WO2010024144A1 - Working apparatus - Google Patents

Working apparatus Download PDF

Info

Publication number
WO2010024144A1
WO2010024144A1 PCT/JP2009/064399 JP2009064399W WO2010024144A1 WO 2010024144 A1 WO2010024144 A1 WO 2010024144A1 JP 2009064399 W JP2009064399 W JP 2009064399W WO 2010024144 A1 WO2010024144 A1 WO 2010024144A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
unit
recording
peripheral side
intensity
Prior art date
Application number
PCT/JP2009/064399
Other languages
French (fr)
Japanese (ja)
Inventor
唯 吉良
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2010024144A1 publication Critical patent/WO2010024144A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/14Heads, e.g. forming of the optical beam spot or modulation of the optical beam specially adapted to record on, or to reproduce from, more than one track simultaneously
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00451Recording involving ablation of the recording layer

Definitions

  • the present invention relates to a processing apparatus.
  • the present invention particularly relates to a processing apparatus that performs processing on a processing target member having a heat mode type recording material layer.
  • a processing apparatus that forms a predetermined pattern on a processing target by irradiating the processing target with laser light.
  • a processing apparatus there is known an apparatus that performs processing by driving two orthogonal sliders to move a processing object placed on an XY table in the X direction and the Y direction.
  • an apparatus that performs laser processing while rotating a processing object by a rotating body by combining a rotating body and an optical system is known.
  • 2007-216263 for the purpose of high-precision processing, a method of performing laser processing while rotating an object to be processed, and adjusting the light intensity distribution of a laser beam spot, A method of forming a fine pattern having a diameter equal to or less than the diameter of a beam spot on a workpiece is disclosed. Also, WO 2004/047096 discloses a technique for forming a fine pattern corresponding to a concavo-convex pattern to be formed by irradiating a recording laser beam.
  • a heat mode type recording material layer may be selected as a processing object for forming a fine pattern.
  • the heat mode type recording material layer is a layer in which a desired pattern is formed by causing a physical change or a chemical change by photothermal conversion by irradiation.
  • the heat mode type recording material layer dissipates the heat generated when the irradiation speed is slow, and requires a lot of irradiation energy. Has a characteristic of lowering. Therefore, when a pattern is formed (recorded) on the heat mode type recording material layer by irradiation, it is necessary to form the pattern at a high speed by short-time irradiation.
  • the present invention provides a processing apparatus for performing pattern irradiation at high speed on a processing target member having a heat mode type recording material layer.
  • a rotating unit for rotating a processing target member having a heat mode type recording material layer on which information is recorded by heat generated by irradiation of a recording laser beam, and the processing that is being rotated.
  • a plurality of irradiation units that are arranged on a straight line passing through the rotation center of the target member and irradiate recording laser beams to regions having different radial distances from the rotation center of the processing target member. is there.
  • the plurality of irradiation units are arranged at a predetermined interval, and the predetermined interval is the rotation center in a predetermined processing target region of the processing target member. It is a processing apparatus which is the value which divided the distance from the one end part of radial direction which makes a center to the other end part by the number of the said irradiation parts.
  • formation according to a predetermined formation target pattern is performed by each of the plurality of irradiation units on the processing target member rotated by the rotation unit. Irradiation of recording laser light emitted from each of the plurality of irradiation units so that the size and shape of the formed pattern formed by each of the plurality of irradiation units are the same when the pattern is formed It is a processing apparatus provided with the control part which controls time and irradiation intensity.
  • a plurality of irradiation waveform generation units that are provided corresponding to each of the plurality of irradiation units and generate an irradiation waveform, and each of the plurality of irradiation units And a plurality of synchronization signal generation units that generate synchronization signals, and the plurality of irradiation units correspond to the synchronization signals input from the corresponding synchronization signal generation units.
  • the control unit uses the one of the plurality of irradiation units as a reference irradiation unit.
  • the synchronization signal to be output to the unit is determined in advance as a reference synchronization signal, the synchronization signal generation unit is controlled to output the reference synchronization signal to the reference irradiation unit, and the distance according to the distance from the reference irradiation unit Is becoming larger toward the outer periphery.
  • the synchronization signal generating unit is controlled so that the frequency of the synchronization signal is increased and the frequency of the synchronization signal is decreased as the frequency is increased toward the inner peripheral side, thereby irradiating from each of the plurality of irradiation units. It is a processing apparatus which controls the irradiation time of the recording laser beam for each irradiation unit.
  • an irradiation intensity adjusting unit that adjusts a ratio of the maximum irradiation intensity to the minimum irradiation intensity indicated by the irradiation waveform in the fourth aspect, and the control unit includes the plurality of irradiations.
  • One of the sections is defined as a reference irradiation section, and the ratio of the maximum irradiation intensity to the minimum irradiation intensity indicated by the irradiation waveform decreases as the distance increases toward the outer periphery side according to the distance from the reference irradiation section.
  • the recording laser light It is a processing apparatus which controls irradiation intensity for every irradiation part.
  • the plurality of irradiation units may be arranged such that the plurality of irradiation units are directed from the inner peripheral side to the outer peripheral side of the processing target member or from the outer peripheral side of the processing target member.
  • a moving unit that relatively moves toward the side, and the irradiation unit includes a light source that emits a laser beam, a laser beam emitted from the light source, at least the recording laser beam, and a member to be processed
  • a laser beam for detection for detecting the reflectance a branching unit that branches into a laser beam; and a detection unit that detects a change in the amount of reflected light from the processing target member of the laser beam for detection. Based on the detection result by the detection unit, when the recorded area is detected on the processing target member, the moving unit is controlled to move the plurality of irradiation units to an area where the recording area is not detected. Processing equipment It is.
  • the recording laser beam branched by the branching portion and the detection laser beam have a predetermined interval in the radial direction of the workpiece. It is a processing apparatus provided with the condensing part which condenses so that it may be opened and irradiated.
  • the branching unit includes at least one or a plurality of laser beams and at least one or a plurality of detection laser beams emitted from the light source. It is a processing device that branches into light.
  • the present invention it is possible to provide a processing apparatus capable of writing an irradiation pattern including a pattern equal to or smaller than the laser spot diameter on a processing target member having a heat mode type recording material layer at high speed.
  • the processing apparatus 90 (see FIG. 3) according to the present embodiment forms a pit P as a pattern on the processing target 33 by irradiating a recording laser beam onto one disk-shaped processing target 33. .
  • the processing object 33 is in the form of a single disk (disc shape). As shown in FIG. 1, the workpiece 33 has a structure in which a recording material layer 33B is laminated on a substrate 33A. In the present embodiment, a case will be described in which the workpiece 33 has a configuration in which a recording material layer 33B is stacked on a substrate 33A. However, the processing object 33 used in the processing apparatus 90 of the present embodiment only needs to have a configuration provided with at least a recording material layer 33B whose details will be described later, and may have a configuration only of the recording material layer 33B. . Further, the processing object 33 may have a configuration in which other layers are further laminated on the recording material layer 33B.
  • the recording material layer 33B is a layer in which the pits P (see FIG. 2) are formed by being deformed by heat generation due to light absorption of the constituent material, and the photothermal energy in the region irradiated by the recording laser light irradiation. This layer is recorded by changing physical properties due to conversion.
  • the pit P is a recess formed in the recording material layer 33B.
  • the recording material layer 33B is a layer in which light is converted into heat by irradiation of intense light, and the shape of the material is changed by this heat to form a recess (pit P), which is a so-called heat mode type. It is a layer of recording material.
  • recording materials are widely used for recording layers such as optical recording disks. For example, recording materials such as cyanine, phthalocyanine, quinone, squarylium, azulenium, thiol complex, and merocyanine are used.
  • the recording material layer 33B in the present embodiment is preferably a dye type containing a dye as a recording substance. Accordingly, examples of the recording material contained in the recording material layer 33B include organic compounds such as dyes.
  • the material of the recording material layer 33B is not limited to an organic material, and an inorganic material or a composite material of an inorganic material and an organic material is used. However, organic materials can be easily formed by spin coating, and it is difficult to obtain a material having a low transition temperature. For this reason, it is preferable to employ an organic material. Among organic materials, it is preferable to employ a dye whose light absorption can be controlled by molecular design.
  • suitable examples of the recording material layer 33B include methine dyes (cyanine dye, hemicyanine dye, styryl dye, oxonol dye, merocyanine dye, etc.), macrocyclic dyes (phthalocyanine dye, naphthalocyanine dye, porphyrin dye, etc.), Examples thereof include azo dyes (including azo metal chelate dyes), arylidene dyes, complex dyes, coumarin dyes, azole derivatives, triazine derivatives, 1-aminobutadiene derivatives, cinnamic acid derivatives, and quinophthalone dyes.
  • methine dyes cyanine dye, hemicyanine dye, styryl dye, oxonol dye, merocyanine dye, etc.
  • macrocyclic dyes phthalocyanine dye, naphthalocyanine dye, porphyrin dye, etc.
  • azo dyes including azo metal chelate dyes
  • the recording material layer 33B is preferably a dye type capable of recording information only once with a laser beam.
  • An organic recording material can be dissolved in a solvent to form a film by spin coating or spray coating. Therefore, the organic recording material is excellent in productivity.
  • the dye-type recording material layer 33B preferably contains a dye having absorption in the recording wavelength region.
  • the upper limit of the extinction coefficient k indicating the amount of light absorption is preferably 10 or less, more preferably 5 or less, further preferably 3 or less, and 1 or less. Most preferred. If the extinction coefficient k is too high, light does not reach from the light incident side to the opposite side of the recording material layer 33B, and non-uniform pits P are formed.
  • the lower limit value of the extinction coefficient k is preferably 0.0001 or more, more preferably 0.001 or more, and further preferably 0.1 or more. If the extinction coefficient k is too low, the amount of light absorption decreases. For this reason, a large laser power is required, and the processing speed may be reduced.
  • the recording material layer 33B needs to absorb light at the recording wavelength as described above. Accordingly, it is possible to appropriately select a dye or modify the structure according to the wavelength of a light source that emits laser light (corresponding to a laser diode 53 described later (see FIG. 6)).
  • the appropriate dye is advantageously selected from a pentamethine cyanine dye, a heptamethine oxonol dye, a pentamethine oxonol dye, a phthalocyanine dye, a naphthalocyanine dye, etc. when the oscillation wavelength of the laser light source is around 780 nm. .
  • the appropriate dye is advantageously selected from a trimethine cyanine dye, a pentamethine oxonol dye, an azo dye, an azo metal complex dye, a pyromethene complex dye, and the like.
  • the appropriate dye is a monomethine cyanine dye, monomethine oxonol dye, zero methine merocyanine dye, phthalocyanine dye, azo dye, azo metal complex dye, porphyrin dye, arylidene dye,
  • it is selected from complex dyes, coumarin dyes, azole derivatives, triazine derivatives, benzotriazole derivatives, 1-aminobutadiene derivatives, quinophthalone dyes and the like.
  • examples of preferable compounds as the recording material layer 33B are given for the case where the oscillation wavelength of the light source is around 780 nm, around 660 nm, and around 405 nm, respectively.
  • compounds (I-1 to I-10) represented by the following chemical formulas 1 and 2 are compounds when the oscillation wavelength of the light source is around 780 nm.
  • the compounds (II-1 to II-8) represented by the chemical formulas 3 and 4 are compounds when the wavelength is around 660 nm.
  • the compounds (III-1 to III-14) indicated by 5 and 6 are compounds in the case of around 405 nm.
  • the present embodiment is not limited to the case where these are used for the recording material layer 33B.
  • Examples of compounds constituting the recording material layer 33B when the oscillation wavelength of the light source is around 660 nm are shown below.
  • JP-A-4-74690 JP-A-8-127174, JP-A-11-53758, JP-A-11-334204, JP-A-11-334205, JP-A-11-334206,
  • the dyes described in JP-A-11-334207, JP-A-2000-43423, JP-A-2000-108513, JP-A-2000-158818, and the like are also preferably used.
  • the dye-type recording material layer 33B is formed by dissolving the dye in a suitable solvent together with a binder and the like to prepare a coating solution, coating the substrate 33A, forming a coating film, and drying. .
  • the temperature of the surface on which the coating solution is applied is preferably in the range of 10 ° C. or higher and 40 ° C. or lower. More preferably, the lower limit is 15 ° C. or higher, and the upper limit is more preferably 35 ° C. or lower. Moreover, it is more preferable that it is 30 degrees C or less, and it is especially preferable that it is 27 degrees C or less.
  • the recording material layer 33B may be a single layer or a multilayer. In the case of a multilayer structure, the recording material layer 33B is formed by performing the coating process a plurality of times.
  • the concentration of the pigment in the coating solution is generally in the range of 0.01% by mass to 15% by mass, preferably in the range of 0.1% by mass to 10% by mass, and more preferably 0.5% by mass. The range is 5% by mass or less, and most preferably 0.5% by mass or more and 3% by mass or less.
  • Examples of the solvent for the coating solution include esters such as butyl acetate, ethyl lactate and cellosolve acetate; ketones such as methyl ethyl ketone, cyclohexanone and methyl isobutyl ketone; chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane and chloroform; dimethyl ethyl formamide Amides such as methylcyclohexane; amides such as dimethylformamide; hydrocarbons such as methylcyclohexane; ethers such as tetrahydrofuran, ethyl ether, dioxane; ethanol, n-propanol, isopropanol, n-butanol diacetone alcohol, etc.
  • esters such as butyl acetate, ethyl lactate and cellosolve acetate
  • ketones such as methyl ethyl ketone, cyclohex
  • Alcohols such as 2,2,3,3-tetrafluoropropanol
  • fluorine-based solvents such as 2,2,3,3-tetrafluoropropanol
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether
  • Glycol ethers such as propylene glycol monomethyl ether
  • the above solvents can be used alone or in combination of two or more in consideration of the solubility of the dye used.
  • the coating solution may further contain various additives such as an antioxidant, a UV absorber, a plasticizer, and a lubricant depending on the purpose.
  • Examples of the coating method include a spray method, a spin coating method, a dip method, a roll coating method, a blade coating method, a doctor roll method, a doctor blade method, and a screen printing method.
  • the recording material layer 33B is preferably dissolved in an amount of 0.3% by mass or more and 30% by mass or less with respect to the organic solvent from the viewpoint that it is advantageous for formation by a spin coating method. More preferably, it dissolves. In particular, it is preferable to dissolve in 1 to 20% by mass in tetrafluoropropanol.
  • the compound constituting the recording material layer 33B preferably has a thermal decomposition temperature of 150 ° C. or higher and 500 ° C. or lower, and more preferably 200 ° C. or higher and 400 ° C. or lower.
  • the temperature of the coating solution is preferably in the range of 23 ° C. or more and 50 ° C. or less, more preferably in the range of 24 ° C. or more and 40 ° C. or less, and in particular, in the range of 25 ° C. or more and 30 ° C. or less. It is particularly preferred.
  • the binder include natural organic polymer materials such as gelatin, cellulose derivatives, dextran, rosin, and rubber; hydrocarbon resins such as polyethylene, polypropylene, polystyrene, and polyisobutylene; Vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl chloride / polyvinyl acetate copolymers, acrylic resins such as polymethyl acrylate and polymethyl methacrylate, polyvinyl alcohol, chlorinated polyethylene, epoxy resin, butyral resin Synthetic organic polymers such as rubber derivatives, precondensates of thermosetting resins such as phenol / formaldehyde resins.
  • natural organic polymer materials such as gelatin, cellulose derivatives, dextran, rosin, and rubber
  • hydrocarbon resins such as polyethylene, polypropylene, polystyrene, and polyisobutylene
  • Vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvin
  • the amount of the binder used is generally in the range of 0.01 to 50 times (mass ratio) with respect to the dye, preferably 0.8. It is in the range of 1 to 5 times (mass ratio), and preferably in the range of 0.1 to 5 times (mass ratio).
  • the recording material layer 33B may contain various browning preventive agents in order to improve the light resistance of the recording material layer 33B.
  • a brown inhibitor a singlet oxygen quencher is generally used regularly. As this singlet oxygen quencher, those already described in publications such as patent specifications of the process are used.
  • the recording material layer 33B is a dye-type recording layer has been described above.
  • the recording material layer 33B can be formed by a film forming method such as vapor deposition, sputtering, or CVD in accordance with the physical properties of the recording material.
  • the dye those having a high absorption rate at other wavelengths are employed in the wavelength of the laser light used for processing the pit P described later.
  • the wavelength of the absorption peak of the dye is not necessarily limited to that in the visible light wavelength region, and may be in the ultraviolet region or the infrared region.
  • the wavelength ⁇ w of the laser light for forming the pit P may be any wavelength that provides a laser power that is large enough to form the pit P due to the shape change in the heat mode.
  • the wavelength ⁇ w of the laser light is preferably 1000 nm or less, such as 193 nm, 210 nm, 266 nm, 365 nm, 405 nm, 488 nm, 532 nm, 633 nm, 650 nm, 680 nm, 780 nm, and 830 nm.
  • laser light having an irradiation intensity and wavelength that can form pits P among laser light emitted from a light source (a laser diode 53 described later) will be referred to as recording laser light.
  • the type of laser light (that is, the type of laser light emitted from each laser diode 53 described later) may be any laser such as a gas laser, a solid-state laser, or a semiconductor laser.
  • a laser beam that can freely change the emission interval as the type of the laser beam.
  • a semiconductor laser as the type of laser light.
  • the laser power (irradiation intensity) of the recording laser light is preferably higher in order to increase the processing speed.
  • the speed at which the recording material layer 33B is scanned with the recording laser light for example, the rotational speed of the workpiece 33 must be increased. Therefore, the upper limit value of the laser power is preferably 100 W in consideration of the upper limit value of the rotation speed, more preferably 10 W, still more preferably 5 W, and most preferably 1 W.
  • the lower limit of the laser power is preferably 0.1 mW, more preferably 0.5 mW, and even more preferably 1 mW.
  • the thickness of the recording material layer 33B corresponds to the depth of pits P described later.
  • it sets suitably in 1 nm or more and 10000 nm or less, for example.
  • the lower limit of the thickness is preferably 10 nm or more, and more preferably 30 nm or more. The reason is that if the thickness is too thin, the pits P are formed shallow. Therefore, it becomes difficult to obtain an optical effect.
  • the upper limit of the thickness is preferably 1000 nm or less, and more preferably 500 nm or less. When the thickness is too thick, it becomes difficult to form the pits P as deep concave portions, which requires a large laser power, and the processing speed decreases.
  • the thickness t of the recording material layer 33B and the diameter d of the pits P have the following relationship. That is, the upper limit of the thickness t of the recording material layer 33B is preferably a value satisfying t ⁇ 10d, more preferably a value satisfying t ⁇ 5d, and a value satisfying t ⁇ 3d. Further preferred.
  • the lower limit value of the thickness t of the recording material layer 33B is preferably a value that satisfies t> d / 100, more preferably a value that satisfies t> d / 10, and t> d / 5. It is more preferable to satisfy the value.
  • the reason why the upper limit value and the lower limit value of the thickness t of the recording material layer 33B are set in relation to the diameter d of the pit P is the same as that described above.
  • the recording material layer 33B is prepared by dissolving or dispersing a substance serving as a recording material in an appropriate solvent to prepare a coating solution, and then applying the coating solution to the substrate 33A by a coating method such as spin coating, dip coating, or extrusion coating. It is formed by applying on top.
  • the recording material layer 33B is irradiated with recording laser light having a wavelength at which the material constituting the recording material layer 33B absorbs light (wavelength absorbed by the material constituting the recording material layer 33B). Then, the recording laser light is absorbed by the recording material layer 33B, the absorbed light is converted into heat, and the temperature of the region irradiated with the light rises. Thereby, the recording material layer 33B causes one or both of chemical change and physical change such as softening, liquefaction, vaporization, sublimation, and decomposition. The material having such a change moves and disappears to form pits P.
  • the weight reduction rate by differential thermal balance (TG-DTA) during vaporization, sublimation, or decomposition of the material constituting the recording material layer 33B is preferably 5% or more, more preferably 10%. More preferably, it is 20% or more.
  • the slope of weight reduction (weight reduction rate per 1 ° C. temperature rise) by the differential thermal balance (TG-DTA) during vaporization, sublimation or decomposition of the material constituting the recording material layer 33B is 0.1% / ° C. The above is preferable, more preferably 0.2% / ° C or more, and still more preferably 0.4% / ° C or more.
  • the upper limit of the transition temperature of at least one of chemical changes and physical changes such as softening, liquefaction, vaporization, sublimation, and decomposition is preferably 2000 ° C. or less, and more preferably 1000 ° C. or less. More preferably, it is 500 ° C. or lower. The reason is that if the transition temperature is too high, a large laser power is required.
  • the lower limit of the transition temperature is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 150 ° C. or higher. The reason is that if the transition temperature is too low, there is little temperature gradient with respect to the surroundings, making it difficult to form pits P having a clear shape.
  • the processing apparatus 90 of the present embodiment forms pits P in the processing target 33 by irradiating the processing target 33 provided with the recording material layer 33B with a recording laser beam.
  • the processing apparatus 90 includes an optical pickup 10, a spindle motor 11, an amplifier 12, a servo circuit 13, a decoder 15, a control unit 16, and a strategy circuit 18 (strategy circuit 18A and strategy circuit 18B).
  • a laser driver 19 (laser driver 19A, laser driver 19B), a laser power control circuit 20 (laser power control circuit 20A, laser power control circuit 20B), a frequency generator 21, a stepping motor 30, and a motor driver 31.
  • the processing apparatus 90 of the present embodiment is provided with two strategy circuits 18A and a strategy circuit 18B. However, when these are described generically, they will be described as the strategy circuit 18.
  • the spindle motor 11 is a motor that rotationally drives the workpiece 33, and the rotation speed is controlled by the servo circuit 13.
  • the processing apparatus 90 in the present embodiment is a method for driving the processing object 33 at a constant angular velocity (CAV: Constant Angular Velocity) or a method for rotating the processing object 33 so as to have a constant recording linear velocity (CLV). : Constant Linear Velocity).
  • CAV Constant Angular Velocity
  • CLV constant Linear Velocity
  • the spindle motor 11 is rotated at a constant angular velocity or a constant linear velocity set by an instruction from the control unit 16 or the like.
  • the optical pickup 10 irradiates the processing target object 33 rotated by the spindle motor 11 with a recording laser beam.
  • the optical pickup 10 includes a plurality of irradiation heads 9 so that different regions on the workpiece 33 can be irradiated with recording laser light.
  • the “different region” means that the radial position (the shortest distance from the rotation center Q) is different when the rotation center Q of the workpiece 33 is the center.
  • the plurality of irradiation heads 9 provided in the optical pickup 10 are configured to irradiate recording laser beams onto regions having different radii around the rotation center Q of the workpiece 33.
  • the processing apparatus 90 may have a configuration in which a plurality (two or more) of irradiation heads 9 are provided, and may have a configuration in which three or more irradiation heads 9 are provided.
  • these irradiation head 9 ⁇ / b> A and irradiation head 9 ⁇ / b> B are formed on the workpiece 33 that is rotated in a predetermined direction (in the direction of arrow X in FIG. 4) about the rotation center Q by the spindle motor 11. On a straight line passing through the rotation center Q, they are arranged at a predetermined interval.
  • Each of the plurality of irradiation heads 9 ⁇ / b> A and 9 ⁇ / b> B is fixed to the support member 17 extended in the radial direction of the workpiece 33 with the predetermined interval.
  • the support member 17 is connected to a stepping motor 30 described later.
  • the stepping motor 30 is driven via the motor controller 32 and the motor driver 31 under the control of the control unit 16.
  • the support member 17 is configured to be able to move the workpiece 33 in the radial direction while the irradiation head 9A and the irradiation head 9B supported by the support member 17 maintain the predetermined interval. .
  • the optical pickup 10 is moved in the radial direction by driving the stepping motor 30 while irradiating the processing target object 33 with the recording laser beam by each irradiation head 9.
  • the pits P are formed over the entire surface of the predetermined processing target region 33P in the entire region of the processing target 33.
  • the irradiation head 9A and the irradiation head 9B are provided in a part of a region from one end portion to the other end portion in the radial direction in a predetermined processing target region 33P of the processing target 33.
  • the plurality of irradiation heads 9 may be arranged at predetermined intervals over the entire region extending from the one end to the other end.
  • the distance between the plurality of irradiation heads 9 is obtained by dividing the distance from one end to the other end in the radial direction in the processing target region 33P of the processing target 33 by the number of irradiation heads 9 provided in the optical pickup 10. Distance. This distance is preferable because the time required for processing per sheet is the shortest.
  • each irradiation head 9 (irradiation head 9 ⁇ / b> A and irradiation head 9 ⁇ / b> B) records a laser diode 53 that emits a recording laser beam B and a recording laser beam B on a workpiece 33.
  • An optical system 55 that focuses light onto the material layer 33B and a light receiving element 56 that receives reflected light are provided.
  • Each of these irradiation heads 9 has the same configuration.
  • each irradiation head 9 the laser diode 53 changes according to the irradiation waveform from a laser driver 19 (see FIG. 3, laser driver 19 ⁇ / b> A and laser driver 19 ⁇ / b> B), which will be described later in detail, corresponding to each irradiation head 9.
  • a laser driver 19 see FIG. 3, laser driver 19 ⁇ / b> A and laser driver 19 ⁇ / b> B
  • the recording laser beam B having the intensity corresponding to the voltage that changes according to the irradiation waveform is emitted.
  • the recording laser beam B emitted from the laser diode 53 passes through the polarization beam splitter 59, the collimator lens 60, the 1 ⁇ 4 wavelength plate 61, and the objective lens 62, and is applied to the recording material layer 33 ⁇ / b> B of the workpiece 33. Collect light.
  • Each irradiation head 9 transmits the laser beam reflected by the recording material layer 33B again through the objective lens 62, the quarter wavelength plate 61, and the collimator lens 60, and reflects the laser beam by the polarization beam splitter 59, thereby forming a cylindrical lens.
  • the light is incident on the light receiving element 56 through 63.
  • the light receiving element 56 outputs the received signal to the amplifier 12 (see FIG. 3).
  • the received light signal is supplied to the control unit 16 and the servo circuit 13 via the amplifier 12.
  • the objective lens 62 is held by the focus actuator 64 and the tracking actuator 65, and is configured to be movable in the optical axis direction of the laser light B and the radial direction of the light to be processed 33.
  • Each of the focus actuator 64 and the tracking actuator 65 moves the objective lens 62 in the optical axis direction and the radial direction according to the focus error signal and the tracking error signal supplied from the servo circuit 13 (see FIG. 3).
  • the servo circuit 13 generates a focus error signal and a tracking error signal based on a light reception signal supplied via the light receiving element 56 and the amplifier 12.
  • the servo circuit 13 performs focus control and tracking control by moving the objective lens 62 as described above.
  • the servo circuit 13 is supplied with an instruction signal from the control unit 16, an FG pulse signal having a frequency corresponding to the rotation speed of the spindle motor 11 supplied from the frequency generator 21, and a signal from the amplifier 12.
  • the servo circuit 13 performs rotation control of the spindle motor 11 and focus control and tracking control of the optical pickup 10 based on these supplied signals.
  • the processing object 33 is driven at a constant angular velocity (CAV).
  • CAV constant angular velocity
  • CLV a method of rotating the workpiece 33 so as to achieve a constant recording linear velocity
  • the memory 36 stores recording data including pit information to be recorded on the workpiece 33 in advance.
  • the recording data stored in the memory 36 is output to the control unit 16.
  • the recording data is input, for example, from the PC 38 by connecting the control unit 16 to a PC (personal computer) 38 or the like in advance so that signals can be transmitted and received, and the input recording data is stored in the memory 36 in advance. do it.
  • the control unit 16 determines the position and shape of the pits P to be recorded on the recording material layer 33B of the processing target 33 included in the recording data based on the recording data read from the memory 36. For each pit P, irradiation waveform information indicating the irradiation waveform output to each irradiation head 9 and information indicating irradiation intensity information indicating the irradiation intensity are generated as pit P formation information.
  • the generated pit formation information is rearranged so that information generated in order from the innermost side to the outermost side of the region to be recorded by each irradiation head 9 is arranged.
  • the irradiation waveform information is output to the strategy circuit 18 connected to the corresponding irradiation head 9.
  • the irradiation intensity information indicating the irradiation intensity is output to the laser power control circuit 20 connected to the corresponding irradiation head 9 (details will be described later).
  • clock frequency information indicating the frequency of a synchronization signal (so-called clock signal) used for timing adjustment and irradiation time adjustment when each irradiation head 9 irradiates laser light is provided for each irradiation head 9.
  • the generated clock frequency information is output to the pulse generator 35 together with information indicating the corresponding irradiation head 9.
  • the pulse generator 35 generates a clock signal having the frequency of the input clock frequency information for each irradiation head 9 and outputs the generated clock signal to the driver 19 connected to the corresponding irradiation head 9.
  • the clock frequency information includes the length of the pit P formed by irradiating the recording material layer 33B of the rotating workpiece 33 with laser light for a period of N clocks (N is an integer of 1 or more). Even when the recording material layer 33B of the workpiece 33 is formed in different regions of the radial position by any one of the plurality of irradiation heads 9, the same length and shape are obtained. It is calculated according to the distance from the rotation center Q of each irradiation head 9 so that the clock frequency is higher (the clock cycle is shorter) as the irradiation head 9 is provided on the outermost periphery side.
  • the optical pickup 10 moves downstream from the irradiation head 9A in the moving direction (or the outer peripheral side when the optical pickup 10 moves from the inner peripheral side to the outer peripheral side).
  • the clock frequency is calculated for each irradiation head 9 so that the irradiation head 9 provided has a higher clock frequency and the irradiation head 9 provided upstream in the movement direction has a lower clock frequency.
  • three irradiation heads 9 ⁇ / b> A, an irradiation head 9 ⁇ / b> B, and an irradiation head 9 ⁇ / b> C are provided as a plurality of irradiation heads 9 on the optical pickup 10 from the inner peripheral side to the outer peripheral side of the workpiece 33. They are arranged so as to be arranged at predetermined intervals in the radial direction. Further, it is assumed that the distances from the respective rotation centers Q of the irradiation heads 9A, 9B, and 9C when the optical pickup 10 is at the reference position are R1, R2, and R3, respectively.
  • the reference clock frequency of the clock signal generated by a crystal oscillator is F1.
  • the optical pickup 10 is moved from the inner peripheral side toward the outer peripheral side.
  • the irradiation head 9A arranged on the innermost peripheral side among the plurality of irradiation heads 9 is used as the reference irradiation head.
  • a frequency F1 (clock signal period 1 / F1) is determined as the frequency of the clock signal T1 of the irradiation head 9A. Then, as shown in FIG.
  • the frequency F2 of the clock signal T2 of the irradiation head 9B arranged adjacent to the outer peripheral side of the irradiation head 9A is calculated by (R2 / R1) / F1. Determine.
  • the cycle of the clock signal T2 at this time is (1 / F1) ⁇ (R1 / R2).
  • the calculation result by (R3 / R1) / F1 is determined as the frequency F3 of the clock signal T3 of the irradiation head 9C arranged adjacent to the outer peripheral side of the irradiation head 9B.
  • the period of the clock signal T2 at this time is (1 / F1) ⁇ (R1 / R3).
  • each of the other one or a plurality of irradiation heads 9 arranged from the irradiation head 9A toward the outer peripheral side is set such that the radius from the rotation center Q of each irradiation head 9 is Rn. It is obtained from an equation of clock frequency F1 ⁇ (Rn / R1) (see FIG. 8 (3)).
  • n an integer
  • R1 the radius from the rotation center Q of the irradiation head 9A arranged on the innermost circumference
  • the clock frequency F1 of the irradiation head 9A the frequency of the clock signal having a frequency corresponding to the rotation speed of the workpiece 33 generated by a crystal oscillator (not shown) is used as the reference clock frequency. It may be determined as
  • each irradiation head 9 when the workpiece 33 is recorded (rotated) by the CLV method with a constant linear velocity as described above, the speed of the workpiece 33 in the region irradiated with the laser light by each irradiation head 9 is the optical pickup 10.
  • the control unit 16 clocks each irradiation head 9 based on the distance from the rotation center Q of each irradiation head 9 when the optical pickup 10 is positioned at the reference position.
  • the control unit 16 uses the frequency of the clock signal calculated when the control unit 16 is positioned at the reference position so that the entire area of the processing target area 33P of the processing target object 33 is recorded by each irradiation head 9. adjust.
  • the control unit 16 changes the distance after the change from the rotation center Q of each irradiation head 9 with the movement of the optical pickup 10 from the inner circumference side to the outer circumference side.
  • the frequency of the clock signal for each irradiation head 9 may be calculated based on the distance and output to the pulse generator 35.
  • the laser driver 19 Based on the irradiation waveform information supplied from the strategy circuit 18, the irradiation intensity information supplied from the laser power control circuit 20, and the synchronization signal supplied from the pulse generator 35, the laser driver 19 The laser diode 53 (see FIG. 6) is driven.
  • the pulse generation unit 35 uses a clock signal used as a synchronization signal in each irradiation head 9 of the optical pickup 10 based on the clock frequency information corresponding to each irradiation head 9 input from the control unit 16. Create a clock frequency of
  • the pulse generation unit 35 includes a plurality of pulse generation units 35 corresponding to the respective irradiation heads 9. As shown in FIGS. 3 and 4, when two irradiation heads 9 ⁇ / b> A and 9 ⁇ / b> B are provided as the plurality of irradiation heads 9, the pulse generation unit 35 generates two pulses corresponding to each irradiation head 9. Part. Specifically, the pulse generation unit 35 is provided with a pulse generation unit 35A corresponding to the irradiation head 9A, and is provided with a pulse generation unit 35B corresponding to the irradiation head 9B. Each of the pulse generator 35A and the pulse generator 35B generates a clock signal having a frequency corresponding to the clock frequency information based on the clock frequency information transmitted from the controller 16, and each of the corresponding laser driver 19A and laser Output to the driver 19B.
  • the laser power control circuit 20 (laser power control circuit 20A and laser power control circuit 20B) is provided corresponding to each of the plurality of irradiation heads 9.
  • the laser power control circuit 20 is a laser of the recording laser light irradiated from the corresponding irradiation head 9 so that the recording laser light having the intensity of the irradiation intensity information indicating the irradiation intensity input from the control unit 16 is irradiated. Adjust the strength.
  • the stepping motor 30 is a motor for moving the optical pickup 10 in the radial direction of the workpiece 33.
  • the optical pickup 10 is moved in the radial direction of the workpiece 33 by the stepping motor 30, the plurality of irradiation heads 9 provided in the optical pickup 10 are also moved in the radial direction of the workpiece 33 along with the movement. Moved.
  • the optical pickup 10 is described as moving from the inner peripheral side of the workpiece 33 toward the outer peripheral side. However, the optical pickup 10 moves from the outer peripheral side toward the inner peripheral side. Form may be sufficient.
  • the motor driver 31 rotationally drives the stepping motor 30 by an amount corresponding to the pulse signal supplied from the motor controller 32.
  • the motor controller 32 generates a pulse signal according to the movement amount and the movement direction according to the movement start instruction including the movement direction and movement amount in the radial direction of the optical pickup 10 instructed from the control unit 16, and the motor driver 31. Output to.
  • the stepping motor 30 moves the optical pickup 10 in the radial direction of the workpiece 33 and the spindle motor 11 rotates the workpiece 33 on the workpiece 33, the laser beam irradiation position of the workpiece 33 light. Are moved to various positions on the workpiece 33.
  • the control unit 16 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the control unit 16 is configured to control each unit of the processing apparatus 90 according to a program stored in the ROM, and to centrally control a recording process for the processing target object 33.
  • the workpiece 33 is mounted in a slot (not shown) so that recording by each irradiation head 9 provided in the optical pickup 10 is possible.
  • the driving method of the spindle motor 11 mounted on the processing apparatus 90 that is, the recording method of the workpiece 33 is the CLV method with a constant linear velocity.
  • Execution of the recording method by the CLV method is performed by any of the PCs 38 (see FIG. 3) connected to the control unit 16 so as to be able to send and receive signals after the power is supplied to each part of the apparatus and before the process of step 200 is executed. It is assumed that information indicating whether or not the method is input is executed by reading that the input information is information indicating the CLV method. Further, the control unit 16 is provided with an input / output unit such as a keyboard (not shown) for performing various operations, and the input / output unit is operated by an operator, so that either the CLV method or the CAV method is used. May be determined by determining the input signal.
  • the input by the operator is provided with a display screen such as a monitor in advance so as to be able to send and receive signals to the control unit 16, and displays information for selecting a recording method on the display screen. What is necessary is just to comprise previously so that an operator can perform selection instruction
  • step 200 recording data to be recorded on the recording material layer 33B of the processing object 33 is read from the memory 36.
  • the recording data includes, for example, pit P information indicating each pit P formed in the recording material layer 33B of the workpiece 33.
  • the pit P information includes position information indicating the position coordinates of each pit P on the workpiece 33, and information indicating the shape, size, depth, and the like of the pit P.
  • the distance from the rotation center Q on the workpiece 33 of each pit P is read based on the pit P information of each pit P read in step 200 above.
  • the distance from the rotation center Q may be calculated based on the position information included in each pit P information.
  • the irradiation head 9 to be recorded with each pit P is specified.
  • the irradiation head 9 that forms each pit P is specified.
  • the optical pickup 10 when the optical pickup 10 is provided with two irradiation heads 9A and 9B, the optical pickup 10 is provided to be movable in the radial direction of the workpiece 33 by the stepping motor 30. ing. From this, there is an area from the innermost peripheral side in the processing target area 33P, which is an area excluding the non-processing target area around the rotation center Q of the processing target 33, to the radial center of the processing target area 33P. It becomes an irradiation object area
  • region 33P to an outer periphery turns into an irradiation object area
  • the irradiation waveform and irradiation intensity of the laser irradiated to the workpiece 33 to form each pit P are derived for each pit P from the recording data read in step 200.
  • the derived irradiation intensity for each pit P is stored in the memory 36.
  • the irradiation intensity information indicating the irradiation intensity indicates the intensity of the recording laser beam to be irradiated in order to form the pits P having a desired length (length in the rotation direction), depth, and shape on the workpiece 33.
  • the irradiation time and irradiation intensity are determined by the irradiation amount (irradiation energy) necessary for forming the pits P to be formed on the recording material layer 33B of the workpiece 33, and each pit included in the recording data is determined. It is adjusted from the information indicating the shape and depth. Assuming that the pits P are formed at the same location with the same irradiation energy, the irradiation intensity may be reduced as the irradiation time is increased, and the irradiation intensity may be adjusted so as to be increased as the irradiation time is shortened. For this reason, the irradiation time and the irradiation intensity may be determined appropriately based on the balance.
  • the information indicating the ratio of the peak intensity Pn to the bias intensity Tn in the irradiation waveform as the irradiation intensity information is N clocks (N is an integer of 1 or more) with respect to the recording material layer 33B of the rotating workpiece 33.
  • the irradiation intensity information is assumed to form pits P having the same shape and depth, and the peak intensity Pn with respect to the bias intensity Tn irradiated toward the irradiation head 9 provided on the outer peripheral side. What is necessary is just to calculate according to the distance from the rotation center Q of each irradiation head 9 so that ratio of these may become small.
  • the peak intensity Pn is constant
  • the value of 1 / Fn that is the period of the clock signal derived for each irradiation head 9 is calculated as the value of the bias intensity Tn, and this ratio may be used as irradiation intensity information.
  • n of Fn is an integer indicating the position of each irradiation head 9 as described above.
  • N of Fn is “1” which is the initial value of the irradiation head 9 provided on the innermost peripheral side, and the irradiation heads 9 arranged from the irradiation head 9 to the outer peripheral side are respectively from the inner peripheral side. What is necessary is just to set the numerical value counted up in order.
  • the irradiation waveform is a waveform indicating a change rate of irradiation intensity when one pit P is formed by irradiating the recording laser beam from each irradiation head 9 to the recording material layer 33B of the workpiece 33.
  • the time from the rising to the falling of the irradiation waveform is determined according to the number of clocks corresponding to the length of the pit P to be formed. For example, when one clock is one cycle in the clock signal, when a pit P having a length of one clock is formed, it corresponds to the irradiation waveform having a pulse width corresponding to the time from the start to the end of the cycle of one clock.
  • the recording laser light whose irradiation intensity changes at a changing rate is irradiated.
  • a recording laser When a pit having a length of 2 clocks is formed, a recording laser whose irradiation intensity changes at a rate corresponding to the irradiation waveform of the pulse width corresponding to the time from the start to the end of the cycle of 2 clocks. Light is irradiated.
  • the pit P is irradiated with the recording laser light whose irradiation intensity changes at a rate of change corresponding to the irradiation waveform, depending on the irradiation time and irradiation intensity of the irradiated recording laser light.
  • the length, shape, and depth are formed.
  • the irradiation waveform is actually sent from the driver 19 to the irradiation head 9 in synchronization with the clock signal, thereby adjusting the time from the rising edge to the falling edge of the irradiation waveform. Therefore, the irradiation waveform output from the driver 19 to the irradiation head 9 corresponds to each irradiation head 9 input from the pulse generation unit 35 to the irradiation waveform sent from the control unit 16 to the strategy circuit 18 in the driver 19.
  • the waveform is modulated in synchronization with the frequency clock signal. That is, the irradiation time of the recording laser light emitted from each irradiation head 9 is adjusted by adjusting the frequency of the clock signal in each irradiation head 9.
  • the irradiation intensity of the recording laser light emitted from each irradiation head 9 is adjusted by adjusting the bias intensity and the peak intensity of the irradiation waveform according to the ratio of the peak intensity Pn to the bias intensity Tn as the irradiation intensity information. Is adjusted.
  • the pits P are formed by the thermal energy generated by the laser light irradiation as described above. Therefore, the pit P is usually formed at the recording end point (downstream in the rotation direction of the workpiece 33) compared to the recording start point of each pit P (upstream in the rotation direction of the workpiece 33).
  • the pit P to be used tends to be thick. Further, depending on the rotational speed of the workpiece 33 and the intensity of the irradiated laser light, the distance between the pits P may be close and connected.
  • the clock cycle is T (see (2) in FIG. 9), for example, as an irradiation waveform for forming a pit P having a length of 3 ⁇ T (see (1) in FIG. 9)
  • the laser beam is irradiated so that the irradiation amount change shown in the irradiation waveform having the pulse width (length from the rising edge to the falling edge) as shown in (3) of FIG. 9 is 3T.
  • the pit P that is actually formed extends or rubs toward the downstream side in the rotation direction of the workpiece 33 (the arrow X direction in FIG. 9), and the pit P shape is different from the intended shape. It becomes a shape.
  • the one-pulse type is an irradiation waveform indicated by a rectangular pulse having a pulse width less than the length (for example, 3T) of the pit P to be formed.
  • a multi-pulse type (see (5) in FIG. 9) that is an irradiation waveform that falls in one clock cycle, or an L shape type (see (6) in FIG. 9) that is an L-type irradiation waveform.
  • an irradiation waveform of a castle type ((7) in FIG. 9) in which the waveform is constituted by a top pulse, an intermediate bias portion, and a last pulse is used as appropriate.
  • the irradiation waveform information indicating these irradiation waveforms corresponds to information such as the distance between the pits P to be formed, the rotation speed of the workpiece 33, the irradiation intensity for forming each pit P, and the like in advance in the memory 36. Is remembered. For example, when the distance between the pits P, the rotation speed of the workpiece 33, and the irradiation intensity are specific setting values, the recording laser light is processed from the irradiation head 9 with the setting values.
  • the pit P recorded when the object 33 is irradiated may have a non-uniform thickness in the rotational direction X as described above, or may be connected to adjacent pits P, resulting in a shape change.
  • the irradiation waveform information indicating the calculated irradiation waveform may be recorded in the memory 36 in advance in association with the corresponding set value.
  • the control unit 16 includes, for example, irradiation intensity information indicating the irradiation intensity of each pit P, rotation speed information indicating the rotation speed of the workpiece 33, and distance information indicating the distance between the pits P.
  • Corresponding irradiation waveform information is read from the memory 36. Accordingly, the control unit 16 stores, as the irradiation waveform information corresponding to each pitch P, information indicating the one-pulse type, information indicating the multi-pulse type, information indicating the L-shape type, or information indicating the castle type, in the memory 36. You can read from.
  • an irradiation waveform for forming an optimal pit P in which rubbing, bleeding, etc. are suppressed is selected for each pit P, and the irradiation waveform is formed by the irradiation head 9 which is a target for forming each pit P.
  • the corresponding laser beam is irradiated, and the pit P is formed.
  • the frequency of the clock signal generated by a crystal oscillator (not shown) is set as a reference clock frequency and read from the clock signal generated by the crystal oscillator.
  • the reference clock frequency read in step 210 is determined as the frequency of the clock signal of the irradiation head 9A provided on the innermost periphery among the plurality of irradiation heads 9 of the optical pickup 10, and the irradiation is performed.
  • the reference clock frequency information of the reference clock frequency is stored in the memory 36 in association with the information indicating the head 9A.
  • the clock frequency of the clock signal to be used in each of the irradiation heads 9 arranged on the outer peripheral side with respect to the irradiation head 9A arranged on the innermost peripheral side is calculated.
  • the pit P formed by irradiating the rotating workpiece 33 with laser light for a period of N clocks (N is an integer of 1 or more).
  • N is an integer of 1 or more.
  • clock frequency information indicating the frequency of the clock signal calculated for each irradiation head 9 in step 214 is stored in the memory 36 in association with information indicating the corresponding irradiation head 9.
  • a movement start instruction signal indicating that the optical pickup 10 is moved to the reference position is output to the motor controller 32.
  • a movement start signal is output to the motor controller 32, the stepping motor 30 is driven via the motor driver 31, and the optical pickup 10 is arranged at the reference position (the innermost circumference side of the plurality of irradiation heads 9).
  • the irradiation head 9 ⁇ / b> A is moved to a state where the irradiation head 9 ⁇ / b> A is positioned in the innermost peripheral region in the processing target region 33 ⁇ / b> P of the processing target 33.
  • a rotation start instruction signal indicating the rotation start of the workpiece 33 is output to the servo circuit 13.
  • the servo circuit 13 that has received the rotation start instruction signal controls the rotation of the spindle motor 11, thereby starting the rotation of the workpiece 33.
  • the rotation instruction signal includes information indicating the CLV method. From this, rotation with a constant linear velocity by the workpiece 33 is started by the rotation control of the spindle motor 11 based on the information.
  • irradiation head information indicating each irradiation head 9 provided in the optical pickup 10 and clock frequency information derived corresponding to the irradiation head information are read from the memory 36, and each irradiation head information is read. Are output to the pulse generator 35A and the pulse generator 35B of the pulse generator 35 corresponding to the irradiation head 9.
  • irradiation head information indicating each irradiation head 9 provided in the optical pickup 10 irradiation waveform information indicating an irradiation waveform derived corresponding to the irradiation head information, and irradiation intensity information are read from the memory 36, the laser power control circuit 20 (laser power control circuit 20A, laser power control circuit 20B) corresponding to the irradiation head 9 of each irradiation head information, and the strategy circuit 18 (strategy circuit 18A, strategy circuit 18B). Output to.
  • the irradiation waveform information is output to the corresponding strategy circuit 18, and the irradiation waveform information is output to the corresponding strategy circuit 18.
  • the irradiation intensity information is output to the laser power control circuit 20.
  • each of the pulse generation unit 35A and the pulse generation unit 35B provided in accordance with the corresponding irradiation head 9 of the pulse generation unit 35 corresponding to each irradiation head 9 stores the clock frequency information.
  • a clock signal having a frequency is generated and output to each of the corresponding laser driver 19A and laser driver 19B.
  • irradiation waveforms corresponding to the input irradiation waveform information are generated and output to the corresponding laser driver 19A and laser driver 19B, respectively.
  • peak intensity information and bias intensity information included in the input irradiation intensity information are output to the corresponding laser driver 19A and laser driver 19B, respectively.
  • Each laser driver 19A and laser driver 19B to which the irradiation waveform, peak intensity information, and bias intensity information are input, has a peak of the peak intensity information in which the peak intensity of the irradiation waveform is input based on the peak intensity information and the bias intensity information.
  • the irradiation waveform is corrected so that it becomes the intensity and the bias intensity of the irradiation waveform becomes the bias intensity of the input bias intensity information.
  • each laser driver 19A and laser driver 19B outputs the corrected irradiation waveform corrected to each of the corresponding irradiation head 9A and irradiation head 9B.
  • the corrected irradiation waveforms are arranged on the innermost side of the plurality of pits P to be formed in each irradiation head 9 and arranged in the order in which they are formed in the rotation direction of the workpiece 33. Or it outputs to the laser driver 19 in order from the some pit P.
  • FIG. 1 The corrected irradiation waveforms are arranged on the innermost side of the plurality of pits P to be formed in each irradiation head 9 and arranged in the order in which they are formed in the rotation direction of the workpiece 33. Or it outputs to the laser driver 19 in order from the some pit P.
  • step 226 the negative determination is repeated until formation of all the pits P included in the recording data read in step 200 is completed. If the determination is affirmative, this routine ends.
  • the irradiation head 9A and the irradiation head 9B to which the corrected irradiation waveform and the clock signal are input, are respectively input by executing the processing of the above steps 222 and 224.
  • the recording laser beam having the irradiation intensity corresponding to the voltage that changes according to the corrected irradiation waveform is irradiated in synchronization with the clock signal.
  • the pits P are sequentially formed on the workpiece 33 from the inner peripheral side to the outer peripheral side.
  • the control unit 16 controls the stepping motor 30 via the motor controller 32 and the motor driver 31 to process it.
  • the optical pickup 10 is moved from the radially inner periphery side of the object 33 toward the outer periphery side.
  • the pits P are formed in the entire region of the processing target region 33P of the processing target 33.
  • the processing from step 200 to step 226 is executed.
  • the processing object 33 is irradiated with laser light from each of the plurality of irradiation heads 9 provided in the optical pickup 10, whereby pits P are formed in the recording material layer 33B. Therefore, the processing apparatus 90 of the present embodiment can further increase the recording speed as compared with the case where the pits P are formed by only one irradiation head 9.
  • the length of the pits P formed by irradiating the recording material layer 33B of the rotating processing object 33 with laser light for a predetermined clock period is as follows.
  • Each of the plurality of irradiation heads 9 has the same length even if the irradiation head 9 is formed in a different region of the recording material layer 33B of the processing object 33 among the plurality of irradiation heads 9.
  • the irradiation head 9 provided on the outer peripheral side has a higher clock frequency (shorter clock cycle) than the rotation center Q of each irradiation head 9.
  • the frequency of the clock signal is calculated for each irradiation head 9 according to the distance, and laser light is irradiated from each irradiation head 9 in synchronization with the clock signal. From this, the irradiation time of the laser light irradiated from each irradiation head 9 is easily adjusted with a simple configuration for each irradiation head 9. For this reason, the pits P are formed at high speed and with high accuracy in the entire region of the region to be processed of the workpiece 33.
  • the irradiation head 9 provided on the outer peripheral side is closer to the rotation center Q of each irradiation head 9 so that the difference between the peak intensity and the bias intensity becomes smaller.
  • Irradiation intensity information is calculated for each irradiation head 9 according to the distance, and laser light based on the irradiation waveform corresponding to the irradiation intensity information is irradiated. For this reason, the pits P are formed at high speed and with high accuracy in the entire region of the region to be processed of the workpiece 33.
  • both the adjustment of the irradiation intensity and the adjustment of the irradiation time may be adjusted, or only one of them may be adjusted.
  • the recording method is a constant linear velocity
  • the plurality of irradiation heads 9 are moved according to the movement of the optical pickup 10 from the inner peripheral side to the outer peripheral side by the stepping motor 30.
  • the distance from the rotation center Q of each changes.
  • the speed of the workpiece 33 in the region irradiated with the laser light by each irradiation head 9 changes.
  • the frequency of the clock signal in each irradiation head 9 is initially set for each irradiation head 9 regardless of the position of the optical pickup 10 in the radial direction of the workpiece 33.
  • the processing was performed assuming that the frequency was a predetermined frequency.
  • the control unit 16 changes the distance after the change from the rotation center Q of each irradiation head 9 as the optical pickup 10 moves from the inner periphery side to the outer periphery side.
  • the frequency of the clock signal for each irradiation head 9 may be calculated based on the distance and output to the pulse generator 35.
  • the distance from the rotation center Q of each irradiation head 9 is, for example, the radial movement distance from the state where the optical pickup 10 is positioned at the reference position, and the spindle motor 11 is moved each time the optical pickup 10 is moved in the radial direction. What is necessary is just to obtain
  • processing device 91 described in the present embodiment has substantially the same configuration as the processing device 90 described in the first embodiment. For this reason, the same code
  • the processing apparatus 91 has substantially the same configuration as the processing apparatus 90 shown in FIG. The difference is the configuration of each irradiation head 9 provided in the optical pickup 10. The configuration of each irradiation head 9 of the processing apparatus 91 is shown in FIG.
  • each of the irradiation heads 9 (irradiation head 9A and irradiation head 9B) provided in the processing apparatus 91 includes, in addition to the configuration of the irradiation head 9 in the processing apparatus 90, as shown in FIG. A diffraction grating 58 is provided.
  • each irradiation head 9 is provided with a laser diode 53, an optical system 55, a light receiving element 56, and a diffraction grating 58.
  • the optical system 55 includes the polarizing beam splitter 59, the collimator lens 60, the quarter wavelength plate 61, and the objective lens 62.
  • the diffraction grating 58 is for branching the laser beam B emitted from the laser diode 53 into a plurality of laser beams. Therefore, the diffraction grating 58 may have any configuration as long as it has such a function.
  • the diffraction grating 58 uses the laser beam B emitted from the laser diode 53 to change the reflectance of the recording laser beam M used for forming the pit P of the workpiece 33 and the reflectance on the workpiece 33. Is branched into a detection laser beam S1 and a detection laser beam S2. The installation position of the diffraction grating 58 is adjusted in advance so that the pits P can be formed on the workpiece 33 only by the recording laser beam M.
  • the wavelength of the recording laser beam M is such that the pit P can be formed so that it is difficult to form the pit P for the other detection laser beam S1 and the detection laser beam S2.
  • the installation positions are adjusted in advance so that the wavelengths of the other detection laser light S1 and detection laser light S2 are wavelengths at which the pits P cannot be formed.
  • the diffraction grating 58 branches the laser beam B into a total of three laser beams of the recording laser beam M and the two detection laser beams.
  • the laser beam B emitted from the laser diode 53 is branched by the diffraction grating 58.
  • the diffraction grating 58 is irradiated with the detection laser light S1 on the inner peripheral side at a predetermined interval from the region irradiated with the recording laser light M, and is predetermined from the region irradiated with the recording laser light M. Adjustment is made in advance so that the laser beam S2 for detection is irradiated on the outer peripheral side with an interval.
  • the distance between the detection laser beam and the recording laser beam M adjacent to the upstream side in the moving direction of the optical pickup 10 is the radial direction of the pit P to be formed It is preferable that the distance is set in advance so that the distance is less than the distance of. Further, the distance between the detection laser light and the recording laser light M adjacent to the downstream side in the moving direction of the optical pickup 10 is set in advance so as to be equal to the distance in the radial direction of the pits P to be formed. It is preferable.
  • Each of the recording laser beam M, the detection laser beam S1, and the detection laser beam S2 irradiated on the workpiece 33 is reflected by the surface of the workpiece 33, and again the objective lenses 62, 1 / After passing through the four-wavelength plate 61 and the collimator lens 60, it is reflected by the polarization beam splitter 59, passes through the cylindrical lens 63, and enters the light receiving element 56.
  • the light receiving element 56 outputs a signal indicating the position of the beam received by the light receiving element 56 and the amount of received light to the amplifier 12 (see FIG. 3).
  • the light reception signal is supplied to the control unit 16 and the servo circuit 13 via the amplifier 12.
  • the control unit 16 irradiates the irradiation head 9 corresponding to the beam incident on the light receiving element 56 and the recording laser emitted from the irradiation head 9 based on the input signal indicating the position of the beam received by the light receiving element 56 and the received light amount.
  • the light M, the detection laser light S1, and the detection laser light S2 are identified.
  • the control unit 16 controls the stepping motor 30 based on the identification result.
  • the pit P is formed on the workpiece 33 by the stepping motor 30 on the workpiece 33 as in the machining apparatus 90 described in the first embodiment.
  • the processing target object 33 is formed in the region to be processed.
  • the moving direction of the optical pickup 10 is a direction from the inner peripheral side to the outer peripheral side of the workpiece 33
  • the pit P has a rotation center Q of the workpiece 33 as shown in FIG.
  • the optical pickup 10 is irradiated in the radial direction (see the arrow Y direction in FIG. 16) from the outer periphery to the outer peripheral side, and is formed in the entire region of the processing target region 33P of the processing target 33 by being irradiated with laser light. Is done.
  • the radial length of the optical pickup 10 is a length that covers the other end of the radial length in the processing target region 33P of the processing target 33, the pit P is irradiated with each irradiation provided in the optical pickup 10. While continuing the recording process for forming the pits P by irradiating the laser beam from the head 9, the optical pickup 10 is gradually moved from the outer peripheral side to the inner peripheral side, or from the inner peripheral side to the outer peripheral side, and the processing target region 33P It is formed in the whole area.
  • the radial length of the optical pickup 10 is a length that covers only a part of the processing target region 33P in the radial direction (see, for example, FIG.
  • the optical pickup 10 having a plurality of irradiation heads 9 is gradually moved from the inner peripheral side to the outer peripheral side or from the outer peripheral side to the inner peripheral side, the upstream side in the movement direction of the optical pickups 10 in the plurality of irradiation heads 9
  • the irradiation head 9 ⁇ / b> A arranged at the position reaches the area where the pits P are already formed by the irradiation head 9 ⁇ / b> B arranged downstream in the movement direction.
  • the optical pickup 10 is continuously moved in the radial direction while recording, the pits P are formed in an overlapping manner, which is not preferable.
  • the processing apparatus 91 of the present embodiment The irradiating head 9A has already pits on the outer peripheral side of the optical pickup 10 in each irradiating head 9 immediately before reaching the area where the pit P is already formed by the outer irradiating head 9B on the workpiece 33.
  • a recorded area where P is formed is detected.
  • the processing device 91 according to the present embodiment gradually moves the optical pickup 10 in the movement direction (from the inner circumference side toward the outer circumference side), and the pits P are generated by the irradiation heads 9. Is temporarily stopped, the optical pickup 10 is moved in the moving direction by the length in the radial direction of the recorded area, and then recording is started again.
  • the processing apparatus 91 of the present embodiment can perform recording at a high speed and form the pits P on the processing object 33 with high accuracy.
  • control unit 16 executes the processing routine shown in FIG.
  • control unit 16 of the processing apparatus 91 performs the processing shown in FIG. 15 after the rotation start instruction signal output processing of step 220 in the processing routine shown in FIG.
  • the routine is executed as an interrupt process.
  • the processing apparatus 91 performs processing by irradiating laser light from each irradiation head 9 while the optical pickup 10 is gradually moved from the rotation center Q of the processing target 33 toward the outer peripheral side. A description will be given assuming that the pits P are formed on the object 33.
  • step 300 in the plurality of irradiation heads 9 provided in the optical pickup 10, there is an already recorded area on the outer peripheral side of the area where the workpiece 33 is recorded (downstream in the moving direction of the optical pickup 10). It is determined whether or not this is detected. If the determination is negative, the interrupt process ends. On the other hand, if the determination is affirmative, the processing routine proceeds to step 302.
  • the determination in step 300 is a recording used for recording among a plurality of laser beams (recording laser beam M, detection laser S1, detection laser S2) emitted from each irradiation head 9 to the workpiece 33.
  • a recording laser beam M, detection laser S1, detection laser S2 emitted from each irradiation head 9 to the workpiece 33.
  • the following processing is performed as the determination of the intensity change of the reflected light. That is, as the intensity of the reflected light from the processing object 33 of the detection laser S1 and the detection laser S2, the reflected light when the detection laser S2 is irradiated to the area where the pit P of the processing object 33 is not formed. The intensity and the intensity of the reflected light when the detection laser S2 is irradiated onto the area where the pits P are formed are measured. Next, an intensity threshold value for determining the formation area of the pit P from the intensity of the reflected light is determined. When the intensity of the reflected light from the processing object 33 of the detection laser S2 is less than the threshold value, it is determined that the pit P formed region has been determined.
  • a primary stop instruction signal indicating that the formation of the pits P by the irradiation of the laser beams from the plurality of irradiation heads 9 is temporarily stopped is output to the pulse generation unit 35.
  • a signal for irradiating laser light having an irradiation intensity lower than the irradiation intensity necessary for forming the pit P is output to the laser power control circuit 20.
  • the pulse generator 35 that has received the primary stop signal temporarily stops transmission of the synchronization signal to the laser driver 19. For this reason, the sending of the correction waveform signal from each laser driver 19 to each irradiation head 9 is temporarily stopped, and the formation of the pits P is temporarily stopped.
  • the laser power control circuit 20 that has received a signal for irradiating a laser beam having an irradiation intensity lower than the irradiation intensity necessary for forming the pit P outputs the signal to the laser driver 19.
  • the laser driver 19 that has received the signal controls the laser diode 53 so that the laser light having the irradiation intensity input from the laser power control circuit 20 is emitted from the laser diode 53.
  • a movement start instruction signal indicating that the optical pickup 10 is moved in the radial direction toward the downstream side in the movement direction is output to the motor controller 32.
  • the input movement start instruction signal is output to the stepping motor 30 via the motor driver 31.
  • the stepping motor 30 that has received the movement start instruction signal performs a movement process for moving the optical pickup 10 toward the downstream side in the movement direction.
  • next step 306 in the plurality of irradiation heads 9 provided in the optical pickup 10, it is determined whether or not an unrecorded area is detected on the upstream side in the moving direction of the optical pickup 10, that is, on the inner peripheral side. And repeat negative judgment until affirmative.
  • step 306 the detection beam S ⁇ b> 1 provided on the upstream side (inner circumference side) of each irradiation head 9 in the movement direction while moving the optical pickup 10 in the movement direction (from the inner circumference side toward the outer circumference side).
  • an area where no pit P is formed is detected after the intensity change of the reflected light is read and the intensity change of the reflected light indicates the intensity change based on the pit P for a predetermined time, it is not recorded on the inner circumference side. This is done by determining that a region has been detected.
  • a signal indicating resumption of recording is output. Specifically, in the process of step 306, in order to resume the recording process that was temporarily stopped in the process of the abandoned lady P302, formation of pits P by irradiating laser beams from a plurality of irradiation heads 9 is performed. A restart signal indicating restart is output to the pulse generator 35. The pulse generator 35 that has received the restart signal temporarily stops transmission of the synchronization signal to the laser driver 19. For this reason, the sending of the correction waveform signal from each laser driver 19 to each irradiation head 9 is resumed, and the formation of the pits P is resumed.
  • the following processing is performed by executing the interrupt processing routine shown in FIG. That is, for example, the optical pickup 10 moves in a direction from the inner peripheral side to the outer peripheral side of the workpiece 33.
  • the irradiation head 9 irradiates laser light,
  • the workpiece 33 rotates.
  • a plurality of pits P1 are sequentially formed in the rotation direction X of the workpiece 33 by the irradiation head 9A and the irradiation head 9B (not shown) (see FIG. 12).
  • a plurality of pits P2 are sequentially formed in the rotation direction X of the workpiece 33 by the irradiation head 9A and the irradiation head 9B (not shown).
  • the plurality of pits P2 are formed in a region adjacent to the outer peripheral side of the plurality of already formed pits P1 (see FIG. 13).
  • the inner peripheral irradiation head 9A reaches the region where the pit P is already formed by the outer peripheral irradiation head 9B on the workpiece 33.
  • a recorded area on the downstream side in the moving direction of the optical pickup 10 is detected.
  • the processing apparatus 91 of this Embodiment detects the recorded area
  • the recording process for forming the pits P is temporarily stopped, and the optical pickup 10 is moved so that the laser beam emitted from the irradiation head 9A arranged on the most upstream side in the moving direction is irradiated to the unrecorded area. After moving in the direction by the radial length of the recorded area, recording is started again. For this reason, the processing apparatus 91 according to the present embodiment can form pits at high speed, and can accurately and efficiently form pits over the entire region 33P of the object 33 to be processed. It becomes.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

Provided is a working apparatus capable of working a pattern at a high speed on a member to be worked having a heat mode type recording material layer.  The member to be worked is irradiated with laser beams individually by a plurality of irradiation heads mounted on an optical pickup, so that pits are formed in the recording material layer.  As a result, the recording speed can be further increased, as compared with the case, in which the pits are formed by only one irradiation head.

Description

加工装置Processing equipment
 本発明は、加工装置に関する。本発明は、特に、ヒートモード型記録材料層を有する加工対象部材に、加工を行う加工装置に関する。 The present invention relates to a processing apparatus. The present invention particularly relates to a processing apparatus that performs processing on a processing target member having a heat mode type recording material layer.
 従来から、加工対象物にレーザ光を照射して、加工対象物に所定のパターンを形成する加工装置が、知られている。このような加工装置としては、直交する2つのスライダを駆動してXYテーブル上に載置された加工対象物をX方向及びY方向へ移動させることで加工を行う装置が知られている。また、このような加工装置としては、回転体と光学系を組み合わせて回転体によって加工対象物を回転させながらレーザ加工を行う装置等が知られている。例えば、特開2007-216263号公報には、高精度な加工を目的として、加工対象物を回転させながらレーザ加工を行う方法を用い、レーザ光のビームスポットの光強度分布を調整することで、加工対象物にビームスポットの径以下の微細パターンを形成する方法が開示されている。また、WO2004/047096号公報には、記録用レーザ光を照射することで形成対象の凹凸パターンに対応する微細パターンを形成する技術が開示されている。 2. Description of the Related Art Conventionally, a processing apparatus that forms a predetermined pattern on a processing target by irradiating the processing target with laser light is known. As such a processing apparatus, there is known an apparatus that performs processing by driving two orthogonal sliders to move a processing object placed on an XY table in the X direction and the Y direction. Further, as such a processing apparatus, an apparatus that performs laser processing while rotating a processing object by a rotating body by combining a rotating body and an optical system is known. For example, in Japanese Patent Application Laid-Open No. 2007-216263, for the purpose of high-precision processing, a method of performing laser processing while rotating an object to be processed, and adjusting the light intensity distribution of a laser beam spot, A method of forming a fine pattern having a diameter equal to or less than the diameter of a beam spot on a workpiece is disclosed. Also, WO 2004/047096 discloses a technique for forming a fine pattern corresponding to a concavo-convex pattern to be formed by irradiating a recording laser beam.
 このような微細パターンの形成される加工対象物としては、様々な物へ展開がなされている。また、微細パターンの形成にヒートモード型の記録材料層が、加工対象物として選択される場合もある。ヒートモード型の記録材料層は、照射による光熱変換により、物理的変化あるいは化学的変化を引き起こすことで所望のパターンが形成される層である。即ち、ヒートモード型の記録材料層は、照射の速度が遅くなると発生した熱が散逸し、より多くの照射エネルギーが必要になる低照度不軌特性(低照度、長時間照射ほど、感光材料の感度が低下する特性)を有している。したがって、ヒートモード型記録材料層に照射によりパターンを形成(記録)する場合、短時間照射で高速に形成を行う必要がある。 Developed as a processing object on which such a fine pattern is formed has been developed to various objects. In addition, a heat mode type recording material layer may be selected as a processing object for forming a fine pattern. The heat mode type recording material layer is a layer in which a desired pattern is formed by causing a physical change or a chemical change by photothermal conversion by irradiation. In other words, the heat mode type recording material layer dissipates the heat generated when the irradiation speed is slow, and requires a lot of irradiation energy. Has a characteristic of lowering. Therefore, when a pattern is formed (recorded) on the heat mode type recording material layer by irradiation, it is necessary to form the pattern at a high speed by short-time irradiation.
 本発明は、ヒートモード型記録材料層を有する加工対象部材に、高速にパターン照射を行う、加工装置を提供する。 The present invention provides a processing apparatus for performing pattern irradiation at high speed on a processing target member having a heat mode type recording material layer.
 本発明の第1の態様は、記録用レーザ光の照射により発生した熱により情報の記録されるヒートモード型記録材料層を有する加工対象部材を、回転させる回転部と、回転されている前記加工対象部材の回転中心を通る直線上に配列され、前記加工対象部材の前記回転中心からの半径方向距離の互いに異なる領域へ記録用レーザ光を照射する複数の照射部と、を備えた加工装置である。 According to a first aspect of the present invention, there is provided a rotating unit for rotating a processing target member having a heat mode type recording material layer on which information is recorded by heat generated by irradiation of a recording laser beam, and the processing that is being rotated. A plurality of irradiation units that are arranged on a straight line passing through the rotation center of the target member and irradiate recording laser beams to regions having different radial distances from the rotation center of the processing target member. is there.
 本発明の第2の態様は、上記第1の態様において、前記複数の照射部は所定間隔で配列され、該所定間隔は、前記加工対象部材の予め定められた加工対象領域における前記回転中心を中心とする半径方向の一端部から他端部までの距離を、前記照射部の数で除算した値である、加工装置である。 According to a second aspect of the present invention, in the first aspect, the plurality of irradiation units are arranged at a predetermined interval, and the predetermined interval is the rotation center in a predetermined processing target region of the processing target member. It is a processing apparatus which is the value which divided the distance from the one end part of radial direction which makes a center to the other end part by the number of the said irradiation parts.
 本発明の第3の態様は、上記第1の態様において、前記回転部により回転されている前記加工対象部材上に前記複数の照射部の各々によって、予め定められた形成対象パターンに応じた形成パターンを形成したときに、該複数の照射部の各々によって形成された形成パターンの大きさ及び形状が互いに同一となるように、前記複数の照射部の各々から照射される記録用レーザ光の照射時間及び照射強度を制御する制御部を備えた、加工装置である。 According to a third aspect of the present invention, in the first aspect, formation according to a predetermined formation target pattern is performed by each of the plurality of irradiation units on the processing target member rotated by the rotation unit. Irradiation of recording laser light emitted from each of the plurality of irradiation units so that the size and shape of the formed pattern formed by each of the plurality of irradiation units are the same when the pattern is formed It is a processing apparatus provided with the control part which controls time and irradiation intensity.
 本発明の第4の態様は、上記第3の態様において、前記複数の照射部の各々に対応して設けられ、照射波形を生成する複数の照射波形生成部と、前記複数の照射部の各々に対応して設けられ、同期信号を生成する複数の同期信号生成部と、を備え、前記複数の照射部は、対応する前記同期信号生成部から入力された同期信号に同期させて、対応する前記照射波形生成部から入力された照射波形に応じた強度及び照射時間の記録用レーザ光を照射し、前記制御部は、前記複数の照射部の内の1つを基準照射部として該基準照射部に出力する同期信号を基準同期信号として予め定め、該基準同期信号を該基準照射部に出力するように前記同期信号発生部を制御すると共に、該基準照射部との距離に応じて該距離が外周側へ向かって大きくなるほど前記同期信号の周波数が高くなり、内周側へ向かって大きくなるほど前記同期信号の周波数が低くなるように前記同期信号生成部を制御することによって、前記複数の照射部の各々から照射される前記記録用レーザ光の照射時間を各照射部毎に制御する、加工装置である。 According to a fourth aspect of the present invention, in the third aspect, a plurality of irradiation waveform generation units that are provided corresponding to each of the plurality of irradiation units and generate an irradiation waveform, and each of the plurality of irradiation units And a plurality of synchronization signal generation units that generate synchronization signals, and the plurality of irradiation units correspond to the synchronization signals input from the corresponding synchronization signal generation units. Irradiating a recording laser beam having an intensity and an irradiation time corresponding to the irradiation waveform input from the irradiation waveform generation unit, and the control unit uses the one of the plurality of irradiation units as a reference irradiation unit. The synchronization signal to be output to the unit is determined in advance as a reference synchronization signal, the synchronization signal generation unit is controlled to output the reference synchronization signal to the reference irradiation unit, and the distance according to the distance from the reference irradiation unit Is becoming larger toward the outer periphery. The synchronization signal generating unit is controlled so that the frequency of the synchronization signal is increased and the frequency of the synchronization signal is decreased as the frequency is increased toward the inner peripheral side, thereby irradiating from each of the plurality of irradiation units. It is a processing apparatus which controls the irradiation time of the recording laser beam for each irradiation unit.
 本発明の第5の態様は、上記第4の態様において、前記照射波形によって示される最小照射強度に対する最大照射強度の比を調整する照射強度調整部を備え、前記制御部は、前記複数の照射部の内の1つを基準照射部として定め、基準照射部との距離に応じて該距離が外周側へ向かって大きくなるほど前記照射波形によって示される最小照射強度に対する最大照射強度の比が小さくなり、該距離が内周側へ向かって大きくなるほど前記照射波形によって示される最小照射強度に対する最大照射強度の比が大きくなるように、前記照射強度調整部を制御することによって、前記記録用レーザ光の照射強度を各照射部毎に制御する、加工装置である。 According to a fifth aspect of the present invention, there is provided an irradiation intensity adjusting unit that adjusts a ratio of the maximum irradiation intensity to the minimum irradiation intensity indicated by the irradiation waveform in the fourth aspect, and the control unit includes the plurality of irradiations. One of the sections is defined as a reference irradiation section, and the ratio of the maximum irradiation intensity to the minimum irradiation intensity indicated by the irradiation waveform decreases as the distance increases toward the outer periphery side according to the distance from the reference irradiation section. By controlling the irradiation intensity adjustment unit so that the ratio of the maximum irradiation intensity to the minimum irradiation intensity indicated by the irradiation waveform increases as the distance increases toward the inner peripheral side, the recording laser light It is a processing apparatus which controls irradiation intensity for every irradiation part.
 本発明の第6の態様は、上記第1の態様において、前記複数の照射部を、前記加工対象部材の内周側から外周側に向かって、または、該加工対象部材の外周側から内周側に向かって相対的に移動させる移動部を備え、前記照射部は、レーザ光を出射する光源と、該光源から出射されたレーザ光を少なくとも前記記録用レーザ光と、前記加工対象部材上の反射率を検出するための検出用レーザ光と、に分岐する分岐部と、前記検出用レーザ光の前記加工対象部材による反射光の光量変化を検出する検出部と、を備え、前記制御部は、前記検出部による検出結果に基づいて、前記加工対象部材上において記録済領域が検出されたときに、前記複数の照射部を前記記録領域が検出されない領域まで移動させるように前記移動部を制御する、加工装置である。 According to a sixth aspect of the present invention, in the first aspect, the plurality of irradiation units may be arranged such that the plurality of irradiation units are directed from the inner peripheral side to the outer peripheral side of the processing target member or from the outer peripheral side of the processing target member. A moving unit that relatively moves toward the side, and the irradiation unit includes a light source that emits a laser beam, a laser beam emitted from the light source, at least the recording laser beam, and a member to be processed A laser beam for detection for detecting the reflectance; a branching unit that branches into a laser beam; and a detection unit that detects a change in the amount of reflected light from the processing target member of the laser beam for detection. Based on the detection result by the detection unit, when the recorded area is detected on the processing target member, the moving unit is controlled to move the plurality of irradiation units to an area where the recording area is not detected. Processing equipment It is.
 本発明の第7の態様は、上記第6の態様において、前記分岐部によって分岐された前記記録用レーザ光と、前記検出用レーザ光と、が、前記加工対象部材の半径方向に所定間隔を開けて照射されるように集光させる集光部を備えた、加工装置である。 According to a seventh aspect of the present invention, in the sixth aspect, the recording laser beam branched by the branching portion and the detection laser beam have a predetermined interval in the radial direction of the workpiece. It is a processing apparatus provided with the condensing part which condenses so that it may be opened and irradiated.
 本発明の第8の態様は、上記第6、第7の態様において、前記分岐部は、前記光源から出射されたレーザ光を少なくとも1または複数のレーザ光と、少なくとも1または複数の検出用レーザ光と、に分岐する、加工装置である。 According to an eighth aspect of the present invention, in the sixth or seventh aspect, the branching unit includes at least one or a plurality of laser beams and at least one or a plurality of detection laser beams emitted from the light source. It is a processing device that branches into light.
 本発明によれば、ヒートモード型記録材料層を有する加工対象部材に、高速にレーザスポット径以下のパターンを含む照射パターンを書込可能な加工装置を、提供できる。 According to the present invention, it is possible to provide a processing apparatus capable of writing an irradiation pattern including a pattern equal to or smaller than the laser spot diameter on a processing target member having a heat mode type recording material layer at high speed.
第1の実施の形態で用いる加工対象物の層構成の一例を示す部分断面図である。It is a fragmentary sectional view which shows an example of the layer structure of the workpiece used in 1st Embodiment. 第1の実施の形態で用いる加工対象物の層構成の一例を示す部分断面図である。It is a fragmentary sectional view which shows an example of the layer structure of the workpiece used in 1st Embodiment. 第1の実施の形態の加工装置の構成を模式的に示したブロック図である。It is the block diagram which showed typically the structure of the processing apparatus of 1st Embodiment. 第1の実施の形態で用いる加工対象物と光ピックアップとの位置関係の一態様を示す模式図である。It is a schematic diagram which shows the one aspect | mode of the positional relationship of the processing target object and optical pick-up used in 1st Embodiment. 第1の実施の形態で用いる加工対象物と光ピックアップとの位置関係の一態様を示す模式図である。It is a schematic diagram which shows the one aspect | mode of the positional relationship of the processing target object and optical pick-up used in 1st Embodiment. 第1の実施の形態の加工装置における照射ヘッドの構成を模式的に示したブロック図である。It is the block diagram which showed typically the structure of the irradiation head in the processing apparatus of 1st Embodiment. 第1の実施の形態の加工装置で実行される処理を示すフローチャートである。It is a flowchart which shows the process performed with the processing apparatus of 1st Embodiment. 第1の実施の形態の加工装置において、各照射ヘッド用に生成したクロック信号を示す模式図である。It is a schematic diagram which shows the clock signal produced | generated for each irradiation head in the processing apparatus of 1st Embodiment. 形成対象のピットと、ピットを形成するときに照射ヘッドで用いられるクロック信号と、クロック信号に同期させて用いられる照射波形の形態と、の一例を示す模式図である。It is a schematic diagram showing an example of a pit to be formed, a clock signal used in an irradiation head when forming the pit, and a form of an irradiation waveform used in synchronization with the clock signal. 照射強度の調整として、ピーク強度とバイアス強度との関係の一例を示す模式図である。It is a schematic diagram which shows an example of the relationship between peak intensity and bias intensity as adjustment of irradiation intensity. 第2の実施の形態で用いる加工装置における照射ヘッドの構成を模式的に示したブロック図である。It is the block diagram which showed typically the structure of the irradiation head in the processing apparatus used by 2nd Embodiment. 第2の実施の形態において各照射ヘッドによるピット形成及び検出態様を示す模式図である。It is a schematic diagram which shows the pit formation and detection aspect by each irradiation head in 2nd Embodiment. 第2の実施の形態において各照射ヘッドによるピット形成及び検出態様を示す模式図である。It is a schematic diagram which shows the pit formation and detection aspect by each irradiation head in 2nd Embodiment. 第2の実施の形態において各照射ヘッドによるピット形成及び検出態様を示す模式図である。It is a schematic diagram which shows the pit formation and detection aspect by each irradiation head in 2nd Embodiment. 第2の実施の形態の加工装置において実行される割り込み処理を示すフローチャートである。It is a flowchart which shows the interruption process performed in the processing apparatus of 2nd Embodiment. 第2の実施の形態で用いる加工対象物と光ピックアップとの位置関係の一態様を示す模式図である。It is a schematic diagram which shows the one aspect | mode of the positional relationship of the processing target used in 2nd Embodiment, and an optical pick-up. 第2の実施の形態で用いる加工対象物と光ピックアップとの位置関係の一態様を示す模式図である。It is a schematic diagram which shows the one aspect | mode of the positional relationship of the processing target used in 2nd Embodiment, and an optical pick-up.
(第1の実施の形態)
 本実施の形態の加工装置90(図3参照)は、1枚のディスク状の加工対象物33に、記録用レーザ光を照射することで、加工対象物33にパターンとしてのピットPを形成する。
(First embodiment)
The processing apparatus 90 (see FIG. 3) according to the present embodiment forms a pit P as a pattern on the processing target 33 by irradiating a recording laser beam onto one disk-shaped processing target 33. .
 加工対象物33は、一枚のディスク状(円盤状)とされている。図1に示すように、加工対象物33は、基板33A上に、記録材料層33Bの積層された構成とされている。なお、本実施の形態では、加工対象物33は、基板33A上に記録材料層33Bの積層された構成とされている場合を説明する。しかしながら、本実施の形態の加工装置90で用いられる加工対象物33は、少なくとも詳細を後述する記録材料層33Bが設けられた構成であればよく、記録材料層33Bのみの構成であってもよい。また、加工対象物33は、記録材料層33Bに、その他の層がさらに積層された構成であってもよい。 The processing object 33 is in the form of a single disk (disc shape). As shown in FIG. 1, the workpiece 33 has a structure in which a recording material layer 33B is laminated on a substrate 33A. In the present embodiment, a case will be described in which the workpiece 33 has a configuration in which a recording material layer 33B is stacked on a substrate 33A. However, the processing object 33 used in the processing apparatus 90 of the present embodiment only needs to have a configuration provided with at least a recording material layer 33B whose details will be described later, and may have a configuration only of the recording material layer 33B. . Further, the processing object 33 may have a configuration in which other layers are further laminated on the recording material layer 33B.
 記録材料層33Bは、構成材料の光吸収による発熱によって変形することでピットP(図2参照)が形成される層であって、記録用レーザ光が照射されることで照射された領域における光熱変換による物性変化により記録のなされる層である。ピットPは、記録材料層33Bに形成される凹部である。 The recording material layer 33B is a layer in which the pits P (see FIG. 2) are formed by being deformed by heat generation due to light absorption of the constituent material, and the photothermal energy in the region irradiated by the recording laser light irradiation. This layer is recorded by changing physical properties due to conversion. The pit P is a recess formed in the recording material layer 33B.
 すなわち、記録材料層33Bは、強い光の照射により光が熱に変換されてこの熱により材料が形状変化して凹部(ピットP)を形成することが可能な層であり、いわゆるヒートモード型の記録材料の層である。記録材料は、従来、光記録ディスクなどの記録層に多用されており、たとえば、シアニン系、フタロシアニン系、キノン系、スクワリリウム系、アズレニウム系、チオール錯塩系、メロシアニン系などの記録材料が用いられる。 That is, the recording material layer 33B is a layer in which light is converted into heat by irradiation of intense light, and the shape of the material is changed by this heat to form a recess (pit P), which is a so-called heat mode type. It is a layer of recording material. Conventionally, recording materials are widely used for recording layers such as optical recording disks. For example, recording materials such as cyanine, phthalocyanine, quinone, squarylium, azulenium, thiol complex, and merocyanine are used.
 本実施の形態における記録材料層33Bは、色素を記録物質として含有する色素型とすることが好ましい。従って、記録材料層33Bに含有される記録物質の例としては、色素等の有機化合物が挙げられる。なお、記録材料層33Bの材料としては、有機材料に限られず、無機材料または無機材料と有機材料の複合材料が使用される。ただし、有機材料は、成膜をスピンコートにより容易にでき、転移温度が低い材料を得にくい。このため、有機材料を採用するのが好ましい。また、有機材料の中でも、光吸収量が分子設計で制御可能な色素を採用するのが好ましい。 The recording material layer 33B in the present embodiment is preferably a dye type containing a dye as a recording substance. Accordingly, examples of the recording material contained in the recording material layer 33B include organic compounds such as dyes. The material of the recording material layer 33B is not limited to an organic material, and an inorganic material or a composite material of an inorganic material and an organic material is used. However, organic materials can be easily formed by spin coating, and it is difficult to obtain a material having a low transition temperature. For this reason, it is preferable to employ an organic material. Among organic materials, it is preferable to employ a dye whose light absorption can be controlled by molecular design.
 ここで、記録材料層33Bの好適な例としては、メチン色素(シアニン色素、ヘミシアニン色素、スチリル色素、オキソノール色素、メロシアニン色素など)、大環状色素(フタロシアニン色素、ナフタロシアニン色素、ポリフィリン色素など)、アゾ色素(アゾ金属キレート色素を含む)、アリリデン色素、錯体色素、クマリン色素、アゾール誘導体、トリアジン誘導体、1-アミノブタジエン誘導体、桂皮酸誘導体、キノフタロン系色素などが挙げられる。 Here, suitable examples of the recording material layer 33B include methine dyes (cyanine dye, hemicyanine dye, styryl dye, oxonol dye, merocyanine dye, etc.), macrocyclic dyes (phthalocyanine dye, naphthalocyanine dye, porphyrin dye, etc.), Examples thereof include azo dyes (including azo metal chelate dyes), arylidene dyes, complex dyes, coumarin dyes, azole derivatives, triazine derivatives, 1-aminobutadiene derivatives, cinnamic acid derivatives, and quinophthalone dyes.
 中でも、記録材料層33Bは、レーザ光により一回限りの情報の記録が可能な、色素型であることが好ましい。有機物の記録材料は、溶剤に溶かしてスピンコートやスプレー塗布により膜を形成することができる。したがって、有機物の記録材料は、生産性に優れる。色素型の記録材料層33Bは、記録波長領域に吸収を有する色素を含有していることが好ましい。特に、光の吸収量を示す消衰係数kの値は、その上限が、10以下であることが好ましく、5以下であることがより好ましく、3以下であることがさらに好ましく、1以下であることが最も好ましい。消衰係数kが高すぎると、記録材料層33Bの光の入射側から反対側まで光りが届かず、不均一なピットPが形成される。また、消衰係数kの下限値は、0.0001以上であることが好ましく、0.001以上であることがより好ましく、0.1以上であることがさらに好ましい。消衰係数kが低すぎると、光吸収量は、少なくなる。このため、大きなレーザパワーが必要となり、加工速度の低下を招く場合がある。 In particular, the recording material layer 33B is preferably a dye type capable of recording information only once with a laser beam. An organic recording material can be dissolved in a solvent to form a film by spin coating or spray coating. Therefore, the organic recording material is excellent in productivity. The dye-type recording material layer 33B preferably contains a dye having absorption in the recording wavelength region. In particular, the upper limit of the extinction coefficient k indicating the amount of light absorption is preferably 10 or less, more preferably 5 or less, further preferably 3 or less, and 1 or less. Most preferred. If the extinction coefficient k is too high, light does not reach from the light incident side to the opposite side of the recording material layer 33B, and non-uniform pits P are formed. Further, the lower limit value of the extinction coefficient k is preferably 0.0001 or more, more preferably 0.001 or more, and further preferably 0.1 or more. If the extinction coefficient k is too low, the amount of light absorption decreases. For this reason, a large laser power is required, and the processing speed may be reduced.
 なお、記録材料層33Bは、上記したように記録波長において光吸収があることが必要である。したがって、レーザ光を出射する光源(後述するレーザダイオード53に相当する(図6参照))の波長に応じて適宜色素を選択したり、構造を改変したりできる。
 例えば、適宜色素は、レーザ光源の発振波長が780nm付近である場合、ペンタメチンシアニン色素、ヘプタメチンオキソノール色素、ペンタメチンオキソノール色素、フタロシアニン色素、ナフタロシアニン色素等から選択されると有利である。
Note that the recording material layer 33B needs to absorb light at the recording wavelength as described above. Accordingly, it is possible to appropriately select a dye or modify the structure according to the wavelength of a light source that emits laser light (corresponding to a laser diode 53 described later (see FIG. 6)).
For example, the appropriate dye is advantageously selected from a pentamethine cyanine dye, a heptamethine oxonol dye, a pentamethine oxonol dye, a phthalocyanine dye, a naphthalocyanine dye, etc. when the oscillation wavelength of the laser light source is around 780 nm. .
 また、適宜色素は、光源の発振波長が660nm付近である場合、トリメチンシアニン色素、ペンタメチンオキソノール色素、アゾ色素、アゾ金属錯体色素、ピロメテン錯体色素等から選択されると有利である。 In addition, when the oscillation wavelength of the light source is around 660 nm, the appropriate dye is advantageously selected from a trimethine cyanine dye, a pentamethine oxonol dye, an azo dye, an azo metal complex dye, a pyromethene complex dye, and the like.
 さらに、適宜色素は、光源の発振波長が405nm付近である場合、モノメチンシアニン色素、モノメチンオキソノール色素、ゼロメチンメロシアニン色素、フタロシアニン色素、アゾ色素、アゾ金属錯体色素、ポルフィリン色素、アリリデン色素、錯体色素、クマリン色素、アゾール誘導体、トリアジン誘導体、ベンゾトリアゾール誘導体、1-アミノブタジエン誘導体、キノフタロン系色素などから選択されると有利である。 Furthermore, when the oscillation wavelength of the light source is around 405 nm, the appropriate dye is a monomethine cyanine dye, monomethine oxonol dye, zero methine merocyanine dye, phthalocyanine dye, azo dye, azo metal complex dye, porphyrin dye, arylidene dye, Advantageously, it is selected from complex dyes, coumarin dyes, azole derivatives, triazine derivatives, benzotriazole derivatives, 1-aminobutadiene derivatives, quinophthalone dyes and the like.
 以下、光源の発振波長が780nm付近であった場合、660nm付近であった場合、405nm付近であった場合に対し、記録材料層33Bとして、それぞれ好ましい化合物の例を挙げる。ここで、以下の化学式1,2で示す化合物(I-1~I-10)は、光源の発振波長が780nm付近であった場合の化合物である。
 また、化学式3,4で示す化合物(II-1~II-8)は、660nm付近であった場合の化合物である。さらに、5,6で示す化合物(III-1~III-14)は、405nm付近であった場合の化合物である。なお、本実施の形態は、これらを記録材料層33Bに用いた場合に限定されるものではない。
Hereinafter, examples of preferable compounds as the recording material layer 33B are given for the case where the oscillation wavelength of the light source is around 780 nm, around 660 nm, and around 405 nm, respectively. Here, compounds (I-1 to I-10) represented by the following chemical formulas 1 and 2 are compounds when the oscillation wavelength of the light source is around 780 nm.
Further, the compounds (II-1 to II-8) represented by the chemical formulas 3 and 4 are compounds when the wavelength is around 660 nm. Further, the compounds (III-1 to III-14) indicated by 5 and 6 are compounds in the case of around 405 nm. The present embodiment is not limited to the case where these are used for the recording material layer 33B.
 光源の発振波長が780nm付近であった場合、記録材料層33Bを構成する化合物の例を以下に示す。 When the oscillation wavelength of the light source is around 780 nm, examples of the compounds constituting the recording material layer 33B are shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 光源の発振波長が660nm付近であった場合、記録材料層33Bを構成する化合物の例を以下に示す。 Examples of compounds constituting the recording material layer 33B when the oscillation wavelength of the light source is around 660 nm are shown below.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 光源の発振波長が405nm付近であった場合、記録材料層33Bを構成する化合物の例を以下に示す。 When the oscillation wavelength of the light source is around 405 nm, examples of compounds constituting the recording material layer 33B are shown below.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 また、特開平4-74690号公報、特開平8-127174号公報、特開平11-53758号公報、特開平11-334204号公報、特開平11-334205号公報、特開平11-334206号公報、特開平11-334207号公報、特開2000-43423号公報、特開2000-108513号公報、及び特開2000-158818号公報等に記載されている色素も、好適に用いられる。 JP-A-4-74690, JP-A-8-127174, JP-A-11-53758, JP-A-11-334204, JP-A-11-334205, JP-A-11-334206, The dyes described in JP-A-11-334207, JP-A-2000-43423, JP-A-2000-108513, JP-A-2000-158818, and the like are also preferably used.
 色素型の記録材料層33Bは、色素を、結合剤などと共に適当な溶剤に溶解して塗布液を調整し、基板33A上に塗布し、塗膜を形成し、乾燥する、ことにより形成される。塗布液を塗布する面の温度は、10℃以上40℃以下の範囲であることが好ましい。より好ましくは、下限値が15℃以上であり、上限値としては、35℃以下であることがより好ましく。また、30℃以下であることが更に好ましく、27℃以下であることが特に好ましい。被塗布面温度が上記範囲にある場合、塗布ムラや塗布故障の発生を防止し、塗膜の厚さが均一に調整される。 The dye-type recording material layer 33B is formed by dissolving the dye in a suitable solvent together with a binder and the like to prepare a coating solution, coating the substrate 33A, forming a coating film, and drying. . The temperature of the surface on which the coating solution is applied is preferably in the range of 10 ° C. or higher and 40 ° C. or lower. More preferably, the lower limit is 15 ° C. or higher, and the upper limit is more preferably 35 ° C. or lower. Moreover, it is more preferable that it is 30 degrees C or less, and it is especially preferable that it is 27 degrees C or less. When the coated surface temperature is in the above range, the occurrence of coating unevenness and coating failure is prevented, and the thickness of the coating film is adjusted uniformly.
 なお、上記の上限値及び下限値は、それぞれを任意で組み合わせればよい。記録材料層33Bは、単層でも重層であってもよい。重層構造の場合、記録材料層33Bは、塗布工程を複数回行うことによって形成される。
 塗布液中の色素の濃度は、一般に、0.01質量%以上15質量%以下の範囲であり、好ましくは0.1質量%以上10質量%以下の範囲、より好ましくは、0.5質量%以上5質量%以下の範囲、最も好ましくは、0.5質量%以上3質量%以下の範囲である。
In addition, what is necessary is just to combine each said upper limit value and lower limit value arbitrarily. The recording material layer 33B may be a single layer or a multilayer. In the case of a multilayer structure, the recording material layer 33B is formed by performing the coating process a plurality of times.
The concentration of the pigment in the coating solution is generally in the range of 0.01% by mass to 15% by mass, preferably in the range of 0.1% by mass to 10% by mass, and more preferably 0.5% by mass. The range is 5% by mass or less, and most preferably 0.5% by mass or more and 3% by mass or less.
 塗布液の溶剤としては、酢酸ブチル、乳酸エチル、セロソルブアセテート等のエステル;メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトンなどのケトン;ジクロルメタン、1,2-ジクロルエタン、クロロホルム等の塩素化炭化水素;ジメエチルホルムアミド等のアミド;メチルシクロヘキサンなどの塩素化炭化水素;ジメチルホルムアミド等のアミド;メチルシクロヘキサン等の炭化水素;テトラヒドロフラン、エチルエーテル、ジオキサン等のエーテル;エタノール、n-プロパノール、イソプロパノール、n-ブタノールジアセトンアルコール等のアルコール;2,2,3,3-テトラフルオロプロパノール等のフッ素系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;等が挙げられる。 Examples of the solvent for the coating solution include esters such as butyl acetate, ethyl lactate and cellosolve acetate; ketones such as methyl ethyl ketone, cyclohexanone and methyl isobutyl ketone; chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane and chloroform; dimethyl ethyl formamide Amides such as methylcyclohexane; amides such as dimethylformamide; hydrocarbons such as methylcyclohexane; ethers such as tetrahydrofuran, ethyl ether, dioxane; ethanol, n-propanol, isopropanol, n-butanol diacetone alcohol, etc. Alcohols; fluorine-based solvents such as 2,2,3,3-tetrafluoropropanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Glycol ethers such as propylene glycol monomethyl ether; and the like.
 上記溶剤は、使用する色素の溶解性を考慮して単独で、或いは2種以上を組み合わせて使用できる。塗布液は、更に、酸化防止剤、UV吸収剤、可塑剤、潤滑剤など各種の添加剤を目的に応じて添加してもよい。 The above solvents can be used alone or in combination of two or more in consideration of the solubility of the dye used. The coating solution may further contain various additives such as an antioxidant, a UV absorber, a plasticizer, and a lubricant depending on the purpose.
 塗布方法としては、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、スクリーン印刷法等が挙げられる。なお、生産性に優れ膜厚のコントロールが容易であるという点でスピンコート法を採用するのが好ましい。 Examples of the coating method include a spray method, a spin coating method, a dip method, a roll coating method, a blade coating method, a doctor roll method, a doctor blade method, and a screen printing method. In addition, it is preferable to employ the spin coating method in terms of excellent productivity and easy control of the film thickness.
 記録材料層33Bは、スピンコート法による形成に有利であるという点から、有機溶媒に対して0.3質量%以上30質量%以下で溶解することが好ましく、1質量%以上20質量%以下で溶解することがより好ましい。特に、テトラフルオロプロパノールに1質量%以上20質量%以下で溶解することが好ましい。また、記録材料層33Bを構成する化合物は、熱分解温度が150℃以上500℃以下であることが好ましく、200℃以上400℃以下であることがより好ましい。
 塗布の際、塗布液の温度は、23℃以上50℃以下の範囲であることが好ましく、24℃以上40℃以下の範囲であることがより好ましく、中でも、25℃以上30℃以下の範囲であることが特に好ましい。
The recording material layer 33B is preferably dissolved in an amount of 0.3% by mass or more and 30% by mass or less with respect to the organic solvent from the viewpoint that it is advantageous for formation by a spin coating method. More preferably, it dissolves. In particular, it is preferable to dissolve in 1 to 20% by mass in tetrafluoropropanol. Further, the compound constituting the recording material layer 33B preferably has a thermal decomposition temperature of 150 ° C. or higher and 500 ° C. or lower, and more preferably 200 ° C. or higher and 400 ° C. or lower.
During coating, the temperature of the coating solution is preferably in the range of 23 ° C. or more and 50 ° C. or less, more preferably in the range of 24 ° C. or more and 40 ° C. or less, and in particular, in the range of 25 ° C. or more and 30 ° C. or less. It is particularly preferred.
 塗布液が結合剤を含有する場合、結合剤の例としては、ゼラチン、セルロース誘導体、デキストラン、ロジン、ゴム等の天然有機高分子物質;ポリエチレン、ポリプロピレン、ポリスチレン、ポリイソブチレン等の炭化水素系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ塩化ビニル・ポリ酢酸ビニル共重合体等のビニル系樹脂、ポリアクリル酸メチル、ポリメタクリル酸メチルなどのアクリル樹脂、ポリビニルアルコール、塩素化ポリエチレン、エポキシ樹脂、ブチラール樹脂、ゴム誘導体、フェノール・ホルムアルデヒド樹脂等の熱硬化性樹脂の初期縮合物などの合成有機高分子;が挙げられる。 When the coating solution contains a binder, examples of the binder include natural organic polymer materials such as gelatin, cellulose derivatives, dextran, rosin, and rubber; hydrocarbon resins such as polyethylene, polypropylene, polystyrene, and polyisobutylene; Vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl chloride / polyvinyl acetate copolymers, acrylic resins such as polymethyl acrylate and polymethyl methacrylate, polyvinyl alcohol, chlorinated polyethylene, epoxy resin, butyral resin Synthetic organic polymers such as rubber derivatives, precondensates of thermosetting resins such as phenol / formaldehyde resins.
 記録材料層33Bの材料として結合剤を併用する場合、結合剤の使用量は、一般に、色素に対して0.01倍量以上50倍量以下(質量比)の範囲にあり、好ましくは0.1倍量以上5倍量以下(質量比)の範囲にあり、このましくは、0.1倍量以上5倍量以下(質量比)の範囲にある。 When a binder is used in combination as the material of the recording material layer 33B, the amount of the binder used is generally in the range of 0.01 to 50 times (mass ratio) with respect to the dye, preferably 0.8. It is in the range of 1 to 5 times (mass ratio), and preferably in the range of 0.1 to 5 times (mass ratio).
 また、記録材料層33Bは、記録材料層33Bの耐光性を向上させるために、種々の褐色防止剤を含有してもよい。
 褐色防止剤としては、一般定期に一重項酸素クエンチャーが用いられる。この一重項酸素クエンチャーとしては、既に工程の特許明細書等の刊行物に記載されているものが利用される。
Further, the recording material layer 33B may contain various browning preventive agents in order to improve the light resistance of the recording material layer 33B.
As a brown inhibitor, a singlet oxygen quencher is generally used regularly. As this singlet oxygen quencher, those already described in publications such as patent specifications of the process are used.
 以上、記録材料層33Bが色素型記録層である場合の溶剤塗布法について述べた。しかしながら、記録材料層33Bは、記録物質の物性に合わせて、蒸着、スパッタリング、CVD等の成膜法によって形成できる。 The solvent application method in the case where the recording material layer 33B is a dye-type recording layer has been described above. However, the recording material layer 33B can be formed by a film forming method such as vapor deposition, sputtering, or CVD in accordance with the physical properties of the recording material.
 なお、色素は、後述するピットPの加工に用いるレーザ光の波長において、他の波長のり吸収率の高いものが採用される。この色素の吸収ピークの波長は、必ずしも可視光の波長領域内であるものに限定されず、紫外領域や、赤外領域であっても構わない。 In addition, as for the dye, those having a high absorption rate at other wavelengths are employed in the wavelength of the laser light used for processing the pit P described later. The wavelength of the absorption peak of the dye is not necessarily limited to that in the visible light wavelength region, and may be in the ultraviolet region or the infrared region.
 このピットPを形成するためのレーザ光の波長λwは、ヒートモードによる形状変化によりピットPが形成される程度の大きなレーザパワーの得られる波長であればよい。例えば、記録材料層33Bに色素を用いる場合、レーザ光の波長λwは、193nm、210nm、266nm、365nm、405nm、488nm、532nm、633nm、650nm、680nm、780nm、830nmなど、1000nm以下が好ましい。
 なお、本実施の形態では、光源(後述するレーザダイオード53)から出射されるレーザ光の内、ピットPを形成しうる照射強度及び波長のレーザ光を、記録レーザ光と称して説明する。
The wavelength λw of the laser light for forming the pit P may be any wavelength that provides a laser power that is large enough to form the pit P due to the shape change in the heat mode. For example, when a dye is used for the recording material layer 33B, the wavelength λw of the laser light is preferably 1000 nm or less, such as 193 nm, 210 nm, 266 nm, 365 nm, 405 nm, 488 nm, 532 nm, 633 nm, 650 nm, 680 nm, 780 nm, and 830 nm.
In the present embodiment, laser light having an irradiation intensity and wavelength that can form pits P among laser light emitted from a light source (a laser diode 53 described later) will be referred to as recording laser light.
 また、このレーザ光の種類(すなわち、後述する各レーザダイオード53から照射されるレーザ光の種類)は、ガスレーザ、固体レーザ、半導体レーザなど、どのようなレーザであってもよい。しかしながら、レーザ光の種類は、自在に発光間隔を変更可能なレーザ光を採用することが好ましい。例えば、レーザ光の種類は、半導体レーザを採用することが好ましい。 Further, the type of laser light (that is, the type of laser light emitted from each laser diode 53 described later) may be any laser such as a gas laser, a solid-state laser, or a semiconductor laser. However, it is preferable to employ a laser beam that can freely change the emission interval as the type of the laser beam. For example, it is preferable to employ a semiconductor laser as the type of laser light.
 また、記録レーザ光のレーザパワー(照射強度)は、加工速度を高めるためには高い方が好ましい。但し、レーザパワーを高めるにつれて、記録レーザ光で記録材料層33Bを走査する速度、例えば、加工対象物33の回転速度を上げなければならない。そのため、レーザパワーの上限値は、回転速度の上限値を考慮して、100Wが好ましく、10Wがより好ましく、5Wがさらに好ましく、1Wが最も好ましい。また、レーザパワーの下限値は、0.1mWが好ましく、0.5mWがより好ましく、1mWが更に好ましい。 Also, the laser power (irradiation intensity) of the recording laser light is preferably higher in order to increase the processing speed. However, as the laser power is increased, the speed at which the recording material layer 33B is scanned with the recording laser light, for example, the rotational speed of the workpiece 33 must be increased. Therefore, the upper limit value of the laser power is preferably 100 W in consideration of the upper limit value of the rotation speed, more preferably 10 W, still more preferably 5 W, and most preferably 1 W. The lower limit of the laser power is preferably 0.1 mW, more preferably 0.5 mW, and even more preferably 1 mW.
 記録材料層33Bの厚さは、後述するピットPの深さに対応させることが好ましい。厚みとしては、例えば、1nm以上10000nm以下の範囲で適宜設定される。また、厚さの下限は、好ましくは10nm以上であり、より好ましくは30nm以上である。その理由は、厚さが薄すぎると、ピットPは、浅く形成される。したがって、光学的な効果が得られにくくなる。また、厚さの上限は、好ましくは、1000nm以下であり、より好ましくは500nm以下である。厚さが厚すぎる場合、大きなレーザパワーが必要になる、深い凹部としてのピットPを形成することが困難になる、さらに、加工速度が低下する。 It is preferable that the thickness of the recording material layer 33B corresponds to the depth of pits P described later. As thickness, it sets suitably in 1 nm or more and 10000 nm or less, for example. Further, the lower limit of the thickness is preferably 10 nm or more, and more preferably 30 nm or more. The reason is that if the thickness is too thin, the pits P are formed shallow. Therefore, it becomes difficult to obtain an optical effect. Further, the upper limit of the thickness is preferably 1000 nm or less, and more preferably 500 nm or less. When the thickness is too thick, it becomes difficult to form the pits P as deep concave portions, which requires a large laser power, and the processing speed decreases.
 また、記録材料層33Bの厚さtと、ピットPの直径dとは、以下の関係であることが好ましい。すなわち、記録材料層33Bの厚さtの上限値は、t<10dを満たす値とするのが好ましく、t<5dを持たす値とするのがより好ましく、t<3dを満たす値とするのが更に好ましい。また、記録材料層33Bの厚さtの下限値は、t>d/100を満たす値とするのが好ましく、t>d/10を満たす値とするのがより好ましく、t>d/5を満たす値とするのが更に好ましい。なお、ピットPの直径dとの関係で記録材料層33Bの厚さtの上限値及び下限値を設定する理由は、上述した理由と同様である。 Further, it is preferable that the thickness t of the recording material layer 33B and the diameter d of the pits P have the following relationship. That is, the upper limit of the thickness t of the recording material layer 33B is preferably a value satisfying t <10d, more preferably a value satisfying t <5d, and a value satisfying t <3d. Further preferred. The lower limit value of the thickness t of the recording material layer 33B is preferably a value that satisfies t> d / 100, more preferably a value that satisfies t> d / 10, and t> d / 5. It is more preferable to satisfy the value. The reason why the upper limit value and the lower limit value of the thickness t of the recording material layer 33B are set in relation to the diameter d of the pit P is the same as that described above.
 上記記録材料層33Bは、記録材料となる物質を、適当な溶剤に溶解または分散して塗布液を調整した後、塗布液をスピンコート、ディップコート、エクストルージョンコートなどの塗布法により、基板33A上に塗布することにより、形成される。 The recording material layer 33B is prepared by dissolving or dispersing a substance serving as a recording material in an appropriate solvent to prepare a coating solution, and then applying the coating solution to the substrate 33A by a coating method such as spin coating, dip coating, or extrusion coating. It is formed by applying on top.
 次に、この記録材料層33BにピットPの形成される原理を説明する。
 図2に示すように、記録材料層33Bに、該記録材料層33Bを構成する材料が光吸収を示す波長(記録材料層33Bを構成する材料によって吸収される波長)の記録用レーザ光が照射されると、記録材料層33Bによって記録用レーザ光が吸収され、吸収された光が熱に変換され、光の照射された領域の温度が上昇する。これにより、記録材料層33Bが軟化、液化、気化、昇華、分解等の化学変化及び物理変化の何れか一方または双方を引き起こす。そして、このような変化を起こした材料は、移動及び消失することで、ピットPが形成される。
Next, the principle that the pits P are formed in the recording material layer 33B will be described.
As shown in FIG. 2, the recording material layer 33B is irradiated with recording laser light having a wavelength at which the material constituting the recording material layer 33B absorbs light (wavelength absorbed by the material constituting the recording material layer 33B). Then, the recording laser light is absorbed by the recording material layer 33B, the absorbed light is converted into heat, and the temperature of the region irradiated with the light rises. Thereby, the recording material layer 33B causes one or both of chemical change and physical change such as softening, liquefaction, vaporization, sublimation, and decomposition. The material having such a change moves and disappears to form pits P.
 なお、記録材料層33Bの気化、昇華、または分解は、その変化の割合が大きく、急峻であることが好ましい。具体的には、記録材料層33Bを構成する材料の気化、昇華、または分解時の示差熱天秤(TG-DTA)による重量減少率は、5%以上であることが好ましく、より好ましくは10%以上、更に好ましくは20%以上である。また記録材料層33Bを構成する材料の気化、昇華、または分解時の示差熱天秤(TG-DTA)による重量減少の傾き(昇温1℃あたりの重量減少率)は、0.1%/℃以上であることが好ましく、より好ましくは0.2%/℃以上、更に好ましくは0.4%/℃以上である。 Note that it is preferable that vaporization, sublimation, or decomposition of the recording material layer 33B has a large rate of change and is steep. Specifically, the weight reduction rate by differential thermal balance (TG-DTA) during vaporization, sublimation, or decomposition of the material constituting the recording material layer 33B is preferably 5% or more, more preferably 10%. More preferably, it is 20% or more. Further, the slope of weight reduction (weight reduction rate per 1 ° C. temperature rise) by the differential thermal balance (TG-DTA) during vaporization, sublimation or decomposition of the material constituting the recording material layer 33B is 0.1% / ° C. The above is preferable, more preferably 0.2% / ° C or more, and still more preferably 0.4% / ° C or more.
 また、軟化、液化、気化、昇華、分解などの化学変化及び物理変化の、少なくとも一方の転移温度は、その上限値が2000℃以下であることが好ましく、1000℃以下であることがより好ましく、500℃以下であることが更に好ましい。その理由は、転移温度が高すぎると、大きなレーザパワーが必要となるからである。また、転移温度の下限値は、50℃以上であることが好ましく、100℃以上であることがより好ましく、150℃以上であることがさらに好ましい。その理由は、転移温度が低すぎると、周囲との温度勾配が少ないため、明瞭な形状のピットPを形成することが困難となるためである。 In addition, the upper limit of the transition temperature of at least one of chemical changes and physical changes such as softening, liquefaction, vaporization, sublimation, and decomposition is preferably 2000 ° C. or less, and more preferably 1000 ° C. or less. More preferably, it is 500 ° C. or lower. The reason is that if the transition temperature is too high, a large laser power is required. The lower limit of the transition temperature is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 150 ° C. or higher. The reason is that if the transition temperature is too low, there is little temperature gradient with respect to the surroundings, making it difficult to form pits P having a clear shape.
 次に、本実施の形態の加工装置90について説明する。 Next, the processing apparatus 90 of the present embodiment will be described.
 本実施の形態の加工装置90は、上述の記録材料層33Bを備えた加工対象物33に対して記録用レーザ光を照射することにより、加工対象物33にピットPを形成する。 The processing apparatus 90 of the present embodiment forms pits P in the processing target 33 by irradiating the processing target 33 provided with the recording material layer 33B with a recording laser beam.
 本実施の形態の加工装置90は、光ピックアップ10と、スピンドルモータ11と、アンプ12と、サーボ回路13と、デコーダ15と、制御部16と、ストラテジ回路18(ストラテジ回路18A、ストラテジ回路18B)と、レーザドライバ19(レーザドライバ19A、レーザドライバ19B)と、レーザパワー制御回路20(レーザパワー制御回路20A、レーザパワー制御回路20B)と、周波数発生器21と、ステッピングモータ30と、モータドライバ31と、モータコントローラ32と、メモリ36と、パルス生成部35と、を備えている。 The processing apparatus 90 according to the present embodiment includes an optical pickup 10, a spindle motor 11, an amplifier 12, a servo circuit 13, a decoder 15, a control unit 16, and a strategy circuit 18 (strategy circuit 18A and strategy circuit 18B). A laser driver 19 (laser driver 19A, laser driver 19B), a laser power control circuit 20 (laser power control circuit 20A, laser power control circuit 20B), a frequency generator 21, a stepping motor 30, and a motor driver 31. A motor controller 32, a memory 36, and a pulse generator 35.
 なお、本実施の形態においては、各々同一機能を有する装置各部を総称して説明する場合には、アルファベットを省略して説明する。例えば、ストラテジ回路としては、本実施の形態の加工装置90には、2つのストラテジ回路18A及びストラテジ回路18Bが設けられている。しかしながら、これらを総称して説明する場合には、ストラテジ回路18と称して説明する。 It should be noted that in the present embodiment, when the parts of the apparatus each having the same function are collectively described, the description is omitted. For example, as a strategy circuit, the processing apparatus 90 of the present embodiment is provided with two strategy circuits 18A and a strategy circuit 18B. However, when these are described generically, they will be described as the strategy circuit 18.
 スピンドルモータ11は、加工対象物33を回転駆動するモータであり、サーボ回路13によって、回転数が制御される。本実施形態における加工装置90は、加工対象物33を角速度一定で駆動する方式(CAV:Constant Angular Velocity)、または、一定の記録線速度となるように加工対象物33を回転駆動する方式(CLV:Constant Linear Velocity)で記録を実施するように構成されている。スピンドルモータ11は、制御部16等からの指示で設定された一定の角速度または一定の線速度で回転される。 The spindle motor 11 is a motor that rotationally drives the workpiece 33, and the rotation speed is controlled by the servo circuit 13. The processing apparatus 90 in the present embodiment is a method for driving the processing object 33 at a constant angular velocity (CAV: Constant Angular Velocity) or a method for rotating the processing object 33 so as to have a constant recording linear velocity (CLV). : Constant Linear Velocity). The spindle motor 11 is rotated at a constant angular velocity or a constant linear velocity set by an instruction from the control unit 16 or the like.
 光ピックアップ10は、スピンドルモータ11によって回転させられる加工対象物33に対して、記録用レーザ光を照射する。光ピックアップ10は、加工対象物33上の異なる領域に記録用レーザ光を照射可能となるように、複数の照射ヘッド9を含んで構成されている。本実施の形態では、「異なる領域」とは、加工対象物33の回転中心Qを中心としたとき、半径位置(回転中心Qからの最短距離)が異なる事を意味している。光ピックアップ10に設けられた複数の照射ヘッド9は、加工対象物33の回転中心Qを中心とする、半径の互いに異なる領域に、記録用レーザ光を照射するように構成されている。 The optical pickup 10 irradiates the processing target object 33 rotated by the spindle motor 11 with a recording laser beam. The optical pickup 10 includes a plurality of irradiation heads 9 so that different regions on the workpiece 33 can be irradiated with recording laser light. In the present embodiment, the “different region” means that the radial position (the shortest distance from the rotation center Q) is different when the rotation center Q of the workpiece 33 is the center. The plurality of irradiation heads 9 provided in the optical pickup 10 are configured to irradiate recording laser beams onto regions having different radii around the rotation center Q of the workpiece 33.
 なお、本実施の形態では、説明を簡略化するために、複数の照射ヘッドとして、照射ヘッド9A及び照射ヘッド9Bの2つの照射ヘッドが設けられている場合を、説明する。加工装置90は、複数(2つ以上)の照射ヘッド9が設けられた構成であればよく、3つ以上の照射ヘッド9が設けられた構成であってもよい。 In this embodiment, in order to simplify the description, a case will be described in which two irradiation heads 9A and 9B are provided as a plurality of irradiation heads. The processing apparatus 90 may have a configuration in which a plurality (two or more) of irradiation heads 9 are provided, and may have a configuration in which three or more irradiation heads 9 are provided.
 これらの照射ヘッド9A及び照射ヘッド9Bは、図4に示すように、スピンドルモータ11によって回転中心Qを中心にして所定方向(図4中、矢印X方向)に回転される加工対象物33の該回転中心Qを通る直線上に、所定間隔を隔てて配列されている。これらの複数の照射ヘッド9A及び照射ヘッド9Bの各々は、加工対象物33の半径方向に延伸された支持部材17に、該所定間隔をあけて、固定されている。支持部材17は、後述するステッピングモータ30に接続されている。ステッピングモータ30は、制御部16の制御によってモータコントローラ32及びモータドライバ31を介して駆動される。このことにより、支持部材17は、支持部材17によって支持された照射ヘッド9A及び照射ヘッド9Bが該所定間隔を維持したままの状態で、加工対象物33を半径方向に移動可能に構成されている。 As shown in FIG. 4, these irradiation head 9 </ b> A and irradiation head 9 </ b> B are formed on the workpiece 33 that is rotated in a predetermined direction (in the direction of arrow X in FIG. 4) about the rotation center Q by the spindle motor 11. On a straight line passing through the rotation center Q, they are arranged at a predetermined interval. Each of the plurality of irradiation heads 9 </ b> A and 9 </ b> B is fixed to the support member 17 extended in the radial direction of the workpiece 33 with the predetermined interval. The support member 17 is connected to a stepping motor 30 described later. The stepping motor 30 is driven via the motor controller 32 and the motor driver 31 under the control of the control unit 16. Thus, the support member 17 is configured to be able to move the workpiece 33 in the radial direction while the irradiation head 9A and the irradiation head 9B supported by the support member 17 maintain the predetermined interval. .
 光ピックアップ10は、各照射ヘッド9によって記録用レーザ光を加工対象物33に対して照射しながら、ステッピングモータ30の駆動によって半径方向に移動される。このことで、ピットPは、加工対象物33の全領域の内の予め定められた加工対象領域33Pの全面にわたって形成される。 The optical pickup 10 is moved in the radial direction by driving the stepping motor 30 while irradiating the processing target object 33 with the recording laser beam by each irradiation head 9. Thus, the pits P are formed over the entire surface of the predetermined processing target region 33P in the entire region of the processing target 33.
 なお、本実施の形態は、照射ヘッド9A及び照射ヘッド9Bが、加工対象物33の予め定められた加工対象領域33Pにおける半径方向の一端部から他端部までの領域の一部に設けられている場合を、説明する。しかしながら、複数の照射ヘッド9は、該一端部から他端部に渡る領域の全体に渡って所定間隔毎に配列された構成であってもよい。 In the present embodiment, the irradiation head 9A and the irradiation head 9B are provided in a part of a region from one end portion to the other end portion in the radial direction in a predetermined processing target region 33P of the processing target 33. Explain the case. However, the plurality of irradiation heads 9 may be arranged at predetermined intervals over the entire region extending from the one end to the other end.
 複数の照射ヘッド9間の距離は、加工対象物33の加工対象領域33Pにおける半径方向の一端部から他端部までの距離を、光ピックアップ10に設けられている照射ヘッド9の数で除算した距離である。この距離は、1枚当たりの加工に要する時間が最も短いとの理由から、好ましい。 The distance between the plurality of irradiation heads 9 is obtained by dividing the distance from one end to the other end in the radial direction in the processing target region 33P of the processing target 33 by the number of irradiation heads 9 provided in the optical pickup 10. Distance. This distance is preferable because the time required for processing per sheet is the shortest.
 各照射ヘッド9(照射ヘッド9A及び照射ヘッド9B)の各々には、図6に示すように、記録用レーザ光Bを出射するレーザダイオード53と、記録用レーザ光Bを加工対象物33の記録材料層33Bへ集光させる光学系55と、反射光を受光する受光素子56と、が設けられている。これらの各照射ヘッド9の構成は、互いに同じ構成である。 As shown in FIG. 6, each irradiation head 9 (irradiation head 9 </ b> A and irradiation head 9 </ b> B) records a laser diode 53 that emits a recording laser beam B and a recording laser beam B on a workpiece 33. An optical system 55 that focuses light onto the material layer 33B and a light receiving element 56 that receives reflected light are provided. Each of these irradiation heads 9 has the same configuration.
 各照射ヘッド9において、レーザダイオード53は、各照射ヘッド9の各々に対応して設けられた詳細を後述するレーザドライバ19(図3 レーザドライバ19A及びレーザドライバ19B参照)から照射波形に応じて変化する電圧がクロック信号に同期させて供給されることにより、照射波形に応じて変化する電圧に応じた強度の記録用レーザ光Bを出射する。光ピックアップ10は、レーザダイオード53より出射された記録用レーザ光Bを偏光ビームスプリッタ59、コリメータレンズ60、1/4波長板61、対物レンズ62を経て、加工対象物33の記録材料層33Bに集光させる。そして、各照射ヘッド9は、記録材料層33Bで反射されたレーザ光を、再び対物レンズ62、1/4波長板61、コリメータレンズ60を透過させて、偏光ビームスプリッタ59で反射させ、シリンドリカルレンズ63を経て、受光素子56に入射させるように構成されている。受光素子56は、受光した信号をアンプ12(図3参照)に出力する。該受光信号は、アンプ12を介して制御部16やサーボ回路13に供給される。 In each irradiation head 9, the laser diode 53 changes according to the irradiation waveform from a laser driver 19 (see FIG. 3, laser driver 19 </ b> A and laser driver 19 </ b> B), which will be described later in detail, corresponding to each irradiation head 9. By supplying the voltage to be synchronized with the clock signal, the recording laser beam B having the intensity corresponding to the voltage that changes according to the irradiation waveform is emitted. In the optical pickup 10, the recording laser beam B emitted from the laser diode 53 passes through the polarization beam splitter 59, the collimator lens 60, the ¼ wavelength plate 61, and the objective lens 62, and is applied to the recording material layer 33 </ b> B of the workpiece 33. Collect light. Each irradiation head 9 transmits the laser beam reflected by the recording material layer 33B again through the objective lens 62, the quarter wavelength plate 61, and the collimator lens 60, and reflects the laser beam by the polarization beam splitter 59, thereby forming a cylindrical lens. The light is incident on the light receiving element 56 through 63. The light receiving element 56 outputs the received signal to the amplifier 12 (see FIG. 3). The received light signal is supplied to the control unit 16 and the servo circuit 13 via the amplifier 12.
 対物レンズ62は、フォーカスアクチュエータ64およびトラッキングアクチュエータ65に保持されて、レーザ光Bの光軸方向および加工対象物33光の径方向に移動可能に構成されている。フォーカスアクチュエータ64およびトラッキングアクチュエータ65の各々は、サーボ回路13(図3参照)から供給されるフォーカスエラー信号およびトラッキングエラー信号に応じて、対物レンズ62を光軸方向および径方向に移動させる。なお、サーボ回路13は、受光素子56およびアンプ12を介して供給される受光信号に基づいてフォーカスエラー信号およびトラッキングエラー信号を生成する。また、サーボ回路13は、上記のように対物レンズ62を移動させることでフォーカス制御およびトラッキング制御を行う。 The objective lens 62 is held by the focus actuator 64 and the tracking actuator 65, and is configured to be movable in the optical axis direction of the laser light B and the radial direction of the light to be processed 33. Each of the focus actuator 64 and the tracking actuator 65 moves the objective lens 62 in the optical axis direction and the radial direction according to the focus error signal and the tracking error signal supplied from the servo circuit 13 (see FIG. 3). The servo circuit 13 generates a focus error signal and a tracking error signal based on a light reception signal supplied via the light receiving element 56 and the amplifier 12. The servo circuit 13 performs focus control and tracking control by moving the objective lens 62 as described above.
 サーボ回路13には、制御部16からの指示信号、周波数発生器21から供給されるスピンドルモータ11の回転数に応じた周波数のFGパルス信号、および、アンプ12からの信号が供給される。サーボ回路13は、これらの供給される信号に基づいて、スピンドルモータ11の回転制御および光ピックアップ10のフォーカス制御、トラッキング制御を行う。加工対象物33の記録材料層33Bに情報を記録する(ピットPを形成する)時のスピンドルモータ11の駆動方式としては、上述のように、加工対象物33を角速度一定で駆動する方式(CAV)や、一定の記録線速度となるように加工対象物33を回転駆動する方式(CLV)のいずれを用いてもよい。 The servo circuit 13 is supplied with an instruction signal from the control unit 16, an FG pulse signal having a frequency corresponding to the rotation speed of the spindle motor 11 supplied from the frequency generator 21, and a signal from the amplifier 12. The servo circuit 13 performs rotation control of the spindle motor 11 and focus control and tracking control of the optical pickup 10 based on these supplied signals. As a driving method of the spindle motor 11 when information is recorded on the recording material layer 33B of the processing object 33 (pit P is formed), as described above, the processing object 33 is driven at a constant angular velocity (CAV). ) Or a method (CLV) of rotating the workpiece 33 so as to achieve a constant recording linear velocity may be used.
 メモリ36は、加工対象物33に記録すべきピット情報を含む記録データを予め蓄積する。そして、メモリ36に蓄積された記録データは、制御部16に出力される。なお、この記録データは、例えば、制御部16を予めPC(パーソナルコンピュータ)38等に信号授受可能に接続して該PC38から入力されるようにし、入力された該記録データをメモリ36に予め記憶すればよい。 The memory 36 stores recording data including pit information to be recorded on the workpiece 33 in advance. The recording data stored in the memory 36 is output to the control unit 16. The recording data is input, for example, from the PC 38 by connecting the control unit 16 to a PC (personal computer) 38 or the like in advance so that signals can be transmitted and received, and the input recording data is stored in the memory 36 in advance. do it.
 制御部16では、詳細は後述するが、メモリ36から読み出した記録データに基づいて、該記録データに含まれる、加工対象物33の記録材料層33Bに記録する対象のピットPの位置、及び形状等を示す情報から、ピットP毎に、各照射ヘッド9に出力する照射波形を示す照射波形情報、及び照射強度を示す照射強度情報を示す情報を、ピットP形成情報として生成する。そして、生成された各ピット形成情報は、各照射ヘッド9で記録する対象となる領域の最内周側から最外周側へ向かって順に生成した情報が配列されるように、並び替えられる。
 そして、この並び替えた各ピットPを示す情報の内、照射波形情報は、対応する照射ヘッド9に接続されたストラテジ回路18に出力される。照射強度を示す照射強度情報は、対応する照射ヘッド9に接続されたレーザパワー制御回路20に、出力される(詳細後述)。
Although the details will be described later, the control unit 16 determines the position and shape of the pits P to be recorded on the recording material layer 33B of the processing target 33 included in the recording data based on the recording data read from the memory 36. For each pit P, irradiation waveform information indicating the irradiation waveform output to each irradiation head 9 and information indicating irradiation intensity information indicating the irradiation intensity are generated as pit P formation information. The generated pit formation information is rearranged so that information generated in order from the innermost side to the outermost side of the region to be recorded by each irradiation head 9 is arranged.
Of the information indicating the rearranged pits P, the irradiation waveform information is output to the strategy circuit 18 connected to the corresponding irradiation head 9. The irradiation intensity information indicating the irradiation intensity is output to the laser power control circuit 20 connected to the corresponding irradiation head 9 (details will be described later).
 また、制御部16では、各照射ヘッド9がレーザ光を照射するときのタイミング調整や照射時間調整のために用いる同期信号(所謂、クロック信号)の周波数を示すクロック周波数情報を、照射ヘッド9毎に作成する。生成されたクロック周波数情報は、対応する照射ヘッド9を示す情報と共にパルス生成部35へ出力される。パルス生成部35では、入力されたクロック周波数情報の周波数のクロック信号を各照射ヘッド9毎に生成し、対応する照射ヘッド9に接続されたドライバ19へ出力する。 Further, in the control unit 16, clock frequency information indicating the frequency of a synchronization signal (so-called clock signal) used for timing adjustment and irradiation time adjustment when each irradiation head 9 irradiates laser light is provided for each irradiation head 9. To create. The generated clock frequency information is output to the pulse generator 35 together with information indicating the corresponding irradiation head 9. The pulse generator 35 generates a clock signal having the frequency of the input clock frequency information for each irradiation head 9 and outputs the generated clock signal to the driver 19 connected to the corresponding irradiation head 9.
 クロック周波数情報は、回転されている加工対象物33の記録材料層33Bに対してNクロック(Nは1以上の整数)の期間レーザ光が照射されることによって形成されるピットPの長さが、複数の照射ヘッド9の内の何れの照射ヘッド9によって加工対象物33の記録材料層33Bの半径位置の異なる領域に形成された場合であっても、同じ長さ及び形状となるように、最外周側に設けられている照射ヘッド9ほどクロック周波数が高く(クロック周期が短く)なるように、各照射ヘッド9の回転中心Qからの距離に応じて算出される。 The clock frequency information includes the length of the pit P formed by irradiating the recording material layer 33B of the rotating workpiece 33 with laser light for a period of N clocks (N is an integer of 1 or more). Even when the recording material layer 33B of the workpiece 33 is formed in different regions of the radial position by any one of the plurality of irradiation heads 9, the same length and shape are obtained. It is calculated according to the distance from the rotation center Q of each irradiation head 9 so that the clock frequency is higher (the clock cycle is shorter) as the irradiation head 9 is provided on the outermost periphery side.
 制御部16において各照射ヘッド9毎に生成されるクロック周波数情報の、具体的な算出方法について更に詳細に説明する。
 加工対象物33が、線速度一定のCLV方式で記録(回転)される場合、光ピックアップ10がステッピングモータ30によって内周側から外周側、または外周側から内周側へ移動しても、複数の照射ヘッド9の各々によってレーザ光の照射される領域における加工対象物33の速度は、一定である。このため、線速度が一定の場合には、複数の照射ヘッド9の内の1つ(例えば、最内周側に配置されている照射ヘッド9A)を基準の照射ヘッドとして定める。基準とされた照射ヘッド9Aからの半径方向距離に応じて、該照射ヘッド9Aから光ピックアップ10の移動方向下流側(光ピックアップ10が内周側から外周側へ移動する場合には外周側)に設けられた照射ヘッド9ほどクロック周波数が高く、該移動方向上流側に設けられた照射ヘッド9ほどクロック周波数が低くなるように、各照射ヘッド9毎にクロック周波数は、算出される。
A specific calculation method of the clock frequency information generated for each irradiation head 9 in the control unit 16 will be described in more detail.
When the workpiece 33 is recorded (rotated) by the CLV method with a constant linear velocity, even if the optical pickup 10 is moved from the inner peripheral side to the outer peripheral side or from the outer peripheral side to the inner peripheral side by the stepping motor 30, a plurality of The speed of the workpiece 33 in a region irradiated with laser light by each of the irradiation heads 9 is constant. For this reason, when the linear velocity is constant, one of the plurality of irradiation heads 9 (for example, the irradiation head 9A disposed on the innermost peripheral side) is determined as a reference irradiation head. Depending on the reference radial distance from the irradiation head 9A, the optical pickup 10 moves downstream from the irradiation head 9A in the moving direction (or the outer peripheral side when the optical pickup 10 moves from the inner peripheral side to the outer peripheral side). The clock frequency is calculated for each irradiation head 9 so that the irradiation head 9 provided has a higher clock frequency and the irradiation head 9 provided upstream in the movement direction has a lower clock frequency.
 例えば、図5に示すように、光ピックアップ10に、複数の照射ヘッド9として3つの照射ヘッド9A、照射ヘッド9B、及び照射ヘッド9Cが、加工対象物33の内周側から外周側に向かって半径方向に所定間隔で配列されるように設けられている。また、光ピックアップ10が基準位置にあるときの各照射ヘッド9A、照射ヘッド9B、照射ヘッド9Cの各々の回転中心Qからの距離が、R1、R2、及びR3各々であったとする。そして、水晶発振器(図示せず)によって生成されたクロック信号の基準クロック周波数がF1であったとする。そして、光ピックアップ10は、内周側から外周側に向かって移動されるとする。この場合において、線速度一定で記録が行われる場合、例えば、図8(1)に示すように、複数の照射ヘッド9の内の最内周側に配置された照射ヘッド9Aを基準照射ヘッドとして定める。照射ヘッド9Aのクロック信号T1の周波数として、周波数F1(クロック信号の周期 1/F1)を定める。そして、図8(2)に示すように、該照射ヘッド9Aの外周側に隣接して配置されている照射ヘッド9Bのクロック信号T2の周波数F2としては、(R2/R1)/F1による算出結果を定める。このときのクロック信号T2の周期は、(1/F1)×(R1/R2)である。
 さらに、同様にして、該照射ヘッド9Bの外周側に隣接して配置されている照射ヘッド9Cのクロック信号T3の周波数F3としては、(R3/R1)/F1による算出結果を定める。このときのクロック信号T2の周期は、(1/F1)×(R1/R3)である。
For example, as shown in FIG. 5, three irradiation heads 9 </ b> A, an irradiation head 9 </ b> B, and an irradiation head 9 </ b> C are provided as a plurality of irradiation heads 9 on the optical pickup 10 from the inner peripheral side to the outer peripheral side of the workpiece 33. They are arranged so as to be arranged at predetermined intervals in the radial direction. Further, it is assumed that the distances from the respective rotation centers Q of the irradiation heads 9A, 9B, and 9C when the optical pickup 10 is at the reference position are R1, R2, and R3, respectively. Assume that the reference clock frequency of the clock signal generated by a crystal oscillator (not shown) is F1. The optical pickup 10 is moved from the inner peripheral side toward the outer peripheral side. In this case, when recording is performed at a constant linear velocity, for example, as shown in FIG. 8 (1), the irradiation head 9A arranged on the innermost peripheral side among the plurality of irradiation heads 9 is used as the reference irradiation head. Determine. A frequency F1 (clock signal period 1 / F1) is determined as the frequency of the clock signal T1 of the irradiation head 9A. Then, as shown in FIG. 8 (2), the frequency F2 of the clock signal T2 of the irradiation head 9B arranged adjacent to the outer peripheral side of the irradiation head 9A is calculated by (R2 / R1) / F1. Determine. The cycle of the clock signal T2 at this time is (1 / F1) × (R1 / R2).
Further, similarly, the calculation result by (R3 / R1) / F1 is determined as the frequency F3 of the clock signal T3 of the irradiation head 9C arranged adjacent to the outer peripheral side of the irradiation head 9B. The period of the clock signal T2 at this time is (1 / F1) × (R1 / R3).
 このように、線速度一定の場合には、光ピックアップ10に設けられている複数の照射ヘッド9の内、基準となる照射ヘッド9として例えば最内周側に配置されている1つの照射ヘッド9Aを基準として定めてクロック周波数F1を定める。照射ヘッド9Aから外周側に向かって配列されているその他の1または複数の照射ヘッド9の各々のクロック周波数は、各々の照射ヘッド9の回転中心Qからの半径をRnとすると、照射ヘッド9Aのクロック周波数F1×(Rn/R1)なる式から求める(図8(3)参照)。 As described above, when the linear velocity is constant, among the plurality of irradiation heads 9 provided in the optical pickup 10, for example, one irradiation head 9A disposed on the innermost peripheral side as the reference irradiation head 9 Is used as a reference to determine the clock frequency F1. The clock frequency of each of the other one or a plurality of irradiation heads 9 arranged from the irradiation head 9A toward the outer peripheral side is set such that the radius from the rotation center Q of each irradiation head 9 is Rn. It is obtained from an equation of clock frequency F1 × (Rn / R1) (see FIG. 8 (3)).
 なお、上記nは、整数を示し、最内周側に配置されている照射ヘッド9Aを「1」番目に位置されている照射ヘッドとした場合、該1番目に位置されている照射ヘッド9から外周側に向かって配列されている照射ヘッド9毎に順に連番をふったときの値を示している。このため、最内周に配置されている照射ヘッド9Aの回転中心Qからの半径は、R1と表記されている。 Note that n represents an integer, and when the irradiation head 9A arranged on the innermost peripheral side is the “1” th irradiation head, the irradiation head 9 positioned first is used. The values are shown when sequential numbers are assigned in order for each of the irradiation heads 9 arranged toward the outer peripheral side. For this reason, the radius from the rotation center Q of the irradiation head 9A arranged on the innermost circumference is denoted as R1.
 なお、上述のように、上記照射ヘッド9Aのクロック周波数F1としては、水晶発振器(図示せず)によって生成された加工対象物33の回転速度に応じた周波数のクロック信号の周波数を、基準クロック周波数として定めればよい。 As described above, as the clock frequency F1 of the irradiation head 9A, the frequency of the clock signal having a frequency corresponding to the rotation speed of the workpiece 33 generated by a crystal oscillator (not shown) is used as the reference clock frequency. It may be determined as
 なお、上述のように加工対象物33が線速度一定のCLV方式で記録(回転)される場合、各照射ヘッド9によってレーザ光の照射される領域における加工対象物33の速度は、光ピックアップ10が加工対象物33の内周側から外周側へ移動することで、各照射ヘッド9の位置が互いの間隔を保持したまま外周側へ移動しても、移動前と同じである。このため、CLV方式で記録する場合、制御部16は、光ピックアップ10が基準位置に位置されているときの各照射ヘッド9の回転中心Qからの距離に基づいて、各照射ヘッド9毎にクロック信号の周波数を算出した後、光ピックアップ10が外周側に移動しても再度クロック信号の周波数を算出することはない。したがって、制御部16は、基準位置に位置されているときに算出したクロック信号の周波数を用いて、各照射ヘッド9により加工対象物33の加工対象領域33Pの全領域の記録が行われるように調整する。 Note that when the workpiece 33 is recorded (rotated) by the CLV method with a constant linear velocity as described above, the speed of the workpiece 33 in the region irradiated with the laser light by each irradiation head 9 is the optical pickup 10. However, even if the position of each irradiation head 9 moves to the outer peripheral side while keeping the distance from each other by moving from the inner peripheral side to the outer peripheral side of the workpiece 33, it is the same as before the movement. For this reason, when recording by the CLV method, the control unit 16 clocks each irradiation head 9 based on the distance from the rotation center Q of each irradiation head 9 when the optical pickup 10 is positioned at the reference position. After the signal frequency is calculated, the frequency of the clock signal is not calculated again even if the optical pickup 10 moves to the outer peripheral side. Therefore, the control unit 16 uses the frequency of the clock signal calculated when the control unit 16 is positioned at the reference position so that the entire area of the processing target area 33P of the processing target object 33 is recorded by each irradiation head 9. adjust.
 一方、加工対象物33が、角速度一定のCAV方式で記録(回転)される場合には、光ピックアップ10のステッピングモータ30による内周側から外周側への移動に応じて、複数の照射ヘッド9の各々回転中心Qからの距離が変化する。このことで、各照射ヘッド9によってレーザ光の照射される領域における加工対象物33の速度は、変化する。このため、CAV方式で記録する場合、制御部16は、光ピックアップ10の内周側から外周側への移動に伴う各照射ヘッド9の回転中心Qからの距離の変化に応じて、変化後の距離に基づいて各照射ヘッド9毎のクロック信号の周波数を算出して、パルス生成部35へ出力すればよい。 On the other hand, when the workpiece 33 is recorded (rotated) by the CAV method having a constant angular velocity, the plurality of irradiation heads 9 are moved according to the movement of the optical pickup 10 from the inner peripheral side to the outer peripheral side by the stepping motor 30. The distance from the rotation center Q of each changes. As a result, the speed of the workpiece 33 in the region irradiated with the laser light by each irradiation head 9 changes. For this reason, when recording by the CAV method, the control unit 16 changes the distance after the change from the rotation center Q of each irradiation head 9 with the movement of the optical pickup 10 from the inner circumference side to the outer circumference side. The frequency of the clock signal for each irradiation head 9 may be calculated based on the distance and output to the pulse generator 35.
 レーザドライバ19は、ストラテジ回路18から供給された照射波形情報と、レーザパワー制御回路20から供給された照射強度情報と、パルス生成部35から供給された同期信号とに基づいて、光ピックアップ10のレーザダイオード53(図6参照)を駆動する。 Based on the irradiation waveform information supplied from the strategy circuit 18, the irradiation intensity information supplied from the laser power control circuit 20, and the synchronization signal supplied from the pulse generator 35, the laser driver 19 The laser diode 53 (see FIG. 6) is driven.
 パルス生成部35は、光ピックアップ10の各照射ヘッド9の各々において同期信号として用いるクロック信号を、制御部16から入力された各照射ヘッド9に対応するクロック周波数情報に基づいて、該クロック周波数情報のクロック周波数となるように作成する。 The pulse generation unit 35 uses a clock signal used as a synchronization signal in each irradiation head 9 of the optical pickup 10 based on the clock frequency information corresponding to each irradiation head 9 input from the control unit 16. Create a clock frequency of
 パルス生成部35は、各照射ヘッド9に対応する複数のパルス生成部35を含んで構成されている。図3及び図4に示すように、複数の照射ヘッド9として2つの照射ヘッド9A及び照射ヘッド9Bが設けられている場合、パルス生成部35は、各々の照射ヘッド9に対応する2つのパルス生成部を含んで構成されている。具体的には、パルス生成部35は、照射ヘッド9Aに対応してパルス生成部35Aが設けられ、照射ヘッド9Bに対応してパルス生成部35Bが設けられている。
 パルス生成部35A及びパルス生成部35Bは、各々、制御部16から送信されたクロック周波数情報に基づいて、該クロック周波数情報に応じた周波数のクロック信号を生成し、各々対応するレーザドライバ19A及びレーザドライバ19Bへ出力する。
The pulse generation unit 35 includes a plurality of pulse generation units 35 corresponding to the respective irradiation heads 9. As shown in FIGS. 3 and 4, when two irradiation heads 9 </ b> A and 9 </ b> B are provided as the plurality of irradiation heads 9, the pulse generation unit 35 generates two pulses corresponding to each irradiation head 9. Part. Specifically, the pulse generation unit 35 is provided with a pulse generation unit 35A corresponding to the irradiation head 9A, and is provided with a pulse generation unit 35B corresponding to the irradiation head 9B.
Each of the pulse generator 35A and the pulse generator 35B generates a clock signal having a frequency corresponding to the clock frequency information based on the clock frequency information transmitted from the controller 16, and each of the corresponding laser driver 19A and laser Output to the driver 19B.
 レーザパワー制御回路20(レーザパワー制御回路20A及びレーザパワー制御回路20B)は、複数の照射ヘッド9の各々に対応して設けられている。レーザパワー制御回路20は、制御部16から入力された照射強度を示す照射強度情報の強度の記録用レーザ光が照射されるように、対応する照射ヘッド9から照射される記録用レーザ光のレーザ強度を調整する。 The laser power control circuit 20 (laser power control circuit 20A and laser power control circuit 20B) is provided corresponding to each of the plurality of irradiation heads 9. The laser power control circuit 20 is a laser of the recording laser light irradiated from the corresponding irradiation head 9 so that the recording laser light having the intensity of the irradiation intensity information indicating the irradiation intensity input from the control unit 16 is irradiated. Adjust the strength.
 ステッピングモータ30は、光ピックアップ10を加工対象物33の径方向に移動させるためのモータである。ステッピングモータ30によって光ピックアップ10が加工対象物33の径方向に移動されることで、該移動に伴って、光ピックアップ10に設けられている複数の照射ヘッド9も加工対象物33の径方向に移動される。本実施の形態では、光ピックアップ10は、加工対象物33の内周側から外周側に向かって移動するものとして説明する、しかしながら、光ピックアップ10は、外周側から内周側へ向かって移動する形態であってもよい。 The stepping motor 30 is a motor for moving the optical pickup 10 in the radial direction of the workpiece 33. When the optical pickup 10 is moved in the radial direction of the workpiece 33 by the stepping motor 30, the plurality of irradiation heads 9 provided in the optical pickup 10 are also moved in the radial direction of the workpiece 33 along with the movement. Moved. In the present embodiment, the optical pickup 10 is described as moving from the inner peripheral side of the workpiece 33 toward the outer peripheral side. However, the optical pickup 10 moves from the outer peripheral side toward the inner peripheral side. Form may be sufficient.
 モータドライバ31は、モータコントローラ32から供給されるパルス信号に応じた量だけステッピングモータ30を回転駆動する。モータコントローラ32は、制御部16から指示される光ピックアップ10の径方向への移動方向および移動量を含む移動開始指示にしたがって、移動量や移動方向に応じたパルス信号を生成し、モータドライバ31に出力する。ステッピングモータ30が光ピックアップ10を加工対象物33の径方向に移動させること、および加工対象物33をスピンドルモータ11が加工対象物33を回転させることにより、加工対象物33光のレーザ光照射位置は、加工対象物33の様々な位置に移動される。 The motor driver 31 rotationally drives the stepping motor 30 by an amount corresponding to the pulse signal supplied from the motor controller 32. The motor controller 32 generates a pulse signal according to the movement amount and the movement direction according to the movement start instruction including the movement direction and movement amount in the radial direction of the optical pickup 10 instructed from the control unit 16, and the motor driver 31. Output to. When the stepping motor 30 moves the optical pickup 10 in the radial direction of the workpiece 33 and the spindle motor 11 rotates the workpiece 33 on the workpiece 33, the laser beam irradiation position of the workpiece 33 light. Are moved to various positions on the workpiece 33.
 制御部16は、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)等から構成されている。制御部16は、ROMに格納されたプログラムにしたがって当該加工装置90の装置各部を制御し、加工対象物33に対する記録処理を中枢的に制御するように構成されている。 The control unit 16 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The control unit 16 is configured to control each unit of the processing apparatus 90 according to a program stored in the ROM, and to centrally control a recording process for the processing target object 33.
 次に、上記構成の加工装置90の制御部16において、加工対象物33へのピットP形成時に実行される処理について説明する。 Next, processing executed when the pit P is formed on the workpiece 33 in the control unit 16 of the processing apparatus 90 having the above configuration will be described.
 制御部16は、加工装置90のスロット(図示せず)に加工対象物33がセットされ、加工装置90の図示を省略する電源スイッチが操作されて装置各部に電力が供給されると、制御部16内のROMに予め記憶されている図7に示す処理ルーチンを実行するためのプログラムを読取り、ステップ200へ進む。 When the processing object 33 is set in a slot (not shown) of the processing apparatus 90 and the power switch (not shown) of the processing apparatus 90 is operated to supply power to each section of the control section 16, the control section 16 The program for executing the processing routine shown in FIG. 7 stored in advance in the ROM in 16 is read and the routine proceeds to step 200.
 なお、加工対象物33は、スロット(図示せず)に装着されることで光ピックアップ10に設けられた各照射ヘッド9による記録が可能な状態となる。 It should be noted that the workpiece 33 is mounted in a slot (not shown) so that recording by each irradiation head 9 provided in the optical pickup 10 is possible.
 また、下記図7に示す処理ルーチンでは、加工装置90に装着されたスピンドルモータ11の駆動方式、すなわち加工対象物33の記録方式が、線速度一定のCLV方式である場合を説明する。 Further, in the processing routine shown in FIG. 7 below, a case will be described in which the driving method of the spindle motor 11 mounted on the processing apparatus 90, that is, the recording method of the workpiece 33 is the CLV method with a constant linear velocity.
 CLV方式による記録方式の実行は、例えば、装置各部に電力が供給された後で且つステップ200の処理実行前に、制御部16に信号授受可能に接続されたPC38(図3参照)から何れの方式であるかを示す情報が入力されるものとし、該入力された情報がCLV方式を示す情報であることを読み取ることによって実行されればよい。また、制御部16に、各種操作を行うためのキーボード等(図示せず)の入出力部を設け、該入出力部が操作者によって操作されることでCLV方式またはCAV方式の何れかの方式が入力されるようにし、該入力信号を判断することによって判別してもよい。なお、操作者による入力は、例えば、モニター等の表示画面を制御部16に信号授受可能に予め設けて、該表示画面に何れの方式で記録するかを選択するための情報を表示し、該表示情報に基づいて操作者が入力部を介して選択指示可能となるように予め構成すればよい。 Execution of the recording method by the CLV method is performed by any of the PCs 38 (see FIG. 3) connected to the control unit 16 so as to be able to send and receive signals after the power is supplied to each part of the apparatus and before the process of step 200 is executed. It is assumed that information indicating whether or not the method is input is executed by reading that the input information is information indicating the CLV method. Further, the control unit 16 is provided with an input / output unit such as a keyboard (not shown) for performing various operations, and the input / output unit is operated by an operator, so that either the CLV method or the CAV method is used. May be determined by determining the input signal. In addition, the input by the operator is provided with a display screen such as a monitor in advance so as to be able to send and receive signals to the control unit 16, and displays information for selecting a recording method on the display screen. What is necessary is just to comprise previously so that an operator can perform selection instruction | indication via an input part based on display information.
 ステップ200では、加工対象物33の記録材料層33Bへの記録対象となる記録データをメモリ36から読み取る。記録データには、例えば、加工対象物33の記録材料層33Bに形成する各ピットPを示すピットP情報が含まれている。そして、ピットP情報には、各ピットPの加工対象物33上の位置座標を示す位置情報、ピットPの形状、大きさ、及び深さ等を示す情報が含まれているとする。 In step 200, recording data to be recorded on the recording material layer 33B of the processing object 33 is read from the memory 36. The recording data includes, for example, pit P information indicating each pit P formed in the recording material layer 33B of the workpiece 33. The pit P information includes position information indicating the position coordinates of each pit P on the workpiece 33, and information indicating the shape, size, depth, and the like of the pit P.
 次のステップ202では、上記ステップ200で読み取った各ピットPのピットP情報に基づいて、各ピットPの加工対象物33上の回転中心Qからの距離を読み取る。回転中心Qからの距離の読み取り方法としては、各ピットP情報に含まれる位置情報に基づいて、回転中心Qからの距離を算出すればよい。 In the next step 202, the distance from the rotation center Q on the workpiece 33 of each pit P is read based on the pit P information of each pit P read in step 200 above. As a method of reading the distance from the rotation center Q, the distance from the rotation center Q may be calculated based on the position information included in each pit P information.
 次のステップ204では、上記ステップ202で読み取った各ピットPの回転中心Qからの距離に基づいて、各ピットPを記録する対象となる照射ヘッド9を特定する。 In the next step 204, based on the distance from the rotation center Q of each pit P read in the above step 202, the irradiation head 9 to be recorded with each pit P is specified.
 ステップ204では、各ピットPを形成する照射ヘッド9を特定する。例えば、図4に示すように、光ピックアップ10に2つの照射ヘッド9A及び照射ヘッド9Bが設けられている場合、光ピックアップ10はステッピングモータ30によって加工対象物33の径方向に移動可能に設けられている。このことから、加工対象物33の回転中心Q周辺の非加工対象領域を除く領域である加工対象領域33P内の最も内周側から、該加工対象領域33Pの径方向中心部に到る領域が、内周側に設けられた照射ヘッド9Aによる照射対象領域となる。そして、加工対象領域33Pの径方向中心部から外周に到る領域が、外周側に設けられた照射ヘッド9Bによる照射対象領域となる。
 そして、上記ステップ202で算出した各ピットPの回転中止Qからの距離が、これらの各照射ヘッド9の各々による照射対象領域の何れの領域内に位置されるかを判別することで、各ピットPを形成する照射ヘッド9(照射ヘッド9Aまたは照射ヘッド9B)を特定すればよい。
In step 204, the irradiation head 9 that forms each pit P is specified. For example, as shown in FIG. 4, when the optical pickup 10 is provided with two irradiation heads 9A and 9B, the optical pickup 10 is provided to be movable in the radial direction of the workpiece 33 by the stepping motor 30. ing. From this, there is an area from the innermost peripheral side in the processing target area 33P, which is an area excluding the non-processing target area around the rotation center Q of the processing target 33, to the radial center of the processing target area 33P. It becomes an irradiation object area | region by the irradiation head 9A provided in the inner peripheral side. And the area | region from the radial direction center part of the process target area | region 33P to an outer periphery turns into an irradiation object area | region by the irradiation head 9B provided in the outer peripheral side.
Then, by determining in which area of the irradiation target area by each of these irradiation heads 9 the distance from the rotation stop Q of each pit P calculated in step 202 is determined, What is necessary is just to specify the irradiation head 9 (irradiation head 9A or irradiation head 9B) which forms P.
 次のステップ206では、上記ステップ200で読み取った記録データから、各ピットPを形成するために加工対象物33に照射するレーザの照射波形及び照射強度をピットP毎に導出する。次のステップ208においては、導出されたピットP毎の照射強度を、メモリ36へ記憶する。 In the next step 206, the irradiation waveform and irradiation intensity of the laser irradiated to the workpiece 33 to form each pit P are derived for each pit P from the recording data read in step 200. In the next step 208, the derived irradiation intensity for each pit P is stored in the memory 36.
 上記照射強度を示す照射強度情報とは、所望の長さ(回転方向長さ)、深さ、及び形状のピットPを加工対象物33に形成するために照射するべき記録用レーザ光の強度を示す情報である。図10に示すように、照射強度情報は、後述する照射波形におけるバイアス強度Tnに対するピーク強度Pnの比を示す情報を含んで構成されている。 The irradiation intensity information indicating the irradiation intensity indicates the intensity of the recording laser beam to be irradiated in order to form the pits P having a desired length (length in the rotation direction), depth, and shape on the workpiece 33. Information. As shown in FIG. 10, the irradiation intensity information includes information indicating the ratio of the peak intensity Pn to the bias intensity Tn in the irradiation waveform described later.
 なお、照射時間及び照射強度は、加工対象物33の記録材料層33Bに形成する対象となるピットPを形成するために必要な照射量(照射エネルギー)により定まり、記録データに含まれる各ピットの形状や深さを示す情報から調整される。なお、同一の照射量エネルギーでピットPを同一箇所に形成することを想定すると、照射時間が長くなるほど照射強度は小さくてよく、照射時間が短くなるほど照射強度は大きくなるように調整すればよい。このことから、照射時間と照射強度は、そのかねあいから適宜これらの値を定めればよい。 The irradiation time and irradiation intensity are determined by the irradiation amount (irradiation energy) necessary for forming the pits P to be formed on the recording material layer 33B of the workpiece 33, and each pit included in the recording data is determined. It is adjusted from the information indicating the shape and depth. Assuming that the pits P are formed at the same location with the same irradiation energy, the irradiation intensity may be reduced as the irradiation time is increased, and the irradiation intensity may be adjusted so as to be increased as the irradiation time is shortened. For this reason, the irradiation time and the irradiation intensity may be determined appropriately based on the balance.
 なお、照射強度情報としての、照射波形におけるバイアス強度Tnに対するピーク強度Pnの比を示す情報は、回転されている加工対象物33の記録材料層33Bに対してNクロック(Nは1以上の整数)の期間レーザ光が照射されることによって形成されるピットPの形状及び深さが、複数の照射ヘッド9の内の何れの照射ヘッド9で加工対象物33上の異なる領域に形成された場合であっても、同じ形状及び深さとなるように、各照射ヘッド9の回転中心Qからの距離に応じて算出される。 The information indicating the ratio of the peak intensity Pn to the bias intensity Tn in the irradiation waveform as the irradiation intensity information is N clocks (N is an integer of 1 or more) with respect to the recording material layer 33B of the rotating workpiece 33. When the shape and depth of the pits P formed by irradiating the laser beam for a period of () are formed in different regions on the workpiece 33 by any one of the plurality of irradiation heads 9. Even so, it is calculated according to the distance from the rotation center Q of each irradiation head 9 so as to have the same shape and depth.
 具体的には、照射強度情報は、同一の形状及び深さのピットPを形成する事を想定したと場合、外周側に設けられている照射ヘッド9ほど照射されるバイアス強度Tnに対するピーク強度Pnの比が小さくなるように、各照射ヘッド9の回転中心Qからの距離に応じて算出すればよい。 Specifically, the irradiation intensity information is assumed to form pits P having the same shape and depth, and the peak intensity Pn with respect to the bias intensity Tn irradiated toward the irradiation head 9 provided on the outer peripheral side. What is necessary is just to calculate according to the distance from the rotation center Q of each irradiation head 9 so that ratio of these may become small.
 例えば、ピーク強度Pnを一定とし、バイアス強度Tnの値として、各照射ヘッド9毎に導出したクロック信号の周期である1/Fnの値を算出し、この比を照射強度情報として用いても良い。なお、Fnの「n」は、上記と同様に、各照射ヘッド9の位置を示す整数である。Fnの「n」は、最内周側に設けられた照射ヘッド9を初期値である「1」とし、該照射ヘッド9から外周側へ配列された照射ヘッド9については、各々内周側から順にカウントアップした数値を定めればよい。 For example, the peak intensity Pn is constant, the value of 1 / Fn that is the period of the clock signal derived for each irradiation head 9 is calculated as the value of the bias intensity Tn, and this ratio may be used as irradiation intensity information. . Note that “n” of Fn is an integer indicating the position of each irradiation head 9 as described above. “N” of Fn is “1” which is the initial value of the irradiation head 9 provided on the innermost peripheral side, and the irradiation heads 9 arranged from the irradiation head 9 to the outer peripheral side are respectively from the inner peripheral side. What is necessary is just to set the numerical value counted up in order.
 照射波形は、各照射ヘッド9から加工対象物33の記録材料層33Bへ記録用レーザ光が照射されることで1つのピットPが形成されるときの照射強度の変化率を示す波形である。照射波形の立ち上がりから立ち下がりまでの時間は、形成対象のピットPの長さに応じたクロック数に応じて定められる。例えば、クロック信号において1クロックを1周期とすると、1クロック分の長さのピットPを形成する場合には、1クロックの周期の開始から終了までの時間に応じたパルス幅の照射波形に応じた変化率で照射強度の変化する記録用レーザ光が照射される。また、2クロック分の長さのピットを形成する場合には、2クロックの周期の開始から終了までの時間に応じたパルス幅の照射波形に応じた変化率で照射強度の変化する記録用レーザ光が照射される。 The irradiation waveform is a waveform indicating a change rate of irradiation intensity when one pit P is formed by irradiating the recording laser beam from each irradiation head 9 to the recording material layer 33B of the workpiece 33. The time from the rising to the falling of the irradiation waveform is determined according to the number of clocks corresponding to the length of the pit P to be formed. For example, when one clock is one cycle in the clock signal, when a pit P having a length of one clock is formed, it corresponds to the irradiation waveform having a pulse width corresponding to the time from the start to the end of the cycle of one clock. The recording laser light whose irradiation intensity changes at a changing rate is irradiated. When a pit having a length of 2 clocks is formed, a recording laser whose irradiation intensity changes at a rate corresponding to the irradiation waveform of the pulse width corresponding to the time from the start to the end of the cycle of 2 clocks. Light is irradiated.
 すなわち、ピットPは、照射波形に応じた変化率で照射強度の変化する記録用レーザ光が加工対象物33に照射されることで、照射された記録用レーザ光の照射時間及び照射強度に応じた長さ、形状、及び深さで形成される。 That is, the pit P is irradiated with the recording laser light whose irradiation intensity changes at a rate of change corresponding to the irradiation waveform, depending on the irradiation time and irradiation intensity of the irradiated recording laser light. The length, shape, and depth are formed.
 照射波形は、実際には、ドライバ19から照射ヘッド9へクロック信号に同期させて送出されることで、照射波形の立ち上がりから立ち下がりまでの時間が調整される。このため、ドライバ19から照射ヘッド9へ出力される照射波形は、ドライバ19において、制御部16からストラテジ回路18へ送出された照射波形をパルス生成部35から入力された各照射ヘッド9に応じた周波数のクロック信号に同期させて変調した波形となる。すなわち、各照射ヘッド9におけるクロック信号の周波数が調整されることで、各照射ヘッド9から照射される記録用レーザ光の照射時間は、調整される。 The irradiation waveform is actually sent from the driver 19 to the irradiation head 9 in synchronization with the clock signal, thereby adjusting the time from the rising edge to the falling edge of the irradiation waveform. Therefore, the irradiation waveform output from the driver 19 to the irradiation head 9 corresponds to each irradiation head 9 input from the pulse generation unit 35 to the irradiation waveform sent from the control unit 16 to the strategy circuit 18 in the driver 19. The waveform is modulated in synchronization with the frequency clock signal. That is, the irradiation time of the recording laser light emitted from each irradiation head 9 is adjusted by adjusting the frequency of the clock signal in each irradiation head 9.
 また、照射強度情報としてのバイアス強度Tnに対するピーク強度Pnの比に応じて、照射波形のバイアス強度とピーク強度が調整されることで、各照射ヘッド9から照射される記録用レーザ光の照射強度が調整される。 Further, the irradiation intensity of the recording laser light emitted from each irradiation head 9 is adjusted by adjusting the bias intensity and the peak intensity of the irradiation waveform according to the ratio of the peak intensity Pn to the bias intensity Tn as the irradiation intensity information. Is adjusted.
 ここで、本実施の形態の加工装置90で形成対象としている記録材料層33Bは、上述したように、レーザ光の照射による熱エネルギーによってピットPが形成される。このことから、ピットPは、通常、各ピットPの記録開始地点(加工対象物33の回転方向上流側)に比べて、記録終了点(加工対象物33の回転方向下流側)の方が形成されるピットPが太くなる傾向にある。また、加工対象物33の回転速度や、照射されるレーザ光の強度によって、各ピットP間の距離が近づき、繋がってしまう場合がある。 Here, in the recording material layer 33B to be formed by the processing apparatus 90 according to the present embodiment, the pits P are formed by the thermal energy generated by the laser light irradiation as described above. Therefore, the pit P is usually formed at the recording end point (downstream in the rotation direction of the workpiece 33) compared to the recording start point of each pit P (upstream in the rotation direction of the workpiece 33). The pit P to be used tends to be thick. Further, depending on the rotational speed of the workpiece 33 and the intensity of the irradiated laser light, the distance between the pits P may be close and connected.
 具体的には、クロック周期をTとすると(図9の(2)参照)、例えば、3×Tの長さのピットP(図9の(1)参照)を形成するための照射波形として、図9の(3)に示すようなパルス幅(立ち上がりから立ち下がりまでの長さ)が3Tの長さの照射波形に示される照射量変化が生じるようにレーザ光が照射される。この場合、実際に形成されるピットPは、加工対象物33の回転方向(図9中、矢印X方向)の下流側に向かって伸びたり擦れたり、ピットP形状が目的とする形状とは異なる形状となったりする。 Specifically, assuming that the clock cycle is T (see (2) in FIG. 9), for example, as an irradiation waveform for forming a pit P having a length of 3 × T (see (1) in FIG. 9), The laser beam is irradiated so that the irradiation amount change shown in the irradiation waveform having the pulse width (length from the rising edge to the falling edge) as shown in (3) of FIG. 9 is 3T. In this case, the pit P that is actually formed extends or rubs toward the downstream side in the rotation direction of the workpiece 33 (the arrow X direction in FIG. 9), and the pit P shape is different from the intended shape. It becomes a shape.
 このような現象を防ぐために、本実施の形態の加工装置90では、形成対象のピットPの長さ(例えば3T)未満のパルス幅の矩形パルスで示される照射波形であるワンパルス型(図9の(4)参照)や、1クロック周期で立ち下がる照射波形であるマルチパルス型(図9の(5)参照)や、L型の照射波形であるLシェイプ型(図9の(6)参照)や、波形をトップパルス,中間バイアス部,及びラストパルスにより構成したキャッスル型(図9の(7))等の照射波形を、適宜用いる。 In order to prevent such a phenomenon, in the processing apparatus 90 of the present embodiment, the one-pulse type (FIG. 9) is an irradiation waveform indicated by a rectangular pulse having a pulse width less than the length (for example, 3T) of the pit P to be formed. (See (4)), a multi-pulse type (see (5) in FIG. 9) that is an irradiation waveform that falls in one clock cycle, or an L shape type (see (6) in FIG. 9) that is an L-type irradiation waveform. Alternatively, an irradiation waveform of a castle type ((7) in FIG. 9) in which the waveform is constituted by a top pulse, an intermediate bias portion, and a last pulse is used as appropriate.
 これらの照射波形を示す照射波形情報は、形成対象の各ピットP間の距離、加工対象物33の回転速度、各ピットPを形成するための照射強度等の情報に対応して、予めメモリ36に記憶されている。この対応づけは、例えば、各ピットP間の距離、加工対象物33の回転速度、及び照射強度が特定の設定値であった場合、該設定値で照射ヘッド9から記録用レーザ光が加工対象物33に照射されたときに記録されるピットPに、上述のようなピットPの太さが回転方向Xに不均一となったり、隣り合うピットPと繋がったり、形状変化を生じさせることのない照射波形を予め実験して求め、求めた照射波形を示す照射波形情報を、対応する設定値に関連づけて予めメモリ36に記録すればよい。 The irradiation waveform information indicating these irradiation waveforms corresponds to information such as the distance between the pits P to be formed, the rotation speed of the workpiece 33, the irradiation intensity for forming each pit P, and the like in advance in the memory 36. Is remembered. For example, when the distance between the pits P, the rotation speed of the workpiece 33, and the irradiation intensity are specific setting values, the recording laser light is processed from the irradiation head 9 with the setting values. The pit P recorded when the object 33 is irradiated may have a non-uniform thickness in the rotational direction X as described above, or may be connected to adjacent pits P, resulting in a shape change. The irradiation waveform information indicating the calculated irradiation waveform may be recorded in the memory 36 in advance in association with the corresponding set value.
 制御部16では、ステップ206の処理において、例えば、各ピットPの照射強度を示す照射強度情報、加工対象物33の回転速度を示す回転速度情報、及び各ピットP間の距離を示す距離情報に対応する照射波形情報を、メモリ36から読み取る。このことによって、制御部16は、各ピッチPに対応する照射波形情報として、ワンパルス型を示す情報、マルチパルス型を示す情報、Lシェイプ型を示す情報、またはキャッスル型を示す情報を、メモリ36から読み取ればよい。 In the process of step 206, the control unit 16 includes, for example, irradiation intensity information indicating the irradiation intensity of each pit P, rotation speed information indicating the rotation speed of the workpiece 33, and distance information indicating the distance between the pits P. Corresponding irradiation waveform information is read from the memory 36. Accordingly, the control unit 16 stores, as the irradiation waveform information corresponding to each pitch P, information indicating the one-pulse type, information indicating the multi-pulse type, information indicating the L-shape type, or information indicating the castle type, in the memory 36. You can read from.
 上記処理によって、各ピットP毎に、擦れや滲み等の抑制される最適なピットPを形成するための照射波形が選択され、各ピットPを形成する対象となる照射ヘッド9によって該照射波形に応じたレーザ光が照射され、ピットPは、形成される。 By the above processing, an irradiation waveform for forming an optimal pit P in which rubbing, bleeding, etc. are suppressed is selected for each pit P, and the irradiation waveform is formed by the irradiation head 9 which is a target for forming each pit P. The corresponding laser beam is irradiated, and the pit P is formed.
 次のステップ210では、水晶発振器(図示せず)によって生成されたクロック信号の周波数を基準クロック周波数として、該水晶発振器により生成されるクロック信号から読取る。次のステップ212では、ステップ210で読み取った基準クロック周波数を、光ピックアップ10の複数の照射ヘッド9の内の、最内周に設けられている照射ヘッド9Aのクロック信号の周波数として定め、該照射ヘッド9Aを示す情報に対応づけて該基準クロック周波数の基準クロック周波数情報を、メモリ36に記憶する。 In the next step 210, the frequency of the clock signal generated by a crystal oscillator (not shown) is set as a reference clock frequency and read from the clock signal generated by the crystal oscillator. In the next step 212, the reference clock frequency read in step 210 is determined as the frequency of the clock signal of the irradiation head 9A provided on the innermost periphery among the plurality of irradiation heads 9 of the optical pickup 10, and the irradiation is performed. The reference clock frequency information of the reference clock frequency is stored in the memory 36 in association with the information indicating the head 9A.
 次のステップ214では、最内周側に配置されている照射ヘッド9Aより外周側に配置されている照射ヘッド9の各々において用いるためのクロック信号のクロック周波数を、算出する。ステップ214における周波数の算出は、上記説明したように、回転されている加工対象物33に対してNクロック(Nは1以上の整数)の期間レーザ光が照射されることによって形成されるピットPの長さが、複数の照射ヘッド9の内の何れの照射ヘッド9で加工対象物33上の異なる領域に形成された場合であっても、同じ長さとなるように、外周側に設けられている照射ヘッド9ほどクロック周波数が高く(クロック周期が短く)なるように、各照射ヘッド9の回転中心Qからの距離に応じて、算出される。 In the next step 214, the clock frequency of the clock signal to be used in each of the irradiation heads 9 arranged on the outer peripheral side with respect to the irradiation head 9A arranged on the innermost peripheral side is calculated. In the calculation of the frequency in step 214, as described above, the pit P formed by irradiating the rotating workpiece 33 with laser light for a period of N clocks (N is an integer of 1 or more). Are provided on the outer peripheral side so as to have the same length even when the irradiation heads 9 are formed in different regions on the workpiece 33 by any of the irradiation heads 9. It is calculated according to the distance from the rotation center Q of each irradiation head 9 so that the clock frequency becomes higher (the clock cycle is shorter) as the irradiation head 9 is present.
 次のステップ216では、上記ステップ214で各照射ヘッド9毎に算出されたクロック信号の周波数を示すクロック周波数情報を、対応する照射ヘッド9を示す情報に対応づけて、メモリ36へ記憶する。 In the next step 216, clock frequency information indicating the frequency of the clock signal calculated for each irradiation head 9 in step 214 is stored in the memory 36 in association with information indicating the corresponding irradiation head 9.
 次のステップ218では、光ピックアップ10を基準位置へ移動させることを示す移動開始指示信号をモータコントローラ32へ出力する。次に、移動開始信号がモータコントローラ32へ出力され、モータドライバ31を介してステッピングモータ30が駆動されて、光ピックアップ10が基準位置(複数の照射ヘッド9の内の最内周側に配置された照射ヘッド9Aが、加工対象物33の加工対象領域33P中の最内周側の領域に位置された状態)へ移動される。 In the next step 218, a movement start instruction signal indicating that the optical pickup 10 is moved to the reference position is output to the motor controller 32. Next, a movement start signal is output to the motor controller 32, the stepping motor 30 is driven via the motor driver 31, and the optical pickup 10 is arranged at the reference position (the innermost circumference side of the plurality of irradiation heads 9). The irradiation head 9 </ b> A is moved to a state where the irradiation head 9 </ b> A is positioned in the innermost peripheral region in the processing target region 33 </ b> P of the processing target 33.
 次のステップ220では、加工対象物33の回転開始を示す回転開始指示信号をサーボ回路13へ出力する。回転開始指示信号を受け付けたサーボ回路13は、スピンドルモータ11の回転制御を行い、これによって加工対象物33の回転が開始される。なお、図7に示す処理ルーチンでは、上述のように、線速度一定であるCLV方式での回転方式(記録方式)を用いる場合を説明する。回転指示信号には、CLV方式を示す情報が含まれる。このことから、該情報に基づいたスピンドルモータ11の回転制御によって、加工対象物33による線速度一定の回転は、開始される。 In the next step 220, a rotation start instruction signal indicating the rotation start of the workpiece 33 is output to the servo circuit 13. The servo circuit 13 that has received the rotation start instruction signal controls the rotation of the spindle motor 11, thereby starting the rotation of the workpiece 33. In the processing routine shown in FIG. 7, the case where the rotation method (recording method) in the CLV method with a constant linear velocity is used as described above will be described. The rotation instruction signal includes information indicating the CLV method. From this, rotation with a constant linear velocity by the workpiece 33 is started by the rotation control of the spindle motor 11 based on the information.
 次のステップ222では、光ピックアップ10に設けられている各照射ヘッド9を示す照射ヘッド情報と、照射ヘッド情報に対応して導出されたクロック周波数情報とを、メモリ36から読取り、各照射ヘッド情報の照射ヘッド9に対応するパルス生成部35のパルス生成部35A、パルス生成部35Bへ出力する。 In the next step 222, irradiation head information indicating each irradiation head 9 provided in the optical pickup 10 and clock frequency information derived corresponding to the irradiation head information are read from the memory 36, and each irradiation head information is read. Are output to the pulse generator 35A and the pulse generator 35B of the pulse generator 35 corresponding to the irradiation head 9.
 次のステップ224では、光ピックアップ10に設けられている各照射ヘッド9を示す照射ヘッド情報と、照射ヘッド情報に対応して導出された照射波形を示す照射波形情報と、及び、照射強度情報と、をメモリ36から読取り、各照射ヘッド情報の照射ヘッド9に対応するレーザパワー制御回路20(レーザパワー制御回路20A、レーザパワー制御回路20B)、及びストラテジ回路18(ストラテジ回路18A、ストラテジ回路18B)へ出力する。 In the next step 224, irradiation head information indicating each irradiation head 9 provided in the optical pickup 10, irradiation waveform information indicating an irradiation waveform derived corresponding to the irradiation head information, and irradiation intensity information Are read from the memory 36, the laser power control circuit 20 (laser power control circuit 20A, laser power control circuit 20B) corresponding to the irradiation head 9 of each irradiation head information, and the strategy circuit 18 (strategy circuit 18A, strategy circuit 18B). Output to.
 具体的には、照射波形情報は、対応するストラテジ回路18へ出力され、照射波形情報は、対応するストラテジ回路18に出力される。また、照射強度情報は、レーザパワー制御回路20へ出力される。 Specifically, the irradiation waveform information is output to the corresponding strategy circuit 18, and the irradiation waveform information is output to the corresponding strategy circuit 18. The irradiation intensity information is output to the laser power control circuit 20.
 ステップ22及びステップ224の処理によって、各照射ヘッド9に対応するパルス生成部35の対応する照射ヘッド9に応じて設けられた各パルス生成部35A及びパルス生成部35Bの各々において、クロック周波数情報の周波数のクロック信号が生成され、対応するレーザドライバ19A及びレーザドライバ19Bの各々へ出力される。 By the processing of step 22 and step 224, each of the pulse generation unit 35A and the pulse generation unit 35B provided in accordance with the corresponding irradiation head 9 of the pulse generation unit 35 corresponding to each irradiation head 9 stores the clock frequency information. A clock signal having a frequency is generated and output to each of the corresponding laser driver 19A and laser driver 19B.
 また、ストラテジ回路18A及びストラテジ回路18Bにおいて、入力された照射波形情報に応じた照射波形は、生成され、各々対応するレーザドライバ19A及びレーザドライバ19Bへ出力される。またさらに、レーザパワー制御回路20A及びレーザパワー制御回路20Bにおいては、入力された照射強度情報に含まれるピーク強度情報とバイアス強度情報とが、各々対応するレーザドライバ19A及びレーザドライバ19Bへ出力される。 Also, in the strategy circuit 18A and the strategy circuit 18B, irradiation waveforms corresponding to the input irradiation waveform information are generated and output to the corresponding laser driver 19A and laser driver 19B, respectively. Furthermore, in the laser power control circuit 20A and the laser power control circuit 20B, peak intensity information and bias intensity information included in the input irradiation intensity information are output to the corresponding laser driver 19A and laser driver 19B, respectively. .
 照射波形、ピーク強度情報、及びバイアス強度情報が入力された各レーザドライバ19A及びレーザドライバ19Bは、ピーク強度情報、及びバイアス強度情報に基づいて照射波形のピーク強度が入力されたピーク強度情報のピーク強度となり、且つ該照射波形のバイアス強度が入力されたバイアス強度情報のバイアス強度となるように、照射波形を補正する。その後に、各レーザドライバ19A及びレーザドライバ19Bは、補正した補正照射波形を、各々対応する照射ヘッド9A及び照射ヘッド9Bの各々へ出力する。補正照射波形は、各照射ヘッド9において形成する対象となる複数のピットPの内の、最も内周側に位置され、且つ、加工対象物33の回転方向に形成される順に配列された、1または複数のピットPから順に、レーザドライバ19へ出力される。 Each laser driver 19A and laser driver 19B, to which the irradiation waveform, peak intensity information, and bias intensity information are input, has a peak of the peak intensity information in which the peak intensity of the irradiation waveform is input based on the peak intensity information and the bias intensity information. The irradiation waveform is corrected so that it becomes the intensity and the bias intensity of the irradiation waveform becomes the bias intensity of the input bias intensity information. Thereafter, each laser driver 19A and laser driver 19B outputs the corrected irradiation waveform corrected to each of the corresponding irradiation head 9A and irradiation head 9B. The corrected irradiation waveforms are arranged on the innermost side of the plurality of pits P to be formed in each irradiation head 9 and arranged in the order in which they are formed in the rotation direction of the workpiece 33. Or it outputs to the laser driver 19 in order from the some pit P. FIG.
 補正照射波形及びクロック信号が入力された照射ヘッド9A及び照射ヘッド9Bは、各々、入力された補正照射波形に応じて変化する電圧に応じた照射強度の記録用レーザ光を、該クロック信号に同期させて照射する。 The irradiation head 9A and the irradiation head 9B, to which the corrected irradiation waveform and the clock signal are input, respectively synchronize the recording laser beam having the irradiation intensity corresponding to the voltage that changes according to the input correction irradiation waveform with the clock signal. Let it irradiate.
 ステップ226では、上記ステップ200で読みとった記録データに含まれる全てのピットP形成が終了されるまで否定判断を繰り返し、肯定されると、本ルーチンを終了する。 In step 226, the negative determination is repeated until formation of all the pits P included in the recording data read in step 200 is completed. If the determination is affirmative, this routine ends.
 なお、上記では説明を省略しているが、上記ステップ222及びステップ224の処理が実行されることによって、補正照射波形及びクロック信号が入力された照射ヘッド9A及び照射ヘッド9Bは、各々、入力された補正照射波形に応じて変化する電圧に応じた照射強度の記録用レーザ光が該クロック信号に同期させて照射される。ことで、加工対象物33上にピットPが順次内周側から外周側に向かって形成される。しかしながら、このときに、照射ヘッド9の各々によって1周分のピットP記録が終了される度に、制御部16は、モータコントローラ32、及びモータドライバ31を介してステッピングモータ30を制御し、加工対象物33の径方向の内周側から外周側に向かって光ピックアップ10が移動される。 Although not described above, the irradiation head 9A and the irradiation head 9B, to which the corrected irradiation waveform and the clock signal are input, are respectively input by executing the processing of the above steps 222 and 224. The recording laser beam having the irradiation intensity corresponding to the voltage that changes according to the corrected irradiation waveform is irradiated in synchronization with the clock signal. Thus, the pits P are sequentially formed on the workpiece 33 from the inner peripheral side to the outer peripheral side. However, at this time, every time the pit P recording for one round is completed by each of the irradiation heads 9, the control unit 16 controls the stepping motor 30 via the motor controller 32 and the motor driver 31 to process it. The optical pickup 10 is moved from the radially inner periphery side of the object 33 toward the outer periphery side.
 このようにして、加工対象物33の加工対象領域33Pの全領域に、ピットPは、形成される。 In this way, the pits P are formed in the entire region of the processing target region 33P of the processing target 33.
 以上説明したように、本実施の形態の加工装置90においては、上記ステップ200~ステップ226の処理が実行される。このことによって、光ピックアップ10に設けられた複数の照射ヘッド9の各々によってレーザ光が加工対象物33に照射されることで、記録材料層33Bに、ピットPが形成される。したがって、本実施の形態の加工装置90は、一つの照射ヘッド9のみでピットPを形成する場合に比べて、記録速度の更なる高速化が図れる。 As described above, in the processing apparatus 90 according to the present embodiment, the processing from step 200 to step 226 is executed. As a result, the processing object 33 is irradiated with laser light from each of the plurality of irradiation heads 9 provided in the optical pickup 10, whereby pits P are formed in the recording material layer 33B. Therefore, the processing apparatus 90 of the present embodiment can further increase the recording speed as compared with the case where the pits P are formed by only one irradiation head 9.
 また、本実施の形態の加工装置90は、回転されている加工対象物33の記録材料層33Bに対して所定クロックの期間レーザ光が照射されることによって形成されるピットPの長さが、複数の照射ヘッド9の内の何れの照射ヘッド9で加工対象物33の記録材料層33Bの異なる領域に形成された場合であっても、同じ長さとなるように、複数の照射ヘッド9の各々が個別に制御する。
 具体的には、本実施の形態の加工装置90は、外周側に設けられている照射ヘッド9ほどクロック周波数が高く(クロック周期が短く)なるように、各照射ヘッド9の回転中心Qからの距離に応じて各照射ヘッド9毎にクロック信号の周波数を算出し、クロック信号に同期させて各照射ヘッド9からレーザ光が照射される。このことから、各照射ヘッド9から照射されるレーザ光の照射時間は、各照射ヘッド9毎に、簡易な構成で容易に調整される。このため、ピットPは、加工対象物33の加工対象とされた領域の内の全領域について、高速且つ高精度に形成される。
Further, in the processing apparatus 90 according to the present embodiment, the length of the pits P formed by irradiating the recording material layer 33B of the rotating processing object 33 with laser light for a predetermined clock period is as follows. Each of the plurality of irradiation heads 9 has the same length even if the irradiation head 9 is formed in a different region of the recording material layer 33B of the processing object 33 among the plurality of irradiation heads 9. Are individually controlled.
Specifically, in the processing apparatus 90 of the present embodiment, the irradiation head 9 provided on the outer peripheral side has a higher clock frequency (shorter clock cycle) than the rotation center Q of each irradiation head 9. The frequency of the clock signal is calculated for each irradiation head 9 according to the distance, and laser light is irradiated from each irradiation head 9 in synchronization with the clock signal. From this, the irradiation time of the laser light irradiated from each irradiation head 9 is easily adjusted with a simple configuration for each irradiation head 9. For this reason, the pits P are formed at high speed and with high accuracy in the entire region of the region to be processed of the workpiece 33.
 また、同様に、本実施の形態の加工装置90は、外周側に設けられている照射ヘッド9ほどピーク強度とバイアス強度との差が小さくなるように、各照射ヘッド9の回転中心Qからの距離に応じて各照射ヘッド9毎に照射強度情報を算出し、照射強度情報に応じた照射波形に基づいたレーザ光を照射する。このため、ピットPは、加工対象物33の加工対象とされた領域の内の全領域について、高速且つ高精度に形成される。 Similarly, in the processing apparatus 90 according to the present embodiment, the irradiation head 9 provided on the outer peripheral side is closer to the rotation center Q of each irradiation head 9 so that the difference between the peak intensity and the bias intensity becomes smaller. Irradiation intensity information is calculated for each irradiation head 9 according to the distance, and laser light based on the irradiation waveform corresponding to the irradiation intensity information is irradiated. For this reason, the pits P are formed at high speed and with high accuracy in the entire region of the region to be processed of the workpiece 33.
 なお、上記照射強度の調整と照射時間の調整とは、双方が調整されてもよく、また何れか一方のみが調整されてもよい。 In addition, both the adjustment of the irradiation intensity and the adjustment of the irradiation time may be adjusted, or only one of them may be adjusted.
 なお、図7に示す処理ルーチンでは、記録方式が線速度一定である場合を説明した。しかしながら、角速度一定のCAV方式で記録(回転)される場合には、上記説明したように、光ピックアップ10のステッピングモータ30による内周側から外周側への移動に応じて、複数の照射ヘッド9の各々回転中心Qからの距離が変化する。このことで、各照射ヘッド9によってレーザ光の照射される領域における加工対象物33の速度は、変化する。このため、CLV方式の場合には、光ピックアップ10が加工対象物33の径方向のどの位置に位置されていても、各照射ヘッド9におけるクロック信号の周波数は、最初に各照射ヘッド9毎に定めた周波数であるとして処理を行った。しかしながら、CAV方式で記録する場合、制御部16は、光ピックアップ10の内周側から外周側への移動に伴って各照射ヘッド9の回転中心Qからの距離の変化に応じて、変化後の距離に基づいて各照射ヘッド9毎のクロック信号の周波数を算出して、パルス生成部35へ出力すればよい。
 各照射ヘッド9の回転中心Qからの距離は、例えば、光ピックアップ10が基準位置に位置された状態からの径方向の移動距離を、光ピックアップ10の径方向が行われる度にスピンドルモータ11の回転に応じて算出することで求めればよい。
In the processing routine shown in FIG. 7, the case where the recording method is a constant linear velocity has been described. However, when recording (rotation) is performed by the CAV method with a constant angular velocity, as described above, the plurality of irradiation heads 9 are moved according to the movement of the optical pickup 10 from the inner peripheral side to the outer peripheral side by the stepping motor 30. The distance from the rotation center Q of each changes. As a result, the speed of the workpiece 33 in the region irradiated with the laser light by each irradiation head 9 changes. For this reason, in the case of the CLV method, the frequency of the clock signal in each irradiation head 9 is initially set for each irradiation head 9 regardless of the position of the optical pickup 10 in the radial direction of the workpiece 33. The processing was performed assuming that the frequency was a predetermined frequency. However, when recording by the CAV method, the control unit 16 changes the distance after the change from the rotation center Q of each irradiation head 9 as the optical pickup 10 moves from the inner periphery side to the outer periphery side. The frequency of the clock signal for each irradiation head 9 may be calculated based on the distance and output to the pulse generator 35.
The distance from the rotation center Q of each irradiation head 9 is, for example, the radial movement distance from the state where the optical pickup 10 is positioned at the reference position, and the spindle motor 11 is moved each time the optical pickup 10 is moved in the radial direction. What is necessary is just to obtain | require by calculating according to rotation.
(第2の実施の形態)
 上記第1の実施の形態では、各照射ヘッド9から加工対象物33へ照射されるレーザ光は、記録用レーザ光1本である場合を説明した。しかしながら、本実施の形態では、各照射ヘッド9から加工対象物33へ複数のレーザ光が照射される場合を説明する。
(Second Embodiment)
In the first embodiment, the case has been described in which the laser light emitted from each irradiation head 9 to the workpiece 33 is one recording laser light. However, in the present embodiment, a case will be described in which a plurality of laser beams are irradiated from each irradiation head 9 to the workpiece 33.
 なお、本実施の形態で説明する加工装置91は、上記第1の実施の形態で説明した加工装置90と略同一の構成である。このため、同一部分には同一符号を付与して詳細な説明を省略する。 Note that the processing device 91 described in the present embodiment has substantially the same configuration as the processing device 90 described in the first embodiment. For this reason, the same code | symbol is attached | subjected to the same part and detailed description is abbreviate | omitted.
 加工装置91は、図3に示す加工装置90と略同一の構成とされている。異なる点は、光ピックアップ10に設けられた各照射ヘッド9の構成である。加工装置91の各照射ヘッド9の構成を図11に示した。 The processing apparatus 91 has substantially the same configuration as the processing apparatus 90 shown in FIG. The difference is the configuration of each irradiation head 9 provided in the optical pickup 10. The configuration of each irradiation head 9 of the processing apparatus 91 is shown in FIG.
 図11に示されるように、加工装置91に設けられた照射ヘッド9(照射ヘッド9A及び照射ヘッド9B)の各々には、図11に示すように、加工装置90における照射ヘッド9の構成に加えて、回折格子58が設けられている。
 具体的には、各照射ヘッド9には、レーザダイオード53と、光学系55と、受光素子56と、回折格子58と、が設けられている。光学系55には、第1の実施の形態で説明したように、偏光ビームスプリッタ59、コリメータレンズ60、1/4波長板61、及び対物レンズ62が設けられている。
As shown in FIG. 11, each of the irradiation heads 9 (irradiation head 9A and irradiation head 9B) provided in the processing apparatus 91 includes, in addition to the configuration of the irradiation head 9 in the processing apparatus 90, as shown in FIG. A diffraction grating 58 is provided.
Specifically, each irradiation head 9 is provided with a laser diode 53, an optical system 55, a light receiving element 56, and a diffraction grating 58. As described in the first embodiment, the optical system 55 includes the polarizing beam splitter 59, the collimator lens 60, the quarter wavelength plate 61, and the objective lens 62.
 回折格子58は、レーザダイオード53より出射されたレーザ光Bを複数のレーザ光に分岐するためのものである。したがって、回折格子58は、このような機能を有するものであれば、どのような構成であってもよい。
 本実施の形態では、回折格子58は、レーザダイオード53から出射されたレーザ光Bを、加工対象物33のピットP形成に用いる記録用レーザ光Mと、加工対象物33上の反射率の変化を検出するための検出用レーザ光S1及び検出用レーザ光S2と、に分岐する。
 回折格子58は、記録用レーザ光Mによってのみ加工対象物33へのピットPの形成が可能となるように、予め設置位置が調整されている。さらに、回折格子58は、且つその他の検出用レーザ光S1及び検出用レーザ光S2について、ピットPの形成が困難となるように、記録用レーザ光Mの波長がピットPの形成可能な波長、且つ、その他の検出用レーザ光S1及び検出用レーザ光S2の波長がピットPの形成不可能な波長となるように、予め設置位置が調整されている。
The diffraction grating 58 is for branching the laser beam B emitted from the laser diode 53 into a plurality of laser beams. Therefore, the diffraction grating 58 may have any configuration as long as it has such a function.
In the present embodiment, the diffraction grating 58 uses the laser beam B emitted from the laser diode 53 to change the reflectance of the recording laser beam M used for forming the pit P of the workpiece 33 and the reflectance on the workpiece 33. Is branched into a detection laser beam S1 and a detection laser beam S2.
The installation position of the diffraction grating 58 is adjusted in advance so that the pits P can be formed on the workpiece 33 only by the recording laser beam M. Further, in the diffraction grating 58, the wavelength of the recording laser beam M is such that the pit P can be formed so that it is difficult to form the pit P for the other detection laser beam S1 and the detection laser beam S2. In addition, the installation positions are adjusted in advance so that the wavelengths of the other detection laser light S1 and detection laser light S2 are wavelengths at which the pits P cannot be formed.
 なお、本実施の形態では、回折格子58は、レーザ光Bを記録用レーザ光Mと2本の検出用レーザ光の合計3本のレーザ光に分岐する場合を説明する。しかしながら、記録用レーザ光Mは、複数本であってもよく、また、サブビームも2本以上であってもよい。 In the present embodiment, the case where the diffraction grating 58 branches the laser beam B into a total of three laser beams of the recording laser beam M and the two detection laser beams will be described. However, there may be a plurality of recording laser beams M, and there may be two or more sub beams.
 また、本実施の形態では、レーザダイオード53により出射されたレーザ光Bが回折格子58により分岐される。このことによって、回折格子58は、記録用レーザ光Mの照射される領域より所定間隔を開けて内周側に検出用レーザ光S1が照射され、記録用レーザ光Mの照射される領域より所定間隔を開けて外周側に検出用レーザ光S2が照射されるように、予め調整されている。所定間隔として、後述する検出処理における精度向上の観点から、光ピックアップ10の移動方向の上流側に隣接する検出用レーザ光と記録用レーザ光Mとの間は、形成対象のピットPの半径方向の間隔未満の距離となるように予め設定されていることが好ましい。また、光ピックアップ10の移動方向の下流側に隣接する検出用レーザ光と記録用レーザ光Mとの間は、形成対象のピットPの半径方向の間隔に等しい距離となるように、予め設定されていることが好ましい。 In this embodiment, the laser beam B emitted from the laser diode 53 is branched by the diffraction grating 58. As a result, the diffraction grating 58 is irradiated with the detection laser light S1 on the inner peripheral side at a predetermined interval from the region irradiated with the recording laser light M, and is predetermined from the region irradiated with the recording laser light M. Adjustment is made in advance so that the laser beam S2 for detection is irradiated on the outer peripheral side with an interval. As the predetermined interval, from the viewpoint of improving accuracy in the detection process described later, the distance between the detection laser beam and the recording laser beam M adjacent to the upstream side in the moving direction of the optical pickup 10 is the radial direction of the pit P to be formed It is preferable that the distance is set in advance so that the distance is less than the distance of. Further, the distance between the detection laser light and the recording laser light M adjacent to the downstream side in the moving direction of the optical pickup 10 is set in advance so as to be equal to the distance in the radial direction of the pits P to be formed. It is preferable.
 加工対象物33上に照射された、記録用レーザ光Mと、検出用レーザ光S1、及び検出用レーザ光S2の各々は、加工対象物33の面で反射され、再び対物レンズ62、1/4波長板61、コリメータレンズ60を透過した後に偏光ビームスプリッタ59で反射され、シリンドリカルレンズ63を経て、受光素子56に入射される。受光素子56は、受光素子56で受光したビームの位置及び受光光量を示す信号を、アンプ12(図3参照)に出力する。受光信号は、アンプ12を介して制御部16やサーボ回路13に供給される。
 制御部16は、入力された受光素子56で受光したビームの位置及び受光光量を示す信号から、受光素子56に入射されたビームに対応する照射ヘッド9及び照射ヘッド9から照射された記録用レーザ光Mと、検出用レーザ光S1、検出用レーザ光S2の内の何れであるかを識別する。制御部16は、識別結果に基づいて、ステッピングモータ30を制御する。
Each of the recording laser beam M, the detection laser beam S1, and the detection laser beam S2 irradiated on the workpiece 33 is reflected by the surface of the workpiece 33, and again the objective lenses 62, 1 / After passing through the four-wavelength plate 61 and the collimator lens 60, it is reflected by the polarization beam splitter 59, passes through the cylindrical lens 63, and enters the light receiving element 56. The light receiving element 56 outputs a signal indicating the position of the beam received by the light receiving element 56 and the amount of received light to the amplifier 12 (see FIG. 3). The light reception signal is supplied to the control unit 16 and the servo circuit 13 via the amplifier 12.
The control unit 16 irradiates the irradiation head 9 corresponding to the beam incident on the light receiving element 56 and the recording laser emitted from the irradiation head 9 based on the input signal indicating the position of the beam received by the light receiving element 56 and the received light amount. The light M, the detection laser light S1, and the detection laser light S2 are identified. The control unit 16 controls the stepping motor 30 based on the identification result.
 ここで、本実施の形態の加工装置91では、ピットPは、第1の実施の形態で説明した加工装置90と同様に、加工対象物33上に光ピックアップ10がステッピングモータ30によって加工対象物33の径方向に向かって内周側から外周側、または外周側から内周側へ順次移動されることで、加工対象物33の加工対象領域の領域に形成される。具体的には、ピットPは、光ピックアップ10の移動方向が、加工対象物33の内周側から外周側へ向かう方向である場合、図16に示すように、加工対象物33の回転中心Qから外周側へ向かって径方向(図16中、矢印Y方向参照)に光ピックアップ10が移動されながら、レーザ光が照射されることで、加工対象物33の加工対象領域33Pの全領域に形成される。 Here, in the machining apparatus 91 of the present embodiment, the pit P is formed on the workpiece 33 by the stepping motor 30 on the workpiece 33 as in the machining apparatus 90 described in the first embodiment. By sequentially moving from the inner peripheral side to the outer peripheral side or from the outer peripheral side to the inner peripheral side in the radial direction of 33, the processing target object 33 is formed in the region to be processed. Specifically, when the moving direction of the optical pickup 10 is a direction from the inner peripheral side to the outer peripheral side of the workpiece 33, the pit P has a rotation center Q of the workpiece 33 as shown in FIG. The optical pickup 10 is irradiated in the radial direction (see the arrow Y direction in FIG. 16) from the outer periphery to the outer peripheral side, and is formed in the entire region of the processing target region 33P of the processing target 33 by being irradiated with laser light. Is done.
 光ピックアップ10の径方向長さが、加工対象物33の加工対象領域33Pにおける径方向長さの一端から他端を覆う長さである場合、ピットPは、光ピックアップ10に備えられた各照射ヘッド9からレーザ光を照射することでピットPを形成する記録処理を継続しながら、光ピックアップ10を外周側から内周側、または内周側から外周側へ除々に移動させ、加工対象領域33Pの全領域に形成される。しかし、光ピックアップ10の径方向長さが、加工対象領域33Pの径方向の一部のみを覆う長さである場合(例えば、図4参照)には、各照射ヘッド9によって記録を行いながら、複数の照射ヘッド9を備えた光ピックアップ10を内周側から外周側、または外周側から内周側へ除々に移動させ続けると、複数の照射ヘッド9の内の光ピックアップ10の移動方向上流側に配置されている照射ヘッド9Aは、該移動方向下流側に配置されている照射ヘッド9Bによって既にピットPの形成された領域に達する。この場合、記録を行いながら光ピックアップ10を径方向に移動させ続けると、ピットPは、重なって形成されるため好ましくない。 When the radial length of the optical pickup 10 is a length that covers the other end of the radial length in the processing target region 33P of the processing target 33, the pit P is irradiated with each irradiation provided in the optical pickup 10. While continuing the recording process for forming the pits P by irradiating the laser beam from the head 9, the optical pickup 10 is gradually moved from the outer peripheral side to the inner peripheral side, or from the inner peripheral side to the outer peripheral side, and the processing target region 33P It is formed in the whole area. However, when the radial length of the optical pickup 10 is a length that covers only a part of the processing target region 33P in the radial direction (see, for example, FIG. 4), while performing recording by each irradiation head 9, If the optical pickup 10 having a plurality of irradiation heads 9 is gradually moved from the inner peripheral side to the outer peripheral side or from the outer peripheral side to the inner peripheral side, the upstream side in the movement direction of the optical pickups 10 in the plurality of irradiation heads 9 The irradiation head 9 </ b> A arranged at the position reaches the area where the pits P are already formed by the irradiation head 9 </ b> B arranged downstream in the movement direction. In this case, if the optical pickup 10 is continuously moved in the radial direction while recording, the pits P are formed in an overlapping manner, which is not preferable.
 そこで、光ピックアップ10が内周側から外周側に向かって移動しながら各照射ヘッド9からレーザ光が照射されることでピットPが形成された場合、本実施の形態の加工装置91では、内周側の照射ヘッド9Aは、加工対象物33上の外周側の照射ヘッド9Bによって既にピットPの形成された領域に到達する直前に、各照射ヘッド9において、光ピックアップ10の外周側における既にピットPの形成された記録済領域を検出する。そして、記録済領域を検出した場合、本実施の形態の加工装置91は、光ピックアップ10を移動方向へ(内周側から外周側へ向かって)除々に移動させながら各照射ヘッド9によりピットPを形成する記録処理を一次停止し、光ピックアップ10を該移動方向に記録済領域の径方向長さ分移動させた後に、再度記録を開始する。 Therefore, when the pit P is formed by irradiating the laser beam from each irradiation head 9 while the optical pickup 10 moves from the inner peripheral side toward the outer peripheral side, the processing apparatus 91 of the present embodiment The irradiating head 9A has already pits on the outer peripheral side of the optical pickup 10 in each irradiating head 9 immediately before reaching the area where the pit P is already formed by the outer irradiating head 9B on the workpiece 33. A recorded area where P is formed is detected. When the recorded area is detected, the processing device 91 according to the present embodiment gradually moves the optical pickup 10 in the movement direction (from the inner circumference side toward the outer circumference side), and the pits P are generated by the irradiation heads 9. Is temporarily stopped, the optical pickup 10 is moved in the moving direction by the length in the radial direction of the recorded area, and then recording is started again.
 これによって、本実施の形態の加工装置91は、高速に記録が行われると共に、加工対象物33に精度良くピットPを形成することが可能となる。 Thereby, the processing apparatus 91 of the present embodiment can perform recording at a high speed and form the pits P on the processing object 33 with high accuracy.
 以下に、本実施の形態の加工装置91の制御部16で実行される処理を説明する。
 制御部16は、第1の実施の形態と同様に、図7に示す処理ルーチンが実行される。しかしながら、本実施の形態の加工装置91の制御部16は、図7に示す処理ルーチンにおいてステップ220の回転開始指示信号出力処理行ってから、処理を終了するまでの間に、図15に示す処理ルーチンを割り込み処理として実行する。なお、以下の処理ルーチンでは、加工装置91は、光ピックアップ10が加工対象物33の回転中心Qから外周側へ向かって除々に移動されながら各照射ヘッド9からレーザ光が照射されることで加工対象物33へのピットPの形成を行うものとして説明する。
Below, the process performed by the control part 16 of the processing apparatus 91 of this Embodiment is demonstrated.
As in the first embodiment, the control unit 16 executes the processing routine shown in FIG. However, the control unit 16 of the processing apparatus 91 according to the present embodiment performs the processing shown in FIG. 15 after the rotation start instruction signal output processing of step 220 in the processing routine shown in FIG. The routine is executed as an interrupt process. In the following processing routine, the processing apparatus 91 performs processing by irradiating laser light from each irradiation head 9 while the optical pickup 10 is gradually moved from the rotation center Q of the processing target 33 toward the outer peripheral side. A description will be given assuming that the pits P are formed on the object 33.
 すなわち、制御部16では、所定時間毎に図15に示す割り込み処理ルーチンが実行されて、ステップ300へ進む。
 ステップ300では、光ピックアップ10に設けられている複数の照射ヘッド9において、加工対象物33の記録している領域の外周側(光ピックアップ10の移動方向下流側)に既に記録済の領域があることを検出したか否かを判別する。判定において否定されると、本割り込み処理は終了する。一方、判定において肯定されると、処理ルーチンは、ステップ302へ進む。
That is, the control unit 16 executes the interrupt processing routine shown in FIG. 15 every predetermined time, and proceeds to step 300.
In step 300, in the plurality of irradiation heads 9 provided in the optical pickup 10, there is an already recorded area on the outer peripheral side of the area where the workpiece 33 is recorded (downstream in the moving direction of the optical pickup 10). It is determined whether or not this is detected. If the determination is negative, the interrupt process ends. On the other hand, if the determination is affirmative, the processing routine proceeds to step 302.
 ステップ300の判断は、各照射ヘッド9から加工対象物33へ出射された複数のレーザ光(記録用レーザ光M、検出用レーザS1、検出用レーザS2)の内の、記録用に用いられる記録用レーザ光M以外である複数の検出用レーザの内の、最も外周側に照射された検出用レーザS2による反射光を読取り、該反射光の強度変化がピットPに基づく強度変化を示したときに、記録済領域を検出したと判別する。 The determination in step 300 is a recording used for recording among a plurality of laser beams (recording laser beam M, detection laser S1, detection laser S2) emitted from each irradiation head 9 to the workpiece 33. When the reflected light from the detection laser S2 irradiated to the outermost periphery among the plurality of detection lasers other than the laser beam M for scanning is read, and the intensity change of the reflected light indicates an intensity change based on the pit P Then, it is determined that a recorded area has been detected.
 反射光の強度変化の判定としては、例えば、以下の処理が行なわれる。即ち、検出用レーザS1及び検出用レーザS2の加工対象物33による反射光の強度として、加工対象物33のピットPの形成されていない領域に検出用レーザS2が照射されたときの反射光の強度と、ピットPの形成されている領域に検出用レーザS2が照射されたときの反射光の強度と、を測定する。次に、反射光の強度からピットPの形成領域を判別するための強度の閾値を定める。そして、検出用レーザS2の加工対象物33による反射光の強度が該閾値未満である場合、ピットP形成済領域を判別したと判断する。 For example, the following processing is performed as the determination of the intensity change of the reflected light. That is, as the intensity of the reflected light from the processing object 33 of the detection laser S1 and the detection laser S2, the reflected light when the detection laser S2 is irradiated to the area where the pit P of the processing object 33 is not formed. The intensity and the intensity of the reflected light when the detection laser S2 is irradiated onto the area where the pits P are formed are measured. Next, an intensity threshold value for determining the formation area of the pit P from the intensity of the reflected light is determined. When the intensity of the reflected light from the processing object 33 of the detection laser S2 is less than the threshold value, it is determined that the pit P formed region has been determined.
 次のステップ302では、複数の照射ヘッド9からレーザ光が照射されることによるピットPの形成を、一次停止する事を示す一次停止指示信号を、パルス生成部35へ出力する。これと共に、ステップ302では、ピットP形成に必要な照射強度未満の照射強度のレーザ光を照射するための信号を、レーザパワー制御回路20出力する。一次停止信号を受け付けたパルス生成部35は、レーザドライバ19への同期信号の送信を一次停止する。このため、各レーザドライバ19からの補正波形信号の各照射ヘッド9への送出が一次停止され、ピットPの形成は、一次停止される。
 また、ピットPの形成に必要な照射強度未満の照射強度のレーザ光を照射するための信号を受け付けたレーザパワー制御回路20は、該信号をレーザドライバ19へ出力する。該信号を受け付けたレーザドライバ19は、レーザパワー制御回路20から入力された照射強度のレーザ光がレーザダイオード53から出射されるように、レーザダイオード53を制御する。
In the next step 302, a primary stop instruction signal indicating that the formation of the pits P by the irradiation of the laser beams from the plurality of irradiation heads 9 is temporarily stopped is output to the pulse generation unit 35. At the same time, in step 302, a signal for irradiating laser light having an irradiation intensity lower than the irradiation intensity necessary for forming the pit P is output to the laser power control circuit 20. The pulse generator 35 that has received the primary stop signal temporarily stops transmission of the synchronization signal to the laser driver 19. For this reason, the sending of the correction waveform signal from each laser driver 19 to each irradiation head 9 is temporarily stopped, and the formation of the pits P is temporarily stopped.
In addition, the laser power control circuit 20 that has received a signal for irradiating a laser beam having an irradiation intensity lower than the irradiation intensity necessary for forming the pit P outputs the signal to the laser driver 19. The laser driver 19 that has received the signal controls the laser diode 53 so that the laser light having the irradiation intensity input from the laser power control circuit 20 is emitted from the laser diode 53.
 次のステップ304では、光ピックアップ10を移動方向下流側(本実施の形態では内周側から外周側)へ向かって径方向に移動させることを示す移動開始指示信号を、モータコントローラ32へ出力する。入力された移動開始指示信号は、モータドライバ31を介してステッピングモータ30へ出力される。移動開始指示信号を受け付けたステッピングモータ30は、光ピックアップ10を該移動方向下流側へ向かって移動させる移動処理を行う。 In the next step 304, a movement start instruction signal indicating that the optical pickup 10 is moved in the radial direction toward the downstream side in the movement direction (in the present embodiment, from the inner circumference side to the outer circumference side) is output to the motor controller 32. . The input movement start instruction signal is output to the stepping motor 30 via the motor driver 31. The stepping motor 30 that has received the movement start instruction signal performs a movement process for moving the optical pickup 10 toward the downstream side in the movement direction.
 次のステップ306では、光ピックアップ10に設けられている複数の照射ヘッド9において、光ピックアップ10の移動方向の上流側、すなわち、内周側に未記録領域を検出したか否か否かを判別し、肯定されるまで否定判断を繰り返す。 In the next step 306, in the plurality of irradiation heads 9 provided in the optical pickup 10, it is determined whether or not an unrecorded area is detected on the upstream side in the moving direction of the optical pickup 10, that is, on the inner peripheral side. And repeat negative judgment until affirmative.
 ステップ306の判断は、光ピックアップ10を移動方向へ(内周側から外周側へ向かって)移動させながら、各照射ヘッド9における移動方向上流側(内周側)に設けられている検出ビームS1による反射光の強度変化を読み取り、該反射光の強度変化が、ピットPに基づく強度変化を所定時間示した後に、ピットPの形成されていない領域を検出した場合、該内周側に未記録領域を検出したと判別することによって行なわれる。 In step 306, the detection beam S <b> 1 provided on the upstream side (inner circumference side) of each irradiation head 9 in the movement direction while moving the optical pickup 10 in the movement direction (from the inner circumference side toward the outer circumference side). In the case where an area where no pit P is formed is detected after the intensity change of the reflected light is read and the intensity change of the reflected light indicates the intensity change based on the pit P for a predetermined time, it is not recorded on the inner circumference side. This is done by determining that a region has been detected.
 次のステップ306では、記録再開を示す信号を出力する。ステップ306の処理は、具体的には、上記捨て婦P302の処理で一次停止していた記録処理を再開させるために、複数の照射ヘッド9からレーザ光が照射されることによるピットPの形成を再開する事を示す再開信号を、パルス生成部35へ出力する。
 再開信号を受け付けたパルス生成部35は、レーザドライバ19への同期信号の送信を一次停止する。このため、各レーザドライバ19からの補正波形信号の各照射ヘッド9への送出が再開され、ピットPの形成は、再開される。
In the next step 306, a signal indicating resumption of recording is output. Specifically, in the process of step 306, in order to resume the recording process that was temporarily stopped in the process of the abandoned lady P302, formation of pits P by irradiating laser beams from a plurality of irradiation heads 9 is performed. A restart signal indicating restart is output to the pulse generator 35.
The pulse generator 35 that has received the restart signal temporarily stops transmission of the synchronization signal to the laser driver 19. For this reason, the sending of the correction waveform signal from each laser driver 19 to each irradiation head 9 is resumed, and the formation of the pits P is resumed.
 上記図15に示す割り込み処理ルーチンが実行されることによって、以下の処理が行なわれる。即ち、例えば、光ピックアップ10が加工対象物33の内周側から外周側に向かう方向に移動する。次に、図16に示すように、光ピックアップ10が加工対象領域33Pの最内周側にピットPを形成可能な位置に位置された状態から、照射ヘッド9によるレーザ光の照射が行われ、加工対象物33が回転する。このことで、照射ヘッド9A及び照射ヘッド9B(図示省略)によって、複数のピットP1が、加工対象物33の回転方向Xに順に形成される(図12参照)。 The following processing is performed by executing the interrupt processing routine shown in FIG. That is, for example, the optical pickup 10 moves in a direction from the inner peripheral side to the outer peripheral side of the workpiece 33. Next, as shown in FIG. 16, from the state where the optical pickup 10 is positioned at a position where the pits P can be formed on the innermost peripheral side of the processing target region 33P, the irradiation head 9 irradiates laser light, The workpiece 33 rotates. Thus, a plurality of pits P1 are sequentially formed in the rotation direction X of the workpiece 33 by the irradiation head 9A and the irradiation head 9B (not shown) (see FIG. 12).
 さらに、光ピックアップ10が移動方向に移動されながら、照射ヘッド9A及び照射ヘッド9B(図示省略)によって、複数のピットP2は、加工対象物33の回転方向Xに順に形成される。このことで、例えば、複数のピットP2は、既に形成されている複数のピットP1の外周側に隣接する領域に形成される(図13参照)。 Further, while the optical pickup 10 is moved in the moving direction, a plurality of pits P2 are sequentially formed in the rotation direction X of the workpiece 33 by the irradiation head 9A and the irradiation head 9B (not shown). Thus, for example, the plurality of pits P2 are formed in a region adjacent to the outer peripheral side of the plurality of already formed pits P1 (see FIG. 13).
 上記動作が繰り返されることで、各照射ヘッド9によって内周側から順にピットが形成される。次に、図14に示すように、内周側の照射ヘッド9Aが、外周側の照射ヘッド9Bによって形成されたピットPの内周側に隣接する領域へレーザ光を照射する位置に達すると、検出用レーザS2によってピットP4が検出される。さらに、光ピックアップ10は、各照射ヘッド9によるレーザ照射の対象となる領域が未記録領域となるまで外周側へ移動される(図17参照)。そして、該移動の後に、再度、各照射ヘッド9によるピットの形成は、再開される。 By repeating the above operation, pits are formed in order from the inner peripheral side by each irradiation head 9. Next, as shown in FIG. 14, when the inner peripheral irradiation head 9A reaches the position where the laser beam is irradiated to the region adjacent to the inner peripheral side of the pit P formed by the outer peripheral irradiation head 9B, The pit P4 is detected by the detection laser S2. Further, the optical pickup 10 is moved to the outer peripheral side until the area that is the target of laser irradiation by each irradiation head 9 becomes an unrecorded area (see FIG. 17). Then, after the movement, the pit formation by each irradiation head 9 is resumed.
 以上説明したように、本実施の形態の加工装置91によれば、内周側の照射ヘッド9Aが、加工対象物33上の外周側の照射ヘッド9Bによって既にピットPの形成された領域に到達する直前に、各照射ヘッド9において、光ピックアップ10の移動方向下流側における記録済領域を検出する。そして、本実施の形態の加工装置91は、記録済領域を検出した場合には、光ピックアップ10を移動方向へ(内周側から外周側へ向かって)除々に移動させながら各照射ヘッド9によりピットPを形成する記録処理を一次停止し、該移動方向の最上流側に配置されている照射ヘッド9Aから出射されるレーザ光が未記録領域に照射されるように、光ピックアップ10を該移動方向に、記録済領域の径方向長さ分移動させた後に、再度記録を開始する。このため、本実施の形態の加工装置91は、高速にピットの形成が可能とされると共に、加工対象物33の加工対象領域33Pの全領域に渡って精度良く且つ効率的にピット形成が可能となる。 As described above, according to the processing apparatus 91 of the present embodiment, the inner peripheral irradiation head 9A reaches the region where the pit P is already formed by the outer peripheral irradiation head 9B on the workpiece 33. Immediately before the recording, in each irradiation head 9, a recorded area on the downstream side in the moving direction of the optical pickup 10 is detected. And when the processing apparatus 91 of this Embodiment detects the recorded area | region, it is each irradiation head 9 while moving the optical pick-up 10 gradually in a moving direction (from an inner peripheral side toward an outer peripheral side). The recording process for forming the pits P is temporarily stopped, and the optical pickup 10 is moved so that the laser beam emitted from the irradiation head 9A arranged on the most upstream side in the moving direction is irradiated to the unrecorded area. After moving in the direction by the radial length of the recorded area, recording is started again. For this reason, the processing apparatus 91 according to the present embodiment can form pits at high speed, and can accurately and efficiently form pits over the entire region 33P of the object 33 to be processed. It becomes.

Claims (9)

  1.  少なくとも記録用レーザ光の照射により発生した熱により情報の記録されるヒートモード型記録材料層を有する加工対象部材を回転させる回転部と、
     前記回転部により回転される前記加工対象部材の回転中心を通る直線上に配列され、前記加工対象部材の前記回転中心からの半径方向距離の互いに異なる領域へ記録用レーザ光を照射する複数の照射部と、
     を備えた加工装置。
    A rotating unit that rotates a processing target member having a heat mode type recording material layer in which information is recorded by heat generated by irradiation of at least the recording laser beam;
    A plurality of irradiations that irradiate recording laser beams to regions that are arranged on a straight line passing through the rotation center of the processing target member rotated by the rotating unit and that have different radial distances from the rotation center of the processing target member. And
    A processing device with
  2.  前記複数の照射部は所定間隔で配列され、該所定間隔は、前記加工対象部材の予め定められた加工対象領域における前記回転中心を中心とする半径方向の一端部から他端部までの距離を、前記照射部の数で除算した値である、請求項1に記載の加工装置。 The plurality of irradiation portions are arranged at a predetermined interval, and the predetermined interval is a distance from one end portion in the radial direction centered on the rotation center in a predetermined processing target region of the processing target member to the other end portion. The processing apparatus according to claim 1, which is a value divided by the number of irradiation units.
  3.  前記回転部により回転されている前記加工対象部材上に前記複数の照射部の各々によって、予め定められた形成対象パターンに応じた形成パターンを形成したときに、該複数の照射部の各々によって形成された形成パターンの大きさ及び形状が互いに同一となるように、前記複数の照射部の各々から照射される記録用レーザ光の照射時間及び照射強度を制御する制御部を備えた、
     請求項1に記載の加工装置。
    Formed by each of the plurality of irradiation units when a formation pattern corresponding to a predetermined formation target pattern is formed by each of the plurality of irradiation units on the processing target member rotated by the rotation unit. A control unit that controls the irradiation time and irradiation intensity of the recording laser light emitted from each of the plurality of irradiation units so that the size and shape of the formed pattern are the same with each other;
    The processing apparatus according to claim 1.
  4.  前記複数の照射部の各々に対応して設けられ、照射波形を生成する複数の照射波形生成部と、
     前記複数の照射部の各々に対応して設けられ、同期信号を生成する複数の同期信号生成部と、
     を備え、
     前記複数の照射部は、対応する前記同期信号生成部から入力された同期信号に同期させて、対応する前記照射波形生成部から入力された照射波形に応じた強度及び照射時間の記録用レーザ光を照射し、
     前記制御部は、前記複数の照射部の内の1つを基準照射部として該基準照射部に出力する同期信号を基準同期信号として予め定め、該基準同期信号を該基準照射部に出力するように前記同期信号発生部を制御すると共に、該基準照射部との距離に応じて該距離が外周側へ向かって大きくなるほど前記同期信号の周波数が高くなり、内周側へ向かって大きくなるほど前記同期信号の周波数が低くなるように前記同期信号生成部を制御することによって、前記複数の照射部の各々から照射される前記記録用レーザ光の照射時間を各照射部毎に制御する、
     請求項3に記載の加工装置。
    A plurality of irradiation waveform generation units that are provided corresponding to each of the plurality of irradiation units and generate an irradiation waveform;
    A plurality of synchronization signal generation units provided corresponding to each of the plurality of irradiation units, and generating a synchronization signal;
    With
    The plurality of irradiation units are synchronized with a synchronization signal input from the corresponding synchronization signal generation unit, and a recording laser beam having an intensity and an irradiation time according to the irradiation waveform input from the corresponding irradiation waveform generation unit Irradiate
    The control unit predetermines a synchronization signal to be output to the reference irradiation unit as one of the plurality of irradiation units as a reference irradiation unit, and outputs the reference synchronization signal to the reference irradiation unit. In addition to controlling the synchronization signal generating unit, the frequency of the synchronization signal increases as the distance increases toward the outer peripheral side according to the distance from the reference irradiation unit, and the synchronization signal increases as the distance increases toward the inner peripheral side. By controlling the synchronization signal generation unit so that the frequency of the signal becomes low, the irradiation time of the recording laser light irradiated from each of the plurality of irradiation units is controlled for each irradiation unit,
    The processing apparatus according to claim 3.
  5.  前記照射波形によって示される最小照射強度に対する最大照射強度の比を調整する照射強度調整部を備え、
     前記制御部は、前記複数の照射部の内の1つを基準照射部として定め、基準照射部との距離に応じて該距離が外周側へ向かって大きくなるほど前記照射波形によって示される最小照射強度に対する最大照射強度の比が小さくなり、該距離が内周側へ向かって大きくなるほど前記照射波形によって示される最小照射強度に対する最大照射強度の比が大きくなるように、前記照射強度調整部を制御することによって、前記記録用レーザ光の照射強度を各照射部毎に制御する、
     請求項4に記載の加工装置。
    An irradiation intensity adjustment unit that adjusts the ratio of the maximum irradiation intensity to the minimum irradiation intensity indicated by the irradiation waveform,
    The control unit defines one of the plurality of irradiation units as a reference irradiation unit, and the minimum irradiation intensity indicated by the irradiation waveform as the distance increases toward the outer peripheral side according to the distance from the reference irradiation unit. The irradiation intensity adjustment unit is controlled so that the ratio of the maximum irradiation intensity to the minimum irradiation intensity indicated by the irradiation waveform increases as the ratio of the maximum irradiation intensity with respect to decreases and the distance increases toward the inner periphery. By controlling the irradiation intensity of the recording laser light for each irradiation unit,
    The processing apparatus according to claim 4.
  6.  前記複数の照射部を、前記加工対象部材の内周側から外周側に向かって、または、該加工対象部材の外周側から内周側に向かって相対的に移動させる移動部を備え、
     前記照射部は、
     レーザ光を出射する光源と、
     該光源から出射されたレーザ光を少なくとも前記記録用レーザ光と、前記加工対象部材上の反射率を検出するための検出用レーザ光と、に分岐する分岐部と、
     前記検出用レーザ光の前記加工対象部材による反射光の光量変化を検出する検出部と、
     を備え、
     前記制御部は、前記検出部による検出結果に基づいて、前記加工対象部材上において記録済領域が検出されたときに、前記複数の照射部を前記記録領域が検出されない領域まで移動させるように前記移動部を制御する、
     請求項1に記載の加工装置。
    A moving unit that relatively moves the plurality of irradiation units from the inner peripheral side of the processing target member toward the outer peripheral side or from the outer peripheral side of the processing target member toward the inner peripheral side;
    The irradiation unit is
    A light source that emits laser light;
    A branching portion for branching the laser beam emitted from the light source into at least the recording laser beam and a detection laser beam for detecting a reflectance on the processing target member;
    A detection unit for detecting a change in the amount of reflected light of the laser beam for detection by the processing target member;
    With
    The control unit is configured to move the plurality of irradiation units to a region where the recording region is not detected when a recorded region is detected on the processing target member based on a detection result by the detection unit. Control the moving part,
    The processing apparatus according to claim 1.
  7.  前記分岐部によって分岐された前記記録用レーザ光と、前記検出用レーザ光と、が、前記加工対象部材の半径方向に所定間隔を開けて照射されるように集光させる集光部を備え、請求項6に記載の加工装置。 A condensing unit for condensing the recording laser beam branched by the branching unit and the detection laser beam so as to be irradiated at a predetermined interval in a radial direction of the processing target member; The processing apparatus according to claim 6.
  8.  前記分岐部は、前記光源から出射されたレーザ光を少なくとも1または複数のレーザ光と、少なくとも1または複数の検出用レーザ光と、に分岐する、
     請求項6に記載の加工装置。
    The branching unit branches the laser beam emitted from the light source into at least one or more laser beams and at least one or more detection laser beams.
    The processing apparatus according to claim 6.
  9.  前記分岐部は、前記光源から出射されたレーザ光を少なくとも1または複数のレーザ光と、少なくとも1または複数の検出用レーザ光と、に分岐する、請求項7に記載の加工装置。 The processing apparatus according to claim 7, wherein the branching unit branches the laser light emitted from the light source into at least one or more laser lights and at least one or more detection laser lights.
PCT/JP2009/064399 2008-08-29 2009-08-17 Working apparatus WO2010024144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-222357 2008-08-29
JP2008222357A JP2010055726A (en) 2008-08-29 2008-08-29 Machining device

Publications (1)

Publication Number Publication Date
WO2010024144A1 true WO2010024144A1 (en) 2010-03-04

Family

ID=41721313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064399 WO2010024144A1 (en) 2008-08-29 2009-08-17 Working apparatus

Country Status (3)

Country Link
JP (1) JP2010055726A (en)
TW (1) TW201012581A (en)
WO (1) WO2010024144A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131247A (en) * 1984-11-30 1986-06-18 Hitachi Ltd Optical head part of optical information recording and reproducing device
JPH02252141A (en) * 1989-03-27 1990-10-09 Canon Inc Optical information recording and reproducing device
JPH02252140A (en) * 1989-03-27 1990-10-09 Canon Inc Optical information recording and reproducing device
JPH04254967A (en) * 1991-02-07 1992-09-10 Nikon Corp Multi-head optical disk device
JPH06231473A (en) * 1992-12-09 1994-08-19 Pioneer Electron Corp Optical disk information recording device and reproducing device having plural reading or recording beams
JPH1040565A (en) * 1996-07-19 1998-02-13 Ricoh Co Ltd Optical disk drive
JP2006268975A (en) * 2005-03-24 2006-10-05 Sony Corp Disk recording device and method, and recording control program
JP2006277885A (en) * 2005-03-30 2006-10-12 Ricoh Co Ltd Information-recording method, information-reproducing method, and information-recording/reproducing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131247A (en) * 1984-11-30 1986-06-18 Hitachi Ltd Optical head part of optical information recording and reproducing device
JPH02252141A (en) * 1989-03-27 1990-10-09 Canon Inc Optical information recording and reproducing device
JPH02252140A (en) * 1989-03-27 1990-10-09 Canon Inc Optical information recording and reproducing device
JPH04254967A (en) * 1991-02-07 1992-09-10 Nikon Corp Multi-head optical disk device
JPH06231473A (en) * 1992-12-09 1994-08-19 Pioneer Electron Corp Optical disk information recording device and reproducing device having plural reading or recording beams
JPH1040565A (en) * 1996-07-19 1998-02-13 Ricoh Co Ltd Optical disk drive
JP2006268975A (en) * 2005-03-24 2006-10-05 Sony Corp Disk recording device and method, and recording control program
JP2006277885A (en) * 2005-03-30 2006-10-12 Ricoh Co Ltd Information-recording method, information-reproducing method, and information-recording/reproducing device

Also Published As

Publication number Publication date
JP2010055726A (en) 2010-03-11
TW201012581A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
WO2010035736A1 (en) Laser machining device
WO2009113272A1 (en) Mold processing method and mold manufacturing method
WO2009130846A1 (en) Laser exposure method, photoresist layer working method, and pattern molding manufacturing method
US8576681B2 (en) Optical information recording medium, optical information recording apparatus and optical information recording method
KR20020041455A (en) Optical recording medium, optical recording method, optical recorded medium reproducing method
JP4689426B2 (en) Optical disc system, optical disc recording apparatus, image drawing method, and optical disc
WO2010035737A1 (en) Laser machining device
JP4142338B2 (en) Optical information recording method
WO2010024144A1 (en) Working apparatus
JP2011092955A (en) Laser beam machining apparatus and laser beam machining method
JP2011212726A (en) Laser machining device and laser machining method
JP2001184649A (en) Optical recording system and optical recording medium
JP2007328149A (en) Optical recording medium and recording method for the same
JP2007172717A (en) Optical information recording medium
JP4147821B2 (en) Optical disc recording apparatus and optical disc
JP2002083446A (en) Optical recording medium
JP4272892B2 (en) Signal output method
JP2001184648A (en) Optical recording method and optical recording medium
JP2011092954A (en) Laser beam machining method
JP4431827B2 (en) Information recording method and recording power determination method
JP4704305B2 (en) Initialization apparatus and initialization method
CN1556983A (en) Optical disc drive and method for controlling the same
JP2010282672A (en) Optical disk master, method for manufacturing optical disk master, and method for manufacturing optical disk
JP2008059700A (en) Optical recording medium
JPH02249685A (en) Optical recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809797

Country of ref document: EP

Kind code of ref document: A1