semiconductor-based materials have a positive linear expansion coefficient and a positive temperature dependency of the refractive index. For this reason, when the ambient temperature rises, the optical length increases monotonously. On the other hand, fluoride glass has a positive coefficient of linear expansion but negative temperature dependency of the refractive index. For this reason, an increase in the optical length due to the temperature dependence of other materials can be corrected by providing a combination of fluoride fibers having an appropriate length in the ring laser resonator. Furthermore, since the fluoride fiber to be used is a fiber that is transparent to the laser wavelength and the excitation wavelength, the temperature dependence can be suppressed without affecting the optical characteristics of the ring laser.
 また、本発明において、本発明の短波長リングレーザをレーザジャイロに応用することで、レーザジャイロの角速度の検出精度が向上する。また、本発明のリングレーザは短波長でレーザ発振するため、リングレーザ共振器の直径を小さくしても高精度なレーザジャイロを実現できる。このため、レーザジャイロを小型化することができる。 Also, in the present invention, the accuracy of detecting the angular velocity of the laser gyro is improved by applying the short wavelength ring laser of the present invention to the laser gyro. Further, since the ring laser of the present invention oscillates at a short wavelength, a highly accurate laser gyro can be realized even if the diameter of the ring laser resonator is reduced. For this reason, a laser gyro can be reduced in size.
 レーザ発振に使用する希土類添加ファイバの組成は、少なくともコアガラス組成が低フォノンエネルギーのガラス組成である必要があり、低フォノンエネルギーのレーザ母材としては、フッ化物ガラス、タングステン酸塩ガラス、モリブデン酸塩ガラス、ゲルマニウム酸塩ガラス、亜テルル酸塩ガラス、ビスマス酸塩ガラス、塩化物ガラス、フツリン酸塩ガラス、カルコゲナイドガラスなどが使用できる。中でも、作製の容易さと短波長光の発光効率の高さから、フッ化物ガラスが特に好ましい。石英系ガラスファイバのような高フォノンエネルギーのガラスファイバでは、多フォノン緩和によって短波長でのレーザ発振が妨げられる。一方、可飽和吸収体に希土類添加ファイバや遷移金属添加ファイバを使用する場合、希土類添加石英ファイバや遷移金属添加石英ファイバでも問題ない。 The composition of the rare earth-doped fiber used for laser oscillation must be at least the core glass composition of low phonon energy, and low phonon energy laser base materials include fluoride glass, tungstate glass, and molybdic acid. Salt glass, germanate glass, tellurite glass, bismuthate glass, chloride glass, fluorophosphate glass, chalcogenide glass and the like can be used. Among these, fluoride glass is particularly preferable because of its ease of production and high emission efficiency of short wavelength light. In a glass fiber with a high phonon energy such as a silica-based glass fiber, laser oscillation at a short wavelength is hindered by multiphonon relaxation. On the other hand, when a rare earth-doped fiber or a transition metal-doped fiber is used for the saturable absorber, there is no problem with a rare-earth-doped silica fiber or a transition metal-doped silica fiber.
 ファイバのコア径や開口数などの構造パラメータは、励起光波長とレーザ発振波長で決まるモード重なりや励起光密度を考慮して決定するため、一概には規定できないが、シングルモードレーザ発振が必要な場合にはレーザ発振波長よりも短波長にカットオフ波長を設定する事が好ましい。このとき、励起光波長でシングルモードとなるように設計しても良いし、低次のモードが存在可能なマルチモードの設計としても良い。これは、光通信用の伝送ファイバのように長距離伝搬させなくてもレーザ発振可能なためである。 Structural parameters such as fiber core diameter and numerical aperture are determined taking into account the mode overlap and pumping light density determined by the pumping light wavelength and laser oscillation wavelength. In this case, it is preferable to set the cutoff wavelength to a wavelength shorter than the laser oscillation wavelength. At this time, it may be designed to be a single mode at the excitation light wavelength, or may be a multimode design in which a low-order mode can exist. This is because laser oscillation is possible without propagation over a long distance as in a transmission fiber for optical communication.
 一方、高出力光源などで用いられるマルチモードレーザ発振の場合には、必要なパワーが得られるコア径を中心に設計する必要がある。必要なパワーに応じて調整する必要があるため、一概に規定できないが、1W~10W程度の出力の場合はコア直径が10μm~50μm程度、100W程度の出力の場合はコア直径が100μm~500μmの範囲が好ましい。レーザ媒質としてフッ化物ファイバを使用した場合のパワー密度の制限としては、励起光とリングレーザ光の光パワー総量をコア面積で割った値が、100MW/cm2以下であることが好ましい。このパワー密度を超えると、ファイバが破壊される危険性が著しく高まる。一方、パワー密度が50kW/cm2以下では効率の良いレーザ発振が困難である。 On the other hand, in the case of multimode laser oscillation used in a high-output light source or the like, it is necessary to design around a core diameter that can obtain the required power. Since it is necessary to adjust according to the required power, it cannot be specified unconditionally. However, when the output is about 1 W to 10 W, the core diameter is about 10 μm to 50 μm, and when the output is about 100 W, the core diameter is 100 μm to 500 μm. A range is preferred. As a limitation of power density when a fluoride fiber is used as a laser medium, a value obtained by dividing the total optical power of pumping light and ring laser light by the core area is preferably 100 MW / cm 2 or less. Exceeding this power density significantly increases the risk of fiber breakage. On the other hand, when the power density is 50 kW / cm 2 or less, efficient laser oscillation is difficult.
 添加する希土類の濃度は、ファイバのコア径や開口数などの構造パラメータや共振器の閉じこめ効率によって最適値が変化するため一概に規定できないが、おおよそ100ppmから10000ppmの範囲の濃度をファイバのコア部分に添加することが適当である。100ppm未満では、励起光波長での吸収係数が小さすぎるため、必要なファイバ長が長くなり、実用上好ましくない。また、10000ppmを超える濃度では、希土類イオン間でのエネルギー移譲によって非発光遷移確率が増大するため、好ましくない。 The concentration of rare earth added cannot be unconditionally defined because the optimum value varies depending on structural parameters such as the core diameter and numerical aperture of the fiber and the confinement efficiency of the resonator, but the concentration in the range of approximately 100 ppm to 10,000 ppm can be determined. It is suitable to add to. If it is less than 100 ppm, since the absorption coefficient at the excitation light wavelength is too small, the required fiber length becomes long, which is not preferable for practical use. A concentration exceeding 10,000 ppm is not preferable because the non-emissive transition probability increases due to energy transfer between rare earth ions.
 励起光源としては半導体光源を用いることがコストと生産性の面から好ましい。発光部が点状の半導体光源としては、半導体レーザ、LED(Light Emission Diode)があり、これらはそのまま使用するだけでなく、アレイ状に集積化した1次元光源、面状に集積化した2次元状の光源、これらを立体的に配置した3次元状光源として用いることができる。また、有機ELや無機ELは元々2次元発光パネルとして作製できるので、大面積を均一励起する場合に適している。これらの励起光源は、必要な励起パワーを得るために、適宜組み合わせて使用できる。これらの光源の中で、最近高出力化と波長範囲の拡大が著しいGaN系半導体レーザを用いると、ファイバ系との整合性が良好であり、特に好ましい。また、高出力を得るために、固体レーザやファイバレーザなどを非線形光学素子で波長変換したレーザを励起光源として使用することができる。 It is preferable to use a semiconductor light source as the excitation light source in terms of cost and productivity. Semiconductor light sources with a light emitting part in a spot form include semiconductor lasers and LEDs (Light Emission Diodes), which are not only used as they are, but also one-dimensional light sources integrated in an array, two-dimensional integrated in a planar shape. The light source can be used as a three-dimensional light source that is three-dimensionally arranged. Moreover, since organic EL and inorganic EL can be originally produced as a two-dimensional light-emitting panel, they are suitable for uniformly exciting a large area. These excitation light sources can be used in appropriate combinations in order to obtain the necessary excitation power. Among these light sources, the use of a GaN-based semiconductor laser whose output has recently been greatly increased and the wavelength range has been greatly expanded is particularly preferable because of its good compatibility with the fiber system. In order to obtain a high output, a laser obtained by converting the wavelength of a solid laser, fiber laser or the like with a nonlinear optical element can be used as an excitation light source.
 添加する希土類と励起波長の関係は、例えばフッ化物ガラスにPrを添加した場合は、420nm~490nmで励起し、490nm帯、520nm帯、600nm帯、710nm帯などでレーザ発振可能である。また、560nm~600nmで励起し、600nm帯、710nm帯などでレーザ発振可能である。特に600nm帯はレーザ発振可能な帯域が広く、598nm~643nmの非常に広い波長範囲でレーザ発振可能であり、広帯域波長可変レーザや超短パルスレーザに応用できる。 Regarding the relationship between the rare earth to be added and the excitation wavelength, for example, when Pr is added to fluoride glass, excitation is performed at 420 nm to 490 nm, and laser oscillation is possible in the 490 nm band, 520 nm band, 600 nm band, 710 nm band, and the like. Further, excitation is performed at 560 nm to 600 nm, and laser oscillation is possible in the 600 nm band, the 710 nm band, and the like. In particular, the 600 nm band has a wide laser oscillating band and can oscillate in a very wide wavelength range from 598 nm to 643 nm, and can be applied to a broadband wavelength tunable laser and an ultrashort pulse laser.
 例えばフッ化物ガラスにNdを添加した場合は、320nm~370nm、420nm帯、440~480nmなどの帯域で励起可能し、490nm帯、850~900nm帯、1μm帯などでレーザ発振可能である。また、490nm~540nm、550nm~600nmで励起し、850~900nm帯、1μm帯などでレーザ発振可能である。 For example, when Nd is added to fluoride glass, excitation is possible in the band of 320 nm to 370 nm, 420 nm band, 440 to 480 nm, and laser oscillation is possible in the 490 nm band, 850 to 900 nm band, 1 μm band, and the like. Further, excitation is performed at 490 nm to 540 nm, 550 nm to 600 nm, and laser oscillation is possible in the 850 to 900 nm band, 1 μm band, and the like.
 例えばフッ化物ガラスにSmを添加した場合は、特に400nm帯で効率よく励起可能であり、420nm帯、450nm帯、560nm帯、595nm帯、640nm帯、700nm帯でレーザ発振可能である。 For example, when Sm is added to fluoride glass, excitation is possible particularly in the 400 nm band, and laser oscillation is possible in the 420 nm band, 450 nm band, 560 nm band, 595 nm band, 640 nm band, and 700 nm band.
 例えばフッ化物ガラスにEuを添加した場合は、340nm~410nm帯、465nm帯で励起し、590nm帯、613nm帯、696nm帯でレーザ発振可能である。 For example, when Eu is added to fluoride glass, excitation is performed in the 340 to 410 nm band and the 465 nm band, and laser oscillation is possible in the 590 nm band, 613 nm band, and 696 nm band.
 例えばフッ化物ガラスにTbを添加した場合は、340nm~390nm帯で励起し、488nm帯、543nm帯でレーザ発振可能である。また、470nm~500nm帯で励起し、543nm帯でレーザ発振可能である。 For example, when Tb is added to fluoride glass, it is excited in the 340 nm to 390 nm band and can oscillate in the 488 nm band and the 543 nm band. Further, it can be excited in the 470 to 500 nm band and can oscillate in the 543 nm band.
 例えばフッ化物ガラスにDyを添加した場合は、320nm帯、350nm帯、364nm帯で励起し、370nm帯、480nm帯、575nm帯、660nm帯、749nm帯などでレーザ発振可能である。また、387nm帯、450nm帯で励起し、480nm帯、575nm帯、660nm帯、749nm帯などでレーザ発振可能である。 For example, when Dy is added to fluoride glass, excitation is performed in the 320 nm band, 350 nm band, and 364 nm band, and laser oscillation is possible in the 370 nm band, 480 nm band, 575 nm band, 660 nm band, 749 nm band, and the like. Further, excitation is possible in the 387 nm band and 450 nm band, and laser oscillation is possible in the 480 nm band, 575 nm band, 660 nm band, 749 nm band, and the like.
 例えばフッ化物ガラスにHoを添加した場合は、360nm帯、415nm帯で励起し、430nm帯、545nm帯、658nm帯、750nm帯でレーザ発振可能である。また、450nm~500nm帯で励起し、545nm帯、658nm帯、750nm帯でレーザ発振可能である。また、640nm帯で励起し、658nm帯、750nm帯でレーザ発振可能である。 For example, when Ho is added to fluoride glass, excitation is performed in the 360 nm band, 415 nm band, and laser oscillation is possible in the 430 nm band, 545 nm band, 658 nm band, and 750 nm band. Further, it can be excited in the 450 nm to 500 nm band and can oscillate in the 545 nm band, 658 nm band, and 750 nm band. Further, it is excited in the 640 nm band and can oscillate in the 658 nm band and the 750 nm band.
 例えばフッ化物ガラスにErを添加した場合は、378nm帯、405nm帯440nm帯、485nm帯、520nm帯、540nm帯で励起可能であり、543nm帯、667nm帯、850nm帯などでレーザ発振する。また、650nm帯で励起可能であり、667nm帯、850nm帯などでレーザ発振する。 For example, when Er is added to fluoride glass, excitation is possible in the 378 nm band, 405 nm band, 440 nm band, 485 nm band, 520 nm band, and 540 nm band, and laser oscillation occurs in the 543 nm band, 667 nm band, 850 nm band, and the like. Further, excitation is possible in the 650 nm band, and laser oscillation occurs in the 667 nm band, the 850 nm band, and the like.
 例えばフッ化物ガラスにTmを添加した場合は、355nm帯、455nm~485nm帯で励起し、480nm帯、650nm帯、795nm帯などでレーザ発振可能である。 For example, when Tm is added to fluoride glass, excitation is performed in the 355 nm band, 455 nm to 485 nm band, and laser oscillation is possible in the 480 nm band, 650 nm band, 795 nm band, and the like.
 また、希土類添加ファイバを少なくとも2個以上に分割し、励起条件を個々に制御可能であるファイバリングレーザとすることで、光学構成を左右対称に構成することが可能となり、右回り(CW)と左回り(CCW)で同等の励起条件や共振器損失を実現できる。 In addition, by dividing the rare earth doped fiber into at least two and making a fiber ring laser in which the pumping conditions can be individually controlled, it becomes possible to configure the optical configuration symmetrically, clockwise (CW) The same excitation condition and resonator loss can be realized counterclockwise (CCW).
 また、ファイバリングレーザのレーザ発振波長で動作する少なくとも1個の可飽和吸収体をリングレーザ共振器内に備えることで、不要な散乱光や自然放出光を吸収し、レーザ光だが通過できるように調整することができる。可飽和吸収体としては、目的のレーザ発振波長でわずかに吸収がある希土類添加ファイバや遷移金属添加ファイバや色素添加プラスチックなどが適している。例えば、Pr添加フッ化物ファイバのレーザ発振に対しては、Nd,Er,Sm,Tmなどを添加したフッ化物ファイバや石英ファイバを使用することができる。このように、異種の希土類添加ファイバを混在させることが有効である場合がある。また、可飽和吸収体としては上記の候補以外に半導体薄膜素子、希土類添加結晶、遷移金属添加結晶、カーボンナノチューブを用いた素子などを使用することができる。 In addition, by providing at least one saturable absorber operating in the laser oscillation wavelength of the fiber ring laser in the ring laser resonator, it is possible to absorb unnecessary scattered light and spontaneous emission light, but to pass the laser light. Can be adjusted. As the saturable absorber, a rare earth-doped fiber, a transition metal-doped fiber, a dye-added plastic, or the like having a slight absorption at a target laser oscillation wavelength is suitable. For example, for laser oscillation of a Pr-doped fluoride fiber, a fluoride fiber or quartz fiber doped with Nd, Er, Sm, Tm, or the like can be used. Thus, it may be effective to mix different types of rare earth-doped fibers. As the saturable absorber, a semiconductor thin film element, a rare earth-added crystal, a transition metal-added crystal, an element using a carbon nanotube, or the like can be used in addition to the above candidates.
 また、可飽和吸収体の吸収飽和パワーを調整するために、可飽和吸収体を励起してレーザ発振状態を調整することが可能である。例えば、Pr添加フッ化物ファイバを440nmで励起して520nmでレーザ発振している場合、可飽和吸収体としてEr添加フッ化物ファイバを用いる場合、Er添加フッ化物ファイバを440nmで励起して吸収飽和パワーを引き下げられるように構成しておくと、520nm帯のレーザ発振波長制御やパワー制御に使用できる。また、連続レーザ発振またはパルスレーザ発振の選択にも使用することができる。このように、複数箇所ある希土類添加ファイバのうち少なくとも1箇所を非励起または低励起状態にし、ファイバリングレーザの共振状態とバランスを調整することで、適切な吸収量を持った可飽和吸収体として動作させることが可能となる。 Also, in order to adjust the absorption saturation power of the saturable absorber, it is possible to excite the saturable absorber and adjust the laser oscillation state. For example, when a Pr-doped fluoride fiber is excited at 440 nm and lasing at 520 nm, when an Er-doped fluoride fiber is used as a saturable absorber, the Er-doped fluoride fiber is excited at 440 nm and absorbed saturation power If it is configured to be lowered, it can be used for laser oscillation wavelength control and power control in the 520 nm band. It can also be used to select continuous laser oscillation or pulsed laser oscillation. In this way, a saturable absorber having an appropriate amount of absorption is obtained by setting at least one of the rare earth-doped fibers in a non-excited or low-pumped state and adjusting the resonance state and balance of the fiber ring laser. It becomes possible to operate.
 さらに、可飽和吸収量制御によるパルスレーザ発振の選択に加えて、リングレーザ共振器の分散量をファイバブラッググレーティングなどの手法で制御すると、パルス幅が数十ナノ秒以下の短パルスを得ることができる。 Furthermore, in addition to selection of pulsed laser oscillation by saturable absorption control, if the dispersion amount of the ring laser resonator is controlled by a technique such as fiber Bragg grating, a short pulse with a pulse width of several tens of nanoseconds or less can be obtained. it can.
 また、励起波長とレーザ発振波長に対して透明なコアを備えたフッ化物ファイバをリングレーザ共振器内に少なくとも1個以上備えることで、リングレーザ共振器中に使用されている石英系ファイバや他の光学部品の温度依存性による光学長の変化を補償し、見かけ上温度依存性を抑制した動作が可能となる。その結果、光学長が変化することにより生じる周波数変動、パワー変動、低角速度での検出感度変動等を抑制できる。 In addition, by providing at least one fluoride fiber having a core transparent to the excitation wavelength and the laser oscillation wavelength in the ring laser resonator, quartz-based fibers used in the ring laser resonator and others It is possible to compensate for the change in the optical length due to the temperature dependence of the optical component, and to perform an operation that apparently suppresses the temperature dependence. As a result, it is possible to suppress frequency fluctuations, power fluctuations, detection sensitivity fluctuations at low angular velocities, and the like caused by the change in optical length.
 ここで、フッ化物ガラスの持つ負の dn/dT の値は、他の光学部品に使用される光学材料の正の dn/dT の値と絶対値が同程度であるが、レーザ媒質中では少なくとも励起光波長とレーザ発振波長のエネルギー差が熱に変換され、周囲の温度よりも十度程度高くなることは珍しくない。このため、レーザ媒質としてのフッ化物ガラスは、他の一般的な光学材料の長さと比較して短い場合でも、光学長の補償量を大きくできる。例えば、フッ化物ガラスのdn/dT値は-15×10-6/K程度であり、石英ガラスのそれは11.9×10-6/Kであるため、温度補償のためには同程度の長さが必要と思われるが、フッ化物ガラスがレーザ媒質である場合は温度変動が石英ファイバよりも大きいため、石英ファイバに対して50%以下の長さで補償可能である。補償の最適長は、励起条件やファイバの放熱状態、使用する石英ファイバのGe添加量などで変化するため一概には言えないが、一般的には石英ファイバ長の5~20%程度が適当である。石英ファイバが純石英コアのファイバの場合は、石英ファイバに対するフッ化物ファイバの長さは1~15%程度が適当である。 Here, the negative dn / dT value of the fluoride glass is almost the same as the positive dn / dT value of optical materials used for other optical components, but at least in the laser medium. It is not uncommon for the energy difference between the excitation light wavelength and the laser oscillation wavelength to be converted into heat and become about ten degrees higher than the ambient temperature. For this reason, the fluoride glass as the laser medium can increase the compensation amount of the optical length even when it is shorter than the length of other general optical materials. For example, the dn / dT value of fluoride glass is about −15 × 10 −6 / K, and that of quartz glass is 11.9 × 10 −6 / K. However, when the fluoride glass is a laser medium, the temperature fluctuation is larger than that of the quartz fiber, so that it can be compensated with a length of 50% or less with respect to the quartz fiber. The optimum compensation length varies depending on the excitation conditions, the heat dissipation state of the fiber, the Ge addition amount of the silica fiber used, etc., but it cannot be generally stated, but in general, about 5 to 20% of the length of the silica fiber is appropriate. is there. When the quartz fiber is a pure silica core fiber, the length of the fluoride fiber relative to the quartz fiber is suitably about 1 to 15%.
 しかし、希土類添加ファイバの長さ調整は、ファイバリングレーザの出力特性やモード特性を優先するために微調整が難しい。そこで、励起光やレーザ光に対して透明なフッ化物ファイバを適量リングレーザ共振器内に使用することで、ファイバリングレーザの光学特性に影響を与えることなく光学長の温度依存性を補償し、ファイバリングレーザの縦モードホップによるパワー変動や、低角速度での検出感度変動などを抑制できる。 However, the length adjustment of rare-earth doped fibers is difficult to fine-tune because priority is given to the output characteristics and mode characteristics of the fiber ring laser. Therefore, by using an appropriate amount of a fluoride fiber transparent to the pumping light and laser light in the ring laser resonator, the temperature dependence of the optical length is compensated without affecting the optical characteristics of the fiber ring laser, It is possible to suppress power fluctuations due to the longitudinal mode hop of the fiber ring laser and detection sensitivity fluctuations at a low angular velocity.
 レーザ光波長と励起光波長で透明なフッ化物ファイバの適切な長さは、共振器の構成や希土類添加ファイバの励起状態によって変化するので一概には言えないが、フッ化物ファイバの合計長さが、リングレーザ共振器中の総石英系ファイバ長の5~50%程度となる範囲が好ましい。この補償によって共振器長変化は数μm/℃程度まで抑制することが可能となり、温度変化による縦モードホップの抑制が容易になる。 The appropriate length of the fluoride fiber that is transparent at the laser light wavelength and the pump light wavelength varies depending on the resonator configuration and the excitation state of the rare earth-doped fiber. A range of about 5 to 50% of the total silica fiber length in the ring laser resonator is preferable. This compensation makes it possible to suppress changes in the resonator length to about several μm / ° C., and to easily suppress longitudinal mode hops due to temperature changes.
 また、利得のホールバーニングが発生すると、CW光とCCW光の近接波長での発振が困難となる。このため、リングレーザ共振器内に希土類添加ファイバが1箇所の場合はリングレーザ共振器内の任意の場所に、リングレーザ共振器内に複数箇所の希土類添加ファイバがある場合はその中央または希土類添加ファイバ間に、ファラデー回転子,旋光子,偏波コントローラ,偏波スクランブラなどを挿入し特定偏波状態での発振を回避することが好ましい。旋光子としては透明な波長範囲が広い水晶が好適である。偏波コントローラは、ファイバのねじれを利用するタイプまたは巻き径と巻き数を制御したパドル間の角度を調整するタイプが好ましい。また、偏波コントローラとしてはこれ以外にも方解石などの複屈折性結晶を使用したもの、偏波保持ファイバを利用したものなどがあり、目的に応じて使用することができる。偏波スクランブラには、ファイバ断面内で応力付与部の角度をずらして複数段融着したデバイスが市販されており、リングレーザ共振器と接続しやすいため好ましい。また、これらの手法に加えて、リングレーザ共振器内に狭帯域フィルタなどを挿入し、発振波長を制限することが好ましい。 If gain hole burning occurs, it becomes difficult to oscillate the CW light and CCW light at close wavelengths. For this reason, if there is one rare earth doped fiber in the ring laser resonator, it will be at an arbitrary location in the ring laser resonator, and if there are multiple rare earth doped fibers in the ring laser resonator, its center or rare earth doped It is preferable to insert a Faraday rotator, optical rotator, polarization controller, polarization scrambler, etc. between the fibers to avoid oscillation in a specific polarization state. As the optical rotator, a transparent crystal having a wide wavelength range is suitable. The polarization controller is preferably of a type that utilizes the twist of a fiber or a type that adjusts the angle between the paddles that controls the winding diameter and the number of turns. Other polarization controllers include those using a birefringent crystal such as calcite and those using a polarization maintaining fiber, which can be used according to the purpose. For the polarization scrambler, a device in which a plurality of stages are fused by shifting the angle of the stress applying portion within the fiber cross section is commercially available and is preferable because it is easily connected to a ring laser resonator. In addition to these methods, it is preferable to limit the oscillation wavelength by inserting a narrow band filter or the like in the ring laser resonator.
 また、CW光とCCW光の干渉を利用する用途では、ファイバリングレーザのTAP率(取り出すパワーの比率)を50%以下にすることで、帰還した残りの光パワーを多数回周回することが可能となり、干渉用ファイバ長を長距離にして高感度化したのと同じ効果を得ることが出来る。ここで、TAP率を下げると実効的周回数が高まるので、感度は向上する方向だが、取り出せるパワーが小さくなるので低雑音な検出方法または共振器内の光パワーの向上が必要となる。一方、TAP率を上げると感度は低下するが、取り出せるパワーが大きくなるので検出は容易になる。最適なTAP率は、希土類種、添加濃度、励起波長、励起パワー、ファイバの構造パラメータ、リングレーザ共振器内の損失などによって変化するので一概に規定できないが、一般的には0.1%から50%の範囲内である。また、高精度な干渉光源用リングレーザの場合、TAP率は0.1%以上20%以下が好ましい。TAP率が0.1%未満の場合、受光素子に入射する光パワーが極端に低くなり、精度の高い検出が困難になる。一方、20%を超えると多数周回による感度向上の効果が得にくくなる。 In applications that use interference between CW light and CCW light, the remaining optical power that has been returned can be circulated many times by setting the TAP rate (the ratio of extracted power) of the fiber ring laser to 50% or less. Thus, the same effect can be obtained as when the interference fiber length is made longer and the sensitivity is increased. Here, when the TAP rate is lowered, the effective number of rotations increases, so the sensitivity is improved, but the power that can be extracted becomes small, so a low-noise detection method or an improvement in the optical power in the resonator is required. On the other hand, when the TAP rate is increased, the sensitivity decreases, but the power that can be extracted increases, so that detection becomes easy. The optimal TAP rate varies depending on the rare earth species, doping concentration, pumping wavelength, pumping power, fiber structural parameters, loss in the ring laser resonator, etc., but cannot be specified unconditionally, but generally from 0.1% It is in the range of 50%. In the case of a highly accurate interference light source ring laser, the TAP rate is preferably 0.1% or more and 20% or less. When the TAP rate is less than 0.1%, the optical power incident on the light receiving element becomes extremely low, and detection with high accuracy becomes difficult. On the other hand, if it exceeds 20%, it becomes difficult to obtain the effect of improving the sensitivity due to the multiple turns.
 また、これまで述べたファイバリングレーザを用い、右回り(CW)のレーザ信号と左回り(CCW)のレーザ信号を取り出して、該CWレーザ信号とCCWレーザ信号とを干渉させて得られるビート信号を検出する角速度検出方法を用い、ファイバリングレーザジャイロ(F-RLG)を構成することができる。 Further, using the fiber ring laser described so far, a beat signal obtained by extracting a clockwise (CW) laser signal and a counterclockwise (CCW) laser signal and causing the CW laser signal and the CCW laser signal to interfere with each other. A fiber ring laser gyro (F-RLG) can be constructed using an angular velocity detection method for detecting the above.
 F-RLGとして応用する場合、リングレーザ共振器からTAPによって取り出されたCW光とCCW光は、光アイソレータを通して3dBカプラで干渉され、干渉出力がフォトダイオードに入射されて電気信号に変換される。TAPカプラと受光素子の間に、少なくとも1個の光アイソレータを備えることで、受光素子側の反射の戻り光を抑制し、ファイバリングレーザの動作の安定化と破壊の防止を図ることができる。ファイバリングレーザに限らず、ファイバを利得媒質とする機能部品は、戻り光の影響を非常に受けやすい。特にファイバの端部は、受光素子を近づけたり、受光面とファイバ端面の角度が平行になって戻り光がファイバに再入射する危険があり、最悪の場合にはファイバリングレーザが破壊される危険がある。TAPカプラと検出部の間に光アイソレータを挿入することで、このような事故を防止することができる。なお、受光素子としては単一素子からなる単純な受光素子としてPINフォトダイオードやアバランシェフォトダイオードを使用できるだけでなく、多数の素子からなるラインセンサや撮像素子を使用することもできる。また、光アイソレータと3dBカプラの間にファイバ型偏波コントローラを設置し、偏波制御することができる。偏波制御は、取り出される右回りのレーザ信号または左回りのレーザ信号のどちらか一方のレーザ光について行えれば良いので、光アイソレータと3dBカプラの間にファイバ型偏波コントローラを設置してもよい。 When applied as an F-RLG, the CW light and CCW light extracted from the ring laser resonator by the TAP are interfered by the 3 dB coupler through the optical isolator, and the interference output is incident on the photodiode and converted into an electric signal. By providing at least one optical isolator between the TAP coupler and the light receiving element, the reflected return light on the light receiving element side can be suppressed, and the operation of the fiber ring laser can be stabilized and the destruction can be prevented. Not only the fiber ring laser but also a functional component using a fiber as a gain medium is very susceptible to the return light. In particular, at the end of the fiber, there is a risk of the light receiving element approaching, the angle between the light receiving surface and the fiber end surface being parallel, and the return light re-entering the fiber. In the worst case, the fiber ring laser may be destroyed. There is. Such an accident can be prevented by inserting an optical isolator between the TAP coupler and the detection unit. As a light receiving element, not only a PIN photodiode or an avalanche photodiode can be used as a simple light receiving element formed of a single element, but also a line sensor or an image pickup element formed of a large number of elements can be used. In addition, a fiber-type polarization controller can be installed between the optical isolator and the 3 dB coupler to control the polarization. Since polarization control can be performed with respect to either the extracted clockwise laser signal or counterclockwise laser signal, a fiber-type polarization controller can be installed between the optical isolator and the 3 dB coupler. Good.
 本発明のファイバリングレーザには、一般的に取り付けられている偏波制御手段や温度制御手段を取り付けることが出来る。また、モードロック動作を開始するために変調器を挿入する事が出来る。偏波制御手段としては、ファイバリングの組み合わせによる偏波コントローラや、方解石や水晶などの異方性光学結晶の組み合わせによる偏波コントローラが使用できる。温度制御には、ペルチェ素子などを用いた電子冷却や冷媒循環による方法を用いることが出来るが、振動の面からは電子冷却が好ましい。変調器としては、ファイバリングに振動を与える振動型の変調器や電気光学効果を示す結晶を用いた光導波路デバイスを使用することが出来る。中でもLiNbO3(LN)のマイクロ波結合型の変調器は変調周波数が高く、センサとして利用する帯域外で動作するため、特に好ましい。 The fiber ring laser of the present invention can be equipped with generally attached polarization control means and temperature control means. Also, a modulator can be inserted to initiate the mode lock operation. As the polarization control means, a polarization controller using a combination of fiber rings and a polarization controller using a combination of anisotropic optical crystals such as calcite and quartz can be used. For temperature control, electronic cooling using a Peltier device or the like, or a method using refrigerant circulation can be used, but electronic cooling is preferable from the viewpoint of vibration. As the modulator, a vibration type modulator that vibrates the fiber ring or an optical waveguide device using a crystal exhibiting an electro-optic effect can be used. Among them, a LiNbO 3 (LN) microwave-coupled modulator is particularly preferable because it has a high modulation frequency and operates outside the band used as a sensor.
 また、ファイバリングレーザ全体を、熱伝導性が良好な鉄合金の筐体に収容し、筐体内には銅製のヒートチャンネルを設けて励起レーザを集中的に冷却すると共に、筐体全体の温度が一様に安定するように筐体はペルチェ素子を接触させてフィードバック制御させることが好ましい。さらには、該筐体の外部を熱の侵入を防止するために高性能の断熱材で密閉することが好ましい。この場合、該筐体内の温度変動は、外気温変動が5℃/hr程度の時に、±0.01℃/hr以下に抑制可能となる。 The entire fiber ring laser is housed in an iron alloy casing having good thermal conductivity, and a copper heat channel is provided in the casing to intensively cool the excitation laser, and the temperature of the entire casing is The casing is preferably feedback-controlled by bringing the Peltier element into contact with the casing so as to be uniformly stable. Furthermore, it is preferable to seal the outside of the housing with a high-performance heat insulating material in order to prevent heat from entering. In this case, the temperature fluctuation in the housing can be suppressed to ± 0.01 ° C./hr or less when the outside air temperature fluctuation is about 5 ° C./hr.
 さらに、リングレーザジャイロとして応用する場合、低角速度での回転を検出するために、ファイバ系全体を振動させて見かけ上の角速度を底上げするディサリング(dithering)と呼ばれる技術を使うことができる。ディサリングには一般的に圧電素子による周期的な振動が用いられており、可聴域以上の周波数の振動を、ファイバを固定している筐体部分やボビン部分に加えることで、低角速度での周波数引き込みによる不感帯(ロッキング)の発生を防止できる。また、振動子の発熱を効果的に除去するため、銅などの熱伝導性の良い冷却材料内に振動子を配置して振動子を冷却できる冷却機構を備えることが好ましい。この冷却機構には、ペルチェ効果を利用した電子冷却を利用することが雑音となる振動を防止する観点から特に好ましい。 Furthermore, when applied as a ring laser gyro, in order to detect rotation at a low angular velocity, a technique called dithering that raises the apparent angular velocity by vibrating the entire fiber system can be used. In general, periodic vibrations caused by piezoelectric elements are used for dithering. By applying vibrations with a frequency higher than the audible range to the housing part and bobbin part to which the fiber is fixed, the frequency at a low angular velocity is used. It is possible to prevent a dead zone (rocking) from occurring due to the pull-in. In order to effectively remove the heat generated by the vibrator, it is preferable to provide a cooling mechanism that can cool the vibrator by disposing the vibrator in a cooling material having good thermal conductivity such as copper. For this cooling mechanism, it is particularly preferable to use electronic cooling using the Peltier effect from the viewpoint of preventing vibrations that cause noise.
 また、上記の機械的なディサリングと同様な効果を得られる方法として、リングレーザ共振器内を周回中のレーザ光に対して時間的に周期的な位相変調を加えることによって、ロッキングを防止する事もできる。例えば、位相変調波形としてサイン波を用いることができる。位相変調方法としては、LN変調器のようなデバイスを使用しても良いし、リングレーザ共振器内のファイバに圧電素子などで時間的に周期的な応力を加える事も可能である。
 以下に実施例を示す。ただし、本発明はこれらの実施例によって限定されるものではない。
In addition, as a method for obtaining the same effect as the above-described mechanical dithering, locking is prevented by applying temporal phase modulation to the laser light circulating in the ring laser resonator. You can also. For example, a sine wave can be used as the phase modulation waveform. As a phase modulation method, a device such as an LN modulator may be used, or a periodic stress can be applied to the fiber in the ring laser resonator with a piezoelectric element or the like.
Examples are shown below. However, the present invention is not limited to these examples.
 実験に使用したファイバリングレーザ部を、図1を用いて説明する。この配置の特徴は、ほとんどの部品が左右対称に配置され、右回り(CW)と左回り(CCW)のレーザ特性に差が生じないように配慮されている点である。特に利得媒質(フッ化物ファイバ20a、フッ化物ファイバ20b)と可飽和吸収体(フッ化物ファイバ23a、フッ化物ファイバ23b)および、これらの励起源(励起用半導体レーザ22a、励起用半導体レーザ22b、励起用半導体レーザ25a、励起用半導体レーザ25b)は、完全に左右対称となっている。また、周回するファイバリングレーザの偏波ホールバーニングを防止するため、水晶製の旋光子(水晶旋光子27)が共振器中に挿入され、レーザ光がリングを1周するごとに90度偏波回転させる。この結果、CW光とCCW光のパワー比が1:1に近づき、パワー安定性も高まる。 The fiber ring laser unit used in the experiment will be described with reference to FIG. The feature of this arrangement is that most parts are arranged symmetrically, and consideration is given so that no difference occurs in the clockwise (CW) and counterclockwise (CCW) laser characteristics. In particular, the gain medium (fluoride fiber 20a, fluoride fiber 20b) and the saturable absorber (fluoride fiber 23a, fluoride fiber 23b) and their excitation sources (excitation semiconductor laser 22a, excitation semiconductor laser 22b, excitation) The semiconductor laser 25a for excitation and the semiconductor laser 25b for excitation are completely symmetrical. Further, in order to prevent polarization hole burning of the circulating fiber ring laser, a crystal rotator (crystal rotator 27) is inserted into the resonator, and the laser beam is polarized by 90 degrees each time the laser beam goes around the ring. Rotate. As a result, the power ratio between the CW light and the CCW light approaches 1: 1, and the power stability is improved.
 利得媒質(フッ化物ファイバ20a、フッ化物ファイバ20b)は互いに同一の組成、ファイバパラメータ、ファイバ長を持つフッ化物ファイバである。そのコア組成は53ZrF4-18.5BaF2-3AlF3-18.5NaF-3.2YF3-3.5LaF3-0.3ErF3(各成分の前の数字はmol%)で表されるフッ化物ガラスである。また、そのクラッド組成は38ZrF4-15HfF4-20BaF2-1LaF3-3AlF3-3YF3―20NaF(各成分の前の数字はmol%)で表されるフッ化物ガラスである。フッ化物ファイバ20a、20bのNAは0.13、カットオフ波長は0.52μm、コア径は3μmである。ファイバ長は60cmである。これらファイバの両端は、リングレーザ共振器の主な構成要素である石英ファイバ34に融着接続されている。石英ファイバ34は、利得媒質(フッ化物ファイバ20a,フッ化物ファイバ20b)と同じファイバパラメータを持ち、利得媒質(フッ化物ファイバ20a,フッ化物ファイバ20b)と融着接続されている。 The gain media (fluoride fiber 20a and fluoride fiber 20b) are fluoride fibers having the same composition, fiber parameters, and fiber length. Its core composition is 53ZrF 4 -18.5BaF 2 -3AlF 3 -18.5NaF-3.2YF 3 -3.5LaF 3 -0.3ErF 3 (the number before each component is mol%) It is glass. The clad composition is fluoride glass represented by 38ZrF 4 -15HfF 4 -20BaF 2 -1LaF 3 -3AlF 3 -3YF 3 -20NaF (the number before each component is mol%). The NA of the fluoride fibers 20a and 20b is 0.13, the cutoff wavelength is 0.52 μm, and the core diameter is 3 μm. The fiber length is 60 cm. Both ends of these fibers are fused and connected to a quartz fiber 34 which is a main component of the ring laser resonator. The quartz fiber 34 has the same fiber parameters as the gain medium (fluoride fiber 20a and fluoride fiber 20b), and is fused and connected to the gain medium (fluoride fiber 20a and fluoride fiber 20b).
 可飽和吸収媒質(フッ化物ファイバ23a、フッ化物ファイバ23b)は互いに同一の組成、ファイバパラメータ、ファイバ長を持つフッ化物ファイバである。そのコア組成は53ZrF4-18.5BaF2-3AlF3-18.5NaF-3YF3-3.5LaF3-0.5ErF3(各成分の前の数字はmol%)で表されるフッ化物ガラスである。また、そのクラッド組成は38ZrF4-15HfF4-20BaF2-1LaF3-3AlF3-3YF3―20NaF(各成分の前の数字はmol%)で表されるフッ化物ガラスである。フッ化物ファイバ23a、23bのNAは0.13、カットオフ波長は0.52μm、ファイバ長は10cmである。これらファイバの両端は、リングレーザ共振器の主な構成要素である石英ファイバ34に融着接続されている。石英ファイバ34は、可飽和吸収媒質(フッ化物ファイバ23a,フッ化物ファイバ23b)と同じファイバパラメータを持ち、可飽和吸収媒質(フッ化物ファイバ23a,フッ化物ファイバ23b)と融着接続されている。 The saturable absorbing media (fluoride fiber 23a and fluoride fiber 23b) are fluoride fibers having the same composition, fiber parameters, and fiber length. Its core composition is fluoride glass represented by 53ZrF 4 -18.5BaF 2 -3AlF 3 -18.5NaF-3YF 3 -3.5LaF 3 -0.5ErF 3 (the numbers before each component are mol%). is there. The clad composition is fluoride glass represented by 38ZrF 4 -15HfF 4 -20BaF 2 -1LaF 3 -3AlF 3 -3YF 3 -20NaF (the number before each component is mol%). The NA of the fluoride fibers 23a and 23b is 0.13, the cutoff wavelength is 0.52 μm, and the fiber length is 10 cm. Both ends of these fibers are fused and connected to a quartz fiber 34 which is a main component of the ring laser resonator. The quartz fiber 34 has the same fiber parameters as the saturable absorption medium (fluoride fiber 23a and fluoride fiber 23b), and is fused and connected to the saturable absorption medium (fluoride fiber 23a and fluoride fiber 23b).
 励起光波長帯である440~450nm帯と信号光波長帯である540~550nm帯の合分波素子が4個(合分波素子21a、合分波素子21b、合分波素子24a、合分波素子24b)、リングレーザ共振器内の石英ファイバ34に挿入されており、各々励起レーザの導入に用いられている。また、2つの利得媒質(フッ化物ファイバ20a、フッ化物ファイバ20b)の間には対向する励起レーザの余剰の励起レーザ光を除去するために、波長540nm~550nmの光を透過し、波長440nm~450nmの余剰の励起光をリングレーザ共振器外に除去する合分波素子26が挿入されている。 There are four multiplexing / demultiplexing elements in the excitation light wavelength band of 440 to 450 nm and the signal light wavelength band of 540 to 550 nm (the multiplexing / demultiplexing element 21a, the multiplexing / demultiplexing element 21b, the multiplexing / demultiplexing element 24a, the multiplexing / demultiplexing element). The wave element 24b) is inserted into the quartz fiber 34 in the ring laser resonator, and each is used to introduce an excitation laser. Further, in order to remove excess excitation laser light of the opposing excitation laser between the two gain media (fluoride fiber 20a and fluoride fiber 20b), light having a wavelength of 540 nm to 550 nm is transmitted and a wavelength of 440 nm to A multiplexing / demultiplexing element 26 for removing excess excitation light of 450 nm outside the ring laser resonator is inserted.
 励起レーザは2種類、各2台の計4台を使用している。利得媒質(フッ化物ファイバ20a、フッ化物ファイバ20b)の励起には、波長444nm、出力140mWのファイバピグテール付き半導体レーザ(励起用半導体レーザ22a、励起用半導体レーザ22b)を使用した。また、可飽和吸収体の吸収量制御に、波長448nm、出力50mWのファイバピグテール付き半導体レーザ(励起用半導体レーザ25a、励起用半導体レーザ25b)を使用した。 励 起 There are 2 types of excitation lasers, 2 each for a total of 4 units. For the excitation of the gain medium (fluoride fiber 20a, fluoride fiber 20b), a semiconductor laser with a fiber pigtail (excitation semiconductor laser 22a, excitation semiconductor laser 22b) having a wavelength of 444 nm and an output of 140 mW was used. For controlling the amount of absorption of the saturable absorber, a semiconductor laser with a fiber pigtail (excitation semiconductor laser 25a, excitation semiconductor laser 25b) having a wavelength of 448 nm and an output of 50 mW was used.
 リングレーザ共振器内の偏波状態を整える目的で、ファイバ型偏波コントローラ(偏波コントローラ29)をリングレーザ共振器内に設置した。 For the purpose of adjusting the polarization state in the ring laser resonator, a fiber type polarization controller (polarization controller 29) was installed in the ring laser resonator.
 リングレーザ共振器からCW光とCCW光を取り出すために、リング内の光パワーの5%を取り出せるTAPカプラ28を設置し、測定中に反射光がファイバリングレーザに戻らないようにアイソレータ30を各ポートに設置した。光スペクトルは光スペクトラムアナライザ31、光パワーは光パワーメータ32を目的のポートに取り付けて測定した。 In order to extract CW light and CCW light from the ring laser resonator, a TAP coupler 28 that can extract 5% of the optical power in the ring is installed, and each isolator 30 is set so that reflected light does not return to the fiber ring laser during measurement. Installed in the port. The optical spectrum was measured with an optical spectrum analyzer 31 and the optical power was measured with an optical power meter 32 attached to the target port.
 上記構成でのリングレーザ共振器の長さは5m、光学部品以外のリングレーザ共振器内のファイバは、直径6.7cmに巻いてある
 利得媒質励起条件=60mW、可飽和吸収体励起条件=15mWで測定したこのリングレーザからの出射光スペクトルを図2に示す。波長544nmでレーザ発振しており、ファイバリングレーザから直接可視光レーザが得られていることが判る。また、CW出力とCCW出力はそれぞれ0.52mWと0.54mWであり、その合計の合算出力は1.06mWとなり、測定誤差範囲内で一致した。
The length of the ring laser resonator in the above configuration is 5 m, and the fiber in the ring laser resonator other than the optical components is wound to a diameter of 6.7 cm. Gain medium excitation condition = 60 mW, saturable absorber excitation condition = 15 mW FIG. 2 shows a spectrum of light emitted from the ring laser measured in (1). It can be seen that the laser oscillates at a wavelength of 544 nm, and a visible light laser is obtained directly from the fiber ring laser. Moreover, the CW output and the CCW output were 0.52 mW and 0.54 mW, respectively, and the total calculation power was 1.06 mW, which coincided within the measurement error range.
 実施例1と同様の構成であるが、使用するファイバ種、添加する希土類、励起レーザ波長などを種々変更して、実施例1と同様のレーザ発振の実験をした(No.1~8)。測定された発振波長および合算出力の結果を表1にまとめて示す。励起光としては半導体レーザと、半導体レーザ発振波長をSHG(Second Harmonic Generation)素子であるPPLNを用いて半分に波長変換した波長変換レーザの、2種類を使い分けて使用した。結果、いずれのファイバリングレーザからも波長1μm未満のレーザ発振が得られた。 The configuration is the same as in Example 1, but the laser oscillation experiment similar to that in Example 1 was performed (Nos. 1 to 8) with various changes in the type of fiber used, the rare earth to be added, the excitation laser wavelength, and the like. Table 1 summarizes the results of the measured oscillation wavelength and the total calculation force. Two types of pumping light were used separately: a semiconductor laser and a wavelength conversion laser in which the wavelength of the semiconductor laser oscillation was converted into half using a PPLN which is a SHG (Second Harmonic Generation) element. As a result, laser oscillation with a wavelength of less than 1 μm was obtained from any of the fiber ring lasers.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 リングレーザ部に実施例1と同一のリングレーザを使用し、リングレーザジャイロを構成し、角速度を検出した。光源部分の実験構成を図3に示す。TAPカプラ28から取り出されたCW光またはCCW光の干渉縞コントラストを最大にするために、偏光状態を制御するファイバ型偏波コントローラ33を設置した。CW光とCCW光を3dBカプラ34で干渉させ、光アイソレータ35を通過後、シリコンPIN受光素子36で干渉後の光強度変調信号を受光した。 The same ring laser as in Example 1 was used for the ring laser part, a ring laser gyro was constructed, and the angular velocity was detected. The experimental configuration of the light source part is shown in FIG. In order to maximize the interference fringe contrast of the CW light or CCW light extracted from the TAP coupler 28, a fiber type polarization controller 33 for controlling the polarization state is installed. The CW light and the CCW light were caused to interfere with each other by the 3 dB coupler 34, and after passing through the optical isolator 35, the light intensity modulation signal after the interference was received by the silicon PIN light receiving element 36.
 図4に、図3のファイバリングレーザ部と電気配線をリングレーザ筐体40に収容したときの概略を示す。熱膨張係数が小さく、比較的熱伝導性がよいコバール合金の筐体(リングレーザ筐体40)の周囲をペルチェ素子43で取り囲み、廃熱は放熱フィン44から放射することで、筐体内温度を均一に保つことができる。内部設定温度が25℃の時、周囲温度が40℃以上の場合は強制空冷が必要であった。風速2m/秒の強制空冷によって、60℃まで内部温度を25℃一定に制御可能であった。また、内部設定温度が25℃の時、周囲温度が-5℃以下の場合は制御が困難であった。ペルチェ素子43と励起レーザ4台への電源供給、偏波コントローラへの制御信号供給、受光した干渉信号の取り出しなどのために、筐体にはコネクタ(電気コネクタ41)が取り付けてある。 FIG. 4 shows an outline when the fiber ring laser unit and the electrical wiring of FIG. A Kovar alloy casing (ring laser casing 40) having a small coefficient of thermal expansion and relatively good thermal conductivity is surrounded by a Peltier element 43, and waste heat is radiated from the radiation fins 44 to reduce the temperature inside the casing. It can be kept uniform. When the internal set temperature was 25 ° C, forced air cooling was required when the ambient temperature was 40 ° C or higher. The internal temperature could be controlled to a constant 25 ° C. up to 60 ° C. by forced air cooling at a wind speed of 2 m / sec. Further, when the internal set temperature is 25 ° C., the control is difficult when the ambient temperature is −5 ° C. or lower. A connector (electric connector 41) is attached to the housing for supplying power to the Peltier element 43 and the four excitation lasers, supplying a control signal to the polarization controller, taking out the received interference signal, and the like.
 角速度検出のためのセットアップを図5に示す。図4に示したファイバリングレーザが収容された筐体50と、リングレーザ制御用ボード52と、干渉信号を検出するオシロスコープ51をターンテーブル53に設置、固定し、回転制御コンピュータ(ターンテーブル制御コンピュータ54)で回転角速度を制御しながら干渉信号を測定した。 Fig. 5 shows the setup for angular velocity detection. A housing 50 in which the fiber ring laser shown in FIG. 4 is accommodated, a ring laser control board 52, and an oscilloscope 51 for detecting an interference signal are installed and fixed on a turntable 53, and a rotation control computer (turntable control computer). 54), the interference signal was measured while controlling the rotational angular velocity.
 温度制御設定=25℃、利得媒質励起条件=60mW、可飽和吸収体励起条件=15mWで測定した角速度と干渉周波数の関係を図6に示す。十分な干渉コントラストが得られた。低速回転として角速度110°/h、ビート周波数3KHzまで測定したが、ロッキングは観測されなかった。 FIG. 6 shows the relationship between the angular velocity and the interference frequency measured under temperature control setting = 25 ° C., gain medium excitation condition = 60 mW, and saturable absorber excitation condition = 15 mW. Sufficient interference contrast was obtained. As a low-speed rotation, an angular velocity of 110 ° / h and a beat frequency of 3 KHz were measured, but no rocking was observed.
20a,20b フッ化物ファイバ
21a,21b,24a,24b,26 合分波素子
23a,23b フッ化物ファイバ
22a,22b,25a,25b 励起用半導体レーザ
27 水晶旋光子
28 TAPカプラ
29 偏波コントローラ
30 光アイソレータ
31 光スペクトラムアナライザ
32 光パワーメータ
33 ファイバ型偏波コントローラ
34 3dBカプラ
35 光アイソレータ
36 シリコンPIN受光素子
40 リングレーザ筐体
41 電気コネクタ
43 ペルチェ素子
44 放熱フィン
50 ファイバリングレーザが収容された筐体
51 オシロスコープ
52 リングレーザ制御用ボード
53 ターンテーブル
54 ターンテーブル制御コンピュータ
20a, 20b Fluoride fibers 21a, 21b, 24a, 24b, 26 Multiplexing / demultiplexing elements 23a, 23b Fluoride fibers 22a, 22b, 25a, 25b Excitation semiconductor laser 27 Crystal rotator 28 TAP coupler 29 Polarization controller 30 Optical isolator 31 Optical spectrum analyzer 32 Optical power meter 33 Fiber type polarization controller 34 3 dB coupler 35 Optical isolator 36 Silicon PIN light receiving element 40 Ring laser housing 41 Electrical connector 43 Peltier device 44 Radiation fin 50 Housing 51 containing fiber ring laser Oscilloscope 52 Ring laser control board 53 Turntable 54 Turntable control computer

Claims (6)

  1. 利得媒質を励起する励起光源と、少なくとも一つの閉じたリング状の共振器(リングレーザ共振器)と、該リングレーザ共振器内に該利得媒質として希土類添加ファイバを持つファイバリングレーザにおいて、
     該希土類添加ファイバとして、Pr,Nd,Sm,Eu,Tb,Dy,Ho,Er,Tmから選ばれる少なくとも1種類の希土類が添加されているコアを備えたファイバを用い、レーザ発振波長が1μm未満の短波長である事を特徴とする、ファイバリングレーザ。
    In a fiber ring laser having a pumping light source for exciting a gain medium, at least one closed ring resonator (ring laser resonator), and a rare earth-doped fiber as the gain medium in the ring laser resonator,
    As the rare earth-doped fiber, a fiber having a core to which at least one kind of rare earth selected from Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, and Tm is added is used, and the laser oscillation wavelength is less than 1 μm. A fiber ring laser characterized by having a short wavelength.
  2. 該希土類添加ファイバがフッ化物ガラスファイバであり、かつ該励起光源として波長340nm以上500nm以下の波長を放射する半導体光源を使用する事を特徴とする、請求項1に記載のファイバリングレーザ。 2. The fiber ring laser according to claim 1, wherein the rare earth-doped fiber is a fluoride glass fiber, and a semiconductor light source that emits a wavelength of 340 nm to 500 nm is used as the excitation light source.
  3. 該希土類添加ファイバを少なくとも2個以上備え、且つ該希土類添加ファイバの励起条件を個々に制御可能である事を特徴とする、請求項1または請求項2に記載のファイバリングレーザ。 3. The fiber ring laser according to claim 1, wherein at least two of the rare earth-doped fibers are provided, and excitation conditions of the rare earth-doped fibers can be individually controlled.
  4. ファイバリングレーザのレーザ発振波長で動作する少なくとも1個の可飽和吸収体をリングレーザ共振器内に備える事を特徴とする、請求項1乃至請求項3のいずれか1項に記載のファイバリングレーザ。 The fiber ring laser according to any one of claims 1 to 3, wherein the ring laser resonator includes at least one saturable absorber that operates at a lasing wavelength of the fiber ring laser. .
  5. 励起波長とレーザ発振波長に対して透明なコアを備えたフッ化物ファイバをリングレーザ共振器内に少なくとも1個以上備える事を特徴とする、請求項1乃至請求項4のいずれか1項に記載のファイバリングレーザ。 5. The device according to claim 1, wherein at least one fluoride fiber having a core transparent to an excitation wavelength and a laser oscillation wavelength is provided in the ring laser resonator. Fiber ring laser.
  6. リングレーザ共振器から右回り(CW)のレーザ信号と左回り(CCW)のレーザ信号を取り出し、取り出されたCWレーザ信号とCCWレーザ信号とを干渉させて得られるビート信号を検出する角速度検出方法を用いるファイバリングレーザジャイロ(F-RLG)において、
    請求項1乃至請求項5のいずれか1項に記載のファイバリングレーザを用いることを特徴とするファイバリングレーザジャイロ。
    Angular velocity detection method for extracting a clockwise (CW) laser signal and a counterclockwise (CCW) laser signal from a ring laser resonator and detecting a beat signal obtained by causing the extracted CW laser signal and the CCW laser signal to interfere with each other In a fiber ring laser gyro (F-RLG) using
    A fiber ring laser gyro using the fiber ring laser according to any one of claims 1 to 5.
PCT/JP2009/064816 2008-09-01 2009-08-26 Fiber ring laser and fiber ring laser gyro using the same WO2010024264A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008224022A JP2010062224A (en) 2008-09-01 2008-09-01 Fiber ring laser and fiber ring laser gyroscope using it
JP2008-224022 2008-09-01

Publications (1)

Publication Number Publication Date
WO2010024264A1 true WO2010024264A1 (en) 2010-03-04

Family

ID=41721431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064816 WO2010024264A1 (en) 2008-09-01 2009-08-26 Fiber ring laser and fiber ring laser gyro using the same

Country Status (2)

Country Link
JP (1) JP2010062224A (en)
WO (1) WO2010024264A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986483A (en) * 2010-10-08 2011-03-16 北京航空航天大学 Passive mode-locked pulsed laser
CN111082300A (en) * 2019-12-31 2020-04-28 华中科技大学 Cavity length locking method and system of double-resonance optical parametric oscillator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033949A (en) * 2014-07-31 2016-03-10 株式会社トプコン Laser emitting device and laser measuring machine
CN104634369B (en) * 2015-02-10 2017-05-31 深圳大学 A kind of ring laser sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112963U (en) * 1980-01-31 1981-08-31
JP2008516214A (en) * 2004-10-08 2008-05-15 テールズ Solid laser gyro with stable scale factor
WO2008090675A1 (en) * 2007-01-22 2008-07-31 Central Glass Company, Limited Visible light-emitting material and visible light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112963U (en) * 1980-01-31 1981-08-31
JP2008516214A (en) * 2004-10-08 2008-05-15 テールズ Solid laser gyro with stable scale factor
WO2008090675A1 (en) * 2007-01-22 2008-07-31 Central Glass Company, Limited Visible light-emitting material and visible light-emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Experimental study on a novel structure of fiber ring laser gyroscope", PROC. SPIE, vol. 5634, 8 November 2004 (2004-11-08), pages 338 - 342 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986483A (en) * 2010-10-08 2011-03-16 北京航空航天大学 Passive mode-locked pulsed laser
CN111082300A (en) * 2019-12-31 2020-04-28 华中科技大学 Cavity length locking method and system of double-resonance optical parametric oscillator
CN111082300B (en) * 2019-12-31 2021-07-27 华中科技大学 Cavity length locking method and system of double-resonance optical parametric oscillator

Also Published As

Publication number Publication date
JP2010062224A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
Steinbruegge et al. Laser properties of Nd+ 3 and Ho+ 3 doped crystals with the apatite structure
Patel et al. Laser demonstration of Yb/sub 3/Al/sub 5/O/sub 12/(YbAG) and materials properties of highly doped Yb: YAG
JP5247030B2 (en) Single polarization optical fiber laser and amplifier
Crawford et al. High-Power Broadly Tunable 3-$\mu\hbox {m} $ Fiber Laser for the Measurement of Optical Fiber Loss
Dvoyrin et al. Efficient bismuth-doped fiber lasers
Tanaka et al. Visible solid-state lasers based on Pr3+ and Tb3+
US6510276B1 (en) Highly doped fiber lasers and amplifiers
Eichhorn Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers
WO2010007938A1 (en) Ultraviolet laser device
Jackson et al. CW operation of a 1.064-/spl mu/m pumped Tm-Ho-doped silica fiber laser
US5677921A (en) Ytterbium-doped borate fluoride laser crystals and lasers
US7313306B2 (en) Fiber laser, spontaneous emission light source and optical fiber amplifier
WO2010024264A1 (en) Fiber ring laser and fiber ring laser gyro using the same
US8976820B2 (en) Passive Q-switch-type solid laser apparatus
Zhou et al. Acousto-optic Q-switched operation Ho: YAP laser pumped by a Tm-doped fiber laser
Chen et al. Spectra and diode-pumped continuous-wave 1.55 µm laser of Er: Yb: Ca 3 NbGa 3 Si 2 O 14 crystal
Falconi et al. Modeling of rare-earth-doped glass devices and optical parameter indirect evaluation
JPH0359547A (en) Optical fiber amplifier
JP2010040731A (en) Small-sized fiber-ring laser
Digonnet Status of broadband rare-earth doped fiber sources for FOG applications
Wu High power single-frequency 976 nm fiber laser source and its frequency doubling for blue laser generation
Gouhier et al. Low intensity noise high-power tunable fiber-based laser around 1007 nm
JP4663111B2 (en) Optical amplifier and optical gain medium
Suni et al. Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibers
Yang et al. 140 W high power all-fiber laser at 1940 nm with narrow spectral line-width by MOPA configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809915

Country of ref document: EP

Kind code of ref document: A1