WO2010023971A1 - Oxide and method for controlling electrical characteristics of electric conductor - Google Patents

Oxide and method for controlling electrical characteristics of electric conductor Download PDF

Info

Publication number
WO2010023971A1
WO2010023971A1 PCT/JP2009/053289 JP2009053289W WO2010023971A1 WO 2010023971 A1 WO2010023971 A1 WO 2010023971A1 JP 2009053289 W JP2009053289 W JP 2009053289W WO 2010023971 A1 WO2010023971 A1 WO 2010023971A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
group
element selected
positive
raw material
Prior art date
Application number
PCT/JP2009/053289
Other languages
French (fr)
Japanese (ja)
Inventor
直 池田
徳亮 花咲
Original Assignee
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学 filed Critical 国立大学法人岡山大学
Publication of WO2010023971A1 publication Critical patent/WO2010023971A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4

Definitions

  • the present invention relates to an oxide capable of controlling electrical properties of an electrical conductor and a method for controlling electrical properties of the electrical conductor.
  • the band gap of the electrical conductor is usually determined by the crystal structure that constitutes the conduction band and the forbidden band. For this reason, it is difficult to change the size of the band gap. Further, since the semiconductor material is a material having a specific band gap, such as Si or a compound semiconductor, the response by light absorption can respond only to a specific wavelength. Furthermore, it is impossible to control a wide band gap by doping.
  • compound semiconductors such as ZnSe and CdS, which are unstable or toxic substances, are used particularly in the wavelength band of the infrared region where energy is low, but the manufacturing method is difficult and there is a problem of toxicity. There is a problem that usage is restricted. Accordingly, there is a need for materials that can easily control electrical characteristics.
  • Non-Patent Document 1 reports the dielectric properties of LuFe 2 O 4 which is a two-dimensional triangular lattice iron double-charged oxide.
  • LuFe 2 O 4 is ferroelectric, and its manifestation principle is thought to be due to the action mechanism such as charge order formation by frustrated electron correlation, for example, the polar electron configuration on Fe 3+ , and known dielectrics And reported that it is different.
  • Non-Patent Document 2 the recent first calculation principle regarding LuFe 2 O 4 points out the existence of metallic conductive characteristics. It has been reported that the electrical conductivity up to now has a semiconductor behavior. N. Ikeda, et al. Nature 436 (2005) 1136. Xiang HJ, Whangbo MH, Phys. Rev. Lett. 98 (2007) 246403.
  • An object of the present invention is to provide an oxide capable of controlling an electric characteristic (semiconductor characteristic) such as a band gap to an arbitrary value and a method for controlling an electric characteristic to an arbitrary value.
  • the oxide according to the present invention is an oxide represented by the following formula (1), in which a part of R in the formula (1) is substituted with a solid divalent or lower element.
  • R is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In
  • M is Mn, Fe, Co and It is at least one element selected from the group consisting of Ga
  • m is 1 or 2
  • n is an integer of 0 or more.
  • M in formula (1) is preferably Fe.
  • the element of less than positive divalent is at least one element selected from the group consisting of Ca, Sr, Ba and Zn. Further, it is particularly preferable that the element having a positive divalent value or less is Ca.
  • the electric conductor according to the present invention is an electric conductor made of the above oxide.
  • the p-type semiconductor according to the present invention is a p-type semiconductor made of the above oxide.
  • the oxide according to the present invention is an oxide represented by the following formula (1), in which a part of R in the formula (1) is replaced by a solid solution with an element having a positive tetravalence or higher.
  • R is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In
  • M is Mn, Fe, Co and It is at least one element selected from the group consisting of Ga
  • m is 1 or 2
  • n is an integer of 0 or more.
  • M in formula (1) is preferably Fe.
  • the element more than the positive tetravalent is at least one element selected from the group consisting of Ce, Ti, Zr, Hf, Sn, Ta, Sb and Re.
  • the element more than the positive tetravalent is Ce.
  • the electric conductor according to the present invention is an electric conductor made of the above oxide.
  • An n-type semiconductor according to the present invention is an n-type semiconductor made of the above oxide.
  • the method for producing an oxide according to the present invention includes at least one of an oxide and carbonate of at least one element selected from the group consisting of Ca, Sr, Ba, and Zn, Y, Dy, Lu, Er, Yb, At least one oxide or carbonate of at least one element selected from the group consisting of Tm, Ho, Sc and In, and at least one element selected from the group consisting of Mn, Fe, Co and Ga.
  • the raw material powder is fired at 1000 ° C. to 1400 ° C. for 1 to 100 hours in an atmosphere having an oxygen partial pressure of 10 ⁇ 7 to 10 ⁇ 8 atm, It is preferable to perform rapid cooling in a temperature range of 40 ° C.
  • the method for producing an oxide according to the present invention includes at least one of an oxide and carbonate of at least one element selected from the group consisting of Ce, Ti, Zr, Hf, Sn, Ta, Sb and Re, A group consisting of Mn, Fe, Co and Ga, and at least one of an oxide and carbonate of at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and
  • a step of cooling after baking under heating is performed by mixing at least one of oxides and carbonates of at least one element selected from the above, and an atmosphere having an oxygen partial pressure of 10 ⁇ 6 to 10 ⁇ 11 atm.
  • the raw material powder is fired at 1000 ° C. to 1400 ° C. for 1 to 100 hours in an atmosphere having an oxygen partial pressure of 10 ⁇ 7 to 10 ⁇ 8 atm, It is preferable to perform rapid cooling in a temperature range of 40 ° C.
  • the method for controlling electrical characteristics according to the present invention is a method in which a part of R of the oxide represented by the following formula (1) is substituted by a solid solution substitution of an element less than positive divalent or an element greater than positive tetravalent.
  • This is a method for controlling the electrical characteristics of an object.
  • R is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In
  • M is Mn, Fe, Co and It is at least one element selected from the group consisting of Ga
  • m is 1 or 2
  • n is an integer of 0 or more.
  • control the band gap of the oxide by adjusting the amount of solid solution substitution of an element less than positive divalent or an element more than positive tetravalent.
  • the present invention it is possible to provide a method for controlling the electrical characteristics of an oxide to an arbitrary value. Further, it is possible to provide an oxide which is a non-toxic material and can control the band gap from the far infrared region to the visible light region.
  • FIG. 1 is a flowchart showing a method for controlling electrical properties of an electrical conductor according to the present invention.
  • FIG. 2 is an X-ray powder diffraction spectrum of the oxide produced in Example 6.
  • FIG. 3 is a diagram illustrating an example in which a change in dielectric constant with temperature is measured.
  • FIG. 4 is a diagram in which the reciprocal of the inflection point Tr is plotted on the horizontal axis and the measurement frequency is plotted on the vertical axis.
  • FIG. 5 is a diagram showing the band gap Q and the electrical conductivity ⁇ of the oxides obtained in the examples and comparative examples.
  • the oxide of the present invention is represented by the following formula (1), and a part of R in the formula (1) is solid solution substituted by an element having a positive divalent value or less, or an element having a positive tetravalent value or more.
  • R is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In, and M is Mn, Fe, Co , Ni, Cu, Zn, Al, Mg, and Ga, m is 1 or 2, and n is an integer of 0 or more.
  • the present inventors adjust the band gap because the band gap of the oxide represented by the formula (1) is dominated by the competition of the number of charges between elements less than positive divalent or more than positive tetravalent. I found out that I can do it.
  • the band gap of an electric conductor is determined by the crystal structure constituting the conduction band and the forbidden band, it has been difficult to change the size of the band gap.
  • Coulomb force such as an oxide represented by the formula (1)
  • the amount of elements less than positive divalent or the amount of elements greater than positive tetravalent is adjusted.
  • the oxide of the present invention has extremely low toxicity.
  • R in the formula (1) is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In.
  • Y, Lu and Yb are preferred.
  • Y or Yb is more suitable in the synthesis by firing.
  • M is at least one element selected from the group consisting of Mn, Fe, Co, and Ga. Fe and Mn are preferred. Fe is more preferable in terms of ease of control of the valence.
  • m is 1 or 2.
  • n is an integer of 0 or more, preferably an integer of 0 to 10, particularly preferably an integer of 0 to 6.
  • a part of R in the formula (1) is replaced by a solid solution with an element having a positive divalent value or less or an element having a positive tetravalent value or more.
  • an element having a positive divalent value or less for the oxide electrical characteristics can be controlled from conductivity to p-type semiconductor properties, and an electrical conductor and p-type semiconductor can be realized.
  • an element having a positive tetravalent or higher value for the oxide the electrical characteristics can be controlled from conductivity to n-type semiconductor properties, and an electrical conductor and an n-type semiconductor can be realized.
  • Examples of the positive divalent or lower element include at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Na, K, Rb, Cs, and Zn. Moreover, this element less than positive divalent is preferably at least one element selected from the group consisting of Ca, Sr, Ba and Zn. Furthermore, Ca is more preferable in terms of ease of synthesis.
  • Examples of the positive tetravalent or higher element include at least one element selected from the group consisting of Ce, Ti, Zr, Hf, Sn, Ta, Sb, and Re. Moreover, this element more than the positive tetravalent is preferably at least one element selected from the group consisting of Ce, Ti, Zr and Sn. Furthermore, Ce is more preferable in terms of ease of synthesis.
  • substitution ratio X (R 1 ⁇ x A x : atomic ratio) of R with respect to an element having a positive divalent or lower element or a positive tetravalent or higher element (A) may be appropriately adjusted so as to obtain desired electrical characteristics.
  • This substitution rate is usually greater than 0 and 0.3 or less, preferably 0.01 to 0.2, more preferably 0.01 to 0.10.
  • the substitution ratio of R with respect to an element having a positive divalent value or less or an element having a positive tetravalent value or more can be adjusted by, for example, the charge ratio of raw materials when an oxide is synthesized.
  • the oxide of the present invention can be obtained, for example, by firing a mixture of raw materials.
  • oxide raw materials include oxides, sulfides, sulfates, halides (chlorides, bromides, etc.) containing R or M in formula (1), elements less than positive divalent or elements more than positive tetravalent. And carbonates. It is preferable to use oxides or carbonates of the above elements so that they are completely thermally decomposed at a low temperature so that no impurities remain.
  • the starting material is preferably sufficiently dried in advance.
  • At least one of an oxide and carbonate of at least one element selected from the group consisting of Ce, Ti, Zr, Hf, Sn, Ta, Sb and Re, and Y, Dy, Lu At least one selected from the group consisting of oxides and carbonates of at least one element selected from the group consisting of Er, Yb, Tm, Ho, Sc and In, and at least one selected from the group consisting of Mn, Fe, Co and Ga It is preferable to use a raw material powder in which at least one of an oxide of a seed element and a carbonate is mixed.
  • the raw materials can be mixed by, for example, a physical mixing method.
  • a specific physical mixing method is not particularly limited, and a known device such as a ball mill can be used.
  • the oxide of the present invention is obtained by firing the raw material powder of the obtained raw material mixture under heating in an ultra-low oxygen partial pressure atmosphere and then cooling it.
  • the raw material mixture may be uniaxially pressed into a form that is easy to handle before firing, for example, a pellet, and further molded by cold isostatic pressure (CIP) or the like. Moreover, you may calcine.
  • the firing conditions may be appropriately adjusted depending on the raw materials used.
  • the firing temperature is usually preferably 1000 ° C. to 1400 ° C., particularly preferably 1100 ° C. to 1300 ° C.
  • the firing time is preferably 1 hour to 100 hours, particularly preferably 5 hours to 72 hours.
  • the atmosphere of firing very low oxygen partial pressure atmosphere, it is preferable to adjust and more specifically an oxygen partial pressure of 10 -6 to 10 -11 atm, further the oxygen partial pressure of 10 -7 to 10 - It is particularly preferable to adjust to 8 atmospheres.
  • the obtained oxide is usually cooled in a temperature range of 15 to 40 ° C., and particularly rapidly cooled, so that the change in crystal structure can be suppressed, which is preferable.
  • the temperature lowering rate is preferably about 100 ° C./min to 1000 ° C./min.
  • An oxide single crystal may be produced from the obtained oxide sintered body.
  • a method for producing a single crystal can be produced by the following method, but is not necessarily limited to the following.
  • Examples of the method for producing the oxide single crystal include an optical FZ (floating zone: floating zone melting) method. Specifically, an oxide single crystal is grown using an infrared condensing heating furnace. The oxide sintered body is used as a raw material rod, and is placed on the upper axis of an infrared condensing heating furnace, and the oxide single crystal produced by another method as a seed crystal is placed on the lower axis. As the seed crystal, a single crystal portion obtained by preliminarily subjecting the oxide polycrystal to light heating zone melting is used.
  • optical FZ floating zone: floating zone melting
  • the tips of the raw material rod and seed crystal are moved so as to be in the center of the furnace and brought into contact with melting, while the raw material rod and seed crystal are rotated in opposite directions to adjust the crystal growth rate. A single crystal is grown.
  • the crystal growth atmosphere is an ultra-low oxygen partial pressure atmosphere.
  • the oxygen partial pressure is preferably adjusted to 10 ⁇ 6 to 10 ⁇ 11 atm, and the oxygen partial pressure is adjusted to 10 ⁇ 7 to 10 ⁇ 8 atm. It is particularly preferable to do this.
  • the obtained oxide is cooled, particularly rapidly cooled after firing.
  • the temperature lowering rate is preferably about 100 ° C./min to 1000 ° C./min.
  • the electrical properties of the oxide can be controlled by solid solution substitution of a part of R in the formula (1) with an element less than positive divalent or an element more than positive tetravalent.
  • FIG. 1 is a flowchart showing a method for controlling electrical properties of an electrical conductor according to an embodiment.
  • the amount of the positive divalent or lower element or the positive tetravalent or higher element contained in the oxide of the formula (1) is adjusted (step S1).
  • the electrical conductivity depending on the band gap of the oxide is changed and controlled (step S2).
  • the semiconductor property (electric property) of the oxide can be controlled to an arbitrary value by controlling the substitution rate of R with respect to an element having a positive or lower valence or an element having a positive or lower valence.
  • the band gap can be controlled from the far infrared region to the visible light region (0.1 eV to 2.5 eV).
  • the band gap is determined by the crystal structure, it is difficult to change the band cap.
  • a conventional semiconductor material is a material having a specific band cap, the optical response can respond only to a specific wavelength, and it is difficult to control the band gap in a wide range by doping. Therefore, a material capable of easily controlling the electrical characteristics has been demanded.
  • the electrical characteristics of the oxide can be controlled from conductivity to p-type semiconductivity. It has been found that the electrical properties of the oxide can be controlled from conductivity to n-type semiconductor properties by substitution, and the present invention has been achieved.
  • R is required to be 3+ as derived from the chemical formula RFe 2 O 4 . Therefore, from these conditions, the valence of R is 3+ in order to develop the characteristics of the substance of the present invention.
  • the present invention breaks down the first condition described above by substituting a small amount of divalent or tetravalent ions for R 3+ ions, and has physical properties such as optical properties, magnetic properties, electrical conductivity properties, and band gaps. It is based on finding that it changes markedly. Moreover, since the above-described crystal structure of RFe 2 O 4 is established, R ions known so far are Y, Dy, Lu, Er, Yb, Tm, Ho, Sc, and In. This is presumed to be restricted by the third condition described above.
  • the present invention does not exclude introducing a plurality of 3+ ions into R ions instead of one kind. It is speculated that dissolving ions with different ionic radii may further change the physical properties.
  • the essence of the present invention is based on the speculation that the first condition described above is modulated to adjust the charge frustration, and as a result, the physical properties including the band gap are changed. Moreover, in the example specifically described below as an example of the present invention, a small amount of Ca 2+ and Ce 4+ is substituted according to this idea, and the effect is confirmed.
  • Example 1 [Production of oxide] Iron oxide powder having a purity of 99.99% (Fe 2 O 3 manufactured by Kojundo Chemical Laboratory Co., Ltd.), ytterbium oxide powder having a purity of 99.99% (Yb 2 O 3 manufactured by Kojundo Chemical Laboratory Co., Ltd.) and purity 99 99% calcium carbonate (CaCO 2 manufactured by Kojundo Chemical Laboratory Co., Ltd.) is used.
  • Fe 2 O 3 is prepared by baking at 600 ° C. for 12 hours in oxygen.
  • Yb 2 O 3 is prepared by decarboxylation at 1000 ° C. in the atmosphere. The raw materials were weighed so that the atomic ratio (Yb: Ca: Fe) was 0.99: 0.01: 2, and pulverized and mixed to obtain a powder material.
  • This powder material was put into a press mold having a diameter of 10 mm, and was press-molded at a hydrostatic pressure of 60 MPa for 3 minutes and solidified into a cylindrical shape using a press machine. Next, the solidified powder material is taken out and used as a raw material body.
  • the heat treatment temperature was 1200 ° C., and the heat treatment time was 24 hours. After the heat treatment, the sample was taken out and rapidly cooled to room temperature (25 ° C.) to produce the oxide of the present invention.
  • the oxide obtained above was evaluated by ICP emission spectroscopy by quantitative analysis of composition analysis, and the atomic ratio (Yb: Ca: Fe) was 0.99: 0.01: 2.00. It was.
  • Example 4-6 An oxide was produced in the same manner as in Example 1 except that cerium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was used instead of calcium carbonate as a raw material, and the raw material charge ratio was changed as follows. did.
  • Example 2-6 the composition and substitution of the obtained oxide were measured in the same manner as in Example 1, and it was confirmed that the composition was the same as the raw material charge ratio.
  • FIG. 2 shows an X-ray powder diffraction spectrum of the oxide produced in Example 6. As a result of analysis of peak shift by X-ray diffraction, it was confirmed that this oxide is a single phase of a crystal represented by YbFe 2 O 4 , and Yb was solid-substituted by Ce.
  • the temperature dependence of the dielectric constant of this measurement sample was measured, and the band gap was calculated from the dielectric dispersion of the measurement sample.
  • the dielectric constant was measured according to the method described in JP-A-2007-223886.
  • FIG. 3 shows an example in which the temperature change of the dielectric constant of the sample is measured. From the obtained result, the inflection point Tr of each frequency is determined.
  • f is a frequency
  • f 0 is a constant
  • k is a Boltzmann constant
  • T is an absolute temperature.
  • FIG. 5 is a graph showing the band gap Q and the electrical conductivity ⁇ of the oxides obtained in the above-described examples and comparative examples.
  • the electrical conductivity is a value estimated from an electrical resistance near room temperature.
  • Curve C1 shows the relationship between the band gap Q and the amount X of elements less than positive divalent or more than tetravalent
  • curve C2 shows the relationship between resistivity ⁇ and X at room temperature.
  • the absorption edge is in the vicinity of 1 eV. Therefore, even when irradiated with light of energy smaller than this (for example, light of 0.3 eV (wavelength 4 ⁇ m)), light absorption is achieved. Does not happen. This indicates that there is no light absorption even when irradiated with light having energy smaller than the band gap of Si.
  • the oxide of the present invention can realize optimum characteristics necessary for design in current control elements, voltage signal storage elements, dielectric elements, light sensing elements, solar cells, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Abstract

Disclosed is an oxide represented by formula (1), a part of R in formula (1) having been subjected to solid solution substitution by a positive divalent or lower element or a positive quadrivalent or higher element. (RM2O4)m(RMO3)n (1) wherein R represents at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc, and In; M represents at least one element selected from the group consisting of Mn, Fe, Co, and Ga; m is 1 or 2; and n is an integer of 0 or more.

Description

酸化物及び電気導体の電気物性制御方法Method for controlling electrical properties of oxides and electrical conductors
 本発明は、電気導体の電気物性を制御できる酸化物及び電気導体の電気物性制御方法に関する。 The present invention relates to an oxide capable of controlling electrical properties of an electrical conductor and a method for controlling electrical properties of the electrical conductor.
 電気導体のバンドギャップは、通常、伝導バンドと禁制バンドとを構成する結晶構造によって決定されている。このため、バンドギャップの大きさを変えることは困難である。また、半導体材料は、Siや化合物半導体のように、特定のバンドギャップを持つ材料であるため、光吸収による応答では特定波長にしか応答できない。さらに、ドーピングにより広い範囲でのバンドギャップを制御することも不可能である。 The band gap of the electrical conductor is usually determined by the crystal structure that constitutes the conduction band and the forbidden band. For this reason, it is difficult to change the size of the band gap. Further, since the semiconductor material is a material having a specific band gap, such as Si or a compound semiconductor, the response by light absorption can respond only to a specific wavelength. Furthermore, it is impossible to control a wide band gap by doping.
 また、特にエネルギーの低い赤外領域の波長帯域では、不安定あるいは毒性ある物質であるZnSeやCdSなどの化合物半導体が用いられていたが、作製方法が困難であったり、毒性の問題があるため使用が制限される問題がある。従って、電気特性を容易に制御できる材料が求められている。 In addition, compound semiconductors such as ZnSe and CdS, which are unstable or toxic substances, are used particularly in the wavelength band of the infrared region where energy is low, but the manufacturing method is difficult and there is a problem of toxicity. There is a problem that usage is restricted. Accordingly, there is a need for materials that can easily control electrical characteristics.
 新規な材料系として、例えば、非特許文献1は、二次元三角格子鉄複電荷酸化物であるLuFeの誘電性について報告している。LuFeは強誘電性であり、その発現原理は、フラストレートした電子相関による電荷秩序形成、例えば、Fe3+上の極性の電子配置といった作用機序によるものと考えられ、既知の誘電体と異なることを報告している。 As a novel material system, for example, Non-Patent Document 1 reports the dielectric properties of LuFe 2 O 4 which is a two-dimensional triangular lattice iron double-charged oxide. LuFe 2 O 4 is ferroelectric, and its manifestation principle is thought to be due to the action mechanism such as charge order formation by frustrated electron correlation, for example, the polar electron configuration on Fe 3+ , and known dielectrics And reported that it is different.
 また、非特許文献2において、LuFeに関する最近の第一計算原理では、メタリックな電導特性の存在を指摘している。尚、今までの電導特性は半導体的な挙動が報告されていた。
N.Ikeda,etal.Nature 436(2005)1136. Xiang HJ,Whangbo MH,Phys.Rev.Lett.,98(2007)246403.
Further, in Non-Patent Document 2, the recent first calculation principle regarding LuFe 2 O 4 points out the existence of metallic conductive characteristics. It has been reported that the electrical conductivity up to now has a semiconductor behavior.
N. Ikeda, et al. Nature 436 (2005) 1136. Xiang HJ, Whangbo MH, Phys. Rev. Lett. 98 (2007) 246403.
 本発明は、バンドギャップ等の電気特性(半導体特性)を任意の値に制御できる酸化物、及び電気特性を任意の値に制御する方法を提供することを目的とする。 An object of the present invention is to provide an oxide capable of controlling an electric characteristic (semiconductor characteristic) such as a band gap to an arbitrary value and a method for controlling an electric characteristic to an arbitrary value.
 本発明によれば、以下の酸化物等が提供される。すなわち、本発明による酸化物は、下記式(1)で表され、式(1)中のRの一部が正二価以下の元素により固溶置換されている酸化物である。
  (RM(RMO   (1)
ここで、式中、Rは、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素であり、Mは、Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素であり、mは1又は2であり、nは0以上の整数である。
According to the present invention, the following oxides and the like are provided. That is, the oxide according to the present invention is an oxide represented by the following formula (1), in which a part of R in the formula (1) is substituted with a solid divalent or lower element.
(RM 2 O 4 ) m (RMO 3 ) n (1)
Here, R is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In, and M is Mn, Fe, Co and It is at least one element selected from the group consisting of Ga, m is 1 or 2, and n is an integer of 0 or more.
 また、上記の酸化物において、式(1)中のMがFeであることが好ましい。また、正二価以下の元素がCa、Sr、Ba及びZnからなる群より選択される少なくとも1種の元素であることが好ましい。また、正二価以下の元素がCaであることが特に好ましい。 In the above oxide, M in formula (1) is preferably Fe. Moreover, it is preferable that the element of less than positive divalent is at least one element selected from the group consisting of Ca, Sr, Ba and Zn. Further, it is particularly preferable that the element having a positive divalent value or less is Ca.
 本発明による電気導体は、上記の酸化物からなる電気導体である。また、本発明によるp型半導体は、上記の酸化物からなるp型半導体である。 The electric conductor according to the present invention is an electric conductor made of the above oxide. The p-type semiconductor according to the present invention is a p-type semiconductor made of the above oxide.
 あるいは、本発明による酸化物は、下記式(1)で表され、式(1)中のRの一部が正四価以上の元素により固溶置換されている酸化物である。
  (RM(RMO   (1)
ここで、式中、Rは、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素であり、Mは、Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素であり、mは1又は2であり、nは0以上の整数である。
Alternatively, the oxide according to the present invention is an oxide represented by the following formula (1), in which a part of R in the formula (1) is replaced by a solid solution with an element having a positive tetravalence or higher.
(RM 2 O 4 ) m (RMO 3 ) n (1)
Here, R is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In, and M is Mn, Fe, Co and It is at least one element selected from the group consisting of Ga, m is 1 or 2, and n is an integer of 0 or more.
 また、上記の酸化物において、式(1)中のMがFeであることが好ましい。また、正四価以上の元素がCe、Ti、Zr、Hf、Sn、Ta、Sb及びReからなる群より選択される少なくとも1種の元素であることが好ましい。また、正四価以上の元素がCeであることが特に好ましい。 In the above oxide, M in formula (1) is preferably Fe. Moreover, it is preferable that the element more than the positive tetravalent is at least one element selected from the group consisting of Ce, Ti, Zr, Hf, Sn, Ta, Sb and Re. Moreover, it is especially preferable that the element more than the positive tetravalent is Ce.
 本発明による電気導体は、上記の酸化物からなる電気導体である。また、本発明によるn型半導体は、上記の酸化物からなるn型半導体である。 The electric conductor according to the present invention is an electric conductor made of the above oxide. An n-type semiconductor according to the present invention is an n-type semiconductor made of the above oxide.
 本発明による酸化物の製造方法は、Ca、Sr、Ba及びZnからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、を混合した原料粉末を準備する工程と、原料粉末を、酸素分圧が10-6~10-11気圧である雰囲気下において、加熱下で焼成した後、冷却する工程とを備えることを特徴とする。 The method for producing an oxide according to the present invention includes at least one of an oxide and carbonate of at least one element selected from the group consisting of Ca, Sr, Ba, and Zn, Y, Dy, Lu, Er, Yb, At least one oxide or carbonate of at least one element selected from the group consisting of Tm, Ho, Sc and In, and at least one element selected from the group consisting of Mn, Fe, Co and Ga. A step of preparing a raw material powder in which at least one of an oxide and a carbonate is mixed, and after the raw material powder is fired under heating in an atmosphere having an oxygen partial pressure of 10 −6 to 10 −11 atm, And a step of cooling.
 また、上記の製造方法においては、原料粉末を、酸素分圧が10-7~10-8気圧である雰囲気下において、1000℃~1400℃で、1時間~100時間焼成させた後、15~40℃の温度帯域にて急冷させることが好ましい。 In the above production method, the raw material powder is fired at 1000 ° C. to 1400 ° C. for 1 to 100 hours in an atmosphere having an oxygen partial pressure of 10 −7 to 10 −8 atm, It is preferable to perform rapid cooling in a temperature range of 40 ° C.
 あるいは、本発明による酸化物の製造方法は、Ce、Ti、Zr、Hf、Sn、Ta、Sb及びReからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、を混合した原料粉末を準備する工程と、原料粉末を、酸素分圧が10-6~10-11気圧である雰囲気下において、加熱下で焼成した後、冷却する工程とを備えることを特徴とする。 Alternatively, the method for producing an oxide according to the present invention includes at least one of an oxide and carbonate of at least one element selected from the group consisting of Ce, Ti, Zr, Hf, Sn, Ta, Sb and Re, A group consisting of Mn, Fe, Co and Ga, and at least one of an oxide and carbonate of at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In A step of preparing a raw material powder obtained by mixing at least one of oxides and carbonates of at least one element selected from the above, and an atmosphere having an oxygen partial pressure of 10 −6 to 10 −11 atm. And a step of cooling after baking under heating.
 また、上記の製造方法においては、原料粉末を、酸素分圧が10-7~10-8気圧である雰囲気下において、1000℃~1400℃で、1時間~100時間焼成させた後、15~40℃の温度帯域にて急冷させることが好ましい。 In the above production method, the raw material powder is fired at 1000 ° C. to 1400 ° C. for 1 to 100 hours in an atmosphere having an oxygen partial pressure of 10 −7 to 10 −8 atm, It is preferable to perform rapid cooling in a temperature range of 40 ° C.
 また、本発明による電気特性の制御方法は、下記式(1)で表される酸化物のRの一部に、正二価以下の元素又は正四価以上の元素を固溶置換させることにより、酸化物の電気特性を制御する方法である。
  (RM(RMO   (1)
ここで、式中、Rは、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素であり、Mは、Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素であり、mは1又は2であり、nは0以上の整数である。
In addition, the method for controlling electrical characteristics according to the present invention is a method in which a part of R of the oxide represented by the following formula (1) is substituted by a solid solution substitution of an element less than positive divalent or an element greater than positive tetravalent. This is a method for controlling the electrical characteristics of an object.
(RM 2 O 4 ) m (RMO 3 ) n (1)
Here, R is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In, and M is Mn, Fe, Co and It is at least one element selected from the group consisting of Ga, m is 1 or 2, and n is an integer of 0 or more.
 また、上記の制御方法において、正二価以下の元素又は正四価以上の元素の固溶置換量を調整することにより、酸化物のバンドギャップを制御することが好ましい。 Further, in the above control method, it is preferable to control the band gap of the oxide by adjusting the amount of solid solution substitution of an element less than positive divalent or an element more than positive tetravalent.
 本発明によれば、酸化物の電気特性を任意の値に制御する方法を提供できる。また、毒性のない材料であって、遠赤外域から可視光域までバンドギャップの制御が可能な酸化物を提供できる。 According to the present invention, it is possible to provide a method for controlling the electrical characteristics of an oxide to an arbitrary value. Further, it is possible to provide an oxide which is a non-toxic material and can control the band gap from the far infrared region to the visible light region.
図1は、本発明の電気導体の電気物性の制御方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for controlling electrical properties of an electrical conductor according to the present invention. 図2は、実施例6で作製した酸化物のX線粉末回折スペクトルである。FIG. 2 is an X-ray powder diffraction spectrum of the oxide produced in Example 6. 図3は、誘電率の温度変化を測定した例を示す図である。FIG. 3 is a diagram illustrating an example in which a change in dielectric constant with temperature is measured. 図4は、変極点Trの逆数を横軸に、測定周波数を縦軸にプロットした図である。FIG. 4 is a diagram in which the reciprocal of the inflection point Tr is plotted on the horizontal axis and the measurement frequency is plotted on the vertical axis. 図5は、実施例及び比較例で得た酸化物のバンドギャップQ及び電気伝導度ρを示す図である。FIG. 5 is a diagram showing the band gap Q and the electrical conductivity ρ of the oxides obtained in the examples and comparative examples.
 本発明の酸化物は下記式(1)で表され、式(1)中のRの一部が正二価以下の元素、又は正四価以上の元素により固溶置換されている。
  (RM(RMO   (1)
ここで、上記式中、Rは、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素であり、Mは、Mn、Fe、Co、Ni、Cu、Zn、Al、Mg及びGaからなる群より選択される少なくとも1種の元素であり、mは1又は2であり、nは0以上の整数である。
The oxide of the present invention is represented by the following formula (1), and a part of R in the formula (1) is solid solution substituted by an element having a positive divalent value or less, or an element having a positive tetravalent value or more.
(RM 2 O 4 ) m (RMO 3 ) n (1)
Here, in the above formula, R is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In, and M is Mn, Fe, Co , Ni, Cu, Zn, Al, Mg, and Ga, m is 1 or 2, and n is an integer of 0 or more.
 本発明者らは、式(1)で表される酸化物のバンドギャップが、正二価以下の元素、又は正四価以上の元素間の電荷数の競合に支配されているため、バンドギャップを調整できることを見出した。 The present inventors adjust the band gap because the band gap of the oxide represented by the formula (1) is dominated by the competition of the number of charges between elements less than positive divalent or more than positive tetravalent. I found out that I can do it.
 従来、電気導体のバンドギャップは、伝導バンドと禁制バンドとを構成する結晶構造によって決定されるため、バンドギャップの大きさを変えることは困難であった。一方、式(1)で表される酸化物のように電荷配置がクーロン力によって競合している物質の電気伝導では、正二価以下の元素の量、又は正四価以上の元素の量を調整し、クーロン力の競合を調整することによって、結果的に酸化物が持つ電気伝導度の温度変化等、バンドギャップの大きさに依存する物性を制御することができる。また、本発明の酸化物は毒性が極めて低い。 Conventionally, since the band gap of an electric conductor is determined by the crystal structure constituting the conduction band and the forbidden band, it has been difficult to change the size of the band gap. On the other hand, in the electrical conduction of a substance whose charge configuration is competing by Coulomb force, such as an oxide represented by the formula (1), the amount of elements less than positive divalent or the amount of elements greater than positive tetravalent is adjusted. By adjusting the Coulomb force competition, it is possible to control physical properties depending on the size of the band gap, such as the temperature change of the electric conductivity of the oxide. Further, the oxide of the present invention has extremely low toxicity.
 式(1)中のRは、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素である。好ましくはY、Lu、Ybである。特に、Y又はYbは焼成による合成において、より好適である。 R in the formula (1) is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In. Y, Lu and Yb are preferred. In particular, Y or Yb is more suitable in the synthesis by firing.
 Mは、Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素である。好ましくはFeおよびMnである。Feは価数の制御のしやすさの面でより好ましい。mは1又は2である。nは0以上の整数であり、0~10の整数が好ましく、特に0~6の整数が好ましい。 M is at least one element selected from the group consisting of Mn, Fe, Co, and Ga. Fe and Mn are preferred. Fe is more preferable in terms of ease of control of the valence. m is 1 or 2. n is an integer of 0 or more, preferably an integer of 0 to 10, particularly preferably an integer of 0 to 6.
 本発明の酸化物は、式(1)中のRの一部が正二価以下の元素、又は正四価以上の元素により固溶置換されている。酸化物に正二価以下の元素を置換させることで、電気特性を導電性からp型半導体性まで制御でき、電気導体、p型半導体を実現できる。一方、酸化物に正四価以上の元素を置換させることで、電気特性を導電性からn型半導体性まで制御でき、電気導体、n型半導体を実現できる。 In the oxide of the present invention, a part of R in the formula (1) is replaced by a solid solution with an element having a positive divalent value or less or an element having a positive tetravalent value or more. By substituting an element having a positive divalent value or less for the oxide, electrical characteristics can be controlled from conductivity to p-type semiconductor properties, and an electrical conductor and p-type semiconductor can be realized. On the other hand, by substituting an element having a positive tetravalent or higher value for the oxide, the electrical characteristics can be controlled from conductivity to n-type semiconductor properties, and an electrical conductor and an n-type semiconductor can be realized.
 正二価以下の元素としては、Mg、Ca、Sr、Ba、Na、K、Rb、Cs及びZnからなる群より選択される少なくとも1種の元素が挙げられる。また、この正二価以下の元素は、好ましくは、Ca、Sr、Ba及びZnからなる群より選択される少なくとも1種の元素である。さらに合成の容易さにおいて、Caがより好ましい。 Examples of the positive divalent or lower element include at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Na, K, Rb, Cs, and Zn. Moreover, this element less than positive divalent is preferably at least one element selected from the group consisting of Ca, Sr, Ba and Zn. Furthermore, Ca is more preferable in terms of ease of synthesis.
 正四価以上の元素としては、Ce、Ti、Zr、Hf、Sn、Ta、Sb及びReからなる群より選択される少なくとも1種の元素が挙げられる。また、この正四価以上の元素は、好ましくは、Ce、Ti、Zr及びSnからなる群より選択される少なくとも1種の元素である。さらに合成の容易さにおいて、Ceがより好ましい。 Examples of the positive tetravalent or higher element include at least one element selected from the group consisting of Ce, Ti, Zr, Hf, Sn, Ta, Sb, and Re. Moreover, this element more than the positive tetravalent is preferably at least one element selected from the group consisting of Ce, Ti, Zr and Sn. Furthermore, Ce is more preferable in terms of ease of synthesis.
 また、正二価以下の元素又は正四価以上の元素(A)の、Rに対する置換率X(R1-x:原子比)は、所望の電気特性が得られるように適宜調整すればよい。この置換率は、通常、0よりも大きく、0.3以下であり、好ましくは0.01~0.2、さらに好ましくは0.01~0.10である。正二価以下の元素又は正四価以上の元素の、Rに対する置換率は、例えば、酸化物を合成するときの原料の仕込み比で調整することができる。 In addition, the substitution ratio X (R 1−x A x : atomic ratio) of R with respect to an element having a positive divalent or lower element or a positive tetravalent or higher element (A) may be appropriately adjusted so as to obtain desired electrical characteristics. . This substitution rate is usually greater than 0 and 0.3 or less, preferably 0.01 to 0.2, more preferably 0.01 to 0.10. The substitution ratio of R with respect to an element having a positive divalent value or less or an element having a positive tetravalent value or more can be adjusted by, for example, the charge ratio of raw materials when an oxide is synthesized.
 式(1)中のRの一部が、正二価以下の元素又は正四価以上の元素により固溶置換されていることは、X線回折によるピークのシフト、すなわち格子定数の変化および置換元素の吸収端を用いたXAFS法により分析することにより確認できる。置換の確認は、それぞれの元素の吸収端をXAFS法により測定を行い、得られたスペクトルをフーリエ変換して得られる動径分布曲線と、例えばLuFeのLu-K端のXAFSスペクトルから得られる動径分布曲線を比較することから確認できる。また置換率は、X線回折から得られる格子定数を置換量とプロットすることにより測定できる。 The fact that a part of R in formula (1) is solid solution substituted by an element less than positive divalent or more than positive tetravalent means that the peak shift due to X-ray diffraction, that is, the change in lattice constant and the substitution element This can be confirmed by analysis by the XAFS method using the absorption edge. The confirmation of the substitution is performed by measuring the absorption edge of each element by the XAFS method, and from the radial distribution curve obtained by Fourier transform of the obtained spectrum and, for example, the XAFS spectrum of the Lu-K edge of LuFe 2 O 4. This can be confirmed by comparing the obtained radial distribution curves. The substitution rate can be measured by plotting the lattice constant obtained from X-ray diffraction with the substitution amount.
 本発明の酸化物は、例えば、原料の混合物を焼成することにより得ることができる。酸化物の原料としては、例えば、式(1)のR又はM、正二価以下の元素又は正四価以上の元素を含む、酸化物、硫化物、硫酸塩、ハロゲン化物(塩化物、臭化物等)、炭酸塩等が挙げられる。低温で完全に熱分解し、不純物が残存しないようにするため、上記元素の酸化物、炭酸塩を用いるのが好ましい。また、出発原料は、予め十分に乾燥することが好ましい。 The oxide of the present invention can be obtained, for example, by firing a mixture of raw materials. Examples of oxide raw materials include oxides, sulfides, sulfates, halides (chlorides, bromides, etc.) containing R or M in formula (1), elements less than positive divalent or elements more than positive tetravalent. And carbonates. It is preferable to use oxides or carbonates of the above elements so that they are completely thermally decomposed at a low temperature so that no impurities remain. The starting material is preferably sufficiently dried in advance.
 出発原料しては、Ca、Sr、Ba及びZnからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方とを混合した原料粉末を用いることが好ましい。 As starting materials, at least one of oxides and carbonates of at least one element selected from the group consisting of Ca, Sr, Ba and Zn, and Y, Dy, Lu, Er, Yb, Tm, Ho, At least one of an oxide and carbonate of at least one element selected from the group consisting of Sc and In, and an oxide and carbonic acid of at least one element selected from the group consisting of Mn, Fe, Co, and Ga It is preferable to use a raw material powder in which at least one of the salts is mixed.
 あるいは、出発原料として、Ce、Ti、Zr、Hf、Sn、Ta、Sb及びReからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方とを混合した原料粉末を用いることが好ましい。 Alternatively, as starting materials, at least one of an oxide and carbonate of at least one element selected from the group consisting of Ce, Ti, Zr, Hf, Sn, Ta, Sb and Re, and Y, Dy, Lu, At least one selected from the group consisting of oxides and carbonates of at least one element selected from the group consisting of Er, Yb, Tm, Ho, Sc and In, and at least one selected from the group consisting of Mn, Fe, Co and Ga It is preferable to use a raw material powder in which at least one of an oxide of a seed element and a carbonate is mixed.
 原料の混合は、例えば物理混合法により行うことができる。具体的な物理混合法としては、特に制限はなく、ボールミル等、公知の装置を使用できる。 The raw materials can be mixed by, for example, a physical mixing method. A specific physical mixing method is not particularly limited, and a known device such as a ball mill can be used.
 得られた原料混合物の原料粉末を、超低酸素分圧雰囲気下において、加熱下で焼成した後、冷却することにより、本発明の酸化物が得られる。原料混合物は、焼成前に取り扱いの良い形、例えば、ペレット状に一軸加圧成型し、さらにこれを冷間静水圧(CIP)等により成型してもよい。また、仮焼してもよい。 The oxide of the present invention is obtained by firing the raw material powder of the obtained raw material mixture under heating in an ultra-low oxygen partial pressure atmosphere and then cooling it. The raw material mixture may be uniaxially pressed into a form that is easy to handle before firing, for example, a pellet, and further molded by cold isostatic pressure (CIP) or the like. Moreover, you may calcine.
 焼成条件は、使用する原料等により適宜調整すればよい。例えば、焼成温度は通常1000℃~1400℃が好ましく、1100℃~1300℃が特に好ましい。また、焼成時間は、1時間~100時間が好ましく、特に5時間~72時間が好ましい。 The firing conditions may be appropriately adjusted depending on the raw materials used. For example, the firing temperature is usually preferably 1000 ° C. to 1400 ° C., particularly preferably 1100 ° C. to 1300 ° C. The firing time is preferably 1 hour to 100 hours, particularly preferably 5 hours to 72 hours.
 焼成する雰囲気としては、超低酸素分圧雰囲気下、より具体的には酸素分圧を10-6~10-11気圧に調整することが好ましく、さらに、酸素分圧を10-7~10-8気圧に調整することが特に好ましい。また、酸素分圧を調整するために、COとCOの混合ガスや、HとCOの混合ガスを使用することが好ましい。COとCOの混合ガスを用いる場合、CO/CO=1~10の範囲とすることにより、好適に酸素分圧を調整することができる。 The atmosphere of firing, very low oxygen partial pressure atmosphere, it is preferable to adjust and more specifically an oxygen partial pressure of 10 -6 to 10 -11 atm, further the oxygen partial pressure of 10 -7 to 10 - It is particularly preferable to adjust to 8 atmospheres. In order to adjust the oxygen partial pressure, it is preferable to use a mixed gas of CO and CO 2 or a mixed gas of H 2 and CO 2 . When a mixed gas of CO and CO 2 is used, the partial pressure of oxygen can be suitably adjusted by setting the range of CO 2 / CO = 1 to 10.
 焼成後、得られた酸化物を通常は15~40℃の温度帯域にて冷却、特に急冷することにより、結晶構造の変化を抑制できるため、好ましい。この酸化物の冷却については、例えば、降温速度を100℃/min~1000℃/min程度とすることが好ましい。 After calcination, the obtained oxide is usually cooled in a temperature range of 15 to 40 ° C., and particularly rapidly cooled, so that the change in crystal structure can be suppressed, which is preferable. For cooling the oxide, for example, the temperature lowering rate is preferably about 100 ° C./min to 1000 ° C./min.
 得られた酸化物焼結体から、酸化物単結晶を作製してもよい。単結晶を作製する方法は下記の手法で製造できるが必ずしも下記に制限されることはない。 An oxide single crystal may be produced from the obtained oxide sintered body. A method for producing a single crystal can be produced by the following method, but is not necessarily limited to the following.
 酸化物単結晶を作製する方法としては、例えば、光FZ(フローティングゾーン:浮遊帯域溶融)法が挙げられる。具体的に、赤外線集光加熱炉を用いて酸化物単結晶の育成を行う。酸化物焼結体を原料棒として、赤外線集光加熱炉の上軸に設置し、下軸には種結晶として別方法で作製した酸化物単結晶を設置する。尚、種結晶は、予め酸化物多結晶に対して光加熱帯域溶融を施して得た単結晶部分を切出したものを使用する。 Examples of the method for producing the oxide single crystal include an optical FZ (floating zone: floating zone melting) method. Specifically, an oxide single crystal is grown using an infrared condensing heating furnace. The oxide sintered body is used as a raw material rod, and is placed on the upper axis of an infrared condensing heating furnace, and the oxide single crystal produced by another method as a seed crystal is placed on the lower axis. As the seed crystal, a single crystal portion obtained by preliminarily subjecting the oxide polycrystal to light heating zone melting is used.
 原料棒と種結晶のそれぞれの先端を、炉中心になるように移動させて溶解接触させ、原料棒と種結晶とをそれぞれ互いに逆向きに回転させながら、結晶成長速度を調整しながらで酸化物単結晶の育成を行う。 The tips of the raw material rod and seed crystal are moved so as to be in the center of the furnace and brought into contact with melting, while the raw material rod and seed crystal are rotated in opposite directions to adjust the crystal growth rate. A single crystal is grown.
 結晶育成雰囲気は、超低酸素分圧雰囲気下、具体的には酸素分圧を10-6~10-11気圧に調整することが好ましく、酸素分圧を10-7~10-8気圧に調整することが特に好ましい。また、酸素分圧を調整するために、COとCOの混合ガスや、HとCOの混合ガスを使用することが好ましい。 The crystal growth atmosphere is an ultra-low oxygen partial pressure atmosphere. Specifically, the oxygen partial pressure is preferably adjusted to 10 −6 to 10 −11 atm, and the oxygen partial pressure is adjusted to 10 −7 to 10 −8 atm. It is particularly preferable to do this. In order to adjust the oxygen partial pressure, it is preferable to use a mixed gas of CO and CO 2 or a mixed gas of H 2 and CO 2 .
 また、焼成後、得られた酸化物を冷却、特に急冷することが好ましい。具体的には、例えば、降温速度を100℃/min~1000℃/min程度とすることが好ましい。 Moreover, it is preferable that the obtained oxide is cooled, particularly rapidly cooled after firing. Specifically, for example, the temperature lowering rate is preferably about 100 ° C./min to 1000 ° C./min.
 本発明の酸化物では、式(1)中のRの一部を正二価以下の元素、又は正四価以上の元素により固溶置換することにより、酸化物の電気物性を制御することができる。 In the oxide of the present invention, the electrical properties of the oxide can be controlled by solid solution substitution of a part of R in the formula (1) with an element less than positive divalent or an element more than positive tetravalent.
 図1は、実施の形態に係る電気導体の電気物性を制御する方法を示すフローチャートである。まず、式(1)の酸化物が含有する、正二価以下の元素又は正四価以上の元素の量を調整する(ステップS1)。そして、酸化物が有するバンドギャップに依存する電気伝導度を変更、制御する(ステップS2)。 FIG. 1 is a flowchart showing a method for controlling electrical properties of an electrical conductor according to an embodiment. First, the amount of the positive divalent or lower element or the positive tetravalent or higher element contained in the oxide of the formula (1) is adjusted (step S1). Then, the electrical conductivity depending on the band gap of the oxide is changed and controlled (step S2).
 本発明では、正二価以下の元素又は正四価以上の元素の、Rに対する置換率を制御することにより、酸化物の半導体特性(電気特性)を任意の値に制御できる。例えば、遠赤外域から可視光域(0.1eV~2.5eV)までバンドギャップの制御が可能である。 In the present invention, the semiconductor property (electric property) of the oxide can be controlled to an arbitrary value by controlling the substitution rate of R with respect to an element having a positive or lower valence or an element having a positive or lower valence. For example, the band gap can be controlled from the far infrared region to the visible light region (0.1 eV to 2.5 eV).
 式(1)の酸化物のように、電荷間クーロン力の競合による電荷秩序化を発生させる物質では、この特性を使用した電流制御素子、電圧信号記憶素子、誘電体素子、光感知素子、及び太陽電池等の開発が可能となる。これらの電子素子において、電荷間競合を調整することで、実効的にバンドギャップや電気伝導度を変化させたことに等しい効果を得ることが出来る。これにより、電流制御素子、電圧信号記憶素子、誘電体素子、光感知素子及び太陽電池において、設計上必要な最適な特性を実現することが出来る。 In a substance that generates charge ordering due to competition of Coulomb force between charges, such as an oxide of formula (1), a current control element, a voltage signal storage element, a dielectric element, a photosensitive element using this characteristic, and Development of solar cells and the like becomes possible. In these electronic devices, by adjusting the competition between charges, it is possible to obtain the same effect as effectively changing the band gap and the electric conductivity. As a result, optimum characteristics necessary for design can be realized in the current control element, the voltage signal storage element, the dielectric element, the light sensing element, and the solar cell.
 ここで、上記した酸化物、及び酸化物における電気特性の制御について、やや詳しく説明しておく。ただし、以下の説明は、学術的な観点からの推測を含んでいるものであり、本発明の解釈に何ら影響を及ぼすものではない。また、以下においては、式(1)の一般式(RM(RMOで示した物質について、説明の簡単のためRFeを例として特性等について説明するが、上記一般式で表される物質については、いずれもRFeと同様の結晶構造、及び特性を有するものである。 Here, the above-described oxide and the control of electric characteristics in the oxide will be described in some detail. However, the following description includes speculation from an academic point of view and does not affect the interpretation of the present invention. Further, in the following, for the substance represented by the general formula (RM 2 O 4 ) m (RMO 3 ) n of the formula (1), characteristics and the like will be described using RFe 2 O 4 as an example for simplicity of explanation. Each of the substances represented by the above general formula has the same crystal structure and characteristics as RFe 2 O 4 .
 従来の電気導体では、バンドギャップは結晶構造により決定されるため、このバンドキャップを変えることは困難であった。例えば、従来の半導体材料は特定のバンドキャップを持つ材料であるために、光応答では特定の波長にしか応答できず、ドーピングによっても広い範囲でバンドギャップを制御することは困難であった。したがって、電気特性を容易に制御できる材料が求められていた。 In the conventional electric conductor, since the band gap is determined by the crystal structure, it is difficult to change the band cap. For example, since a conventional semiconductor material is a material having a specific band cap, the optical response can respond only to a specific wavelength, and it is difficult to control the band gap in a wide range by doping. Therefore, a material capable of easily controlling the electrical characteristics has been demanded.
 本発明は、RFeの結晶構造においてFe2+とFe3+とが三角格子上に置かれているため、電荷間競合という電子相関効果によって電荷秩序構造が形成され、それによるバンドギャップが形成されることに注目したものである。 In the present invention, since Fe 2+ and Fe 3+ are placed on a triangular lattice in the crystal structure of RFe 2 O 4, a charge-ordered structure is formed by an electron correlation effect of charge-to-charge competition, thereby forming a band gap. It is the thing which pays attention to being done.
 すなわち、RFeにおける3価の希土類イオン(R)を一部、正二価以下の元素、または正四価以上の元素で置換する。このとき、三角格子上の鉄イオンの価数が一部変化し、これにより、電荷間相互作用に変化を与えて鉄イオン間の電荷間競合による電荷秩序形成を調整することによって、バンドギャップの大きさを制御できることを見いだし、本発明に到達したものである。 That is, a part of the trivalent rare earth ions (R) in RFe 2 O 4 are substituted with an element having a positive divalent value or less or an element having a positive tetravalent value or more. At this time, the valence of iron ions on the triangular lattice partially changes, thereby changing the charge-charge interaction and adjusting the charge order formation due to the charge-to-charge competition between the iron ions. It has been found that the size can be controlled, and the present invention has been achieved.
 さらに、酸化物に正二価以下の元素を固溶置換させることで、酸化物の電気特性を導電性からp型半導体性まで制御でき、その一方で、酸化物に正四価以上の元素を固溶置換させることで、酸化物の電気特性を導電性からn型半導体性まで制御できることを見いだし、本発明に到達したものである。 Furthermore, by substituting an element having a positive or lower valence in the oxide into a solid solution, the electrical characteristics of the oxide can be controlled from conductivity to p-type semiconductivity. It has been found that the electrical properties of the oxide can be controlled from conductivity to n-type semiconductor properties by substitution, and the present invention has been achieved.
 また、RFeについて、本発明の特性が発現する背景には、下記の2点の条件が必要となっているものと考えられる。 Further, regarding RFe 2 O 4 , it is considered that the following two conditions are necessary for the background of the manifestation of the characteristics of the present invention.
 第一に、RFeの結晶中でW-layerと呼ばれる領域において、同数のFe2+とFe3+とが存在しているという条件がある。RFeの結晶構造において、結晶全体としてもそうであるが、W-layerは三角格子の積層構造であるため、同数のFe2+とFe3+との存在は、電荷のフラストレーションを起こすことになる。 First, there is a condition that the same number of Fe 2+ and Fe 3+ exist in a region called W-layer in the RFe 2 O 4 crystal. In the crystal structure of RFe 2 O 4 , as is the case with the entire crystal, the W-layer has a triangular lattice structure, and therefore the presence of the same number of Fe 2+ and Fe 3+ causes charge frustration. become.
 すなわち、上記の結晶構造において、平均の鉄イオン価数は2.5価であるため、Fe2+は電子が多く負電荷の役割を持ち、一方、Fe3+は電子が足りず正電荷の役割を持つ。また、RFeにおいて、同数の正電荷と負電荷とがW-layerの三角格子上に配置せざるを得ず、その結果、Fe2+及びFe3+の規則配置がW-layer内に現れる。この規則配置では、上記したように、Fe3+の多い領域が正電荷の役割を持ち、一方、Fe2+の多い領域が負電荷の役割を持つ。このため、W-layerが電気双極子(電気分極)を持つことになり、この電気分極の存在が、様々な特性の起源となっている。 That is, in the above crystal structure, since the average iron ion valence is 2.5, Fe 2+ has many electrons and plays a role of negative charge, while Fe 3+ has less electrons and plays a role of positive charge. Have. Further, in RFe 2 O 4 , the same number of positive charges and negative charges must be arranged on the W-layer triangular lattice, and as a result, the regular arrangement of Fe 2+ and Fe 3+ appears in the W-layer. . In this regular arrangement, as described above, a region rich in Fe 3+ has a role of positive charge, while a region rich in Fe 2+ has a role of negative charge. For this reason, the W-layer has an electric dipole (electric polarization), and the presence of this electric polarization is the origin of various characteristics.
 第二の条件として、上記の物質において同数のFe2+とFe3+とが存在するためには、RFeという化学式から導かれるように、Rが3+であることが必要となる。したがって、これらの条件から、本発明の物質における特性の発現のためには、Rの価数は3+となる。 As a second condition, in order for the same number of Fe 2+ and Fe 3+ to exist in the above substance, R is required to be 3+ as derived from the chemical formula RFe 2 O 4 . Therefore, from these conditions, the valence of R is 3+ in order to develop the characteristics of the substance of the present invention.
 また、第三の条件として、結晶化学の立場から、この物質の結晶構造が成立するためには、遷移金属イオン、酸素イオン、希土類イオンそれぞれの比率が、現在のイオン半径比を保つことが必要になると推測している。 As a third condition, from the standpoint of crystal chemistry, in order for the crystal structure of this material to be established, the ratio of transition metal ions, oxygen ions, and rare earth ions must maintain the current ionic radius ratio. I guess it will be.
 本発明は、R3+イオンに対し、2価あるいは4価のイオンを微量置換することで、上記した第一の条件を崩し、光特性、磁気特性、電気伝導特性、さらにはバンドギャップなど物性が顕著に変化することを見いだしたことに基づくものである。また、上記したRFeの結晶構造が成立するために、今のところ知られているRイオンは、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc、Inである。これは上記した第三の条件によって制約されていると推測している。 The present invention breaks down the first condition described above by substituting a small amount of divalent or tetravalent ions for R 3+ ions, and has physical properties such as optical properties, magnetic properties, electrical conductivity properties, and band gaps. It is based on finding that it changes markedly. Moreover, since the above-described crystal structure of RFe 2 O 4 is established, R ions known so far are Y, Dy, Lu, Er, Yb, Tm, Ho, Sc, and In. This is presumed to be restricted by the third condition described above.
 なお、本発明は、Rイオンに、一種類ではなく複数の3+イオンを導入することを排除するものでない。イオン半径の異なるイオンを固溶させることは、物性をさらに変化させる可能性があると推測している。 It should be noted that the present invention does not exclude introducing a plurality of 3+ ions into R ions instead of one kind. It is speculated that dissolving ions with different ionic radii may further change the physical properties.
 本発明の本質は、上記した第一の条件を変調させて電荷フラストレーションを調整し、その結果、バンドギャップを含む物性を変化させるという推測に立っている。また、本発明の実施例として下記に具体的に記載する例では、この考えにしたがって、Ca2+、Ce4+を微量置換し、その効果を確認している。 The essence of the present invention is based on the speculation that the first condition described above is modulated to adjust the charge frustration, and as a result, the physical properties including the band gap are changed. Moreover, in the example specifically described below as an example of the present invention, a small amount of Ca 2+ and Ce 4+ is substituted according to this idea, and the effect is confirmed.
 本発明による酸化物等の実施例について説明する。 Examples of oxides according to the present invention will be described.
 実施例1[酸化物の作製]
 純度99.99%の酸化鉄粉末(株式会社高純度化学研究所製 Fe)、純度99.99%の酸化イッテリビウム粉末(株式会社高純度化学研究所製 Yb)及び純度99.99%の炭酸カルシウム(株式会社高純度化学研究所製 CaCO)を用いる。Feは、酸素中600℃で12時間焼成したものを用意する。Ybは、大気中1000℃で脱炭酸を行ったものを用意する。原子比(Yb:Ca:Fe)が0.99:0.01:2となるように原料を秤量し、粉砕混合して粉末材料とした。
Example 1 [Production of oxide]
Iron oxide powder having a purity of 99.99% (Fe 2 O 3 manufactured by Kojundo Chemical Laboratory Co., Ltd.), ytterbium oxide powder having a purity of 99.99% (Yb 2 O 3 manufactured by Kojundo Chemical Laboratory Co., Ltd.) and purity 99 99% calcium carbonate (CaCO 2 manufactured by Kojundo Chemical Laboratory Co., Ltd.) is used. Fe 2 O 3 is prepared by baking at 600 ° C. for 12 hours in oxygen. Yb 2 O 3 is prepared by decarboxylation at 1000 ° C. in the atmosphere. The raw materials were weighed so that the atomic ratio (Yb: Ca: Fe) was 0.99: 0.01: 2, and pulverized and mixed to obtain a powder material.
 この粉末材料を直径10mmのプレス金型に入れ、プレス機を用いて、静水圧60MPaで3分間プレス成形して円柱状に固めた。次いで、この円柱状に固めた粉末材料を取り出し、原料体とする。 This powder material was put into a press mold having a diameter of 10 mm, and was press-molded at a hydrostatic pressure of 60 MPa for 3 minutes and solidified into a cylindrical shape using a press machine. Next, the solidified powder material is taken out and used as a raw material body.
 この原料体を管状電気炉に設置し、COとCOの混合ガス(CO/CO=1:体積比)として、炉の管内に、この混合ガスを200ml/minで供給した。熱処理温度は1200℃とし、熱処理時間は24時間とした。熱処理後、試料を取り出し、室温(25℃)に急冷し、本発明の酸化物を作製した。 This raw material body was installed in a tubular electric furnace, and this mixed gas was supplied at a rate of 200 ml / min into the furnace tube as a mixed gas of CO and CO 2 (CO 2 / CO = 1: volume ratio). The heat treatment temperature was 1200 ° C., and the heat treatment time was 24 hours. After the heat treatment, the sample was taken out and rapidly cooled to room temperature (25 ° C.) to produce the oxide of the present invention.
 上記で得られた酸化物について、組成分析の定量分析によって、ICP発光分光分析法を用いて評価し、原子比(Yb:Ca:Fe)が0.99:0.01:2.00であった。 The oxide obtained above was evaluated by ICP emission spectroscopy by quantitative analysis of composition analysis, and the atomic ratio (Yb: Ca: Fe) was 0.99: 0.01: 2.00. It was.
 実施例2,3
 原料の仕込み比を以下のように変更した他は、実施例1と同様にして、酸化物を作製した。
  実施例2:原子比(Yb:Ca:Fe)=0.95:0.05:2
  実施例3:原子比(Yb:Ca:Fe)=0.90:0.10:2
Examples 2 and 3
An oxide was produced in the same manner as in Example 1 except that the raw material charge ratio was changed as follows.
Example 2: Atomic ratio (Yb: Ca: Fe) = 0.95: 0.05: 2
Example 3: Atomic ratio (Yb: Ca: Fe) = 0.90: 0.10: 2
 実施例4-6
 原料として、炭酸カルシウムのかわりに酸化セリウム(株式会社高純度化学研究所製)を使用し、原料の仕込み比を以下のように変更した他は、実施例1と同様にして、酸化物を作製した。
  実施例4:原子比(Yb:Ce:Fe)=0.95:0.05:2
  実施例5:原子比(Yb:Ce:Fe)=0.90:0.10:2
  実施例6:原子比(Yb:Ce:Fe)=0.98:0.02:2
Example 4-6
An oxide was produced in the same manner as in Example 1 except that cerium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was used instead of calcium carbonate as a raw material, and the raw material charge ratio was changed as follows. did.
Example 4: Atomic ratio (Yb: Ce: Fe) = 0.95: 0.05: 2
Example 5: Atomic ratio (Yb: Ce: Fe) = 0.90: 0.10: 2
Example 6: Atomic ratio (Yb: Ce: Fe) = 0.98: 0.02: 2
 上記実施例2-6において、得られた酸化物の組成及び置換を、実施例1と同様にして測定したところ、原料の仕込み比と同様であることが確認された。 In Example 2-6, the composition and substitution of the obtained oxide were measured in the same manner as in Example 1, and it was confirmed that the composition was the same as the raw material charge ratio.
 図2に実施例6で作製した酸化物のX線粉末回折スペクトルを示す。X線回折によるピークシフトの解析の結果、この酸化物は、YbFeで表される結晶の単一相であり、YbがCeにより固溶置換されていることが確認された。 FIG. 2 shows an X-ray powder diffraction spectrum of the oxide produced in Example 6. As a result of analysis of peak shift by X-ray diffraction, it was confirmed that this oxide is a single phase of a crystal represented by YbFe 2 O 4 , and Yb was solid-substituted by Ce.
 比較例1
 炭酸カルシウムを添加せず、仕込み比を以下のように変更した他は、実施例1と同様にして、酸化物を作製した。
  比較例1:原子比(Yb:Fe)=1:2
Comparative Example 1
An oxide was produced in the same manner as in Example 1 except that calcium carbonate was not added and the charging ratio was changed as follows.
Comparative Example 1: Atomic ratio (Yb: Fe) = 1: 2
 [評価1]
 実施例1-5及び比較例1で作製した酸化物について、バンドギャップを測定した。各酸化物焼結体を円筒状に研磨加工した(円筒の直径は7mm、厚さは0.7mm)試料の底面及び上面に、導電性接着剤(銀ペースト)を用いて電極面を形成したものを測定試料とした。
[Evaluation 1]
With respect to the oxides manufactured in Example 1-5 and Comparative Example 1, the band gap was measured. Each oxide sintered body was polished into a cylindrical shape (cylinder diameter 7 mm, thickness 0.7 mm). Electrode surfaces were formed on the bottom and top surfaces of the sample using a conductive adhesive (silver paste). A sample was used as a measurement sample.
 この測定試料の誘電率の温度依存性を測定し、測定試料の誘電分散からバンドギャップを計算した。尚、誘電率の測定方法は、特開2007-223886号に記載の方法に従った。 The temperature dependence of the dielectric constant of this measurement sample was measured, and the band gap was calculated from the dielectric dispersion of the measurement sample. The dielectric constant was measured according to the method described in JP-A-2007-223886.
 図3に、試料の誘電率の温度変化を測定した例を示す。得られた結果から、各周波数の変極点Trを決定する。図4は、変極点Trの逆数を横軸に、測定周波数を縦軸にプロットした図である。得られた値を下記式に近似し、Uを求める。
  f=fexp(-U/kT)
ここで、式中、fは周波数、fは定数、kはボルツマン定数、Tは絶対温度である。Uをエレクトロンボルト(eV)に換算することにより、バンドギャップが得られる。
FIG. 3 shows an example in which the temperature change of the dielectric constant of the sample is measured. From the obtained result, the inflection point Tr of each frequency is determined. FIG. 4 is a diagram in which the reciprocal of the inflection point Tr is plotted on the horizontal axis and the measurement frequency is plotted on the vertical axis. The obtained value is approximated by the following equation to obtain U.
f = f 0 exp (−U / kT)
Here, f is a frequency, f 0 is a constant, k is a Boltzmann constant, and T is an absolute temperature. By converting U to electron volts (eV), a band gap is obtained.
 図5は、上述した実施例及び比較例で得た酸化物のバンドギャップQ及び電気伝導度ρを示すグラフである。尚、電気伝導度は、室温付近の電気抵抗から見積もった値である。 FIG. 5 is a graph showing the band gap Q and the electrical conductivity ρ of the oxides obtained in the above-described examples and comparative examples. The electrical conductivity is a value estimated from an electrical resistance near room temperature.
 曲線C1は、バンドギャップQと正二価以下の元素又は正四価以上の元素の量Xとの関係を示しており、曲線C2は、室温の抵抗率ρとXとの関係を示している。このように、酸化物と正二価以下の元素又は正四価以上の元素とを含む電気導体において、正二価以下の元素又は正四価以上の元素の量Xを調整することにより、電気導体が有するバンドギャップ及び抵抗率ρ(電気伝導度)を制御することができる。 Curve C1 shows the relationship between the band gap Q and the amount X of elements less than positive divalent or more than tetravalent, and curve C2 shows the relationship between resistivity ρ and X at room temperature. Thus, in an electric conductor containing an oxide and an element having a positive or lower valence of 2 or more, and a positive or lower element having a positive or lower valence of 4 or more, by adjusting the amount X of the element having a positive or lower valence of 2 or higher and an element having a value of 4 or higher. The gap and resistivity ρ (electrical conductivity) can be controlled.
 尚、比較例1(X=0)の酸化物のバンドギャップは1.8eV、電気伝導度は約100kΩcmである。実施例1(X=0.01)の酸化物のバンドギャップは1.55eV、電気伝導度は約0.2Ωcmである。 Note that the oxide of Comparative Example 1 (X = 0) has a band gap of 1.8 eV and an electric conductivity of about 100 kΩcm. The band gap of the oxide of Example 1 (X = 0.01) is 1.55 eV, and the electric conductivity is about 0.2 Ωcm.
 [評価2]
 実施例2で作製した誘電率測定試料に、赤外光源を用いてスプリッターにより分光した光を照射し、光吸収特性を測定した。不純物が添加されていないYbFeでは、吸収端は主に1.3eV付近にあるが、Ca添加に伴って、バンドギャップの存在に対応する光吸収端が、0.3eV付近と、1.3eV付近に見られた。これは、本試料Yb0.95Ca0.05Feにおいて、バンドギャップが不純物添加により制御され、0.3eV付近に吸収端が形成されたことを示している。
[Evaluation 2]
The dielectric constant measurement sample prepared in Example 2 was irradiated with light separated by a splitter using an infrared light source, and light absorption characteristics were measured. In YbFe 2 O 4 to which no impurity is added, the absorption edge is mainly in the vicinity of 1.3 eV, but with the addition of Ca, the light absorption edge corresponding to the existence of the band gap is in the vicinity of 0.3 eV, 1 About 3 eV. This indicates that in this sample Yb 0.95 Ca 0.05 Fe 2 O 4 , the band gap was controlled by addition of impurities, and an absorption edge was formed in the vicinity of 0.3 eV.
 一方、実施例2と同様の形状のSi単結晶では、吸収端が1eV付近にあるため、これより小さなエネルギーの光(例えば0.3eV(波長4μm)の光)を照射しても、光吸収は起こらない。これは、Siのバンドギャップよりも小さいエネルギーの光を照射しても光の吸収がないことを示している。 On the other hand, in the Si single crystal having the same shape as in Example 2, the absorption edge is in the vicinity of 1 eV. Therefore, even when irradiated with light of energy smaller than this (for example, light of 0.3 eV (wavelength 4 μm)), light absorption is achieved. Does not happen. This indicates that there is no light absorption even when irradiated with light having energy smaller than the band gap of Si.
 本発明の酸化物は、電流制御素子、電圧信号記憶素子、誘電体素子、光感知素子及び太陽電池等において、設計上必要な最適な特性を実現することができる。 The oxide of the present invention can realize optimum characteristics necessary for design in current control elements, voltage signal storage elements, dielectric elements, light sensing elements, solar cells, and the like.

Claims (16)

  1.  下記式(1)で表され、式(1)中のRの一部が正二価以下の元素により固溶置換されている酸化物。
      (RM(RMO   (1)
    (式中、Rは、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素であり、Mは、Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素であり、mは1又は2であり、nは0以上の整数である。)
    An oxide represented by the following formula (1), in which a part of R in the formula (1) is replaced by a solid solution with an element having a positive or lower valence of 2 or less.
    (RM 2 O 4 ) m (RMO 3 ) n (1)
    (Wherein R is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In, and M is from Mn, Fe, Co and Ga) (At least one element selected from the group consisting of m, 1 or 2 and n is an integer of 0 or more.)
  2.  前記式(1)中のMがFeである請求項1に記載の酸化物。 The oxide according to claim 1, wherein M in the formula (1) is Fe.
  3.  前記正二価以下の元素がCa、Sr、Ba及びZnからなる群より選択される少なくとも1種の元素である請求項1又は2に記載の酸化物。 The oxide according to claim 1 or 2, wherein the element of less than positive divalent is at least one element selected from the group consisting of Ca, Sr, Ba and Zn.
  4.  前記正二価以下の元素がCaである請求項1又は2に記載の酸化物。 The oxide according to claim 1 or 2, wherein the element having a positive divalent value or less is Ca.
  5.  請求項1~4のいずれかに記載の酸化物からなる電気導体。 An electric conductor comprising the oxide according to any one of claims 1 to 4.
  6.  請求項1~4のいずれかに記載の酸化物からなるp型半導体。 A p-type semiconductor comprising the oxide according to any one of claims 1 to 4.
  7.  下記式(1)で表され、式(1)中のRの一部が正四価以上の元素により固溶置換されている酸化物。
      (RM(RMO   (1)
    (式中、Rは、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素であり、Mは、Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素であり、mは1又は2であり、nは0以上の整数である。)
    An oxide represented by the following formula (1), wherein a part of R in the formula (1) is solid solution substituted with an element having a positive tetravalent or higher.
    (RM 2 O 4 ) m (RMO 3 ) n (1)
    (Wherein R is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In, and M is from Mn, Fe, Co and Ga) (At least one element selected from the group consisting of m, 1 or 2 and n is an integer of 0 or more.)
  8.  前記式(1)中のMがFeである請求項7に記載の酸化物。 The oxide according to claim 7, wherein M in the formula (1) is Fe.
  9.  前記正四価以上の元素がCe、Ti、Zr、Hf、Sn、Ta、Sb及びReからなる群より選択される少なくとも1種の元素である請求項7又は8に記載の酸化物。 The oxide according to claim 7 or 8, wherein the element having a positive tetravalent or higher is at least one element selected from the group consisting of Ce, Ti, Zr, Hf, Sn, Ta, Sb and Re.
  10.  前記正四価以上の元素がCeである請求項7又は8に記載の酸化物。 The oxide according to claim 7 or 8, wherein the element having a positive tetravalence or more is Ce.
  11.  請求項7~10のいずれかに記載の酸化物からなる電気導体。 An electric conductor comprising the oxide according to any one of claims 7 to 10.
  12.  請求項7~10のいずれかに記載の酸化物からなるn型半導体。 An n-type semiconductor comprising the oxide according to any one of claims 7 to 10.
  13.  Ca、Sr、Ba及びZnからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、
     Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、
     Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、を混合した原料粉末を準備する工程と、
     前記原料粉末を、酸素分圧が10-6~10-11気圧である雰囲気下において、加熱下で焼成した後、冷却する工程と
     を備えることを特徴とする酸化物の製造方法。
    At least one of an oxide and carbonate of at least one element selected from the group consisting of Ca, Sr, Ba and Zn;
    At least one of an oxide and carbonate of at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In;
    Preparing a raw material powder mixed with at least one of an oxide and carbonate of at least one element selected from the group consisting of Mn, Fe, Co and Ga;
    A step of baking the raw material powder under heating in an atmosphere having an oxygen partial pressure of 10 −6 to 10 −11 atm and then cooling the raw material powder.
  14.  Ce、Ti、Zr、Hf、Sn、Ta、Sb及びReからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、
     Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、
     Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素の酸化物及び炭酸塩の少なくとも一方と、を混合した原料粉末を準備する工程と、
     前記原料粉末を、酸素分圧が10-6~10-11気圧である雰囲気下において、加熱下で焼成した後、冷却する工程と
     を備えることを特徴とする酸化物の製造方法。
    At least one of an oxide and carbonate of at least one element selected from the group consisting of Ce, Ti, Zr, Hf, Sn, Ta, Sb and Re;
    At least one of an oxide and carbonate of at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In;
    Preparing a raw material powder mixed with at least one of an oxide and carbonate of at least one element selected from the group consisting of Mn, Fe, Co and Ga;
    A step of baking the raw material powder under heating in an atmosphere having an oxygen partial pressure of 10 −6 to 10 −11 atm and then cooling the raw material powder.
  15.  下記式(1)で表される酸化物のRの一部に、正二価以下の元素又は正四価以上の元素を固溶置換させることにより、酸化物の電気特性を制御する方法。
      (RM(RMO   (1)
    (式中、Rは、Y、Dy、Lu、Er、Yb、Tm、Ho、Sc及びInからなる群より選択される少なくとも1種の元素であり、Mは、Mn、Fe、Co及びGaからなる群より選択される少なくとも1種の元素であり、mは1又は2であり、nは0以上の整数である。)
    A method of controlling the electrical characteristics of an oxide by replacing a part of R of the oxide represented by the following formula (1) with a solid solution or a non-positive divalent element or a positive tetravalent element or more.
    (RM 2 O 4 ) m (RMO 3 ) n (1)
    (Wherein R is at least one element selected from the group consisting of Y, Dy, Lu, Er, Yb, Tm, Ho, Sc and In, and M is from Mn, Fe, Co and Ga) (At least one element selected from the group consisting of m, 1 or 2 and n is an integer of 0 or more.)
  16.  前記正二価以下の元素又は正四価以上の元素の固溶置換量を調整することにより、前記酸化物のバンドギャップを制御する、請求項15に記載の方法。 The method according to claim 15, wherein the band gap of the oxide is controlled by adjusting a solid solution substitution amount of the element less than the positive divalent or the element more than the positive tetravalent.
PCT/JP2009/053289 2008-08-29 2009-02-24 Oxide and method for controlling electrical characteristics of electric conductor WO2010023971A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008222351A JP5626946B2 (en) 2008-08-29 2008-08-29 Oxides, electrical conductors, p-type semiconductors, and n-type semiconductors
JP2008-222351 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010023971A1 true WO2010023971A1 (en) 2010-03-04

Family

ID=41721152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053289 WO2010023971A1 (en) 2008-08-29 2009-02-24 Oxide and method for controlling electrical characteristics of electric conductor

Country Status (2)

Country Link
JP (1) JP5626946B2 (en)
WO (1) WO2010023971A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542065C1 (en) * 2014-02-11 2015-02-20 Федеральное государственное бюджетное учреждение науки институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук Lutetium-containing spin-glass magnetic material
CN114988861A (en) * 2022-06-09 2022-09-02 江西理工大学 Hexagonal rare earth iron oxide single-phase multiferroic material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137346B (en) * 2019-06-18 2023-04-18 西安工业大学 Manganese-doped holmium ferrite HoMn x Fe 1-x O 3 Preparation method of magnetoelectric material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028424A1 (en) * 2007-08-24 2009-03-05 National University Corporation Okayama University Electronic element and electrical conductivity control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101499A (en) * 1976-02-21 1977-08-25 Kagaku Gijutsucho Mukizai Singleecrystal magnetic semiconductor of yttrium diferrous tetraoxigen compoun *yfe204* and method of manufacture thereof
JPH05213699A (en) * 1991-12-09 1993-08-24 Asahi Glass Co Ltd Production of oxide superconductor
JP3460807B2 (en) * 1999-09-17 2003-10-27 日本電気株式会社 Thermoelectric conversion material, element using the same, and method of manufacturing thermoelectric conversion material
JP3876306B2 (en) * 2002-03-27 2007-01-31 独立行政法人産業技術総合研究所 Mixed conductive oxide
JP2007106653A (en) * 2005-10-17 2007-04-26 Central Res Inst Of Electric Power Ind Crystal for magnetooptical element, magnetooptical element using the same, and magnetic field detection device
JP4953121B2 (en) * 2005-11-22 2012-06-13 国立大学法人 岡山大学 Method and material for realizing dielectric properties by distributing electron density in substance in dipole form

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028424A1 (en) * 2007-08-24 2009-03-05 National University Corporation Okayama University Electronic element and electrical conductivity control method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
K. YOSHII ET AL.: "Magnetic and dielectric properties of RFe204, RFeM04, and RGaCu04 (R=Yb and Lu, M=Co and Cu)", PHYSICAL REVIEW B, vol. 76, no. 2, July 2007 (2007-07-01), pages 024423.1 - 024423.1 *
N. IKEDA ET AL.: "Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4", NATURE, vol. 436, August 2005 (2005-08-01), pages 1136 - 1138 *
N. KIMIZUKA ET AL.: "A SERIES OF NEW COMPOUNDS A3+Fe2O4 (A=Ho, Er, Tm, Yb, AND Lu)", SOLID STATE COMMUNICATIONS, vol. 15, 1974, pages 1321 - 1323 *
TOMOKO KURODA ET AL.: "R1-xMxFe2O4 no Dendo to Yuden Oto", ABSTRACTS OF THE MEETING OF THE PHYSICAL SOCIETY OF JAPAN, vol. 63, - 29 February 2008 (2008-02-29), pages 591 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542065C1 (en) * 2014-02-11 2015-02-20 Федеральное государственное бюджетное учреждение науки институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук Lutetium-containing spin-glass magnetic material
CN114988861A (en) * 2022-06-09 2022-09-02 江西理工大学 Hexagonal rare earth iron oxide single-phase multiferroic material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5626946B2 (en) 2014-11-19
JP2010053006A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
Lu et al. Phase equilibrium of Bi2O3–Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal
JP5218042B2 (en) Semiconductor porcelain composition
Mouyane et al. Flash combustion synthesis of electron doped-CaMnO3 thermoelectric oxides
RU2689155C2 (en) Perovskite structure, method for production thereof, electrode for fuel cell comprising perovskite structure, and fuel cell stack containing perovskite structure
KR101361358B1 (en) Semiconductor ceramic composition and method for producing the same
Jakubczyk et al. Enhancing thermoelectric properties of NaCo2O4 ceramics through Na pre-treatment induced nano-decoration
Zhang et al. Comparison of structure and electrical properties of vacuum-sintered and conventional-sintered Ca1-xYxCeNbWO8 NTC ceramics
JP6608961B2 (en) P-type skutterudite thermoelectric material, method for producing the same, and thermoelectric element including the same
WO2020136954A1 (en) Method for producing halide
Chen et al. Ferroelectric and dielectric properties of Sr2− x (Na, K) xBi4Ti5O18 lead-free piezoelectric ceramics
Chatterjee et al. Effect of additives and powder preparation techniques on PTCR properties of barium titanate
CN110498681B (en) Relaxor ferroelectric ceramic with high electrocaloric effect at room temperature, preparation method and application thereof
Mrázek et al. Crystallization properties of RE-doped (RE= Eu, Er, Tm) Zn2TiO4 prepared by the sol–gel method
WO2010023971A1 (en) Oxide and method for controlling electrical characteristics of electric conductor
Cai et al. Subsolidus phase relations in CoO–In2O3–B2O3 system and crystal structure of Co3− XInXBO5 solid solution for 0< X⩽ 1
Jin et al. Influence of silver addition on microstructures and transport properties of La 0.67 Ca 0.33 MnO 3: Ag x composites
JP2012510952A (en) Method for producing powder for production of p-type transparent conductive film
Aksenova et al. Crystal structure, oxygen nonstoichiometry and thermal expansion of the layered NdBaCo2− xМxO5+ δ (M= Ni, Cu)
Devi et al. A modified citrate gel route for the synthesis of phase pure Bi2Sr2CaCu2O8 superconductor
JP5647742B2 (en) Calcium-manganese thermoelectric composition doped with praseodymium and method for producing the same
Fisher et al. Reactive sintering of (K 0.5 Bi 0.5) TiO 3-BiFeO 3 lead-free piezoelectric ceramics
Kornphom et al. Effect of La 2 O 3-Enriched Bi 0.5 (Na 0.68 K 0.22 Li 0.1) 0.5 TiO 3 on Properties of (K 0.44 Na 0.52 Li 0.04)(Nb 0.84 Ta 0.10 Sb 0.06) O 3 Ceramics Prepared by Solid State Combustion
Kandari et al. Morphotropic phase boundary in Na1− xKxNbO3, near x= 0.32
CN116217226B (en) BS-PT-based high-temperature piezoelectric ceramic material and preparation method thereof
JPH08133895A (en) Grain boundary-free type manganese oxide-based crystal, its production and memory switching type magnetic resistance element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809626

Country of ref document: EP

Kind code of ref document: A1