WO2010024201A1 - Magnetoresistive element having multi-layered ferry structure, magnetic memory, and magnetic random access memory - Google Patents

Magnetoresistive element having multi-layered ferry structure, magnetic memory, and magnetic random access memory Download PDF

Info

Publication number
WO2010024201A1
WO2010024201A1 PCT/JP2009/064661 JP2009064661W WO2010024201A1 WO 2010024201 A1 WO2010024201 A1 WO 2010024201A1 JP 2009064661 W JP2009064661 W JP 2009064661W WO 2010024201 A1 WO2010024201 A1 WO 2010024201A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetization
ferromagnetic
ferromagnetic layers
antiparallel
Prior art date
Application number
PCT/JP2009/064661
Other languages
French (fr)
Japanese (ja)
Inventor
大野英男
池田正二
長谷川晴弘
三浦勝哉
早川純
Original Assignee
株式会社日立製作所
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 国立大学法人東北大学 filed Critical 株式会社日立製作所
Priority to JP2010526684A priority Critical patent/JP5351894B2/en
Publication of WO2010024201A1 publication Critical patent/WO2010024201A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetoresistive effect element, a magnetic memory using the same, and a magnetic random access memory.
  • Magnetic random access memory is highly expected as a candidate for a memory that satisfies these conditions and has non-volatility.
  • the magnetoresistive effect element has a basic structure of a three-layer structure in which a nonmagnetic layer is sandwiched between two ferromagnetic layers.
  • One (fixed layer) of the ferromagnetic layer has a fixed magnetization direction, and the other (free layer) has a variable magnetization direction.
  • the resistance is low, and when the magnetization directions are antiparallel, the resistance is high. In the MRAM, this resistance change is made to correspond to “0” and “1” of the bit information.
  • writing is performed using current magnetization reversal by spin transfer torque according to bit information of “0” and “1” to be written.
  • a current is applied in a direction in which electrons move from the free layer toward the fixed layer.
  • electrons that have passed through the free layer and reached the pinned layer pass only through the pinned layer in the same direction as the magnetization direction of the pinned layer, and the electrons spin-polarized in the opposite direction are reflected.
  • the reflected electrons give a torque to the free layer and the current exceeds a certain threshold value, the magnetization of the free layer is reversed so as to be opposite to the fixed layer.
  • the magnetoresistive element has a high resistance.
  • a current is applied in a direction in which electrons move from the fixed layer toward the free layer.
  • the electrons that have passed through the fixed layer are spin-polarized in the same direction as the fixed layer. Since the electrons give torque to the free layer, the magnetization of the free layer is reversed so as to be in the same direction as the fixed layer. Therefore, the magnetoresistive effect element has a low resistance.
  • the threshold value of this current is 200 ⁇ A or less from the characteristics of the cell transistor. Therefore, it is necessary to reduce the write current density of the magnetoresistive effect element.
  • the thermal stability constant is a physical constant defined by the ratio E / k B T between the energy E required for magnetization reversal and the external thermal energy k B T (k B is Boltzmann's constant, T is temperature). It is.
  • the thermal stability constant needs to be 40 to 60 or more.
  • a magnetoresistive element applied to an MRAM must satisfy these conditions at the same time.
  • a reduction in write current density and an increase in thermal stability constant are basically in a trade-off relationship. For this reason, it has been considered a very difficult task to satisfy both of these conditions.
  • the free layer of the magnetoresistive effect element that performs writing using current magnetization reversal by spin transfer torque is composed of three or more ferromagnetic layers stacked via a nonmagnetic antiparallel coupling layer.
  • the magnetization directions of the plurality of ferromagnetic layers constituting the free layer are parallel or antiparallel to the magnetization direction of the fixed layer, and the magnetization directions of the two ferromagnetic layers provided across the antiparallel coupling layer are antiparallel to each other. is there.
  • the sum of the product of the volume and magnetization of the ferromagnetic layer whose magnetization direction is directed to one side is substantially equal to the sum of the product of the volume and magnetization of the ferromagnetic layer whose magnetization direction is antiparallel to it.
  • a magnetic memory cell includes the magnetoresistive element and a switching element that controls on / off of a current flowing through the magnetoresistive element.
  • the magnetic random access memory includes a plurality of magnetic memory cells and means for selecting a desired magnetic memory cell.
  • a magnetic memory having improved thermal stability can be realized without greatly increasing the write current.
  • the schematic diagram of a magnetic random access memory. The figure which shows the relationship between the write-in current density of a magnetoresistive effect element, and a thermal stability constant using the number of layers of the ferromagnetic layer which comprises a free layer as a parameter.
  • the cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention The cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention.
  • the cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention The cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention.
  • the free layer is constituted by four ferromagnetic layers laminated via a nonmagnetic antiparallel coupling layer
  • the four ferromagnetic layers have the same thickness and are made of the same material, and the first ferromagnetic layer, the second ferromagnetic layer, the third ferromagnetic layer, from the side close to the fixed layer, This is called a fourth ferromagnetic layer.
  • FIG. 1 schematically shows how one electron transfers angular momentum to the magnetization of each layer when the electron moves from bottom to top.
  • FIG. 1A shows that electrons pass through the fixed layer 101 and have a spin in the same direction as the magnetization of the fixed layer 101.
  • FIG. 1B the electrons try to direct the magnetization of the first ferromagnetic layer of the free layer 102 in the same direction as the spin of electrons, and exchange angular momentum. At this time, since the angular momentum is conserved, the electron spin receives a reverse torque.
  • FIG. 1C electrons exchange angular momentum with the second ferromagnetic layer of the free layer 102.
  • the magnetoresistive effect element of the present invention there are four ferromagnetic layers constituting the free layer, and electrons transfer angular momentum to each of them. For this reason, when the thickness of the four ferromagnetic layers composing the free layer is equal to that of the four layers, considering the conservation of angular momentum, as shown in FIG.
  • the momentum is in principle the same as the electrons shown in FIG. In other words, since the angular momentum of electrons does not change between the first and last states, electrons can efficiently apply torque to each of the four ferromagnetic layers constituting the free layer, and the write current density increases in volume. However, it will not increase. The same effect can be obtained when electrons move in the opposite direction.
  • the thermal stability constant is proportional to the coercivity of the free layer.
  • the coercive force is an amount expressed by the magnitude of the magnetic field to stop the magnetization in one direction.
  • a magnetic field is applied in the same direction as the magnetization direction of the first ferromagnetic layer (the ferromagnetic layer closest to the fixed layer 101) of the free layer 102 of the magnetoresistive effect element to which the present invention is applied.
  • the magnetization of the second ferromagnetic layer and the magnetization of the fourth ferromagnetic layer of the free layer 102 tend to go in the direction of the magnetic field, and the directions are inclined.
  • the magnetization of the first ferromagnetic layer and the magnetization of the third ferromagnetic layer which are coupled antiparallel to the magnetization of the second ferromagnetic layer and the magnetization of the fourth ferromagnetic layer, are also obtained.
  • the direction is changed (FIG. 2 (c)).
  • the magnetization of the first ferromagnetic layer and the magnetization of the third ferromagnetic layer tend to go in the direction of the magnetic field again (FIG. 2D)
  • the magnetization of the second ferromagnetic layer and the fourth The magnetization of the ferromagnetic layer is returned to the original direction (FIG. 2 (e)). Because of this balance relationship, the coercivity increases.
  • the thermal stability constant is reduced by an external magnetic field, and this is also affected by the leakage magnetic field of the magnetoresistive effect element itself.
  • the magnetizations of the first, second, third, and fourth ferromagnetic layers of the free layer are coupled substantially antiparallel to each other, the lines of magnetic force emitted from the respective ferromagnetic layers are closed. Therefore, a magnetic field is not applied to the fixed layer from these ferromagnetic layers, and the thermal stability is improved compared to other structures.
  • the thermal stability constant is proportional to the volume of the free layer of the magnetoresistive element.
  • the magnetoresistive effect element there are four ferromagnetic layers constituting the free layer, which is larger than that of the conventional two-layer structure, and the thermal stability constant is increased.
  • FIG. 3 shows a memory cell 300 of a magnetic memory using the magnetoresistive effect element of the present invention.
  • the memory cell 300 includes a plurality of bit lines 301 arranged in parallel to each other, a plurality of source lines 302 parallel to the bit lines 301 and arranged in parallel to each other, and intersecting the bit lines 301 and parallel to each other.
  • a plurality of word lines 303 arranged in a row.
  • a magnetoresistive effect element 304 is disposed at a portion where the bit line 301 and the word line 303 intersect.
  • the upper part of the magnetoresistive effect element 304 is electrically connected to the bit line 301.
  • the lower part of the magnetoresistive effect element 304 is electrically connected to the drain electrode 306 of the transistor through the first metal wiring layer 305.
  • the source line 302 is electrically connected to the source electrode 308 of the transistor through the second metal wiring layer 307.
  • the word line 303 is electrically connected to the gate electrode of the transistor.
  • the magnetoresistive effect element 304 shown in FIG. 4 has a structure in which a fixed layer (ferromagnetic layer) 401 whose magnetization direction is fixed with a non-magnetic 402 interposed therebetween and a free layer 415 are laminated.
  • the free layer 415 includes first to fourth ferromagnetic layers 403, 405, 407, and 409 whose magnetization directions are variable, and nonmagnetic antiparallel coupling layers 404, 406, and 408 formed therebetween.
  • the magnetization direction of the ferromagnetic layer was limited to two directions (+ direction and-direction) by imparting magnetic anisotropy.
  • the magnetization direction 411 of the first ferromagnetic layer 403 and the magnetization direction 412 of the second ferromagnetic layer 405 are substantially antiparallel, and the magnetization direction 412 and the magnetization direction 413 of the third ferromagnetic layer 407 are substantially antiparallel.
  • the magnetization direction 413 and the magnetization direction 414 of the fourth ferromagnetic layer 409 are substantially antiparallel.
  • the free layer 415 is a so-called laminated ferri structure having four layers.
  • FIG. 5 shows a schematic diagram of a memory array.
  • a plurality of magnetoresistive elements 304 constituting the memory cell are arranged in an array.
  • a voltage corresponding to bit information to be written is applied between the selected bit line 301 and the source line 302 and a voltage is applied to the word line 303 to turn on the cell transistor of the memory cell.
  • the transistor is turned on, a current in a direction corresponding to the bit information to be written to the magnetoresistive effect element 304 flows, so that the spin transfer torque acts on the free layer 415 of the magnetoresistive effect element 304 and magnetization reversal occurs.
  • the ferromagnetic layers in the free layer are all four layers of the same thickness made of the same material. For this reason, there are two types of magnetization directions of the ferromagnetic layer constituting the free layer, but the number of ferromagnetic layers having the magnetization direction in the + direction and the number of ferromagnetic layers having the ⁇ direction are the same. Since the ferromagnetic layers have the same film thickness, the volume of the ferromagnetic layer having the positive magnetization direction is the same as the volume of the ferromagnetic layer having the negative direction. Therefore, the coercivity of the free layer determined by the amount of magnetization in different directions increases.
  • the magnetic field lines are closed by the free layer, there is no leakage magnetic field from the end face of the magnetoresistive effect element, and a reduction in thermal stability can be suppressed. Furthermore, since there are four ferromagnetic layers, the conventional ferromagnetic layer has a larger volume than a two-layer laminated ferrimagnetic structure, and thermal stability can be improved.
  • FIG. 6 shows experimental data on the distribution of the thermal stability constant and the write current density when the ferromagnetic layers constituting the free layer are three layers, four layers, five layers, and six layers.
  • the ferromagnetic layers constituting the free layer are all the same material and have the same thickness. Focusing on the thermal stability constant, the thermal stability constant in the case of applying the present invention was 50 or more, 52 in the case of 4 layers and 78 in the case of 6 layers. In the case of 3 layers and 5 layers, the thermal stability constants were 38 and 35, respectively.
  • the write current density increases.
  • the write current density is also proportional to the magnitude of the free layer magnetization.
  • the spin transfer torque works efficiently in the magnetoresistive effect element to which the present invention is applied.
  • the magnetoresistive effect element 304 to which the present invention is applied even if the volume is increased, the write current density is hardly increased to 6 ⁇ 10 6 A / cm 2 , and the volume is small as shown in FIG. It was found that there was almost no difference from the case of 3 layers.
  • Co 40 Fe 40 B 20 was used as the material of the fixed layer 401 and the first, second, third, and fourth ferromagnetic layers 403, 405, 407, and 409 of the free layer.
  • Different compositions of this material may be used.
  • all ferromagnets are candidates, but materials with high spin polarizability are suitable in view of the efficiency of spin transfer torque and the rate of resistance change.
  • the nonmagnetic layer 402 plays a role of changing resistance by the magnetization direction 410 of the fixed layer 401 above and below the nonmagnetic layer 402 and the magnetization direction 411 of the first ferromagnetic layer 403 of the free layer 415.
  • nonmagnetic layer 402 As a material for the nonmagnetic layer 402, all nonmagnetic materials are candidates. Further, an insulator may be used for this layer. In this case, the magnetoresistive effect element acts as a tunnel magnetoresistive effect (TMR) element, and its resistance change rate is increased. Similarly, all insulators are candidates as insulators, but for example, MgO or the like can be used.
  • the material of the antiparallel coupling layers 404, 406, and 408 plays a role of coupling the magnetization directions of two ferromagnetic layers sandwiching these layers in antiparallel. As materials, all non-magnetic materials are candidates, but for example, Ru can be used.
  • all the ferromagnetic layers constituting the free layer of the magnetoresistive effect element are made of the same material and have the same film thickness, and the number of layers is an even number of 6 or more (n is a natural number and 2n layers). Good. This is because, as described above, if the volume of the ferromagnetic layer whose magnetization direction is the + direction and the volume of the ferromagnetic layer whose direction is the ⁇ direction are the same, the influence of the leakage magnetic field does not appear. Furthermore, as the number of layers increases, the volume increases and the thermal stability constant increases.
  • FIG. 7 shows a conceptual diagram of a magnetoresistive effect element 700 in which a free layer is composed of six ferromagnetic layers.
  • the free layer 415 is a so-called laminated ferrimagnetic structure having 2n layers.
  • the thermal stability constant was 80, and it was found that the write current density hardly changed although it was larger than that of 4 layers.
  • the plurality of ferromagnetic layers constituting the free layer are all made of the same material.
  • the number of ferromagnetic layers is not limited to an even number.
  • the volume of the ferromagnetic layer having the magnetization direction in the + direction may be designed to be equal to the volume of the ferromagnetic layer having the ⁇ direction.
  • Fig. 8 shows an example.
  • the magnetoresistive effect element 800 shown in FIG. 8 has a structure in which a fixed layer (ferromagnetic layer) 401 whose magnetization direction is fixed with a non-magnetic 402 interposed therebetween and a free layer 415 are laminated.
  • the free layer 415 includes first to third ferromagnetic layers 403, 403, and 407 whose magnetization directions are variable, and nonmagnetic antiferromagnetic coupling layers 404 and 406 disposed between the ferromagnetic layers.
  • the magnetization direction 411 of the first ferromagnetic layer 403 of the free layer and the magnetization direction 412 of the second ferromagnetic layer 405 are substantially antiparallel, and the magnetization direction 412 and the magnetization direction 413 of the third ferromagnetic layer 407 are approximately. Antiparallel.
  • the free layer 415 has a three-layer structure.
  • the first ferromagnetic layer 403 and the third ferromagnetic layer 407 have the same film thickness
  • the second ferromagnetic layer 405 has a film thickness that is 2 times the film thickness of the first ferromagnetic layer 403. Is double. Therefore, among the ferromagnetic layers constituting the free layer, the volume of the ferromagnetic layer whose magnetization direction is the + direction is equal to the volume of the ferromagnetic layer whose ⁇ direction is the magnetization direction. For this reason, in this structure, there is no influence of the leakage magnetic field from the end surface of the magnetoresistive effect element, and the decrease in the thermal stability constant can be suppressed. Further, it has been found that the increase in the write current density can be suppressed by the fact that the spin transfer torque works efficiently and the effect of spin accumulation in the nonmagnetic layers 404 and 406 works.
  • the relationship between the film thicknesses of the ferromagnetic films 403, 405, and 407 constituting the free layer is not limited to the above case, and the volume of the ferromagnetic layer whose magnetization direction is the + direction and the strongness that is the ⁇ direction. What is necessary is just to design so that the volume of a magnetic layer may become equal.
  • the material or film thickness of the ferromagnetic layer constituting the free layer may be different for each layer.
  • the sum of the product of the volume of the ferromagnetic layer whose magnetization direction is the + direction and the magnetization of each layer of the ferromagnetic layer is the ferromagnetic layer whose magnetization direction is the-direction. May be designed to be equal to the sum of the products of the volume of the magnetic layer and the magnetization product of each ferromagnetic layer.
  • the magnetoresistive effect element may include an antiferromagnetic layer for fixing the magnetization of the fixed layer.
  • FIG. 9 shows an example of a magnetoresistive effect element 900 including an antiferromagnetic layer 901 in the case where the number of ferromagnetic layers constituting the free layer is four. In this configuration, since the magnetization direction of the fixed layer 401 is strongly fixed by the antiferromagnetic layer 901, the operation during writing is stabilized.
  • the fixed layer may have a laminated ferri structure.
  • FIG. 10 shows an example of a magnetoresistive effect element 1000 that employs a laminated ferrimagnetic structure as a fixed layer when the free layer 415 includes four ferromagnetic layers.
  • the magnetization direction 1003 of the ferromagnetic layer 1001 is strongly fixed by the first antiferromagnetic layer 901.
  • the magnetization direction 410 of the ferromagnetic layer 401 and the magnetization direction 1003 of the ferromagnetic layer 1001 are coupled approximately antiparallel via the nonmagnetic antiparallel coupling layer 1002.
  • the ferromagnetic layer 1001, the nonmagnetic layer 1002, and the ferromagnetic layer 401 act as a fixed layer, and the leakage magnetic field in this portion is suppressed.
  • the product of the film thickness and magnetization of the ferromagnetic layer 1001 and the product of the film thickness and magnetization of the ferromagnetic layer 401 are preferably the same.
  • the nonmagnetic antiparallel coupling layer has an action of coupling the magnetization directions of the upper and lower ferromagnetic layers in a substantially antiparallel manner.
  • This coupling is very sensitive to the film thickness of the antiparallel coupling layer.
  • the material of the antiparallel coupling layer is Ru, the optimum value is about 1 nm.
  • the antiparallel coupling layer may diffuse due to heat. Therefore, in the magnetoresistive effect element described above, new layers for suppressing this diffusion may be applied above and below the antiparallel coupling layer.
  • Ru was used for the antiparallel coupling layer, Ru diffusion could be suppressed by applying Ta layers above and below the Ru layer.
  • the film thickness of the diffusion preventing layer is preferably about 0.1 nm to 1 nm.
  • a layer that suppresses diffusion may also be applied to the antiparallel coupling layer 1002 in the fixed layer.

Abstract

A high thermal stability constant is achieved in a magnetoresistive element applied to a memory cell of a magnetic memory. A free layer (415) of a magnetoresistive element (304) performs write-in by using a current magnetization inversion by spin transfer torque.  The free layer (415) is formed by three or more ferromagnetic layers (403, 405, 407, 409) layered via non-magnetic antiparallel coupling layers (404, 406, 408).  The ferromagnetic layers constituting the free layer have magnetization directions (411 - 414) parallel or antiparallel to the magnetization direction (410) of a fixed layer.  The two ferromagnetic layers arranged to sandwich the antiparallel coupling layers have magnetization directions antiparallel to each other.  Moreover, the sum of the volume of the ferromagnetic layer having a single magnetization direction and the magnetization product is set substantially identical to the sum of the volume of the ferromagnetic layer having a magnetization direction antiparallel to the aforementioned direction and the magnetization product.

Description

多層積層フェリ構造を備えた磁気抵抗効果素子、磁気メモリ及び磁気ランダムアクセスメモリMagnetoresistive effect element, magnetic memory and magnetic random access memory having multilayer laminated ferri structure
 本発明は、磁気抵抗効果素子及びそれを用いる磁気メモリ、磁気ランダムアクセスメモリに関する。 The present invention relates to a magnetoresistive effect element, a magnetic memory using the same, and a magnetic random access memory.
 現在、ダイナミック・ランダムアクセスメモリ(DRAM)に代表されるメモリの分野では高速、高集積、低消費電力という3つの要求を満たす、新しいメモリの研究開発が世界中で行われている。これらの条件を満たし、さらに不揮発性を有するメモリの候補として、磁気ランダムアクセスメモリ(MRAM)は非常に期待されている。 Currently, in the memory field represented by dynamic random access memory (DRAM), research and development of new memories that satisfy the three requirements of high speed, high integration, and low power consumption are being performed all over the world. Magnetic random access memory (MRAM) is highly expected as a candidate for a memory that satisfies these conditions and has non-volatility.
 MRAMは、磁気抵抗効果素子にビット情報を記録する。磁気抵抗効果素子は、非磁性層を2つの強磁性層で挟んだ3層構造を基本構造とする。強磁性層の一方(固定層)は磁化方向が固定されており、他方(自由層)は磁化方向が可変である。強磁性層の磁化方向が互いに平行のとき低抵抗に、反平行のとき高抵抗になる。MRAMでは、この抵抗変化をビット情報の「0」と「1」に対応させる。 MRAM records bit information in the magnetoresistive effect element. The magnetoresistive effect element has a basic structure of a three-layer structure in which a nonmagnetic layer is sandwiched between two ferromagnetic layers. One (fixed layer) of the ferromagnetic layer has a fixed magnetization direction, and the other (free layer) has a variable magnetization direction. When the magnetization directions of the ferromagnetic layers are parallel to each other, the resistance is low, and when the magnetization directions are antiparallel, the resistance is high. In the MRAM, this resistance change is made to correspond to “0” and “1” of the bit information.
特開2007-294737号公報JP 2007-294737 A
 磁気抵抗効果素子をメモリセルに用いたMRAMでは、書き込みの対象とされる「0」と「1」のビット情報に応じて、スピントランスファートルクによる電流磁化反転を用いて書き込みを行う。「0」を「1」に書き換える際は、電子が自由層から固定層に向かって移動する向きに電流を印加する。この場合、自由層を通過して固定層に到達した電子は、固定層の磁化方向と同じ向きにスピン分極している電子のみ固定層を通過し、逆向きにスピン分極した電子は反射される。この反射された電子が自由層にトルクを与え、電流がある閾値を超えたとき、自由層の磁化は固定層と逆向きになるように反転する。従って、磁気抵抗効果素子は高抵抗になる。逆に「1」を「0」に書き換える際は、電子が固定層から自由層に向かって移動する向きに電流を印加する。固定層を通過した電子は、固定層と同じ向きにスピン分極されている。この電子が自由層にトルクを与えるため、自由層の磁化は、固定層と同じ向きになるように反転する。従って、磁気抵抗効果素子は低抵抗になる。この電流の閾値は、セルトランジスタの特性から200μA以下である。従って、磁気抵抗効果素子の書込み電流密度を下げる必要がある。 In an MRAM using a magnetoresistive element as a memory cell, writing is performed using current magnetization reversal by spin transfer torque according to bit information of “0” and “1” to be written. When rewriting “0” to “1”, a current is applied in a direction in which electrons move from the free layer toward the fixed layer. In this case, electrons that have passed through the free layer and reached the pinned layer pass only through the pinned layer in the same direction as the magnetization direction of the pinned layer, and the electrons spin-polarized in the opposite direction are reflected. . When the reflected electrons give a torque to the free layer and the current exceeds a certain threshold value, the magnetization of the free layer is reversed so as to be opposite to the fixed layer. Therefore, the magnetoresistive element has a high resistance. Conversely, when rewriting “1” to “0”, a current is applied in a direction in which electrons move from the fixed layer toward the free layer. The electrons that have passed through the fixed layer are spin-polarized in the same direction as the fixed layer. Since the electrons give torque to the free layer, the magnetization of the free layer is reversed so as to be in the same direction as the fixed layer. Therefore, the magnetoresistive effect element has a low resistance. The threshold value of this current is 200 μA or less from the characteristics of the cell transistor. Therefore, it is necessary to reduce the write current density of the magnetoresistive effect element.
 一方、読み出しでは、「0」もしくは「1」の情報に対応した、磁気抵抗効果素子の抵抗の値を区別する必要がある。一般的には、磁気抵抗効果素子に電圧を与えておき、ある時間に電圧を引き抜いた際の、電圧の減衰の違いから区別する。即ち、高い抵抗の場合はゆっくりと電圧が減衰するのに対し、低い抵抗の場合は急激に電圧が減衰する。したがって、読み出しの際も、書き込みの際と同様に磁気抵抗効果素子には電流が流れる。このため、読み出し電流でも自由層の磁化がトルクを受けてしまい、読み出し中に誤って書き込みが行われてしまう読み出しディスターブが起こる。 On the other hand, in reading, it is necessary to distinguish the resistance value of the magnetoresistive element corresponding to the information of “0” or “1”. In general, a voltage is applied to the magnetoresistive effect element, and a distinction is made from the difference in voltage attenuation when the voltage is extracted at a certain time. That is, the voltage attenuates slowly when the resistance is high, whereas the voltage decreases rapidly when the resistance is low. Therefore, a current flows through the magnetoresistive effect element at the time of reading as well as at the time of writing. For this reason, even in the read current, the magnetization of the free layer receives torque, and a read disturb occurs in which writing is erroneously performed during reading.
 読み出しディスターブを抑制するためには、磁気抵抗効果素子の自由層の熱安定性定数を増大させる必要がある。熱安定性定数は、磁化が反転するために必要なエネルギーEと、外部の熱エネルギーkBT(kBはボルツマン定数、Tは温度)との比E/kBTで定義される物理定数である。MRAMの記録保持時間を、不揮発性メモリに必要な10年とし、Dynamic RAM(DRAM)のエラー率と同等まで抑えると、熱安定性定数は40から60以上が必要である。 In order to suppress read disturb, it is necessary to increase the thermal stability constant of the free layer of the magnetoresistive element. The thermal stability constant is a physical constant defined by the ratio E / k B T between the energy E required for magnetization reversal and the external thermal energy k B T (k B is Boltzmann's constant, T is temperature). It is. When the MRAM recording retention time is 10 years required for the nonvolatile memory and the error rate of the dynamic RAM (DRAM) is suppressed to the same level, the thermal stability constant needs to be 40 to 60 or more.
 MRAMに適用される磁気抵抗効果素子は、これらの条件を同時に満たす必要があるが、書き込み電流密度の低減と熱安定性定数の増大は基本的にはトレードオフの関係にある。このため、これらの条件を両立することは、非常に難しい課題とされてきた。 A magnetoresistive element applied to an MRAM must satisfy these conditions at the same time. However, a reduction in write current density and an increase in thermal stability constant are basically in a trade-off relationship. For this reason, it has been considered a very difficult task to satisfy both of these conditions.
 本発明では、スピントランスファートルクによる電流磁化反転を用いて書き込みを行う磁気抵抗効果素子の自由層を、非磁性の反平行結合層を介して積層された3層以上の強磁性層により構成した。自由層を構成する複数の強磁性層の磁化方向は固定層の磁化方向と平行あるいは反平行であり、反平行結合層を挟んで設けられた2つの強磁性層の磁化方向は互いに反平行である。また、磁化方向が一方を向いた強磁性層の体積と磁化の積の和は、磁化方向がそれと反平行な方向を向いた強磁性層の体積と磁化の積の和と略等しい。 In the present invention, the free layer of the magnetoresistive effect element that performs writing using current magnetization reversal by spin transfer torque is composed of three or more ferromagnetic layers stacked via a nonmagnetic antiparallel coupling layer. The magnetization directions of the plurality of ferromagnetic layers constituting the free layer are parallel or antiparallel to the magnetization direction of the fixed layer, and the magnetization directions of the two ferromagnetic layers provided across the antiparallel coupling layer are antiparallel to each other. is there. The sum of the product of the volume and magnetization of the ferromagnetic layer whose magnetization direction is directed to one side is substantially equal to the sum of the product of the volume and magnetization of the ferromagnetic layer whose magnetization direction is antiparallel to it.
 本発明による磁気メモリセルは、上記磁気抵抗効果素子と、磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子とを備える。 A magnetic memory cell according to the present invention includes the magnetoresistive element and a switching element that controls on / off of a current flowing through the magnetoresistive element.
 また、磁気ランダムアクセスメモリは、複数の磁気メモリセルと、所望の磁気メモリセルを選択する手段とを備える。 The magnetic random access memory includes a plurality of magnetic memory cells and means for selecting a desired magnetic memory cell.
 本発明によると、書き込み電流を大きく増大させることなく、熱安定性を向上させた磁気メモリを実現することができる。 According to the present invention, a magnetic memory having improved thermal stability can be realized without greatly increasing the write current.
本発明を適用した磁気抵抗効果素子の書き込み原理を示した模式図。The schematic diagram which showed the writing principle of the magnetoresistive effect element to which this invention is applied. 本発明を適用した磁気抵抗効果素子の保磁力増大を示した模式図。The schematic diagram which showed the coercive force increase of the magnetoresistive effect element to which this invention is applied. 磁気メモリのメモリセル断面図。The memory cell sectional view of a magnetic memory. 本発明による磁気抵抗効果素子の例を示す断面模式図。The cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention. 磁気ランダムアクセスメモリの模式図。The schematic diagram of a magnetic random access memory. 自由層を構成する強磁性層の層数をパラメータとした、磁気抵抗効果素子の書き込み電流密度と熱安定性定数の関係を示す図。The figure which shows the relationship between the write-in current density of a magnetoresistive effect element, and a thermal stability constant using the number of layers of the ferromagnetic layer which comprises a free layer as a parameter. 本発明による磁気抵抗効果素子の例を示す断面模式図。The cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention. 本発明による磁気抵抗効果素子の例を示す断面模式図。The cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention. 本発明による磁気抵抗効果素子の例を示す断面模式図。The cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention. 本発明による磁気抵抗効果素子の例を示す断面模式図。The cross-sectional schematic diagram which shows the example of the magnetoresistive effect element by this invention.
 以下、本発明を適用した磁気メモリ及び磁気抵抗効果素子について、図面を参照して詳細に説明する。 Hereinafter, a magnetic memory and a magnetoresistive effect element to which the present invention is applied will be described in detail with reference to the drawings.
 最初に、本発明の磁気抵抗効果素子によって、書き込み電流密度の低減と、熱安定性定数の増大を実現する原理について以下に説明する。ここでは、自由層を非磁性の反平行結合層を介して積層した4層の強磁性層によって構成した場合を例にとって説明する。なお、4層の強磁性層は、それぞれ膜厚が等しく、同じ材料からなるものとし、固定層に近い側から第1の強磁性層、第2の強磁性層、第3の強磁性層、第4の強磁性層という。 First, the principle of realizing a reduction in write current density and an increase in thermal stability constant by the magnetoresistive effect element of the present invention will be described below. Here, a case where the free layer is constituted by four ferromagnetic layers laminated via a nonmagnetic antiparallel coupling layer will be described as an example. The four ferromagnetic layers have the same thickness and are made of the same material, and the first ferromagnetic layer, the second ferromagnetic layer, the third ferromagnetic layer, from the side close to the fixed layer, This is called a fourth ferromagnetic layer.
 従来からあるいわゆる積層フェリ構造の場合、強磁性層は2層である。特許文献1にあるように、2層の場合は、スピントランスファートルクによる電流磁化反転は実験的に実証されている。4層の場合は2層に比べて体積が大きくなるため、スピントランスファートルクによる磁化反転が起こりにくいとされていた。しかし、以下に説明するように、それぞれ略反平行に磁化が結合した4層の強磁性層をスピンが通過する場合、各層でスピントランスファートルクによる角運動量の授受があることが明らかになった。 In the case of a conventional so-called laminated ferrimagnetic structure, there are two ferromagnetic layers. As in Patent Document 1, in the case of two layers, current magnetization reversal by spin transfer torque has been experimentally verified. In the case of four layers, since the volume is larger than that of the two layers, it has been considered that magnetization reversal due to spin transfer torque hardly occurs. However, as described below, it has been clarified that when the spin passes through the four ferromagnetic layers having magnetizations coupled substantially antiparallel to each other, the angular momentum is transferred by the spin transfer torque in each layer.
 図1は、電子が下から上に移動する場合の、電子1つが各層の磁化に対して角運動量の授受を行っている様子を模式的に示したものである。図1(a)は、電子が固定層101を通過して、固定層101の磁化と同方向のスピンを持っていることを示している。図1(b)では、電子は自由層102の第1の強磁性層の磁化を電子のスピンと同方向に向けようとし、角運動量の授受を行っている。このとき、角運動量は保存するため、電子のスピンは逆向きのトルクを受ける。図1(c)では、電子は自由層102の第2の強磁性層と角運動量の授受を行っている。本発明の磁気抵抗効果素子では、自由層を構成する強磁性層は4層あり、それぞれに対して電子は角運動量の授受を行っている。このため、自由層を構成する4層の強磁性層の材料と膜厚が等しい場合、角運動量の保存を考えると、図1(f)に示されるように、自由層を通過した電子の角運動量は、原理的には図1(a)に示される電子と同じ状態になる。つまり、電子の角運動量は最初と最後の状態で変化がないため、電子は自由層を構成する4層の各強磁性層に効率よくトルクを与えることができ、書き込み電流密度は体積が大きくなっても増大しないことになる。電子が逆向きに移動する場合も、同様の効果が得られる。 FIG. 1 schematically shows how one electron transfers angular momentum to the magnetization of each layer when the electron moves from bottom to top. FIG. 1A shows that electrons pass through the fixed layer 101 and have a spin in the same direction as the magnetization of the fixed layer 101. In FIG. 1B, the electrons try to direct the magnetization of the first ferromagnetic layer of the free layer 102 in the same direction as the spin of electrons, and exchange angular momentum. At this time, since the angular momentum is conserved, the electron spin receives a reverse torque. In FIG. 1C, electrons exchange angular momentum with the second ferromagnetic layer of the free layer 102. In the magnetoresistive effect element of the present invention, there are four ferromagnetic layers constituting the free layer, and electrons transfer angular momentum to each of them. For this reason, when the thickness of the four ferromagnetic layers composing the free layer is equal to that of the four layers, considering the conservation of angular momentum, as shown in FIG. The momentum is in principle the same as the electrons shown in FIG. In other words, since the angular momentum of electrons does not change between the first and last states, electrons can efficiently apply torque to each of the four ferromagnetic layers constituting the free layer, and the write current density increases in volume. However, it will not increase. The same effect can be obtained when electrons move in the opposite direction.
 また、熱安定性定数は自由層の保磁力に比例する。保磁力とは、磁化を一つの方向に止めようとする力を磁界の大きさで表した量である。図2(a)に示すように、本発明を適用した磁気抵抗効果素子の自由層102の第1の強磁性層(固定層101に最も近い強磁性層)の磁化の向きと同じ方向に磁界がかかった場合を考える。このとき、図2(b)に示すように、自由層102の第2の強磁性層の磁化と第4の強磁性層の磁化は磁界の方向を向こうとし、その方向が傾く。これにつられて、第2の強磁性層の磁化や第4の強磁性層の磁化と反平行に結合している、第1の強磁性層の磁化及び前記第3の強磁性層の磁化も方向を変える(図2(c))。ここで、第1の強磁性層の磁化及び第3の強磁性層の磁化は再び磁界の方向を向こうとするため(図2(d))、第2の強磁性層の磁化及び第4の強磁性層の磁化は元の向きに戻される(図2(e))。この釣り合いの関係のため、保磁力は増大する。 Also, the thermal stability constant is proportional to the coercivity of the free layer. The coercive force is an amount expressed by the magnitude of the magnetic field to stop the magnetization in one direction. As shown in FIG. 2A, a magnetic field is applied in the same direction as the magnetization direction of the first ferromagnetic layer (the ferromagnetic layer closest to the fixed layer 101) of the free layer 102 of the magnetoresistive effect element to which the present invention is applied. Consider the case where it takes. At this time, as shown in FIG. 2B, the magnetization of the second ferromagnetic layer and the magnetization of the fourth ferromagnetic layer of the free layer 102 tend to go in the direction of the magnetic field, and the directions are inclined. Accordingly, the magnetization of the first ferromagnetic layer and the magnetization of the third ferromagnetic layer, which are coupled antiparallel to the magnetization of the second ferromagnetic layer and the magnetization of the fourth ferromagnetic layer, are also obtained. The direction is changed (FIG. 2 (c)). Here, since the magnetization of the first ferromagnetic layer and the magnetization of the third ferromagnetic layer tend to go in the direction of the magnetic field again (FIG. 2D), the magnetization of the second ferromagnetic layer and the fourth The magnetization of the ferromagnetic layer is returned to the original direction (FIG. 2 (e)). Because of this balance relationship, the coercivity increases.
 また、熱安定性定数は、外部からの磁界によって減少することが知られており、これには磁気抵抗効果素子自身の漏れ磁界も影響する。しかし、自由層の第1、第2、第3、第4の強磁性層の磁化は互いに略反平行に結合しているから、各強磁性層から出る磁力線が閉じる。従って、これらの強磁性層から、固定層に磁界がかかることがなく、他の構造と比べて熱安定性は向上する。 Also, it is known that the thermal stability constant is reduced by an external magnetic field, and this is also affected by the leakage magnetic field of the magnetoresistive effect element itself. However, since the magnetizations of the first, second, third, and fourth ferromagnetic layers of the free layer are coupled substantially antiparallel to each other, the lines of magnetic force emitted from the respective ferromagnetic layers are closed. Therefore, a magnetic field is not applied to the fixed layer from these ferromagnetic layers, and the thermal stability is improved compared to other structures.
 さらに、熱安定性定数は、磁気抵抗効果素子の自由層の体積に比例する。上記磁気抵抗効果素子では、自由層を構成する強磁性層は4層であり、従来構造の2層の場合に比べて大きくなり、熱安定性定数は増大する。 Furthermore, the thermal stability constant is proportional to the volume of the free layer of the magnetoresistive element. In the magnetoresistive effect element, there are four ferromagnetic layers constituting the free layer, which is larger than that of the conventional two-layer structure, and the thermal stability constant is increased.
 以下、実施例により本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
 図3に、本発明の磁気抵抗効果素子を用いた磁気メモリのメモリセル300を示す。このメモリセル300は、相互に平行に並べられた複数のビット線301と、ビット線301と平行であり且つ互いに平行に並べられた複数のソース線302と、ビット線301と交差し且つ互いに平行に並べられた複数のワード線303を有する。ビット線301とワード線303とが交差する部分には、磁気抵抗効果素子304が配置されている。磁気抵抗効果素子304は、上部がビット線301と電気的に接続されている。磁気抵抗効果素子304の下部は、第1のメタル配線層305を介してトランジスタのドレイン電極306に電気的に接続されている。また、ソース線302は第2のメタル配線層307を介して、トランジスタのソース電極308に電気的に接続されている。ワード線303はトランジスタのゲート電極に電気的に接続されている。 FIG. 3 shows a memory cell 300 of a magnetic memory using the magnetoresistive effect element of the present invention. The memory cell 300 includes a plurality of bit lines 301 arranged in parallel to each other, a plurality of source lines 302 parallel to the bit lines 301 and arranged in parallel to each other, and intersecting the bit lines 301 and parallel to each other. A plurality of word lines 303 arranged in a row. A magnetoresistive effect element 304 is disposed at a portion where the bit line 301 and the word line 303 intersect. The upper part of the magnetoresistive effect element 304 is electrically connected to the bit line 301. The lower part of the magnetoresistive effect element 304 is electrically connected to the drain electrode 306 of the transistor through the first metal wiring layer 305. The source line 302 is electrically connected to the source electrode 308 of the transistor through the second metal wiring layer 307. The word line 303 is electrically connected to the gate electrode of the transistor.
 磁気抵抗効果素子の例を図4に示す。図4に示した、磁気抵抗効果素子304は、非磁性402を挟んで磁化方向が固定されている固定層(強磁性層)401と、自由層415とが積層された構造を有する。自由層415は、磁化方向が可変である第1から第4の強磁性層403,405,407,409と、その間に形成された非磁性の反平行結合層404,406,408とを備える。強磁性層の磁化方向は磁気異方性を付与することにより、2方向(+方向と-方向)に限定した。第1の強磁性層403の磁化方向411と第2の強磁性層405の磁化方向412は略反平行であり、磁化方向412と第3の強磁性層407の磁化方向413は略反平行であり、磁化方向413と第4の強磁性層409との磁化方向414は略反平行である。自由層415はいわゆる積層フェリ構造を4層にしたものである。 An example of a magnetoresistive effect element is shown in FIG. The magnetoresistive effect element 304 shown in FIG. 4 has a structure in which a fixed layer (ferromagnetic layer) 401 whose magnetization direction is fixed with a non-magnetic 402 interposed therebetween and a free layer 415 are laminated. The free layer 415 includes first to fourth ferromagnetic layers 403, 405, 407, and 409 whose magnetization directions are variable, and nonmagnetic antiparallel coupling layers 404, 406, and 408 formed therebetween. The magnetization direction of the ferromagnetic layer was limited to two directions (+ direction and-direction) by imparting magnetic anisotropy. The magnetization direction 411 of the first ferromagnetic layer 403 and the magnetization direction 412 of the second ferromagnetic layer 405 are substantially antiparallel, and the magnetization direction 412 and the magnetization direction 413 of the third ferromagnetic layer 407 are substantially antiparallel. The magnetization direction 413 and the magnetization direction 414 of the fourth ferromagnetic layer 409 are substantially antiparallel. The free layer 415 is a so-called laminated ferri structure having four layers.
 図5には、メモリアレイの模式図を示した。メモリセルを構成する複数の磁気抵抗効果素子304がアレイ状に配置されている。書き込みの際は、選択したビット線301とソース線302の間に書き込みたいビット情報に対応した電圧を加え、ワード線303に電圧を与えることによりメモリセルのセルトランジスタをオン状態にする。トランジスタがオン状態になると、磁気抵抗効果素子304に書き込みたいビット情報に対応した向きの電流が流れるため、スピントランスファートルクが磁気抵抗効果素子304の自由層415に働き、磁化反転が起こる。 FIG. 5 shows a schematic diagram of a memory array. A plurality of magnetoresistive elements 304 constituting the memory cell are arranged in an array. At the time of writing, a voltage corresponding to bit information to be written is applied between the selected bit line 301 and the source line 302 and a voltage is applied to the word line 303 to turn on the cell transistor of the memory cell. When the transistor is turned on, a current in a direction corresponding to the bit information to be written to the magnetoresistive effect element 304 flows, so that the spin transfer torque acts on the free layer 415 of the magnetoresistive effect element 304 and magnetization reversal occurs.
 本例の磁気抵抗効果素子304では、自由層の中の強磁性層は全て同じ材料からなる等膜厚の4層とした。このため、自由層を構成する強磁性層の磁化方向は2種類であるが、磁化方向が+方向である強磁性層と-方向である強磁性層の数は同じである。強磁性層が等膜厚であることから、磁化方向が+方向である強磁性層の体積と-方向である強磁性層の体積は同じである。従って、異なる向きの磁化量で決まる自由層の保磁力は増大する。また、磁力線が自由層で閉じる効果のため、磁気抵抗効果素子の端面からの漏れ磁場がなく熱安定性の低減を抑えることができる。さらに、強磁性層が4層であることから、従来の強磁性層が2層の積層フェリ構造よりも体積が大きく、熱安定性を向上することができる。 In the magnetoresistive effect element 304 of this example, the ferromagnetic layers in the free layer are all four layers of the same thickness made of the same material. For this reason, there are two types of magnetization directions of the ferromagnetic layer constituting the free layer, but the number of ferromagnetic layers having the magnetization direction in the + direction and the number of ferromagnetic layers having the − direction are the same. Since the ferromagnetic layers have the same film thickness, the volume of the ferromagnetic layer having the positive magnetization direction is the same as the volume of the ferromagnetic layer having the negative direction. Therefore, the coercivity of the free layer determined by the amount of magnetization in different directions increases. In addition, since the magnetic field lines are closed by the free layer, there is no leakage magnetic field from the end face of the magnetoresistive effect element, and a reduction in thermal stability can be suppressed. Furthermore, since there are four ferromagnetic layers, the conventional ferromagnetic layer has a larger volume than a two-layer laminated ferrimagnetic structure, and thermal stability can be improved.
 図6に、自由層を構成する強磁性層が3層、4層、5層、6層の場合の熱安定性定数と書き込み電流密度の分布の実験データを示した。自由層を構成する強磁性層の材料は全て同じで、膜厚も等しい。熱安定性定数に着目すると、本発明を適用した場合の熱安定性定数は、4層の場合が52、6層の場合が78と、50以上になった。3層及び5層の場合は、熱安定性定数はそれぞれ38,35になった。これは、層数が奇数の場合、磁化方向が+方向である強磁性層の体積と-方向である強磁性層の体積が同じにならず、磁力線が自由層で閉じないため、漏れ磁場が発生し熱安定性定数が減少したものと考えられる。なお、層数を増しても、書き込み電流の増加は見られなかった。 FIG. 6 shows experimental data on the distribution of the thermal stability constant and the write current density when the ferromagnetic layers constituting the free layer are three layers, four layers, five layers, and six layers. The ferromagnetic layers constituting the free layer are all the same material and have the same thickness. Focusing on the thermal stability constant, the thermal stability constant in the case of applying the present invention was 50 or more, 52 in the case of 4 layers and 78 in the case of 6 layers. In the case of 3 layers and 5 layers, the thermal stability constants were 38 and 35, respectively. This is because when the number of layers is an odd number, the volume of the ferromagnetic layer whose magnetization direction is in the + direction and the volume of the ferromagnetic layer that is in the − direction are not the same, and the magnetic field lines are not closed by the free layer. It is considered that the thermal stability constant was reduced. Even when the number of layers was increased, no increase in the write current was observed.
 一方、自由層はその体積が大きくなると、書き込み電流密度は大きくなる。書き込み電流密度は自由層の磁化の大きさにも比例する。しかし、前述のように本発明を適用した磁気抵抗効果素子では、スピントランスファートルクが効率的に働く。自由層を構成する強磁性層のうち、磁化方向の異なる強磁性層の体積が同じとき、スピントランスファートルクが最も効率的に働く。従って、本発明を適用した磁気抵抗効果素子304では、体積が増大しても、書き込み電流密度はほとんど増大せず、6×10A/cm2となり、図6にあるように、体積が小さい3層の場合とほとんど変わらないことがわかった。 On the other hand, as the volume of the free layer increases, the write current density increases. The write current density is also proportional to the magnitude of the free layer magnetization. However, as described above, the spin transfer torque works efficiently in the magnetoresistive effect element to which the present invention is applied. Among the ferromagnetic layers constituting the free layer, when the volumes of the ferromagnetic layers having different magnetization directions are the same, the spin transfer torque works most efficiently. Therefore, in the magnetoresistive effect element 304 to which the present invention is applied, even if the volume is increased, the write current density is hardly increased to 6 × 10 6 A / cm 2 , and the volume is small as shown in FIG. It was found that there was almost no difference from the case of 3 layers.
 本発明を適用するにあたり、固定層401及び自由層の第1、第2、第3、第4の強磁性層403,405,407,409の材料としてCo40Fe4020を用いたが、この材料の異なる組成を用いても良い。また、その他の材料としては全ての強磁性体が候補となるが、スピントランスファートルクの効率及び抵抗変化率を考えるとスピン分極率の高い材料が適している。また、非磁性層402は、その上下にある固定層401の磁化方向410と自由層415の第1の強磁性層403の磁化方向411によって抵抗を変化させる役割を担う。非磁性層402の材料としては、全ての非磁性体が候補になる。また、この層には絶縁体を用いても良い。この場合、磁気抵抗効果素子はトンネル磁気抵抗効果(TMR)素子として作用し、その抵抗変化率は大きくなる。絶縁体としては、同様に全ての絶縁体が候補になるが、例えばMgOなどを用いることができる。反平行結合層404,406,408の材料は、これらの層を挟んだ2つの強磁性層の磁化方向を反平行に結合する役割を担う。材料としては全ての非磁性体が候補となるが、例えばRuなどを用いることができる。 In applying the present invention, Co 40 Fe 40 B 20 was used as the material of the fixed layer 401 and the first, second, third, and fourth ferromagnetic layers 403, 405, 407, and 409 of the free layer. Different compositions of this material may be used. As other materials, all ferromagnets are candidates, but materials with high spin polarizability are suitable in view of the efficiency of spin transfer torque and the rate of resistance change. In addition, the nonmagnetic layer 402 plays a role of changing resistance by the magnetization direction 410 of the fixed layer 401 above and below the nonmagnetic layer 402 and the magnetization direction 411 of the first ferromagnetic layer 403 of the free layer 415. As a material for the nonmagnetic layer 402, all nonmagnetic materials are candidates. Further, an insulator may be used for this layer. In this case, the magnetoresistive effect element acts as a tunnel magnetoresistive effect (TMR) element, and its resistance change rate is increased. Similarly, all insulators are candidates as insulators, but for example, MgO or the like can be used. The material of the antiparallel coupling layers 404, 406, and 408 plays a role of coupling the magnetization directions of two ferromagnetic layers sandwiching these layers in antiparallel. As materials, all non-magnetic materials are candidates, but for example, Ru can be used.
 本発明の磁気メモリにおいて、磁気抵抗効果素子の自由層を構成する強磁性層を、全て同じ材料で膜厚を等しくし、層数を6層以上の偶数(nを自然数として2n層)としてもよい。これは前述のように、磁化方向が+方向である強磁性層の体積と-方向である強磁性層の体積が同じであれば、漏れ磁場の影響が現れないためである。さらに、層数が増えるとともに体積が増大し、熱安定性定数は増大する。一方、等膜厚の場合、層数が奇数であると、漏れ磁場の影響から熱安定性定数が減少するとともに、書き込み電流密度も増大する。6層の強磁性層で自由層を構成した磁気抵抗効果素子700の概念図を図7に示す。自由層415はいわゆる積層フェリ構造を2n層にしたものである。図6に示したように、6層の場合、熱安定性定数は80となり、4層と比べて大きいにもかかわらず、書き込み電流密度はほとんど変わらないことがわかった。 In the magnetic memory of the present invention, all the ferromagnetic layers constituting the free layer of the magnetoresistive effect element are made of the same material and have the same film thickness, and the number of layers is an even number of 6 or more (n is a natural number and 2n layers). Good. This is because, as described above, if the volume of the ferromagnetic layer whose magnetization direction is the + direction and the volume of the ferromagnetic layer whose direction is the − direction are the same, the influence of the leakage magnetic field does not appear. Furthermore, as the number of layers increases, the volume increases and the thermal stability constant increases. On the other hand, when the number of layers is equal, when the number of layers is an odd number, the thermal stability constant decreases due to the influence of the leakage magnetic field, and the write current density also increases. FIG. 7 shows a conceptual diagram of a magnetoresistive effect element 700 in which a free layer is composed of six ferromagnetic layers. The free layer 415 is a so-called laminated ferrimagnetic structure having 2n layers. As shown in FIG. 6, in the case of 6 layers, the thermal stability constant was 80, and it was found that the write current density hardly changed although it was larger than that of 4 layers.
 本発明の磁気抵抗効果素子は、自由層を構成する複数の強磁性層が全て同じ材料であるが、膜厚が等しくない場合には、強磁性層の層数は偶数に限定されない。即ち、自由層を構成する強磁性層のうち、磁化方向が+方向である強磁性層の体積と-方向である強磁性層の体積が等しくなるよう設計しても良い。 In the magnetoresistive element of the present invention, the plurality of ferromagnetic layers constituting the free layer are all made of the same material. However, when the film thickness is not equal, the number of ferromagnetic layers is not limited to an even number. In other words, among the ferromagnetic layers constituting the free layer, the volume of the ferromagnetic layer having the magnetization direction in the + direction may be designed to be equal to the volume of the ferromagnetic layer having the − direction.
 図8に、その一例を示す。図8に示した磁気抵抗効果素子800は、非磁性402を挟んで磁化方向が固定されている固定層(強磁性層)401と、自由層415とが積層された構造を有する。自由層415は、磁化方向が可変である第1から第3の強磁性層403、403,407と、各強磁性層の間に配置された非磁性の反強磁性結合層404,406備える。自由層の第1の強磁性層403の磁化方向411と第2の強磁性層405の磁化方向412は略反平行であり、磁化方向412と第3の強磁性層407の磁化方向413は略反平行である。この場合、自由層415は3層構造である。 Fig. 8 shows an example. The magnetoresistive effect element 800 shown in FIG. 8 has a structure in which a fixed layer (ferromagnetic layer) 401 whose magnetization direction is fixed with a non-magnetic 402 interposed therebetween and a free layer 415 are laminated. The free layer 415 includes first to third ferromagnetic layers 403, 403, and 407 whose magnetization directions are variable, and nonmagnetic antiferromagnetic coupling layers 404 and 406 disposed between the ferromagnetic layers. The magnetization direction 411 of the first ferromagnetic layer 403 of the free layer and the magnetization direction 412 of the second ferromagnetic layer 405 are substantially antiparallel, and the magnetization direction 412 and the magnetization direction 413 of the third ferromagnetic layer 407 are approximately. Antiparallel. In this case, the free layer 415 has a three-layer structure.
 また、一例として、第1の強磁性層403と第3の強磁性層407は膜厚が等しく、第2の強磁性層405の膜厚は、第1の強磁性層403の膜厚の2倍である。したがって、自由層を構成する強磁性層のうち、磁化方向が+方向である強磁性層の体積と-方向である強磁性層の体積が等しくなる。このため、この構造では磁気抵抗効果素子端面からの漏れ磁場の影響がなく、熱安定性定数の減少を抑えることができる。さらに、スピントランスファートルクが効率的に働くこと、非磁性層404,406にスピンが蓄積する効果が働くことにより、書き込み電流密度の増大を抑制できることがわかった。 As an example, the first ferromagnetic layer 403 and the third ferromagnetic layer 407 have the same film thickness, and the second ferromagnetic layer 405 has a film thickness that is 2 times the film thickness of the first ferromagnetic layer 403. Is double. Therefore, among the ferromagnetic layers constituting the free layer, the volume of the ferromagnetic layer whose magnetization direction is the + direction is equal to the volume of the ferromagnetic layer whose − direction is the magnetization direction. For this reason, in this structure, there is no influence of the leakage magnetic field from the end surface of the magnetoresistive effect element, and the decrease in the thermal stability constant can be suppressed. Further, it has been found that the increase in the write current density can be suppressed by the fact that the spin transfer torque works efficiently and the effect of spin accumulation in the nonmagnetic layers 404 and 406 works.
 また、自由層を構成する強磁性膜403,405,407の膜厚の関係は上記の場合に限定されるものではなく、磁化方向が+方向である強磁性層の体積と-方向である強磁性層の体積が等しくなるよう設計していれば良い。 Further, the relationship between the film thicknesses of the ferromagnetic films 403, 405, and 407 constituting the free layer is not limited to the above case, and the volume of the ferromagnetic layer whose magnetization direction is the + direction and the strongness that is the − direction. What is necessary is just to design so that the volume of a magnetic layer may become equal.
 また、本発明の磁気抵抗効果素子は、自由層を構成する強磁性層の材料あるいは膜厚が、層ごとに異なっていても良い。この場合、自由層を構成する強磁性層のうち、磁化方向が+方向である強磁性層の体積とその強磁性層各層の磁化の積の総和が、磁化方向が-方向である強磁性層の体積とその強磁性層各層の磁化の積の総和と等しくなるよう設計すればよい。 In the magnetoresistive element of the present invention, the material or film thickness of the ferromagnetic layer constituting the free layer may be different for each layer. In this case, among the ferromagnetic layers constituting the free layer, the sum of the product of the volume of the ferromagnetic layer whose magnetization direction is the + direction and the magnetization of each layer of the ferromagnetic layer is the ferromagnetic layer whose magnetization direction is the-direction. May be designed to be equal to the sum of the products of the volume of the magnetic layer and the magnetization product of each ferromagnetic layer.
 磁気抵抗効果素子は、固定層の磁化を固定するための反強磁性層を備えていてもよい。図9に、自由層を構成する強磁性層が4層の場合の、反強磁性層901を備えた磁気抵抗効果素子900の例を示した。この構成では、固定層401の磁化方向が反強磁性層901によって強く固定されるため、書き込み時の動作が安定化した。 The magnetoresistive effect element may include an antiferromagnetic layer for fixing the magnetization of the fixed layer. FIG. 9 shows an example of a magnetoresistive effect element 900 including an antiferromagnetic layer 901 in the case where the number of ferromagnetic layers constituting the free layer is four. In this configuration, since the magnetization direction of the fixed layer 401 is strongly fixed by the antiferromagnetic layer 901, the operation during writing is stabilized.
 また、本発明の磁気抵抗効果素子は、固定層が積層フェリ構造であってもよい。図10に、自由層415を構成する強磁性層が4層の場合に、固定層として積層フェリ構造を採用した磁気抵抗効果素子1000の例を示す。この構成の場合、強磁性層1001の磁化方向1003が、第1の反強磁性層901によって強く固定される。強磁性層401の磁化方向410と強磁性層1001の磁化方向1003は、非磁性の反平行結合層1002を介して略反平行に結合する。このため、強磁性層1001と非磁性層1002と強磁性層401が固定層として作用し、この部分の漏れ磁場は抑制される。強磁性層1001の膜厚と磁化の積と、強磁性層401の膜厚と磁化の積は、同じであることが望ましい。 In the magnetoresistive element of the present invention, the fixed layer may have a laminated ferri structure. FIG. 10 shows an example of a magnetoresistive effect element 1000 that employs a laminated ferrimagnetic structure as a fixed layer when the free layer 415 includes four ferromagnetic layers. In this configuration, the magnetization direction 1003 of the ferromagnetic layer 1001 is strongly fixed by the first antiferromagnetic layer 901. The magnetization direction 410 of the ferromagnetic layer 401 and the magnetization direction 1003 of the ferromagnetic layer 1001 are coupled approximately antiparallel via the nonmagnetic antiparallel coupling layer 1002. For this reason, the ferromagnetic layer 1001, the nonmagnetic layer 1002, and the ferromagnetic layer 401 act as a fixed layer, and the leakage magnetic field in this portion is suppressed. The product of the film thickness and magnetization of the ferromagnetic layer 1001 and the product of the film thickness and magnetization of the ferromagnetic layer 401 are preferably the same.
 以上説明した磁気抵抗効果素子の自由層では、非磁性の反平行結合層はその上下の強磁性層の磁化方向を略反平行に結合する作用を持つ。この結合は反平行結合層の膜厚に非常に敏感であり、反平行結合層の材料をRuとした場合、その最適値はおよそ1nmである。しかし、反平行結合層は熱によって拡散してしまう場合がある。従って、以上に説明した磁気抵抗効果素子において、この拡散を抑える新たな層を反平行結合層の上下に適用してもよい。反平行結合層にRuを用いた場合、Ru層の上下にTa層を適用することで、Ruの拡散を抑えることができた。拡散を抑える層の材料としては、全ての非磁性材料が候補になる。拡散防止層の膜厚は0.1nmから1nm程度にすることが望ましい。また、図10に示した磁気抵抗効果素子の場合、固定層中の反平行結合層1002にも拡散を抑える層を適用してもよい。 In the free layer of the magnetoresistive effect element described above, the nonmagnetic antiparallel coupling layer has an action of coupling the magnetization directions of the upper and lower ferromagnetic layers in a substantially antiparallel manner. This coupling is very sensitive to the film thickness of the antiparallel coupling layer. When the material of the antiparallel coupling layer is Ru, the optimum value is about 1 nm. However, the antiparallel coupling layer may diffuse due to heat. Therefore, in the magnetoresistive effect element described above, new layers for suppressing this diffusion may be applied above and below the antiparallel coupling layer. When Ru was used for the antiparallel coupling layer, Ru diffusion could be suppressed by applying Ta layers above and below the Ru layer. All non-magnetic materials are candidates for the material of the layer that suppresses diffusion. The film thickness of the diffusion preventing layer is preferably about 0.1 nm to 1 nm. In the case of the magnetoresistive effect element shown in FIG. 10, a layer that suppresses diffusion may also be applied to the antiparallel coupling layer 1002 in the fixed layer.
101 固定層
102 自由層
300 磁気メモリ
301 ビット線
302 ソース線
303 ワード線
304 磁気抵抗効果素子
306 トランジスタのドレイン電極
308 トランジスタのソース電極
401 固定層
402 非磁性層
403 第1の強磁性層
404 反平行結合層
405 第2の強磁性層
406 反平行結合層
407 第3の強磁性層
408 反平行結合層
409 第4の強磁性層
415 自由層
700 磁気抵抗効果素子
800 磁気抵抗効果素子
900 磁気抵抗効果素子
901 反強磁性層
1000 磁気抵抗効果素子
1001 強磁性層
1002 反平行結合層
101 pinned layer 102 free layer 300 magnetic memory 301 bit line 302 source line 303 word line 304 magnetoresistive effect element 306 transistor drain electrode 308 transistor source electrode 401 pinned layer 402 nonmagnetic layer 403 first ferromagnetic layer 404 antiparallel Coupling layer 405 Second ferromagnetic layer 406 Antiparallel coupling layer 407 Third ferromagnetic layer 408 Antiparallel coupling layer 409 Fourth ferromagnetic layer 415 Free layer 700 Magnetoresistive element 800 Magnetoresistive element 900 Magnetoresistive effect Element 901 Antiferromagnetic layer 1000 Magnetoresistive element 1001 Ferromagnetic layer 1002 Antiparallel coupling layer

Claims (10)

  1.  磁化方向が固定された固定層と、前記固定層の上に形成された非磁性層と、前記非磁性層の上に形成された磁化方向が可変な自由層と、膜厚に垂直な方向に電流を流すための一対の電極とを有し、スピントランスファートルクによる電流磁化反転を用いて書き込みを行う磁気抵抗効果素子において、
     前記自由層は、非磁性の反平行結合層を介して積層された3層以上の強磁性層を備え、前記複数の強磁性層の磁化方向は前記固定層の磁化方向と平行あるいは反平行であり、前記反平行結合層を挟んで設けられた2つの強磁性層の磁化方向は互いに反平行であり、磁化方向が一方を向いた強磁性層の体積と磁化の積の和は、磁化方向がそれと反平行な方向を向いた強磁性層の体積と磁化の積の和と略等しいことを特徴とする磁気抵抗効果素子。
    A fixed layer with a fixed magnetization direction, a nonmagnetic layer formed on the fixed layer, a free layer with a variable magnetization direction formed on the nonmagnetic layer, and a direction perpendicular to the film thickness In a magnetoresistive effect element that has a pair of electrodes for flowing current and performs writing using current magnetization reversal by spin transfer torque,
    The free layer includes three or more ferromagnetic layers stacked via a nonmagnetic antiparallel coupling layer, and the magnetization directions of the plurality of ferromagnetic layers are parallel or antiparallel to the magnetization direction of the fixed layer. The magnetization directions of the two ferromagnetic layers provided across the antiparallel coupling layer are antiparallel to each other, and the sum of the product of the volume and magnetization of the ferromagnetic layer with the magnetization direction facing one side is the magnetization direction Is substantially equal to the sum of the product of volume and magnetization of a ferromagnetic layer oriented in an antiparallel direction.
  2.  請求項1記載の磁気抵抗効果素子において、前記自由層が備える強磁性層の数は偶数であることを特徴とする磁気抵抗効果素子。 2. The magnetoresistive effect element according to claim 1, wherein the number of ferromagnetic layers provided in the free layer is an even number.
  3.  請求項1記載の磁気抵抗効果素子において、前記自由層は膜厚が等しく同じ材料からなる4層の強磁性層を備えることを特徴とする磁気抵抗効果素子。 2. The magnetoresistive element according to claim 1, wherein the free layer includes four ferromagnetic layers made of the same material having the same thickness.
  4.  請求項1記載の磁気抵抗効果素子において、前記3層以上の強磁性層には膜厚の異なる強磁性層が含まれることを特徴とする磁気抵抗効果素子。 2. The magnetoresistive element according to claim 1, wherein the three or more ferromagnetic layers include ferromagnetic layers having different thicknesses.
  5.  請求項1記載の磁気抵抗効果素子において、前記3層以上の強磁性層には材料の異なる強磁性層が含まれることを特徴とする磁気抵抗効果素子。 2. The magnetoresistive effect element according to claim 1, wherein the three or more ferromagnetic layers include ferromagnetic layers made of different materials.
  6.  請求項1記載の磁気抵抗効果素子において、前記固定層に接して反強磁性層が設けられていることを特徴とする磁気抵抗効果素子。 2. The magnetoresistive element according to claim 1, wherein an antiferromagnetic layer is provided in contact with the fixed layer.
  7.  請求項1記載の磁気抵抗効果素子において、前記反平行結合層の上下に拡散防止層を備えることを特徴とする磁気抵抗効果素子。 2. The magnetoresistive element according to claim 1, further comprising a diffusion prevention layer above and below the antiparallel coupling layer.
  8.  請求項1記載の磁気抵抗効果素子において、前記固定層の上に形成された非磁性層は絶縁層であることを特徴とする磁気抵抗効果素子。 2. The magnetoresistive effect element according to claim 1, wherein the nonmagnetic layer formed on the fixed layer is an insulating layer.
  9.  磁化方向が固定された固定層と、前記固定層の上に形成された非磁性層と、前記非磁性層の上に形成された磁化方向が可変な自由層と、膜厚に垂直な方向に電流を流すための一対の電極とを有し、前記自由層は、非磁性の反平行結合層を介して積層された3層以上の強磁性層を備え、前記複数の強磁性層の磁化方向は前記固定層の磁化方向と平行あるいは反平行であり、前記反平行結合層を挟んで設けられた2つの強磁性層の磁化方向は互いに反平行であり、磁化方向が一方を向いた強磁性層の体積と磁化の積の和は、磁化方向がそれと反平行な方向を向いた強磁性層の体積と磁化の積の和と略等しく、スピントランスファートルクによる電流磁化反転を用いて書き込みを行う磁気抵抗効果素子と、
     前記磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子と
     を備えることを特徴とする磁気メモリセル。
    A fixed layer with a fixed magnetization direction, a nonmagnetic layer formed on the fixed layer, a free layer with a variable magnetization direction formed on the nonmagnetic layer, and a direction perpendicular to the film thickness A pair of electrodes for flowing current, and the free layer includes three or more ferromagnetic layers stacked via a nonmagnetic antiparallel coupling layer, and the magnetization directions of the plurality of ferromagnetic layers Is parallel or anti-parallel to the magnetization direction of the fixed layer, the magnetization directions of the two ferromagnetic layers provided across the anti-parallel coupling layer are anti-parallel to each other, and the magnetization direction is one direction ferromagnetic. The sum of the volume and magnetization product of the layer is approximately equal to the sum of the volume and magnetization product of the ferromagnetic layer whose magnetization direction is antiparallel to the direction, and writing is performed using current magnetization reversal by spin transfer torque. A magnetoresistive element;
    A magnetic memory cell comprising: a switching element that controls on / off of a current flowing through the magnetoresistive element.
  10.  複数の磁気メモリセルと、所望の磁気メモリセルを選択する手段とを備える磁気ランダムアクセスメモリにおいて、
     前記磁気メモリセルは、
     磁化方向が固定された固定層と、前記固定層の上に形成された非磁性層と、前記非磁性層の上に形成された磁化方向が可変な自由層と、膜厚に垂直な方向に電流を流すための一対の電極とを有し、前記自由層は、非磁性の反平行結合層を介して積層された3層以上の強磁性層を備え、前記複数の強磁性層の磁化方向は前記固定層の磁化方向と平行あるいは反平行であり、前記反平行結合層を挟んで設けられた2つの強磁性層の磁化方向は互いに反平行であり、磁化方向が一方を向いた強磁性層の体積と磁化の積の和は、磁化方向がそれと反平行な方向を向いた強磁性層の体積と磁化の積の和と略等しく、スピントランスファートルクによる電流磁化反転を用いて書き込みを行う磁気抵抗効果素子と、
     前記磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子と
     を備えることを特徴とする磁気ランダムアクセスメモリ。
    In a magnetic random access memory comprising a plurality of magnetic memory cells and means for selecting a desired magnetic memory cell,
    The magnetic memory cell is
    A fixed layer with a fixed magnetization direction, a nonmagnetic layer formed on the fixed layer, a free layer with a variable magnetization direction formed on the nonmagnetic layer, and a direction perpendicular to the film thickness A pair of electrodes for flowing current, and the free layer includes three or more ferromagnetic layers stacked via a nonmagnetic antiparallel coupling layer, and the magnetization directions of the plurality of ferromagnetic layers Is parallel or anti-parallel to the magnetization direction of the fixed layer, the magnetization directions of the two ferromagnetic layers provided across the anti-parallel coupling layer are anti-parallel to each other, and the magnetization direction is one direction The sum of the volume of the layer and the product of magnetization is approximately equal to the sum of the product of the volume and magnetization of the ferromagnetic layer whose direction of magnetization is antiparallel, and writing is performed using current magnetization reversal by spin transfer torque. A magnetoresistive element;
    And a switching element that controls on / off of a current flowing through the magnetoresistive element.
PCT/JP2009/064661 2008-08-28 2009-08-21 Magnetoresistive element having multi-layered ferry structure, magnetic memory, and magnetic random access memory WO2010024201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010526684A JP5351894B2 (en) 2008-08-28 2009-08-21 Magnetoresistive effect element, magnetic memory and magnetic random access memory having multilayer laminated ferri structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-219998 2008-08-28
JP2008219998 2008-08-28

Publications (1)

Publication Number Publication Date
WO2010024201A1 true WO2010024201A1 (en) 2010-03-04

Family

ID=41721369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064661 WO2010024201A1 (en) 2008-08-28 2009-08-21 Magnetoresistive element having multi-layered ferry structure, magnetic memory, and magnetic random access memory

Country Status (2)

Country Link
JP (1) JP5351894B2 (en)
WO (1) WO2010024201A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203132A1 (en) * 2018-04-18 2019-10-24 国立大学法人東北大学 Magnetoresistive element, magnetic memory device, and writing and reading method for magnetic memory device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294376A (en) * 2004-03-31 2005-10-20 Toshiba Corp Magnetic recording element and magnetic memory
JP2007515075A (en) * 2003-12-18 2007-06-07 フリースケール セミコンダクター インコーポレイテッド Synthetic antiferromagnetic structure used in MTJ with MRAM technology

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515075A (en) * 2003-12-18 2007-06-07 フリースケール セミコンダクター インコーポレイテッド Synthetic antiferromagnetic structure used in MTJ with MRAM technology
JP2005294376A (en) * 2004-03-31 2005-10-20 Toshiba Corp Magnetic recording element and magnetic memory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203132A1 (en) * 2018-04-18 2019-10-24 国立大学法人東北大学 Magnetoresistive element, magnetic memory device, and writing and reading method for magnetic memory device
JPWO2019203132A1 (en) * 2018-04-18 2021-07-15 国立大学法人東北大学 Magnetoresistive sensor, magnetic memory device, and writing and reading method of magnetic memory device
US11610614B2 (en) 2018-04-18 2023-03-21 Tohoku University Magnetoresistive element, magnetic memory device, and writing and reading method for magnetic memory device
JP7251811B2 (en) 2018-04-18 2023-04-04 国立大学法人東北大学 Magnetoresistive element, magnetic memory device, and writing and reading method for magnetic memory device

Also Published As

Publication number Publication date
JP5351894B2 (en) 2013-11-27
JPWO2010024201A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP4682585B2 (en) Memory element and memory
JP5600344B2 (en) Magnetoresistive element and magnetic memory
JP5366961B2 (en) Magnetic recording element, magnetic memory cell, and magnetic random access memory
US20090039450A1 (en) Structure of magnetic memory cell and magnetic memory device
JP6029020B2 (en) Magnetic memory element and magnetic memory
KR100604913B1 (en) Magnetoresistive RAM having multi-bit cell array configuration
KR20080070597A (en) Magnetoresistive element and magnetic memory
KR20130089255A (en) Spin torque transfer memory cell structures and methods
JP2006165327A (en) Magnetic random access memory
JP2007294737A5 (en)
JP2008177421A (en) Storage element and memory
JP2008519460A (en) Current application magnetoresistive element
JP2012014787A (en) Storage device
JP2013232497A (en) Magnetic material device and manufacturing method thereof
JP2001196658A (en) Magnetic element and magnetic memory device
JP4543901B2 (en) memory
KR20080040566A (en) Storage element and memory
JP2004303389A (en) Magnetic random access memory
JP2005310829A (en) Magnetic memory and recording method thereof
WO2011081051A1 (en) Magnetic memory cell and magnetic memory
KR100560661B1 (en) Reading Scheme Of Magnetic Memory
JP3833990B2 (en) Magnetoresistive element and magnetic memory device
JP5351894B2 (en) Magnetoresistive effect element, magnetic memory and magnetic random access memory having multilayer laminated ferri structure
JP2004087870A (en) Magnetoresistive effect element and magnetic memory device
US20090040663A1 (en) Magnetic memory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526684

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809852

Country of ref document: EP

Kind code of ref document: A1